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Abstract in french

Introduction

L’identification de structure est devenu aujourd’hui un enjeu majeur pour le contrôle
et la surveillance de celle-ci. L’exemple le plus évocateur est celui de l’aéronautique où au-
cune transgression sur la sureté de fonctionnement ne peut être faite. Ceci engendre mal-
heureusement des coûts de maintenance non négligeables puisque, pour atteindre le niveau
de sécurité souhaité, on change les composants mécaniques de manière systématique après
un nombre de cycles défini. Le suivi de ce type de composants permettrait de détecter à
quel moment l’opération de maintenance est la plus adéquate, et de ce fait permettrait
d’augmenter la durée de vie de ces pièces sans compromis sur la sureté de fonctionnement.
De plus, l’espacement des opérations de maintenance permettrait d’augmenter de fait la
durée d’utilisation de l’appareil ou du moins diminuerait considérablement le temps où
l’appareil resterait inutilisable. Aujourd’hui le développement de capteurs intégrés, tels
que la fibre composite permet d’introduire des réseaux de capteurs dans la structure même
du composant à suivre. Le but de cette thèse est d’initier la réflexion sur une manière
d’optimiser la forme de ce réseau de capteurs afin de reconstruire les informations re-
cherchées :

– Vieillissement de matériau, par le suivi de paramètres matériau tel que module
d’Young, densité volumique, etc,

– Détection de défaut, par la détection de discontinuité tel que fissures, inclusions,
etc,

– Caractérisation de structures et de matériau, par l’estimation du meilleur
modèle de comportement pour une structure inconnue

Différents procédés d’identification ont été développés au cours des dernières décennies.
On citera ici uniquement ceux dont le fonctionnement se rapproche le plus de l’approche
proposée dans cette thèse.
La méthode de reconstruction modale a suscitée un grand intérêt au sein de la commu-
nauté mécanique. Différentes applications peuvent être associées à cette famille telles que
la corrélation en onde inverse [1, 2], la décomposition en onde inverse [3, 4] ou la méthode
de la densité modale [5, 6]. Les travaux les plus complets sur ces méthodes sont présentés
par Ewins [7]. Le principal inconvénient de ces méthodes est qu’il est assez complexe
d’estimer les paramètres de systèmes non linéaires.
On notera entre autre la méthode RIFF (résolution inverse filtrée fenêtrée) basée sur le
même principe : l’estimation des dérivées d’un signal acquis expérimentalement afin de
reconstruire l’équation de comportement de la structure. Cette méthode développée par
Pezerat [8, 9, 10, 11] a été appliqué à l’identification d’une plaque amortie par [12], ce
qui rejoint les travaux proposés dans cette thèse.
Dans le domaine de l’automatique, de nombreux outils d’identification ont été développés,
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entre autre des outils d’identification paramétrique [13](comme les modèles ARX, Box-
Jenkins, etc.). Ces méthodes semblaient peu adaptées au domaine de la mécanique, les
paramètres reconstruits n’ayant aucune signification mécanique. D. Remond [14] a adapté
quant à lui la méthode d’identification à temps continu au domaine de la mécanique, en
identifiant les paramètres de modèles discrets tel que la masse, la raideur, l’amortisse-
ment. Cette méthode est basée sur la projection d’un signal sur une base orthogonale, de
l’estimation des dérivées de cette projection, grâce à la projection, pour enfin reconstruire
l’équation de comportement du système discret.
La méthode d’identification développée dans cette thèse est inspiré des travaux de D.
Remond. On considérera les données d’entrée suivante :

– la réponse de la structure, qui sera mesurée de manière discrète, et qui dépendra
des dimensions de la structure (temps, espace)

– le modèle de comportement, qui sera exprimé sous forme d’une équation différentielle
ou d’une équation aux dérivées partielles,

– les conditions aux limites ainsi que la source d’excitation seront considérées comme
non mesurées, ou inconnues.

0.1 Principe d’identification

La procédure d’identification est composée de trois étapes :
– la projection sur une base polynomiale orthogonale du signal mesuré,
– la différentiation du signal mesuré,
– l’estimation de paramètres, en transformant l’équation de comportement en une

équation algébrique.
Les outils développés pour les trois étapes citées ci-dessus seront développées dans les
prochains paragraphes.

0.1.1 Projection

Le signal est projeté sur la base de polynômes de Chebyshev. Cette famille de po-
lynômes a été choisie pour ses bonnes propriétés (développées ci-après).
On définit la projection comme il suit :

f(x) =
∞∑
i=0

λiPi(x) (1)

f étant le signal, λi le coefficient de projection et Pi le polynôme d’ordre i. Dans la
pratique il est impossible d’estimer la projection exacte de f , puisqu’il est impossible
d’estimer une somme infinie. De ce fait, on calcule la meilleure estimation de f sur
une base de taille N , au sens des moindres carrés. N sera également nommé l’ordre de
troncature. On aura donc :

f(x) ≈
N∑
i=0

λiPi(x) (2)

Les coefficients λi seront estimés par le produit scalaire associé à cette base :

λi =< f(x), Pi(x) >

=

∫
Γ

w(x)f(x)Pi(x)dx
(3)
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Γ étant l’intervalle d’orthogonalité, w(x) la fonction poids. Dans la pratique il est im-
possible d’estimer cet intégrale de façon exacte. On peut l’estimer approximativement en
utilisant la méthode des trapèzes. Malheureusement celle-ci a ses limites, bien connues.
Afin de minimiser l’erreur il est essentiel de connâıtre f sur un grand nombre de points x,
ce qui est très complexe dans la pratique lorsque ces données représentent des mesures.
Les polynômes de Chebyshev possèdent une intéressante propriété de projection qui
possède de l’intérêt par rapport à notre approche. La projection discrète sur les points
de Gauss :

λi =
N+1∑
j=1

f(xj)Pi(xj) (4)

avec N + 1 > i et xj pour j = 1..N + 1 sont les zéros (points de Gauss) du polynôme
PN+1. Cette projection discrète permet d’estimer de manière exacte les coefficients de
projection avec uniquement N + 1 points.

0.1.2 Différentiation

On peut exprimer les dérivés des polynômes de Chebyshev comme une somme de ces
mêmes polynômes. On écrit donc communément :

f ′(x) ≈
N∑
i=0

λi
d

dx
Ti(x)

≈ {λ} [D] {T}
(5)

avec

{λ} =

λ0
...
λN

 {T} =

T0(x)
...

TN(x)


et

[D] = 2×



0 0 0 0 0 0 · · · 0
1 0 0 0 0 0 · · · 0
0 4 0 0 0 0 · · · 0
3 0 6 0 0 0 · · · 0
0 8 0 8 0 0 · · · 0
5 0 10 0 10 0 · · · 0
...

...
...

...
...

...
. . .

...
0 2N 0 2N 0 2N · · · 0


(6)

Lui [15] a prouvé l’erreur commise lors de l’écriture de ce paramètre. Cette erreur a
également été observée au cours des applications numériques lors de cette thèse.
Il a donc été nécessaire de développer un nouvel opérateur de différentiation. Ce nouvel
opérateur est nommé [∆]. Il est basé sur la théorie suivante : on exprime le produit scalaire
de la dérivée :

λα,γi =< f (α) · uγ, Pi(x) >

=

∫
Γ

f (α)(x) · uγ(x) · w(x) · Pi(x)dx
(7)

En intègrant par partie, on obtient l’expression suivante :

λα,γi = [f (α−1)(x) · uγ(x) · w(x) · Pi(x)]Γ −
∫

Γ

f (α−1)(x) · (uγ(x) · w(x) · Pi(x))(1)dx (8)
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En choisissant la fonction uγ de manière à annuler la partie intégrée, on obtient :

{λα,γ} = [∆α,γ]{λ0,γ−α} (9)

L’opérateur [∆] permet donc d’exprimer de manière exacte la projection de la dérivée
d’ordre α en fonction de la projection du signal.

0.1.3 Estimation de paramètres

On cherche à estimer les paramètres de l’équation de comportement. Cette étape sera
présentée à l’aide de l’exemple de la poutre de Bernoulli pour sa simplicité et son ordre
de dérivation élevé :

∂4

∂x4
v(x, t) =

ρS

EI

∂2

∂t2
v(x, t) (10)

avec v le déplacement transversal dépendant de l’espace x et du temps t.
ρS

EI
est le

paramètre structurel et matériau à identifier.En multipliant cette équation par la fonction
uγ sus citée on obtient :

u(x, t)
∂4

∂x4
v(x, t) =

ρS

EI
u(x, t)

∂2

∂t2
v(x, t) (11)

Cette équation aux dérivées partielles sera projetée sur la base des polynômes de Cheby-
shev :

{λ4,γx|0,γt} =
ρS

EI
{λ0,γx|2,γt} (12)

les coefficients {λ4,γx|0,γt} et {λ0,γx|2,γt} sont les coefficients de projection des dérivées
partielles de v. Ils seront donc estimés à l’aide de la projection de v ainsi que l’opérateur
de différentiation [D] ou [∆].

On estimera ensuite
ρS

EI
qui est la seule inconnue à l’aide des N×N équations algébriques

écrites. La dimension N ×N correspond aux nombres de coefficients de projection sur la
base polynomiale de taille N en espace et N en temps.
On a plus d’équations que d’inconnues. On pourra donc estimer le paramètre par les
moindres carrés. Malheureusement, lorsque le signal est entaché de bruit, l’estimateur des
moindres carrés est biaisé. On ajoutera alors une étape supplémentaire de régularisation.
Lors de cette thèse on a choisi d’adapter la théorie de la variable instrumentale issue du
domaine de l’automatique. Cette méthode de régularisation permet de filtrer le signal
bruité par le modèle choisi.

0.2 Applications numériques

Le processus d’identification a été appliqué à différents modèles numériques.
La poutre de Bernoulli a permis d’établir un lien entre l’ordre de troncature de la base
polynomiale et le nombre d’ondes contenu dans le signal projeté. Sur un signal bruité,
nous avons pu établir une valeur de nombre d’onde et d’ordre de troncature minimum
pour assurer une estimation précise du paramètre à identifier.
Grâce à l’exemple de la poutre de Timoshenko, nous avons pu réadapter la procédure
d’identification à l’estimation de plusieurs paramètres. Trois paramètres dont les valeurs
ont des ordres radicalement différents ont été estimés. Cet exemple illustre également la
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stratégie de régularisation à adopter avec ce type de problèmes.
L’estimation de l’amortissement sur une poutre a été réalisée avec succès, que ce soit à
l’aide de sa réponse transitoire ou à l’aide du régime établi.
Le cas bidimensionnel de la plaque a également été traité. Il a permis d’établir un lien
similaire au cas de la poutre de Bernoulli entre le nombre d’onde et l’ordre de troncature.
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Figure 1 – Estimation de
D

ρh
, pour une plaque, avec 5% de bruit.

A titre d’exemple, la figure 3.26 présente les résultats d’identification pour une plaque,
avec signal bruité, en fonction du nombre d’onde et de l’ordre de troncature. L’ordre
de troncature est le paramètre de réglage de la méthode, le nombre d’onde permet de
représenter le contenu fréquentiel du signal. L’échelle de couleur met en évidence les zones
où la méthode d’identification est efficace (erreur entre 1% (vert) et 10−9% (bleu). Cette
méthode met en évidence trois zones :

– En haut à gauche : ordre de troncature faible et nombre d’onde élevé. Dans cette
zone la taille de la base ne permet pas de reconstruire correctement le signal

– En bas : ordre de troncature élevé et nombre d’onde faible. Le contenu du signal
n’est pas assez riche pour réaliser une identification non entaché par le bruit

– En haut à gauche : ordre de troncature élevé et nombre d’onde élevé. Ici la précision
est de l’ordre de 1%. Le signal est assez riche et la taille de la base polynomiale
permet de le reconstruire

0.3 Applications expérimentales

Deux cas d’applications expérimentales ont été traités au cours de cette thèse. Le pre-
mier se base sur le modèle de la poutre de Bernoulli, appliqué à la détection de défaut.
En effet on applique un procédé d’identification ayant pour hypothèse initiale la conti-
nuité de la structure. Dans le cas où celle-ci ne le serait pas on s’attend à observer une
valeur aberrante du paramètre reconstruit. On recherche ici à retrouver une fissure créé
artificiellement. Le procédé permet de localiser avec succès le lieu de la discontinuité. La
figure 4.3 (a) présente la valeur du paramètre matériau/ géométrique reconstruit pour
chaque tronçon de poutre. Au droit de la fissure, on observe un décrochage de cette va-
leur correspondant à la discontinuité. Figure 4.3 (b) on voit la dérivée d’ordre 4 en espace
reconstruite à l’aide de la méthode. On observe au droit de la fissure une oscillation plus
importante du signal. Cette oscillation est caractéristique de la présence d’une disconti-
nuité dans le champ de déplacement qui ne respecte plus l’équation de comportement.
Le second cas applicatif vise à reconstruire l’amortissement d’une structure 2D : une
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Figure 2 – ρS/EIID/ρS/EITH (a) et (∂4v/∂x4 · u) (b) pour la poutre encastrée libre
expérimentale

plaque libre-libre. On compare les résultats obtenus à l’aide de notre procédé d’identi-
fication à ceux obtenus par Ablitzer à l’aide de la méthode RIFF. Les deux méthodes
permettent d’obtenir des résultats sensiblement proches, comme illustré figure 3.
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Figure 3 – Identification de
D

ρh
et η à différentes fréquences, sans régularisation

Figure 3, on observe la valeur des paramètres structurel et d’amortissement, recons-
truit à différentes fréquences.

Conclusion

En conclusion, les travaux de cette thèse auront pu mettre en évidence différentes
problématiques telles que :
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– la stratégie de placement de capteurs lorsque l’on souhaite appliqué la méthode
d’identification par les polynômes de Chebyshev,

– l’erreur commise avec l’opérateur [D], utilisé alors communémant lors d’identifica-
tion utilisant les polynômes de Chebyshev,

– le développement d’un nouvel outil de différentiation [∆] performant,
– l’apport d’une solution de régularisation pour corriger le biais de l’estimation par

les moindres carrés, associé au bruit.
Ces différentes améliorations apportées auront permis d’appliquer ce procédé d’identi-
fication à différents modèles numériques : poutre de Bernoulli, poutre de Timoshenko,
plaque de Kirschhoff. Ces différents exemples permettent d’illustrer différentes stratégies
d’identification.
Les deux exemples expérimentaux illustrent parfaitement les différents domaines d’ap-
plication de la méthode, comme la détection de défauts sur la poutre ou l’estimation de
modèle sur la plaque polymère (PMMA).
En perspectives, ces travaux pourraient être appliqué à la caractérisation de matériaux
anisotropes.
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pauses cafés et les activités sportives partagées.
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mécanique depuis toute petite et qui m’a toujours poussée vers l’excellence. Je remer-
cie également mon conjoint Edouard Rochard qui a du supporter mes préparations de
présentations pour les différents colloques et congrès.
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Introduction

Context

The identification of mechanical systems and structures is currently attracting much
attention for monitoring and control purposes. In civil and aeronautical engineering, for
example, optimizing structure life-time is crucial. The principle aim of structure mon-
itoring is to replace the periodical maintenance operations by maintenance operations
controlled by monitoring the system. Hence, the mechanical elements life-time is larger
without reducing the safety of the structure. The monitoring system should be able to
foresee crack apparitions and to evaluate material ageing. This optimized maintenance
permits cost reduction as elements are used longer and the stop of devices is made less
frequently.
Robust monitoring is also vital for updating controllers. Many control systems require
accurate models of the systems controlled, thus the formulation of the parameter identi-
fication procedures implemented is a critical step.
The development of sensing technologies creates also a strong need of these signal pro-
cessing techniques. For example, sensors fibres, implemented in the structure material
draw interesting perspectives in the development of smart structures. They generate a
large amount of data, which requires a processing, in order to reveal the interesting in-
formation. The original goal of this study was to develop an adaptive sensing approach,
which could help the design of these implemented sensors arrays.

Identification techniques for parameter identification

The main application domain of the identification problem treated in this work is
vibrating structures and displacement field measurements post processing (source loca-
tion, limit characterization, structure health monitoring, etc). As the problem of system
identification has been largely treated, it becomes impossible to mention here all identifi-
cation techniques which already exist. A focus on some identification techniques applied
to mechanical systems will be presented here.
The most developed techniques in the last decades are modal identification techniques.
Different modal techniques exist, such as the inverse wave correlation [1, 2], which is
based on the determination of the curve dispersion using a measurement field, the inverse
wave decomposition [3, 4] which is based on the computation of the general solution of the
equation, the modal density [5, 6], which is based on the comparison of the modal density
of a theoretical infinite plate and a modal density measured during experimentation. The
most complete work on modal testing was led by D. J. Ewins [7]. The main drawback of
the presented modal approaches is that it seems difficult to consider the identification of
non-linear systems using a modal approach.

1
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INTRODUCTION 2

The RIFF (Resolution Inverse Filtree Fenetree in French, meaning windowed filtered in-
verse resolution) technique must be mentioned as it identification objective is very close
to the one developed in our work (estimation of signal derivatives and equation of mo-
tion reconstruction). RIFF technique applied on inverse problem was led by C. Pezerat
[8, 9, 10, 11]. This method considers the equation of motion of the structure. the partial
derivatives of the structure response are estimated by a finite scheme. Using two previous
considerations, the distribution forces in the structure are reconstructed. Since measured
data are always noisy, the force distribution reconstructed is regularized applying a spa-
tial window on the set of sensors used for the partial derivatives reconstruction. This
method was successfully applied on damping identification by F. Ablitzer [12]. The main
drawback of this method is the need of a regular and high resolution meshing of sensors
on the considered structure.
In the automation domain, some highly interesting identification tools has been devel-
oped. Various parametric identification methods [13](such as ARX, Box-Jenkins, etc.)
have been developed over the last decades. These methods seem difficult to implement
in mechanical engineering, as the parameters identified have no mechanical meaning. In-
deed, in both contexts (automation and mechanical), the inputs and goals seems different.
Indeed in the automation context, the amount of data available for the identification is
very large. In our structure identification context, only a few sensors are used and there-
fore led to different identification challenges. Moreover, the model are often more simple
in the automation domain (for example with lower derivative order).
Recently, D. Remond [14] proposed an improved continuous time identification method
which permits the direct computation of mechanical quantities such as mass, damping,
etc. This continuous-time identification method was applied on different multi-degrees
of freedom systems [18, 19, 20] using different orthogonal bases (Chebyshev, Legendre,
Fourier, etc.) and it has also been extended to non-linear systems [21] and time varying
systems (see 4.2.3.2). As this method fulfils all the requirements presented previously, a
focus on continous time identification is developed here.

Continuous time identification methods

Before the area of numerical measurements, in the 1950s and 1960s, continuous time
models dominated the control world. Since then, these techniques were forgotten, per-
haps because of the dominant interest in discrete-time identification.
In the 21st century, scientists began to find new interest for using continuous-time identi-
fication. Different techniques were proposed, like the hybrid model [22] for example that
could mix continuous time identification with the use of sampled data. The advantages
of continuous time modelling are combined to the efficiency of noise modelling in discrete
time identification. A reborn of continuous-time identification occurs around 1999. Dif-
ferent orthogonal basis are then studied and compared [23]. Chou, CT, Verhaegen, M.
and Johansson, R suggest Laguerre function for SISO (single input single output) systems
[24]. The identification proves to be precise even for a restrictive quantity of samples. It
shows that this technique can potentially reduce the amount of information needed for
identification.
The subject is largely theoretically treated. A large part of the applications are still very
experimental but shows the power of continuous-time identification. This technique has
proved itself to be efficient for linear and non-linear identification [25]. Pacheco, RP and
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Steffen, V have shown the efficiency of this technique applied to single degree and two
degrees of freedom systems with mixed damping. The Legendre polynomials have been
used for this study.
Mechanical researchers have found an interest in this technique, by analogy with the
equation that have been written by the electrical engineers. Mechanical laws have been
used to construct the differential equations that convey its behaviour. It has permitted
to estimate vibratory parameters of complex structures or to reconstruct the behaviour
of a system. In 1976, Soderstrom had already the idea of using this identification method
with mechanical equations of motion [26].
In practice, many identification problems relating to mechanical vibration result in a fur-
ther problem of derivative estimation. These estimation methods concern various domains
and provide numerous applications. The usual methods use finite difference schemes, but
often require a regularisation step, such as for force localisation [27, 28]. Some approaches
comprise a natural regularisation dimension that involves using an integral formulation
for boundary characterisation [29, 30, 31], or polynomial approximation for damage de-
tection [32]. D. Wu [32] adapted a part of this continuous time method for damage
detection purposes on continuous structures. However, the whole continuous-time iden-
tification method has never been reformulated for a distributed parameter (continuous)
structure, such as a beam or plate.

