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Résumé
Les pieds d’aubes de souff antes de turboréacteurs font face à des sollicitations de

type fretting. Il en résulte deux types d’endommagements: (i) l’amorçage et la propaga-
tion de f ssures, (ii) l’usure des surfaces en contact. Af n de fournir les outils permettant
de répondre à la problématique industrielle, un code semi-analytique permettant de traiter
des problèmes hétérogènes de contacts élasto-plastiques est développé à partir d’éléments
existants et de solutions analytiques et numériques novatrices.

La structure est simplif ée en supposant un contact entre deux massifs élastiques semi-
inf nis. Des solutions analytiques donnant, pour les déplacements en surface:

• les contributions élémentaires de chargements normaux et tangentiels constants sur
une surface rectangulaire pour obtenir par sommation les déplacements élastiques
de la surface chargée;

• les contributions élémentaires de déformations plastiques supposées constantes sur
un volume parallélépipédique pour obtenir par sommation les déplacements résidu-
els en surface;

• les contributions élémentaires de déformations d’incompatibilité liées à un prob-
lème hétérogène (inclusions, revêtements, endommagement,...) supposées con-
stantes sur un volume parallélépipédique pour obtenir par sommation les déplace-
ments résiduels en surface;

Les déplacements en surface sont alors exprimés en utilisant des produits de convolution
discrets entre des coeff cients d’inf uence et la source surfacique (chargements en surface)
ou volumique (déformations plastiques ou d’incompatibilité). Le problème normal et le
problème tangentiel en glissement total ou en glissement partiel peuvent alors être résolus,
en prenant en compte les effets plastiques et hétérogènes. L’algorithme d’optimisation
sous contrainte utilisé est celui développé par L.Gallego.
Des solutions analytiques donnant, pour les contraintes dans le volume:

• les contributions élémentaires de chargements normaux et tangentiels constants sur
une surface rectangulaire pour obtenir par sommation les contraintes de contact
dans le volume

• les contributions élémentaires de déformations plastiques supposées constantes sur
un volume parallélépipédique pour obtenir par sommation les contraintes résidu-
elles dans le volume

• les contributions élémentaires de déformations d’incompatibilité liées à un prob-
lème hétérogène (inclusions, revêtements, endommagement,...) supposées con-
stantes sur un volume parallélépipédique pour obtenir par sommation les contraintes
d’incompatibilité dans le volume
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De la même manière, les contraintes dans le volume sont exprimées en utilisant des
produits de convolution discrets entre des coeff cients d’inf uence et la source surfacique.
Pour accélérer les calculs, les transformées de Fourier rapides (2D-FFT et 3D-FFT) sont
utilisées pour effectuer les produits de convolution.

Les solutions élémentaires sont validées, puis le code est validé à partir de solutions
analytiques ou numériques trouvées dans la littérature pour des cas simples. Des simu-
lations avec plasticité, inclusions ou revêtements sont effectuées pour un contact sphère-
plan en glissement total ou en glissement partiel. Des simulations d’usure avec revêtement
sont par la suite effectuées, et certaines applications potentielles sont brièvement traitées.

M OTS CLÉS: plasticité, inclusions, revêtement, usure, contact, stick-slip, fretting,
tribologie, modélisation numérique

8 Semi-analytical modeling of complex mechanical contacts:
Application to inclusions and wear of coated surfaces
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Introduction

Tribology is a branch of mechanical engineering where interacting surfaces in relative
motion are studied. It includes the study and applications of the principles of friction,
wear, solid and f uid lubrication.

Numerous industrial applications are concerned with contacting surfaces submitted to
a mechanical load which may result in a loss of material, which is known as "wear". This
phenomenon becomes critical for some high speed applications such as for aeronautical
turbine engines, and requires a better understanding of the state of stress in the contact.
In a previous approach a homogeneous and purely elastic analysis [GAL 07a] was
carried out to simulate fretting wear. This method worked very well, however it was
limited to elastic, isotropic and homogeneous contact problems. When other aspects
are considered (plasticity, metal cleanliness, solid lubricants), the state of stress in the
contact and wear prof les become obselete. Since metal cleanliness is becoming an issue
when trying to extend the working life, and solid lubricants have been used for a long
time in aeronautical contacts, problems are no longer homogeneous. Moreover metal
working processes induce some residual stresses, and edges of contacts can still induce
some plastic deformation, making elastic analyses inaccurate.

The f rst part presents the context and motivations. The contact of interest cor-
responds to the dovetail joint. This joint is critical and there is an increasing need in
contact modeling. Various phenomenons are considered and constitute the main chapters
of this thesis:

• hardening

• inclusions

• coatings and wear of coatings

Some mechanical issues observed and techniques used in the aeronautical f eld that may
require one or all of those aspects are then detailed. Finally, various analytical and numer-
ical methods used in contact mechanics are shown. Weaknesses and advantages of each
method (including semi-analytical methods) are then exposed.

The second part deals with the contact model, based on the work of L.Gallego and
C.Jacq and V.Boucly. On the f rst hand, the initial work of L.Gallego [GAL 07a] focused
on a purely elastic analysis of frictional contacts, where contact conditions are deter-
mined at every step. On the other hand, the combined work of C.Jacq [Jac 01,Jac 02] and
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V.Boucly [BOU 08] focused on an elastic-plastic analysis of frictionless contacts, where
pressure is determined at every step. Because Ambrico and Begley [AMB 00, AMB 01]
have highlighted the role of macroscopic plastic deformation in fretting fatigue life pre-
dictions, and it is assumed that plastic deformations also play a role in fretting-wear,
contact conditions and state of stress, plasticity will be considered in this model, allowing
many other potential applications. The contact problem is composed of (i) the normal
problem and (ii) the tangential problem. Both sub-problems are exposed and extended
to the elastic-plastic contact when considering friction. Most of elementary solutions are
available in [JOH 85] and brief y expressed, others are detailed and validated using a f -
nite element analysis.
Structures of contact algorithms remain globally unchanged and are not detailed in this
document (See [GAL 07a] ). However, numerical methods used are detailed, including
initial methods (CGM, 2D-FFT) and new methods (CGM with an adaptative relaxation,
3D-FFT, ...). Finally, the contact code is validated using three modes of fretting and re-
sults given by L.Gallego. Fretting modes when considering hardening is then investigated
and compared to the elastic case.

The third part presents the Eshelby’s theory, and the way it has been used in the
code in order to take non-homogeneous aspects into account. Spherical and cubical non-
homogeneities are later considered, and elementary solutions are given and validated us-
ing results found in the litterature. Inf uence of the metal cleanliness has been investigated
using various clusters of spherical inclusions under normal contact conditions. No gradi-
ent has been considered in this study, but results are still accurate when considering small
inclusions. The size and the effect of those inclusions will be discussed.
Another way is to mesh an inclusion in many small cuboids. Using this technique, el-
ementary solutions used are relative to a cube, but any inclusion’s shape can be treated.
This is of a great importance when f ber reinforcements, polyhedral or ellipsoidal inclu-
sions have to be considered. This technique has been validated considering results found
for a spherical and an elliptical inclusion in [MUR 79] and can be used when gradients
can not be neglected at the inclusions’ scale, when large inclusions are considered for
instance.
Finally, a short study is made considering a large and unique spherical inclusion under
rolling conditions or an oscillating sliding. Gradients are taken into account considering
the relative size of the inclusion. Unlike most of other works, the non-homogeneous, the
normal and the tangential problems are coupled together.

The last part highlights the eff ciency of this code when dealing with coatings in fric-
tional contacts. Results obtained using the semi-analytical methods are compared to pub-
lished data [O’S 88]. In addition, the effect of the coating thickness on the maximal
pressure and the contact size has been compared to existing results [PLU 98]. Consider-
ing validations made in parts two, three and four, many other f elds of application can be
envisioned. For instance, non-homogeneous properties of materials can be modif ed in
order to deal with damage of brittle materials, such as bones. Fiber reinforcements can
even be considered in such brittle material, such as in prestressed concrete. As example,
some results are given for both applications.
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Chapter 1

Contacts in the Aeronautical Field

This chapter is an introduction to contact problems
encountered in jet engines. Modeling in contact mechanics,

including fretting-wear and hardening issues are briefly
exposed.
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Context and motivations

1.1 Context and motivations

1.1.1 Aircraft engines

Airbreathing jet engines are gas turbines optimized to produce thrust from the exhaust
gases, or from ducted fans connected to the gas turbines. Engines were initially composed
of three core components (compressor, combustor, turbine). Air f ow is compressed in
the f rst core with an inlet and a compressor. Compressed air and fuel are mixed together
in the combustion chamber. Hot and high pressure burning mixture passes through a
turbine and a nozzle. The compressor is powered by the turbine, which extracts energy
from the expanding gas passing through it. Actually, better results were obtained when
considering a two-spool conf guration. Two shafts are running concentrically with a low-
pressure compressor and a low-pressure turbine for the f rst one, and a high-pressure
compressor and a high-pressure turbine for the second one. Using such conf guration, the
high pressure compressor can rotate faster, increasing its eff ciency.

In turbojets, all the air ingested by the inlet passes through the compressor, combustor
and turbine. Thrust is primarily produced from the direct impulse of exhaust gas. (cf.
FIG.1.1). Those engines give good eff ciency at speeds above the speed of sound, and are
used in military jet f ghters.

Figure 1.1: Schematic diagram illustrating the operation of turbojets

In turbofans, some of the f ow bypasses the gas generator core and is accelerated by
the fan. This bypassed f ow is cold and at lower velocities, but a higher mass, making
thrust by the fan (80% of the thrust) more important than the thrust produced by the core
(cf. FIG.1.2). Most of the airbreathing jet engines that are in use are turbofan jet engines
which give good eff ciency at speeds just below the speed of sound. They are in use on
most of commercial f ights.

1.1.2 Dovetail joints in aircraft engines

The fan (cf. FIG.1.3) is composed of a disk and many blades. Blade and disk are linked
together using a dovetail joint, which is basically made of two interfaces (other stages may
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1. Contacts in the Aeronautical Field

Figure 1.2: Schematic diagram illustrating the operation of turbofans

contain more than two interfaces for each blade). Because of the rate of rotation, blades
and disk experience a high centrifugal force. Parts are strained and geometries may vary.
High intensity and low-frequency loadings are then observed in both interfaces. Loadings
are micro-displacements, pressure and shears (cf. FIG.1.4). Those are directly induced by
the rate of rotation and are often simplif ed by a unique loading when starting the engine,
a long holding phase during f ight, and unique unloading after landing. One f ight is then
equal to one low-frequency cycle. Blades and disk also experience aerodynamic instabil-
ities and structural vibrations. Those loadings are high-frequency but low-amplitude.

Figure 1.3: Blade and disk linked together using a dovetail joint

Repeated relative motion of normally loaded surfaces will induce damage, and is
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Context and motivations
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Figure 1.4: Loadings observed at the blade-disk interface

called "fretting". Fretting activates two damage mechanisms: wear of surfaces and fa-
tigue of materials leading to crack nucleation and propagation. Wear modif es geometries
of parts which may affect the aerodynamic eff ciency of engines, involving important
servicing costs because of premature part changes. However, it is not typically critical.
Fretting-fatigue is much more critical, and crack propagation in the dovetail blade-root
can lead to an in-f ight loss of fan blade, compromising passengers’ safety. Both mecha-
nisms are heavily studied in order to constantly improve safety of f ights. Material used
for the manufacture and processing of blades and disks is typically a titanium alloy: Ti-
6Al-4V. This alloy is light, strong and resists to oxydation. Blade and disks are forged
and machined, while future contact interfaces are reinforced using a shot peening process.
This process adds compressive residual stresses on the surface, which reduces the crack
nucleation and propagation.

However, titanium has poor tribologic properties. In order to improve the interface
lifespan, a coating of about 150µm and made of copper-nickel-indium (Cu-Ni-In) is
sprayed over the blade contact using a plasma. Then, a solid lubricant called Molydag
(MoS2) is roughly settled. It is used to drastically reduce the coeff cient of friction in the
contact but is actually rapidly worn (cf. FIG.1.5).

BLADE

Figure 1.5:Composition of the blade-disk interface [PAU 06]
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1. Contacts in the Aeronautical Field

1.1.3 Needs in contact modeling

Lifespan of blades and disks was initially extended thanks to experiments and a better
understanding of materials and manufacturing processes. Because fretting-wear is a long-
term and complex phenomenon, it was not taken into account in previous blade and disk
designs. In order to improve reliability it is necessary to determine wear kinetics by
numerical simulations using various numerical methods such as Finite Element (FE) and
Semi Analytical (SA) methods. Actually, modeling could improve our vision of designing
dovetail joints by reducing stresses, gradients and micro-slidings. A very typical method
used is the Finite Elements Methods (FEM) but FEM are cumbersome, and discretization
in contacts is often limited (FIG.1.6).
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Figure 1.6: Pressure f eld observed at the blade-disk interface

Lifespan estimations are basically based on the maximum true stress. Maximum true
stress can be f ctivly lowered by a poor mesh, when gradients are locally important for
instance. Many phenomena will be taken into account, in order to correctly describe
the aeronautical contact. Each chapter of this thesis will study some of the following
phenomena.

• Geometry of the contact may localize pressure and shears, especially at the edge of
the contact zone. In blade-disk contacts, crack initiation are commonly observed at
the edge of the contact and local ref nements are required. Multi-scale techniques
are also used in more complete studies using FE methods. The actual work is based
on a semi-analytical contact code and allows f ne meshes.

• Hardening occurs during the shot peening process. In consequence, residual stress
f elds can be observed below the contact and will signif cantly reduce the trensile
stresses responsible for the crack opening. Moreover, due to high pressure and
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Context and motivations

shears observed at the edge of the contact, a plastic analysis may be required in
aeronautical contacts.

• Material impurities such as oxyds inclusions, act as privileged crack initiation sites,
increasing the local stress. FE methods commonly ignore such impurities because
local ref nements at such scale would be unaffordable when dealing with a complete
contact. Because semi-analytical methods do not require any mesh generation, ma-
terial impurities could be considered more easily.

• Coatings are applied to improve surface properties of the substrate. Multiple coat-
ings of non-uniform thickness should be considered. Models become even more
complicated when a coating is worn so the substrate or a sub-layer appears locally
into the contact zone. Various coeff cients of friction could be considered in the
same contact area.

• Wear alters contact geometries and structural response, sensibly affecting lifespan
estimations. A smooth iterative process even more cumbersome is then required in
order to def ne the worn surface properly. FE methods are experiencing some trou-
bles when dealing with rough surfaces, and discrepancies are commonly observed.
Computations can take many weeks before they crash due to a contact instability.
Advantages of a fast-computing method become clear.

• Frictional heating of worn surfaces is inevitable and is often responible for failures
such as scuff ng, seizure and cracking. Raising temperature also modif es material
properties locally. This aspect will not be treated in this work considering very low-
speed slidings observed during low-frequency cycles. But it could have a major ef-
fect when dealing with high-frequency cycles caused by the aerodynamic response
and structural vibrations.

Considering this, accuracy and feasibility of such computation using FE methods
could be discussed. The actual work is based on a challenging method called semi-
analytical method. An existing elastic contact solver will be used, and additional effects
shown above will have to be taken into account. This solver will remain a robust and
fast-computing tool, allowing iterative processes and f ne discretizations.

Figure 1.7: Fretting issues observed in blade-roots: wear (left) and fatigue (right)
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1. Contacts in the Aeronautical Field

1.2 Fretting

Fretting refers to wear, fatigue and sometimes corrosion damage of the contact. This
damage is induced under load and in the presence of repeated relative surface motion.
The amplitude of the relative sliding motion is often in the order of micrometers. It can
be induced by vibrations (aerodynamic or mechanic), or a repeated contact loading (low-
frequency loadings in jet engines). Fretting wear is currently observed in most of quasi-
static industrial contacts. In the aerospace industry, the dovetail blade-root connection
and rotation splines on driveshafts experience fretting (See Figure 1.7). Bolted and riveted
assemblies or sheathed cables also have fretting issues.

Mechanical wear (fretting-wear) is often followed by oxidation of both the metallic
debris and the freshly-exposed metallic surfaces. Because oxides (fretting-corrosion) are
often much harder than the surfaces from which they come, it often acts as an abrasive
agent that increases the rate of both fretting and mechanical wear. We call this abrasive
agent "the third body". Fretting also decreases fatigue strength of materials operating
under cycling stress (fretting-fatigue), resulting in the nucleation of cracks that can prop-
agate into the material.

In f ne, wear can be understood through the energetic balance. Friction is a dissipa-
tive phenomenon, and a part of this energy is consumed by different processes (material
transformations, physical-chemical processes, third body formation) that conduct to wear.
Those phenomena are not explicitly taken into account, but estimations of wear kinetics
and worn surfaces remain possible using an empirical wear law that implicitly accounts
for all those aspects. The wear law used in this work is based on the Archard’s law,
modif ed by Fouvry and Paulin [PAU 05, PAU 06], and is based on the friction dissipated
energy. After N cycles dissipating Ed, the worn volulV will be:

V = α∑
N

Ed (1.1)

In fretting applications, the wear coeff cient α is a consequence of debris formation
and debris ejection, because the fretting tangential displacement δo relative to the ref-
erence fretting test amplitude is responsible for the debris ejection, the wear law used
derived from:

V = αre f
δo

δref
∑
N

Ed (1.2)

Finite element models have been used for wear computations and consist in computing
one fretting cycle, using the contact data f elds in order to obtain a wear depth f eld, updat-
ing the mesh by moving the node using various techniques, and restarting the procedure
iteratively until a certain wear depth. While surfaces become rough, f nite element solvers
experience some discrepancies making results less reliable. In addition, three dimensional
fan blades models require a f ne mesh at the contact interface and lead to high computing
costs, incompatible with an industrial design process [GAL 07c, GAL 07b, GAL 10].
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Hardening in contacts

1.3 Hardening in contacts

1.3.1 Nano-indentation

Indentation tests are the most commonly applied means of testing the mechanical prop-
erties of materials, elastic-plastic properties of metals for instance. A very hard tip, fre-
quently made of diamond, is pressed into a sample whose properties are unknown. The
load placed on the indenter tip is increased as the tip penetrates further into the sample,
and then removed. A record of the depth of penetration is made during the experiment,
and the area of the indent is determined using the known geometry of the indentation tip.
The load versus displacement curve can be used to extract mechanical properties of the
material. For instance, the slope of the curve dP / dh upon unloading (See Figure 1.8),
is indicative of the stiffness S and can be used to calculate the Young’s modulus of the
sample considering the onset of unloading totally elastic.

Figure 1.8: Indentation: normal displacement versus applied force curve

When considering elastic-plastic materials, the indentation process can be repeated many
times, with each time a higher load. The remnant displacements versus the maximum
normal load for each indentation test is then used to determine the hardening parameters
using an inverse method and considering that a hardening law has been chosen. The
commonly used stress-strain curve can be plotted using hardening parameters and the
young’s modulus.

Macro and micro indentations are limited due to large tip and varied tip shapes. Com-
parison across experiments is often diff cult, while the area to be indented is very hard to
specify accurately. But nano-indentation tests have a higher reliability. By indenting on
the nano-scale with a very precise tip shape, such as a Berkovich tip which has a three-
sided pyramid geometry, the nano-indentation gives high spatial resolutions to place the
indents and a great stability across experiments. Moreover, nano-indentation provides
real-time load-displacement data. However, it also presents new problems as the contact
area is not easily found at this micro or even nano-scale.
Experimentally, results obtained using a spherical indenter are less stable than using a
Berkovich indenter, but spherical indentations are still widely used. High plastic strains
are localized at the tip of the Berkovitch indenter, while plastic strain f elds are smoother

Semi-analytical modeling of complex mechanical contacts:
Application to inclusions and wear of coated surfaces

11

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0061/these.pdf 
© [B. Fulleringer], [2011], INSA de Lyon, tous droits réservés



1. Contacts in the Aeronautical Field

and are mainly observed below the surface with a spherical indenter. Spherical indenta-
tions will be widely used in this thesis.

1.3.2 Hardening in rough surfaces

Several damage mechanisms affect vital machine parts such as bearings, gears and blade-
disk joints. The presence of geometrical singularities, such as dents, roughness, metal
impurities and even edges of a contact induces the generation of elastic pressure peaks
when loaded, increasing locally the stress level. Because of this high stress level, the
material will undergo irreversible deformations caused by atomic reorganizations of the
metallic crystals [JAC 02, BOU 07, NEL 07b, NEL 07a, ANT 08].

Figure 1.9: Effect of an indented groove in a ball bearing

The geometry of contacts play a key role in studies of friction, solid lubrication and
wear. This geometry is affected by elastic and plastic deformations that may extend well
below the surface. Those deformations are of a great importance and may lead to local
hardening, heating and wear that limit lifetime estimations’ accuracy.
For instance, a dent is a residual print caused by an indentation process that created plastic
deformations below the surface. The contact surface is now dented, the geometry changed
signif cantly and peaks of pressure occur at the base of the dent’s shoulder when rolled
over by a rolling body, leading to local hardening (See Figure 1.9).

Moreover, there is a high probability that crack will initiate where high stresses are
localized (dent’s shoulder, metal impurities, edges of a contact, ...). Cracks might ini-
tiate at the sub-surface or surface level, propagate and lead to a critical failure. In the
ball-bearing industry for instance, the rolling contact fatigue (RCF) is the most common
and dangerous phenomenon and is considerably accelerated by the formation of surface
cracks, leading to surface initiated spalls. Even if uncontrolled hardening may result in
a critical failure, controlled hardening is used in many applications in order to determine
the elastic-plastic properties or to modify mechanical properties of metals and provide a
considerable increase in part life.
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Hardening in contacts

1.3.3 Peening processes and residual stress layers

Shot peening is a cold working process in which small spherical media (round metal-
lic, glass or ceramic particles) bombard the surface of a part. Each sphere that strikes
the material at high speed acts as a tiny peening hammer. This process operates by the
mechanism of plasticity which produces a compressive residual stress layer and modif es
mechanical properties of metals.

Figure 1.10:Shots (left) bombarding an helicoidal gear (right)

Plastic deformation induces a residual compressive stress in a peened surface, along
with tensile stress in the interior. Nearly all fatigue and stress corrosion failures originate
at the surface of a part, due to the contact loading or gas surrounding. Because cracks do
not initiate or propagate in a compressively stressed zone, shot peening provides consider-
able increases in part life. Therefore, shot peening is used in many industrial applications,
especially in aeronautics, such as gear parts which experience fatigue and dovetail roots of
blades which experience fretting-fatigue. It is also called for in aircraft repairs to relieve
tensile stresses built up in the grinding process, replacing them with benef cial compres-
sive stresses.

Figure 1.11:Shot peening generates a compressive layer below the surface

The tensile stresses deep in the part are not as problematic as tensile stresses on the
surface because cracks are less likely to start in the interior. Shot peening has proved
its effectiveness in extending the service life and enhancing the performance of metal
components by protecting them against fatigue, fretting-fatigue, stress corrosion cracking
and a variety of other failure mechanisms. Depending on part geometry, part and shot
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1. Contacts in the Aeronautical Field

material, shot quality, shot intensity and shot coverage, shot peening can increase fatigue
life from 0% to 1000%.
Size, weight and speed of shots are key parameters, controlling the intensity of the shot
peening process. The angle of the shot blast stream relative to the workpiece surface is
another parameter. Moreover, stream is cone-shaped, thus, shot arrives at varying angles.
Processing the surface with a series of overlapping passes improves coverage. A contin-
uous compressively stressed surface of the workpiece has been shown to be produced at
less than 50% coverage but falls as 100% is approached. Optimizing all those parameters
for the process being performed is important for producing the desired surface effect.
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Figure 1.12:A semi-analytical solver can describe the shot peening process [CHA ]

Shot peening process can be studied using numerical or semi-analytical methods in
order to get a better understanding of key parameters. Plastic strains and residual stress
f elds are then obtained. The contact solver developed has been used by T.Chaise so
that single and multiple shots can be treated. Those shots are still normal to the surface.
However, recent improvements presented in this thesis allow us to consider both friction
and plasticity, so that any angle of the shot blast stream could be treated.

While shot peening is the most economical and practical method of ensuring surface
residual compressive stresses, other methods exist including ultrasonic peening, wet peen-
ing and laser peening. Laser technology is still expensive and requires a very high energy
laser, but is expected to produce major savings in maintenance of commercial aircraft
parts. In 2003, GE Aviation’s F-110, P&W F-119 and F-135 military engines already
used this technology. In 2004, Rolls-Royce also laser peened critical fan blade compo-
nents installed in over 250 Rolls-Royce Trent 800 and Trent 500 commercial engines.
Today, this working process is used in the new Boeing 747-8 and many other aeronautical
systems.

A neodymium-doped glass laser is often used to produce high energy beams to cre-
ate pressure pulses on the metal surface, which generate shock waves that travel into the
metal and compress it. Each laser pulse creates an intense shock wave over a roughly 5x5-
millimeters area that drives a residual compressive stress approximately 1 to 2 millimeters
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Hardening in contacts

Figure 1.13:Laser peening used in aeronautical applications

deep into the base metal. In conventional peening, this compressed layer is approximately
0.25 millimeters deep. Due to the deeper compressive residual stress imparted by the laser
peening process, components are more resistant to fatigue, improving the cost effective-
ness of the operation of the component in terms of increased life and reduced maintenance
costs.

In addition to the understanding of the shot peening process, plastic strains induced
by shot peening, laser peening (replacing shot peening in many applications) or any metal
working process, e.g. milling or surface f nishing, should be taken into account in blade-
disk contact analysis, in order to account for prestressed media. Taking this compressive
stress layer into account will signif cantly modify the maximum stress observed in the
contact during f ight, increasing lifespan estimations and avoiding unnecessary mainte-
nance schedulings.
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1. Contacts in the Aeronautical Field

1.4 Inclusions and metal cleanliness

Materials used in construction are often considered f awless, which is suff cient at a
macro-scale. However, aeronautics and many other f elds require a f ner approach in
order to reduce risks and increase lifetime of parts. Soft and hard inclusions act as a stress
raiser, i.e. media surrounding such inclusion experiences a local increase in the intensity
of the stress f eld. Size, shape, chemical and physical characteristic of those impurities
become of a great importance when long-term failure modes are considered. Because
inclusions are responsible for most of fatigue failures initiated in the media, considering
the metal purity in lifespan estimations becomes compulsory.

1.4.1 Aeronautical alloys

Engines construction typically requires the use of superalloys, Titanium superalloys e.g.
Ti-6Al-4V are basically used for cold-stages, whereas nickel-chromium based superalloys
e.g. Inconel 600 are used for hot-stages.

Ti-6Al-4V has a chemical composition of 6% aluminum, 4% vanadium, less than
0.25% iron, less than 0.20% oxygen, and the remainder titanium. This alloy is considered
to be the workhorse of the titanium alloys due to an excellent combination of density,
strength, corrosion resistance, weld and fabricability (4500 lg/m3, E=110 GPa, TS=1000
MPa). Generally, it is used in applications up to 400 ◦C, such has cold-stages of engines.
Titanium alloys, except the most carefully purif ed, has a signif cant amount of dissolved
oxygen, and so may be considered an oxide precipitate Ti-O. Ti-6Al-4V only contains
small amounts of oxide precipitates and iron inclusions so the toughness of this alloy is
not altered, but those inclusions can still act as a stress raiser and activate some long-term
term failure modes.

Inconel 600 has a chemical composition of more than 72% nickel, 14 to 17%
chromium, 6 to 10% iron, 1% Manganese, less than 0.5% copper, less than 0.5% silicon,
less than 0.15% carbon and no more than 0.015% sulfurs. Sulfur precipitates, copper, car-
bon and silicon may also act as a stress raiser. Other Inconel alloys have widely varying
compositions and may include molybdenum, niobium, cobalt, aluminum, titanium, etc.
Inconel alloys are oxidation and corrosion resistant and well suited for service in extreme
environments and stay attractive for high temperature applications such as turbine blades,
seals and combustors.

More classically, inclusions can be metallic (Tungsten, copper, etc), partially metallic
(Oxides and sulfurs) and non-metallic (Carbon, Silicon, etc). Various shapes are en-
countered, such as spherical and elliptical inclusions, but polyhedral inclusions are also
encountered when a crystal acts as an inclusion. It is of a great importance to consider
those inclusions and their elastic-plastic properties in some cases, when the maximum true
stress has to be found in order to prevent some phenomena initiated around inclusions.
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Inclusions and metal cleanliness

1.4.2 Inclusions as a stress raiser

True elastic limit is easily exceeded and micro-structural transformations can be observed
around inclusions at a very early stage. Dislocations start moving, and a whitening effect
is even observed in ball-bearing steels (martensite). The angle of the whitening effect
relative to the rolling direction is often equal to 45 ◦due to the maximum shear stress.

Figure 1.14:Whitening effect around an inclusion (left) and crack initiation (right)

Dislocations play a major role in the fatigue crack initiation phase. When enough dis-
locations are produced, a crack may initiate. If the repeated contact loading is suff cient,
crack may propagate through the media and f nally arise in the contact. Chipping of ball-
bearings and gears (cf. FIG.1.15) is typically initiated around inclusions just below the
surface and is a dangerous kind of damage where metal comes off in plates, but it is only
one example among many that are initiated in the media around inclusions.

Figure 1.15:Metal coming off in plates (left) and chipped surface (right)

Because defects such as pores, inclusions and induced cracks are important for the
structural integrity and durability of components, they have been intensively studied for
decades using both analytical and numerical methods. Analytical methods based on the
pioneering work of J.D. Eshelby [ESH 06] will be detailed and used later in this thesis.
However, those analytical methods are still limited to a simple stress-analysis, used as a
crack initiation indicator. Numerical methods, such as FEM and X-FEM, may also predict
the crack propagation around an inclusion. But they are most of the time 2-dimensional
and limited to small models with only few inclusions.
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1. Contacts in the Aeronautical Field

1.4.3 Numerical methods

In the f nite-element method, the presence of f aws or inhomogeneities such as cracks,
voids, and inclusions must be taken into account in the mesh generation process since
edges of the element must conform to these geometric entities. This implies:

• Mesh has to be ref ned around each inclusion, especially when considering non-
polyhedral inclusions, increasing the computing time. Moreover, meshing a distri-
bution of defects and inclusions is a time-consuming and burdensome task, while
semi-analytical methods do not require any mesh. (See Figure 1.16a)

• Mesh has to be re-generated each time the crack propagates. An automatic mesh
generation is possible around the crack tip after the crack propagation, by ref ning
locally the mesh and by increasing the number of elements. This also sensibly
increases the computing time.

An alternative solution is the extended f nite-element method or X-FEM. This aims
to alleviate much of the burden associated with mesh generation for problems with voids
and interfaces by not requiring the f nite-element mesh to conform to internal boundaries.
For instance, a crack may propagate through the media because of the stress concentration
factor of a void without having to re-mesh the model. (See Figure 1.16b) The essence of
the X-FEM lies in sub-dividing a model into two distinct parts: mesh generation for the
domain (excluding internal boundaries); and enriching the f nite-element approximation
by additional functions that model the internal boundaries.

Figure 1.16:Crack initiation and propagation using FE (left) and X-FE (right) methods

Those techniques are widely used in fatigue life predictions when considering the
metal purity. It allows a propagation of cracks through the media and the decohesion at the
inclusion/matrix interface, but they are still limited to small models and few inclusions and
are time-consuming. Semi-analytical methods are simpler and do not allow a propagation
of cracks at this time. However, larger models can be considered and inf uence of a cluster
of inclusions under contact conditions is not an issue.
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Coatings and other applications

1.5 Coatings and other applications

1.5.1 Coatings

Motivations In many engineering applications, protective coatings are increasingly
used to extend the fatigue life of mechanical components in contact [CHA 90] and to
provide low friction coeff cients and wear resistance of tribological surface properties
[KOM 88]. A great deal of research is to evaluate the performance of coatings and their
failure mechanisms, while optimizing coatings may result in lifespan extensions.