Problem statement

For this identification problem we consider the following inputs and challenges :

– The structure response : the structure response is measured discretely over a
given observation window. The spacing and arrangement of the set of sensors
is not limited. An attention should be paid on measurement perturbation. The
identification method should be efficient in presence of noise

– The structure model is considered as input of our problem. The aim of the
method is to estimate the model parameters in order to obtain the best fit between
the model and the real structure. The model structure is presented by the equation
of motion (differential or partial differential equation)

– The boundary conditions are considered as unknown. The external perturba-
tions, the environment are unavailable.

– The excitation source is not considered as an input of our system. The excitation
was already efficiently used in denoising processes. The aim of this identification
technique is to perform the parameter estimation without knowing the source (such
as wind excitation, which is unmeasurable)
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Figure 4: Presentation of the identification problem

The outputs of this identification techniques are the parameters of the considered struc-
ture. The structural parameters have a physical meaning and are associated to an ex-
pected structure contribution, such as damping, inertial effect. This work will be focused
on the following goals :

– Model fitting : the identification process must be able to fit as far as possible
a given theoretical model to a real, experimental structure. Depending on the
scientific community, this identification problem is named indirect measurement or
inverse problem solving. The choice of this model will not be treated in this work
but is detailed in [33]. Experimentally, it is not possible to find an exact model of
real structures. The most accurate models often have a large number of freedom
degrees. The parameters of the models are hard to identify because they need a
proportional amount of data from the real structure, and therefore a large number
of sensors. Hence reduced models are used. The aim of model fitting is to adjust the
model parameters in order to be as close as possible to the real structure behaviour.
Model fitting is particularly interesting in the context of novel material behaviour
characterization, such as composite material.

– Structure ageing : the identification method, based on the structure response, can
be used as real-time process and permits to follow the evolution of structure param-
eters. Indeed the identification process should be able to separate in the structure
response the environmental contribution (wind, car excitations on a bridge, etc.)
from the structure contribution (damping or inertial effect, etc.).

– Damage detection: the main hypothesis used in the identification process is the
continuity of the structure. A breach in this hypothesis such as a crack formation
should induces some phenomena such as slope changes in transverse displacement,
etc. These changes can be computed using the identification process.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0095/these.pdf 
© [C. Chochol], [2013], INSA de Lyon, tous droits réservés



INTRODUCTION 5

Presentation of the work

The purpose of this work is to adapt and improve the continuous time identification
method proposed by D. Remond [14] for continuous structures. D. Remond clearly sepa-
rated this identification method into three steps: signal expansion, signal differentiation
and parameter estimation. In this study, both expansion and differentiation steps are
drastically improved. An original differentiation method is developed and adapted to
partial differentiation.
The first chapter is dedicated to theoretical considerations. The existing identification
process is firstly adapted to continuous structure. Then the expansion and differentia-
tion principle are presented. A focus on the novel differentiation technique is made and
illustrated numerically.
The second chapter gathers all testing considerations, such as noise addition, Monte Carlo
testing and regularization step.
The third chapter depicts different numerical applications. A focus is made on different
practical particularities, such as the use of the steady-state response, the identification
of multiple parameters, etc.
The fourth chapter presents two experimental applications : the first application is a
crack detection on a beam. The second application is the identification of damping on a
plate.
The whole work is summarized in a concluding chapter.
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Introduction

In this chapter the three steps identification process will be firstly presented. The
process will be described in the case of a differential equation and in the case of a partial
differential equation. Then, in a second section, the Chebyshev polynomials will be
presented. The expansion tool, which is needed in the first step of the identification
process, is depicted. The differentiation tool, which is needed in the second step of
the identification process, is then described. A well known differentiation tool is firstly
presented ([D] operator), before our novel operator is developed ([∆]).

1.1 Basic Principle

In this section the identification technique is firstly presented for a mono-dimensional
case (with a differential equation) and secondly for a multi-dimensional case (with a
partial differential equation). As mentioned in the introduction, the aim of this method
is to estimate parameters of a given model using the structure response. The model is the
differential equation (or partial differential equation) and the parameters are the constants
of this equation. This method is local. It could be applied on an entire structure or on
a sub-part of the system. No assumption on the boundary conditions is made, therefore
the method could be used with every type of unknown boundary conditions.
The whole identification procedure will be firstly presented. The different developed tools
are presented in a second section.

7
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CHAPTER 1. IDENTIFICATION PRINCIPLE 8

1.1.1 Differential equation transformation

As presented in [14], the Continuous Time Identification method is usually based on
three steps:

– Expansion step
Firstly, the recorded signals are expanded on a truncated orthogonal basis. The
choice of the orthogonal basis is not limited. The expanded signals are reduced to
a few expansion coefficients.

f(x) ≈
N∑
i=0

λiPi(x) (1.1)

The recorded signal f is expanded on orthogonal basis size N . N is also named the
truncation order. This truncation order is a tuning parameter which is chosen by
the user. λi are the expansion coefficients. Pi(x) is the ith orthogonal function of
basis P .

– Differentiation step
Secondly, the derivatives of the expanded signal are computed. For this step, the
derivatives of the orthogonal functions are computed and derivatives of the signal
are obtained from computed expansion coefficients.

f (z)(x) ≈
N∑
i=0

λziPi(x)

λzi =
∞∑
k=0

δzkλk

(1.2)

f (z) (the zth derivative of f) is expanded on the orthogonal basis P . λzi is the ith

expansion coefficient of f (z). The expansion coefficients λzi are computed using the
relationships between Pi and its derivatives. These relationships are expressed by
the δzk coefficients which can be computed using various methods.

– Differential to algebraic equation transform
For this step, the differential equation governing the system behaviour is used. All
the derivatives in the differential equation are replaced by their expansion (com-
puted in the differential step). The result of this step is an algebraic equation
composed of expansion coefficient arrays and parameters. The parameters are com-
puted using this algebraic equation.
The following is an example. Let the linear differential equation be:

f (4)(x) + A3f
(3)(x) + A2f

(2)(x) + A1f
(1)(x) + A0f(x) = 0 (1.3)

This differential equation is composed of the derivatives of f and the Aj, j = 0..3
parameters, it is transformed into the following algebraic equation:

∞∑
i=0

(λ4
i + A3λ

3
i + A2λ

2
i + A1λ

1
i + A0λi)Pi(x) = 0 (1.4)

This equation must be true for all x, and for all i. Hence we can write :

λ4
i + A3λ

3
i + A2λ

2
i + A1λ

1
i + A0λi = 0 ∀i (1.5)

Using this set of algebraic equations (for i = 0..N), the Aj parameters can be
computed using a simple least square method, with j ≤ N .
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CHAPTER 1. IDENTIFICATION PRINCIPLE 9

1.1.2 Partial differential equation transformation

For continuous structures (beam, plates, etc) the equation of motion can often be writ-
ten as a partial differential equation (DPE). A general linear partial differential equation
can be:
Z1∑
z=0

α{1}z
∂zf

∂xz1
(x1, x2) +

Z2∑
z=0

α{2}z
∂zf

∂xz2
(x1, x2) +

Z1∑
z1=0

Z2∑
z2=0

α{1,2}z1,z2

∂z1+z2f

∂xz1∂xz2
(x1, x2) = g(x1, x2)

(1.6)
The variable x1, x2 could be either space or time variable, depending on the studied struc-
ture. For sake of simplicity, we will study here the free case, therefore with g(x1, x2) = 0.
In a further discussion, we will prove that choosing g(x1, x2) = 0 is the most difficult
identification problem and that the identification process is still reliable for g(x1, x2) 6= 0.
Let note the expansion of z1 derivative in x1 direction and z2 derivative in x2 direction :{
λz1|z2

}
. Computing the expansion of this equation we will obtain :

Z1∑
z=0

α{1}z
{
λz|0
}

+

Z2∑
z=0

α{2}z
{
λ0|z}+

Z1∑
z1=0

Z2∑
z2=0

α{1,2}z1,z2

{
λz1|z2

}
= 0 (1.7)

{
λz|0
}

,
{
λ0|z} and

{
λz1|z2

}
are estimated using the method developed in the next section.

As for the differential equation, the identification technique is a three steps process :
– STEP 1 : we compute the expansion of f

λi,j = 〈f, Pi(x1), Pj(x2)〉 (1.8)

– STEP 2 : we combine the λi,j coefficients using the constants δz1(i, j) and δz2(i, j).
The constants δz1(i, j) and δz2(i, j) can be stored in matrices. These matrices are
named ∆z1 and ∆z2

– STEP 3 : we rewrite the partial differential equation of motion :

{λz1|z2} = [∆z1 ]{λ}[∆z2 ]′ (1.9)

1.2 Chebyshev polynoms

The Chebyshev polynomials are a set of orthogonal polynomials defined as the solu-
tions to the Chebyshev differential equation. They are used as an approximation to a
least squares fit, and are a special case of the Gegenbauer polynomial with α = 0. They
are also intimately connected with trigonometric multiple-angle formulas.
In the beginning of this century they were used to find an approximate solution of differ-
ential equations [34, 35, 36]. The mathematical considerations generated by this research
was very useful in our identification problem. Most of them are concentrated in Mason’s
book [37].
Furthermore the Chebyshev polynomials can be used to construct a wavelet basis.

1.2.1 Expansion

1.2.1.1 Principle

The expansion on a orthogonal basis P is defined as

f(x) =
∞∑
i=0

λiPi(x) (1.10)
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The λi are named the expansion coefficients. They can be computed using a defined
scalar product:

λi =< f(x), Pi(x) >

=

∫
Γ

w(x)f(x)Pi(x)dx
(1.11)

w(x) being the weighting function and Γ the interval of orthogonality.
The expansion can be approximated to the N th order as follow:

f(x) ≈
N∑
i=0

λiPi(x) (1.12)

1.2.1.2 First kind

The first kind Chebyshev polynomials are defined as follow:

Ti(x) = cos(iθ) with cos(θ) = x (1.13)

The polynomials Ti are orthogonal in the domain [−1 1].
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0.4

0.6

0.8

1

x

T
i(x

)

 

 
i=0
i=1
i=2
i=3
i=4

Figure 1.1: Chebyshev polynomials of the first kind for i = 0..4

As shown in figure 1.1, all extrema of the polynomials are of equal magnitude. The
zeros (Gauss points) are clustered towards the end points x± 1.
The scalar product of a function f by Ti can be written as :

λi =< f, Ti >=

∫ 1

−1

f(x)w(x)Ti(x)dx (1.14)

with w(x) = (1− x2)−1/2 the weighting function associated to this basis.
As used by D. Wu [32], an optimal sensors positioning permits the exact estimation
of the expansion coefficients using only a few discretely recorded data. The discrete
orthogonality can be written as (see [37]) :

λi =
N+1∑
j=1

f(xj)Ti(xj) (1.15)

with N + 1 > i and xj for j = 1..N + 1 are the zeros (or Gauss point) of the Chebyshev
function TN+1. A simple presentation of the Gauss points for j = 6 and j = 7 is given in
the figure 1.2.
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Figure 1.2: Gauss points of the first kind polynomials T6(x) and T7(x)

The computation of the novel differentiation operator is based on the relationship:

d

dx
Tn(x) =

n

2

Tn−1(x)− Tn+1(x)

1− x2
(1.16)

and the recurrence formula :

Tn(x) = 2xTn−1(x)− Tn−2(x) (1.17)

1.2.1.3 Second kind

The second kind Chebyshev polynomials have been studied because of their interesting
link with the compressed sensing approach (see next chapter 2).
The second kind Chebyshev polynomials are defined as follow:

Ui(x) =
sin((i+ 1)θ)

sinθ
with cos(θ) = x (1.18)

The polynoms Ui are orthogonal in the domain [−1 1].
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Figure 1.3: Chebyshev polynomials of the second kind for i = 0..4

As shown in figure 1.3, the extrema of the polynomials increase monotonically from
the centre towards the ends.
The scalar product of a function f by Ui can be written as :

λi =< f, Ui >=

∫ 1

−1

f(x)w(x)Ui(x)dx (1.19)
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with w(x) = (1− x2)1/2 the weighting function associated to this basis.
The discrete orthogonality can be written as (see [37]) :

λi =
N+1∑
j=1

f(xj)Ui(xj)w(xj) (1.20)

with N + 1 > i et xj pour j = 1..N + 1 are the zeros (or Gauss point) of the Chebyshev
function TN+1 of order N + 1. The computation of the novel differentiation operator are
based on the recurrence relationship:

Un(x) = 2xUn−1(x)− Un−2(x) (1.21)

and the differentiation formulae :

(1− x2)U (1)
n (x)− xUn(x) = (n+ 1)Tn+1(x) (1.22)

[(1− x2)1/2Un(x)](1) = −(n+ 1)(1− x2)−1/2Tn+1(x) (1.23)

The relationship between the first and second kind Chebyshev basis is:

Un(x)− Un−2(x) = 2Tn(x) (1.24)

1.2.2 Differentiation

1.2.2.1 Operator [D]

As explained in [37], each Chebyshev polynomial derivative can be expressed as a
combination of polynomials in the same basis :

d

dx
Ti(x) = 2i

i−1∑
r=0

i−r odd

Tr(x) (1.25)

Therefore, we can always express the derivatives of an expanded signal as a combination
of the signal expansion. This property is avalaible for any type of polynomial basis. If
we consider the derivative of f as a differentiation of (1.12), we have:

f ′(x) ≈
N∑
i=0

λi
d

dx
Ti(x)

≈ {λ} [D] {T}
(1.26)

with

{λ} =

λ0
...
λN

 {T} =

T0(x)
...

TN(x)


and

[D] = 2×



0 0 0 0 0 0 · · · 0
1 0 0 0 0 0 · · · 0
0 4 0 0 0 0 · · · 0
3 0 6 0 0 0 · · · 0
0 8 0 8 0 0 · · · 0
5 0 10 0 10 0 · · · 0
...

...
...

...
...

...
. . .

...
0 2N 0 2N 0 2N · · · 0


(1.27)
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However the approximation made using (1.26) is not accurate, as proved in [15]. Indeed
the product of [D] by {λ} is not the best least square estimate of f ′ in the Chebyshev
basis of size N . As explained by D-Y Lui, the estimation of the derivative is corrupted by
term errors that originate from the truncation of the expansion of f . Using this formula,
we do not obtain the best least square estimate of the derivative, which induces dramatic
identification errors.

Figure 1.4: Distance between Pp[u] and dPp[u]/dt (a), and Pp[u] and d2Pp[u]/dt2 (b),
versus the size of the Chebychev basis from [16]

In Rouby’s work [16], it has been shown that after an optimal truncation number, the
error made on the derivative estimation increases, then decreases again, etc, as shown in
figure 1.4. The explanation of this error increase can be simply illustrated through this
example. Let take f defined as :

f(x) = {λ}{T} =



3
−1
1
−1
0
0
0
0

−8 · 10−2



T 

T0(x)
T1(x)
T2(x)
T3(x)
T4(x)
T5(x)
T6(x)
T7(x)
T8(x)


(1.28)
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We can neglect the 8th order coefficient. Therefore the truncated expansion of f is :

ftrunc(x) = {λtrunc}{T} =


3
−1
1
−1


T 

T0(x)
T1(x)
T2(x)
T3(x)

 (1.29)

The exact value of the truncated derivative expansion is:

{(1)λ} ≈
(
−4 2.72 −6 −1.28 0 −1.28 0 −1.28 0

)
(1.30)

And computing the derivative with the operator [D] we obtain:

{(1)λ} =
(
−4 4 −6 0

)
(1.31)

The difference between the two derivative expansions are:
– The five truncated coefficients (from order 4 to 8) which is the part of information

lost during the truncation of f
– An error is made on the first and third order expansion coefficients. This error

is crippling for our identification procedure, as the expansion is not the best least
square estimate of order 3 in our polynomial basis. This difference is illustrated in
figure 1.5.
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Figure 1.5: f and its truncated expansion (a), f (1) its truncated estimation and its
estimation with [D]

1.2.2.2 Principle of novel operator [∆]

In this section, we propose a novel operator [∆] which is not corrupted by the numer-
ical error as [D].
Indeed this operator is based on the exact estimate of the derivative scalar product. Let
take the example of the α derivative of f , noted f (α). We chose to estimated the expan-
sion of f (α) · uγ. The purpose of uγ will be explained just after. Let write the following
scalar product, where Γ = [−1, 1]:

λα,γi =< f (α) · uγ, Pi(x) >

=

∫
Γ

f (α)(x) · uγ(x) · w(x) · Pi(x)dx
(1.32)
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f (α) is considered as unknown whereas f , uγ, w and Pi are known analytically and
differentiable. Let integrate by part the previous expression :

λα,γi = [f (α−1)(x) · uγ(x) ·w(x) · Pi(x)]Γ −
∫

Γ

f (α−1)(x) · (uγ(x) ·w(x) · Pi(x))(1)dx (1.33)

Choosing uγ(x) equal to zero at Γ boundaries allows the integrated part to disappear.
Choosing uγ(x) accurately and repeating the above operation α times (α being the deriva-
tive order), we will finally find:

λα,γi = (−1)α
∫

Γ

f(x) · (uγ(x) · w(x) · Pi(x))(α)dx (1.34)

With Chebyshev polynomials, the derivative (uγ(x) · w(x) · Pi(x))(α) can be computed
analytically. The aim of next section is to express this derivative.

1.2.2.3 First kind

We remind that for the first kind polynomials Pi(x) = Ti(x). In order to achieve the
condition exposed before (uγ(x) equal to zero at Γ boundaries) we will choose :

uγ(x) = (1− x2)γ γ > α (1.35)

with α the differentiation order. The proof for the computation of the constants for α = 1
will be developed here. The other constants are given in 4.2.3.2. Let consider the scalar
product between f ′ · uγ and Tn:

λ1,γ
i =< f (1) · uγ, Ti >

=

∫
Γ

f (1)(x)w(x)uγ(x)Ti(x)dx
(1.36)

Integrating by part (1.40), we have:

λ1,γ
i = [f(x)w(x)uγ(x)Ti(x)]Γ −

∫
Γ

f(x)(w(x)uγ(x)Ti(x))(1)dx

= −
∫

Γ

f(x)(uγ(x)Ti(x))(1)dx

(1.37)

if we consider f(1),f(−1), Ti(1) and Ti(−1) as finite values. Using (1.16) we have:

(uγ(x)Ti(x))(1) = (1− x2)γ−1/2T
(1)
i (x)− 2(γ − 1

2
)x(1− x2)γ−3/2Ti(x)

= (1− x2)γ−3/2[
i

2
(Ti−1(x)− Ti+1(x))− 2(γ − 1

2
)xTi(x)]

(1.38)

Using the recurrence formula (1.17), we obtain:

(uγ(x)Ti(x))(1) = (1− x2)γ−3/2[
i

2
(Ti−1(x)− Ti+1(x))− (γ − 1

2
)(Ti+1(x) + Ti−1(x))]

= (1− x2)γ−3/2[(
i

2
− γ +

1

2
)Ti−1(x) + (− i

2
− γ +

1

2
)Ti+1(x)]

(1.39)
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Finally we have :

λ1,γ
i =

∫
Γ

f(x)w(x)uγ−1(x)[δ1,γ
1 (i, i+ 1)Ti+1(x) + δ1,γ

1 (i, i− 1)Ti−1(x)]dx (1.40)

with δ1,γ
1 (i, i+1) = −(− i

2
−γ+ 1

2
) and δ1,γ

1 (i, i−1) = −( i
2
−γ+ 1

2
). The δ1,γ

1 (i, j) constants
are stored in a matrix named [∆α,γ

1 ]. The expansion combination giving the derivatives
expansion can be written as:

{λα,γ} = [∆α,γ
1 ]{λ0,γ−α} (1.41)

The constants in the matrix [∆α,γ
1 ] are detailed for α = 1..4 in 4.2.3.2.

1.2.2.4 Second kind

We remind that for the second kind polynomials Pi(x) = Ui(x). In order to achieve the
condition exposed before we will choose the same uγ(x) as for the first kind polynomials
(1.35).
The expansion combination giving the derivatives expansion can be written as:

{λα,γ} = [∆α,γ
2 ]{λ0,γ−α} (1.42)

The constants in the matrix [∆α,γ
2 ] are detailed for α = 1..4 in 4.2.3.2.

The computation of the derivative operators ([D],[∆α,γ
1 ] and [∆α,γ

2 ] ) are computed in first
instance, before the identification process and whatever the signal looks like. Therefore
this identification method is not time consuming for a given model and a given behaviour
differential equation.
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Introduction

In this chapter different practical issues are developed. Firstly some simulation tools
are presented : the way a realistic noise is added to simulation signals, and how the noise
contribution is tested, through a probabilistic approach.
Then some numerical considerations on the identification process are discussed. They give
the limits of the considered method for all the three steps. A focus on a regularization
step is finally made.

2.1 Simulation tools

2.1.1 Noise

During all simulation tests, noise has been added to the analytical signal. Two main
noise kinds have been considered :

– Additive noise, which is uncorrelated with the signal. Experimentally, this kind of
noise is a part of a signal recorded with sensors.

– Multiplicative noise, which is correlated with the signal. This kind of noise is
observed when amplifiers are used for acquisition.

Noisy signal is computed as follows:

fnoisy = f exact∆fme
j∆φ + ∆fa (2.1)

17
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∆fm is a Gaussian real number with a mean value equal to unity and a standard deviation
equal to a chosen percentage of the magnitude of the signal, ∆φ is another Gaussian
random real number with a null mean value and a standard deviation of 1 deg and ∆fa
is a Gaussian real number with a null mean value and a standard deviation equal to a
chosen magnitude percentage of the signal.
A common noise level observed when using piezoelectric sensors is approximately equal
to 5%. Therefore this noise level will be often chosen for the simulations.

2.1.2 Monte Carlo test

The different methods proposed here are tested using a Monte Carlo test.
The Monte Carlo test procedure consists in comparing the identification results with
random signals generated with (2.1) and a given level of noise. A test criterion is chosen
to facilitate this comparison. This test criterion is the identification error, which is
computed as follows:

error(dB) = log10 |
θI − θref
θref

| (2.2)

θref being the exact value of the identified parameters, and θI the identified parameters.
The outcome of the test is determined by the rank of the test criterion of the observed
data relative to the test criteria of the random samples forming the reference set.
For all following tests, a set of 100 samples will be observed.

2.1.3 Results presentation

Depending on the application, the results of the identification process will be mainly
represented in two manners :

– Error versus truncation number : the error in (dB) is plotted versus the trun-
cation number. An error equal to 10−1 corresponds to an error of 10%. The number
of sub-figures in the result presentation depends on the number of θi parameters
identified. An example is given in figure 2.1. In noisy case, the error for each Monte
Carlo test is represented by a star. Hence, we can see on the same graph the mean
error made during the identification process and the dispersion of the results.
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Figure 2.1: Estimation of θ with [∆1] for k = 5 for the cantilever beam (Bernouilli)
without noise (see chapter 3)

– Error versus truncation number and wave number : the error in (dB) is
associated to a color map. A bad estimation (error greater than 100%) is associated
to red color. A good estimation (error smaller than 1%) is associated to blue color.
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An error between 1% and 100% is depicted by colors between orange and green.
The X axis of the figure always represents the truncation number and the Y axis
of the figure always represents the wave number. For a given wave number and
truncation number a cell is filled with the color associated to the mean error in this
identification configuration, as shown in the example 2.2.

10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N

k

 

 

−15

−10

−5

0

5

10

15

Figure 2.2: Estimation of θ with [∆1] for the cantilever beam (Bernouilli) without noise
(see chapter 3)

2.2 Numerical considerations and regularization

We have seen in the previous chapter that the identification method was a three steps
process. During each step, the noise can have a crippling effect. Hence we need to apply
each step focusing on the following considerations.

2.2.1 STEP 1 : expansion considerations

2.2.1.1 Choice of the observation window

It has been shown in the previous chapter that the Chebyshev basis is made of sym-
metric polynomials (for order i even) and anti-symmetric polynomials (for order i odd)
over the orthogonality domain Γ = [−1, 1]. If we choose an observation window, where
the signal is close to a symmetric or anti-symmetric shape, it will induce some specificity
in the expansion on the chosen basis.
Let illustrate this consideration with two examples, an arbitrary chosen symmetric signal
fs:

fs(x) = x2 + x sin(
π

2
x) (2.3)

and an arbitrary chosen anti-symmetric signal fa:

fa(x) = x3 + sin(πx) (2.4)
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Figure 2.3: fs and its expansion

For the symmetrical case in figure 2.3 we can see that all odd expansion coefficients
are close to zero. For the anti-symmetrical case in figure 2.4 we can see that all odd
expansion coefficients are close to zero. This could be explained and generalized using
the integral formulation of the expansion.
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Figure 2.4: fa and it expansion

Let focus on these null expansion coefficients. Due to the signal shape in the chosen
window, these null coefficients are uniformly distributed over the vector containing the
expansion coefficients. These null coefficients add no interesting information in our iden-
tification computation. Furthermore, if we need to compute the pseudo inverse of such a
vector, its sparsity could induce numerical errors.
Hence, a focus on the choice of the observation window should be made before any ap-
plication of the identification principle presented in this work.
The expansion on a polynomial basis P is defined as follows:

f = λP λi =< f, Pi > (2.5)

This expansion is the best least square estimate of the function f on a basis of size N .

2.2.1.2 Compressed sensing approach

Compressed sensing is a statistical approach based on the sparsity of the vector con-
taining the expansion coefficients. It considers that most of the expansion coefficients are
null. Finding the sparest expansion on a basis of polynomials P can be written as :

min||λ||`1 f = λP (2.6)
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with ||λ||`1 =
∑

i |λi|. This is a convex optimization problem which can be solved by
linear or quadratic programming techniques. The necessary conditions on P do not need
the complete orthogonality, but recent results have proved that the more orthogonal the
columns of P will be, the better the results of the estimation will be. Many solvers are
available. The algorithms developed by Van den Berg and Friedlander ([38]) have been
tested. This algorithm is named the Basis pursuit denoising (BPDN). BPDN fits the
least-squares problem approximately. Indeed, in the presence of noisy or imperfect data,
it is undesirable to exactly fit the linear system f = λP . The constraint in (2.5) is relaxed
to obtain the basis pursuit denoising (BPDN) problem:

min||λ||`1 ‖f − λP‖2 < σ (2.7)

where the positive parameter σ is an estimate of the noise level in the data.
However, the results of this method is the sparest expansion on a given orthogonal basis.
The sparest expansion is not automatically the best least square approximation on a
orthogonal basis of size N .
The computation of the signal derivatives and the proposed identification method is based
on the integral formulation of the scalar product and therefore on the theory of the best
least square approximation.
Although the compressed sensing approach proposed by [39] has a very efficient filtering
effect, it can not be applied, because it is based on two different theories. Indeed, as
shown in (2.5) and (2.7) both expansion definitions are different. Compressed sensing
was tested on a simple example but does not give accurate results.
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Figure 2.5: Difference between the different expansion approach. (a) expansion coeffi-

cients values, (b) error on the expansion coefficient
|λi − λi(theo)|
|λi(theo)

| (c) expanded signal

(obtained thanks to P. Simard [17])
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Figure 2.5 presents the different expansion tools : Gauss points, trapezoidal rule
and compressed sensing approach (CS ). All expansion coefficients are computed with
a constant number of sensors (here 18). The error made on the integral computation
with only 18 signal values is very large. As expected the expansion computed with the
trapezoidal rule is not accurate in this case. The aim of this figure is to compare both
expansion theory (2.5) and 2.7. (2.5) can be well estimated using Gauss points. (2.7) is
illustrated be the compressed sensing approach.
In figure 2.5, we can clearly see a difference between the expansion obtained with (2.5
(Gauss points) and the one obtained with (2.7) (compressed sensing approach). Indeed,
in figure 2.5(a) and (b), we can see that the smaller the expansion coefficients are, the
greater the error is. Indeed, as the compressed sensing theory is based on the fact that
only a few λi are non-null, the small expansion coefficients are badly estimated, even
without noise.
Moreover, on figure 2.5(c) we can see clearly that the best least square approximation
of the function F (green obtained with the Gauss points) is not identical to the one
obtained with the compressed sensing approach (cyan). As in our work we need the best
least square approximation of F , the compressed sensing approach is not an acceptable
expansion tool for our application.

2.2.1.3 Truncation order

A straightforward filtering solution has been considered. Indeed the expansion on a
orthogonal basis has itself a filtering effect. High oscillating perturbation such as noise
are expanded on high order coefficients. The expansion of the signal will be concentrated
on low order coefficients. Considering the expansion of the signal on a basis of size N :

f(x) ≈
N∑
i=0

λiPi(x) (2.8)

Using the criteria β :

if |λi| < β max{|λi|}N then λi = 0 (2.9)

The criteria must be set by the user. A part of the signal information can be lost during
this truncation. This lost information is not crippling in case of our identification method
as we need the values of the λi coefficients until i = N .

2.2.2 STEP 2 : Differentiation considerations

Differentiations using the [D] operator and using the novel method ([∆] operator) are
compared. The harmonic response of a beam (for more information on the beam model,
see the next chapter) is differentiated. The expansion of the fourth derivative calculated
analytically and expanded with 1000 Gauss points is considered as a reference.
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Figure 2.6: Error (dB) on the fourth-order differentiation coefficient for the beam second
mode. (a): noise-free case, (b): with 15% noise. The results are given for the order i < 6
(for i > 6, the expansion coefficients are 103 smaller than for the first 6). The grey lines
represent the dispersion on the expansion error (performed with 1000 runs)

In figure 2.6, the error on computation of the fourth derivative with a truncated ex-
pansion (N = 27 and N = 28) is presented. These two truncation orders are selected
for the signal studied (second modal response). Indeed, the 28th expansion coefficient is
smaller than the first 27 coefficients. This basis extension clearly reveals the error due to
the [D] operator.
For the noise free-case, considerable improvement (−10dB) is achieved with the novel dif-
ferentiation method. The error due to the operator [D] appears on high order coefficients
(> 3). With noise, the error is amplified, as shown in figure 2.6. Indeed, both methods
give similar results for a sufficiently truncated basis (N = 27). However, the method
based on the operator [D] is very sensitive to the truncation order N . For N = 28, the
high order coefficients are corrupted by the bias and the error is greater than 1dB. This
error induces extra oscillations on the computed derivative, as shown in Fig. 2.7. With
the novel differentiation method ([∆]), the error on high order coefficients is significantly
reduced. It still adds extra-oscillations but their amplitude is reduced compared to the
[D] operator method. Therefore truncation order N does not require precise tuning.
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beam. Light grey: signal computed analytically; light pink: computed with the novel
differentiation method; dark purple: computed with the [D] operator

2.2.3 STEP 3: parameter estimation and regularization process

2.2.3.1 Problem positioning

The identification procedure proposed before consists in transforming the equation of
motion in algebraic equations. This set of algebraic equations is simplified in this chapter
as follows:

ψ = θφ (2.10)

with θ a vector made of the parameters to be identified, φ and ψ are matrices made
of the expansion of the signal and its differentiation. In case of a well posed problem
(uniqueness and stability of the solution), the sizes of the matrices must be equal to the
number of unknowns in θ. However, when the signal is affected by perturbations (such
as noise), it becomes interesting to have more equations (size of matrices φ and ψ) than
unknowns (θ). Indeed, the more information is used to solve the problem, the less the
solution will depend on noise perturbations.
The least square estimation consists in minimising the residual r by using the euclidean
norm:

r = ψ − θφ (2.11)

Therefore we compute the pseudo inverse of φ and obtain the least square estimate of θ:

θLS = (φTφ)−1φTψ (2.12)

But when φ and ψ are computed using a noisy signal, (2.10) is not true any more. In the
following chapter the pseudo inverse (φTφ)−1φT is named φ†. Instead, we have:

ψ∗ = θφ∗ + η (2.13)

φ∗ and φ∗ are matrices made of the expansion of the noisy signal and its differentiation,
and η is a matrix corresponding to the effect of the noise. Because of η, the least square
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estimate of θ is biased. As our identification process is sensitive to noise perturbations,
it is crucial to implement a regularization step. Three regularization method are pro-
posed here : the weighted least square estimate, the single value decomposition and the
instrumental variable.

2.2.3.2 Weighted least square

The weigthed least square method can be considered if we know the variance/covariance
matrix Ω. We consider the Cholesky decomposition of Ω : P TP = Ω−1 and we multiply
each member by P T in order to obtain:

ψ∗ = θφ∗ + η∗ (2.14)

with φ∗ = P Tφ, ψ∗ = P Tψ and η∗ = P Tη. Using this transformation, this model satisfy
all hypothesis needed for of a classical least square model:

θWLS = (φTΩ−1φ)−1φTΩ−1ψ (2.15)

with θWLS the weighted least square estimate of θ. This method was tested on some
simple examples and was not efficient enough in our identification case. Therefore this
method was not studied further.

2.2.3.3 Truncated single value decomposition

The identification method proposed here induces the computation of the pseudo-
inverse of the matrix ψ. When the matrix ψ suffers from bad conditioning, small errors
(due for example to noise) made on the matrix components will be amplified by the
inversion. The aim of the truncated single value decomposition (TSVD) is to eliminate
these small errors before the inversion and to reduce the sensitivity of the solution on
these small variations. This regularization method is based on the following assumption
assumption : the sensitivity is due to the fact that a set of possible solutions exists, as
the problem is overdetermined.
For this regularization method we introduce the single value decomposition :

φmn = UmnSnnV
T
nn (2.16)

with UT
mnUmn = Inn, Snn a diagonal matrix, with the singular value in ascending order,

and Vnn a unitary matrix. With this formulation the pseudo-inverse of ψ can be written
as:

φ†mn = VmnS
−1
nnU

T
nn (2.17)

by choosing a well balanced solution. Its easy to understand that small variation in
the singular values in Snn induces big variations in ψ†mn. Therefore the TSVD method
consists in erasing the small singular values.
The number of non-zeros values of Snn defines the rank of ψ and the level of linear
dependence between its columns. In practice, with noise, all singular values are non-null
but some of them are negligible in comparison to the others. The negligible singular
values are however responsible of big errors during the inversion. Therefore we rewrite
the expression of (2.17) as :

φ†mn = VmrS
−1
rr U

T
nr (2.18)
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In order to use this regularization method, it is compulsory to adjust a criteria in order
to separate the negligible values to the others. In all application presented here this
criteria has been very hard to adjust because all singular values were of the same order.
Furthermore, the decomposition on the Chebyshev basis has a similar effect, as the noise
in the signal will be expressed essentially by the high order polynomials.

2.2.3.4 Instrumental variable

The least square estimate (2.12) is very sensitive to small changes, which is the case
in presence of noise. This regularization is based on the instrumental variable proposed
by [40] and extended for instance by [41]. The main idea is to filter the signal by the
model.
The purpose of this method is to decorrelate from noise the most sensitive matrix (the
pseudo-inverted array) by an iterative process. Let consider φ∗ = φ + εφ, with εφ being
the contribution of noise. Let introduce the instrument φ⊥. The least square problem
(2.12) can be written as :

φT⊥φ
∗θ̂ = φT⊥(φ∗θ + η) (2.19)

If we choose φ⊥ to be independent of noise input, we have:

lim
N→∞

φT⊥εφ = 0 lim
N→∞

φT⊥η = 0

lim
N→∞

φT⊥φ
∗ = Rφ⊥φ with Rφ⊥φ = lim

N→∞
φT⊥φ

(2.20)

with N the size of the vector φ,ψ (see 2.11)... Therefore (2.19) can be transformed into:

φT⊥φ
∗(θ̂ − θ) = φT⊥ψ (2.21)

Therefore if Rφ⊥φ is non singular, we have :

lim
N→∞

(θ̂ − θ) = 0 (2.22)

The recursive estimates are asymptotically unbiased. We can rewrite (2.12) as :

θIV = (φT⊥φ)−1φT⊥ψ (2.23)

the subscript IV states here for instrumental variable. The simplest way to obtain φ⊥ is
summarized in the following and in figure 2.8:

1. θ is computed using the least square estimate (see (2.12)) θ = θLS (the subscript
LS states here for least square),

2. A solution f⊥ of the equation governing the system behaviour with θ = θLS is
estimated (named after the solution of the auxiliary model),

3. Using this solution and the differentiation tools developed previously, the array φ⊥
is computed (same as φ but using f⊥ instead of f),

4. θIV is estimated using (2.23),

5. back to step 1 using θ = θIV until convergence of the solution.

More elaborate manners to obtain φ⊥ exist but are not treated as this one gives good
results. φ⊥ will be as much correlated to φ as the boundary conditions (of the auxiliary
model) used to obtain the solution will be close to the real boundary conditions. The
influence of the boundary conditions is discussed in the next chapter.
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Figure 2.8: Summary of the identification and regularization process

Conclusion

In this chapter, we have proposed a three step identification method, made of an ex-
pansion step, a differentiation step and a parameter estimation step. Each step was briefly
discussed considering the signal shape, the noise perturbation etc. Three regularization
processes are proposed. The instrumental variable will be the unique regularization pro-
cess applied in the following chapters.
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Chapter 3

Numerical applications
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Introduction

In this chapter different numerical applications will be depicted. Each application
highlight some specifications of the method such as the choice of the truncation order,
the wave number, the reformulation for the multiple parameter identification, etc.

29
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0095/these.pdf 
© [C. Chochol], [2013], INSA de Lyon, tous droits réservés



CHAPTER 3. NUMERICAL APPLICATIONS 30

The first example is a very basic problem where only one parameter is to be identified.
This application permits a good analysis of the link between the signal contents and the
choice of the tuning parameter : the truncation order.
With the second example, the identification problem is reformulated for a multiple pa-
rameters identification, in order to satisfy the identifiability criteria. This example shows
also the best regularization strategy in case of a multiple parameters identification.
The structure damping estimation is depicted through two examples : using the transient
response/ or using the steady state response of two structures.
The last numerical application shows the performances of the process on a 2D structure.
In the case of a generic plate, the choice of the instrument is particularly discussed.

3.1 A simple 1D case with a single identified param-

eter : the Bernoulli beam

3.1.1 Theory

3.1.1.1 Model

In this section, the forced response of a cantilever beam is considered as simple model.
This model has been chosen because:

1. The frequency range of the response is easy to select, tuning the frequency of the
excitation,

2. The response is easy to compute,

3. The equation of motion involves a single parameter to identify,

4. The derivative order is sufficiently high in order to study the method sensitivity.

The equation of flexural motion is:

∂4

∂x4
v(x, t) =

ρS

EI

∂2

∂t2
v(x, t) (3.1)

with v the transverse displacement, x the space variable, t the time variable, ρ the density,
S the cross-section surface, E the Young Modulus and I the flexural inertia. The general
solution of this equation is in the following form:

v(x, t) = sin(ωt) · (A sin(kx) +B cos(kx) + C sinh(kx) +D cosh(kx)) (3.2)

with k4 = ω2 ρS

EI
. In case of a cantilever beam, we can write the four boundary conditions:

v(0, t) = 0

∂

∂x
v(0, t) = 0

∂2

∂x2
v(L, t) = 0

EI
∂3

∂x3
v(L, t) = F

(3.3)
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if a concentrated force in the form F sin(ωt) is applied at the length x = L.
The constants A, B, C and D in (3.2) can be computed using (3.22) as follows:

0 1 0 1
1 0 1 0

− sin(kL) − cos(kL) sinh(kL) cosh(kL)
− cos(kL) sin(kL) cosh(kL) sinh(kL)



A
B
C
D

 =


0
0
0
F

k3

 (3.4)

S

0 L

F sin(ωt)

Figure 3.1: Model of the cantilever beam

3.1.1.2 Identification application

The equation (3.1) is multiplied by the weighting function u(x, t) = (1−t2)γt(1−x2)γx :

u(x, t)
∂4

∂x4
v(x, t) =

ρS

EI
u(x, t)

∂2

∂t2
v(x, t) (3.5)

with γt > 2 and γx > 4. In this example we choose γt = 3 and γx = 5. Therefore the
equation of motion is transformed into the following algebraic equation:

{λ4,γx|0,γt} =
ρS

EI
{λ0,γx|2,γt} (3.6)

{λ4,γx|0,γt} being the fourth space partial derivative expansion and {λ0,γx|2,γt} being the
second time partial derivative expansion of v · u.