Principle Material used for the manufacture and processing of blades and disks is typi-
cally a titanium alloy, Ti-6Al-4V, which is light, strong but has poor tribologic properties.
Considering the surface-environment interactions to which some components of the air-
craft industry are exposed, wear will slowly modify geometries of parts 1.7, affecting the
aerodynamic eff ciency of engines and involving important servicing costs because of pre-
mature part changes. In consequence, the study of protection against wear and corrosion
induced by the use of coatings is an important research f eld in aeronautical engineering.

Figure 1.17:Multi-coatings at the blade-disk interface

In order to protect components from fretting, blade contact surfaces are usually cov-
ered by a thick and soft CuNiIn coating (100-150 µm), on top of which a solid lubricant is
deposited (See Figure 1.17). Because this system is subjected to high contact pressure (up
to 600MPa) and high temperatures (up to 500 ◦C). The CuNiIn coating is chosen for its
great capacity of accommodation by plastic deformation and acts as a sacrif cial barrier
to prevent titanium surfaces from coming into contact, while the solid lubricant promotes
sliding and decreases the friction coeff cient.

However, it had been observed that the solid lubricant has a limited life and this multi-
layer system rapidly led back to a Ti/CuNiIn contact. Titanium may f nally arise into
the contact for severe wear depth (See Figure 1.18). Since it is generally the uncoated
Ti part (corresponding to the compressor disk) that must be protected against wear, the
CuNiIn/MoS2 surface degradation process plays a key role in the preservation of the most
critical parts.
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1. Contacts in the Aeronautical Field

Figure 1.18:Chronology and wear of multi-coating systems

In consequence, the development of numerical tools able to analyse the frictional
elastic-plastic contacts and internal stresses in a multi-layered body is therefore of a great
practical importance since optimizing coatings may result in lifespan extensions.

Numerical methods The f nite
element method (FEM) has been ex-
tensively used by many researchers to
perform the numerical studies of elasto-
plastic problems layered materials. The
FEM is f exible enough to solve the
problems with complicated geometries
and material constitutive responses.
However, a large number of elements is
needed to mesh the entire layered body,
which may increase the computation
burden signif cantly.

Wear simulations are an iterative process requiring an update of the contact geometry
by moving each node. It becomes prohibitive and 2-dimensional simulations are often
considered, while 3-dimensional simulations would require supercomputer capabilities
for days.

A three-dimensional model of an elastic multilayered body, loaded both normally and
tangentially against an elliptical rigid body (partial sliding, rolling/sliding conditions) has
been presented by Plumet et Al. [PLU 98]. This kind of method can be used to guide
the choice of coatings and has become very classical [O’S 88, LER 89, LIU 02, LIU 05b,
LIU 07, POL 00b, POL 01]. Although, most of these theories take into account a uniform
layer over an elastic substrate, there is a lack of models for solving the elastic-plastic
contact problem of non-uniform coatings under normal and tangential loading conditions.
This thesis will focus on a theory enabling this kind of studies.
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Coatings and other applications

1.5.2 Fiber reinforcements

In choosing new materials for airframe applications, it is essential to ensure there are no
compromises in the levels of safety achievable with conventional alloys. This implies a
perfect modelling of physical and chemical mechanisms occurring at each level of the
composite structure.

Motivations Composites provide the opportunity of additional weight savings, complex
geometries (See Fig 1.19b) and many other advantages. But, despite the growth in the
use of composites, the reality is that airframes and engines will continue to be a mix of
materials. These will include composites of various types and a range of metal alloys, the
balance depending on structural and economic factors.

Figure 1.19:Composite materials are used in RTM fans of modern engines

Principle The approach is to use strong, stiff f bers to reinforce a relatively weaker, less
stiff matrix. Both the f ber and matrix can be a polymer, a metal, or a ceramic
Fibers can be made from carbon, silica-based glasses or organic materials such as aramid
(Kevlar) (See Fig 1.19a). Textile technology has been developed to produce special rein-
forcing fabrics from continous f bers using several techniques including weaving, three-
dimensional weaving, braiding and knitting.
The matrix forms the shape of the component and serves the following functions:

• transfer load into and out of the f bers: stresses at the f ber/matrix interface

• separate the f bers to prevent failure of adjacent f bers when one fails: crack propa-
gation in a composite material

• protect the f ber from the environment: chemical aspect

Economic production requires that the techniques used for matrix introduction allow sim-
ple low-cost formation of the composite without damaging or misaligning the f bers. The
simplest method is to inf ltrate an aligned f ber bed with a low-viscosity liquid that is then
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1. Contacts in the Aeronautical Field

converted by chemical reaction or by cooling to form a continuous solid matrix with the
desired properties (Resin-transfer molding or RTM).

PMCs Polymer matrix composites or PMCs are extensively used in arespace structures;
however, carbon/epoxy is by far the most exploited. Blades of modern engines are 3D-
woven RTM CRFP blades with titanium bird cutters on the leading edge.

MMCs Potential aircraft applications of the metal matrix composites or MMCs include
engine component, such as fan and compressor blades, shafts, and possibly discs, airframe
components. Titanium alloys are used to form high-performance metal-matrix compos-
ites, offering the possibility of higher temperature service capabilities (>700 ◦C). But
MMCs remain limited in temperature by f ber/matrix chemical and thermal incompatibil-
ities.

CMCs While modern turbofans are reaching the limits of metallic survival, ceramic-
matrix composites (CMCs) offer the main long-term promises for high-temperature
applications in turbines and for high-temperature airframe structures, although there are
formidable problems to be overcome. The main requirement is for lightweight blades
able to operate uncooled in environments around 1400◦C.
For the f rst time, GE has tested in 2010 a ceramic matrix composite (CMC) turbine blade
in a working engine (a modif ed General Electric F414 engine). CMC materials have
been used in various aerospace applications before, in static parts of the GE/Rolls-Royce
F136 engine for instance or the GE/Snecma Leap-x turbine nozzles, but the recent F414
tests represents the f rst application of CMC materials in rotating engine parts. On turbine
blades, CMCs are lighter than metallic turbine alloys and require a smaller cooling
system. A GE90-sized engine of the next-generation could be 6% lighter than the actual
GE90-115. It is now clear that the key potential benef t is weight saving and CMCs are
now eligible to be incorporated in next generation of commercial and military engines,
improving fuel eff ciency rates in future generation of engines.

Numerical methods This thesis is not
dealing with composite materials but
with heterogeneous materials. It can
be porous materials, materials contain-
ing multiple inclusions, multi-layered
half-spaces, plastic-damage materials or
it could also be reinforced materials.
J.Leroux, is now investigating this prob-
lem using the same numerical and ana-
lytical framework.

22 Semi-analytical modeling of complex mechanical contacts:
Application to inclusions and wear of coated surfaces

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0061/these.pdf 
© [B. Fulleringer], [2011], INSA de Lyon, tous droits réservés



Coatings and other applications

1.5.3 Damage in brittle materials

Damage causes a progressive degradation of material continuity, which distinguishes it
from other types of inelastic material behavior [LEM 90]. The loss of integrity can have
an adverse effect on mechanical properties, and can be attributed to microscopic cracks
and/or voids. Most materials contain initial voids and other non-homogeneities that are
naturally occurring and distinct from damage. However, when subjected to mechanical
loading, such as indentation, further damage accumulation may occur and a change in
modulus and strength would basically be observed (See Figure 1.5.3).

Figure 1.20:Modulus and strength variations observed for a damaged material

In section 4.2.7, the damage rate D will refer to a change in the initial Young’s
modulus Einit only, and the Young’s modulus E will be def ned by E = Einit .(1−D).

Bones (See section 4.2.7) and concretes (See section 4.2.6) are brittle, meaning
that damage may occur. Taking this damage into account in numerical simulations is
essential. In aeronautical materials, ceramics provide a high-modulus matrix but also
have a high brittleness, while the f bers provide little stiffening; their purpose is to
increase toughness. This is achieved mainly by blunting and def ecting cracks in the ma-
trix and contributing to increased fracture energy through the various energy-absorbing
mechanisms, such as crack propagation. Only the embedding of f bres proved capable
of increasing the resistance to cracks and ductility, breakage strength and thermal shock
resistance, sometimes drastically. Typical applications are brake disks and friction pads
for clutches in the automotive industry.
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1. Contacts in the Aeronautical Field

1.6 Methods used in contact mechanics

1.6.1 Analytical solutions

Hertzian contact Contact mechanics dates back to 1882 with the original work of Hein-
rich Hertz On the contact of elastic solids[HER 82] . Hertz solved the problem involving
contact between two elastic bodies with curved surfaces we call the hertzian contact.
Surfaces are supposed continuous and non-conforming. Hertzian theory considers the
following assumptions:

• contact zone is elliptical ;

• problem does not account for friction ;

• half-spaces are considered ;

The area of contact must be much smaller than the characteristic radius of the body so
that stresses are concentrated in the contact region and are not altered by boundary condi-
tions. Because half-spaces are considered, theory of elasticity in elastic half-spaces can be
used. Hertzian theory is quite restrictive because of those assumptions but is still relevant
and provides a description of the contact pressure, contact dimension, displacements and
stresses within the mating bodies.

Non-Hertzian contacts Additional complications arise when some or all these assump-
tions are violated and such contact problems are usually called non-hertzian. Those non-
hertzian contacts have been extensively studied and are presented in the Johnson book
[JOH 85]. Many solutions exist for conforming geometries, when contacts are not ellipti-
cal, even if solutions are still based on half-space theory. Some solutions exist for contact
against a sheet or a shell. Finally, many solutions are given when geometric discrepancies
are considered, such as sharp edges, etc. However, many of those solutions are only two-
dimensional. Most of three-dimensional solutions are limited to axisymetric geometries
or other particular geometries. When Hertzian theory assumptions are removed, solutions
often have to be found using cutting edge mathematics. It is the case when consider-
ing « singular integral equations » used by Muskhelishvili [MUS 53] , then by Mikhlin
[MIK 57], Galin [GAL 53] and Aleksandrov [ALE 86]. « Integral transforms » are also
used, such as the Fourier transform [SNE 51]. Westergaard [WES 39] used it in rough
contacts if roughness is a sine function. Greenwood & Willamson [GRE 66] proposed a
theory of elastic contact mechanics of rough surfaces which is today the foundation of
many theories in tribology (friction, adhesion, thermal and electrical conductance, wear,
etc.).

Non-elastic behavior or non-homogeneous bodiesAnalytical solutions for a uniform
coating do exist, if both the coating and the substrate are elastic [MEI 68]. Integral meth-
ods are also used [GLA 80]. However little work has been done concerning non-uniform
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Methods used in contact mechanics

coatings considering the complexity of such problem [MAN ]. Non-elastic behaviors,
such as plasticity, are also studied. However, most analytical studies are limited and con-
sider a perfectly plastic behavior. Indentation process is particularly studied and solutions
exist for a conical, spherical and pyramidal tip indenter [JOH 85]. But spatial displace-
ments in the media are assumed to be radial. It is clear that fully analytical methods are
limited when considering non-elastic behaviors and non-uniform coatings.

Frictional contacts Coulomb’s law of friction is used in most existing analytical so-
lutions. When contact is considered fully sliding, shears are directly obtained from the
hertzian pressure. Stresses for a cylindrical contact are given by McEwen [MCE 49]
while stresses for a spherical contact are given by Hamilton [HAM 63]. Those solutions
are extended to elliptical contacts by Sackf elds & Hills [SAC 83]. Cattaneo [CAT 38]
and Mindlin [MIN 49] were considering a sphere normally and tangentially loaded. Tan-
gential force is lower or equal to the limit f xed by the Coulomb’s law in fully-sliding
conditions. Because the Coulomb’s law must be observed at each point within the contact
area, sliding will appear at the edge of the contact creating a slip annulus. Mindlin &
Deresiewicz [MIN 53] also studied this spherical contact when tangential force is a linear
function of the normal force. The very popular Cattaneo-Mindlin Concept has been ex-
tented to any two dimensional geometry by Ciavarella [CIA 98a, CIA 98b], but analytical
solutions are still limited when dealing with any three-dimensional geometry and loading.

1.6.2 Numerical methods

Finite element method The f nite element method (FEM) is a numerical technique for
f nding approximate solutions of partial differential equations (PDE) as well as of integral
equations. It is largely used in mechanics for complicated domains changing over time,
and several modern FEM packages also include specif c components (dynamic, thermal,
electromagnetic, plasticity, viscosity, etc). But time consumption can be important, de-
pending on the level of accuracy required. When contacts and inclusions are considered,
using a f ner mesh at the interface is imposed by the gradients that are expecting, drasti-
cally increasing the computing time. For this reason, FEM is not a fast-computing method
we have chosen for solving complex contact problems.

Semi-analytical methods When analytical solutions are way too complicated, it
is possible to discretize the full-problem in a sum of elementary problems. Then,
the solution is the numerical summation of analytical solutions for each elementary
problem. Semi Analytical methods, or SA methods, have been intensively used in
contact mechanics but numerical techniques can be different from an author [KAL 90]
(Newton-Raphson algorithm) to an other [JAE 04] (Gauss-Seidel Algorithm). Today,
most authors use Fast Fourrier Transform (FFT) techniques [POL 00a, LIU 00] and a
Conjugate Gradient Method (CGM) algorithm [POL 99] to perform their computations.
Domains are large enough to consider the roughness of contacts [AI 99], elastic coatings
of uniform thickness are even possible [PLU 98]. Frictional [GAL 07a], thermal-elastic
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1. Contacts in the Aeronautical Field

[LIU 02, LIU 01], plastic [JAC 01, NEL 06, SAI 02, ANT 04, ANT 05] and thermal-
elastic-plastic analysis [BOU 05, BOU 04] have been investigated and proved the
eff ciency of SA methods.

1.7 Conclusion

Semi-analytical methods are still limited compared to f nite element methods, and further
developments are still needed. This PhD is based on C.Jacq, V.Boucly, E.Antaluca and
L.Gallego SA codes developped at the LaMCoS. E.Antaluca [ANT 04, ANT 05] consid-
ered a sliding contact but the contact problem was not solved, nor coupled. Analytical
solutions are then found so an elastic-plastic analysis of a frictional contact becomes pos-
sible. The contact becomes fully-sliding or partially sliding depending on the contact
problem and considering a full coupling between the normal, tangential and plastic ef-
fects. Fretting modes are then brief y investigated considering plasticity. This work is
also used in T.Chaise thesis while treating shot peening impacts.

Those models were still homogeneous, while the metal cleanliness, coatings and f ber
reinforcements are found in some FE analysis. Semi-analytical contact algorithm found
in the litterature may already consider multiple effects:

• spherical and elliptical inclusions, but the contact problem was not solved, nor cou-
pled to the non-homogeneous problem, and a hertzian pressure was applied over
the surface [Cou 03];

• coatings of uniform thickness, which is not suff cient with worn geometries
[PLU 98];

• f ber reinforcements are not treated at this time;

In f ne, developping a unique method accounting non-homogeneous has been prefered in
this work. The technique acts as an enrichement technique and is based on the pioneering
work of J.D.Eshelby [ESH 06]. Spherical and cuboidal enrichement "elements" are then
considered:

• Spherical inclusions are f rst used to perform some inclusion related simulations.
This technique remains valid, even when inclusions are relatively small compared
to the mesh size, so the inf uence of multiple spherical inclusions on contact con-
ditions can be accurately investigated. Obviously, stresses observed around small
inclusions are limited because only few nodes are describing local gradients. Con-
sidering the local stress of the steady state, when the coupling between contact and
non-homogeneities converged, full stress f elds can be obtained using a simple code
acting like a close-up (See Fig. 1.21 )
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Conclusion

Figure 1.21: Dimensionless Tresca’s stress around a spherical cavity (left) and a
particle of alumina (right) in an aluminium media in simple traction

• Cubical inclusions are then used, allowing a discretization of the domain in many
subdomains of various shapes. Spherical, elliptical, polyhedral or even cylindri-
cal subdomains are discretized in many cubes, giving a good approximation of the
original shape if the mesh size is small. However, this method is limited and clus-
ters of hundreds of spherical inclusions can not be investigated. This technique
will be compared to analytical solutions of spherical and elliptical inclusions and
then applied to coating problems. Numerical results found in the litterature will be
used, and various frictional problems and coating thicknesses are then investigated.
Finally, problem of coatings of non-uniform thickness will be treated.

Numerical methods have been updated (3D-FFT) and the convergence of the conju-
gate gradient method has been improved. In consequence, semi-analytical methods will
remain a fast-computing option for contact related three-dimensional analyses, even when
considering partially sliding contacts, worn coatings, clusters of inclusions and elastic-
plastic properties.
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Chapter 2

The elastic-plastic contact

The resolution of problems in contact mechanics consists in
finding the real contact area, the contact pressure, shears and
slips distribution. The origin of all the theory is the famous

paper of Heinrich Hertz, which gave the solution of the elastic
contact between two ellipsoidal bodies without friction. Even

today, this is the basics for industries in conception of dry,
non conforming and elastic contacts, as it exists in gears and
rolling bearings for instance. Since 1882, this topic has been
extensively developed, and one can observe two main types of

studies. Mathematically, some work has been done for
extending the Hertz analysis to other geometries, for studying
other material behaviors, and for developing existence and

solution unicity theorems. For engineers, some work has been
done for some specific cases, in order to better understand

phenomena that occur in real systems, using numerical
methods, and more recently, semi-analytical methods.

Contents
2.1 The elastic contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Contact kinematic . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.2 Loadings transmitted into the contact . . . . . . . . . . . . . . . . 33

Semi-analytical modeling of complex mechanical contacts:
Application to inclusions and wear of coated surfaces

29

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0061/these.pdf 
© [B. Fulleringer], [2011], INSA de Lyon, tous droits réservés



2.1.3 The half-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.4 Discretization of surface loadings . . . . . . . . . . . . . . . . . . 41

2.1.5 Normal problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.6 Tangential problem . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.1.7 Coupling between the normal and tangential problem . . . . . . . . 49

2.2 The elastic-plastic half-space . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 Elastic-plastic algorithm . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.2 Plasticity model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.3 Residual stress calculation . . . . . . . . . . . . . . . . . . . . . . 53

2.2.4 Maxwell-Betti’s reciprocal theorem . . . . . . . . . . . . . . . . . 56

2.2.5 Normal residual displacements [JAC 01] . . . . . . . . . . . . . . . 57

2.2.6 Tangential residual displacements [FUL 09] . . . . . . . . . . . . . 59

2.2.7 Validations using a Finite Element model . . . . . . . . . . . . . . 61

2.2.8 Comparison between the FEA and analytical results . . . . . . . . 62

2.2.9 Validation using a f nite element model without friction . . . . . . . 65

2.3 Numerical methods and improvements . . . . . . . . . . . . . . . . . . 66

2.3.1 Weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.3.2 Conjugate Gradient Method (CGM) . . . . . . . . . . . . . . . . . 67

2.3.3 Convergence of the tangential contact solver . . . . . . . . . . . . 68

2.3.4 Discrete Continuous Fast Fourrier Transforms (DC-FFT) . . . . . . 70

2.3.5 2D-FFT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.3.6 3D-FFT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.3.7 2.5D-FFT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.3.8 Instability on plastic strains . . . . . . . . . . . . . . . . . . . . . 77

2.3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.4 Fretting considering the elastic-plastic regime . . . . . . . . . . . . . . 80

2.4.1 Fretting modes and material properties . . . . . . . . . . . . . . . . 80

2.4.2 Fretting mode II: Indentation . . . . . . . . . . . . . . . . . . . . . 81

2.4.3 Fretting mode I: Sliding . . . . . . . . . . . . . . . . . . . . . . . 92

2.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

30 Semi-analytical modeling of complex mechanical contacts:
Application to inclusions and wear of coated surfaces

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0061/these.pdf 
© [B. Fulleringer], [2011], INSA de Lyon, tous droits réservés



The elastic contact

2.1 The elastic contact

Note This section is dedicated to the elastic contact solver. The problem is brief y ex-
posed, the contact solver is detailed and numerical methods used in the algorithm are
explained. The core of the elastic solver has been developed by L.Gallego and further
explanation can be found in [GAL 07a].

2.1.1 Contact kinematic

Let’s consider two elastic bodies 1 and 2 def ned by their undeformed surfaces in the
orthonormal basis Oxyz. The plane x−y is actually separating both surfaces. When both
surfaces considered are non-conforming, the plane x− y is tangent to the point/line of
contact. Surfaces are then def ned by:

z1 = f1(x,y),

z2 = f2(x,y).
(2.1)

At a point of coordinate (x,y), the separation is:

h(x,y) = f1(x,y)− f2(x,y). (2.2)

Surfaces f1 and f2 have small gradients so it can be approximate to the plane x− y.
Rigid body displacements are def ned by δz1 (respectively δz2) along the normal direction,
and by δx1 and δy1 (respectively δx2 and δy2) in slips’ directions. Angular rotations φx1
and φy1 (respectively φx2 and φy2) are rolling angles while φz1 (respectively φz2) is the
twisting angle. All movements of the body 1 (respectively the body 2) can be described
using such parameters. (See Figure 2.1) It must be noticed that all displacements and
angles are expressed at the point O, center of the contact. Rolling angles do not initiate
a rolling movement when angles are kept small, but this angle will create a misalignment
that signif cantly modif es the normal problem.

Finally, the distance between both surfaces g(x,y) (’g’ meaning ’gap’) is def ned by
the initial separation of both bodies, the rigid body displacement δz = δz1 + δz2, rolling
angles φx = φx1+φx2 and φy = φy1+φy2 and elastic def ections ūz = ūz1+ ūz2:

g(x,y) = h(x,y)+ ūz−δz−y·φx +x·φy. (2.3)

Using displacements, contact condition is expressed by:

g(x,y) = 0, into the contact, (2.4)
g(x,y) > 0, out of the contact. (2.5)

Slipping conditions have to be def ned. Slips in the interface will be noted s. s is a
vector of component sx and sy. This slip st is def ned between the current time increment
t and the previous time increment t ′. Finally, st is expressed as follows:

st =

(
∆ūt

x−∆δx
t +y·∆φt

z
∆ūt

y−∆δy1
t −x·∆φt

z1

)
. (2.6)
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2. The elastic-plastic contact

Figure 2.1: Rigid body displacements
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The elastic contact

2.1.2 Loadings transmitted into the contact

Loadings transmitted into the contact are def ned by the normal force P, the tangential
force Q of components Qx and Qy, and the moment M transmitted at the point O and
of components Mx, My and Mz. Mx and My are the bending moments while Mz is the
moment of torsion. Those forces are transmitted through the contact zone ΓC thanks to
stresses into the surface. Normal stresses or contact pressure will be noted p while shear
stresses or shears of components qx and qy will be noted qτ. Those stress f elds must
verify equilibrium equations expressed hereafter:

P =
∫

ΓC

p dS, (2.7)

Qx =
∫

ΓC

qx dS, (2.8)

Qy =
∫

ΓC

qy dS, (2.9)

Mx =
∫

ΓC

p ·y dS, (2.10)

My =−
∫

ΓC

p ·x dS, (2.11)

Mz =
∫

ΓC

(x·qy−y·qx) dS. (2.12)

Figure 2.2: Forces and moments transmitted into the contact
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2. The elastic-plastic contact

2.1.3 The half-space

The elastic contact can be described using semi-analytical methods using some analyt-
ical solutions. Those solutions are given in this section, and express the inf uence of a
pressure or a shear f eld on the surface def ections and volume stresses, considering an
homogeneous and isotropic elastic half-space def ned by z≤ 0. Elastic def ection far
away are nil because of the boundary conditions. Normal tractions p(x,y) and tangential
tractions qx(x,y) and qy(x,y) are applied to a closed surface S close to the origin. Neu-
mann’s problem consists in f nding the elastic def ections ux, uy and uz and stresses σ of
components σx, σy, σz, τxy, τyz and τzx. The theory of potentials has been used by Boussi-
nesq [BOU 85] and Cerruti [CER 82] in order to solve this problem when considering a
punctual force. This work has been extended by Love [LOV 52] to a rectangular surface
∆x× ∆y of center O and normally loaded using a constant pressure p, and by Vergne
[VER 85] to a constant shear qx or qy. All those solutions are expressed in [JOH 85],
more typically for def ections of a surface point M̄(x,y) and stresses of a point M(x,y,z)
of the volume when considering a load applied at the origin. The distance between O and
M will be noted ρ and expressed by ρ =

√
x2+y2+z2.

When volumic forces are neglected, Navier equations are expressed as follows:

∇2u = 0. (2.13)

Displacements can be expressed using bi-harmonic functions because they verify a
Laplace’s equation. Moreover, displacements must respect boundary conditions and load-
ings. Let’s consider the distance between the loaded point O(ξ,η) of the surface and
another point M(x,y,z) of the half-space

OM ≡ ρ =
{
(ξ−x)2+(η−y)2+z2

}1/2
. (2.14)

Three potential functions can be def ned, respecting Laplace’s equation

F1 =

∫ ∫

S
qx(ξ,η)Ω dξ dη,

G1 =
∫ ∫

S
qy(ξ,η)Ω dξ dη,

H1 =

∫ ∫

S
p(ξ,η)Ω dξ dη,

(2.15)

where
Ω = zln(ρ+z)−ρ. (2.16)

Derivate functions are also def ned

F =
∂F1
∂x

=

∫ ∫

S
qx(ξ,η) ln(ρ+z) dξ dη,

G =
∂G1
∂x

=
∫ ∫

S
qy(ξ,η) ln(ρ+z) dξ dη,

H =
∂H1
∂x

=

∫ ∫

S
p(ξ,η) ln(ρ+z) dξ dη.

(2.17)
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The elastic contact

Def ning functions ψ1 and ψ by:

ψ1 =
∂F1
∂x

+
∂G1
∂y

+
∂H1
∂z

(2.18)

ψ =
∂ψ1
∂z

=
∂F
∂x

+
∂G
∂y

+
∂H
∂z

. (2.19)

Love [LOV 52] proved that elastic def ections ux, uy and uz at the point M(x,y,z) can be
expressed as follows:

ux =
1

4πG

{
2

∂F
∂z

− ∂H
∂x

+2ν
∂ψ1
∂x

−z
∂ψ
∂x

}
, (2.20)

uy =
1

4πG

{
2

∂G
∂z

− ∂H
∂y

+2ν
∂ψ1
∂y

−z
∂ψ
∂y

}
, (2.21)

uz =
1

4πG

{
∂F
∂z

− (1−2ν)ψ−z
∂ψ
∂z

}
. (2.22)

Then, stresses can be obtained using the Hooke’s law,

σx =
2νG
1−2ν

(
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

)
+2G

∂ux

∂x
, (2.23)

σx =
2νG
1−2ν

(
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

)
+2G

∂uy

∂y
, (2.24)

σx =
2νG
1−2ν

(
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

)
+2G

∂uz

∂z
, (2.25)

τxy =G

(
∂ux

∂y
+

∂uy

∂x

)
, (2.26)

τyz =G

(
∂uy

∂z
+

∂uz

∂y

)
, (2.27)

τzx =G

(
∂uz

∂x
+

∂ux

∂z

)
. (2.28)

Finally, solutions (2.20) to (2.22) are used to determine elastic def ection for both
normal and tangential loadings. It must be noticed that double integrals found in (2.15)
and (2.17) is not easy to f nd. This is a problem encountered in later sections when looking
for analytical solutions for elastic-plastic and non-homogeneous problems. In following
equations, subscripts I and J may describe either x, y or z.
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2. The elastic-plastic contact

Figure 2.3: Elastic def ections induced by a normal loading

Contribution of pressure f eld p on half-space stresses is given by:

σIJ

p
= Cp

IJ(x,y,z,E,ν) = Sp
IJ(x+

∆x

2
,y+

∆y

2
,z,E,ν)+Sp

IJ(x−
∆x

2
,y− ∆y

2
,z,E,ν)

−Sp
IJ(x+

∆x

2
,y− ∆y

2
,z,E,ν)−Sp

IJ(x−
∆x

2
,y+

∆y

2
,z,E,ν), (2.29)

with

Sp
xx(x,y,z,E,ν)=

ν
π
arctan

(
z2 +y2−yρ

zx

)
+
1−2ν

π
arctan

(
ρ−y+z

x

)
+

z
2π

xy
(x2 +z2)ρ

, (2.30)

Sp
yy(x,y,z,E,ν)=

ν
π
arctan

(
z2+y2−yρ

zx

)
+
1−2ν

π
arctan

(
ρ−x+z

y

)
+

z
2π

xy
(y2+z2)ρ

, (2.31)

Sp
zz(x,y,z,E,ν) =

1
2π

arctan
(

z2+y2−yρ
zx

)
− z
2π

xy
ρ

(
1

x2 +z2
+

1
y2+z2

)
, (2.32)

Sp
xy(x,y,z,E,ν) = − z

2π
1
ρ
− 1−2ν

2π
ln(ρ+z) , (2.33)

Sp
yz(x,y,z,E,ν) =

z2

2π
x

(y2 +z2)ρ
, (2.34)
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The elastic contact

Sp
xz(x,y,z,E,ν) =

z2

2π
y

(x2 +z2)ρ
. (2.35)

In the same manner, elastic def ections of the surface can be def ned. ρ̄ =
√

x2+y2 and
the contribution of the pressure f eld p on the elastic def ection of the surface is given by:

ūJ

p
= Kp

J (x,y,E,ν) = U p
J (x+

∆x

2
,y+

∆y

2
,E,ν)+U p

J (x− ∆x

2
,y− ∆y

2
,E,ν)

−U p
J (x+

∆x

2
,y− ∆y

2
,E,ν)−U p

J (x− ∆x

2
,y+

∆y

2
,E,ν), (2.36)

with

U p
x (x,y,E,ν) = −(1+ ν)(1−2ν)

2πE

(
2xarctan

(
ρ̄−y

x

)
−yln ρ̄

)
, (2.37)

U p
y (x,y,E,ν) = −(1+ ν)(1−2ν)

2πE

(
2yarctan

(
ρ̄−x

y

)
−xln ρ̄

)
, (2.38)

U p
z (x,y,E,ν) = −(1−ν2)

πE
(yln (ρ̄−x)+xln(ρ̄−y)) . (2.39)
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2. The elastic-plastic contact

Figure 2.4: Elastic def ections induced by a tangential loading

Contribution of pressure f eld qx on half-space stresses is given by:

σIJ

qx
= Cqx

IJ (x,y,z,E,ν) = Sqx
IJ(x+

∆x

2
,y+

∆y

2
,z,E,ν)+Sqx

IJ(x−
∆x

2
,y− ∆y

2
,z,E,ν)

−Sqx
IJ(x+

∆x

2
,y− ∆y

2
,z,E,ν)−Sqx

IJ(x− ∆x

2
,y+

∆y

2
,z,E,ν), (2.40)

with

Sqx
xx(x,y,z,E,ν) = − z

2π
1
ρ

(
1+

−x2 +zy
(ρ+z)(ρ−y)

)
+

ν
π

y
ρ+z

− 1
π
ln(ρ−y) , (2.41)

Sqx
yy(x,y,z,E,ν) = − z

2π
y

ρ(ρ+z)
− ν

π

(
y

ρ+z
+ ln(ρ−y)

)
, (2.42)

Sqx
zz(x,y,z,E,ν) =

z2

2π
y

ρ(x2+z2)
, (2.43)

Sqx
xy(x,y,z,E,ν) = − z

2π
x

ρ(ρ+z)
− ν

π
x

ρ+z
− 1
2π

ln(ρ−x) , (2.44)

Sqx
yz(x,y,z,E,ν) = − z

2π
1
ρ
, (2.45)
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The elastic contact

Sqx
xz(x,y,z,E,ν) =

z
2π

xy
ρ(x2+z2)

+
1
2π

arctan
(

z2+y2−yρ
zx

)
. (2.46)

Contribution of pressure f eld qy on half-space stresses is given by:

σIJ

qy
= C

qy
IJ (x,y,z,E,ν) = S

qy
IJ(x+

∆x

2
,y+

∆y

2
,z,E,ν)+S

qy
IJ(x−

∆x

2
,y− ∆y

2
,z,E,ν)

−S
qy
IJ(x+

∆x

2
,y− ∆y

2
,z,E,ν)−S

qy
IJ(x− ∆x

2
,y+

∆y

2
,z,E,ν), (2.47)

with

S
qy
xx(x,y,z,E,ν) = − z

2π
x

ρ(ρ+z)
− ν

π

(
x

ρ+z
+ ln(ρ−x)

)
, (2.48)

S
qy
yy(x,y,z,E,ν) =

z
2π

1
ρ

(
1+

−y2+zx
(ρ+z)(ρ−x)

)
+

ν
π

x
ρ+z

− 1
π
ln(ρ−x) , (2.49)

S
qy
zz(x,y,z,E,ν) =

z2

2π
x

ρ(y2 +z2),
(2.50)

S
qy
xy(x,y,z,E,ν) = − z

2π
y

ρ(ρ+z)
− ν

π
y

ρ+z
− 1
2π

ln(ρ−y) , (2.51)

S
qy
yz(x,y,z,E,ν) =

z
2π

yx
ρ(y2 +z2)

+
1
2π

arctan
(

z2 +x2−xρ
zy

)
, (2.52)

S
qy
xz(x,y,z,E,ν) = − z

2π
1
ρ
. (2.53)

In the same manner, elastic def ections of the surface can be def ned. ρ̄ =
√

x2+y2 and
the contribution of the pressure f eld qx on the elastic def ection of the surface is given by:

ūJ

qx
= Kqx

J (x,y,E,ν) = Uqx
J (x+

∆x

2
,y+

∆y

2
,E,ν)+Uqx

J (x− ∆x

2
,y− ∆y

2
,E,ν)

−Uqx
J (x+

∆x

2
,y− ∆y

2
,E,ν)−Uqx

J (x− ∆x

2
,y+

∆y

2
,E,ν), (2.54)
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2. The elastic-plastic contact

with

Uqx
x (x,y,E,ν) = −1−ν2

πE
xln(ρ̄−y)− 1+ ν

πE
ln(ρ̄−x) , (2.55)

Uqx
y (x,y,E,ν) = −ν(1+ ν)

πE
ρ̄, (2.56)

Uqx
z (x,y,E,ν) =

(1+ ν)(1−2ν)

2πE

(
−2xarctan

(
ρ̄−y

x

)
+yln ρ̄

)
. (2.57)

the contribution of the pressure f eld qy on the elastic def ection of the surface is given by:

ūJ

qy
= K

qy
J (x,y,E,ν) = U

qy
J (x+

∆x

2
,y+

∆y

2
,E,ν)+U

qy
J (x− ∆x

2
,y− ∆y

2
,E,ν)

−U
qy
J (x+

∆x

2
,y− ∆y

2
,E,ν)−U

qy
J (x− ∆x

2
,y+

∆y

2
,E,ν), (2.58)

with

U
qy
x (x,y,E,ν) = −ν(1+ ν)

πE
ρ̄, (2.59)

U
qy
y (x,y,E,ν) = −1−ν2

πE
yln (ρ̄−x)− 1+ ν

πE
ln(ρ̄−y) , (2.60)

U
qy
z (x,y,E,ν) =

(1+ ν)(1−2ν)

2πE

(
−2yarctan

(
ρ̄−x

y

)
+xln ρ̄

)
. (2.61)

40 Semi-analytical modeling of complex mechanical contacts:
Application to inclusions and wear of coated surfaces

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0061/these.pdf 
© [B. Fulleringer], [2011], INSA de Lyon, tous droits réservés



The elastic contact

2.1.4 Discretization of surface loadings

Each half-space surfaces may now be descretized in Np rectangles uniformly loaded (See
Figure 2.5). Pressure f eld p and shear f elds qx and qy are constant over a rectangle and
are def ned by their coordinates xi and y j . There is Nx rectangles along the x-axis and Ny

rectangles along the y-axis. Distance between each points – centers of rectangles – along
the x-direction is ∆x and distance between each points along the y-direction is ∆y.