The single parameter to identify is θ =
ρS

EI
.

3.1.2 Results

3.1.2.1 Noise free case

The single parameter (θ =
ρS

EI
) is identified using N × N equations, with N being

the truncation order. Indeed for this example we did an expansion in the space direction
and in the time direction. The expansion vector is therefore an expansion matrix of size
N ×N .
This identification depends on two parameters :
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– the truncation order N : which is linked to the number of equations used for the
identification. The signal is expanded on a basis of size N . Therefore the results of
this expansion give N coefficients.

– the signal richness, which will be linked here to the parameter k, the wavenumber.
The wavenumber is a non-dimensional parameter which depicts a ratio between the
frequency and structure size. The signal richness is linked to the number of non
negligible expansion coefficients.

In figure 3.2, the error on the estimation of θ is plotted. The red color corresponds to a
bad estimation (error between 100% and 1011%). The blue color corresponds to a good
estimation (error between 0.0001% and 10−11%). For orange, green, light blue colors the
error range is between 100% and 0.001%.
The vertical axis is the wave number while the horizontal axis is the truncation order N .
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Figure 3.2: Estimation of θ for the cantilever beam (Bernoulli) without noise

In figure 3.2 we can see two main zones, for the different operators used for the
estimation :

1. The upper left zone : where k is relatively big and the truncation order N small.
In this zone the number of polynomials chosen is not sufficient for a good signal
expansion (as illustrated in figure 3.3). The signal is too rich in comparison to the
polynomial basis chosen. Therefore, in this zone, the identification will never give
a good result. For future identification cases a special attention should be paid on
the signal expansion.

2. The lower right zone : where k is relatively small and the truncation order N
higher. In this zone the number of polynomials chosen is sufficient for a good signal
expansion. Therefore, in this zone, the identification will give good results. In our
noise free case, the parameter θ is reconstructed with an error lower than 10−10%.
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Figure 3.3: Illustration of expansion error for small truncation number (here k = 4 and
N = 8), the time origin is on the front

In the noise-free case, all three differentiation methods give similar results, excepted
for high truncation number for the classical [D] operator. Indeed for high truncation
order, the operator [D] gives poor results (this is illustrated in figure 3.4 for k = 5.5 and
N = 45). This is explained by the approximation maid with this operator. The higher
the truncation order is, bigger the coefficients in the matrix [D] are. Multiplying the high
coefficients by small expansion coefficients enhances the error made on the differentiation
of the signal. This phenomenon is well illustrated in the chapter 2.
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Figure 3.4: Illustration of the error made with the [D] operator (here k = 5.5 and N = 45)

3.1.2.2 Noisy case

For noisy case, we have added 20% of noise and tested the identification method
through a Monte Carlo test. The median error on 100 tests is plotted here.
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Figure 3.5: Estimation of θ for the cantilever beam (Bernoulli) with 20% of noise

In the figure 3.5 we can observe three main zones :

1. The upper left zone : where k is relatively high and the truncation order N small.
In this zone, the identification will never give a good result, as explained previously.
In case of the operator [D], the results seem to be good in this zone. However in
the graphs presented in figure 3.5 an information is missing : the dispersion of the
identified parameter. In this zone the identification dispersion is very high with the
operator [D]; as illustrated in figure 3.6 for a wave number equal to 5. For N > 20
with the operator [D], the estimation of θ is highly dependent on the truncation
number. The dispersion of the results make the identification process not reliable
enough. Therefore, even if the mean error is low, the probability to obtain such an
error is low too. As we have seen with the noise free case, the identified parameter
is overestimated due to the high coefficients in the [D] matrix for big truncation
order. In contrary, in the upper left zone, the identified parameter is underestimated
due to the lack of expansion coefficients. In the noisy case, these two phenomena
compensate each other, which explain these apparently good results.

2. The upper right zone : where k is relatively high and the truncation order N
higher. In this zone the number of polynomials chosen is sufficient for a good signal
expansion. Therefore, in this zone, the identification will give good results. In our
noise free case, the parameter θ is reconstructed with an error lower than 10−5%
with our novel differentiation method. In comparison to the noise-free case, this
zone is smaller and exclude the ”bottom zone”,

3. The bottom zone : where k is relatively small and the truncation order N high. In
this zone the signal is clearly not rich enough for the identification. The expansion
of the signal is only expressed on few coefficients. Therefore, a major part of the
expansion is corrupted by noise. The filtering effect of the expansion is lost when
choosing a big truncation number. In this part the identification process is clearly
biased.
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Figure 3.6: Estimation of θ for the cantilever beam (Bernoulli) with 20% of noise, for
k = 5

In the noisy case, the three differentiation methods gives opposite results. Indeed, where
the novel operator gives good identification precision in the lower right zone, the operator
[D] gives poor results. The higher the truncation order is, the worse the identification
is. The error made during the differentiation process is enhanced by the noise, because
the large coefficients for this operator multiplied by the small errors made on expansion
coefficients induce large errors.

3.2 A 1D case: Influence testing of boundary condi-

tions for the regularization step

3.2.1 Theory

3.2.1.1 Model

we would like to test the limits of the regularization step. For the testing of the
influence of the boundary conditions, the experimental model used is the cantilever beam
as for 3.1. The data considered as ”experimental data” is the solution of a whole cantilever
beam (of length L).
For the auxilary model we chose a sub-part of the beam used as the experimental model.
The data used for the auxiliary model is the solution of a part of a cantilever beam (of
length L) as shown in fig. 3.7. This part is La = αL long and centred on the beam of
length L. The regularization process is tested for α = 0.5..1. The auxiliary model will
be a beam with following boundary conditions :

va(0, t) = v(
L− La

2
, t)

∂

∂x
v(0, t) =

∂

∂x
v(
L− La

2
, t)

va(La, t) = v(
L− La

2
+ La, t)

∂

∂x
va(La, t) =

∂

∂x
v(
L− La

2
+ La, t)

(3.7)

In order to have a similar wave number for the auxiliary and the experimental model, we
choose the frequency (for the auxiliary model) as follow:

σ =
2πL√
θ1fexp

=
2πLa√
θ1faux

(3.8)
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with σ the wave number, fexp the excitation frequency for the experimentation, faux the
frequency considered for the auxiliary model.

0 L

0 L

Signal recorded “experimentally”

Estimated displacement with the auxiliary model 

La

Figure 3.7: Signal recorded on the whole beam (green) and estimated displacement on
the auxiliary model (pink), with similar wave number σ for both models

3.2.1.2 Identification application

In order to obtain φ⊥ (see 2.19) as correlated as possible to the ψ (computed using
experimental data), the boundary conditions considered for the auxiliary model must
be as close as possible to the experimental boundary conditions. Unfortunately, this
seems hard to obtain experimentally. Indeed, the experimental boundary conditions
are not perfect (for example it is impossible to obtain experimentally a real clamped
boundary condition). These experimental boundary conditions are also often influenced
by unmeasurable, environmental excitations (such as wind, etc).

The parameter θ =
ρS

EI
is identified.

3.2.2 Results

In the identification process developed previously, the truncation order must be cho-
sen. In this section, we choose N = 50 in order to reconstruct precisely the recorded
signal v(x, t). With the [∆] operator, figure 3.8 (left) shows that even if the boundary
conditions are different the bias effect is always reduced and the IV estimate is always
more accurate than the least square estimate. The best estimate is obtained for La = L.
Indeed, where the boundary conditions are similar, the instrument ψ⊥ is maximally cor-
related with φ.
For some values of α the regularization, step seems to give bad results. If we look closer
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Figure 3.8: Influence of the regularization step, light : results obtained in case of least
square estimate, dark : estimation with the instrumental variable

at the auxiliary model response for the values of α = 0.6322, 0.708, 0.8, 0.924, we can see
in figure 3.9 that the obtained signal is close to the problematic shape considerations
presented in the chapter 2. Indeed for example for α = 0.708 and α = 0.924 the signal is
null at the boundaries of the window. The expansion of such a signal is difficult (because
all Chebyshev functions are not equal to zero at boundaries). Therefore such boundary
conditions for the auxiliary model will never be chosen for the regularization process.
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Figure 3.9: Shape of auxiliary model response for problematic values of α

3.3 A 1D case with multiple identified parameters :

the Timoshenko beam

3.3.1 Theory

3.3.1.1 Model

The Timoshenko theory considers two effects neglected in the Bernoulli approach:
– the shear effect, introducing the form factor K (K = 5/6 for a beam with rectan-

gular section) and G the shear modulus,
– and the rotational inertia effect, adding a fourth partial derivative in time.

The equation of motion can be written as:

EI
∂4

∂x4
v(x, t)− ρI(1 +

E

KG
)

∂4

∂t2∂x2
v(x, t) +

ρ2I

KG

∂4

∂t4
v(x, t) + ρS

∂2

∂t2
v(x, t) = 0 (3.9)
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As explained in [42], a solution of this equation is in the form:

v(x, t) = sin(ωt) · (A cos(k1x) +B sin(k1x) + C cosh(k2x) +D sinh(k2x)) (3.10)

with

k1 =
1

L

√√
X(α + Γ)

2
+

√
X2(α− Γ)2

4
+X

k2 =
1

L

√
−
√
X(α + Γ)

2
+

√
X2(α− Γ)2

4
+X

Γ =
EI

KSGL2
α =

I

SL2
X =

ω2L4Sρ

EI
In order to obtain this solution, the structure must satisfy the following conditions:

– the ratio between beam length and thickness is relatively small (
L

h
< 20)

– the mode square roots are similar to the Bernoulli solution (X ≈ knL)

3.3.1.2 Identification application

We choose for this example to estimate the parameters of this partial differential
equation (3.9) using the steady-state response of the beam. This choice is motivated by
two reasons :

– firstly, the steady-state response is often the easiest measurable response (with a
laser vibrometer for example)

– secondly, this choice will induce some changes in the identification method. This
point is explained in the following section.

The steady state response is not time dependent. Therefore the equation of motion can
be reduced to a simple differential equation. Multiplying this equation by u(x) we have:

u(x) · d
4

dx4
v(x) +

ρ

E
(1 +

E

KG
)ω2u(x) · d

2v

dx2
(x) + (

ρ2

KEG
ω4− ρS

EI
ω2)u(x) · v(x) = 0 (3.11)

with u(x) = (1− x2)γ et γ > 4. Expanding this equation we will obtain:

{λ4,γ} = − ρ
E

(1 +
E

KG
)ω2{λ2,γ} − (

ρ2

KEG
ω4 − ρS

EI
ω2){λ0,γ} (3.12)

In this identification example we have 3 parameters to identify : θ1 =
EI

ρS
, θ2 =

I

S
(1 +

E

KG
) and θ3 =

ρI

KGS
. In case of the steady state response of the beam, v, its second

and its fourth derivatives are proportional. It is therefore impossible to identify the three
parameters. Therefore we need to choose a set of reponses at minimum three different
frequencies. We will rewrite the identification problem as follows:θ1

θ2

θ3

T  λ4,γ(ω1) · · · λ4,γ(ωH)
ω2

1λ
2,γ(ω1) · · · ω2

Hλ
2,γ(ωH)

ω4
1λ

0,γ(ω1) · · · ω4
Hλ

0,γ(ωH)

 =

 ω2
1λ

0,γ(ω1)
· · ·

ω2
Hλ

0,γ(ωH)

T (3.13)

The choice of the set size H and the different frequencies ωi will be discussed here after.
The link between the pulsation ωi and the wave number ki expressed in the following
section is:

ki =
√
ωi

4

√
ρS

EI
(3.14)
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3.3.2 Results

3.3.2.1 Noise free case

In case of the Timoshenko beam, there are three parameters to identify. Therefore
the frequency set must be chosen keeping in mind these considerations :

– in order to satisfy the identifiability criteria, the size of the frequency set (H) must
be equal to or greater than the number of identified parameters,

– the different ωi must be far enough to each other in order to bring sufficiently
different informations. Therefore in our test case we will choose different structure
modes. This is not the only possible choice but gives interesting results,

– with the example of the Bernoulli beam, we have clearly found a link between the
signal richness and the optimal truncation number. We expect therefore in this
section to observe the same phenomenon, linked to the highest wave number.

The identification process is applied on a given frequency range, for the wave numbers
equal to k = [1, 2, 3, 4]. For the following results (presented in figure 3.10), The identi-
fication results depend only on the truncation order N . Therefore the following graphs
present the error on the vertical axis and the truncation number on the horizontal axis.
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Figure 3.10: Estimation of θ1,θ2 and θ3 for the cantilever Timoshenko beam, without
noise

In figure 3.10, we can see clearly that for all three parameters the novel operator
gives better results (with a precision of 10−5%) than the [D] operator (with a precision
of 0.1%). Moreover, for the operator [D] the error evolves with the truncation order N .
For small N , the error decreases until an optimal truncation order (this part is similar for
the novel operator). After the optimal truncation order N , the error increases, whereas
with the novel operator the error decreases until it becomes stable.
The explanation of this error of high truncation order with the [D] operator was given
previously. For the novel operator, the error decreases until all information given by the
structure responses is expanded. After a given truncation order (N = 25), the additional
expansion coefficients computed add no valuable information for the identification but
does not affect the maximum precision (for N = 25).
The precision obtained for θ1 is greater than for θ2, which is greater than for θ3. This
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is explained by the different rough order of magnitude of the three parameters. Indeed
where θ1 magnitude order is about102, θ2 magnitude order is 10−6 and θ3 magnitude
orders is 10−11. A major attention must be paid on these different order of magnitude.
More than conditioning or computing difficulties, it will bring an additional challenge, as
the contributions associated to θ2 and θ3 will be close to noise contribution magnitude
order.

3.3.2.2 Noisy case

In this noisy simulation, we have added 5% of noise as presented for k = 7 in figure
3.11. The noise effect was tested through a Monte Carlo test with 100 samples. In figure
3.12 the mean error and the dispersion on the results are plotted.
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Figure 3.11: Noisy response of the Timoshenko beam

3.3.2.2.1 Least square estimate
For the noisy case, the best precision is obtained on θ1 for a truncation order greater
than 15, with the novel operator (around 10%). However the variability in the obtained
results is very high for N greater than 20. This is due to a minimal description of the
signal. The estimates obtained with the [D] operator are unusable. Indeed the effect of
the noise contribution multiplied by the high coefficients in [D] can not be compensated
by the filtering effect of the expansion.
The estimates of θ2 and θ3 suffers from the noise. Indeed the effect of these small contri-
butions in the whole equation of motion are in the order of magnitude of the added noise.
Therefore the estimate of these parameters can be made only with a regularization step,
which will be presented in the next section.
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Figure 3.12: Estimation of θ1, θ2 and θ3 for the cantilever Timoshenko beam, with 5% of
noise. The error for 100 Monte Carlo tests are plotted

3.3.2.2.2 Instrumental variable
The instrumental variable is an iterative process. We could develop a convergence criteria
(convergence of the estimated parameter), but for this section we have chosen to do
arbitrarily 10 iterations. The auxiliary model is the same than the model used for the
simulation computation.
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Figure 3.13: Estimation of θ1, θ2 and θ3 for the cantilever Timoshenko beam, with 5%
of noise, with the instrumental variable. The mean error on 100 Monte Carlo tests is
plotted.

For the novel operator, we have drastically enhanced the identification results for θ1

and even more for θ2. For θ2 we have a precision of 10%. This error is stable with the
truncation order.
For the parameter θ3, the identification results are still unusable. This could be explained
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by the arbitrarily chosen iteration number. Indeed, for better results, a convergence
criteria on θ3 could be computed.
Furthermore, we can easily see two convergence lines in the three figures 3.13. For θ2

the main part of the identification results converges to an error around 10% whereas
some results converges to an error around 1000%. These aberrant results are well known
from instrumental variable users. Indeed, the instrumental variable must be used with a
stability check (for more information see [40]). In our case, no stability check has been
used, which explains these aberrant results.
For the operator [D], the regularization process does not help for the identification. As
we have seen previously, even without noise, an error is made using this operator. The
regularization step does only suppress the bias but could not erase the error made using
the [D] operator, and enhanced with noise.

3.4 A 1D case using the transient response : a damped

bar

3.4.1 Theory

In case of bar, the longitudinal equation of motion is:

∂2

∂t2
v(x, t) =

E

ρ

∂2

∂x2
v(x, t) + η

∂

∂t
v(x, t) (3.15)

where ρ is the density, E the Young modulus of the material, and η the viscous damping
of the beam. t is the time variable, x the space variable and v is the longitudinal dis-
placement.
For this study the particular case of free response of the simply supported bar will be
treated. We can write the four boundary conditions:

v(0, t) = 0

∂

∂x
v(0, t) = 0

v(L, t) = 0

∂

∂x
v(L, t) = 0

(3.16)
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Figure 3.14: Transient damped bar response (for k = 5)
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3.4.1.1 Identification application

If we use a unique couple (γx, γt) for all partial derivatives computation, we can rewrite
(3.15) as :

{λ2,γt|0,γx} =
E

ρ
{λ0,γt|2,γx}+ η{λ1,γt|0,γx} (3.17)

with γx > 2 and γt > 2.

3.4.2 Results

3.4.2.1 Noise free case
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Figure 3.15: Estimation of θ1 et θ2 for the damped bar, without noise

Without noise, as we can see in figure 3.15, results are similar for θ1 = E
ρ

and θ2 = η.

The best precision is around 10−8% and the figure presents the same two zones as for
figure 3.2.

3.4.2.2 Noisy case

3.4.2.2.1 Least square estimate
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Figure 3.16: Estimation of θ1 et θ2 for the damped bar, with 5% noise. The mean error
on 100 Monte Carlo tests is plotted.

The results presented in figure 3.16 are similar than those for the Bernoulli beam for
θ1 and for θ2. The figures present all same three zones, especially for the novel operator.
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The results obtained with the novel operator are better than for the [D] operator, espe-
cially in the most interesting zone (upper right).

3.4.2.2.2 Instrumental variable
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Figure 3.17: Estimation of θ1 et θ2 for the damped bar, with 5% noise, with the instru-
mental variable. The mean error on 100 Monte Carlo tests is plotted.

In figure 3.17, the regularization process permits a good identification in case of high
truncation order N and small wave number k, the most noise sensitive zone, as we have
seen previously. In the case of the operator [D], the regularization process does not
enhance the identification precision.

3.5 A 1D case identifying the damping with the steady

state response : cantilever beam

3.5.1 Theory

3.5.1.1 Model

As explained in [43, 44, 45] different models for structural vibration exists. All are the-
oretical approximation of an observed phenomenon but have not a real physical meaning.
Here we have considered a viscous damping model, where the damping effect is repre-
sented by a term proportional to the transverse velocity of the beam (first order partial
derivative in time):

∂4

∂x4
v(x, t) =

ρS

EI

∂2

∂t2
v(x, t) + η

∂

∂t
v(x, t) (3.18)

where η is the structural damping.
For the computation of the response of this structure, we have considered the Young
Modulus E complex. The imaginary part of the Young modulus represents the damping
coefficient. For this example, the steady-state response of the beam is considered. We
have considered here a damping equal to 1% of the Young Modulus.
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3.5.1.2 Identification application

Multiplying the equation of motion (3.18) by u(x, t) we have:

u(x, t)
∂4

∂x4
v(x, t) =

ρS

EI
u(x, t)

∂2

∂t2
v(x, t) + ηu(x, t)

∂

∂t
v(x, t) (3.19)

with u(x, t) = (1− t2)γt(1− x2)γx et γt ≥ 2,γx ≥ 4. Expanding this equation we have:

{λ0,γt|4,γx} =
ρS

EI
{λ2,γt|0,γx}+ η{λ1,γt|0,γx} (3.20)

As we have two unknows (η and
ρS

EI
) we need to rewrite (3.20) as: ρS

EIc

EI

T [
{λ2,γt|0,γx}(ω1) · · · {λ2,γt|0,γx}(ωP )
{λ1,γt|0,γx}(ω1) · · · {λ1,γt|0,γX}(ωP )

]
=

{λ
0,γt|4,γx}(ω1)

...
{λ0,γt|4,γx}(ωP )

 (3.21)

The choice of the set size H and the different ωi frequencies follows the same considera-
tions as discussed for the Timoshenko beam.