Figure 2.5: Normal load descretized in rectangles of uniform pressure

The volume is then discretized in many cubes – or parallelepipeds – and can be def ned
by xi , y j and zk. In the same manner, stresses are considered uniform in each element.
Because a 3D-FFT will be used later, the pace ∆z along the z-direction must be constant,
as well as ∆x in the x-direction and ∆y in the y-direction.
Stresses can be found while superimposing contributions of each element of the surface.
Coeff cient of inf uence used have been expressed in equations (2.29), (2.40) and (2.47)).
Stresses in M(xi ,y j ,zk) are:

σIJ(xi ,y j ,zk) = ∑
l=1,Nx

∑
m=1,Ny

p(xl ,ym)(Cp
IJ(xl −xi ,ym−y j ,zk,E1,ν1))

+ ∑
l=1,Nx

∑
m=1,Ny

qx(xl ,ym)(Cqx
IJ (xl −xi ,ym−y j ,zk,E1,ν1))

+ ∑
l=1,Nx

∑
m=1,Ny

qy(xl ,ym)(C
qy
IJ (xl −xi ,ym−y j ,zk,E1,ν1)).

(2.62)

In the same manner, elastic def ections are found while superimposing contributions
of each element of the surface, using coeff cient of incluence expressed in (2.36), (2.54)
and (2.58). However, elastic def ections found in the contact depend on elastic def ections
of both elastic half-spaces. It must be noticed that p = p1 = p2, qx = qx1 = −qx2 and
qy = qy1 = −qy2. Finally normal displacements are
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2. The elastic-plastic contact

ūz(xi ,y j) = ∑
l=1,Nx

∑
m=1,Ny

p(xk,yl )(K
p
z (xl −xi ,ym−y j ,E1,ν1)+Kp

z (xl −xi ,ym−y j ,E2,ν2))

+ ∑
l=1,Nx

∑
m=1,Ny

qx(xk,yl )(K
qx
z (xl −xi ,ym−y j ,E1,ν1)−Kqx

z (xl −xi ,ym−y j ,E2,ν2))

+ ∑
l=1,Nx

∑
m=1,Ny

qy(xk,yl )(K
qy
z (xl −xi ,ym−y j ,E1,ν1)−K

qy
z (xl −xi ,ym−y j ,E2,ν2)),

(2.63)

and tangential displacement are (J = x or y)

ūJ(xi ,y j) = ∑
l=1,Nx

∑
m=1,Ny

p(xk,yl )(K
p
J (xl −xi ,ym−y j ,E1,ν1)−Kp

J (xl −xi ,ym−y j ,E2,ν2))

+ ∑
l=1,Nx

∑
m=1,Ny

qx(xk,yl )(K
qx
J (xl −xi ,ym−y j ,E1,ν1)+Kqx

J (xl −xi ,ym−y j ,E2,ν2))

+ ∑
l=1,Nx

∑
m=1,Ny

qy(xk,yl)(K
qy
J (xl −xi ,ym−y j ,E1,ν1)+K

qy
J (xl −xi ,ym−y j ,E2,ν2)).

(2.64)

More typically, subscripts are used to indicate locations of the source and the image.
Coeff cients of inf uence are still tensorsC and K,

σIJ i jk = ∑
Nx

∑
Ny

plmCp
IJ i jklm +∑

Nx

∑
Ny

qx lmCqx
IJ i jklm +∑

Nx

∑
Ny

qy lmC
qy

IJ i jklm, (2.65)

¯uJ i j = ūp
J i j + ūqx

J i j + ū
qy
J i j

= ∑
Nx

∑
Ny

plmKp
J i jlm +∑

Nx

∑
Ny

qx lmKqx
J i jlm +∑

Nx

∑
Ny

qy lmK
qy

J i jlm. (2.66)

Elastic def ections induced by a pressure f eld p and a shear f eld qx and qy are suff -
cient to solve the normal and tangential problem when bodies are elastic. Stresses below
the contact are useful when non-homogeneous – inclusions and/or coatings – and/or plas-
tic bodies are considered.
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The elastic contact

2.1.5 Normal problem

The normal problem consists in f nding the unique solution of simultaneous equations and
inequations def ning the contact conditions. In this problem, the normal load P is known,
the domain considered must be larger than the true contact area – unknown at this time
– and f nally, the tangential loading is not considered yet. Typically, the normal problem
must determine f ve variables:

• contact pressure pi j ;

• elastic def ections ūp
z i j ;

• contact area Γc ;

• rigid body displacement δz ;

• gap between both bodies gi j .

Figure 2.6: The elastic normal problem
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2. The elastic-plastic contact

The normal problem is presented in Figure FIG.2.6. The unique solution must verify
the following equations and inequations:

• bodies do not interpenetrate

gi j = 0 (i, j) ∈ Γc, (2.67a)

gi j > 0 (i, j) /∈ Γc, (2.67b)

where gi j is the gap between both bodies

gi j = ūp
z i j +hi j −δz ; (2.68)

• pressure are higher or equal to zero

pi j > 0 (i, j) ∈ Γc, (2.69a)

pi j = 0 (i, j) /∈ Γc ; (2.69b)

• this problem will be based on the normal loading conservation

∑
(i, j)∈Γp

pi j S= P. (2.70)

The problem is solved on a gridNp = Nx×Ny. IfNc points are into the contact area Γc,
then the pressure must be equal to zero for Np−Nc elements. This problem has 3Np +1
equations as seen in TAB.2.1 and can be solved.

Variables Ninc Equations Neq

pi j Np (2.69b) Np−Nc

(2.67a) Nc

gi j Np (2.68) Np

up
i j Np (2.66) Np

δz 1 (2.1.5) 1
Variables 3Np+1 Equations 3Np+1

Table 2.1:Variables of the normal problem

However, the contact area Γc is not known initially, and must be determined. It must
be noticed that normal load P can be replaced by a rigid body displacement δz, the normal
load is then unknown, but the contact problem remain complete because one variable
has been replaced by another one. Rigid body displacement can be imposed in the shot
peening algorithm developed by T.Chaise, or during tribological experiments.
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The elastic contact

When bending moments Mx and My are taken into account – the center of pressure is
no longer in O(0,0) – two additional variables must be considered.

Mx = ∑
Nx

∑
Ny

pi j y jS, (2.71a)

My = −∑
Nx

∑
Ny

pi j xiS. (2.71b)

Two angles φx = φx1 +φx2 and φy = φy1 +φy2 are then introduced and correspond to the
misalignments. The equation 2.68 becomes

gi j = ūp
z i j +hi j −φxy+φyx−δz = 0(i, j) ∈ Γc, (2.72a)

gi j = ūp
z i j +hi j −φxy+φyx−δz > 0(i, j) /∈ Γc. (2.72b)

When the tangential problem is no longer neglected, the tangential problem may have
an inf uence on the normal problem – i.e. two materials of different material properties
pressed together – and equation 2.68 becomes

gi j = ūp
z i j +hi j −φxy+φyx−δz+ ūqx

z i j + ū
qy
z i j (2.73)

Figure 2.7: Residual displacements used in the normal problem
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2. The elastic-plastic contact

When plastic behaviors are considered, normal residual displacements of a surface
point due to cuboïds of uniform plastic strain should be carefully considered. The normal
displacements were given in an integral form by Chiu [CHI 78], analytically integrated in
[JAC 02]. They were also given in term of Galerkin vectors in [LIU 05a]. The knowledge
of residual normal displacements is suff cient for frictionless contact problems, as seen in
Figure 2.7. Finally, equation 2.68 becomes

gi j = ūp
z i j +hi j −φxy+φyx−δz+ ūqx

z i j + ū
qy
z i j + ūr

z i j (2.74)

More globally, misf t displacements ūm
z i j will be considered in non-homogeneous

cases and can be compared to the residual displacement ūr
z i j. ūr

z i j and ūm
z i j will be ex-

pressed later.

2.1.6 Tangential problem

Figure 2.8: The elastic tangential problem

When tangential displacements ūτ are not equal to zero – one or both components
ūx and ūy are not equal to zero – the tangential problem must be solved. Tangential
displacements are not equal to zero under tangential loadings, for instance. When bodies
have dissimilar properties – dissimilar elastic, elastic-plastic and/or non-homogeneous
properties – the inf uence coeff cients Kp

x and Kp
y are not equal to zero, and a normal

loading will induce some tangential displacements. The normal and tangential problem
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The elastic contact

are then coupled (2.1.7).

The tangential problem is very similar to the normal problem, and consists in f nd-
ing the unique solution of simultaneous equations and inequations def ning the stick-slip
conditions. The tangential load Qx and Qy is known and the domain Γc considered is
known thanks to the normal problem algorithm.

Variables of the tangential problem are then:

• shear f elds qx i j and qy i j ;

• relative elastic displacements ūqx
x i j et ū

qy
y i j ;

• the slipping area Γsl ;

• the sticking area Γst so that Γc ≡ Γsl ∪Γst;

• tangential rigid body displacements δx and δy ;

• slipping amplitudes and directions s (components sx and sy)

The tangential problem is presented in FIG.2.8. Slips are still def ned between time
step t and t’ according to the equation (2.6). The unique solution must verify the following
equations and inequations:

• slips in the slipping and sticking area,

ūτ t
τ i j + ūp t

τ i j − ūτ t ′
τ i j − ūp t′

τ i j −∆δτ
t = sij

t = 0 (i, j) ∈ Γst, (2.75a)

ūt
τ i j − ūt ′

τ i j −∆δτ
t = sij

t 6= 0 (i, j) ∈ Γsl ; (2.75b)

• The Coulomb’s law of friction is respected,
∥∥qij

t
∥∥< µpt

i j (i, j) ∈ Γst, (2.76a)

qij = −µpt
i j

sij
t

∥∥∥st
ij

∥∥∥
(i, j) ∈ Γsl ; (2.76b)

• this problem will be based on the tangential loading conservation

∑
(i, j)∈Γp

qt
ij S= Qt. (2.77)
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2. The elastic-plastic contact

Variables Ninc Equations Neq

qt
i j 2Nc (2.76b) 2Nsl

(3.27a) 2Nst

ūt
τ i j 2Nc (2.66) 2Nc

st
i j 2Nsl (3.27b) 2Nsl

δt
τ 2 (2.1.6) 2

Variables 4Nc+2Nsl+2 Equations 4Nc+2Nsl+2

Table 2.2:Variables of the tangential problem

The problem is solved over the Nc points of the contact area, but the number of points
in the slipping area Nsl and the number of points in the sticking area Nst remains unknown
at this time. However, this problem has 4Nc + 2Nsl + 2 variables and can be solved as
shown in TAB.2.2.

When twisting moment Mz is taken into account an additional variable must be con-
sidered (2.12)

Mz = ∑
Nx

∑
Ny

(
qy i jxi −qx i jy j

)
S. (2.78)

.
The angle φz is then introduced and corresponds to twisting angle, which is typically
creating circumferential slips. The equation (3.27a) and (3.27b) become:

ūτ t
τ i j + ūp t

τ i j −∆δt
τ −
(
−y·∆φt

z
+x·∆φt

z

)
= ∆st

i j = 0 (i, j) ∈ Γst, (2.79a)

ūτ t
τ i j + ūp t

τ i j −∆δt
τ −
(
−y·∆φt

z
+x·∆φt

z

)
= ∆st

i j 6= 0 (i, j) ∈ Γsl. (2.79b)

When plast behaviors are considered, tangential residual displacements of a surface
point due to cuboïds of uniform plastic strain should be carefully considered. The tangen-
tial displacements were given in an integral form by Chiu [CHI 78] but analytical forms
are not available. A part of this work was about expressing those tangential residual dis-
placement analytically. The knowledge of residual normal displacements is suff cient as
seen in Figure 2.9. Finally equations 3.27a and 3.27b become

∆ūτ t
τ i j +∆ūp t +∆ūr t −∆δt

τ −
(
−y·∆φt

z
+x·∆φt

z

)
= ∆st

i j = 0 (i, j) ∈ Γst, (2.80a)

∆ūt
τ i j +∆ūp t +∆ūr t −∆δt

τ −
(
−y·∆φt

z
+x·∆φt

z

)
= ∆st

i j 6= 0 (i, j) ∈ Γsl. (2.80b)

More globally, misf t displacements ∆ūm t will be considered in non-homogeneous
cases and can be compared to the residual displacement ∆ūr t . ∆ūr t and ∆ūm t will be
expressed later.
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The elastic contact

Figure 2.9: Residual displacements used in the tangential problem

2.1.7 Coupling between the normal and tangential problem

Note It is noteworthy that contact pressure is assumed to be parallel everywhere, thus
the present model may have diff culty simulating the contact of bodies with large slopes,
such as sharp conical tips. The contact problems studied in this work will comply above
assumptions since they are spherical contacts. But many geometries (pin, ellipsoidal,...)
can be used by the present model without any diff culty.

An iterative approach is used to solve the contact problem, normal and tangential
problems are solved one after the other. (i) The normal problem is solved assuming no
shear tractions, the contact area Γc and the pressure f eld pi j are found. (ii) The tangential
problem is solved considering the pressure f eld pi j . Shears qij , slips sij and sticking area
Γst are found. (iii) If shears are not equal to zero, the normal problem must be solved
considering the pressure f eld qij . This loop must be repeated until the contact problem
converged, this process was f rst used by Panagiotopoulos in [PAN 75].

This process is required since coeff cients of inf uence expressed in section 2.1.3 prove
that normal and tangential problems are cross linked. To recap:

¯uJ i j = ūp
J i j + ūqx

J i j + ū
qy
J i j

= ∑
Nx

∑
Ny

plmKp
J i jlm +∑

Nx

∑
Ny

qx lmKqx
J i jlm +∑

Nx

∑
Ny

qy lmK
qy
J i jlm. (2.81)

The problem is ’fully coupled’ (coupling level: 2) and solutions found are physically
consistent. For instance, the second mode of fretting (spherical indentation) typically
requires a fully coupled analysis since normal tractions induce radial shears. Analytical
solutions are found in [SPE 75] but must be discussed in 2.4.2.
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2. The elastic-plastic contact

¯ux i j = ūp
x i j + ūqx

x i j + ū
qy
x i j

¯uy i j = ūp
y i j + ūqx

y i j + ū
qy
y i j

¯uz i j = ūp
z i j + ūqx

z i j + ū
qy
z i j

(2.82)

Initial code experienced many convergence issues which have been discussed in
Section 2.3.3. In order to reduce both the computing time and the convergence issues
when a fully coupled analysis is not required, L.Gallego def ned a ’partially coupled’ or
’uncoupled’ problem.

The problem is ’partially coupled’ (coupling level: 1) when normal and tangential prob-
lems are no longer coupled, but solutions in one tangential direction still depend on the
other. For instance, the third mode of fretting (sphere twisted over a f at) may be sim-
plif ed using a partially coupled analysis. Normal tractions will have no inf uence on
tangential shears, which are then circumferential. This assumption is very common and
analytical results are expressed in [JOH 85] and [DIN 05]. The Panagiotopoulos process
is not used, reducing the computing time.

¯ux i j = ūqx
x i j + ū

qy
x i j

¯uy i j = ūqx
y i j + ū

qy
y i j

¯uz i j = ūp
z i j

(2.83)

The problem is ’uncoupled’ (coupling level: 0) when all problems are uncoupled. So-
lutions in each direction (x,y or z) do not depend on the solution in another direc-
tion. For instance, the f rst mode of fretting (sphere moved in the x-direction) may be
simplif ed considering that shears along the x-direction only depend on the tangential
force/displacement along the x-direction. This assumption is very common and found
in the Cattaneo-Mindlin [CAT 38] [MIN 49] Concept [JOH 85]. The Panagiotopoulos
process is not used and the slipping direction is known initially, greatly reducing the com-
puting time.

¯ux i j = ūqx
x i j

¯uy i j = ū
qy
y i j

¯uz i j = ūp
z i j

(2.84)

An eff cient technique has been introduced in the contact algorithm in Section 2.3.3
so the numerical burden has been reduced for ’fully coupled’ approaches. But many
analytical solutions neglect the normal/tangential coupling, and lower coupling levels are
still required to validate this code.
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The elastic-plastic half-space

2.2 The elastic-plastic half-space

For soft metallic materials, metals at high temperature, rough surfaces or dry contacts
with high friction coeff cient the yield stress within the material could be easily exceeded
even at low normal load. The plastic behavior has to be considered in further analysis.
The elastic-plastic algorithm is f rst presented, the plasticity model is described and el-
ementary solutions are then detailed. The effect of a cuboïd of uniform plastic strain in
a half-space on residual stresses, normal and tangential displacements are exposed and
validations are made using a Finite Element (FE) model. Solutions for tangential dis-
placements were not available until now. It is found that the inf uence coeff cients for
tangential displacements are of the same order of magnitude as the ones describing the
normal displacement. This result is of great importance for frictional contact problems
when coupling the normal and tangential problem in the elastic-plastic regime, such as
stick-slip problems, and also for metals and alloys with low or moderate yield stress.

2.2.1 Elastic-plastic algorithm

The algorithm developed to solve the incremental elastic-plastic contact with friction
problem is presented in Figure 2.11. This algorithm is similar to the one proposed by
Jacq et al. [JAC 02]. But the normal contact is now coupled to the tangential contact and
solved using the CG [POL 99] and DC-FFT [LIU 00] methods as proposed by L.Gallego
et al. [GAL 06].

• The ’initial state’ def ned by L.Gallego may now include residual displacements,
so the geometry used to solve the contact problem is modif ed to account for the
permanent deformation of the surface due to plastic strains, as described in Figure
2.7 and 2.9.

• The stress f eld is computed considering the contribution of the residual strains, the
contact pressure and shears distributions.

• The plasticity model is then used to calculate the plastic strain increment using a
return mapping algorithm [FOT 96], enabling the calculation of the residual stresses
using a new 3D-FFT method.

• The residual displacements are then calculated in all directions [JAC 02] [FUL 10]
using a 2D-FFT algorithm.

• The residual displacements are then compared to the ones found during the previous
step. Until the residual displacements increments converge, the initial state will be
updated using residual stresses, tangential and normal residual displacements.

• If residual displacements converged, plastic strains, normal and tangential resid-
ual displacements, pressure, shears and slips and hardening parameters are then
increased by their increment to def ne a new initial condition for the next loading
step.
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2. The elastic-plastic contact

Note It is of a great importance to remind that current shears, slips and plastic
strains will be expressly used in the following loading steps, making the code fully
coupled and also sensitive to the loading path and contact history, making this work
different from others.

Figure 2.10:Flow chart of the actual fully coupled elastic-plastic contact code

2.2.2 Plasticity model

Plasticity is an irreversible phenomenon that requires an incremental description. In a
general incremental formulation of plasticity, a plastic strain increment depends upon the
stress, the stress increment and upon the hardening parameters:

δεp = f (σ,δσ,HardeningParameters) (2.85)

Tresca and VonMises criteria are very close to each other and both give a correct represen-
tation of the yield surface. For numerical reasons, a simple model of isotropic hardening
based on a Von Mises criterion is used. The model chosen is that of Prandtl-Reuss. The
hardening law can be described by a Swift’s law, a bilinear law or interpolated.
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The elastic-plastic half-space

2.2.3 Residual stress calculation

Plastic strains are related to stresses. Therefore, the stress f eld must be evaluated from
elastic-plastic contact conditions. Considering the reciprocal theorem applied to a half-
space, the stress at every point can be divided in four parts:

σ = σp+σqx+σqy+σr (2.86)

The f rst three terms are related to the contact pressure and shear. The third one was
currently neglected [ANT 04] because the tangential problem was not solved and only
fully-sliding contacts in one direction were considered. But in this study σqy is also taken
into account in order to deal with fully-coupled problems. The inf uence coeff cients that
give the stresses induced by a rectangular cell on the boundary surface of a half-space
submitted to a uniform pressure or shear can be found for example in [VER 85].

σp
i j (A) = ∑Cp

i j (A,C).p(C) (2.87)

στ
i j (A) = ∑Cτ

i j (A,C).p(C) (2.88)

The fourth term is related to plastic strains, and can be calculated following the method
proposed by Chiu [CHI 77] [CHI 78], considering a cuboidal zone with uniform initial
strains or eigenstrains and surrounded by an inf nite elastic half-space [CHI 78].

Figure 2.11:A problem considering a cuboidal zone in which plastic strains are uniform
in a half-space can be decomposed in three elementary problems

The solution is calculated from the superimposition of three solutions which leads to:

σr
i j (M) = ∑Ai jkl (M,C).εp

kl(C) (2.89)

An inf nite space is considered. Consider a point M(
−→
ξm
1 ,
−→
ξm
2 ,
−→
ξm
3 ) and a mark

(C,ξm
1 ,ξ

m
2 ,ξ

m
3 ), bound to the center of the cuboid of size 2∆x1.2∆x2.2∆x3. The coordinates

of the vectors linking the corners of the element to this point are noted
−→
Cm = (ξm

1 ,ξm
2 ,ξm

3 )

−→
C1 = (ξm

1 −∆x1,ξm
2 −∆x2,ξm

3 −∆x3) (2.90a)
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2. The elastic-plastic contact

−→
C2 = (ξm

1 +∆x1,ξm
2 −∆x2,ξm

3 −∆x3) (2.90b)
−→
C3 = (ξm

1 +∆x1,ξm
2 +∆x2,ξm

3 −∆x3) (2.90c)
−→
C4 = (ξm

1 −∆x1,ξm
2 +∆x2,ξm

3 −∆x3) (2.90d)
−→
C5 = (ξm

1 −∆x1,ξm
2 +∆x2,ξm

3 +∆x3) (2.90e)
−→
C6 = (ξm

1 −∆x1,ξm
2 −∆x2,ξm

3 +∆x3) (2.90f)
−→
C7 = (ξm

1 +∆x1,ξm
2 −∆x2,ξm

3 +∆x3) (2.90g)
−→
C8 = (ξm

1 +∆x1,ξm
2 +∆x2,ξm

3 +∆x3) (2.90h)

Elastic strains at point M generated by a cuboid of constant and unity plastic strain εp
11 are

given by:

ε1111 =
1
8π3

8

∑
m=1

[
Dm

,1111+
2−ν
1−ν

.(Dm
,1122+Dm

,1133)

]
−H(M) (2.91a)

ε2211 = − 1
8π3

8

∑
m=1

[
−Dm

,1122 +
ν

1−ν
.(Dm

,2222+Dm
,2233)

]
(2.91b)

ε3311 = − 1
8π3

8

∑
m=1

[
−Dm

,1133 +
ν

1−ν
.(Dm

,2233+Dm
,3333)

]
(2.91c)

ε1211 =
1
8π3

8

∑
m=1

[
ν

1−ν
Dm

,1112+
1+ν
1−ν

.(Dm
,2221+Dm

,3312)

]
(2.91d)

ε1311 =
1
8π3

8

∑
m=1

[
ν

1−ν
Dm

,1113+
1+ν
1−ν

.(Dm
,3331+Dm

,2213)

]
(2.91e)

ε2311 =
1
8π3

8

∑
m=1

[
ν

1−ν
(Dm

,2223+Dm
,3332)

]
(2.91f)

In the presence of unity shear strain (εp
12 + εp

21) = 2, elastic deformations at point M are
given by:

ε1112 =
1
8π3

.
8

∑
m=1

[ −2ν
1−ν

Dm
,1112+2(Dm

,2221+Dm
,3312)

]
(2.92a)

ε2212 =
1
8π3

.
8

∑
m=1

[ −2ν
1−ν

Dm
,1222+2(Dm

,1112+Dm
,3312)

]
(2.92b)

ε3312 =
1
8π3

.
8

∑
m=1

[ −2ν
1−ν

Dm
,3312

]
(2.92c)
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The elastic-plastic half-space

ε1212 =
1
8π3

.
8

∑
m=1

[ −2ν
1−ν

Dm
,1122+Dm

,1111+Dm
,2222+Dm

,1133 +Dm
,2233

]
−H(M) (2.92d)

ε1312 =
1
8π3

.
8

∑
m=1

[
−1+ν
1−ν

Dm
,1123+Dm

,2223+Dm
,3332

]
(2.92e)

ε2312 =
1
8π3

.
8

∑
m=1

[
−1+ν
1−ν

Dm
,2213+Dm

,1113+Dm
,3331

]
(2.92f)

with H(M)=1 if M is inside the cuboid and H(M)=0 otherwise.

The functions D are def ned by:

Dm
,1111 = 2π2

[
arctan

[
(γm
2 )(γm

3 )

(γm
1 )R

]
− (γm

1 )(γm
2 )(γm

3 )

2R

(
1

(γm
1 )2+(γm

2 )2
+

1
(γm
1 )2+(γm

3 )2

)]

(2.93a)

Dm
,1112 = −π2

[
sign(γm

3 ).ln

(
R+ |γm

3 |√
(γm
1 )2+(γm

2 )2

)
− (γm

1 )2γm
3

((γm
1 )2+(γm

2 )2)R

]
(2.93b)

Dm
,1122 =

π2(γm
1 )(γm

2 )(γm
3 )

R((γm
1 )2+(γm

2 )2)
(2.93c)

Dm
,1123 = −π2γm

1
R

(2.93d)

with R=
√

(γm
1 )2+(γm

2 )2+(γm
3 )2

The rest of derivatives are obtained by circular permutation of the subscripts. From
Hooke’s law, it is then possible to f nd out stresses and to determine the components
of the tensor A for every point M. Solutions expressed hereinbefore are related to
an inf nite space. However, numerical techniques used in this work – such as the
3D-FFT (See Section 2.3.6) – will superimpose the three solutions in order to emulate
a half-space. This technique will be detailed later and is used when considering plastic
cuboids, spherical and cubical non-homogeneities, using various coeff cients of inf uence.

Note Solutions expressed directly in a half-space are much more complicated and can
be found in [JAC 02]. The 2D-FFT algorithm required when using those solutions was
numerically demanding and is no longer used (See Section 2.3.5), except in Section 2.3.7
were advantages are discussed, and in some frictional applications of elastic-plastic con-
tacts (See Section 2.4).
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2. The elastic-plastic contact

2.2.4 Maxwell-Betti’s reciprocal theorem

Let’s consider two independent loads applied to an elastic body of volume Ω and of
boundary Γ. The f rst state (u, ε, σ, fi) exists with initial strains ε∞. The second state
is undef ned for the moment and will be noted (u*, ε∗, σ∗, f ∗i ). The reciprocal theorem,
also know as Maxwell-Betty’s theorem, expresses an equilibrium of works between both
states. It has been shown that the theorem with initial strains can be written as [Jac 02]:

−
∫

Γ
u∗i .σi j .n j .dΓ+

∫

Ω
fi .u

∗
i .dΩ = −

∫

Γ
ui.σ∗

i j .n j .dΓ+
∫

Ω
f ∗i .ui .dΩ−

∫

Γ
ε0i j .σ

∗
i j .dΓ
(2.94)

The reciprocal theorem is now applied to both bodies in contact, where each of them is
considered as a half-space Ω whose boundary Γ is loaded on a part Γc(A), and initial
strains occupy a volume Ωp(C). Body forces are neglected in both states ( f ∗=0 and f=0),
and it will be considered that Tr(εp) = 0 which is a classical assumption in plasticity.
Since σi j .n j = −pi , then (2.94) becomes:

∫

Γc
u∗i .pi .dΓ =

∫

Γ
ui .p

∗
i .dΓ−2.µ.

∫

Ωp
εp

i j .ε
∗
i j dΩ (2.95)

Plastic strains ε∞ and pressure distribution p of the real state are known. So, the unknown
displacement U can be expressed by:

Ui(A) =

∫

Γc
u∗i (M, p∗(A)).pi(M)dΓ+2.µ.

∫

Ωp
εp

i j (M).ε∗i j (M, p∗i (A))dΩ (2.96)

with M a point of the surface or volume integration. The f rst part of (2.96) is known as
Love and Cerruti’s term.

The surface displacement of each body can then be expressed as a function of con-
tact loads and of plastic strains existing in the considered body. The authors will now
consider only one body in contact with an elastic-plastic behavior, the other one being
purely elastic. The formulation could be extended to the case of two elastic-plastic bodies
without major diff culties. It is then necessary to express the virtual strains as a function
of the virtual contact loads. Note that in what follow both (x1,x2,x3) and (x,y,z) will be
used indifferently as coordinate system. The method and the analytical functions F3i j that
describe the normal displacement of a surface point due to a cuboïd of uniform plastic
strain are recalled to gather all important analytical solutions. The next section focuses on
the tangential displacement of a surface point due to a cuboïd of uniform plastic strain.
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The elastic-plastic half-space

2.2.5 Normal residual displacements [JAC 01]

Let’s consider a virtual state corresponding to the application of a unit force along the
x-axis applied on the elementary surface area centered at point A.

Figure 2.12:Cuboïd of uniform plastic strain

The displacements generated are expressed by Boussinesq, see Johnson [JOH 85].

U∗
x =

P
4.π.G

.

[
x.z
R3 − (1−2.ν).

x
R.(R+z)

]
(2.97)

U∗
y =

P
4.π.G

.

[
y.z
R3 − (1−2.ν).

y
R.(R+z)

]
(2.98)

U∗
z =

P
4.π.G

.

[
z2

R3 +
2.(1−ν)

R

]
(2.99)

The reciprocal theorem is used to express the surface displacements as a function of con-
tact forces and plastic strains within the body under the assumption that the plastic volume
is incompressible, i.e. Tr(εp) = 0:

U r
3(A) = 2.µ.

N

∑
n=1

εp
i j (Cn).

∫

Ωp

ε∗3i j (A,M)dΩ =
N

∑
n=1

εp
i j .D3i j (A,Cn) (2.100)

Consequently the residual displacements are functions of plastic strain εi j p, Pois-
son’s ratio ν, and location (c1,c2,c3) and size of the cuboïd of uniform plastic strain
(2∆x,2∆y,2∆z):

D3i j = F3i j (c1+ ∆x,c2+ ∆y,c3+ ∆z)−F3i j (c1+ ∆x,c2+ ∆y,c3−∆z)

−F3i j (c1+ ∆x,c2−∆y,c3+ ∆z)−F3i j (c1−∆x,c2+ ∆y,c3+ ∆z)

+F3i j (c1+ ∆x,c2−∆y,c3−∆z)+F3i j (c1−∆x,c2−∆y,c3+ ∆z)

+F3i j (c1−∆x,c2+ ∆y,c3−∆z)−F3i j (c1−∆x,c2−∆y,c3−∆z) (2.101)
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2. The elastic-plastic contact

The D3i j functions may be derived from previous equations in an integral form:

D311 =
1
2.π

.
x [

x.z
ρ3

− (1−2.ν).
x

ρ.(ρ+z)

]
dydz (2.102)

D322 =
1
2.π

.
x [

y.z
ρ3

− (1−2.ν).
y

ρ.(ρ+z)

]
dxdz (2.103)

D333 =
1
2.π

.
x [

z2

ρ3
+
2.(1−ν

ρ

]
(2.104)

D312 =
1
4.π

.

[x [
x.z
ρ3

− (1−2.ν).
x

ρ.(ρ+z)

]
dxdz+

x [
z2

ρ3
+
2.(1−ν)

ρ

]
dydz

]
(2.105)

D313 =
1
4.π

.

[x [
x.z
ρ3

− (1−2.ν).
x

ρ.(ρ+z)

]
dxdy+

x [
y.z
ρ3

− (1−2.ν).
y

ρ.(ρ+z)

]
dydz

]

(2.106)

D323 =
1
4.π

.

[x [
z2

ρ3
+
2.(1−ν

ρ

]
dxdy+

x [
y.z
ρ3

− (1−2.ν).
y

ρ.(ρ+z)

]
dxdz

]
(2.107)

The F3i j functions have been analytically integrated by Jacq et al.:

F311 =
1
π
.

[
−ν.x.ln(y+R)− (1−2.ν).z.atan

(
y+z+R

x

)]
, (2.108)

F322 =
1
π
.

[
−ν.y.ln(x+R)− (1−2.ν).z.atan

(
x+z+R

y

)]
(2.109)

F333 =
1
π
.

[
(1−2.ν).

[
2.z.atan

(
R+y+x

z

)
+x.ln(R+y)+y.ln(R+x)

]
+

z
2
.atan

(
x.y
z.R

)]

(2.110)

F312 =
1
π
. [−2.ν.R− (1−2.ν).z.ln(z+R)] (2.111)

F313 =
1
π
.

[
2.x.atan

(
y+z+R

x

)
+y.ln(z+R)

]
(2.112)

F323 =
1
π
.

[
2.y.atan

(
x+z+R

y

)
+x.ln(z+R)

]
, (2.113)

with R=
√

x2+y2+z2

Normal residual displacements of the surface due to plastic strains existing in the half-space can
now be computed, using the relations described above.
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The elastic-plastic half-space

2.2.6 Tangential residual displacements [FUL 09]

Let’s consider a virtual state corresponding to the application of a unit force Qx along the x-axis
applied on the elementary surface area centered at point A, as shown hereafter.

Figure 2.13:Cuboïd of uniform plastic strain

The displacements generated are expressed by Cerruti [CER 82]:

U∗
x =

Qx
4.π.G

.

[
1
R

+
x2

R3 +(1−2.ν).
x2

R.(R+z)2

]
(2.114)

U∗
y =

Qx
4.π.G

.

[
x.y
R3 − (1−2.ν).

x.y
R.(R+z)2

]
(2.115)

U∗
z =

Qx
4.π.G

.

[
x.z
R3 +(1−2.ν).

x
R.(R+z)

]
(2.116)

The reciprocal theorem is used to express the surface displacements as a function of contact forces
and plastic strains within the body under the assumption that Tr(εp) = 0:

U r
1(A) = 2.µ.

N

∑
n=1

εp
i j (Cn).

∫

Ωp

ε∗1i j (A,M)dΩ =
p

∑
n=1

epsilonp
i j .D1i j (A,Cn) (2.117)

with U* def ned above and ε∗i j = 1
2 .
(
U∗

i, j +U j, i∗
)

The residual displacements are functions of plastic strain εpij, Poisson’s ratio ν, and cuboïd
location (c1,c2,c3) and size (∆x,∆y,∆z):

D1i j = F1i j (c1+ ∆x,c2+ ∆y,c3+ ∆z)−F1i j (c1+ ∆x,c2+ ∆y,c3−∆z)

−F1i j (c1+ ∆x,c2−∆y,c3+ ∆z)−F1i j (c1−∆x,c2+ ∆y,c3+ ∆z)

+F1i j (c1+ ∆x,c2−∆y,c3−∆z)+F1i j (c1−∆x,c2−∆y,c3+ ∆z)

+F1i j (c1−∆x,c2+ ∆y,c3−∆z)−F1i j (c1−∆x,c2−∆y,c3−∆z) (2.118)

The D1ij functions may be derived from previous equations in an integral form:

D111 =
1
2.π

.
x [

1
ρ

+
x2

ρ3
+(1−2.ν).

(
1

ρ+z
− x2

ρ.(ρ+z)2

)]
dydz (2.119)

D122 =
1
2.π

.
x [

x.y
ρ3

− (1−2.ν).
x.y

ρ.(ρ+z)2

]
dxdz (2.120)

D133 =
1
2.π

.
x [

x.z
ρ3

+(1−2.ν).
x

ρ.(ρ+z)

]
dxdy (2.121)
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2. The elastic-plastic contact

D112 =
1
4.π

.

[x [
1
ρ

+
x2

ρ3
+(1−2.ν).

(
1

ρ+z
− x2

ρ.(ρ+z)2

)]
dxdz

+
x [

x.y
ρ3

− (1−2.ν).
x.y

ρ.(ρ+z)2

]
dydz

]
(2.122)

D113 =
1
4.π

.

[x [
1
ρ

+
x2

ρ3
+(1−2.ν).

(
1

ρ+z
− x2

ρ.(ρ+z)2

)]
dxdy

+
x [

x.z
ρ3

+(1−2.ν).
x

ρ.(ρ+z)

]
dydz

]
(2.123)

D123 =
1
4.π

.

[x [
x.y
ρ3

− (1−2.ν).
x.y

ρ.(ρ+z)2

]
dxdy+

x [
x.z
ρ3

+(1−2.ν).(
x

ρ.(ρ+z)

]
dxdz

]

(2.124)

The analytical expressions for functions F1 jk below have been obtained by analytical integration
as done by Jacq et al. for functions F3 jk.

F111 =
1
2.π

.

[
z.ln(R+y)+y.ln(R+z)+2.x.atan

(
y+z+R

x

)
+x.atan

( y.z
x.R

)

+(1−2.ν).

(
2.x.atan

(
y+z+R

x

)
+z.ln(R+y)+

1
2
.y.ln(R+z)− z.y

2(R+z)

)]
, (2.125)

F122 =
1
2.π

.

[
−y.ln(R+z)+ (1−2.ν).y.

(
z

2.(R+z)
+
1
2
.ln(R+z)

)]
(2.126)

F133 =
1
2.π

.

[
−2.ν.z.ln(R+y)+ (1−2.ν).

[
2.x.atan

(
R+y+z

x

)
+y.ln(R+z)

]]
(2.127)

F112 =
1
π
.

[
z.ln(R+x)+2.y.atan

(
x+z+R

y

)
+
1−2.ν

2
.

(
x.ln(R+z)+

z.x
R+z

)]
(2.128)

F113 =
1
π
.

[
y.ln(R+x)+2.z.atan

(
x+y+R

z

)]
(2.129)

F123 =
−R
π

, (2.130)

with R=
√

x2+y2+z2

Actually, D1 jk is a coeff cient of inf uence def ning the tangential displacement along the
X-direction of a cuboid located at (c1,c2,c3) and of size (2∆x,2∆y,2∆z) in which a unique strain
εi j is considered equal to one.
F2 jk functions can be easily found by circular permutation of indices. The tangential residual
displacements of the surface due to plastic strains existing in the half-space can now be computed,
using the relations described above. This is actually a breakthrough, since equations described
above are now permitting a coupling of plastic and frictional effects. Frictional problems are now
possible in the elastic-plastic regime.
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The elastic-plastic half-space

2.2.7 Validations using a Finite Element model

A comparison with a f nite element (FE) analysis performed with the commercial FE package
Abaqus V6.7, will be performed to validate the analytical solutions and check the analytical meth-
ods’ accuracy for both F1 jk and F3 jk solutions. The equivalent problem solved by the FE method
is presented below. The use of symmetrical and anti-symmetrical boundaries permits to limit the
FE model to one quarter of a parallelepiped. One quarter of a cuboïd of uniform plastic strain
is set below the surface in such a manner that its axis of symmetry coincides with the vertical
axis Z. Symmetrical or anti-symmetrical boundary conditions (BC) are used for X=0 and Y=0
planes, but depending on plastic strains imposed, those boundaries will change as shown in Table
2.3. The upper face is naturally free. On the three other external faces that are far away from the
plastic cuboïd, free and fully constrained boundaries have been used alternatively. No difference
has been observed on the results, so the meshed body could be considered as a quarter of a half-
space. Using those symmetries, the problem is 60 units wide by 60 units high. The volume near
the plastic cuboïd and above the surface has been ref ned with 0.5-sized elements. Therefore one
quarter of the half-space is meshed with only 30,000 C3D8 elements. While the ’plastic zone’ is
supposed of unit-size in the full problem, two ref ned cuboids of total dimension 0.5x0.5x1 are
used in this quarter problem. The center of the equivalent cuboïd is here located at a point 5 units
below the surface. The same elastic properties are used for both the elastic and ’plastic’ zones.
Young’s modulus choice doesn’t matter while it has no inf uence on strain and displacement in a
dimensionless form. Thus it is arbitrary taken equal to 1 MPa. On the other hand, the Poisson’s
ratio is important and taken equal to 0.3 since it is considered as a non-specif c case.

Figure 2.14:Finite Element Model

The model is based on an equivalent approach using thermo-elastic properties for this ’plas-
tic zone’ to create a thermal expansion similar to the plastic strain required. For this reason,
anisotropic thermal expansion properties are def ned for the 2 ’plastic elements’. During Step-1 a
predef ned thermal f eld T=1◦C creates the additional elastic strain desired:

εT
i j = αT

i j .T (2.131)
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2. The elastic-plastic contact

Case # Strains Symmetries
1 εp

11 = −εp
22 = 1 XSym / YSym

2 εp
11 = −εp

33 = 1 XSym / YSym
3 εp

12 XASym / YASym
4 εp

13 XASym / YSym
5 εp

23 XSym / YASym

Table 2.3:Boundary conditions of the FE Model

FE analyses have been performed under the assumption of linear elasticity (’perturbation’ op-
tion for Abaqus), assumption that is also made in the analytical modeling. The assumption of
incompressibility (Tr(εp)=0) of the plastic volume used in the analysis, see Eq. 2.117, to derivate
the analytical expressions should be also verif ed when imposing the equivalent anisotropic ther-
mal expansions in the FE model. For this reason the diagonal components of the strain tensor
should not be imposed individually. However since the problem is linear the effect of each tensor
component could be superimposed resulting in f ine in the validation of each term individually.
The 5 equivalent thermal loadings f nally used to validate the analytical solutions are given in
Table 2.3.

2.2.8 Comparison between the FEA and analytical results

Let’s consider a cuboïd of uniform strain of dimension 2bx2bx2b (bxbx2b for the quarter FE
model) with its center located at a distance C3 = Zo

2.b below the surface. The surface displace-
ments reduce to Eq. 2.132 and can be easily plotted knowing the analytical solutions expressed in
Eq.2.108- 2.113 and Eq.2.125- 2.130 .

ur
k(A) = εp

i j .Dki j(A,Cn) (2.132)

As previously stated all FE simulations will be performed for a cuboïd of uniform strain lo-
cated at depth C3 = Zo

2.b = 5 in a dimensionless form. A comparison of the numerical results ob-
tained by FEA and those derived from the analytical expressions is presented in 2.15. Results are
given for a surface prof le f rst along the X or Y-axis, and then for the f rst bisectrice in the plane
(O,X,Y). This third plot was necessary due to the (anti)-symmetrical properties imposing some
Fi jk equal to zero along the X or Y-axis. Finally it is found a remarkably good agreement between
the numerical (FEA) and the analytical solutions proposed by the authors. The only noticeable
difference is found in Figure 2.16 for the in-plane displacement due to the strain component εp

12.
This difference is due to the failure of the boundary conditions in reproducing the half-space as-
sumption for a thermal distortion of the cuboïd in the plane parallel to the surface, which appears
far away from the origin when moving closer to the domain boundaries.
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The elastic-plastic half-space
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Figure 2.15: Normal displacements induced by a unique plastic cube so that Zo/2b=5,
where solid line are FEM results and symbols are found analytically
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2. The elastic-plastic contact
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Figure 2.16:Tangential displacements induced by a unique plastic cube so that Zo/2b=5,
where solid line are FEM results and symbols are found analytically
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The elastic-plastic half-space

2.2.9 Validation using a finite element model without friction

A f rst validation is needed in order to be sure that modif cations do not change results for fric-
tionless contacts. A rigid sphere of radius r=105µm and an elastic plastic f at are pressed together.
Flat is a ball-bearing steel of elastic properties E=210 GPa and ν=0.3. A Swift’s law is used to
def ne the hardening σ=B.(C+pn) and parameters used are B=1240, C=30, n=0.085. This problem
has been solved and validated in C.Jacq’s thesis using a FE model. Data will be used to validate
the actual code.

Figure 2.17: Indentation curves found using both a FEM and a SAM

First computations revealed a poor agreement between the real (372µm) and estimated
(430µm) maximum depth for this problem, while frictionless elastic tests succeeded. Plasticity
was overestimated in this problem. A relaxation of one was considered since this date in Jacq’s
code (meaning no relaxation) in order to reduce the computing time, but results were considerably
altered. For lower relaxation a much better agreement is found. For instance, a relaxation
δrelax equals to 0.3 leads to an over-estimation of less than 0.4%. Error becomes almost nil for
δrelax=0.2. as seen in Fig.2.17, and such value will be used for further studies.

Results obtained for the frictional contacts in the elastic regime are compared to the re-
sults found by Gallego in parts 2.4.3, 2.4.2 and ??. Those results are then extended to the
elastic-plastic regime.
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2. The elastic-plastic contact

2.3 Numerical methods and improvements

2.3.1 Weak formulation

Weak formulations are used in mechanical equations in order to describe a complete problem
[DUV 72]. The unique solution of the contact problem can be found by minimizing the strain
energy and considering that one body can not interpenetrate the other one (2.67a). Kalker gives
the solutions for two elastic half-spaces in contact. The contact pressures p are positive and the
contact shears q are bounded by the Coulomb’s law.

min
∫

Γc

(
h∗ +

1
2

ūz

)
pdS+

∫

Γc

(
W∗

τ +
1
2

ūt
τ − ūt−1

τ

)
qdS, (2.133a)

p≥ 0, (2.133b)
||q| | ≤ µp. (2.133c)

h∗ is the distance between undeformed geometries. It includes the initial separation and the
rigid body displacements induced by translations and rotations. In the same manner, W∗

τ is the
tangential displacements tensor induced by rigid body displacements.
It comes for the normal and tangential problem:

min
(
1
2

pTAp
zp+h∗Tp+cτ

)
, (2.134a)

pi j ≥ 0. (2.134b)

min
(
1
2

qTAq
τq+W∗Tq+cp

)
, (2.134c)

||qij | | ≤ µpi j . (2.134d)

The tangential problem may also create some normal displacements (when coupling is con-
sidered), h∗ will include those displacements. In the same manner, the normal problem may also
create some tangential displacements, W∗ will include those displacements and tangential dis-
placements found for the previous time-step. It comes:

h∗ = h+Aq
zq−δz−y ·φx +x ·φy (2.135a)

W∗ = −∆δt
τ +




...
−yi j ·∆φt

z
...

xi j ·∆φt
z

...




+Ap
τ p− ūt−1

τ (2.135b)

cp = 1
2pTAp

zp+(h−δz)
Tp, respectively cτ = 1

2qTAq
τq+(−∆δt

τ− ūt−1
τ )q is the complementary

energy of the normal problem, respectively the tangential problem.
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Numerical methods and improvements

In the normal problem, the constraint is linear and the problem is known as a quadratic opti-
mization problem, where λi j is the gap gi j between the two surfaces. Equations become similar to
equations found in section 2.1.5 page 43 (2.134a) (See [GAL 10]):

Ap
zp+h∗T −λi j = 0, (2.136a)

pi j > 0, λi j = 0, (2.136b)
pi j = 0, λi j ≥ 0. (2.136c)

For the tangential contact problem, λi j is the slip amplitude, and equations become similar
to equations found in section 2.1.6 page 46. The constraint is not linear, therefore applying the
Lagrangian method leads to (See [GAL 10]):

Aq
τq+W∗T +




...
λi j

qxi j

µpi j

...
λi j

qyi j

µpi j

...




= 0 (2.137a)

∣∣|qi j
∣∣ | < µpi j , λi j = 0, (2.137b)∣∣|qi j
∣∣ | = µpi j , λi j ≥ 0. (2.137c)

Finally, several methods can be used to minimize the quadratic form. Polonsky and Keer
[POL 99] used a contact algorithm based on the conjugate gradient method (CGM).

2.3.2 Conjugate Gradient Method (CGM)

The Conjugate Gradient is an iterative method which generates a sequence of approximations of
the solution starting from an arbitrary initial approximation. This scheme is detailed by Polonsky
and Keer in [POL 99] and is based on three main formulae, exposed hereafter for the normal
problem:

pite+1 = pite− rT
ite.r ite

dT
ite.K.dite

.dite (2.138a)

r ite+1 = r ite−
rT
ite.r ite

dT
ite.K.dite

.K.dite (2.138b)

dite+1 = −r ite +
rT
ite+1.r ite+1

rT
ite.r ite

.dite (2.138c)

K = Ap
z +Aq

z.q (2.138d)

where ite is the iteration inside the loop algorithm, r ite is the residue, dite is the direction and
K is called the Kernel, def ned for each point of the contact.

A uniform pressure f eld is often considered for the initial approximation of po, while d0 =
r0 = h∗−h−δz−K.p0 (See Equation ??). Three variables are also used, δ, G and Gold and then
initialized δ = 0 and Gold = 1.
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2. The elastic-plastic contact

• Considering the pressure f eld pite (and the pressure f eld q), the normal displacements U p
z

andUq
z are found using a DC-FFT algorithm.

• The gap r ite between both geometries r ite = gite = up
z + uq

z + h∗ is found for each point of
the contact zone (See equation 2.138b), it is the residue r ite of the system and tends to zero
while the problem converges. G becomes the sum of all squared gaps: G = Sum(g2).

• The direction dite+1 is then found using equation 2.138c, and G is then stored in Gold.

• The residue r p
ite+1 = Ap

z .d is found using a DC-FFT algorithm. The increment along this
direction is def ned by: α = ∑g.d

∑ r .d .

• The pressure f eld is then equal to pite+1 = pite + α.d

• According to equation 2.138b and equation 2.138c, the contact zone may evolve. If the
pressure pite+1 is locally lower than zero, then the pressure is set equal to zero and the point
is no longer in the contact zone. If the gap r ite = gite is lower than zero, then the point is in
the contact zone and the pressure pite+1 = α.d.

• This process continues until the pressure converges.

A very similar algorithm as been used by Gallego for the tangential problem [GAL 07a].
The multiplication operations between the inf uence coeff cient tensor Ap

z by the surface trac-
tion f elds and the direction vector d are time consuming, and require N2 operations considering a
surface of N elements. To reduce the computing time, the Fast Fourrier Transform is used within
each iteration of the CGM, so that previous equations only require N.log(N) operations (See sec-
tion 2.3.4).

2.3.3 Convergence of the tangential contact solver

Most of hazardous points have been investigated and solutions have been proposed for frictionless
contacts. A coupled approach, considering friction and hardening is now possible. Because the
normal problem requires the determination of the contact area and pressure f eld only, it is much
simpler than f nding the sticking zone, slips/shears amplitudes and directions. For this reason,
tangential problem appears to be less robust than the normal problem. Three types of lack of
robustness can be noticed:

• (i) The solution is oscillating around a non-stable position.

• (ii) The solution is converging too slowly.

• (iii) Everything else is mainly due to a strong difference between the previous state and the
actual state because of a poor discretization of the loading.

(ii) and (iii) are rare and can be avoided by ref ning the loading which helps the convergence.
A normal loading may contain hundred steps, requiring ten plasticity loops by step, up to ten
contact loops for the convergence of the Panagiotopoulos process for each plasticity loop. A
classic computation may then solve the tangential problem around ten thousands times. Because
of this, (i) is frequent and becomes critical when dealing with both hardening and friction and it is
of a great importance to reduce such errors.

68 Semi-analytical modeling of complex mechanical contacts:
Application to inclusions and wear of coated surfaces

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0061/these.pdf 
© [B. Fulleringer], [2011], INSA de Lyon, tous droits réservés



Numerical methods and improvements

In f rst versions, convergence was forced after thousand increments in the tangential problem,
regardless of the error at this time, in order to avoid computation failures. Alerts were consciously
bypassed. However, effect on the global response was not perceptible during tests, but this issue
has to be investigated. A rigid sphere of radius r=1mm and an elastic-plastic f at are pressed
together. Elastic-plastic properties of the f at are E=200GPa, ν=0.3, Sy=1000MPa, Et.=0.5xE.
Four computations with different friction coeff cients will be considered (µ=0, 0.1, 0.2, 0.3). A
total of 41 alerts are detected in those computations with errors up to 38%, as seen in f gure
2.18a. One of the solutions consists in adding a relaxation in the tangential algorithm, while
implementing the new direction during incremental update. Using such improvement, oscillations
around a stable position can be avoided (cf. f gure 2.19). With a relaxation of 0.8, number of
errors can be reduced from 41 to 9 as seen in Figure 2.19b.
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Figure 2.18: Errors encountered in four different simulations, considering no relaxation
(a) or a relaxation of 0.8 (b) in the tangential algorithm
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Figure 2.19: Convergence anomalies encountered for µ=0.3, considering no relaxation
(a) or a relaxation of 0.8 (b) in the tangential algorithm
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2. The elastic-plastic contact

An adaptative relaxation has been implemented in the tangential algorithm, on the increment
α along the direction d . If the number of increments is noted nincrement then for:

• 1 < nincrement< 300 then δrelax =1

• 301 < nincrement< 600 then δrelax =0.8

• 601 < nincrement< 999 then δrelax =0.6

Because most of tangential problems converge in about 20 increments, this adaptative relaxation
optimizes the computing time. Moreover, the relaxation changes when convergences are too long,
which helps to reduce the number of alerts down to 5 with acceptable percentage of errors as seen
in (cf. f gure 2.20a). Oscillations around a stable position become very rare and remaining alerts
may be avoided using a f ner loading discretization.
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Figure 2.20: Errors encountered in four different simulations considering an adaptative
relaxation (a) and corresponding convergence anomalies for µ=0.3 (b)

2.3.4 Discrete Continuous Fast Fourrier Transforms (DC-FFT)

Introduction As seen in the Conjugate Gradient method, displacements, but also stresses,
are calculated from inf uence coeff cients that actually correspond to the Green functions in their
discretized form (See equations 2.65 and 2.66).
It is classically a double summation for the stress and elastic def ections induced by a contact
loading. The number of operations depends on the size of the domain considered; if the
calculation zone is (Nx,Ny) then the number of operations for one double summation is Nx.Ny,
often simplif ed by N2 when sizes are similar in both directions.
The Discrete-Convolution and Fast Fourier Transform, noted DC-FFT or FFT, have been
proposed in order to accelerate this calculation. This enable reduction of the number of operations
[JU 96, POL 99], but the contact zone has to be at least equal to two times the contact zone to
obtain accurate results [LIU 00].
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The one-dimensional FFT Let us introduce a one-dimensional convolution product between
the functions x(t) and h(t):

y(t) =
∫ +∞

−∞
x(t)h(t − τ)dτ ≡ x(t)∗h(t). (2.139)

Denoting h̃(ω) the Fourrier transform of the function h(t):

h̃(ω) =

∫ +∞

−∞
h(t)e−iωtdt. (2.140)

The convolution theorem is obtained by applying the Fourier transform to the convolution product
in equation 2.139:

ỹ(ω) = x̃(ω)h̃(ω). (2.141)

Then a simple multiplication is made in the frequency domain. Afterwards, the inverse Fourier
transform yields to the result in the spatial domain:

y(t) = 1/2π
∫ +∞

−∞
ỹ(ω)eiωtdt. (2.142)

The contact problem being solved as a discrete domain, the discrete Fourier transform and its
inverse are then introduced, considering a discrete form of h and x, respectively hr and xr , of N
points. It comes:

ĥs =
N−1
∑
r=0

hre
−2πirs/N, s= 0, ...,N−1. (2.143)

h j = (1/sqrt(N))
N−1
∑
r=0

ĥre
2πir j /N, j = 0, ...,N−1. (2.144)

The discrete convolution is then:

y j =
N−1
∑
r=0

xrh j−r , j = 0, ...,N−1. (2.145)

and is expressed from a set of data of length L0. Implicitly, the discrete convolution is realized
over an inf nite length, introducing a periodicity equals to L0 of both samples to be convoluted.
This is called the circular convolution, and can be expressed as:

y j = x⊗h =
N−1
∑
r=0

xrh j−r+NH(r− j), j = 0, ...,N−1. (2.146)

with the Heaviside function:

H(x)

{
= 0 if x < 0,
= 1 if x≥ 0.

(2.147)

The number of terms of K and p is the same, j ∈[0,N-1]. The Heaviside function is active
when j − r < 0 which avoids negative indices for mathb f Kand means to replace the index by
j − r + N. There is then a circular summation, and it induces a periodicity in the sample. It is
then possible to introduce the convolution product in the discretized form, which is related to the
circular convolution product:
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2. The elastic-plastic contact

Figure 2.21: Convolution of the pressure f eld P and the coeff cient of inf uence Kp
z in

the frequency domain

ŷs = x̂ŝhs, s= 0, ...,N−1. (2.148)

The Fast Fourier Transform (FFT) is a Fourier transform algorithm reducing the number of
iterations from N2 to N.log(N) [SIN 69]. This algorithm is also used for the Inverse Fourier
Transform and the number of iterations is also N.log(N). The convolution in the frequency domain
also requires N iterations. Finally, the double summation requires N + 3NlogN iterations when
using the frequency domain, instead of O(N2) in the spatial domain. This becomes particularly
advantageous for large number of N.

Zero-padding The target domain [0,N−1] is doubled in each direction and becomes [0,2N−
1], while pressures are set equal to zero in the extra part of the domain. Zero-padding is applied to
the target domain only (a pressure f eld for instance).

Wrap-around order For the inf uence coeff cients, the domain size [0,N−1] is also doubled
(See f gure 2.22. According to the parity properties of the coeff cients of inf uence, the domain
[N,2N−1] is fulf lled with the coeff cients of inf uence of the domain [0,N−1]. For [N], the value
is set equal to zero in order to avoid the overlapping both domains.

The DC-FFT method The technique of zero padding and wrap-around order are the necessary
treatments for properly converting the linear convolution into the cyclic convolution. The target
domain is doubled in each direction (See Figure 2.22). Finally, the DC-FFT (Discrete Convolution
and Fast Fourier Transform) detailed by Liu is:

1. Find the inf uence coeff cients,
{

K j
}

N,

2. Expand
{

K j
}

N into
{

K j
}
2N with zero-padding and wrap-around order,

3. Apply FFT to
{

K j
}
2N and obtain

{
K̂s
}
2N ;
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Numerical methods and improvements

4. Input the pressure,
{

p j
}

N ;

5. Expand the pressure
{

p j
}

N into
{

p j
}
2N with zero-padding and wrap-around order, p j =

p j , j ∈ [0,N−1] , p j = 0, j ∈ [N,2N−1] ;

6. Apply FFT to
{

p j
}
2N and obtain {p̂s}2N ;

7. Make the element-by-element production of the complex numbers, and obtain the frequency
response {v̂s}2N ;

8. Apply the IFFT to {v̂s}2N and obtain
{

u j
}
2N ;

9. Discard the spoiled terms and keep
{

u j
}
2N , j ∈ [0,N−1].

Figure 2.22: wrap-around and zero-padding for pair coeff cients such as Kp
z (top) and

impair coeff cients such as Kqx
z (bottom)
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2. The elastic-plastic contact

2.3.5 2D-FFT Algorithm

The 2-dimensional Fourier transform and its inverse exposed in equations 2.143 and 2.144 be-
come:

ĥsx,sy =
Nx−1
∑

rx=0

Ny−1

∑
ry=0

hrx,rye
−2πir xsx/Ne−2πir ysy/N, s= 0, ...,N−1. (2.149)

h jx, jy = (1/NxNy)
Nx−1
∑

rx=0

Ny−1

∑
ry=0

ĥrx,rye
2πir x jx/Nxe2πir y jy/Ny, j = 0, ...,N−1. (2.150)

In consequence, the 2-dimensional Fourier transform is obtained using the 1D-FFT along the
f rst direction and then on the second direction. The order retained for the application of the 1D-
FFT does not have any importance. The 2D-FFTwill be used in many cases where a surface source
has an inf uence on a surface image. But it can also be extended to three dimensional problems
when proceeding slice by slice. All those cases are described hereafter (See f gure 2.23):

• Surface source vs. surface image: Elastic def ections induced by the contact pressure or
shears.

• Surface source vs. volume image: Stresses located at a certain depth caused by the con-
tact pressure and shears. In order to def ne the stresses in the volume image, the 2D-FFT
algorithm will be used Nz times, where Nz is the number of elements along the normal
direction.

• Volume source vs. surface image: Residual displacements observed on the surface and
induced by plastic deformations located at a certain depth. Coeff cients of inf uence needed
exist and have been def ned in an half-space in [CHI 78]. Once again, the 2D-FFT algorithm
will be used for each depth Nz of the volume source. It must be noticed that the 2D-FFT is
not used for misf t displacements caused by non-homogeneities contained in the half-space
since solutions do not exist in an half-space; in this case, the 3D-FFT is not an option.