3.5.2 Results

3.5.2.1 Noise free case

There are two parameters to identify : θ1 =
ρS

EI
and θ2 = η. This identification

process is applied on a given frequency range, for the wavenumbers equal to k = [2, 3, 4].
This influences only the optimal truncation number, as this will be discussed here after.
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Figure 3.18: Estimation of θ1 and θ2 with the steady-state of the damped beam, without
noise

In the noise-free case, as shown in figure 3.18, the identification is possible for a
truncation number N greater than 25. This is directly linked to the frequency set chosen
for the identification. The link between the signal richness (therefore the frequency set)
and the truncation number was already discussed previously with the Bernoulli beam. For
a good precision on the identified parameters, the signal should be correctly expanded.
This condition is reached for N = Nopt.
After the optimal truncation order, the error is stable and equal to 10−8% for θ1 and
10−6% for θ2, with the novel differentiation tool.
With the original [D] operator, the minimal error is around 1% and increases after Nopt.
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3.5.2.2 Noisy case

3.5.2.2.1 Least square estimate
The least square estimate of [θ1, θ2] is presented in figure 3.19. For the two parameters,
for a small truncation order, the mean error is relatively small (10%) but the dispersion
on the 100 Monte Carlo tests is high. For higher truncation orders,the mean error is no
more acceptable. The optimal truncation number (N = 25 for the noise-free case) can
not be reached because of the noise.
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Figure 3.19: Estimation of θ1 and θ2 with the steady-state of the damped beam, with 5%
of noise

3.5.2.2.2 Instrumental variable
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Figure 3.20: Estimation of θ1 and θ2 with the steady-state of the damped beam, with 5%
of noise, with the instrumental variable

In figure 3.20, the instrumental variable enhances the results for the novel differentia-
tion method. For the [D] operator, the results remain unchanged. For the novel operator,
the error decreases from 10% to 1% for θ1 and is stable, equal to 10% for θ2.
As for the Timoshenko beam the difference of magnitude order between θ1 and θ2 explains
the difference in the minimum identification error (θ2 ≈ θ1

100
).
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3.6 a 1D case with application to discontinuity loca-

tion

3.6.1 Theory

3.6.1.1 Model

In this section, a cracked beam is modelled by an healthy homogeneous beam with a
section change at x, as shown in figure 3.21. The beam model is identical to the Bernoulli

0 L

F sin(ωt)

x

1 2 3

Figure 3.21: Cracked beam model

model presented previously. The following boundary conditions are considered:

v1(0, t) = 0

∂

∂x
v1(0, t) = 0

v1(X − χ

2
, t) = v2(0, t)

∂

∂x
v1(X − χ

2
, t) =

∂

∂x
v2(0, t)

v2(χ, t) = v3(0, t)

∂

∂x
v2(χ, t) =

∂

∂x
v3(0, t)

∂2

∂x2
v3(L−X +

χ

2
, t) = 0

EI
∂3

∂x3
v3(L−X +

χ

2
, t) = F

(3.22)
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with X the crack position, χ the crack length, v1 being the transverse displacement of the
beam named 1 in figure 3.21, v2 being the transverse displacement of the beam named
2 in figure 3.21 and v3 being the transverse displacement of the beam named 3 in figure
3.21.

3.6.1.2 Identification application

For this application we use the same identification principle as for the Bernoulli beam
(see 3.1). We fix N = 16 (the same as for the experimental results presented in chapter
4). Using the results obtain in section 3.22, we choose k = 1. In this section, we would
like to estimate the influence of the crack position on the method sensitivity, in order to
set the experimentation in the next chapter accurately.
Therefore a crack (10% height, 0.5% length of cross section) is moved numerically from
one end to the other of the beam considered. The signal is expanded on the Chebyshev
basis for each crack position. The computed expansion coefficients λ

4,γx|0,γt
i of the cracked

beam and the healthy beam are compared.

3.6.2 Results

In figure 3.22, the results are presented for i = 11 (the observations are similar for
other i, see figure 3.23).
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Figure 3.22: Computed expansion coefficients of the fourth derivative with respect to
space. Ratio between cracked and healthy expansion coefficient, expansion order i = 11.
The grey vertical lines correspond to the Gauss points of the Chebyshev polynom of order
i.

In figure 3.22, the difference between the cracked and healthy expansion coefficient
number 11 is clearly sensitive to the position of the crack regarding to the Gauss-points.
We can see that near the Gauss points, the value of the expansion coefficients is doubled.
When the crack is located close to the middle distance between two Gauss points, the
value of the expansion coefficients is unchanged (ratio close to 1). This observation is
confirmed at different expansion order, as shown in 3.23.
Hence a crack located near the Gauss-points of the ith polynomial implies a noticeable
change on the computed expansion coefficient of order i.
Therefore the crack can be located depending on which expansion coefficients change.
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3.7 A 2D case with a single identified parameter: a

plate

3.7.1 Theory

In this 2D application we have partial a differential equation which involves partial
differentiation of the signal in both directions and a cross partial differentiation. This
aspect is a good challenge for our identification process.

3.7.1.1 Model

The equation of motion of the undamped Kirchhoff plate is:

∂4

∂x4
w(x, y, t) + 2

∂4

∂x2∂y2
w(x, y, t) +

∂4

∂y4
w(x, y, t) = −ρh

D

∂2

∂t2
w(x, y, t) (3.23)

with D =
Eh3

12(1− ν3)
, and ν Poisson coefficient. The steady state response of the plate

will be studied. Therefore the equation of motion can be reduced to:

∂4

∂x4
w(x, y) + 2

∂4

∂x2∂y2
w(x, y) +

∂4

∂y4
w(x, y) = ω2ρh

D
w(x, y) (3.24)

A simple solution of this partial differential equation can be computed in case of a simply-
supported plate. The steady-state response w reconstructed by modal decomposition is:

w(x, y) =
∞∑
n=1

∞∑
m=1

4F

LxLy(ω2
mn − ω2)

sin(
mπX0

Lx
)sin(

nπY0

Ly
)sin(

mπx

Lx
)sin(

nπy

Ly
) (3.25)

with Lx, Ly being the lengths of a square plate, X0, Y0 the coordinates of the excitation
with a pulsation ω and a magnitude F (see figure 3.24). We have the relationship between
the mode number and the pulsation :

ωmn = π2

√
D

ρh
((
m

Lx
)2 + (

n

Ly
)2) (3.26)
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Figure 3.24: Model of the Kirchhoff plate

As expected, the solution (3.25) is true ∀(x, y) with (x, y) 6= (X0, Y0) (where the
excitation is applied). Therefore we will work on a sub-part of the plate. This sub-part
of lengths Lx(SP ), Ly(SP ) must exclude the point (X0, Y0) (see figure 3.24).

3.7.1.2 Identification application

Multiplying (4.1) by the function u(x, y) we have :

u(x, y)

[
∂4

∂x4
w(x, y) + 2

∂4

∂x2∂y2
w(x, y) +

∂4

∂y4
w(x, y)

]
= ω2ρh

D
u(x, y)w(x, y) (3.27)

with u(x, y) = (1− y2)γ(1− x2)γ et γ ≥ 4. Computing the expansion of this equation we
will obtain :

{λ4,γ|0,γ}+ 2{λ2,γ|2,γ}+ {λ0,γ|4,γ} = ω2ρh

D
{λ0,γ|0,γ} (3.28)

3.7.2 Results

3.7.2.1 Noise free case
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Figure 3.25: Estimation of θ =
D

ρh
, for a simply supported plate, noise free case.

Without noise, as we can see in figure 3.25, the results are similar for θ for the three
differentiation methods. The best precision is around 10−8% and the figure presents the
same two zones as for figure 3.2.
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3.7.2.2 Noisy case

In the noisy simulation, we have added 5% of noise in both direction (the recorded
signal is matrix of samples. Each sample corresponds to a measurement at a given x
and y position. Each sample is affected by noise). The noise effect was tested through a
Monte Carlo test with 100 samples. Here the mean error on the results is plotted.

3.7.2.2.1 Least square estimate
For this application we have treated both cases :

– the identification of θ =
D

ρh
, presented in figure 3.26,

ω2θ = {λ0,γ|0,γ}†{λ4,γ|0,γ}+ 2{λ2,γ|2,γ}+ {λ0,γ|4,γ} (3.29)

– The identification of θ∗ =
ρh

D
, presented in figure 3.27.

θ∗ = ω2{λ4,γ|0,γ}+ 2{λ2,γ|2,γ}+ {λ0,γ|4,γ}†{λ0,γ|0,γ} (3.30)

The comparison of both identification strategy will give particularly interesting consid-
erations for the instrumental variable. Lets focus now on the least square estimate of θ.
As shown in figure 3.26, the identification is totally biased. The identification results are
relevant only for high wave number k, where the amount of information in the signal is
sufficient and for a sufficiently high value of N where the signal information is correctly
reconstructed. For higher truncation order, the identification results are totally corrupted
with noise. Let highlight that the pseudo inverted matrix in this case is the expansion
of the partial derivatives ({λ4,γ|0,γ} + 2{λ2,γ|2,γ} + {λ0,γ|4,γ} in 4.3). The estimation of
partial derivatives based on a noisy signal enhances the bias effect as it multiply small
perturbations by the differentiation coefficients. The computation of the pseudo inverse
enhances even more these effects.
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Figure 3.26: Estimation of
D

ρh
, for a simply supported plate, with 5% of noise.

In figure 3.27, the identification results are similar to the one presented in previous
numerical applications. We find the same three zones. The pseudo inverted matrix in this
case is directly the expansion of the signal. Therefore after the optimal truncation order
N the error increases proportionally to the truncation order (for low wave number the
error goes from green (0.1%) to orange (100%), for high wave number the error goes from
blue (0.01%) to green (0.1%)). The choice of this identification strategy (estimation of

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0095/these.pdf 
© [C. Chochol], [2013], INSA de Lyon, tous droits réservés



CHAPTER 3. NUMERICAL APPLICATIONS 52

ρh

D
) is of high interest. Indeed, even if the zone where the identification result is accurate

is smaller than for 3.26, the precision is much greater for 3.27. Moreover, the error made
in the left zone, due to high truncation number, and therefore the expansion of the noise,
could be corrected by the regularization step.
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Figure 3.27: Estimation of
ρh

D
, for a simply supported plate, with 5% of noise.

3.7.2.2.2 Instrumental variable
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Figure 3.28: Estimation of
D

ρh
, for a simply supported plate, with 5% of noise, with the

regularization step.

As shown in figure 3.28, the regularization step does not enhance the identification
precision. The same uniform low precision is observed on the upper right zone. As
expected, the error in this case is principally due to an incorrect use of the identifica-
tion process (bad signal reconstruction with a small N , signal not sufficiently rich) and is
not due to noise. Hence the regularization step can not enhance the identification results.
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Figure 3.29: Estimation of
ρh

D
, for a simply supported plate, with 5% of noise, with the

regularization step.

As shown in figure 3.30, the precision is drastically enhanced on the right zone, as
expected:

1. in the upper right zone, the best identification precision is around 0.001% in the
upper right corner (until 0.01% without regularization). In this case the instrument
is the signal expansion of the auxiliary model. The filtering effect of the model is
highly efficient, as the error is principally due to the noise expansion.

2. in the lower zone, a zone (where the error is equal to 0.01%) still exists. Here the
regularization process is less efficient, as the instrumental variable can not add data
for the parameter estimation.
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Conclusion

In this chapter, the different numerical applications show the different specificity of
this identification process :

– with the noise-free cases, we have seen that an optimal truncation order exists.
This optimal truncation order is obtained when the whole noise-free signal is re-
constructed.

– with noise and the least square estimate, we did a focus on the filtering effect of the
expansion. It has been shown that without regularization, the method was really
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sensitive to the tuning parameter N (truncation order). Indeed it was very difficult
to find a good balance between signal reconstruction and filtering.

– the instrumental variable was highly efficient in order to overcome the previous
difficulty. The signal was filtered by the model and this permits good identification
results for high truncation order.

– the identification process was adapted to multi-parameters identification. This novel
identification process satisfies the identifiability criteria using a set of signals with
different excitation frequencies.

– the multi-parameters identification highlights the relevance in choosing the conver-
gence criteria for the instrument variable.

– for the damping identification, two kinds of signal can be used : transient and
steady-state. For each kind a focus is made on the adaptation of the method.

– with 2D structures, a focus is made on the choice of the instrument. Depending on
the inverted matrix, the regularization step will filter the solution by the model or
by the model and the differentiation method. The second choice seems to be more
efficient in our identification process.
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Experimental applications
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Introduction

In this chapter two experimentations are presented. The first one is an application for
damage detection. The theory developed for the Bernouilli beam is applied on a sub-part
of the experimental beam. The evolution of the parameter along the beam is observed.
The second experimental application permits material characterization. The damping on
a plate is estimated as an example.

4.1 Damage detection on a cantilever beam

4.1.1 Principle

For this experiment, the equation of the bending beam presented in the previous
chapter is considered. The whole identification process used here is the one presented

for the Bernoulli beam. The parameter θ =
ρS

EI
is identified. θ being proportional to

the beam cross-section area S, it would be interesting to see if a crack (and therefore a
thickness change) could be reconstructed and identified.
This identification method has two main applications. The first is linked to the material
properties of the structure. It permits the identification of a global ρS/EI for the whole
beam. This method has many applications, such as model updating for a controller and
monitoring of Young’s Modulus (material ageing). The second involves more geometrical
properties of the structure. It permits the computation of the dispersion of ρS/EI along
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the beam for each sensor array.
Each sensor array has 16 sample positions. Therefore, the signal is expanded on the
basis of 15 Chebyshev functions. In order to ensure a minimal wave number equal to 1,
the length of the sensor array is adapted at each excitation frequency. For example, at
the 5th flexural mode of the beam, the sensor array length is equal to 1/5th of the beam
length. No specific hypothesis can be made regarding the crack location on the sensor
array. Therefore the sensor array is shifted along the beam. If the crack was located in
a dead zone for a given sensor array position, it would be located in a sensitive zone for
one of the next sensor array positions , as shown in Fig. 4.1.

Figure 4.1: Positioning of the sensors patches on the beam structure

4.1.2 Experimental setup

The displacement of this beam is reconstructed with selected time samples and space
positions using a laser vibrometer (PSV400). The beam is excited with a shaker at a
single frequency by a sinusoidal source. The steady-state response is measured point by
point. The whole structure response is reconstructed using a force sensor, which states
as reference. Two cases are studied here : the wave number on a patch k ≈ 0.8 and
k ≈ 1. As we have seen in the previous chapter, the wave number is directly linked to the
identified parameter. Therefore, we can not consider this information in order to tune our
experimentation. For this reason we will approximately choose the excitation frequency
(in order to obtain k ≈ 0.8 and k ≈ 1) and use both results to show the sensitivity of the
identification process to the choice of excitation frequency.
Here, we study the forced response of this cantilever beam, 1.1m long in which a crack
is imposed (a notch 3mm in width and 2.5mm in depth). For this experimentation, a
relatively large crack is chosen as a first test of this method. Fig. 4.2 shows the beam,
the imposed crack and laser measurements at different locations. A sensor array provides
16 measurements at 16 different sample positions (as shown in Fig. 4.2).

4.1.3 Results and discussion

Parameter ρS/EI and the fourth derivative (∂4v/∂t4 · u) can be evaluated for all the
sensor array locations for undamaged (x < 0.8m and x > 0.8m)) and damaged cases

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0095/these.pdf 
© [C. Chochol], [2013], INSA de Lyon, tous droits réservés



CHAPTER 4. EXPERIMENTAL APPLICATIONS 57

Figure 4.2: Experimental implementation: cantilever beam, imposed crack and laser
measurements at different sample positions (for one sensor array)

(x ≈ 0.8m).
Figure 4.3 and 4.4 (left) shows the ratio between the identified and theoretical ρS/EI.
The value of the mean identified parameter ρS/EI is computed and plotted in dashed
lines: dark grey for k ≈ 1 and light grey for k ≈ 0.8. For both cases, the mean value is
close to the theoretical one ( ratio equal to 1.16 for k = 0.8 and 0.85 for k = 1). The
mean value can be corrupted by noise which could explain the dispersion of the measure-
ments. The theoretical value is also roughly estimated with the beam dimensions and
the properties of the steel.
The dispersion of ρS/EI is plotted in figure 4.3 and 4.4 (left). Each filled box corresponds
to the parameter dispersion at a single sensor array position. The computed parameter
values oscillate between 1/2 and 3 times the mean value, except when the sensor array is
located near x = 0.8m. At this location, the computed parameter becomes negative or
is greater than 4 times the mean value. The oscillating values (between 1/2 and 3 times
the mean value) can be explained by the variability due to the noise. The assumption of
a continuous structure is not accurate at the damage location, therefore the computed
parameter can be negative. Conversely, a negative parameter shows a breach in the for-
mulated hypothesis and therefore damage. The effect of damage (or a discontinuity) is
similar to that of noise. Indeed, a discontinuity changes the slope of the signal slope
locally. This local change drastically increases the high order coefficient of expansion. In
the case of noise, the effect of these high order coefficients is smoothed by the computation
of a mean value. In the case of damage, the effect of these high order coefficients cannot
be smoothed by the same technique. Therefore the value of the computed parameter at
damage location can increased by more than 4 times, due to these high order coefficients.
This reasoning is confirmed in Fig. 4.3 and 4.4 (right). Indeed the calculation of the
displacement’s fourth derivative with respect to space emphasises these high order co-
efficients. Near the damage location, the computed fourth derivative consists of high-
oscillating terms. For both cases (k ≈ 0.8 and k ≈ 1), the maximum value of the fourth
derivative is located at the Gauss-point closest to the damage (see chapter 3 for more
details). These results demonstrate an alternative method for damage location. Indeed,
with a restricted number of samples (here 16 samples), it was shown that ρS/EI and the
fourth derivative ∂4v/∂x4 can be computed. The parameters studied are very sensitive to
damage (as a discontinuity). ρS/EI becomes negative when the continuity assumption is
no longer valid. The damage can also drastically increase the ρS/EI value. The method
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Figure 4.3: ρS/EIID/ρS/EITH (a) and (∂4v/∂x4 ·u) (b) for the cantilever beam, results
based on a experimental data (excitation frequency equal to 1471Hz). On the left, the
dashed lines correspond to the mean values for k ≈ 0.8

proposed is capable of computing these changes and thus locating the damage accurately.

4.2 Damped plate identification

4.2.1 Principle

We consider an isotropic thin plate of thickness h, driven by a harmonic force of
angular frequency ω. The equation governing the forced vibrations is

D

ρh
(1− jη)[

∂4

∂x4
w(x, y) + 2

∂4

∂x2∂y2
w(x, y) +

∂4

∂y4
w(x, y)] = ω2w(x, y) (4.1)

where w is the transverse displacement, E the Young’s modulus, η the loss factor, D the
flexural rigidity and ρh the mass per unit area. This equation can be written as follow
using the weighting function u(x, y):

u(x, y)
D

ρh
(1− jη)

[
∂4

∂x4
w(x, y) + 2

∂4

∂x2∂y2
w(x, y) +

∂4

∂y4
w(x, y)

]
= ω2u(x, y)w(x, y)

(4.2)
with u(x, y) = (1 − y2)γ(1 − x2)γ et γ ≥ 4. Computing the expansion of all partial
derivatives of w, (4.1) can be transformed in a algebraic equation:

D

ρh
(1− jη){λ4,γ|0,γ}+ 2{λ2,γ|2,γ}+ {λ0,γ|4,γ} = ω2{λ0,γ|0,γ} (4.3)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0095/these.pdf 
© [C. Chochol], [2013], INSA de Lyon, tous droits réservés



CHAPTER 4. EXPERIMENTAL APPLICATIONS 59

Figure 4.4: ρS/EIID/ρS/EITH (a) and (∂4v/∂x4 ·u) (b) for the cantilever beam, results
based on a experimental data (excitation frequency equal to 1471Hz). On the left, the
dashed lines correspond to the mean values for k ≈ 1

4.2.2 Experimental setup

A polystyrene plate with dimensions Lx = 0.5m, Ly = 0.5m, thickness h = 3.5mm
and density ρ = 1055kg.m−3 is used in this experiment. The plate was suspended at its
upper corners to approximate free boundary conditions (see figure 4.5). It was excited
by a shaker at its lower boundary. A PCB 288D01 impedance head was mounted on
the shaker to provide input force measurement. A Polytec scanning vibrometer PSV 300
was used to measure the velocities over a 71 × 71 regular meshgrid, on an area free of
excitation.
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shaker
X

Y

Figure 4.5: Experimental device for the identification on the polystyrene plate

This experimentation was conducted by F. Ablitzer, who needed a regular meshgrid
in order to apply the RIFF method (see explanation just after). We chose to use in our
case the approximate evaluation of the scalar product, using the trapezoidal rule, for
more convenience. We have therefore to focus our attention on border effects which are
linked to this approximation. Morever, if we had to set this experimentation, especially
using the vibrometer, we would choose meshgrid at Gauss points with a significant lower
density. This would reduce the acquisition time drastically.

4.2.3 Results and discussion

The identified results are compared to the RIFF method developed by [12]. The
RIFF (Resolution Inverse Filtree Fenetree in French, meaning windowed filtered inverse
resolution) technique applied on inverse problem was led by C. Pezerat [8, 9, 10, 11]. This
method considers the equation of motion of the structure. the partial derivatives of the
structure response are estimated by a finite scheme. Using two previous consideration,
the distribution forces in the structure are reconstructed. Since measured data are always
noisy, the force distribution reconstructed is regularized applying a spatial window on the
set of sensors used for the partial derivatives reconstruction. This method was successfully
applied by F. Ablitzer on this experimentation and will be compared with our results.

4.2.3.1 Least square estimate

Fig. 4.6 shows the properties identified by the RIFF and our identification method in
the range [0.05− 6.4kHz].
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Figure 4.6: Identification of
D

ρh
and η at different frequencies, using a simple least square

method (without regularization).

In figure 4.6, for a frequency range of [0.05 − 0.5kHz], the results seem hard to in-
terpret. The high variation in the identified parameters is due to a small wave number
in the considered area. Therefore, the signal is not rich enough in order to estimate the

considered parameters
D

ρh
and η. In this frequency range both methods seems to over-

come some difficulties .

For a frequency range of [0.5 − 2kHz], with the RIFF method, the parameter
D

ρh
in-

creases slowly and the damping η exhibits higher variations. For a low frequency range
of [0.5− 2kHz], the mean loss factor is around 0.07. With our identification method, the
parameters seem hard to interpret as the results dispersion is very high.
For a higher frequency range of [2− 6.4kHz], the RIFF method gives a mean loss factor
around 0.4 which decreases slowly. With our identification method, the mean loss factor
is also around 0.4 but seems to be constant in this frequency range. As the behaviour of
the tested material is not clearly known, it is impossible to determine which of the two
results is more accurate.

4.2.3.2 Instrumental variable

In figure 4.6, our method overcomes some difficulties in the frequency range [0.5 −
2kHz]. Therefore it would be interesting to filter the results in this frequency range by
a regularization step. As shown previously, for our instrumental variable computation,
we need an auxiliary model. Unfortunately, it is very hard to compute analytically the
response of a free-free plate. Therefore we choose as auxiliary model a simply supported
plate.
The results of the identification with the regularization step are presented in figure 4.7.
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Figure 4.7: Identification of
D

ρh
and η at different frequencies, using the instrumental

variable.

The regularization step increases drastically the stability of the identified parameter
D

ρh
in the frequency range [0.5 − 2kHz]. With the regularization step, the identified

parameter
D

ρh
with the RIFF method and our identification process are very close to

each other.
For the identification of the loss factor η, the influence of the noise is still very high.
As we have seen in all our simulation cases, the low wave number case is always very
hard to exploit. Indeed, only a few expansion coefficients will be large enough for our
identification process. As the estimate is based on only a few coefficients, it is very
sensitive to noise. This noise influence can easily be overcame by the regularization

step for
D

ρh
. Unfortunately for the estimation of η, the amount of information at these

frequencies is not sufficient with our method.
In order to obtain optimal filtering by the instrumental variable, the boundary conditions
of the plate could be adapted (taking a sub-part of the plate), in order to generate an
auxiliary signal as close (in term of shape) to the experimental one.

Conclusion

In this chapter, we applied successfully the proposed identification method on two
examples.
The first experimental application deals with crack detection on a cantilever beam. The
crack created on the experimental beam was located using the estimation of a beam
parameter (proportional to material and geometrical properties) along the whole beam.
The identification method was also tested on a free-free plate. The purpose of this
experimentation was to evaluate the damping of a PMMA material.
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Conclusion and perspectives

Conclusion

The aim of this work was to create an identification method, using the structure re-
sponse and able to reconstruct structure parameters. The method should not depend on
the structure environment, which is considered as unknown. The method was based on
a simplified structure model, which was the partial differential or differential equation
governing the structure behaviour.
For this identification purpose a novel differentiation model was proposed. The aim of
this novel operator was to limit the sensitivity of the method to the tuning parameter
(truncation number). The precision enhancement using this novel operator was high-
lighted through different examples. An interesting property of Chebyshev polynomials
was also brought to the fore : the use of an exact discrete expansion with the polynomi-
als Gauss points. The Gauss points permit an accurate identification using a restricted
number of sensors, limiting de facto the signal acquisition duration.
In order to reduce the noise sensitivity of the method, a regularization step was added.
This regularization step, named the instrumental variable, was inspired from the automa-
tion domain. The instrumental variable works as a filter. The identified parameter is
recursively filtered through the structure model. The final result is the optimal parameter
estimation for a given model.
Different numerical applications have been presented. Each application depicts a partic-
ular identification specification. The Euler-Bernoulli beam highlighted the link between
the truncation number, the signal richness and the identification precision. The Timo-
shenko beam shows the input needs regarding to a multi-parameters identification. The
examples of damped beam and bar show how the damping ratio of a structure could be
estimated, using either the steady state or the transient response of the structure. The
multi-parameters identification examples permitted the discussion on the choice of the
convergence criteria for the regularization step. The two dimensional case of a plate em-
phasises the need to define the identification problem correctly, in order to optimize the
regularization step. The choice of the instrument was discussed, as this choice permits
the filtering of the method through the model and through the differentiation process.
Two experimental applications were treated. For the beam structure, the crack detec-
tion problem was illustrated. The method was applied on a cantilever beam to locate
imposed damages , although the experimental technique can be applied to any type of
structure. Indeed, parameter ρS/EI and the fourth derivative ∂4v/∂x4 were computed,
using a signal recorded experimentally. Parameter ρS/EI was accurately reconstructed
for the whole beam, using different sensor patch lengths. The damage was accurately
located using this identification method. The computed fourth derivative emphasised the
discontinuity due to the crack. These changes in continuity could be computed with the
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novel differentiation technique, making it very interesting for damage location.
The second experimental application was focused on the damping ratio estimation on a
plate. It permits the computation of the inertial parameter D/ρh and the damping ratio
η. The method was compared to the RIFF technique. Both methods give similar results.
The proposed identification method was efficient even without regularization.
To sum up, the proposed identification method shows good capabilities for the different
aimed identification objectives : structure monitoring such as material ageing estimation,
damage detection or model parameters estimation for control purposes.

Perspectives

This work could be enhanced, or its application domain widen through different per-
spectives. The most critical step of this method is currently the expansion step. This
step could be easily enhanced by the design of specific sensors, which could directly re-
construct the scalar product (the integral reconstruction, see [30]).
For this work the estimation of the components in the [∆] matrix were computed order
by order. A generalization of this computation would permit the estimation of higher
differentiation matrix (for a differentiation order greater or equal to 5). Maybe other
polynomials could have different interesting properties and could be used through the
same process (such a Taylor series or Gegenbauer polynomials).
A large panel of acquisition methods could be tested with the continuous identification
approach, such as field measurements, using fast camera for example.
Another interesting perspective, which was not explored yet, could be the estimation of
the boundary conditions. Indeed it has been shown that the closer the boundary condition
to the real boundary conditions in the regularization step are, the more the instrument
is correlated to the experimental data. Hence the regularization step could be used as a
boundary condition estimator.
Furthermore, it has been shown in the automation domain that more powerful instru-
ments exist. The theory associated to these more elaborate instrument was however not
tested yet.
D. Remond developed in [14] different tools for non-linear systems. These tools could
be easily adapted to multi-dimensional cases and permits the identification on non-linear
systems. A first test of the operator [D] on a non linear structure was conducted by F.
Martel. Unfortunately, during his work the novel operator [∆] was not available yet. The
application of the novel operator on this working example could be a first step to non
linear structure identification.
These tools permit for example the identification of non homogeneous material proper-
ties or could be used to estimate a structure shape function, in order to estimate a crack
depth. Indeed instead of considering a linear partial differential equation of motion, we
could choose such equation for example :

ρS(x)
∂2v

∂t2
=

∂2

∂x2
(EI(x)

∂2v

∂x2
) (4.4)

which is the equation of motion of a non homogeneous beam.
The identification techniques could be extended as a grey box method. The parameters
of a general partial differential equation could be estimated. The non relevant param-
eter would be close to zero or at any case negligible. This could be used to determine
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the behaviour of novel and unknown materials. The appearance of novel terms could be
interpreted as a significant change in the structure, such as a plastic deformation, etc.
A back up to continuous theory is more and more used for the identification and mod-
elling of mechanical structures. Because mechanical structures are continuous systems,
the continuous time and space identification should be the most relevant identification
techniques, even if it involves a discrete sensing approach.
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Abstract: This paper investigates the performance of the Chebyshev polynomial basis to identify the 

time-varying mechanical impedance of a cantilever beam in torsion. A dynamic system matrix 

representation is first developed for 1-DOF mechanical systems having multiple time-varying 

parameters. The method is then applied to experimental data obtained from an equilateral beam excited in 

torsion while one beam support location is changed over time. Results show 6.62e
-2

 % error in stiffness 

predictions compared to theoretical estimates. Signal filtering was critical to avoid contamination by 

bending modes of the beam and prior knowledge of inertia led to better results. 

 

Keywords: Linear time-varying systems; parameter identification; Chebyshev polynomials; dynamic 

systems; experimental mechanical systems; modal analysis. 

 

Highlights: 

- Chebyshev polynomials were used to identify the time-varying stiffness. 

- Beam flexural modes had significant impact on torsional stiffness identification. 

- Data was low-pass filtered to separate torsional and flexural modes of the beam. 

 

1. INTRODUCTION 

Numerous applications require parameter estimation of continuous time systems. This important and broadly reviewed field 

[1,2] is often used on discrete time data issued from experimental systems or numerical simulations. Linear time-varying 

(LTV) systems are getting more attention due to more sophisticated systems and models. Identification of the time-varying 

parameters of LTV systems can be achieved via various approaches, such as ensemble average of impulses responses [3], 

parallel-cascade algorithm [4], or wavelet-based methods [5]. 

An alternative approach is to identify time-varying parameters by estimating the coefficients of their projection on an 

orthogonal basis [6,7]. Some commonly used basis include Legendre series [8], block-pulse functions [9], Fourier series [10] 

and Laguerre polynomials [11]. Chebyshev polynomials were also used for time-varying parameter estimation [12–14] and 

were reported to have certain advantages over other orthogonal series [15]. However, methods employing Chebyshev 

polynomials were, to our knowledge, formulated via integrals and thus require initial conditions to be known or identified 

simultaneously. 

This paper introduces a parameter estimation method for LTV systems that is based on Chebyshev polynomials and formulated 

via signal derivatives instead of integrals. Amongst other properties, Chebyshev basis include a matrix representation of its 

coefficients and a linear relationship for both derivation and multiplication operations [16]. The differential equation of the 

system can thus be linearized and the unknown coefficients can be estimated by means of standard least-square algorithms. 

The time-varying parameters are then reconstructed from the time expansion of the coefficients on the orthogonal basis. 

Experiments were conducted to investigate the ability of the method to identify a continuous mechanical system with time-

varying stiffness, constant inertia and negligible damping. The signal filtering process was investigated in details in order to 

deal with the multi vibration modes of the continuous system and, in particular, the potential cross-coupling between torsional 

and bending modes as well as the system excitation by a moving load on the bar. 
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Abstract: This paper investigates the performance of the Chebyshev polynomial basis to identify the 

time-varying mechanical impedance of a cantilever beam in torsion. A dynamic system matrix 

representation is first developed for 1-DOF mechanical systems having multiple time-varying 

parameters. The method is then applied to experimental data obtained from an equilateral beam excited in 

torsion while one beam support location is changed over time. Results show 6.62e
-2

 % error in stiffness 

predictions compared to theoretical estimates. Signal filtering was critical to avoid contamination by 

bending modes of the beam and prior knowledge of inertia led to better results. 

 

Keywords: Linear time-varying systems; parameter identification; Chebyshev polynomials; dynamic 

systems; experimental mechanical systems; modal analysis. 

 

Highlights: 

- Chebyshev polynomials were used to identify the time-varying stiffness. 

- Beam flexural modes had significant impact on torsional stiffness identification. 

- Data was low-pass filtered to separate torsional and flexural modes of the beam. 

 

1. INTRODUCTION 

Numerous applications require parameter estimation of continuous time systems. This important and broadly reviewed field 

[1,2] is often used on discrete time data issued from experimental systems or numerical simulations. Linear time-varying 

(LTV) systems are getting more attention due to more sophisticated systems and models. Identification of the time-varying 

parameters of LTV systems can be achieved via various approaches, such as ensemble average of impulses responses [3], 

parallel-cascade algorithm [4], or wavelet-based methods [5]. 

An alternative approach is to identify time-varying parameters by estimating the coefficients of their projection on an 

orthogonal basis [6,7]. Some commonly used basis include Legendre series [8], block-pulse functions [9], Fourier series [10] 

and Laguerre polynomials [11]. Chebyshev polynomials were also used for time-varying parameter estimation [12–14] and 

were reported to have certain advantages over other orthogonal series [15]. However, methods employing Chebyshev 

polynomials were, to our knowledge, formulated via integrals and thus require initial conditions to be known or identified 

simultaneously. 

This paper introduces a parameter estimation method for LTV systems that is based on Chebyshev polynomials and formulated 

via signal derivatives instead of integrals. Amongst other properties, Chebyshev basis include a matrix representation of its 

coefficients and a linear relationship for both derivation and multiplication operations [16]. The differential equation of the 

system can thus be linearized and the unknown coefficients can be estimated by means of standard least-square algorithms. 

The time-varying parameters are then reconstructed from the time expansion of the coefficients on the orthogonal basis. 

Experiments were conducted to investigate the ability of the method to identify a continuous mechanical system with time-

varying stiffness, constant inertia and negligible damping. The signal filtering process was investigated in details in order to 

deal with the multi vibration modes of the continuous system and, in particular, the potential cross-coupling between torsional 

and bending modes as well as the system excitation by a moving load on the bar. 
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2. METHODS 

2.1 Chebyshev polynomials properties 

The n order Chebyshev polynomial is defined in the interval t = [-1, +1] by the following equation: 

( ) ( )( ).arccoscos tnτTn =  
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and the projection coefficients can be estimated using a least-square approximation: 
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Since the derivative of each Chebyshev polynomial can be approximated by a linear combination of lower order polynomials, 

the time derivative of a function can be expressed as: 
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where [D] is the derivative operator described in [17]. This operator gives increasing importance to higher order polynomials. 

If two polynomials P(τ) and Q(τ) are expressed in the n order Chebyshev basis as: 
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This linear combination of the pk and qk coefficients can also be formulated with a combination matrix [A]: 

[ ],Apa q×=  

whose coefficients are function of áqñ and are computed according to (2). For identification purposes, this matrix can be 

truncated so that its dimensions are consistent with coefficient vectors of appropriate length. This approximation will be used 

and detailed in the following section. 

2.2 Application to the identification of 1-DOF second order mechanical system with time-varying parameters 

The dynamic behavior of a 1-DOF mechanical system having continuous time-varying parameters can be represented by the 

following equation: 
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2.4 Calibration of the experimental apparatus 

Calibration of the plastic bar stiffness was conducted by taking quasistatic measurements of the torque as a function of disk 

rotation for different linear positions of the slider. The stiffness values were estimated from a linear regression model on the 

torque-rotation curves and the coefficient of determination was computed to validate the linearity of the torsional stiffness for 

each slider position. 

Since the section of the bar was chosen as an equilateral triangle, simple torsion analytical equations can be obtained for 

validation purposes [19,20]. According to [21], the torque Mt required to twist the bar of an angle θ is: 

θ
45

3 4

l

Gh
M t =  

where h is the height of the triangle (7.8 mm in the current situation), G is the shear modulus of the material and l is the length 

of the bar. Thus, the torsional stiffness k is defined by: 

l

GhM
k t

45

3

θd

d 4

== . (5) 

As a validation purpose, we computed G from the experimental data with a least square estimate using 

( ) 1

4
111

3

45 -

×××=
TT

lllk
h

G , 

and we compared the value obtained with the material properties datasheet of the urethane rubber used. 

The inertia of the disk was estimated by conducting 10 tests of 10 s without the plastic bar. The motor was operated in torque 

mode and programmed to exert a sine sweep torque from 1.8 Hz to 3.1 Hz. The recorded torque and disk rotation signals were 

further low pass filtered at 100 Hz (3
rd

-order Butterworth) in the forward and reverse time directions to achieve zero phase 

shift. The data corresponding to the filter start-up transients were excluded until the step response of the filter remained within 

the ± 5 % error range of its final value. The time basis was further divided in 0.5 s segments with 80 % overlap. The 

abovementioned identification method, with n = 60, was used to identify the inertia on a zero order Chebyshev basis (nID_I = 0) 

for each segment. The values obtained for the inertia from each segment were averaged to estimate the disk inertia. 

2.5 Identification of the time-varying stiffness 

Identification of the bar time-varying stiffness was conducted by exerting a sine sweep torque from 1.8 to 3.1 Hz with 

increasing amplitude. A positive torque offset was maintained throughout the tests to avoid entering the dead zone. Data 

sampled at 1 kHz were then low pass filtered at a cutoff frequency of 6 Hz (4
th

-order Butterworth) in the forward and reverse 

time directions to achieve zero phase shift. The data corresponding to the filter start-up transients were excluded until the step 

response of the filter remained within the ± 5 % error range of its final value. Data was further divided in 1 s segments with 

80% overlap. Assuming orders nID_I = 0, nID_K = 20 and n = 60, the abovementioned method was used to identify the time-

variable stiffness for two cases: one where the inertia is known and one where the inertia is unknown. The resulting stiffness 

estimates were then compared with the analytical solution provided in (5). As an estimate of the identification quality, an error 

power ratio (EPR) was computed. It served as an indicator of the correspondence between two signals sampled on the same 

time basis: 
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where u2 is the signal compared to the reference signal u1, Ne is the number of samples, and m is the sample index. 

2.6 Selection of the low pass filter cutoff frequency for stiffness identification 

The previous low pass filter cutoff frequencies were chosen at 6 Hz since the input signal was limited to 3.1 Hz maximum. In 

order to validate whether such level does in fact lead to the identification of the first torsional mode of the bar, a modal 

analysis of the bar was conducted. According to [22], the natural torsional frequencies of a disk of inertia Id attached to one end 

of a rod of inertia Ir , fixed at the other end, are given by: 

( ) ,βtanβ dr II=  

where 
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Gl ρωβ = . 

For the system under study, these equations indicate a first torsional mode under 6 Hz and a second mode beyond  923 Hz. The 

large separation of these two modes is such that a cutoff frequency at 6 Hz would apparently lead, without any doubt, to the 

identification of the first vibration torsional mode, which was the purpose of this investigation.  