• Volume source vs. volume image: Residual stresses and misf t stresses induced by plas-
tic or misf t strains of the volume source. The source domain is browsed, for each depth
Nz,source the 2D-FFT is used for each image depth Nz,image. This technique becomes very
cumbersome since (assuming that Nxy,sourceand Nxy,sourceare similar) the domain is browsed
Nz,source.Nz,image times. Moreover, the inf uence coeff cients are heavy to manipulate and
drastically increase the computing time because of an high access to the hard-drive. Hope-
fully, the volume source vs. volume image problem has been greatly improved by the
3D-FFT algorithm exposed hereafter.

The two dimensional fast Fourier transofrm (2D-FFT) reduces the number of iterations from
N4 to 2N.log(2N). The convolution in the frequency domain still requires 2N iterations. Including
the IFFT, the double summation requires 2N +6Nlog(2N).

2.3.6 3D-FFT Algorithm

The 3-dimensional Fourier transform and its inverse exposed in equations 2.143 and 2.144 can be
expressed in three dimensions. The 3D-FFT is obtained using the 1D-FFT along three directions.
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Numerical methods and improvements

Figure 2.23: Use of the 2D-FFT in the actual code. Sources are shown in green, while
images are shown in blue

It is commonly used for volume source vs. volume image calculations. Moreover, this is of a great
importance in the non-homogeneous solver since the solutions in an half-space are not available,
making the 2D-FFT inappropriate.

Common method is to decompose an isotropic half-space problem into three sub-problems,
as seen in Figure 2.24. The f rst sub-problem considers the same cuboid but in an inf nite space,
ε∗=( ε∗11, ε∗22, ε∗33, ε∗12, ε∗13, ε∗23). The second one considers an image counterpart – an inclusion as
seen in a mirror – in the same inf nite space. Its eigenstrains εp

m is modif ed in order to respect
symmetric conditions: ε∗m =( ε∗11, ε∗22, ε∗33, ε∗12, -ε∗13, -ε∗23)

Figure 2.24: Decomposition of the problem about a cuboidal inclusion containing con-
stant eigenstrains ε∗ in an isotropic half-space bounded by the plane z=0 into three sub-

problems

It must be noticed that the eigenstrain ε∗ can be a plastic strain εp in the plastic solver or a
misf t strain β in the non-homogeneous solver. Sub-problems def ned hereinbefore are used in the
3-dimensional Fast Fourier Transform algorithm or 3D-FFT. It actually includes two 3D-FFT and
a 2D-FFT algorithm, as seen in f gure 2.25.

Note The 2D-FFT algorithm uses inf uence coeff cients found in an inf nite half space. The
difference resides in the form used for the σm. In the 2D-FFT coeff cients, the f eld σm has a
continous form, expressed as a function of the f rst and second problem, so the stress f elds induced
by the free surface is found analytically. Those analytical solutions become very complex and it
must be assumed that the eigenstrain is incompressible, which works great in the plastic case but
incompatible with the non-homogeneous case. The 3D-FFT use a discrete form of the pressure
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2. The elastic-plastic contact

f eld σm, and is computed numerically. Then the pressure f eld is applied and the stress f eld is
found.

Figure 2.25:Use of the 3D-FFT

The great advantage of this method is that the 3D-FFT naturally reduces the comput-
ing time compared to a 2D-FFT. But the main advantage of the method is the reduced
size of the inf uence coeff cients tensors. In the 2D-FFT, a Nx,image,Ny,image,Nz,image ten-
sor is def ned for each depth of the source Nx,source,Ny,source,Nz,source, which leads to a
Nx,image.Ny,image.Nz,image.Nx,source.Ny,source.Nz,source tensor (or N6). In the 3D-FFT algorithm, co-
eff cients of inf uence used are related to a cuboid in an inf nite space. Since the free surface is not
explicitly considered at this stage, and because of the algorithm scheme, the inf uence coeff cient
tensor is of the size of 2(N)3. The computing time is drastically reduced because of the lower
access to the hard drive.

2.3.7 2.5D-FFT Algorithm

Time consumption has been drastically reduced thanks to the use of the 3D-FFT. When elements
considered are not close to the surface, this method works great. Considering a 2b-sized element
located at a depth Zo below the surface, no difference has been observed for a depth Zo≥ 5/2b
because strain f elds – misf t or residual strain f eld – are def ned analytically in both inf nite half
spaces and pressure f eld which emulates an inf nite half space is properly discretized as shown
below.

Figure 2.26: 3D-FFT techniques for inclusions far from the surface
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However, this method becomes obsolete considering ’eigenstrains’ – including hardening and
non-homogeneous aspects – arising into the contact. Discretization of the pressure f eld σm be-
comes critical and leads to an over-estimation of normal and tangential displacements into the
contact. For this reason, over-shooting of the real solution may be observed and non-physical so-
lutions can be found. This become critical when considering elastic-plastic contact with friction,
since the maximum Von Mises stress may appear into the contact. But also when considering
layers and spherical inclusions arising into the contact.

Figure 2.27: 3D-FFT techniques for inclusions close to the surface and related problems

No solution has been found for the non-homogeneous solver since the analytical solutions
are limited because of their complexity (the eigenstrain β is not necessarily incompressible). In
the elastic-plastic solver, the solution consists in dividing the problem in two sub-problems. The
3D-FFT can be used for plastic strains located at a depth Zo≥ 5/2b while the 2D-FFT is used
for Zo> 5/2b. This method uses both the 2D-FFT algorithm and the 3D-FFT depending on the
domain considered and will unoff cially refer as 2.5D-FFT.

2.3.8 Instability on plastic strains

A second problem was encountered in plastic solver when estimating plastic strains, even at low
load. After a certain level, plastic strain prof les became irreversibly rough and were getting even
worse after few cycles. In spite of this numerical noise, prof les stayed globally unchanged as seen
in (cf. f gure 2.28). This problem has been encountered for various simulations, even when using
initial codes, and identifying it was tough. Reason of this is still unclear today, but an eff cient
method has been established avoiding it.

This problem was particularly frequent in shot-penning simulations (T.Chaise thesis) where a
heavy load has to be applied. Because the domain size is limited – about 55x55x80 elements – the
discretization was chosen so that the mesh size is the same in all directions (∆y/∆x=1 , ∆z/∆x=1).
Mesh was not f ne enough at lower load while plasticity arised and many small singularities oc-
curred locally and start growing after each step loading. Location of numerical noise was often
located close to the surface where gradients along z are much higher than in any other direction.
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2. The elastic-plastic contact
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Figure 2.28: Stresses instability typically found with a poor (a) and f ner discretization
(b) along z

Gradients are neglected since each cube is supposed uniformly deformed. It has been proposed to
reduce gradients along z from a cube to another by considering a ref ned mesh along z (∆y/∆x=1 ,
∆z/∆x=0.5). Using such ref nement, no numerical noise has been observed in any computation of
any kind and constitutes an interesting solution with a limited computing time.
Similar problem was frequently observed in wear simulations. The domain size is still limited
to about 70x70x70 elements. The discretization was chosen so the mesh size is the same in all
directions (∆y/∆x=1 , ∆z/∆x=1). Because of wear, the contact area may evolve signif cantly and
f nally approaches the domain boundaries. In this case, part of the solution is neglected because
out of the domain, and numerical instabilities are then observed on the extremities of the surface.
If the simulation continues, numerical instabilities are transmitted from an element to the element
next to it until it reaches the center of the contact. It is obvious that the only solution is to optimize
the domain size so the worn geometry never approaches the domain boundaries.
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Numerical methods and improvements

2.3.9 Conclusion

Contact solvers based on the semi-analytical method need elementary analytical solutions to com-
pute. Love [LOV 52] and Cerruti [CER 82] solutions used in elastic contact solver are elemen-
tary solutions relating the surface pressure and shear distributions to the subsurface stress state
and surface displacements. New elementary solutions are required when plasticity is involved.
While Chiu [CHI 78] described the effect of a unique plastic zone on the residual stress and strain
states, Jacq et al. [JAC 02, JAC 01] related analytically the subsurface plastic strains to the nor-
mal surface displacements. All these elementary solutions have been used in a three-dimensional
semi-analytical elastic-plastic contact code [Jac 02]. A special attention to the tangential effects
involved by plasticity has been paid since it has not been properly considered until now. This
chapter gave the analytical expressions that relate the components of the strain tensor of an incom-
pressible cuboïd of uniform strain on the tangential displacements of any point of the free surface
of a half-space. Both normal and tangential solutions have been compared to a f nite element
analysis and a very good agreement was found, which validates the analytical solutions. Those
analytical solutions were implemented into an elastic-plastic contact solver to investigate frictional
contact problems. Numerical methods have been improved using a 3D-FFT algorithm. The actual
code as been validated using an existing FE model, considering an indentation process without
friction. Instabilities during the estimation of plastic strains and anomalies in the convergence of
the tangential problem were studied and few solutions were applied to get a better robustness.
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2. The elastic-plastic contact

2.4 Fretting considering the elastic-plastic regime

2.4.1 Fretting modes and material properties

This code can perform different kind of stick-slip contacts, among which are the three modes of
fretting, as seen in f gure 2.29. Those modes will be investigated in this paper, with an elastic-
plastic f at, since fully sliding contacts have already been largely investigated [GAL 07a]. No
repeated loadings will be treated although it constitutes fretting def nition unless it is mentioned.

Figure 2.29:Three modes of fretting def ned by Mohrbacher [MOH 95]

Computations shown will consist of a rigid ball of radius 1mm on an elastic plastic f at. The
hardening law will be considered bilinear, but several hardening laws can also be considered.
The elastic plastic properties of the f at are arbitrary chosen and are presented in table 2.4. The
coeff cient of friction will vary from 0. to 0.4 in simulations, highlighting the inf uence of the fully
coupled approach.

Geometries Sphere of radius 1mm Flat
Young’s modulus E = ∞ E = 210GPa
Poisson coeff cient ν = 0.3 ν = 0.3
Tangent modulus � Et = 0GPa

Yield stress � Sy= 7344MPa

Table 2.4:Material properties used in elastic-plastic simulations
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Fretting considering the elastic-plastic regime

2.4.2 Fretting mode II: Indentation

Figure 2.30:Second mode of fretting creates radial slips

Indentation tests are perhaps the most commonly applied means of testing the mechanical
properties of materials. An indenter with a geometry known to high precision is the Berkovich
tip (three-sided pyramid geometry). But 3D simulations using Finite Element Method (FEM)
are cumbersome which makes them most of the time unaffordable or inaccurate (for example for
stick-slip contact problems). Indentation simulations treated here are academic and limited to
spherical indenters, but pyramidal shaped indenters can also be treated without any diff culty.

In the academic case of a rigid sphere loaded with a normal force P on an elastic-plastic
f at, radial displacements may occur. A sticking zone appears for 0<r<c and a slipping zone for
c<r<a where ’c’ def nes the sticking radius and ’a’ def nes the slipping radius. The fully coupled
approach can determine the stick/slip regime in the contact, estimating the sticking and slipping
radii. Then, elastic stress f elds below the surface can be easily determined.
Spence def nes ’c’ and ’a’ as follow [SPE 75].

a
2.c

.ln

(
a+c
a−c

)
=

β
µ
.K′(c/a) =

β
µ
.K(
√
1− (c/a)2) (2.151)

With K the complete elliptic integral of the f rst kind and β the Dundurs’ constant:

β =
1
2
.

[
(1−2.ν1)/G1− (1−2.ν2)/G2

(1−ν1)/G1 +(1−ν2)/G2

]
(2.152)

Note However, Spence considers the inf uence of the normal loading on the tangential problem,
but neglects the coupling between both problems.

For higher coeff cient of friction, inf uence of tangential problem on normal problem can’t be
neglected and some differences may be expected. Considering elastic properties def ned in table
2.4, β=0.2856 and the inf uence of the coeff cient of friction on the radii is shown in f gure 2.30.
For low coeff cients of friction, the Spence’s solution fails to predict the vanishment of the sticking
area. Another problem encountered by L.Gallego was a persistent sticking area. In actual code,
region around zero is still accurate, but criteria have to be ref ned in order to get an acceptable pre-
cision. To recap, the actual elastic-plastic method accurately predicts the second mode of fretting
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2. The elastic-plastic contact
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Figure 2.31:Comparison with the sticking radii given by Spence [SPE 75] (µ =0 , 0.05 ,
0.1 , 0.2 , 0.3 , 0.4)

in elastic regime, with an acceptable precision, and is based on Gallego’s work. Considering this
validation, computations can now be used considering plasticity.
Because the sticking zone rapidly evolves during the loading process for µ/β>0.9, requiring a f ner
load discretization to avoid a poor solution as the code depends on the load-history; and because
plasticity is an iterative process when relaxation is not set to one; the highest coeff cient of friction
considered in later studies will then be 0.5 (See table 2.5)

Friction coeff cient 0.0 0.05 0.1 0.2 0.3 0.5
Normal load P (N) up to 12.3 N
PHertz (MPa) up to 14690Mpa

Table 2.5:Normal loading simulations considering a plastic behavior

Coeff cient of friction, related to material properties, is very well known for inf uencing the
critical load in fully sliding contact. While coeff cient of friction increases, critical load decreases.
Previous SA contact codes neglected the coupling between both normal and tangential problems,
assuming no friction or a fully slipping contact only as the tangential problem was not solved.
Those assumptions are obviously not accurate in a case of indentation. Using the actual code
inf uence of the coeff cient of friction can already be highlighted in the partial slip regime of the
rigid sphere loaded on a steel-f at, as shown in f gure 2.32 . In this case, the critical load decreases
and has a horizontal asymptote for a value different of zero. This result can be theoretically
explained, and depends on material properties.
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Fretting considering the elastic-plastic regime
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Figure 2.32: Inf uence of the friction coeff cient on the critical load (left) and depth
(right) at the onset of yielding normalized by the values for frictionless contact and stick-

slip contacts

On the f rst hand shears are bounded by the pressure times the coeff cient of friction in the
slipping zone. On the other hand, as the coeff cient of friction increases, the slipping annulus
vanishes. This observation itself permits to explain the shape of the critical load vs. friction
coeff cient curve. Coeff cients of friction so that µ/β is greater than 0.9 lead to a small slipping
zone where the inf uence of the coeff cient of friction is reduced. Considering a perfectly plastic
material (See table 2.4), and indentation properties def ned in table 2.5, we are about to investigate
the inf uence of plasticity on the stick-slip regime in normally loaded contacts. It has been shown
in recent experiments [OVC 09], that very high plastic rates lead to a sticking regime, while normal
and/or tangential tractions are applied.

The ratio between the Hertzian pressure and the yield stress will be considered in order to give
dimensionless results, Po / Sy. Isotropic hardening is considered and a von Mises criterion is used.
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2. The elastic-plastic contact
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Figure 2.33:Equivalent plastic strain for an indentation test (Po/Sy=2) and various coef-
f cients of friction
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Figure 2.34:Von Mises stress for an indentation test when loaded (Po/Sy=2) and various
coeff cients of friction

Po/Sy is kept small and Po/Sy=2. Because of additional surface tractions caused by friction,
the critical load decreases, and additional plastic strains are f nally observed for Pmax. Moreover,
it can be observed that for µ= 0.2 (β = 0.2856 and µ/β = 0.7) plastic strains arise into the contact
as seen in f gure 2.33. The inf uence of friction on the maximum plastic strain is also presented in
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2. The elastic-plastic contact

f gure 2.35.
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Figure 2.35: Inf uence of friction on the maximum plastic strain for Po/Sy=2
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Figure 2.36:Evolution of sticking radii with the coeff cient of friction
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Fretting considering the elastic-plastic regime

For µ/β < 0.5, the sticking radius c is reduced by plastic strains. On the other hand, for
µ/β ≥ 0.5, plastic strains arise into the contact and increases the sticking radius (See Figure 2.36).
For µ= 0.2 (µ/β = 7) some differences may be observed in the order of data and is due to a second
annulus of slip, making the def nition of ceq and c different. This problem will be discussed later.

On the meantime, plastic strain prof les presented in f gure 2.33 are modifying the contact
geometry, creating radial and vertical displacements, as shown in f gure 2.37. Those residual
displacements modify the contact conditions, pressure, shears and slip prof les and are of a great
importance.
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Figure 2.37: Residual print along x (left) and z (right) for an indentation test (Po/Sy=2)
and various coeff cients of friction

The shape of the normal residual displacement f elds are quite similar, regardless of the friction
coeff cient, but amplitudes are more than doubled. Classically, a pile-up effect is observed outside
of the contact and a sink-in effect is observed in the middle of the contact for all cases. However,
the shape of the tangential residual displacement f elds are strongly modif ed when considering
high coeff cients of friction, and a wave-effect is observed in the middle of the contact for µ/β =
0.7 or higher. As a matter of fact, this wave actually appears when plasticity arises into the contact.
Two cases are then considered:

• for µ/β < 0.7: The plastic zone is located below the surface. Any point of the surface which
is outside of the contact zone, or close to the edges of the contact, is moving away because
of the pile-up effect. Other points, in the middle of the contact, are moving in the opposite
direction because of the sink-in effect.

• for µ/β > 0.7 The plastic zone can be divided in two regions, (i) a region located below the
surface which produces similar surface displacements as for lower friction coeff cient and
(ii) the plastic zone found at the surface in the center of the contact. This region (ii) creates
an additional tangential residual displacement. The actual prof le can be found by summing
both effect (i) and (ii) as shown in f gure 2.38.
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2. The elastic-plastic contact

Figure 2.38: The shape of the tangential residual displacements when considering (i)
the inf uence of deep plastic strains and (ii) the inf uence of plastic strains close to the
surface. Results have been modif ed to be illustrative, should not be used for reference

and are presented in order to help the lecturer only.

Normal residual displacements are classically taken into account in the literature. However,
tangential residual displacements were not considered, and were neglecting the inf uence of fric-
tion in stick/slip contacts such as indentation processes. In consequence, f gure 2.37 proves the
importance of a fully-coupled approach and the importance of tangential residual displacements.

In f gure 2.36, the equivalent sticking radius ceq/awas calculated using the slipping and stick-
ing contact areas, with Nstick and Nslip the number of points in the sticking and slipping zone,
and assuming a unique annulus of slips.

ceq/a = sqrt(
Nstick

Nstick +Nslip
) (2.153)

Oddly, this assumption is not true in some cases and two annuli of slips may exist in the same
contact as shown in f gure 2.39d. This phenomenon has not yet been verif ed experimentally or
numerically, but is discussed below.
Frictionless elastic-plastic indentation is classical (See Figure 2.39a). The maximum contact pres-
sure drops at the center of the contact and the contact area slowly evolves. The contact pressure
is progressively f attened. The maximum contact pressure may eventually move away from the
center, and forms an annulus of maximum pressure, for highest plastic strains.
For lowest coeff cients of friction (µ/β < 0.7) and Po/Sy=2, the maximum contact pressure drops
at the center of the contact, and the sticking radius decreases (See Figure 2.39b and 2.39c). A
slight peak of pressure may be observed in the middle of the contact zone because of the coupling
between the normal and tangential problem and the small sticking area.
For (µ/β = 0.7) and Po/Sy=2, plastic strains reach the surface. Then the sticking radius slowly
increases (See Figure 2.39d). In the meantime, an annulus of maximum shear is formed for
Po/Sy=1.75 at the edge of the hardened area of the contact. This annulus of maximum shear
f nally creates a second annulus of slips. An annulus of pressure is also observed.
For highest coeff cients of friction (µ/β < 0.7) and Po/Sy=2, conclusions are very similar (See
Figure 2.39e and 2.39f). However, the annulus of maximum shear observed at the edge of the
hardened area of the contact is not suff cient to form an annulus of slip. It could be forecast that,
for higher loads or higher levels of plasticity i.e. Ps/Sy>2, a second annulus of slip may appear.
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Figure 2.39: Pressure and shears normalized by the hertzian pressure for various plastic
rates (Po/Sy=0, Po/Sy=1.5, Po/Sy=1.75 and Po/Sy=2) and for various friction coeff cients

Semi-analytical modeling of complex mechanical contacts:
Application to inclusions and wear of coated surfaces

89

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0061/these.pdf 
© [B. Fulleringer], [2011], INSA de Lyon, tous droits réservés



2. The elastic-plastic contact
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Figure 2.40:Von Mises residual stress for an indentation test when unloaded (Po/Sy=2)
and various coeff cients of friction

Finally, the von Mises residual stresses and hydrostatic residual stress normalized by the
hertzian pressure are shown in f gures 2.40 and 2.41. Figure 2.41 is of a great importance, high-
lighting the inf uence of plasticity on traction and compressive zones.
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Figure 2.41:Hydrostatic residual stress for an indentation test when unloaded (Po/Sy=2)
and various coeff cients of friction
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2. The elastic-plastic contact

2.4.3 Fretting mode I: Sliding

Figure 2.42:First mode of fretting creates slips along one direction

Fretting tests are commonly applied for testing the tribological properties of materials, but
scratch tests are also used for testing the mechanical properties of materials. The given indenter is
initially normally loaded (See section 2.4.2). A tangential loading (force or displacement) is then
applied, and can be linear for scratch-characterization tests or oscillating for fretting tests.

The academic case of a rigid sphere loaded with a normal force P and a tangential force Q on
an elastic f at have been intensively studied and analytical solutions are known as the Cattaneo-
Mindling Concept [CAT 38, MIN 49, MIN 53]. However, this problem becomes much more com-
plicated while considering an elastic-plastic f at and a complete coupling between the normal,
tangential and plastic problems.

Figure 2.43:Normal and tangential loadings for a sphere moving over an elastic-plastic
surface, in the stick-slip regime

Few results will be presented considering a tangential load Q= 0.5µPand various coeff cients
of friction (µ = 0.05, µ = 0.1, µ = 0.2, µ = 0.3, µ = 0.5). Those results are highlighting some of
the possibilities permitted by such method and can not account for all possible phenomena. Two
cases will be considered for the tangential force Q:
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Fretting considering the elastic-plastic regime

• (I) A tangential force Q is applied up to Q= 0.5µP, and the system response is studied from
point A to point B (See Figure 2.43)

• (II) The tangential force is now oscillating between Q = 0.5µP and Q = −0.5µP, and the
system response is studied from point B to point C.

(I) Considering an increasing tangential force: On the f rst hand, considering the normal
loading P and plastic properties, plastic strains are not visibly changed for coeff cients of friction
µ < 0.3 and the inf uence of a given plastic strain f eld on the stick-slip regime will be clearly
visible.
On the other hand, for µ ≥ 0.3, the tangential loading is suff cient to change the plastic strain
prof les and a mutual interaction will be observed. Plastic strain f elds for µ= 0.3 and µ= 0.5 are
presented in f gure 2.44.
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Figure 2.44: Equivalent plastic strains in the stick-slip regime (Q = 0.5µP) for µ = 0.3
and µ= 0.5 at point B in f gure 2.43

As a matter of fact, residual displacements are not modif ed for µ< 0.3 as seen in f gure 2.46
when compared to f gure 2.37.
On the other hand, for µ≥ 0.3, a slight dissymmetry is visible for normal residual displacements
which remain globally unchanged. On the opposite, tangential residual displacements are drasti-
cally modif ed on the sliding direction side and is due to additional plastic strains at the interface
as seen in f gure 2.46. It must be noticed that the maximum equivalent plastic strain is slightly
increased only, and is still located below the surface for Q = 0.5µP.
Contact conditions are presented in f gure 2.45. For Q/µP= 0 shears are axisymmetric, while
shears should all be along the sliding direction for Q = µP. In consequence, slipping region in
which qx/µpo= −1 evolves and progressively becomes sticking until the contact reaches the
gross-slip regime and qx/µpo= 1 in the contact area for Q = µP. Same evolutions are observed
in the Cattaneo-Mindlin Concept. In this study Q is not greater than 0.5µP.

However, it must be noticed that a second slipping region may appear (See Figure 2.45e)
or exist (See Figure 2.45d) when considering high coeff cients of friction (µ≥ 2) and hardening
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2. The elastic-plastic contact

occurring at the interface. This is not observed in the elastic regime, and is due to the tangential
residual displacements presented in f gure 2.46.
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Figure 2.45: Pressure and shears normalized by the hertzian pressure for Po/Sy=2, an
increasing tangential load and for various friction coeff cients
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Fretting considering the elastic-plastic regime
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Figure 2.46:Residual print along x (left) and z (right) in the stick-slip regime (Q= 0.5µP)
considering an elastic-plastic media (point B in f gure 2.43) so that Po/Sy=2 and various

coeff cients of friction

(II) Considering an oscillating tangential force: The tangential load Q will now describe
a complete fretting cycle from point B to point C (See Figure 2.43). Considering the normal
loading P and plastic properties, plastic strains are not visibly changed for coeff cients of friction
µ< 0.3 and plastic strain f elds are not presented for such coeff cient of friction.
However, for µ ≥ 0.3 plastic deformations are produced at the interface making plastic strain
prof les quasi-symmetric (See Figure 2.47). It must be noticed that the maximum plastic strain,
located deeper below the surface is not modif ed.
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Figure 2.47: Equivalent plastic strains in the stick-slip regime (Q = 0.5µP) for µ = 0.3
and µ= 0.5 at point C in f gure 2.43
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2. The elastic-plastic contact

As a matter of fact, residual displacements are not modif ed for µ < 0.3 as seen in f gure
2.48 when compared to f gure 2.37. Tangential residual displacements are drastically modif ed for
x/a< 0 and µ≥ 0.3 because of the spherical indenter going back and forth, and new plastic strains
produced for x/a < 0.
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Figure 2.48:Residual print along x (left) and z (right) in the stick-slip regime (Q= 0.5µP)
considering an elastic-plastic media so that Po/Sy=2, after 1 fretting cycle (point C in

f gure 2.43), and various coeff cients of friction

Contact conditions are presented in f gure 2.49 and become complicated for a non practiced eye.
In f gures 2.49e and 2.49f, plastic strains created at the interface in the stick-slip regime make
shear prof les particularly rough, and each curve of both f gures should be watched carefully and
are not as rough as it seems...

2.4.4 Conclusion

Two modes of fretting were brief y studied in this section. The second mode of fretting
(indentation) and the f rst mode of fretting (sliding).
The second mode was f rst investigated and is very academic. But many key-parameters had
to be chosen and results presented could be very different when considering another set of
parameters. A perfectly plastic hardening law was considered and the yield stress Sy was set
equal to Sy= 0.5Po, were Po is the Hertzian pressure in the elastic case. Using another hardening
law could drastically change the results. It was observed that for µ/β ≥ 0.7, additional plastic
strains were produced in the middle of the contact making tangential residual displacement
prof les characteristic. Shear prof les were modif ed accordingly, and a second annulus of slip was
observed and located approximatively at the edge of the disc of plastic strains at the interface.
This result is typical and was not observed yet, but an explanation was given. Von Mises stresses,
von Mises and hydrostatic residual stresses were also presented and highlighted a strong inf uence
of friction in the contact regime even during indentation processes. It must be noticed that friction
has a great inf uence on the residual print and mechanical properties could be underestimated
when considering a frictionless contact.
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Figure 2.49: Pressure and shears normalized by the hertzian pressure for Po/Sy=2, an
oscillating tangential load (from point B to C) and for various friction coeff cients
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2. The elastic-plastic contact

The f rst mode was then investigated and it appeared that the normal load P had a great inf u-
ence on results. In addition, the maximum tangential force Q was also of a great importance. This
problem is more complicated and can not account for all cases, even when presenting dimension-
less results, so it was decided to present two cases among all others. Additional plastic strains were
observed at the interface for µ/β ≥ 1.05 when increasing the tangential load Q up to Q = 0.5µP.
Normal residual displacements remained almost unchanged, but tangential residual displacements
were clearly modif ed for µ/β ≥ 1.05. Finally, contact pressure and shear prof les were presented
after an initial tangential loading and after the f rst fretting cycle. It was shown that plastic strain
and residual displacement prof les became globally symmetric after a complete fretting cycle.

2.5 Conclusion

Chiu’s formulae used to def ned the inf uence of a cuboid of plastic strain on the normal residual
displacements have been used and extended to the tangential residual displacements problem. An-
alytical solution were found and validated using a FE model. It has been shown that normal and
tangential residual displacements are of the same order of magnitude.
Using Gallego’s [GAL 07a, GAL 06] and Jacq’s [JAC 01, JAC 02] works and recent develop-
ments, a fast-computing method was developed and the stability of various internal algorithm was
improved. The actual method is able to deal with friction and plasticity at the same time, even in
the partial-slip regime, by coupling the normal, tangential and plastic effects. Using such method,
two modes of fretting were brief y investigated and highlighted the inf uence of hardening on the
contact conditions. Results relative to this study are discussed in conclusion 2.4.4. A particu-
lar phenomenon was observed and should be verif ed using a three-dimensional FEA considering
both friction and hardening.
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Chapter 3

Inclusions

Materials used in construction are often considered flawless, which
is sufficient at a macro-scale. However, aeronautics and many other
fields require a finer approach in order to reduce risks and increase
lifetime of parts. High stresses may be found locally under contact

conditions. Considering soft or hard inclusions, stresses can be
locally much higher, and crack nucleation and growth may occur,

reducing drastically the lifetime predictions.
Inclusions can be made of metal (Tungsten, Copper, etc), oxides
(Alumina, etc) and non metallic (Carbon, Gaz, etc) of different
shapes (Spherical, elliptical, etc).It is of a great importance to
consider those inclusions and their elastic-plastic properties in

some applications. In this chapter, the Eshelby’s theory and recent
improvements will be exposed considering spherical and cubical

inclusions. Influence of a soft and hard inclusion on the contact will
be exposed, and a cluster of inclusions will then be considered.
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The Equivalent Inclusions Method (EIM) of Eshelby and developments

3.1 The Equivalent Inclusions Method (EIM) of Eshelby
and developments

3.1.1 The Equivalent Inclusions Method (EIM) of Eshelby

J.D. Eshelby considers two kind of heterogeneities in a matrix with given material properties.
Non-homogeneities which have different mechanical properties, while inclusions which have the
same mechanical properties but additional strains, mainly due to cooling processes after thermal
treatments. This convention will be used later in this manuscript. However, the formalism used by
Eshelby is not convenient, and rarely used in papers. For this reason, the formalism used hereafter
is the same as the one used by T.Mura and.Moschovidis [MOS 75a]. Let’s consider an inf nite
volume V containing an ellipsoidal domain Ω. The Hooke’s tensors are Cm for the matrix and Ci

for the ellipsoidal heterogeneity. The matrix is then strained by ε∞, uniform far away. The problem
is about def ning f elds in and out of the heterogeneity.

Figure 3.1: Ellipsoidal heterogeneity surrounded by an inf nite volume

An ’eigenstrain’ will be considered, εp, and can be hydrostatic due to cooling processes for
instance. Furthermore, ε will be the elastic strain in and outside the INCLUSIONS and created by
its presence, as seen in FIG.3.2.

Figure 3.2: Strains def ned herebefore, for an ellipsoidal inclusion

Considering the inclusion described herebefore in an inf nite matrix, and applying an uniform
strain f eld far away, no difference can be observed for the additional strain f eld ε
If a NON-HOMOGENEITY is then considered, with a Hooke’s tensor Ci , and the body is free of
stresses far away ε∞ is applied far away, no difference can be observed for the additional strain
f eld ε. However, if ε∞ is not nil, the additional strain f eld ε will be modif ed, as seen in FIG.3.3.
It must be noticed that the expressions used to def ne the additional strain f eld ε are different in
and outside the ellipsoid.

According to conventions used in plasticity, the eigenstrain will be noted ε∗. This eigen-
strain is of a great importance in order to consider an INCLUSION problem instead of a NON-
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3. Inclusions

Figure 3.3: Strains def ned herebefore, for an ellipsoidal non-homogeneity in a strain
f eld

HOMOGENEITY problem. The problem described in FIG.3.3 is then equivalent to an inclusion
problem as def ned herebelow.

Figure 3.4: Strains for an inclusion equivalent to non-homogeneity in a strain f eld

Using the equivalence of problems def ned in FIG.3.3 and FIG.3.4, and an initial hydrostatic
eigenstrain as def ned in FIG.3.2, stresses can be expressed by:

σ = CI (ε∞ + εp− ε) = CM(ε∞ + ε− ε∗− εp) (3.1)

A relationship between the strains ε, ε∗ and εp exists, introducing the Eshelby’s tensor noted ’S’.
’S’ is def ned as a function of harmonic potentials φ and ψ.

ε = S.β = S.(ε∗ + εp) (3.2)

This set of two equations with the two unknown variables ε∗ and ε permits the determination of
the eigenstrain ε∗. ε will then be determined in and out of the heterogeneity. An analogy could be
drawn between additional strain f eld induced by a non-homogeneity and the residual strain f eld
induced by plasticity. However, misf t strains ε depend on the uniform strain applied far away,
residual strains do not. Later, the eigenstrain considered will be noted β = ε∗ + εp, according to
notations used in the literature. Misf t strains can also be expressed using Green’s functions, as
seen in Moscohvidis’ thesis.

εi j =
1

8.π.(1−ν)
.
(
ψ,i j kl .βkl −2.ν.φ,i j .βkk−2.(1−ν).(φ,k j.βik + φ,ki.β jk)

)
(3.3)

where φ and ψ are bi-harmonic potentials def ned by:

φ =
y

Ω

1
|x−x′|dx′ ψ =

y

Ω

|x−x′|dx′ (3.4)
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The Equivalent Inclusions Method (EIM) of Eshelby and developments

Gradients can be taken into account, strain f elds are then developed using Taylor series, where
Di jkl , Di jklq , Di jklqr are complex functions of φ and ψ.[MOS 75b]

ε∞
i j = Ei j +Ei jk .xk +Ei jkl .xk.xl + . . .

ε∗i j = E∗
i j +E∗

i jk .xk +E∗
i jkl .xk.xl + . . .

εi j = Bi j +Bi jk .xk +Bi jkl .xk.xl + . . .

βi j = Di j +Di jk .xk +Di jkl .xk.xl + . . . (3.5)

It is commonly admitted that a development of the second order is good enough. This approach
becomes roughly numerical and generates a 60 unknown variables system. (6 Ei j ∗, 18 Ei jk∗ and 36
Ei jkl ∗). However, considering that mesh size is small enough to ensure constant strain in each mesh
discretization, and the small error occurring [COU 03], no gradient will be considered farther.

Finally, the approach def ned above considers many simplif cations such as:

• Inf nite matrix with elastic properties

• Unique ellipsoidal inclusion/non-homogeneity.

• Dimensionless problem (cohesion is not accounted for)

• Displacements at the interface are continuous (sticked)

3.1.2 Determination ofε∗ and ε
Since the Eshelby’s tensor is not necessarily invertible, the def nition of the Eshelby’s tensor ε =
S.β = S.(ε∗ + εp) is used in the continuum equation of stresses for the non-homogeneity and
inclusion problem:

CI .(ε∞ + ε− εp) = CM.(ε∞ + ε− ε∗− εp) (3.6)

The eigenstrain ε∗ is then:

ε∗ =
(
∆C.S−CM)−1 .∆C.(−ε∞ −S.εp + εp) (3.7)

Where ∆C is the difference of material properties so that: ∆C = CM −CI

The eigenstrain ε∗ will be estimated for each non-homogeneity and each time it is needed;
for instance when strains applied far away change. This approach is purely analytical, using
matrix computations, except for the inversion of the f rst term which is made numerically. Once
ε∗ is estimated, strains and stresses inside and outside of the non-homogeneity can be found.
When many inclusions – or non-homogeneities – are considered, computations can be time
consuming. However, it must be noticed that misf t strains are linearly dependent of each
component of eigenstrains. So, if only few sizes – or later, few shapes – are considered, inf uence
coeff cients Kβ for each component of each kind of inclusion centered in (xo,yo,zo) can be
calculated once for all.

σi j (x,y,z) = ∑inclusionsβkl.K
β
i jkl (x−xo,y−yo,z−zo) or σ(x,y,z) = Kβ

(x−xo,y−yo,z−zo).β
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3. Inclusions

Numerical methods, such as the DC-FFT, used thereafter are exposed in [LIU 00] and will
be extended considering 3D-FFT instead of 2D-FFT, which considerably reduce the memory size
and computing time [ZHO 06].

3.1.3 Potentialsφ and ψ for a sphere

The misf t strain ε depends on the eigenstrain β and harmonic potentials φ and ψ. Those potentials
are different for every geometry and can be expressed for ellipsoids as follow:

∂ψ
∂x

= x.π.a.b.c.
∫ ∞

Ω

U.u.du
(a2 +u).∆

φ = π.a.b.c.
∫ ∞

Ω

U.du
∆

(3.8)

With ∆ equal to:
∆ = (a2 +u)1/2.(b2 +u)1/2.(c2 +u)1/2 (3.9)

And U def ned by:

U(u) = 1− x2

a2+u
− y2

b2+u
− z2

c2+u
(3.10)

The lower bound of integrals, λ, is the highest positive root of the equation U(u)=0 for a point out
of the inclusion. If the point considered is inside, λ is set equal to zero (λ=0).

Until now, numerical solvings have been avoid considering no gradient. However, f elds cre-
ated by any ellipsoidal inclusion – including prolate and oblate ellipsoids, but excluding spherical
inclusions – is expressed using incomplete elliptic integrals of the f rst and second kind, F and E
respectively, requiring a numerical solving. More generally, four kinds of inclusions are highly
interesting (FIG.3.5), but require a numerical computation of both potentials. Those inclusions
will be investigated in a coming study.

Figure 3.5: Oblate (left) and prolate (right) ellipsoids, f nite cylinder, cube

In this chapter, spherical inclusions will be considered and implemented in the elastic-plastic
contact code. Further development will only consist of def ning potentials for different geometries,
without major modif cation of the existing routines.

The lower bound of integrals def ned previously, when considering a point outside of the
spherical inclusion, is the highest positive root of U(u)=0. With a=b=c, it comes:

U(u) = 1− x2

a2 +u
− y2

b2 +u
− z2

c2+u
= 0, then u= −a2+x2+y2+z2 (3.11)

104 Semi-analytical modeling of complex mechanical contacts:
Application to inclusions and wear of coated surfaces

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0061/these.pdf 
© [B. Fulleringer], [2011], INSA de Lyon, tous droits réservés



The Equivalent Inclusions Method (EIM) of Eshelby and developments

Potentials become:

∂ψ
∂x

= x.π.a.b.c.
∫ ∞

λ

(
u

(a2 +u)5/2
− u.(x2 +y2+z2)

(a2+u)7/2

)
.du (3.12)

φ = π.a.b.c.
∫ ∞

λ

(
1

(a2+u)3/2
− x2 +y2+z2

(a2 +u)5/2

)
.du (3.13)

We can use this method to give a simple expression of potentials φ and ψ out of the sphere.
So, for r>a:

φ =
4
3
.π.a2.

a
r

ψ =
4
3
.π.a4.

(
−1
5
.
a.x
r3

+
x

r.a

)
(3.14)

Derivates can be easily found but are cumbersome and won’t be exposed in this chapter. Most
of derivates are expressed and can be found in section 3.2.1. Inf uence of an eigenstrain on all
points outside of the inclusion can now be found using the equation of misf t strains expressed by
Moscohvidis:

εm
i j =

1
8.π.(1−ν)

.
(
ψ,i j kl .βkl −2.ν.φ,i j .βkk−2.(1−ν).(φ,k j.βik + φ,ki.β jk)

)
(3.15)

When β equal to unity (β=1), misf t strains are the coeff cient of inf uence computed once for
all at the beginning of the computations for each ratio between the mesh and inclusion size.

3.1.4 Eshelby’s tensor of a spherical inclusion

If the lower bound λ of integrals def ned previously is set equal to zero, potentials can be def ned
inside of the spherical inclusion. Using the equation relating misf t strains and eigenstrains ex-
pressed by Moscohvidis, the misf t strains inside the inclusion can be expressed as a function of
eigenstrains using a tensor known as the Eshelby’s tensor, so that ε = S.β. After simplif cations, it
comes:

S1111 = S2222 = S3333 =
7−5.ν

15.(1−ν)

S1122 = S2211 = S2233 = S3322 = S3311 = S1133 =
5.ν−1

15.(1−ν)
(3.16)

S1212 = S2323 = S3131 =
4−5.ν

15.(1−ν)

The tensor ’S’ is then a second-order symmetric tensor. It must be noticed that this tensor does not
depend on the size of the inclusion ’a’.

S=




7−5.ν
15.(1−ν)

5.ν−1
15.(1−ν)

5.ν−1
15.(1−ν) 0 0 0

5.ν−1
15.(1−ν)

7−5.ν
15.(1−ν)

5.ν−1
15.(1−ν) 0 0 0

5.ν−1
15.(1−ν)

5.ν−1
15.(1−ν)

7−5.ν
15.(1−ν) 0 0 0

0 0 0 4−5.ν
15.(1−ν) 0 0

0 0 0 0 4−5.ν
15.(1−ν) 0

0 0 0 0 0 4−5.ν
15.(1−ν)




(3.17)
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3. Inclusions

This method differs from the method exposed by Eshelby in his collected work, using various
coeff cients (Ia,Ib,Ic,Iaa, Ibb, Icc, Iab, Iac, Ibc) which are also a reduction of surface integrals into
simple integrals [ROU 81]. However, those coeff cients are based on the same theoretical back-
ground, and similar results can be found. Eshelby’s tensor for a sphere and considering a Poisson’s
ration ν = 0.3 for the matrix f nally gives:

S=




0.5238 0.0476 0.0476 0 0 0
0.0476 0.5238 0.0476 0 0 0
0.0476 0.0476 0.5238 0 0 0

0 0 0 0.2381 0 0
0 0 0 0 0.2381 0
0 0 0 0 0 0.2381




(3.18)

3.1.5 Eshelby’s tensor for a cubical inclusions

Considering cubical elements rapidly appeared necessary for the enrichment of the media. The
misf t strain β is considered uniform in cubical inclusions. Many solutions exist for cubical ele-
ments, when dealing with plasticity for instance, and could be used hereafter. Some solutions still
have to be found.

Plastic cube (ν=0.5) Cubical non-homogeneity (ν 6= 0.5)
ε∗ εp Eshelby’s tensor for a cube

Inf uence of ε∗ on σ [Chiu] [Chiu] when using a 3D-FFT
Inf uence of ε∗ on δz [Chiu, Jacq] Using σm in the 3D-FFT

Inf uence of ε∗ on δx and δy [Chiu, Fulleringer] New technique required

Table 3.1:Elementary solutions required when dealing with cubical inclusions

It must be noticed that the Eshelby’s tensor of a sphere is uniform and used to describe the strain
level inside the inclusions. However, the Eshelby’s tensor of a cube is not uniform and must be
def ned by expanding in Taylor’s series around the origin [MOS 75b] using the element’s coordi-
nates. At this time, gradients inside the cubical inclusions will be neglected. However, they will
be considered in Leroux’ thesis.

Eshelby’s tensor of a cube can be found analytically and is used to express the misf t strain ε
to the eigenstrain ε∗ as follow: ε = S.β = S.(ε∗ + εp). Equation 3.15 is still valid and is necessary
for the determination of the Eshelby’s tensor.

εm
i j =

1
8.π.(1−ν)

.
(
ψ,i j kl .βkl −2.ν.φ,i j .βkk−2.(1−ν).(φ,k j.βik + φ,ki.β jk)

)
(3.19)

MacMillan has obtained the potential functions of a homogeneous rectangular parallelepiped
with the edge values: (2.a1,2.a2,2.a3). The coordinate system has its origin at the center of the
parallelepiped and axes are parallel to the edges. Equations become very similar to the equations
found in section 2.2.3 for the calculation of the residual stresses, since Chiu’s work is an extension
of the MacMillan potentials. It comes for potentials:
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The Equivalent Inclusions Method (EIM) of Eshelby and developments

ψ(x) =
8

∑
n=1

(−1)nH(cn) φ(x) =
8

∑
n=1

(−1)nE(cn) (3.20)

where H and E are def ned by:

H(c) =
1
4

c1c2c3R+
1
6
{(

R2−c21
)

c2c3 log(R+c1)+ (R2−c22)c3c1 log(R+c2)+ (R2−c23)c1c2 log(R+c3)
}

− 1
12

{
c41 arctan

(
c2c3
c1R

)
+c42 arctan

(
c3c1
c2R

)
+c43 arctan

(
c1c2
c3R

)}

(3.21)

E(c) =c1c2 log (R+c3)+c2c3 log(R+c1)+c3c1 log(R+c2)

− 1
2

{
c21 arctan

(
c2c3
c1R

)
+c22 arctan

(
c3c1
c2R

)
+c23 arctan

(
c1c2
c3R

)} (3.22)

and c=(c1,c2,c3), R = (c21 + c22 + c23)
1/2 and cn are the coordinates of corners in the coordinate

system. Eshelby’s tensor for a cube is found and, considering a Poisson’s ration ν = 0.3 for the
matrix, f nally gives:

S=




0.5959 0.0116 0.0116 0 0 0
0.0116 0.5959 0.0116 0 0 0
0.0116 0.0116 0.5959 0 0 0

0 0 0 0.2021 0 0
0 0 0 0 0.2021 0
0 0 0 0 0 0.2021




(3.23)

Similar tensors can be found for parallelepipedic inclusions, depending on the ratios ∆Y/∆X and
∆Z/∆X. It must be noticed that this tensor is different from the Eshelby’s tensor of a sphere.

3.1.6 Infinite half space using a 3D-FFT algorithm

High stresses may be found locally under contact conditions considering soft or hard inclusions,
and crack nucleation and growth may occur. For this reason, inclusions are very important in
contact problems where lifetime predictions are an issue. In order to run such computations, it is
necessary to extend previous solutions – valid for inf nite spaces – to half-spaces.

T.Mura worked on such application [MUR 77] and [MUR 79], trying to extend the equa-
tion given by Moscohvidis – relating misf t strains and eigenstrains – to inif nite half-spaces.
In spite of its complexity, those solutions consider an inclusion with hydrostatic eigenstrains.
It is obvious that hydrostatic eigenstrains are not necessarily encountered in inclusions under
contact conditions. Even if those solutions are not fruitful here, the method will be exposed and
assumptions will be removed using semi-analytical methods.
Common method is to decompose an isotropic half-space problem into three sub-problems, as
seen in Fig. 3.6. The f rst sub-problem considers the same inclusion but in an inf nite space, β=(
β11, β22, β33, β12, β13, β23). The second one considers an image counterpart an inclusion as
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3. Inclusions

Figure 3.6:Decomposition of the problem about a cuboidal inclusion containing constant
eigenstrains ε∗ in an isotropic half-space bounded by the plane z=0 into three subproblems

seen in a mirror in the same inf nite space. Its eigenstrains βm is modif ed in order to respect
symmetric conditions: βm =( β11, β22, β33, β12, -β13, -β23)

Solution for one inclusion in an inf nite space has been exposed previously and is fully analyt-
ical, while the determination of β for non-homogeneities is partially numerical. Solution for two
inclusions in an inf nite half space is the sum of solutions for both inclusions. It is then possible
to determine stresses all over the inf nite space for two inclusions (A)+(B). Normal tractions σ33
are nil at the free surface of an half-space, for this reason a pressure f eld is then applied (C) in
order to transfer the inf nite space problem into a half-space. This pressure f eld comes from the
solution of σ33 induced by both inclusions.

σm
33(x,y,0) = −βkl.K

β
33kl(x−xo,y−yo,−zo)

−βm
kl.K

β
33kl(x−xo,y−yo,zo)

(3.24)

Finally stresses for each point of the inf nite half – now equivalent to a half-space – is the
sum of stresses created by the f rst inclusion (A), the image counterpart (B) and the pressure f eld
emulating a free surface (C).

σm
i j (x,y,z) = βkl .K

β
i jkl (x−xo,y−yo,z−zo)

+ βm
kl.K

β
i jkl (x−xo,y−yo,z+zo)

−
∫ ∞

−∞

∫ ∞

−∞
Kp

i j .σ
m
33dxdy (3.25)

One of the problem encountered by T.Mura is the integration of this third term, while σm
33 is a

complex function related to the inf uence of both inclusion on the stress σ33 at the interface. For
this reason, it was easier to solve this integral with a hydrostatic eigenstrains β. [MUR 79]
The pressure f eld σm can be f rst estimated numerically, and its inf uence is then quantif ed using
the inf uence coeff cients of pressures on stresses and the 2D-FFT algorithm. This semi-analytical
approach refers to the 3D-FFT algorithm developed in section 2.3.6 and removes the restrictions
on the eigenstrains β.

Of course, the solution depends on the numerical estimation of the pressure f eld σm
33. This

estimation depends on the mesh ref nement considered (See section 2.3.7) and is most likely accu-
rate on the domain considered. However, the pressure is implicitly equal to zero out of the domain.
Accuracy is then dependent of the surface considered for σm

33. It has been decided to extend the
surface for the stress calculation in order to get a better accuracy when looking at the stresses in
the volume (See f gure 3.7). Since coeff cients of inf uence may vary from an inclusion to an other
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The Equivalent Inclusions Method (EIM) of Eshelby and developments

Figure 3.7: Flow chart of the misf t stresses algorithm

– considering the relative size and shapes of inclusions considered – the misf t stress algorithm
can be used many times in a row, and solutions are f nally summed.

It is worth noting that this problem has been treated in plasticity using a combination of the
2D-FFT and the 3D-FFT, requiring elementary solutions for a cuboidal zone in which plastic
strains (incompressible) are uniform in both an inf nite space and a half-space (See Table 3.2).
But solutions for a cuboidal zone – or spherical zone – in which misf t strains (compressible) are
uniform in a half-space do not exist, and the 2D-FFT can not be used. The 3D-FFT seems to be
the only way to run computations considering non-homogeneous aspects and the user will have to
deal with it carefully.

* T.Mura worked on spherical inclusions in a half-space, however eigenstrains were supposed
to be hydrostatic and does not f t the general case. Additional work can be found but no one is
generic.

3.1.7 The non-homogeneous solver

The misf t stress algorithm can be used separately. It works like a micro-scale tool, where the local
stress σ∞

x,y,z, the eigenstrain ε∗ and εp are def ned for a spherical inclusion. Run independently, a
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3. Inclusions

Solutions for an ∞ space Solutions for an ∞ half space
Cubical inclusion (ν=0.5) Y.P. Chiu Y.P.Chiu / C.Jacq / B.Fulleringer

Spherical inclusion (ν = 0.5) J.D. Eshelby ∗
Cubical inclusion (ν 6= 0.5) Y.P. Chiu �
Spherical inclusion (ν 6= 0.5) J.D. Eshelby ∗

Table 3.2:Existing analytical solutions of inf nite and semi-inf nite spaces, when consid-
ering spherical or cubical inclusions with various Poisson’s ratios

f ner mesh can be def ned so the local stress created are more accurately described. It becomes
particularly important for small inclusions when looking at 45◦.

This algorithm is now implemented in the contact solver. The stress f eld σx,y,z observed
in the elastic-plastic case below the surface will be considered locally as the stress σ∞

x,y,z. The
eigenstrains β are def ned for each inclusions considering their material properties and the local
stress by solving each time equation 3.7. The misf t stresses σm obtained are then added to the
existing contact and residual stress f elds σ and σr .

Since the non-homogeneous inclusion will have an impact on the contact conditions, the con-
tact surface must be updated. The misf t displacements Um

x , Um
y and Um

z are then introduced.
Those displacements will update the surface geometry, and the problem will be solved until they
converged (See f gure 3.8). For comparison, the process was used with residual displacements
in the elastic-plastic contact code. Once the solver has converged, the solution for an elastic and
homogeneous problem is found, and equivalent to the non-homogeneous required.

3.1.8 Non-homogeneous problems considering frictional aspects

Contact problem is actually composed of a normal and a tangential contact problem. The normal
problem determines, among other things, the pressure f eld and the contact area. The surface
separation equation has been explained in previous chapters and is:

gi j = ūp
z i j + ūqx

z i j + ūqy
z i j + ūr

z i j + ūm
z i j +hi j −φxy+ φyx−δz = 0(i, j) ∈ Γc, (3.26a)

gi j = ūp
z i j + ūqx

z i j + ūqy
z i j + ūr

z i j + ūm
z i j +hi j −φxy+ φyx−δz > 0(i, j) /∈ Γc. (3.26b)

where h(x,y) is the initial distance between the bodies and δz(x,y) the rigid body displacements.
U p

z(x,y) is the normal displacement created by the pressure f eld which must be estimated. Uq
z(x,y)x,

Uq
z(x,y)y and U r

z(x,y) are the normal displacements created by the shear f elds and plastic strains,
which are supposed constant during the determination of the pressure f eld. When dealing with
inhomogeneities, another displacement has to be taken into account. This displacement is created
by misf t strains and will be noted Um

z(x,y). It will be supposed constant during the determination
of the pressure f eld, and updated later in the computation. The tangential problem determines the
shear and slip f elds and the sticking area. It has been studied in elastic problems and in elastic
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The Equivalent Inclusions Method (EIM) of Eshelby and developments

Figure 3.8: Flow chart of the actual heterogeneous-elastic contact solver

plastic contacts in this thesis. Then the expression of sticking and slipping zones are expressed as
follow:

[
ūp

τ i j + ūqx
τ i j + ūqy

τ i j + ūr
τ i j + ūm

τ i j

]t
t ′
−∆δτ

t = sij
t = 0 (i, j) ∈ Γst, (3.27a)

[
ūp

τ i j + ūqx
τ i j + ūqy

τ i j + ūr
τ i j + ūm

τ i j

]t
t ′
−∆δτ

t = sij
t 6= 0 (i, j) ∈ Γsl ; (3.27b)

where δτ
t is the rigid body displacement. While slips are def ned between two consecutives steps,

the slips depend on tangential displacements at the moment ’t’ and ’t-1’ and are historic-sensitive.
In other words, it also means that the loading history is taken into account. ūqx

τ i j and ūqy
τ i j are the

tangential displacements created by the shear f elds which must be estimated. ūp
τ i j and ūr

τ i j are
the tangential displacements created by the pressure f eld and plastic strains, which are supposed
constant during the determination of the shear f elds. When dealing with non-homogeneities, two
additional displacements have to be taken into account. Those displacements are created by misf t
strains and will be noted ūm

τ i j .
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3. Inclusions

Finally, ūm
z;i j and ūm

τ i j are displacements induced by misf t strains and def ned in previous subsec-
tions.

Figure 3.9: Flow chart of the misf t displacement algorithm

3.1.9 Non-homogeneous problems with plastic behaviors

Inclusions can be made of metal (Tungsten, Copper,...), oxides (Alumina,...) and non metallic
(Carbon, Gaz,...) of different shapes (Spherical, elliptical,...). It is of a great importance to con-
sider those inclusions and their elastic-plastic properties in some applications, such as for rolling
contact. Because all effects can superimposed in linear elastic-plastic problems (such as pressures
and shears, contact stresses and residual stresses) misf t stresses can be added in actual elastic-
plastic contact code. However, misf t stresses are explicitly expressed for heterogeneity in an
elastic media, and has to be extended to take residual stresses into account. This extension is not
an issue and the continuum equation of stresses for the non-homogeneity and inclusion becomes:

CI (ε∞
contact+ ε∞

residual+ ε− εp) = CM (ε∞
contact+ ε∞

residual+ ε− ε∗− εp) (3.28)

Where ε∞
contact is the strain f eld created by contact conditions at the center of the inclusion

when no inclusion is considered, ε∞
residual is the strain f eld created by plastic strains at the center

of the inclusion when no inclusion is considered. This extension effectively relates true stresses –
contact and residual stresses – to the response of non-homogeneities in the media.
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The Equivalent Inclusions Method (EIM) of Eshelby and developments

Figure 3.10:Flow chart of the actual heterogeneous-elastic-plastic contact solver
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3. Inclusions

3.2 Validation of elementary solutions

3.2.1 Misfit stresses caused by a spherical inclusion

As seen in section 3.1.3, the misf t strain f eld is def ned by:

εi j =
1

8.π.(i −ν)
.
(
ψ,i j kl .βkl −2.ν.φ,i j .βkk−2.(1−ν).(φ,k j.βik + φ,ki.β jk)

)
(3.29)

where harmonic and biharmonic potentials φ and ψ are def ned by:

φ =
4
3
.π.a2.

a
r

ψ =
4
3
.π.a4.

(
−1
5
.
a.x
r3

+
x

r.a

)
(3.30)

a is the radius of the inclusion. Later, the coordinates x, y and zare normalized by the inclusion
radius. Derivates of potentials are dimensionless inside the inclusion and expressed hereafter,
while other potentials can be found using circular permutation techniques.

Inside the inclusion:
φ,11 = −4.π

3
φ,12 = 0 φ,23 = 0

ψ,1111 = −8.π
5

ψ1122 = −8.π
15

ψ1112 = 0 ψ1123 = 0 (3.31)

Outside the inclusion:

φ,11 =
4.π.x2

r5
− 4.π
3.r3

φ,12 =
4.π.x.y

r5
φ,23 =

4.π.y.z
r5

ψ,1111 =
4.π
3

.

(
21.x4

r9
− 18.x2

r7
+

9
5.r5

− 15.x4

r7
+
18.x2

r5
− 3

r3

)

ψ1122 =
4.π
3

.

(
21.y2.x2

r9
− 3.y2

r7
− 3.x2

r7
+

3
5.r5

− 15.y2.x2

r7
+
3.y2

r5
+
3.x2

r5
− 1

r3

)

ψ1112 =
4.π
3

.

(
21.y.x3

r9
− 9.x.y

r7
− 15.y.x3

r7
+
9.x.y

r5

)

ψ1123 =
4.π
3

.

(
21.z.y.x2

r9
− 3.z.y

r7
− 15.z.y.x2

r7
+
3.z.y
r5

)
(3.32)

Misf t strains ε are then used to f nd the misf t stresses, using the Hooke’s law:

σ = λ.tr(ε).I +2µ.ε (3.33)

The coeff cients of inf uence used in the code are then directly expressing the misf t stress σi j

induced by an eigenstrain βkl . The 3D-FFT is then used for solving the problem in an isotropic
half-space, since solutions are available in an inf nite space only.

The elastic f eld in a half-space due to a spherical inclusion with uniform eigenstrains are then
compared to the available results found in the literature. Seo and Mura [MUR 79] investigated the
elastic stress f eld caused by an ellipsoidal inclusion and for various ellipticity ratios. However, a
strong assumptions was made and eigenstrain is supposed to be pure dilatation (βii = 1).

Numerical results are available for a spherical inclusion tangent to the surface, and located at
a depth Zo so that Zo= 2.a3, where a3 is the sphere radius:
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Validation of elementary solutions
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Figure 3.11: Stress distribution along the x3-direction (x1=x2=0) for an inclusion in an
inf nite space [MUR 79]

• In order to see the effect of the free boundary surface, the stress distributions for an inf nite
medium are shown in f gure 3.11. Principal stresses σ11 and σ33 are compared to the nu-
merical results. Solid lines are results found analytically and symbols are semi-analytical
results. This reveal a very good agreement between the numerical integration and the ana-
lytical integration. The stress inside the inclusion is uniform.
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Figure 3.12: Stress distribution along the x1-direction on the left (x2=0 and x3=a3) and
x3-direction on the right (x1=x2=0) for c=a3.

• A spherical inclusion of radius 2a3 located at a depth z0 = a3 is now considered (the in-
clusion is tangent to the free surface). The stress distribution in the transversal direction
for Zo= 2a3 is shown in f gure 3.12a, and in the normal direction for x = y = 0 in f gure
3.12b. First of all, it must be noticed that the stress inside the inclusion is no longer uni-
form because of the free surface inf uence. The spherical inclusion creates some tension in
the interior points near the free surface. σ11 is discontinuous at the interface in the normal
direction, while σ33 is continuous. On the opposite, σ33 is discontinuous at the interface in
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3. Inclusions

the transversal direction, while σ11 becomes continuous according to Mura. Solid lines are
results found analytically and symbols are semi-analytical results.
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Figure 3.13: σ11 and σ33 at x1=x2=0 for a spherical inclusion of radius a3 located at a
depth z0 = 2a3 [MUR 79].

• The stress distribution in the normal direction for x = y= 0 is now investigated for a spher-
ical inclusion of radius 2a3 located at a depth z0 = 2a3. Similar results are shown in f gure
3.42.

The analytical integration and the numerical computation, using the 3D-FFT algorithm, has
been compared to numerical results obtained by Seo and Mura. However, the numerical method
was limited to purely dilatational eigenstrains β11 = β22 = β33 while the actual semi-analytical
method is not limited to this specif c case. It is of a great importance in a contact solver since the
contact stresses are not pure dilatations.
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Validation of elementary solutions

3.2.2 Misfit displacements caused by a spherical inclusion

The spatial displacements are used to determine the tangential def ections of the surface in the 3D-
FFT algorithm. Another set of inf uence coeff cients is then def ned and derives from the previous
equations. Since εi j = 1/2.(Ui, j +U j,i), it is found that displacements Ui derive from εii :

Ui =
1

8.π.(i −ν)
.(ψ,ikl .βkl −2.ν.φ,i .βkk−2.(1−ν).(φ,k.βik + φ,ki.βk)) (3.34)

The coordinates x, y and z are normalized by the inclusion radius a. Derivates of potentials
are homogeneous to a and expressed hereafter, while other potentials can be found using circular
permutation techniques.

φ,1 = −4.π
3

.
xa3

r3

ψ,111 =
4.π
3

.a4.

(
−3.a.x3

r7
+
3.x3

a.r5
+
9.a.x
5.r5

− 3.x
a.r3

)

ψ,122 =
4.π
3

.a4.

(
−3.a.x.y2

r7
+
3.x.y2

a.r5
+
3.a.x
5.r5

− x
a.r3

)

ψ,112 =
4.π
3

.a4.

(
−3.a.y.x2

r7
+
3.y.x2

a.r5
+
3.a.y
5.r5

− y
a.r3

)

ψ,123 =
4.π
3

.a4.

(
−3.a.x.y.z

r7
+
3.x.y.z
a.r5

)
(3.35)

The FEM def ned in section 2.2.7 has been used, but the eigenstrain is no longer incompress-
ible (it is no longer a plastic cuboid, but a cubical inclusion). The spherical inclusion must have
the same volume than the cube of size 2b. The cube is located at a depth z0 so that z0/2b = 5. It
comes that the spherical inclusion of radius a is located at a depth z0 so that a = 3

√
3/(20.π).z0.

Various cases are now considered: β11 = 1, β22 = 1, β33 = 1, β12 = 1, β13 = 1 and β23 = 1.
Both the normal (See f gure 3.14) and tangential displacements (See f gure 3.15) are presented
along the x-axis, y-axis and over an angle of 45◦for the six cases.

Finally, the analytical integration and the numerical computation, using the 3D-FFT algo-
rithm, has been validated assuming that misf t displacements created by a spherical inclusion are
similar to the misf t displacements created by a cubical inclusion if located far from the inclusion.
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3. Inclusions
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Figure 3.14:Normal displacements for a plastic cube (FEM) and a spherical inclusion of
equivalent volume (symbols) at a certain depth Zo so that Zo/2b=5. Note that the trace is

no longer equal to zero
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Validation of elementary solutions
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Figure 3.15:Tangential displacements for a plastic cube (FEM) and a spherical inclusion
of equivalent volume (symbols) at a certain depth Zo so that Zo/2b=5. Note that the trace

is no longer equal to zero
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3. Inclusions

3.2.3 Misfit stresses around a paralellepipedic inclusion

Potentials have been def ned in section 2.2.3, and are similar to the potentials def ned by Chiu for
the elastic-plastic problem. They will not be detailed here.