3. RESULTS AND DISCUSSION 

3.1 System Calibration 

The bar rotational stiffness was measured for various slider positions and results are illustrated in Fig. 2. As expected, the 

stiffness decreased as the inverse of the bar effective length (defined as the distance between the disk and the slider). The 

coefficient of determination R² was computed for each position of the slider and its mean over all those values was found to be 

0.9820. The value of G obtained by the linear regression was 0.773 GPa while the value given in the material properties 

datasheet was 0.771 GPa. The identified inertia was found to be 1.039e
-3

 kg.m² with a standard deviation of 0.606 %. As a 

comparison, the inertia computed by a computer-aided design (CAD) software was 1.015e-3 kg.m². Such small difference can 

be explained by the presence of bolts and a certain portion of the torque cell that were not taken into account by the CAD 

software model. 

3.2 Bar torsional stiffness identification 

Once torque and position data were low pass filtered at 6 Hz, data were used to identify the variation in bar rotational stiffness 

during an experimental test. Results are shown in Fig. 3 for the case when the inertia is already known. Data shows a 

practically good fit and the EPR on the theoretical stiffness was found to be only 6.62e
-2

 %. If the inertia is not known a priori, 

the resulting stiffness identification for the same data set is shown in Fig. 4, and the inertia of the system was found to be 

1.95e
-3

 kg.m² (89% EPR). The EPR for the theoretical stiffness was found to be about 1.44 % this time, higher than when the 

inertia was not identified in the process. As shown in Fig. 4, predicted stiffness was particularly diverging at the end of the 

testing sequence. Moreover, system identification using low pass cutoff filter frequencies of 10 Hz or 15 Hz led to mediocre 

identification.  

These problems can be understood based on a modal analysis of the bar. Indeed, although the bar was excited in torsion by the 

brushless motor, bending vibration modes could be excited as well. As a matter of fact, by moving the slider along the vertical 

bar, the rollers could induce bending in the beam if there is a nonzero transverse force exerted by the slider on the beam. Such 

moving load phenomenon is well known in the literature [23]. In practice, we did observe bending of the free hanging bar 

when the slider was moving along the bar. A transverse force at the slider may get induced, for instance, if the geometrical 

center of the three slider's rollers is not perfectly coaxial with the axis of the direct drive brushless motor shaft. 

Bending modes of the bar can be estimated analytically, as a first approximation, by computing the bending natural frequencies 

of the two bar segments: a first segment located between the disk and the slider with fixed/pinned support boundary conditions, 

and a second segment beyond the slider, using fixed/free boundary conditions.  

According to [22], the beam natural frequencies ωn in flexion for a uniform beam of length l are defined by: 

,
ρ

ω

2

A
n ÷

ø

ö
ç
è

æ=
lA

EI a  

where E is the beam material Young’s modulus, IA is the second moment of area, ρ is the density and A is the area of the cross-

section. The first two values of α corresponding to the first two modes are [3.92660 7.06858] for the fixed-pinned beam and 

[1.87510 4.69409] for the fixed-free beam. Fig. 5 illustrates these natural frequencies as a function of the effective length, 

assuming that the section of the bar is perfectly equilateral. The lowest first mode (Fixed-Free – Mode 1) is for the segment 

beyond the slider and its natural frequency is close but still higher than 6 Hz. The shaded area represents the span covered by 

the slider during the experiment. A finite element model of the bar, using 3D elements, was created to figure out the natural 

frequencies of the bar as a whole, assuming fixed/pin/free boundary conditions. Results are also presented in Fig. 5. Again, the 

first bending mode starts close to 6 Hz but is still larger for all effective lengths of the bar. In practice, however, the bar does 

not have a perfect equilateral shape such that the moment of inertia of the bar may slightly vary about one axis or the other. 

Hence, there would be several bending natural frequencies depending on the axis of bending. 

Typical signals from the conducted experiment are shown in Fig. 6. In the course of one test, the slider moved pretty much all 

over the complete span of the bar. The angular position of the disk is shown in addition to the torque cell data that exhibits 

significant "noise". A power spectrum of the torque signal is shown in Fig. 7. The torque input signal has a high amplitude 

under 5 Hz as one would expect, but a spectral peak also exists starting at about 10 Hz, its amplitude reducing progressively up 

to 20 Hz. This peak is most likely attributed to the bar bending modes. Peaks are also present at about 30 Hz, 60 Hz and 90 Hz, 

which are most likely bending modes of the bar as well. Hence, it appears that the torque cell signal gets contaminated beyond 
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6 Hz. The low pass cutoff frequency selected at 6 Hz significantly reduces the contamination and this explains why the 

identifications with cutoff at 10 Hz or 15 Hz did not lead to a good identification quality. 

The question remains, however, how bending modes can contaminate the torque cell signal. It is known that when the shear 

center of a beam section does not coincide with its centroid, bending modes can excite torsion modes [24]. In our case, given 

that the bar profile is probably not perfectly equilateral, this cross-coupling condition can occur. In addition, if two bending 

modes at different natural frequencies occur about different axes of the bar at the same time, it is most likely that torsion would 

occur in the beam. This can be shown when filtering the torque data with a band-pass filter at 30 Hz (Chebyshev, Type II, 14
th
 

order), resulting in the torque signal shown in Fig. 8. One can observe a beating phenomena that is most likely due to the 

simultaneous occurrence of two bending modes (with slightly different natural frequencies) about two different axis of the bar.  

3.3 Order selection and segment lengths 

The identification method introduced in this paper requires a prior selection of the order of the polynomials and the 

determination of data segment lengths (in seconds) to be used for the identification. This question is fundamental for many 

system identification methods. In our identification method, we used n = 60 and segments lengths of one second. The impact 

of alternative values is shown in Fig. 9 that illustrates the EPR value in % on the stiffness parameter. The graphs shows a low 

sensitivity in the EPR value for higher orders and lower segments lengths but, as expected, increases exponentially for smaller 

orders and longer segments. 

 

4. CONCLUSIONS 

In this paper, we introduced a method that uses the Chebyshev orthogonal basis to identify time-varying parameters of a 

cantilever beam excited in torsion. Results show that a mechanical investigation of the vibrating modes of the system, albeit 

first order, provides a clear process to determine the best filtering procedure to obtain good parameter estimations. Once proper 

filtering procedures are determined, the system stiffness was best estimated when the inertial characteristics of the system were 

known a priori. Further improvement could be made to the technique by optimizing the orders and segment lengths based on 

convergence determination algorithms. One should remember, however, that identification methods of LTV systems can 

hardly be evaluated on validation data sets after calibration because many systems' response may vary from one test to another. 
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FIGURE CAPTIONS 

Fig. 1. Time-varying stiffness 1-DOF system. The torque exerted by the motor on the disk makes it rotate by an angle θ and is 

measured by the torque cell. A torsion bar is connected to the disk and constrain its rotation. A lead-screw linear actuator 

controls the slider position such that the torsion bar support opposite to the torque cell can be moved along the bar at will. 

Fig. 2. Bar torsional stiffness as a function of its effective length, from both theoretical estimates given by (5) and experimental 

data. 

Fig. 3. Theoretical time-varying stiffness superimposed with the identified stiffness for each segment and the mean of those 

segments assuming a known inertia of the disk. 

Fig. 4. Theoretical time-varying stiffness superimposed with the identified stiffness for each segment and the mean of those 

segments, assuming unknown inertia. 

Fig. 5. Natural frequencies in torsion and flexion of the bar for both the two segment analytical models and a complete finite 

element model of the bar. Shaded area corresponds to the slider position range during a test. 

Fig. 6. Typical effective length of the bar, torque and torsion angle readings during a test with the bar and sine sweep torque 

excitation. 

Fig. 7. Power spectrum of the torque reading during a test with the bar and a sine sweep excitation. Hanning weighted 

windows of 2048 samples with 50 % overlap. 

Fig. 8. Torque signal band-pass filtered between 25 and 35 Hz. 

Fig. 9. Natural logarithm of the EPR between identified stiffness and predicted stiffness from slider position. Order nID_K set to 

one third of n. 
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Novel operator coefficients

.1 First kind

.1.1 First order derivative (α = 1)

Let consider the scalar product between f ′ · uγ and Tn:

λ1,γ
n =< f ′ · uγ, Tn >

= δ1,γ
1 (n− 1, n)< f · uγ−1, Tn−1 >+ δ1,γ

1 (n+ 1, n)< f · uγ−1, Tn+1 >
(5)

for n ≥ 1, with

δ1,γ
1 (n− 1, n) = −(

1

2
− γ +

n

2
)

δ1,γ
1 (n+ 1, n) = −(

1

2
− γ − n

2
)

For n = 0 we have :

< f ′ · u, T0 >= δ1,γ
1 (1, 0)< f · uγ−1, T1 > (6)

with

δ1,γ
1 (1, 0) = −2(

1

2
− γ)

We can then construct the matrix [∆1,γ
1 ] made of the δ1,γ

1 (i, j) coefficients:

[∆1,γ
1 ] =



[∆1,γ
1 ]0 δ1,γ

1 (1, 0) 0 · · · 0 0 0 0

δ1,γ
1 (0, 1) 0 δ1,γ

1 (2, 1) · · · 0 0 0 0
. . .

0 0 0 · · · 0 δ1,γ
1 (N−2, N−1) 0 δ1,γ

1 (N,N−1)

0 0 0 · · · 0 0 δ1,γ
1 (N−1, N) 0


(7)

Therefore we have:

{λ1,γ} = [∆1,γ
1 ]{λ0,γ−1} (8)

is exact if λ0,γ−1
N+1 = 0 .
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.1.2 Second order derivative (α = 2)

Let consider the scalar product between f (2) · uγ and Tn:

λ2,γ
n =< f ′′ · u, Tn >

= δ2,γ
1 (n− 2, n)< f · uγ−2, Tn−2 >...

+ δ2,γ
1 (n, n)< f · uγ−2, Tn >...

+ δ2,γ
1 (n+ 2, n)< f · uγ−2, Tn+2 >

(9)

for n ≥ 2, with

δ2,γ
1 (n− 2, n) = (

1

2
− γ + n/2)(1− γ +

n

2
)

δ2,γ
1 (n, n) =

(
(2γ − 1)(γ − 2)− n2

2

)
δ2,γ

1 (n+ 2, n) = (
1

2
− γ − n/2)(1− γ − n

2
)

For n = 0 we have:

λ2,γ
0 =< f ′′ · u, T0 >

= δ2,γ
1 (0, 0)< f · uγ−2, T0 >+ δ2,γ

1 (2, 0)< f · uγ−2, T2 >
(10)

with

δ2,γ
1 (0, 0) = 2(γ − 1

2
)(γ − 2)

δ2,γ
1 (2, 0) = 2(γ − 1

2
)(γ − 1)

For n = 1 we have:

λ2,γ
1 =< f ′′ · u, T1 >

= δ2,γ
1 (1, 1)< f · uγ−2, T1 >+ δ2,γ

1 (3, 1)< f · uγ−2, T3 >
(11)

with

δ2,γ
1 (1, 1) =

[
(γ − 3

2
)(3γ − 2)− γ

]
δ2,γ

1 (3, 1) = γ(γ − 1

2
)

We can then construct the matrix [∆2,γ
1 ] made of the δ2,γ

1 (i, j) coefficients:

[∆2,γ
1 ] =



d0,0 0 d2,0 0 · · · 0 0 0 0 0
0 d1,1 0 d3,1 · · · 0 0 0 0 0
...

...
...

...
. . .

...
...

...
...

...
0 0 0 0 · · · dN−4,N−2 0 dN−2,N−2 0 dN,N−2

0 0 0 0 · · · 0 dN−3,N−1 0 dN−1,N−1 0
0 0 0 0 · · · 0 0 dN−2,N 0 dN,N


(12)

with di,j = δ2,γ
1 (i, j).

Therefore we have:
{λ2,γ} = [∆2,γ

1 ]{λ0,γ−2} (13)

is exact if λ0,γ−2
N+1 = 0 and λ0,γ−2

N+2 = 0 .
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.1.3 Third order derivative (α = 3)

Let consider the scalar product between f (3) · uγ and Tn:

λ3,γ
n =< f (3) · uγ, Tn >

= δ3,γ
1 (n− 3, n)λ0,γ−3

n−3 + δ3,γ
1 (n− 1, n)λ0,γ−3

n−1 + δ3,γ
1 (n+ 1, n)λ0,γ−3

n+1 + δ3,γ
1 (n+ 3, n)λ0,γ−3

n+3

(14)
for n ≥ 3, with λ0,γ−3

i = < f · uγ−3, Ti >

δ3,γ
1 (n− 3, n) = δ2,γ

1 (n− 2, n)(
3

2
− γ +

n

2
)

δ3,γ
1 (n− 1, n) = δ2,γ

1 (n− 2, n)(
7

2
− γ − n

2
) + δ2,γ

1 (n, n)(
5

2
− γ +

n

2
)

δ3,γ
1 (n+ 1, n) = δ2,γ

1 (n, n)(
5

2
− γ − n

2
) + δ2,γ

1 (n+ 2, n)(
7

2
− γ +

n

2
)

δ3,γ
1 (n+ 3, n) = δ2,γ

1 (n+ 2, n)(
3

2
− γ − n

2
)

For n = 0 we have:
λ3,γ

0 =< f (3) · uγ, T0 >

= δ3,γ
1 (1, 0)λ0,γ−3

1 + δ3,γ
1 (3, 0)λ0,γ−3

3

(15)

with

δ3,γ
1 (1, 0) = 2(γ − 1

2
)
(

(γ − 5

2
)(3γ − 5)− (γ − 1)

)
δ3,γ

1 (3, 0) = 2(γ − 1

2
)(γ − 3

2
)(γ − 1)

For n = 1 we have:

λ3,γ
1 =< f (3) · uγ, T1 >

= δ3,γ
1 (0, 1)λ0,γ−3

0 + δ3,γ
1 (2, 1)λ0,γ−3

2 + δ3,γ
1 (4, 1)λ0,γ−3

4

(16)

with

δ3,γ
1 (0, 1) =

[
(γ − 3

2
)(3γ − 2)− γ

]
(γ − 3)

δ3,γ
1 (2, 1) =

[(
(γ − 3

2
)(−3γ + 2) + γ

)
(2− γ)− γ(γ − 1

2
)(4− γ)

]
δ3,γ

1 (4, 1) = γ(γ − 1

2
)(1− γ)

For n = 2 we have:

λ3,γ
2 =< f (3) · uγ, T2 >

= δ3,γ
1 (1, 2)λ0,γ−3

1 + δ3,γ
1 (3, 2)λ0,γ−3

3 + δ3,γ
1 (5, 2)λ0,γ−3

5

(17)

with

δ3,γ
1 (1, 2) =

[
(
5

2
− γ)(2δ2,γ

1 (0, 2) + δ2,γ
1 (2, 2))

]
δ3,γ

1 (3, 2) =
[
(
5

2
− γ)

(
δ2,γ

1 (2, 2) + δ2,γ
1 (3, 2)

)
− δ2,γ

1 (2, 2) + 2δ2,γ
1 (3, 2)

]
δ3,γ

1 (5, 2) = (
1

2
− γ)δ2,γ

1 (3, 2)
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We can then construct the matrix [∆3,γ
1 ] made of the δ3,γ

1 (i, j) coefficients:

[∆3,γ
1 ] =



0 d 0 d 0 0 · · · 0 0 0 0 0 0 0
d 0 d 0 d 0 · · · 0 0 0 0 0 0 0
0 d 0 d 0 d · · · 0 0 0 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
0 0 0 0 0 0 · · · d 0 d 0 d 0 d
0 0 0 0 0 0 · · · 0 d 0 d 0 d 0
0 0 0 0 0 0 · · · 0 0 d 0 d 0 d
0 0 0 0 0 0 · · · 0 0 0 d 0 d 0



(18)

where d are non-null values, with di,j = δ3,γ
1 (i, j), i being the column indices, and j the

array indices.
Therefore we have:

{λ3,γ} = [∆3,γ
1 ]{λ0,γ−3} (19)

is exact if λ0,γ−3
N+1 = 0, λ0,γ−3

N+2 = 0 and λ0,γ−3
N+3 = 0.

.1.4 Fourth order derivative (α = 4)

λ4,γ
n =< f (4) · uγ, Tn >

= δ4,γ
1 (n− 4, n)λ0,γ−4

n−4 + δ4,γ
1 (n− 2, n)λ0,γ−4

n−2 + δ4,γ
1 (n, n)λ0,γ−4

n

+ δ4,γ
1 (n+ 2, n)λ0,γ−4

n+2 + δ4,γ
1 (n+ 4, n)λ0,γ−4

n+4

(20)

for n ≥ 4, with

δ4,γ
1 (n− 4, n) = δ3,γ

1 (n− 3, n)(2− γ +
n

2
)

δ4,γ
1 (n− 2, n) = δ3,γ

1 (n− 3, n)(5− γ − n

2
) + δ3,γ

1 (n− 1, n)(3− γ +
n

2
)

δ4,γ
1 (n, n) = δ3,γ

1 (n− 1, n)(4− γ − n

2
) + δ3,γ

1 (n+ 1, n)(4− γ +
n

2
)

δ4,γ
1 (n+ 2, n) = δ3,γ

1 (n+ 1, n)(3− γ − n

2
) + δ3,γ

1 (n+ 3, n)(5− γ +
n

2
)

δ4,γ
1 (n+ 4, n) = δ3,γ

1 (n+ 3, n)(2− γ − n

2
)

For n = 0 we have :

λ4,γ
0 =< f (4) · uγ, T0 >

= δ4,γ
1 (0, 0)λ0,γ−4

0 + δ4,γ
1 (2, 0)λ0,γ−4

2 + δ4,γ
1 (4, 0)λ0,γ−4

4

(21)

with
δ4,γ

1 (0, 0) = (4− γ)δ3,γ
1 (1, 0)

δ4,γ
1 (2, 0) =

[
(3− γ)δ3,γ

1 (1, 0) + (5− γ)δ3,γ
1 (3, 0)

]
δ4,γ

1 (4, 0) = (2− γ)δ3,γ
1 (1, 0)

for n = 1 we have:

λ4,γ
1 =< f (4) · uγ, T1 > = δ4,γ

1 (1, 1)λ0,γ−4
1 + δ4,γ

1 (3, 1)λ0,γ−4
3 + δ4,γ

1 (5, 1)λ0,γ−4
5 (22)
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with

δ4,γ
1 (1, 1) =

[
(7

2
− γ)(2δ3,γ

1 (0, 1) + δ3,γ
1 (2, 1)) + δ3,γ

1 (2, 1)
]

δ4,γ
1 (3, 1) =

[
(5

2
− γ)δ3,γ

1 (2, 1) + (11
2
− γ)δ3,γ

1 (4, 1)
]

δ4,γ
1 (5, 1) =

[
(3

2
− γ)δ3,γ

1 (4, 1)
]

For n = 2 we have:

λ4,γ
2 =< f (4) · uγ, T2 >

= δ4,γ
1 (0, 2)λ0,γ−4

0 + δ4,γ
1 (2, 2)λ0,γ−4

2 + δ4,γ
1 (4, 2)λ0,γ−4

4 + δ4,γ
1 (6, 2)λ0,γ−4

6

(23)

with
δ4,γ

1 (0, 2) = (4− γ)δ3,γ
1 (1, 2)

δ4,γ
1 (2, 2) = [(3− γ)δ3,γ

1 (1, 2) + (5− γ)δ3,γ
1 (3, 2)]

δ4,γ
1 (4, 2) = [(2− γ)δ3,γ

1 (3, 2) + (6− γ)δ3,γ
1 (5, 2)]

δ4,γ
1 (6, 2) = (1− γ)δ3,γ

1 (5, 2)

For n = 3 we have:

λ4,γ
3 =< f (4) · u, T3 >

= δ4,γ
1 (1, 3)λ0,γ−4

1 + δ4,γ
1 (3, 3)λ0,γ−4

3 + δ4,γ
1 (5, 3)λ0,γ−4

5 + δ4,γ
1 (7, 3)λ0,γ−4

7

(24)

with

δ4,γ
1 (1, 3) =

[
(7

2
− γ)

(
2δ3,γ

1 (0, 3) + δ3,γ
1 (2, 3)

)
+ δ3,γ

1 (2, 3)
]

δ4,γ
1 (3, 3) =

[
(5

2
− γ)δ3,γ

1 (2, 3) + (11
2
− γ)δ3,γ

1 (4, 3)
]

δ4,γ
1 (5, 3) =

[
(3

2
− γ)δ3,γ

1 (4, 3) + (13
2
− γ)δ3,γ

1 (6, 3)
]

δ4,γ
1 (7, 3) =

[
(1

2
− γ)δ3,γ

1 (6, 3)
]

We can then construct the matrix [∆4,γ
1 ] made of the δ4,γ

1 (i, j) coefficients:

[∆4,γ
1 ] =



d 0 d 0 d 0 0 0 · · · 0 0 0 0 0 0 0 0 0
0 d 0 d 0 d 0 0 · · · 0 0 0 0 0 0 0 0 0
d 0 d 0 d 0 d 0 · · · 0 0 0 0 0 0 0 0 0
0 d 0 d 0 d 0 d · · · 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 · · · d 0 d 0 d 0 d 0 d
0 0 0 0 0 0 0 0 · · · 0 d 0 d 0 d 0 d 0
0 0 0 0 0 0 0 0 · · · 0 0 d 0 d 0 d 0 d
0 0 0 0 0 0 0 0 · · · 0 0 0 d 0 d 0 d 0



(25)

where d are non-null values, with di,j = δ3,γ
1 (i, j), i being the column indices, and j the

array indices.
Therefore we have:

{λ4,γ} = [∆4,γ
1 ]{λ0,γ−4} (26)

is exact if λ0,γ−4
N+1 = 0, λ0,γ−4

N+2 = 0 and λ0,γ−4
N+3 = 0.
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.2 Second kind

.2.1 First order derivative (α = 1)

For n ≥ 1:

λ1,γ
n =< f ′ · uγ, Un >

= δ1,γ
2 (n+ 1, n) < f · uγ−1, Un+1 > +δ1,γ

2 (n− 1, n) < f · uγ−1, Un−1 >

= δ1,γ
2 (n+ 1, n)λ0,γ−1

n+1 + δ1,γ
2 (n− 1, n)λ0,γ−1

n−1

(27)

with

δ1,γ
2 (n+ 1, n) =

n+ 1− 2γ

2

δ1,γ
2 (n− 1, n) = −n+ 1 + 2γ

2

For n = 0 we have:
λ1,γ

0 =< f ′ · uγ, U0 >

= δ1,γ
2 (1, 0)λ0,γ−1

1

(28)

with

δ1,γ
2 (1, 0) =

2γ + 1

2

We can then construct the matrix [∆1,γ
2 ] made of the δ1,γ

2 (i, j) coefficients:

[∆1,γ
2 ] =



0 δ1,γ
2 (1, 0) 0 · · · 0 0 0 0

δ1,γ
2 (0, 1) 0 δ1,γ

2 (2, 1) · · · 0 0 0 0
. . .