3.2.4 Misfit displacements caused by a cuboidal inclusion

The spatial displacements are used to determine the tangential def ections of the surface in the 3D-
FFT algorithm. Another set of inf uence is then def ned and derives from the previous equations.
Base on Chiu’s work [CHI 78], it is found that displacements Ui can be expressed as follow:

Ui =
1

16.π3.ν
. ∑
n=1,8

(−1)n
(
1−2ν
1−ν

λβkkD,imm+4µβi j D, jmm−
2µ
1−ν

.βm jD,im j

)
(3.36)

Where D are def ned at each corner of the cuboid by their coordinates
−→
Cn

−→
C1 = (x−∆x,y−∆y,z−∆z) (3.37a)

−→
C2 = (x+ ∆x,y−∆y,z−∆z) (3.37b)
−→
C3 = (x+ ∆x,y+ ∆y,z−∆z) (3.37c)
−→
C4 = (x−∆x,y+ ∆y,z−∆z) (3.37d)
−→
C5 = (x−∆x,y+ ∆y,z+ ∆z) (3.37e)
−→
C6 = (x−∆x,y−∆y,z+ ∆z) (3.37f)
−→
C7 = (x+ ∆x,y−∆y,z+ ∆z) (3.37g)
−→
C8 = (x+ ∆x,y+ ∆y,z+ ∆z) (3.37h)

While considering that misf t strains β are homogeneous inside the cuboid of size (∆x,∆y,∆y),
derivates of potentials are expressed hereafter and other potentials can be found using circular
permutation techniques:

D,111 = −π2.y.ln

(
R+z√
x2+y2

)
−π2.z.ln

(
R+y√
x2 +y2

)

D,112 = −π2.x.ln

(
R+z√
x2+y2

)

D,123 = −π2.R (3.38)

Various cases are now considered: β11 = 1, β22 = 1, β33 = 1, β12 = 1, β13 = 1 and β23 = 1.
Both the normal (See f gure 3.16) and tangential displacements (See f gure 3.17) are presented
along the x-axis, y-axis and over an angle of 45◦for the six cases. Similar results are found.
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Validation of elementary solutions

Figure 3.16: Normal displacements for a plastic cube (FEM) and a cubical inclusion
(symbols) at a certain depth Zo so that Zo/2b=5. Note that the trace is no longer equal to

zero
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3. Inclusions

Figure 3.17: Tangential displacements for a plastic cube (FEM) and a cubical inclusion
(symbols) at a certain depth Zo so that Zo/2b=5. Note that the trace is no longer equal to

zero
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Inf uence of non-homogeneities on contact conditions considering no gradient

3.3 Influence of non-homogeneities on contact conditions
considering no gradient

The method may be applied to nano-indentation, as schematically shown in Figure 3.18. In this
section, the Young’s modulus and Poisson’s ratio of the matrix are chosen as Em=210GPa and
νm=0.3, respectively. The indenter is rigid with a radius R=105µm. The maximum load P is
650mN. For the homogeneous half-space, this load leads to a contact radius a=6.05µm and a
maximum contact pressure P0=8469MPa.

Figure 3.18:Normal loading of a half-space containing multiple inclusions

To the author knowledge this type of contact problem has not been solved explicitly in the
published literature. The pressure distribution is usually assumed Hertzian; see for example Kabo
and Ekberg [KAB 04], or Courbon et al. [COU 03]. Such an assumption could be made if the
inclusion is located far from the surface. However, it will be shown here that the contact pressure
distribution may be signif cantly modif ed by the presence of inhomogeneities close to the surface,
which subsequently affect the subsurface stress distribution. The effect of different parameters of
the inhomogeneities was f rst investigated: their Young’s modulus, Poisson’s ratio, and radius. The
grid test Table 3.3 shows different arrangements to study the inf uence of each inclusion parameter.

No Inclusion Discretization Young’s Modulus Poisson’s Radius r Arrangement
parameter mesh (Cuboids) ratio ratio

1 Young’s 84x84x31 Variable ν = 0.3 r=0.1a 3D Uniform Distribution
modulus 0≤ γ ≤ 2 (484 Inclusions)

2 Inclusions 84x84x31 γ = 2 ν = 0.3 variable One inclusion in two
radius 0.03≤ r/a≤ 1.33 depth conf gurations

3 Poisson’s 84x84x31 γ = 0.5 and γ = 2 Variable r=0.1a 3D Uniform Distribution
ratio 0≤ ν ≤ 0.45 (484 Inclusions)

4 Depth 84x84x31 γ = 2 ν = 0.3 r=0.13a 2D Uniform Distribution
(49 inclusions)

Table 3.3:Different conf gurations to study the inf uence of each inclusion parameters
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3. Inclusions

3.3.1 Influence of the Young’s modulus using a cluster of inclusions

A cluster of spherical inhomogeneities is considered in a f rst example. The inhomogeneities are
equally spaced into a domain constituted of 84x84x31 cuboids such as the space between the
inclusion centers is ∆x=∆y=∆z=0.27a as shown in Figure 3.19. This conf guration includes 484
inclusions and the edge of a cuboid (mesh) is 0.2µm. The radius of the inclusions is r=0.6µm=0.1a.
Thus the total volume of inhomogeneities takes up 22% of the domain. The ratio of the inclusion
Young’s modulus to the matrix one is def ned by the dimensionless parameter γ=Ei/Em whereas
the Poisson’s ratio is set constant νI = 0.3.

Figure 3.19:Representation of the inclusion pattern in the (Oxz) plane

Figure 3.20 presents the dimensionless contact pressure distribution for various Young’s mod-
ulus ratios γ ranging from 0 to 2. The contact pressure and x and y-coordinates are normalized by
the Hertz pressure Po and contact radius a, respectively, which is the solution in the absence of in-
homogeneity. It can be verif ed that the contact pressure distribution for a cluster of homogeneous
inclusions (i.e. inhomogeneities with γ=1) is equivalent to that of the homogeneous half-space
(without inhomogeneity) which is the Hertz solution.
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Figure 3.20: Contact pressure distribution for inhomogeneities of various stiffnesses
(γ=0, 0.5, 1, 2)
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Inf uence of non-homogeneities on contact conditions considering no gradient

Figure 3.21 shows the dimensionless pressure prof le in the plane y=0 for the various ratios
γ. It can be observed that, when the inclusion is softer than the half-space, i.e. γ<1, the substrate
material surrounding the inclusions becomes more compliant and the contact pressure gets smaller
than the Hertzian pressure whereas the contact area increases. When the inclusions are stiffer than
the matrix, the contact pressure exhibits peaks of magnitude higher than the solution without
inclusion, and the contact area slightly decreases.
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Figure 3.21: Contact pressure prof le for inhomogeneities of various stiffnesses (γ=0 to
2)
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Figure 3.22:Maximum dimensionless contact pressure and von Mises stress vs. the ratio
γ = Ei/Em

The maximum of the dimensionless contact pressure and von Mises stress are shown in
Figure 3.22 as function of the γ ratio. It can be seen that, when both Poisson’s ratios equal 0.3,
the maximum of the dimensionless contact pressure increases with the inclusion stiffness when
the inclusions are stiffer than the matrix (γ>1), whereas it remains almost constant and slightly
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3. Inclusions

lower than the homogeneous solution when inclusions are softer (γ<1). An increase of more
than 22% in maximum contact pressure is found in this example when the Young’s modulus
of inhomogeneities is twice that of the matrix. Conversely the minimum of the dimensionless
contact pressure decreases when decreasing the γ ratio for inclusions softer than the matrix,
whereas it remains almost constant and slightly higher than the homogeneous solution for stiffer
inclusions (see Figure 3.21). Regarding the maximum von Mises stress, it is observed in Figure
3.22 that either decreasing or increasing the inhomogeneity stiffness from the homogeneous
solution increases the stress magnitude. The dimensionless von Mises stress reaches 0.94 for γ=2
(i.e. stiff inclusion) and 1.18 when γ=0 (void). Note that the maximum of the dimensionless von
Mises stress is found minimum for γ=1, i.e. σ/Po=0.61, which corresponds to the Hertzian or
homogeneous solution.

3.3.2 Influence of the inclusion’s radius using a unique inclusion

The effect of a single spherical inhomogeneity located near the surface and with its center lying
along the axis of symmetry as shown in Figure 3.23 is now investigated. As shown schematically
two situations can be encountered. In Figure 3.23(a) one point of the inhomogeneity surface is
always tangent to the contact surface and the center of the inhomogeneity is located at (0,0,r). In
Figure 3.23(b) the center of the inhomogeneity is kept f xed and located at (0,0,h=0.5a) which is
close for a circular contact with homogeneous material to the point where the von Mises stress is
found maximum. Note that in the current example the Poisson’s ratios and the Young’s modulus
ratio are ν = 0.3 and γ = 2, respectively.

Figure 3.23:Schematic representation of two conf gurations to study the inf uence of the
inhomogeneity of various radius r. a) The inhomogeneity is always tangent to the surface,

b) the center of the inhomogeneity is f xed at depth h=0.5a

Figure 3.24 presents the prof le of the dimensionless contact pressure in the plane y=0 for
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Inf uence of non-homogeneities on contact conditions considering no gradient

different inclusion radii when they are tangential to the surface, see Figure 3.23(a). The same
prof le is shown in Figure 3.27 when the inclusion center remains f xed, see Figure 3.23(b). It is
obvious that the presence of an inhomogeneity in the vicinity of the contact strongly affects the
contact pressure distribution. For inclusions tangent to the contact surface effects are signif cant
even for small radius; r=0.03a implies an increase in contact pressure of nearly 25%. For inhomo-
geneities located at the Hertzian depth the effect on the contact pressure becomes signif cant for
r=0.17xa and larger radius. Figure 3.26 shows the maximum dimensionless contact pressure and
von Mises stress for different values of radius r for conf gurations (a) and (b) in Figure 3.23. For
conf guration (a), the maximum contact pressure is found maximum and equal to Pmax=1.75Po
for r=0.17a, whereas the maximum von Mises stress is found for 0.33a<r<0.67a. For conf guration
(b) i.e. when the inclusion center is maintained f xed, one observes a monotonic increase of the
contact pressure and von Mises stress with the radius of the inhomogeneity. A soft inclusion will
lead to a reduction of the contact pressure in a similar manner.
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Figure 3.24: Contact pressure prof le in the plane y=0 for an inhomogeneity (ν=0.3 and
γ=2) of different radii and tangential to the surface, cf. f gure 3.23(a)
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Figure 3.25: Contact pressure prof le in the plane y=0 for an inhomogeneity (ν=0.3 and
γ=2) of different radii at depth h=0.5a, cf. Figure 3.23(b)

0 0.5 1
0.5

0.75

1

1.25

1.5

1.75

2

P
P0

r
a

Config.a

 

 

0 0.1 0.2 0.3 0.4 0.5
0.5

0.75

1

1.25

1.5

1.75

2

r
a

Config.b

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.5

0.75

1

1.25

1.5

1.75

2

σ
P0

0 0.1 0.2 0.3 0.4 0.5
0.5

0.75

1

1.25

1.5

1.75

2

P
P0

Maximum Contact Pressure
Maximum Von Mises Stress

Maximum Contact Pressure
Maximum Von Mises Stress

Figure 3.26:Maximum contact pressure and von Mises stress vs. the inclusion radius
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Inf uence of non-homogeneities on contact conditions considering no gradient

3.3.3 Influence of the Poisson’s ratio using a cluster of inclusions

When several inhomogeneities are present the solution may be affected by the interactions be-
tween them. Figure 3.27 shows the distribution of the contact pressure for a cluster of spherical
inhomogeneities. Here all neighboring inclusions of same radius r=0.17a are tangent to the contact
surface. It is observed that the maximum of the contact pressure (Pmax=1.65Po) becomes slightly
lower compared to the case of a single inhomogeneity (Pmax=1.75Po) whereas the maximum of
the von Mises stress slightly increases from σmax=0.92Po to σmax=0.99Po.
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Figure 3.27: Distribution of the contact pressure for a cluster of spherical inhomo-
geneities tangent to the contact surface

The effect of the Poisson’s ratio is now analyzed. A cluster of spherical inhomogeneities
equally spaced within a domain composed of 84x84x31 cuboids such that the inclusion center is
∆x=∆y=∆z=0.27a is considered, giving 484 inclusions. The size (edge) of each cuboid is 0.2µm.
The radius of the inclusions is r=0.6µm=0.1a. Thus the inhomogeneities take up 22% of the vol-
ume within the domain of interest (no inclusion is considered far away from the contact). Figure
3.28 shows the dimensionless maximum of the contact pressure and von Mises stress with dif-
ferent Poisson’s ratios for relatively compliant (γ=0.5) and stiff inhomogeneities (γ=2). For stiff
inclusions (γ= 2), the maximum of the contact pressure is not too much inf uenced by the variation
of the Poisson’s ratio except for nearly incompressible ones (ν=0.45) that produces an increase of
the contact pressure of nearly 28% on the top of each of them.

Meantime the maximum von Mises stress decreases continuously when the Poisson’s ratio
increases. For relatively soft inclusions (γ=0.5) the maximum contact pressure is independent of
the Poisson’s ratio – in fact only the minimum of the pressure distribution is inf uenced – see
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Figure 3.28:Maximum contact pressure and von Mises stress vs. the inclusion Poisson’s
ratio

Figure 3.29. More surprisingly, it can be observed that, in term of von Mises stress, the worst
situation for a soft inclusion is when they are nearly incompressible (σ/Po=1.09 for ν=0.45).
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Figure 3.29: Prof le of the contact pressure in the plane y=0 for soft or stiff inhomo-
geneities for various inclusion Poisson’s ratio (νm=0.3)
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Inf uence of non-homogeneities on contact conditions considering no gradient

3.3.4 Influence of the inclusion’s depth using a unique inclusion

The effect of the depth h of a horizontal plane of inhomogeneities is now investigated. A set of
49 inclusions equally spaced in a zone composed of cuboids is considered such as the distance
between inclusion centers is ∆x=∆y=0.37a. The edge of a cuboid is 0.2µm. The inhomogeneities
with Young’s modulus ratio γ=2 and Poisson’s ratio ν=0.3 have a radius r=0.8µm=0.13a. Figure
3.30 shows the effects of the plane depth on the contact pressure prof le in the plane y=0. The
pressure f uctuation becomes signif cant when the inclusions are located at a depth lower than 0.3a,
and reaches a maximumwhen they are tangent to the contact surface (i.e. for h=0.87a). Figure 3.31
shows the inf uence of the depth h where inhomogeneities are located on the maximum contact
pressure and von Mises stress. Obviously the inf uence of inhomogeneities on the contact pressure
diminishes as the inhomogeneities move away from the contact surface. When h/a>0.4, the effect
of the inhomogeneities on contact pressure becomes insignif cant and the distribution of contact
pressure converges to the solution of homogeneous half-space. The pressure peak reaches 1.75Po
when the inclusions are tangent to the surface (γ=2, ν=0.3). Note that the maximum von Mises
stress is found for h/a ' 0.5 which is coherent with the Hertz solution. To look more closely on
how nearby inclusions interact only two of them will be now considered.
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Figure 3.30: Prof le of the contact pressure in the plane y=0 for a set of 49 inhomo-
geneities equally spaced in a horizontal plane at depth h

3.3.5 Mutual interactions

The interaction between inhomogeneities is another factor that signif cantly affects the location
and magnitude of the maximum von Mises stress. It can be noted that the interaction can be
neglected when the spacing between the center of two close inclusions becomes larger than four
times their radius. The inf uence of neighboring inclusions is studied here by considering two
spherical inclusions in the elastic half-space as shown in Figure 3.32, one of them (inclusion
numbered 1) being lying along the z-axis which is the axis of symmetry normal to the circular
contact area. The inhomogeneities have the same Poisson’s ratio ν = 0.3 and the same radius
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Figure 3.31:Maximum contact pressure and von Mises stress as a function of the depth
where inclusions are located

r=0.13a. The centers of two inhomogeneities are separated by a distance d. The variable d is
formulated through the dimensionless distance β such as β = (d− 2.r)/r. β=0 means that the 2
inclusions are in contact (β ∈ [0,∞[).

Figure 3.32:Representation of two inhomogeneities in the elastic half-space

Figure 3.33 shows the contact pressure prof le for different combinations of Young’s modulus
relatively to the matrix, i.e. γ1 = 0.5 and 2 and γ2 = 0, 0.5, and 2. Here the inclusions are separated
by the distance β=0.25 at the depth h=0.23a. For reference, the Hertzian solution is also plotted.
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Inf uence of non-homogeneities on contact conditions considering no gradient

It is shown that, independently of the stiffness of the f rst inhomogeneity, the peak or dip of the
contact pressure on the top of this f rst inhomogeneity is hardly affected by the presence of a
second one when located in the same horizontal plane, including when inclusions are relatively
close (here β=0.25). It could be concluded that the effect of neighboring inclusions on the contact
pressure above a f rst one is quite limited, when they are located at the same depth. Conversely, an
alignment of inclusions along the vertical direction will affect the pressure distribution on the top
of the stringer.
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Figure 3.33: Prof le of the contact pressure on the top of two inclusions of various stiff-
nesses γ1 and γ2

The mismatch of material properties could induce sliding failures at the interface between
the inclusions and the matrix. The region where the maximum shear stress is located could also
give birth to fatigue cracks. Figure 3.34 shows the inf uence of the spacing between the two
inclusions located at depth h=0.23a for different ratios of their Young’s modulus normalized by
the matrix value (γ1,γ2) on the maximum shear stress evaluated at point P located at coordinates
(r,0,0.23a). For comparison, the maximum shear stress for a single inclusion is also included
in the form of a dash line. It is shown that the maximum shear stress starts to be signif cantly
affected when the dimensionless spacing β is lower than 3. Note that, when both a soft and a stiff
inclusions are present, the shear stress decreases and increases near the soft and stiff inclusion,
respectively. It can be also noticed that the maximum shear stress tends to increase at point P
when two inclusions softer than the matrix become closer. Conversely the maximum stress is
relaxed near the inclusion interface when both interacting inclusions are stiffer than the matrix.
Finally the worst situation is found in presence of voids or cavities (γ=0), particularly when they
are located near stiff inhomogeneities (σm/Po=0.54 for β=0.25, γ1=2 and γ2=0, see right plot in
Figure 3.34).

It should be recalled that for a circular point contact the maximum shear stress is located at
depth h=0.5a (0.48a accurately), whereas the two interacting inclusions have been previously lo-
cated at depth h=0.23a only in order to strongly affect the contact pressure distribution which is no
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Figure 3.34: Maximum shear stress at point P of coordinate (r,0,0.23a) as a function of
the spacing between the two inclusions located at depth h=0.23a

more Hertzian. Figure 3.35 shows similar results as in Figure 3.34 except that the two inclusions
are now located at depth h=0.5a and the stress given at point P’ located at the coordinates (r,0,0.5a).
It is found that, when 3<d/r<5 and for two inclusions softer than the matrix, the magnitude of the
maximum shear stress increases slightly compared to the case of a single inclusion. When d/r<3
(i.e. β<1), the soft inclusion relaxes the surrounding material and reduces the magnitude of maxi-
mum shear stress. On the other hand, the effect of stiff inclusion could cause the maximum shear
stress to increase as the distance between the inclusions decreases. The very different behaviors
of the interactions between two close inhomogeneities as plotted in Figures 3.34 and 3.35 could
be explained f rst by the contact pressure distribution on the top of inclusions.

However the interaction effects near the interface inclusion/matrix are not entirely considered
due to the approximate solution of the equivalent inclusion method. The compatibility strain is
concentrated around a low zone close to the interface, and generates high strain gradient. In this
section, the strain distributions around the interacting inclusions are computed by using Eshelby’s
equivalent inclusion method with constant eigenstrains and uniform applied strains. Benedikt
[BEN 06] presented three-dimensional stress analysis around interacting spherical inclusions.
A Taylor series expansion is employed to f nd the approximate solution of equivalent method
equations with constant, linear, or quadratic eigenstrains. The accuracy of this analytical method
is performed to compare results to f nite element computations. The quadratic expansion order of
the constrained strain and eigenstrains allows to reduce the error between the equivalent inclusion
method and f nite element solution for two close inhomogeneities. Furthermore the choice of the
location of the point around which the Taylor expansion is carried out has an inf uence on the
accuracy of the solution.
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Figure 3.35: Maximum shear stress at point P’ of coordinate (r,0,0.5a) as a function of
the spacing between the two inclusions located at depth h=0.5a

3.3.6 Summary

A list of the most important results is given below:

• The pressure f uctuation becomes signif cant when the inclusions are located at a depth h
lower than 0.3a, a being the Hertz contact radius, and reaches a maximum when they are
tangent to the contact surface. When h/a>0.4, the effect of the inhomogeneities on the
contact pressure becomes insignif cant and the distribution of contact pressure converges to
the solution of homogeneous half-space.

• For stiff inhomogeneities of Young’s modulus two times the matrix one (γ=2), and Poisson’s
ratio of 0.3 also identical to those of the matrix, the peak of pressure may reach up to
1.75xPo, Po being the Hertz contact pressure, when the inclusions are tangent to the surface.

• The contact pressure on the top of an inhomogeneity is hardly affected by neighbours ones
when they are located in the same plane parallel to the contact surface, including when they
are very close.

• The Poisson’s ratio of the inhomogeneities has a strong inf uence on the pressure distribu-
tion when it tends to the incompressible case (γ=0.5).

• The presence of a soft inclusion close to a stiff one signif cantly increases the local stress
nearby the hard inclusion. A concentration factor of nearly 2 (σm/Po=0.54 for β=0.25, γ1=2
and γ2=0) can be found when a void is located nearby a stiff one (γ=2) at mid-way (z=0.23a)
between the Hertzian depth (z=0.48a) and the surface, compared to the homogeneous Hertz
solution (σm/Po=0.3 at z=0.48a).
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Inclusions considering gradients

3.4 Inclusions considering gradients

3.4.1 Enrichment of a complete half-space

Considering an arrangement of cuboidal inclusions (similar results are found when enriched
with an arrangement of spherical inclusions), the whole domain will be enriched so it becomes
an homogeneous half-space with a different Young’s modulus. This assumption becomes true if
the stress levels below the surface are correctly described by the mesh discretization. Because
the 3D-FFT is considering a numerical integration of the pressure f eld sub-problem, a tiny error
could be induced due to a poor discretization made locally for elements close to the surface.

In order to prove the accuracy of the method for a simple case of indentation, a rigid
spherical tip will indent an elastic f at. Three different cases will then be considered, (i) a
homogeneous media with (E,ν) describing its elastic properties, (ii) a homogeneous media for
which the Young’s modulus is equal to 80% of E, and the Poisson’s ratio is kept equal to ν = 0.3.
Both problems can be easily solved using an elastic contact solver or the Hertz’s solution. (iii)
The third case will then consider an elastic media (E,ν) but a damage rate of 20% will then be
considered all over the media. In other words, for each mesh discretization of the media, a cubical
inclusion will be considered and its mechanical properties are (0.8xE, ν). To recap, those three
cases are shown hereafter (See FIgure 3.36)

Figure 3.36:Three cases are considered; case (ii) and (iii) are theoretically equivalent

Elastic problems (i) and (ii) are implicitly semi-inf nite, while the damage problem (iii) is
def ned in the domain considered and is explicitly f nite because elastic properties (E,ν) will be
considered out of the domain for the third problem. In order to get a better agreement, the dam-
aged domain is extended and must contain all stressed regions. Misf t displacements are calculated
using the 3D-FFT algorithm and used to update the geometry, which leads to a different pressure
f eld. Pressure f elds are then compared below, and show a good agreement, validating this ap-
proach.
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Figure 3.37:Pressure f elds for all cases considered. Case (ii) and (iii) are equivalent

This is a very simple analysis, but it shows the feasibility of non-homogeneous analyses using
cubical inclusion as a local enrichment in order to describe any kind of geometry. Considering
previous developments, spherical, ellipsoidal, cuboidal or even polyhedral inclusions can be dis-
cretized in many cubical inclusions and studied using such method.
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Inclusions considering gradients

3.4.2 Inclusions discretized in many cubes

First, consider an ellipsoidal inclusion (a1=a2=3.a3) or a spherical inclusion (a1=a2=a3) in an
inf nite media. Numerical calculations were carried out with ν=0.3. The dimensionless stress
distributions are shown hereafter. Solid curves are analytical results [MUR 79] and symbols are
semi-analytical results. A good agreement is found even when inclusions are poorly discretized,
considering only 10 cubes for a3.
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Figure 3.38: Stress distribution along the x3-direction (x1=x2=0) for an inclusion in
an inf nite space. Solid lines are analytical solutions [MUR 79] and symbols are semi-

analytical results

It is noticed that stresses are uniform in ellipsoidal inclusions according to Eshelby’s work.
Small differences can be observed in regions surrounding inclusions due to the discretization in
many cubical elements. This error tends to be nil when inclusions get much more discretized,
but computing time becomes rapidly unaffordable. Component σzz is compressive everywhere,
in and out of the inclusion, while component σxx is compressive inside and tensile outside. This
observation can be made, regardless of the ratio of ellipticity.

Figure 3.39:Spherical (a1=a2=a3) and ellipsoidal (a1=a2=3.a3) inclusions tangent to the
free surface

Now, let’s consider an ellipsoidal inclusion (a1=a2=3.a3) or a spherical inclusion (a1=a2=a3)
in a semi-inf nite space. Those inclusions will be located at a depth c=a3, meaning that the upper
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3. Inclusions

side of inclusions are tangent to the surface. Dimensionless stresses will be shown along directions
x1 and x3, and including the center of the inclusion (x1=x2=0 and x3=a3). Once again, results
found analytically are shown using solid curves while semi-analytical results are shown using
various symbols.
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Figure 3.40: Stress distribution along the x1-direction on the left (x2=0 and x3=a3) and
x3-direction on the right (x1=x2=0) for c=a3. Solid lines are results found analytically

[MUR 79] and symbols are semi-analytical results

A good agreement is found despite some problems already encountered in previous studies when
enriched elements are located close to the surface. Due to the discretization and geometries con-
sidered, only few elements are located just below the surface, their effect become negligible com-
pared to the others’ effect. Agreement is not as good as when considering the component σxx

near the free surface, induced by an ellipsoid. Semi-analytical results highlight a tensile region
in the free surface while Mura predicts a compressive region. Mura’s result is not consistent
with further results found in the same paper, while those results conf rm the value of s11 found
here (x1=x2=x3=0). Along the x1-axis, the stress uniformity inside the inclusion for the inf nite
medium is diminished by the existence of the free surface and some regions near the free surface
become under tension from compression. Along the x3-axis, the stress component σzz is continu-
ous and takes a maximum tension at an interior point and a maximum compression at the interface
(x1=x2=0 and x3=2.a3). The maximum compression appears at the interface point. Its magnitude
is quite different for the two cases and the compression region is broader in the ellipsoidal case
than in the spherical case. It must be noticed that σzz is now a tensile stress in same regions while
it was exclusively a compression stress when considering an inf nite half space. The stress com-
ponent σxx is tensile close to the surface and becomes rapidly compressive at interior points and
increases with x3. It changes discontinuously to tension for exterior points and decays to zero at
inf nity. Same variations of s11 are observed for both geometries.

Accuracy of the method has to be checked when considering inclusion at various depths. An
ellipsoidal inclusion (a1=a2=3.a3) or a spherical inclusion (a1=a2=a3) are then considered at a
depth c=2.a3. Stress components σxx and σzz along the x3-direction are shown hereafter and
highlight the same agreement.

As proposed by Mura, and in order to check the accuracy of the method, the stress compo-
nent σxx at x1=x2=x3=0 is shown for various depths and aspect ratios of ellipsoid (a1=a2=a3;
a1=a2=3.a3 and a1=a2=7.a3). For the spherical inclusion σxx shows large tension at the surface

140 Semi-analytical modeling of complex mechanical contacts:
Application to inclusions and wear of coated surfaces

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0061/these.pdf 
© [B. Fulleringer], [2011], INSA de Lyon, tous droits réservés



Inclusions considering gradients

Figure 3.41: Spherical (a1=a2=a3) and ellipsoidal (a1=a2=3.a3) inclusions located at
depth c=2.a3
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Figure 3.42: σ11 at x1=x2=x3=0 showing the effects of c and shapes of the inclusion,
solid lines are analytical solutions and symbols are semi-analytical results [MUR 79]

and it decreases with c. It becomes almost zero when c>3.a. σxx at the surface decreases when the
ellipsoid becomes f atter. However, the effect of the depth c is less prevalent in the f atter inclu-
sion. Depending on the depth of the inclusion, a spherical inclusion can be more critical than an
ellipsoidal inclusion or not.

To recap, analytical solutions for ellipsoidal inclusions in half-space do exist when considering
some assumptions such as purely dilatational eigenstrains. Thermal expansion can be treated with
such assumption, but it is not suff cient when misf t strains have to be taken into account. A semi-
analytical method has been developed so that ellipsoidal inclusion can be considered without any
assumptions on misf t strains. Those ellipsoidal inclusions can be treated using two different
methods:

• Inf uence coeff cients of an ellipsoid in an inf nite media and a 3D-FFT algorithm are used.
The method is very powerful when dealing with small inclusions so gradients of stresses
that will generate misf t strains can be neglected. This method has been largely studied in
previous chapters.

• Inf uence coeff cients of many small cubes that will def ne an elliptical domain can be used.
In this method, ellipsoidal inclusions have been discretized in many cubical elements and
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stress f eld induced by such ref nement has been successfully compared to analytical results.
This method has many advantages. Any geometry can be investigated, such as ellipsoidal,
cubical or polyhedral inclusions. Moreover, misf t strains can be def ned using local stresses
of the homogeneous problem, so that gradients are explicitly taken into account. Inclusion’s
effect can now be studied, regardless of its size or location below the contact.

Considering this, the following chapter will try to highlight the interest of this method when con-
sidering ellipsoidal inclusions of large size below a spherical indenter. Gradients will be taken
into account or not, and differences will be discussed. A study carried on by J.Leroux will permit
to integrate gradients analytically in a cubical inclusion so that ref nements won’t be necessary
explicitly.

3.4.3 Inclusions when considering gradients

Considering previous validations, further analysis will only show semi-analytical results. Inclu-
sion’s domain is now def ned by many cubical inclusions, so that effect of gradients of contact or
residual stresses can be taken into account. Local stress will be used to f nd misf t strains instead
of considering the central stress and considering it uniform through the inclusion which is basi-
cally the Eshelby’s theory used in all papers. Even if elliptical inclusions are considered hereafter,
it must be noticed that any geometry could be treated, such as elliptical, cubical or polyhedral
inclusions.

A rigid indenter with a spherical tip will be considered (R=2mm). Flat is made of steel and
considered elastic (E=210 GPa, ν=0.3). A normal load is then applied (P=12.307N) so that contact
radius ’a’ f ts requirements (a=20µm). Contact is supposed frictionless, but misf t displacements
are calculated in all three directions on the surface so frictional contacts can now be considered.
Dimensions of elementary elements are the same in all directions and are 1µm. An ellipsoidal
inclusion (a1=a2=3.a3) or a spherical inclusion (a1 = a2 = a3) will be considered at a certain
depth ’c’. In order to make results dimensionless, dimension a3 of those inclusions is def ned by
the theoretical contact radius ’a’ found considering the Hertzian theory (a3=0.5a=10µm). When
the upper side of inclusions is touching the surface, depth ’c’ is then half of the contact radius
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Conclusion

Figure 3.44: Spherical inclusion when considering central stress through the inclusion
(left) or local stresses (right) in the misf t strain computation

(c=0.5a), which is almost equal to the depth of maximum von Mises stress in an homogeneous
contact problem. Another case will be considered (c=a), in this case, inclusions are located in a
high gradients region and results could be sensibly different. Finally, inclusions will be considered
harder or softer than the matrix and elastic modulus Ei is taken two times harder or softer than the
matrix (Ei=2.E or Ei=0.5.E). Finally, gradients will be taken into account or not, and results will
be compared so the interest of such method should be highlighted. The Hertzian pressure has been
set as a reference, meaning that stresses are dimensionless.