0 0 0 · · · 0 δ1,γ
2 (N−2, N−1) 0 δ1,γ

2 (N,N−1)

0 0 0 · · · 0 0 δ1,γ
2 (N−1, N) 0


(29)

Therefore we have:

{λ1,γ} = [∆1,γ
2 ]{λ0,γ−1} (30)

is exact if λ0,γ−1
N+1 = 0 .

.2.2 Second order derivative (α = 2)

For n ≥ 2:

λ2,γ
n =< f ′′ · uγ, Un >

= δ2,γ
2 (n+ 2, n)λ0,γ−2

n+2 + δ2,γ
2 (n, n)λ0,γ−2

n + δ2,γ
2 (n− 2, n)λ0,γ−2

n−2

(31)

with

δ2,γ
2 (n+ 2, n) = δ1,γ

2 (n+ 1, n)δ1,γ−1
2 (n+ 2, n+ 1)

δ2,γ
2 (n, n) = −δ1,γ

2 (n+ 1, n)δ1,γ−1
2 (n, n+ 1)− δ1,γ

2 (n− 1, n)δ1,γ−1
2 (n− 2, n− 1)

δ2,γ
2 (n− 2, n) = δ1,γ

2 (n− 1, n)δ1,γ−1
2 (n− 2, n− 1)
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For n = 0, we have:

λ2,γ
0 =< f ′′ · uγ, U0 >

= δ2,γ
2 (2, 0)λ0,γ−2

2 + δ2,γ
2 (0, 0)λ0,γ−2

0

(32)

with

δ2,γ
2 (0, 0) = −2γ + 1

2
δ1,γ−1

2 (1, 0)

δ2,γ
2 (2, 0) =

2γ + 1

2
δ1,γ−1

2 (2, 0)

For n = 1 we have:
λ2,γ

1 =< f ′′ · uγ, U1 >

= δ2,γ
2 (3, 1)λ0,γ−2

3 + δ2,γ
2 (1, 1)λ0,γ−2

1

(33)

with
δ2,γ

2 (3, 1) = δ1,γ
2 (2, 1)δ1,γ−1

2 (3, 2)

δ2,γ
2 (1, 1) = −[δ1,γ

2 (2, 1)δ1,γ−1
2 (1, 2) +

2γ − 1

2
δ1,γ

2 (0, 1)]

We can then construct the matrix [∆2,γ
2 ] made of the δ2,γ

2 (i, j) coefficients:

[∆2,γ
2 ] =



d0,0 0 d2,0 0 · · · 0 0 0 0 0
0 d1,1 0 d3,1 · · · 0 0 0 0 0
...

...
...

...
. . .

...
...

...
...

...
0 0 0 0 · · · dN−4,N−2 0 dN−2,N−2 0 dN,N−2

0 0 0 0 · · · 0 dN−3,N−1 0 dN−1,N−1 0
0 0 0 0 · · · 0 0 dN−2,N 0 dN,N


(34)

with di,j = δ2,γ
2 (i, j).

.2.3 Third order derivative (α = 3)

For n ≥ 3 :

λ3,γ
n =< f (3) · uγ, Un >

= δ3,γ
2 (n+ 3, n)λ0,γ−3

n+3 + δ3,γ
2 (n+ 1, n)λ0,γ−3

n+1 + δ3,γ
2 (n− 1, n)λ0,γ−3

n−1 + δ3,γ
2 (n− 3, n)λ0,γ−3

n−3

(35)
with

δ3,γ
2 (n+ 3, n) = δ1,γ

2 (n+ 1, n)δ2,γ−1
2 (n+ 3, n+ 1)

δ3,γ
2 (n+ 1, n) = −(δ1,γ

2 (n+ 1, n)δ2,γ−1
2 (n− 1, n+ 1) + δ1,γ

2 (n− 1, n)δ2,γ−1
2 (n− 1, n− 1))

δ3,γ
2 (n− 1, n) = δ1,γ

2 (n− 1, n)δ2,γ−1
2 (n− 3, n− 1)

δ3,γ
2 (n− 3, n) = −(δ1,γ

2 (n+ 1, n)δ2,γ−1
2 (n+ 1, n+ 1) + δ1,γ

2 (n+ 1, n)δ2,γ−1
2 (n+ 1, n− 1))

For n = 0 we have:
λ3,γ

0 =< f (3) · uγ, U0 >

= δ3,γ
2 (3, 0)λ0,γ−3

3 + δ3,γ
2 (1, 0)λ0,γ−3

1

(36)
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with

δ3,γ
2 (3, 0) =

2γ + 1

2
δ1,γ−1

2 (2, 1)δ1,γ−2
2 (3, 2)

δ3,γ
2 (1, 0) = −(

2γ + 1

2
[δ1,γ−1

2 (2, 1)δ1,γ−2
2 (1, 2) +

2γ − 3

2
δ1,γ−1

2 (0, 1)])

For n = 1 we have:

λ3,γ
1 =< f (3) · u, U1 >

= δ3,γ
2 (4, 1)λ0,γ−3

4 + δ3,γ
2 (2, 1)λ0,γ−3

2 + δ3,γ
2 (0, 1)λ0,γ−3

0

(37)

with
δ3,γ

2 (4, 1) = δ1,γ
2 (2, 1)δ2,γ−1

2 (4, 2)

δ3,γ
2 (2, 1) = −[δ1,γ

2 (2, 1)δ2,γ−1
2 (2, 2) +

2γ − 1

2
δ1,γ

2 (0, 1)δ1,γ−2
2 (2, 1)]

δ3,γ
2 (0, 1) = [δ1,γ

2 (2, 1)δ2,γ−1
2 (0, 2) +

2γ − 1

2
δ1,γ

2 (0, 1)δ1,γ−2
2 (0, 1)]

For n = 2 we have:

λ3,γ
2 =< f (3) · uγ, U2 >

= δ3,γ
2 (5, 2)λ0,γ−3

5 + δ3,γ
2 (3, 2)λ0,γ−3

3 + δ3,γ
2 (1, 2)λ0,γ−3

1

(38)

with

δ3,γ
2 (5, 2) = δ1,γ

2 (3, 2)δ2,γ−1
2 (5, 3)

δ3,γ
2 (3, 2) = −[δ1,γ

2 (3, 2)δ2,γ−1
2 (3, 3) + δ1,γ

2 (1, 2)δ1,γ−1
2 (2, 1)δ1,γ−2

2 (3, 2)]

δ3,γ
2 (1, 2) =

[
δ1,γ

2 (3, 2)δ2,γ−1
2 (1, 3) + δ1,γ

2 (1, 2)
[
δ1,γ−1

2 (2, 1)δ1,γ−2
2 (1, 2) +

2γ − 3

2
δ1,γ−1

2 (0, 1)
]]

We can then construct the matrix [∆3,γ
2 ] made of the δ3,γ

2 (i, j) coefficients:

[∆3,γ
2 ] =



0 d 0 d 0 0 · · · 0 0 0 0 0 0 0
d 0 d 0 d 0 · · · 0 0 0 0 0 0 0
0 d 0 d 0 d · · · 0 0 0 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
0 0 0 0 0 0 · · · d 0 d 0 d 0 d
0 0 0 0 0 0 · · · 0 d 0 d 0 d 0
0 0 0 0 0 0 · · · 0 0 d 0 d 0 d
0 0 0 0 0 0 · · · 0 0 0 d 0 d 0



(39)

where d are non-null values, with di,j = δ3,γ
2 (i, j), i being the column indices, and j the

array indices.
Therefore we have:

{λ3,γ} = [∆3,γ
2 ]{λ0,γ−3} (40)

is exact if λ0,γ−3
N+1 = 0, λ0,γ−3

N+2 = 0 and λ0,γ−3
N+3 = 0.

.2.4 Fourth order derivative (α = 4)

For n ≥ 4 :

λ4,γ
n =< f (4) · uγ, Un >

= δ4,γ
2 (n+ 4, n)λ0,γ−4

n+4 + δ4,γ
2 (n+ 2, n)λ0,γ−4

n+2 + δ4,γ
2 (n, n)λ0,γ−4

n + ...

δ4,γ
2 (n− 2, n)λ0,γ−4

n−2 + δ4,γ
2 (n− 4, n)λ0,γ−4

n−4

(41)
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with

δ4,γ
2 (n+ 4, n) = δ1,γ

2 (n+ 1, n)δ3,γ−1
2 (n+ 4, n+ 1)

δ4,γ
2 (n+ 2, n) = −δ1,γ

2 (n+ 1, n)δ3,γ−1
2 (n+ 2, n+ 1)− δ1,γ

2 (n− 1, n)δ3,γ−1
2 (n+ 2, n− 1)

δ4,γ
2 (n, n) = δ1,γ

2 (n+ 1, n)δ3,γ−1
2 (n, n+ 1) + δ1,γ

2 (n− 1, n)δ3,γ−1
2 (n, n− 1)

δ4,γ
2 (n− 2, n) = δ1,γ

2 (n+ 1, n)δ3,γ−1
2 (n− 2, n+ 1)− δ1,γ

2 (n− 1, n)δ3,γ−1
2 (n, n− 1)

δ4,γ
2 (n− 4, n) = δ1,γ

2 (n− 1, n)δ3,γ−1
2 (n− 4, n− 1)

For n = 0 we have:

λ4,γ
0 =< f (4) · uγ, U0 >

= δ4,γ
2 (4, 0)λ0,γ−4

4 + δ4,γ
2 (2, 0)λ0,γ−4

2 + δ4,γ
2 (0, 0)λ0,γ−4

0

(42)

with

δ4,γ
2 (4, 0) =

2γ + 1

2
δ1,γ−1

2 (2, 1)δ2,γ−2
2 (4, 2)

δ4,γ
2 (2, 0) = −2γ + 1

2
[δ1,γ−1

2 (2, 1)δ2,γ−2
2 (2, 2) +

2γ − 3

2
δ1,γ−1

2 (0, 1)δ1,γ−3
2 (2, 1)]

δ4,γ
2 (0, 0) =

2γ + 1

2
[δ1,γ−1

2 (2, 1)δ2,γ−2
2 (0, 2) +

2γ − 3

2
δ1,γ−1

2 (0, 1)δ1,γ−3
2 (0, 1)]

For n = 1 we have:

λ4,γ
1 =< f (4) · u, U1 >

= δ4,γ
2 (5, 1)λ0,γ−4

5 + δ4,γ
2 (3, 1)λ0,γ−4

3 + δ4,γ
2 (1, 1)λ0,γ−4

1

(43)

with
δ4,γ

2 (5, 1) = δ1,γ
2 (2, 1)δ3,γ−1

2 (5, 2)

δ4,γ
2 (3, 1) = −[δ1,γ

2 (2, 1)δ3,γ−1
2 (3, 2) + δ1,γ

2 (0, 1)δ3,γ−1
2 (3, 0)]

δ4,γ
2 (1, 1) = [δ1,γ

2 (2, 1)δ3,γ
2 (1, 2) + δ1,γ

2 (0, 1)δ3,γ−1
2 (1, 0)]

For n = 2 we have:

λ4,γ
2 =< f (4) · uγ, U2 >

= δ4,γ
2 (6, 2)λ0,γ−4

6 + δ4,γ
2 (4, 2)λ0,γ−4

4 + δ4,γ
2 (2, 2)λ0,γ−4

2 + δ4,γ
2 (0, 2)λ0,γ−4

0

(44)

with
δ4,γ

2 (6, 2) = δ1,γ
2 (3, 2)δ3,γ−1

2 (6, 3)

δ4,γ
2 (4, 2) = −[δ1,γ

2 (3, 2)δ3,γ−1
2 (4, 3) + δ1,γ

2 (1, 2)δ3,γ−1
2 (4, 1)]

δ4,γ
2 (2, 2) = −[δ1,γ

2 (3, 2)δ3,γ−1
2 (4, 3) + δ1,γ

2 (1, 2)δ3,γ−1
2 (4, 1)]

δ4,γ
2 (0, 2) = −[δ1,γ

2 (3, 2)δ3,γ−1
2 (0, 3) + δ1,γ

2 (1, 2)δ3,γ−1
2 (0, 1)

For n = 3 we have:

λ4,γ
3 =< f (4) · uγ, U3 >

= δ4,γ
2 (7, 3)λ0,γ−4

7 + δ4,γ
2 (5, 3)λ0,γ−4

5 + δ4,γ
2 (3, 3)λ0,γ−4

3 + δ4,γ
2 (1, 3)λ0,γ−4

1

(45)

with
δ4,γ

2 (7, 3) = δ1,γ
2 (4, 3)δ3,γ−1

2 (7, 4)

δ4,γ
2 (5, 3) = −[δ1,γ

2 (4, 3)δ3,γ−1
2 (5, 4) + δ1,γ

2 (2, 3)δ3,γ−1
2 (5, 2)]

δ4,γ
2 (3, 3) = δ1,γ

2 (4, 3)δ3,γ−1
2 (3, 4) + δ1,γ

2 (2, 3)δ3,γ−1
2 (3, 2)

δ4,γ
2 (1, 3) = −[δ1,γ

2 (4, 3)δ3,γ−1
2 (1, 4) + δ1,γ

2 (2, 3)δ3,γ−1
2 (1, 2)]
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We can then construct the matrix [∆4,γ
2 ] made of the δ4,γ

2 (i, j) coefficients:

[∆4,γ
2 ] =



d 0 d 0 d 0 0 0 · · · 0 0 0 0 0 0 0 0 0
0 d 0 d 0 d 0 0 · · · 0 0 0 0 0 0 0 0 0
d 0 d 0 d 0 d 0 · · · 0 0 0 0 0 0 0 0 0
0 d 0 d 0 d 0 d · · · 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 · · · d 0 d 0 d 0 d 0 d
0 0 0 0 0 0 0 0 · · · 0 d 0 d 0 d 0 d 0
0 0 0 0 0 0 0 0 · · · 0 0 d 0 d 0 d 0 d
0 0 0 0 0 0 0 0 · · · 0 0 0 d 0 d 0 d 0



(46)

where d are non-null values, with di,j = δ3,γ
2 (i, j), i being the column indices, and j the

array indices.
Therefore we have:

{λ4,γ} = [∆4,γ
2 ]{λ0,γ−4} (47)

is exact if λ0,γ−4
N+1 = 0, λ0,γ−4

N+2 = 0 and λ0,γ−4
N+3 = 0.
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[42] L. Brancheriau. Expertise mécanique des sciages par analyses des vibrations dans le
domaine acoustique. pages 10–28, 2002.

[43] J Woodhouse. Linear damping models for structural vibration. Journal of Sound
and Vibration, 215(3):547–569, 1998.

[44] S Adhikari and J Woodhouse. Identification of damping: part 1, viscous damping.
Journal of Sound and Vibration, 243(1):43–61, 2001.

[45] S Adhikari and J Woodhouse. Identification of damping: part 2, non-viscous damp-
ing. Journal of Sound and Vibration, 243(1):63–88, 2001.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0095/these.pdf 
© [C. Chochol], [2013], INSA de Lyon, tous droits réservés


	Notice XML
	Page de titre
	Abstract in french
	Introduction
	0.1 Principe d'identification
	0.1.1 Projection
	0.1.2 Différentiation
	0.1.3 Estimation de paramètres

	0.2 Applications numériques
	0.3 Applications expérimentales
	Conclusion

	Acknowledgements
	List of Figures
	Contents
	Nomenclature
	Introduction
	Chapter 1 Identification principle
	Introduction
	1.1 Basic Principle
	1.1.1 Differential equation transformation
	1.1.2 Partial differential equation transformation

	1.2 Chebyshev polynoms
	1.2.1 Expansion
	1.2.2 Differentiation


	Chapter 2 Practical issues
	Introduction
	2.1 Simulation tools
	2.1.1 Noise
	2.1.2 Monte Carlo test
	2.1.3 Results presentation

	2.2 Numerical considerations and regularization
	2.2.1 STEP 1 : expansion considerations
	2.2.2 STEP 2 : Differentiation considerations
	2.2.3 STEP 3: parameter estimation and regularization process

	Conclusion

	Chapter 3 Numerical applications
	Introduction
	3.1 A simple 1D case with a single identified parameter : the Bernoulli beam
	3.1.1 Theory
	3.1.2 Results

	3.2 A 1D case: Influence testing of boundary conditions for the regularization step
	3.2.1 Theory
	3.2.2 Results

	3.3 A 1D case with multiple identified parameters: the Timoshenko beam
	3.3.1 Theory
	3.3.2 Results

	3.4 A 1D case using the transient response : a damped bar
	3.4.1 Theory
	3.4.2 Results

	3.5 A 1D case identifying the damping with the steady state response : cantilever beam
	3.5.1 Theory
	3.5.2 Results

	3.6 a 1D case with application to discontinuity location
	3.6.1 Theory
	3.6.2 Results

	3.7 A 2D case with a single identified parameter: a plate
	3.7.1 Theory
	3.7.2 Results

	Conclusion

	Chapter 4 Experimental applications
	Introduction
	4.1 Damage detection on a cantilever beam
	4.1.1 Principle
	4.1.2 Experimental setup
	4.1.3 Results and discussion

	4.2 Damped plate identification
	4.2.1 Principle
	4.2.2 Experimental setup
	4.2.3 Results and discussion

	Conclusion

	Conclusion and perspectives
	Appendix Application on a torsional non-linear bar
	Appendix Novel operator coe�cients
	.1 First kind
	.1.1 First order derivative (α = 1)
	.1.2 Second order derivative (α = 2)
	.1.3 Third order derivative (α = 3)
	.1.4 Fourth order derivative (α = 4)

	.2 Second kind
	.2.1 First order derivative (α = 1)
	.2.2 Second order derivative (α = 2)
	.2.3 Third order derivative (α = 3)
	.2.4 Fourth order derivative (α = 4)


	Bibliography