3.5 Conclusion

This chapter presents the main features of a fast semi-analytical three-dimensional method to treat
the contact problem for a half-space containing multiple inhomogeneities. Analytical Eshelby so-
lutions have been implemented in the contact solver to account for spherical inhomogeneities. It
can be seen as a method to enrich the classical homogeneous solution of the contact problem. This
technique is highly eff cient in terms of computing time.
The numerical results given underline that most of the time it is not correct to assume a Hertzian
pressure distribution for the contact problem in presence of soft or stiff inhomogeneities near the
contacting surface, since the pressure distribution may exhibits peak of pressure with a magnitude
up to 1.75 times the Hertz solution. The peaks of pressure are located above stiff inhomogeneities
while soft ones produce a local decrease of the contact pressure compared with that for the ho-
mogeneous half-space. The Poisson’s ratio is also an important parameter which could increase
signif cantly the contact pressure on the top of inhomogeneities when they tend to be incompress-
ible (for example a cavity f lled with a liquid). It is also noted that stiff inhomogeneity acts to
toughen the surrounding material and reduce subsurface stress at the inclusion-matrix interface.
This phenomenon is amplif ed when the inhomogeneities get closer.
Another way is to mesh an inclusion in many small cuboids. This method requires a f ner mesh,
but allows various shapes such as ellipsoidal inclusions, cubical, polyhedral and spherical inclu-
sions. Using such technique, gradients inside the inclusion are considered. This technique has
been validated considering results found for a spherical and an elliptical inclusion in [MUR 79].
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Chapter 4

Coatings and other applications

Coating is a covering that is applied to the surface of an object,
usually referred to as the substrate. In many cases coatings are
applied to improve surface properties of the substrate, such as
appearance, adhesion, wetability, corrosion resistance, wear

resistance, and scratch resistance. In other cases, in particular in
printing processes and semiconductor device fabrication (where the

substrate is a wafer), the coating forms an essential part of the
finished product.
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Coatings

4.1 Coatings

Semi-analytical methods are a fast and simple tool for contact mechanics, running simulation with
frictional, thermal and hardening aspects. Until now they have been mostly limited to homoge-
neous half-spaces. Removing this assumption could lead the way to many other applications such
as (I) thermal softening, (II) damage for brittle materials and others, (III) coatings with complex
mechanical properties – damage and plastic behavior, for instance - and many other applications
considering different elastic properties in the media.

4.1.1 Elastic layers of uniform thickness using cubical inclusions

In previous studies, non-homogeneous aspects where applied to the whole domain, or to an ellip-
soidal domain, but could also be applied to a thin layer so coating problems can be investigated.
In this last part, stresses and pressure f elds will be compared to numerical results found in the
literature [O’S 88].
A rigid indenter is considered, with a spherical tip of radius R. It is pressed against an elastic
f at of properties (E2, ν2) covered by a layer (E1, ν1)– harder or softer than the substrate– and of
thickness ’h’ so that R=10xh. In order to normalize this problem, the normal load P will be applied
so the contact radius is equal to hwhen unlayered (See Figure 4.9).

Figure 4.1: Spherical indentation of an elastic coating [O’S 88]

Five different coatings are investigated: E1 = 0.25E2 and E1 = 0.5E2 (softer coatings) E1 = E2
(same properties), E1 = 2E2 and E1 = 4E2 (harder coating). The contact radius increases with the
softness of the coating, while the maximum pressure decreases (respectively, the contact radius
decreases with the hardness of the coating, while the maximum pressure increases), according to
numerical computations. However, pressure f elds for each case are shown in Figure 4.2 and reveal
a rough agreement between numerical and semi-analytical results, especially for hard coatings
(See [O’S 88]).

When hard coatings are considered, the maximum pressure increases and may increase so that
only one point remains in the contact (E1 = 4E2). This is a non-physical phenomenon and no
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Figure 4.2: Pressure f elds normalized by the Hertzian pressure for different coatings:
E1 = 0.5E2, E1 = E2 and E1 = 2E2

valuable solution was found in order to prevent it. There is mainly two reasons that could cause
such discrepancy:

• Non-homogeneities are typically close to the surface due to the f lm thickness and it must
be reminded that elementary solutions and algorithm have been validated for spherical and
cubical inclusions much deeper into the volume. Comparisons with numerical solutions
would have fail with inclusions arising in the contact using a 3D-FFT algorithm. This
numerical method is not adapted in this case because of the rough discretization of the
pressure f eld σm (See section 2.3.7).

• Only the zero order of the Taylor’s series has been considered for the cubical inclusions
[MOS 75b]. It is a source of error that has been relatively small until now. But it could
have an impact on the contact response when located in highly deformed volumes with
high gradients. (See the note below)

note Very similar result were observed when enrichment functions used are relative to spherical
inclusions. Despite the shape factor differences, the spherical inclusions have a great advantage
over the cubical inclusions, their simplicity. Indeed, only the zero order of the Taylor’s series has
been considered for the cubical inclusions [MOS 75b], while spherical inclusions do not require
such development and have an exact solution when in a uniform stress f eld. Some techniques
were tested and little or no improvement was observed (See section 4.1.2). It was then concluded
that even if the f rst and second order of the Taylor’s series have a small impact on the results, it is
not the source of such discrepancy.
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Coatings

Solutions using a 2D-FFT Solutions using a 3D-FFT
Cubical inclusion (Zo/2a≥ 5) If incompressible
Spherical inclusion (Zo/2a≥ 5)
Cubical inclusion (Zo/2a<5) If incompressible Reasono1
Spherical inclusion (Zo/2a<5) Reasono1

Table 4.1: Existing semi-analytical solutions when considering spherical or cubical in-
clusions at various depths Zo. The cube’s size is 2b and its volume is equal to the sphere’s

volume

4.1.2 Enrichment techniques using spherical inclusions

The shape factor of a cube and a sphere are not the same. Strain f elds induced by a cubical
or a spherical inclusion are def ned by the same equation, as shown below, where φ and ψ are
bi-harmonic potentials.

εi j =
1

8.π.(1−ν)
.
(
ψ,i j kl .βkl −2.ν.φ,i j .βkk−2.(1−ν).

(
φ,k j.βik + φ,ki.β jk

))
(4.1)

with ψ =
t

Ω |x−x′|dx′ and φ =
t

Ω
1

|x−x′|dx′

Bi-harmonic potentials φ and ψ are integral functions over the domain Ω, which is cubical
or spherical depending on the geometry considered. This expression is valid outside of the
domain Ω, and inside, def ning the Eshelby’s tensor ’S’. According to this, and because of the
common sense, strain f elds close to the inclusion considered is highly geometry-sensitive. When
a spherical inclusion becomes close enough to the contact, its shape is no longer equivalent to a
cubical inclusion, and the pressure f eld σm becomes different. Therefore, solutions of normal and
tangential displacements become inaccurate.

Stresses Inside Stresses Outside (Zo/2b≥5) Stresses Outside (Zo/2b<5)
Sphere Eshelby’s tensor Shape factor Shape factor

Eshelby’s tensor Shape factor 3D-FFT

Table 4.2:Validations of stress f elds inside/outside of a spherical element

This lead to an over-estimation of normal and tangential displacements into the contact. For
this reason, over-shooting of the real solution happened and non-physical solutions were found,
especially when considering hard coatings because of the high stress levels close to the surface.
The goal of this study is consider another geometry, based on an arrangement of spherical
inclusions, in order to reduce the inf uence of the shape factor and verify that the 3D-FFT is the
main source of error.

The shape factor of a cube and a sphere are not the same. When the inf uence coeff cients
obtained for a cube are compared to the coeff cients of inf uence obtained for a unique sphere,
differences may be observed, as seen in f gures 4.3 and 4.4.
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A technique was proposed to reduce the
gap between both geometries using an en-
richment technique, considering an arrange-
ment of spheres, as seen herebelow. Obvi-
ously, the sum of all sphere’s volume must
be equal to the cube’s volume. Similar ar-
rangement are made considering 9 and 27
spherical inclusions. Because the relative
size of inclusions is reduced, and the cubi-
cal volume is more correctly occupied, the
shape factor differences are reduced. The
coeff cients of inf uence are then described
as follow:

εi j = ∑
N

1
8.π.(1−ν)

.
(
ψ,i j kl .βkl −2.ν.φ,i j .βkk−2.(1−ν).

(
φ,k j.βik + φ,ki.β jk

))
(4.2)

with ψ =
t

Ω |x−x′N|dx′ and φ =
t

Ω
1

|x−x′N|
dx′

and x′N = x′ + /−b where b is distance between the center of the cubical element and the center
of each spherical inclusion N used to discretize this element.

Inf uence coeff cients are computed only one time at the very beginning of the numerical
procedure, and takes about 1 second for a domain of 60x60x60 elements. Depending on the
ref nement required, computing time of inf uence coeff cients may be increased by the number of
spheres used to ref ne one element. The computing time increase is negligible.

Stresses Inside Stresses Outside (Zo/2b≥5) Stresses Outside (Zo/2b<5)
N Spheres Eshelby’s tensor 3D-FFT

Table 4.3:Validations of stress f elds inside/outside of an element made of 8 spheres

This technique highly increases the accuracy of the solution outside of the inclusion, as seen
in f gures 4.3 and 4.4 when 9 spheres are used instead of 1 cuboid or a large sphere of the same
volume. However stresses inside the inclusion remain inaccurate since the Eshelby’s tensor for a
sphere has been used. Despite such improvement, discrepancies observed in 4.2 are still present,
even when discretizing each cube in 27 spheres. This short study was necessary, and it now be-
comes clear that the 3D-FFT algorithm plays a key role in the creation of the instabilities observed.
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Figure 4.3: Validations of stress f elds inside/outside of three elements considering ε∗11=1
on the left and ε∗33=1 on the right (other components are nil)
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4.1.3 Proposed technique for coating computations

The last problem that remains is induced by the 3D-FFT algorithm and using such 3D-FFT al-
gorithm is questionable. It must be reminded that no solution exists in an inf nite half space for
cubical inclusions that are compressible, and a combination of 2D and 3D-FTT is not possible
as seen in Table 4.1. The development of a technique enabling cubical and spherical inclusions
tangent to the contact surface is still required (and no solution has been found at this time). But a
trick can be used for coating problems in order to overcome this issue.

Figure 4.5: Proposed technique for coatings using an enrichment of the substrate

As seen in f gure 4.5, the substrate will be enriched instead of the coating. This implies that
the domain is large enough so it is equivalent to a half-space, since material properties out of the
domain are now equal to the coating properties. Using this technique, all cubical inclusions are
far enough from the surface so the 3D-FFT algorithm does not fail to predict stress f elds and
normal displacements.

Stresses Inside Stresses Outside (Zo/2b≥5) Stresses Outside (Zo/2b<5)
Cube No gradient No gradient None

proposed technique

Table 4.4:Validations of stress f elds inside/outside of a cubical element while enriching
the substrate

Stress issues when cubical or spherical inclusions are closed to the surface are not f xed when
using this technique, but just avoided. Another method still have to be def ned, so it would treat
this issue in order to deal with f bers and inclusions close to the surface.
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4. Coatings and other applications

A much better agreement can be found using the actual method. The pressure f eld is normal-
ized by the pressure PO found under the center of the indenter in the Hertz solution for a homo-
geneous medium when aO = h. When the Young’s modulus of the coating E1 differs signif cantly
from the Young’s modulus of the substrate E2, the radius of the contact zone and the pressure
under the center of the indenter become quite different from the Hertzian case (See Figure 4.6).
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Figure 4.6: Pressure normalized by the Hertzian pressure for different coatings

Maximum of pressure and contact radii are equivalent to the results found in [O’S 88], except
for the softest coating. In this case, the semi-analytical method predicts a maximum pressure
P = 0.56P while O’Sullivan predicts a maximum pressure PO′Sullivan = 0.5P. This is due to the
limited size of the domain considered, while contact radius increased from a/a0 = 1 to about 1.4.
A larger model, running on a 64-bits computer, can avoid such differences.
The indentation depthD is then plotted versus the applied load L acting on the indenter for different
values of E1 relative to E2 (See f gure 4.7). The load L is normalized by the Hertz loading LO

which corresponds to a0 = h. For low loads, L〈〈L0, the indentation depth versus the applied load
curves are coincident with the corresponding Hertzian curves having the same layer elastic moduli.
Because of the relative size of the contact radius compared to the coating thickness, the coating
becomes virtually thick.
On the other hand, for higest load, L〉〉L0, the indentation depth versus the applied load curves
become coincident with the Hertzian curves having the elastic moduli of the substrate. Because
the contact radius becomes large compared to the coating thickness, the coating becomes virtually
thinner.

Von Mises stresses below the surface using the actual method are successfully compared to
stresses found using a numerical method. Von Mises stresses are shown in f gure 4.8. It must
be noticed that agreement is valid in both the coating and the substrate for E1 = 0.5E2, E1 = E2
and E1 = 2E2. It can be noticed that the homogeneous problem does not show any discontinuity
between the substrate and the coating, according to the Hertz formulae. Those results will be
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analysed in section 4.1.4 and will not be detailed in this section.
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Figure 4.7: Normalized indentation curves for different coatings

Figure 4.8: Actual Method: Von Mises stress normalized by the Hertzian pressure for
different coatings: E1 = 0.5E2, E1 = E2 and E1 = 2E2

Finally, this proves the ability of such approach to deal with coatings and non-homogeneous
aspects. Multiple coatings could even be considered using such technique. However, many other
aspects still have to be validated, and that will be done in further sections. Validations under
fully-sliding conditions will be presented next.
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4. Coatings and other applications

4.1.4 Coatings under fully-sliding conditions

The solutions of the sliding contact problem agrees with the Hertz solution in the normal contact
case when the layer and substrate elastic properties are equal, while in the corresponding sliding
contact case the stresses under the indenter agree with the exact solutions found in [JOH 85].

Figure 4.9: Sphere sliding over an elastic coating [O’S 88]

note: It must be noticed that O’Sullivan’s problem is uncoupled, for this reason simulations are
also uncoupled. However, little difference was observed when considering the coupling between
the normal and the tangential problem. In consequence, pressure prof le shown in Figure 4.6 are
still valid.

The indenter radius R was also taken to be 10.h and the indenter was assumed to be rigid.
According to the previous section, the normal load applied P implies that the contact radius a
is equal to the coating thickness h for the unlayered case. The very classical Hertz formula a =(3PR
4E∗
)1/3 is used to determine P. The coeff cient of friction varies; µ= 0 (see the previous section),

µ = 0.25 and µ = 0.5 will be studied. For the layered case, material properties are recapped
hereafter:

Geometries Sphere of radius 200µm Substrate Coating of 20µm
Young’s modulus E = ∞ E2 = 210GPa E1
Poisson coeff cient ν = 0.3 ν = 0.3 ν = 0.3

Table 4.5:Material properties used for coating simulations
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The Young’s modulus value of the layer E1 varied. f ve cases are now considered:

• E1 = 1/4.E2

• E1 = 1/2.E2

• with no coating, E1 = 1.E2

• E1 = 2.E2

• E1 = 4.E2

The vonMises stresses normalized by the Hertzian pressure in the layer and substrate under the
center of the indenter for normal contact with frictional sliding are shown in Figure 4.10, central
row (µ= 0.25) and right (µ= 0.5) rows. The maximum von Mises stress value and location is also
indicated. For soft and hard coatings, maximum Von Mises stress has been successfully compared
to the results found by O’Sullivan. For hard coatings, signif cant discontinuities occur at the
interface. The maximum von Mises stress increases with the Young’s modulus of the coating, and
also moves to the surface. For a coeff cient of friction µ= 0.5, the Von Mises stress is maximum
at the surface for both the layered and unlayered case. For soft coatings, the Von Mises stress are
lower than in the unlayered case, and is not moving away from the surface. For E = 0.25Eandµ=
0.25 the maximum stress moves to the surface, but this result is supposedly disturbed by the high
proximity of stresses with the model boundaries. Stress prof les are not available for E = 0.25E
in [O’S 88]. Finally, only mild discontinuity occurs at the interface since the substrate is also
strained.

note: Simulations have been optimized, the region close to the contact is f nely meshed and
properly described, but stresses far from the contact approach the model boundaries and will
virtually increase. It is due to the limited size of the domain, which is of about 70x70x70 elements
on a 32-bits computer. But model size could be much higher on a 64-bits computer.

The three stress components σxx, σzzand σzx are then ploted as a function of depth at x= y= 0
for a coeff cient of friction µ = 0.25 in Figure 4.11. The value of the three stress components in-
crease when the layer is stiffer than the substrate. It can be explained because a stiffer thin layer
acts like a plate attached to the half-space, then a large bending stress develops in the thin layer,
resulting in an almost linear distribution of σxx through the layer. This is of a great importance,
because stiffer coatings will have a large tensile component (σxx) at the interface, aiding the prop-
agation of cracks at the base of layer in a direction orthogonal to the interface. The stresses are
also much higher into the contact for stiff coatings because of σxx), σzz) and σzx). However the
shear stress σzx) rapidly decays into the depth. Finally, it must be noticed that for soft coatings, the
maximum stress values are smaller than in the corresponding unlayered case (See Figure 4.12).
Those results show that the value of the Young’s modulus of the layer relative to the substrate has
a strong effect on stresses and yielding in both the layer and the substrate. The maximum tensile
stress on the surface also depends strongly on both the friction coeff cient and this Young’s mod-
ulus ratio. But it also prove the accuracy of the SA method while dealing with frictional contact,
even with domains of a relatively small size.
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4. Coatings and other applications

Figure 4.10: Actual Method: Von Mises stress normalized by the Hertzian pressure for
different coatings and friction coeff cients
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Figure 4.11:Stresses along the z-axis under combined normal loading and sliding contact
µ = 0.25. Large black symbols are numerical results [O’S 88] while small symbols and

lines are found using the present semi-analytical method
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Figure 4.12:Stresses σzx along the z-axis under combined normal and tangential loading
(gross-slip) for various coeff cients of friction µ= 0, µ= 0.25 and µ= 0.5.
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4.1.5 Coating thickness

The problem described by O’Sullivan imposed a unique coating thickness, but it is well known
that the coating thickness has a great impact on the contact conditions. This problem has been
studied by Plumet and Al. in [PLU 98] and will be used to validate the present method for various
coating thicknesses.
A conf guration is def ned by the coating f nite thickness h1 and the Young’s modulus ratio
between the coating and the substrate E1/E2. Variations of Pmax and the contact area A will be
compared to those of the reference case (PmaxOand AO). According to [PLU 98], Pmax

PmaxO
and A

AO
are

presented versus h1
A1/2

O

(4.13 and 4.14).
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Figure 4.13:Maximal normal pressure variations depending on the coating thickness

When the coating is thin enough, the contact conditions are governed by the substrate behavior
independently of the coating. Pmax/Pmaxo and A/Ao tend to values obtained without the coating.

Pmax

PmaxO
= 1

A
AO

= 1

In contrario, when the coating becomes thick enough, the contact conditions are governed
by the coating behavior independently of the substrate. Pmax/Pmaxo and A/Ao tend to values
obtained without the substrate.

Pmax

PmaxO
= (E∗

o/E∗)2/3
A

AO
= (E∗/E∗

o)1/3

In Figure 4.14(a), the contact area A when considering a soft coating (E1/E2=0.5) tends to A=
1.45Ao. However, semi-analytical results shown in Figure 4.14(b) highlight a different asymptote
with A = 1.55Ao. It has been concluded with the Authors that this last result was closer to the
analytical solution given by Hertz: A/Ao = (E∗

o/E∗)(2/3) = 2(2/3) = 1.5874.
In f ne, according to [LER 89], three conf gurations are possible depending on the coating

thickness and contact area size:
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Figure 4.14:Contact area size variations depending on the coating thickness

• For h1
A1/2

O

≥ 0.05, the layer is very thin and no signif cant inf uence of the coating on the
contact solution should be noted. However, due to the limited size of the model, the coating
thickness can not be smaller than few times the mesh size. In consequence, very thin layers
are not possible using the actual code. Hopefully, because of their relative inf uence, very
thin layers can be neglected.

• For 0.05 ≥ h1
A1/2

O

≥ 0.05, the effect of the coating thickness on the pressure Pmax
PmaxO

and the

contact area A
AO

is important. This problem is accurately described by the present method.

• For 1.5 ≥ h1
A1/2

O

, the layer is thick enough and the contact conditions are governed by the
coating behavior independently of the substrate.

Those results show that the coating thickness relative to the contact radii has a strong effect on the
contact conditions. The contact conditions for various coating thickness have been validated. Very
thin layers have not been yet investigated. However, the actual method has a great advantage over
other methods since it can consider layers of non-uniform thickness. This method can be used to
study wear processes in sliding (See section 4.2.4) or partially sliding (See section 4.2.5) contacts
for instance.
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4.1.6 Conclusion

The method retained here is based on the Eshelby’s theory also colled the Equivalent Inclusion
Method. It has been extended to cuboidal inclusions according to Chiu’s solutions, describing the
inf uence of a cubical inclusion on the surrounding inf nite space [CHI 77] (note that solutions
in a half-space implicitly consider an incompressible misf t strain [CHI 78]). The 3D-FFT has
been used in order to account for any misf t strain tensor. The 3D-FFT technique used for stress
computations as been extended to the tangential displacements calculation in order to permit the
resolution of the tangential contact problem (solution in a half-space also considered implicitly an
incompressible misf t strain [FUL 10]). Finally, this method is used as enrichment technique and
suffers of some f aws. The substrate is then enriched instead of the coating in order to improve
the contact stability. In f ne, all elementary solutions have been validated using a Finite Element
model. The frictionless coated contact and the fully sliding coated contact have been validated
[O’S 88]. Various coating thickness have also been considered successfully [LER 89, PLU 98,
O’S 88].

The method will now be used for partially-sliding coated contacts and wear of coated sur-
faces. However, wearing those coatings leads to many problems. (i) The coeff cient of friction is
is assumed uniform and constant which is not compatible with a coating vanishing and a substrate
appearing in the contact. (ii) Moreover coatings are described by a parallelepiped of the mesh,
which means that coatings can not be worn on the surface when considering such method. How-
ever, a specif c procedure will be drawn and coatings will remain slightly worn. Finally, the case
of reinforced and brittle materials will be exposed brief y in the latest sections.
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4. Coatings and other applications

4.2 Applications

4.2.1 Indentation of coated surfaces considering friction

The solutions given by Hertz are def ned for frictionless contacts. However, when dissimilar
material properties are considered for two bodies pressed against together, a coupling exists
between the normal and tangential problem. A radial shear appears and has been def ned by
Goodman for fully-sticking contacts [GOO 62], but does not verify the Coulomb’s law locally
at the edge of the contact zone. The solution has been extended to partially-slicking contacts
by Spence [SPE 75] to verify the Coulomb’s law locally. A sticking area appears in the center
of the contact, and its radius depends on the coeff cient of friction and the Dundurs [DUN 72]
constant. This problem has been treated in the elastic regime in [GAL 07a, GAL 10] and in the
elastic-plastic regime in section 2.4.2.

This problem is now brief y exposed when considering a uniform coating. A rigid ball
(R= 200µm)is now pressed against a coated half space (E2 = 210GPa, µ= 0.3). The normal load
applied P reaches a maximum value after 36 increments, so the contact radius for the uncoated
case becomes equal to the coating thickness a= h and a= R/10, as def ned by O’Sullivan in (See
section 4.1.3). Material properties are similar to the previous cases.
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Figure 4.15:Normal loading applied to the sphere when indenting the coated surface

It is shown in f gure 4.16 that the stress levels observed for frictionless and frictional inden-
tations are different. For frictional contacts, the maximum von Mises stress is not as deeper as in
frictionless contacts. This is due to the radial tractions observed into the contact. Because of those
tractions, the stress level also increases for frictional contact. For soft coatings, the maximum Von
Mises stress increases of about 22%, 17% for uncoated surfaces and 15% for the hard coating.
The spatial discretization is not f ne enough, and it is impossible to catch the correct value of the
sticking radius. However, it is worth noting that in this case, contacts are almost fully-sticking.
The shear distribution are radial and anti-symmetric, and are correctly described when the normal
loading is imposed slowly (36 increments are required in this simulation).
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Figure 4.16: Von Mises stresses when considering no friction (left), a friction µ = 0.5
(middle) and pressure and shears prof les for various normal loadings

It must be noticed that the maximum pressure increases for frictional contacts. Because of the
coupling, the tangential problem will change the normal problem solution. In this case, pressures
are reduced when shears are maximum, at the edge of the contact. Due to the load balance, the
pressure increases at the center of the contact, where shears are minimum or nil because of their
anti-symmetric properties.

Finally, many other coeff cients of friction are now considered: µ = 0.1, µ = 0.2, µ = 0.25,
µ = 0.3 and µ = 0.4. For lower friction coeff cients, the sticking radius c decreases according to
Spence and becomes nil for frictionless contacts. Spence curves are then presented in f gure 4.17
for three cases.

Surprisingly, Spence curves obtained when uncoated, with a hard or a soft coating are not
similar. Even if β depends on the material properties considered, this has no effect here. Indeed, β
is a constant def ned by Dundurs and is expressed as follow:
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Figure 4.17:Evolution of the sticking radius c/a for various coatings

β =
1
2
.

[
(1−2.ν)/G− (1−2.ν′)/G′

(1−ν)/G+(1−ν′)/G′

]
(4.3)

where (G,ν) and (G’,ν′) are the material properties of both bodies. In this section, the second
material is rigid. It comes that the Dundurs constant is independent of the Young’s modulus of the
material, and for µ = 0.3 it comes β = 0.2856. In consequence, Spence curves highlight a new
aspect of the problem.

For the uncoated case, numerical results are very similar to the theoretical results, even if
it must be noted that the Spence formulation does not predict the vanishing sticking area for
frictionless contacts. When the coating is thick enough, or thin enough, the problem becomes
equivalent to the homogeneous problem as seen in section 4.1.5. However, for f nite thickness,
the Spence curves differ from the uncoated case. Soft coatings are sticking more than uncoated
cases, while stiff coatings are slipping more than uncoated cases. This is caused by the
coating/substrate interface, discontinuity in which interfacial tractions are important. In our
case, the maximum von Mises stress is located in the coating, so it will be used for reference.
Stress levels are still high at the interface so it will play a role in the contact problem. For
hard coatings, the substrate is relatively softer and will increase the slipping area. In the same
manner, for soft coatings, the substrate is relatively harder and will reduce the slipping area.
This conclusion is very similar to the conclusions found in next sections, when sliding tangentially.

When von Mises stresses are mainly located below the coating/substrate interface, differ-
ent results could be expected since the coating is no longer used for reference. Additional
simulations should be run in order to highlight the inf uence of the coating thickness on the
sticking radius.
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Applications

4.2.2 Partial sliding over coated surfaces

A rigid ball (R= 200µm) is now sliding over a coated half space (E2 = 210GPa, µ = 0.3). Ma-
terial properties, coating thickness and normal loading used hereafter have been used in previous
sections (See section 4.1.3) and are def ned by O’Sullivan. The normal load applied P generates
a maximum Von Mises stress located in the coating. Because the sphere is rigid and the coated
surface is not, a coupling exists between the normal and the tangential problem and the coupling
will be considered in the contact code. A tangential displacement δx is now imposed, and the
coeff cient of friction is set equal to µ= 0.5.

Figure 4.18:Fretting cycle considering a coated surface

According to the Cattaneo-Mindlin concept [CAT 38, MIN 49], Johnson [JOH 85] gives the
solutions for Hertzian geometries loaded normally – P – and tangentially – Qx = ±|Qx| – and
this problem is known as the f rst mode of fretting. This problem has been extensively studied
experimentally, analytically and numerically. Very recently, Zhan-Jiang Wang and Al. [WAN 10]
presented a similar work considering stick-slip in coated problems, however this approach is not
based on enrichment elements but on the Papkovich-Neuber potentials, and coatings considered
are implicitly uniform. The work presented in this thesis permits non-uniform coatings so wear of
coatings can be investigated. The goal of those studies is to predict shears and slips, slipping and
sticking areas.

Two cases are now considered. First, the tangential displacement δx is kept small so the
contact remain partially sliding during the fretting-cycle. Second, the tangential displacement δx is
increased so the contact becomes fully sliding. Both cases will be investigated in next paragraphs.
The response of the system will be studied and the fretting loops will be drawn. The von Mises
stresses for the maximum amplitude of +δx and the contact pressures, shears and slips for various
loadings are also presented.
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4. Coatings and other applications

4.2.2.1 Small amplitudes of sliding

The normal loading P and the tangential displacement δx/a = 0.025 are exposed hereafter. The
tangential displacement δx has been chosen arbitrarily. Letters A,AB,B,C,CD,D,E and F will be
used later for reference.

Figure 4.19: Normal loading and tangential displacements for a sphere moving over a
coated surface, in the stick/slip regime

For small amplitudes of δx, the contact remains partially sliding and the fretting loops exposed
in f gure 4.20 are not widely opened. Since the tangential displacement δx is imposed, the maxi-
mum amplitude observed for δx/(µP) (mm/N) is independent of the coating properties. However,
the tangential loadQx is sensitive to the coating properties, and this load increases with the Young’s
modulus of the coating. This is due to higher shear stresses into the contact for hard coatings. It
must be noted that the tangential force applied is not symmetric, which is a very classical result
in partially slipping contacts. Moreover, the surface created by a fretting loop is related to the
dissipated energy. It must be noticed that hard coatings dissipate more energy than softer coatings.

Von mises stress f elds obtained during the fretting cycle (A,B,C,D,E and F) are shown in
f gure [?] for an uncoated case. It is shown that the maximum von Mises stress increases of about
4% with the application of the tangential loading from A to B. The location of the von Mises stress
may eventually moves to the surface, depending on the coeff cient of friction and the tangential
displacement δx considered. However, it must be noticed that the maximum Von Mises stress will
decrease from B to D, and then from D to F. Stress levels will f nally stabilize around a certain
value after few cycles. Obviously, stress levels remain higher than stress levels observed without
friction.

Stress f elds observed for B are now presented for various coatings in f gure 4.22. It is shown
that the dimension of stick region depends on the material properties, and increases with the soft-
ness of the coating in this case. For this reason, shears observed are lowered when considering
soft coatings. On the opposite, the sticking area is reduced and shears increased for hard coatings.
For this reason, compliant coatings need higher tangential forces to achieve the gross slip. Slips Sx

along the x-direction and Sy along the y-direction are then presented. Slips amplitude are reduced
by the softness of the coating, in both direction. Because the wear phenomenon is based on the
energy balance, and the hard coating presents a higher shear and slip level, the wear rate observed
for the hard coatings will be higher than the wear rate for soft coatings.
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Figure 4.20: Fretting loop obtained for a circular contact partially sliding and various
coating properties
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Figure 4.21: Von Mises stresses for an uncoated surface submitted to a fretting loading
of small amplitude
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Figure 4.22: Von Mises stresses at the point B in f gure 4.19 and pressures, shears and
slips for various loadings when partially sliding
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Applications

4.2.2.2 Large amplitudes of sliding

The normal loading P remains unchanged, while the tangential displacement δx/a = 0.125 is
increased by 5. This amplitude is quite interesting, since it is at the onset of the gross slip. The
letters A,AB,B,C,CD,D,E and F are still used for reference.

Figure 4.23: Normal loading and tangential displacements for a sphere moving over a
coated surface, at the onset of gross slip

For larger amplitudes of δx/µP (mm/N), the contact may transit from the stick/slip regime to
the gross-slip regime. In this case, all points of the contact zone are slipping and the Coulomb’s
law gives locally q = µp. The fretting loops are then widely opened and present two extrema, for
Qx/(P) = ∓1. As seen in the previous paragraph, the gross slip regime is reached faster for stiffer
coatings. Once again, the surface created by a fretting loop is related to the dissipated energy, and
hard coatings are dissipating more energy than softer coatings, and will wear faster.

For larger amplitudes, just after the onset of the gross-slip regime, the solutions are very close
to the fully sliding solution. Because the tangential problem is historic sensitive, the previous
contact conditions will affect the current solution. The uncoated problem is a good example, since
the solution in C and E is a transition between the stick-slip and the gross-slip regime. In this
case, the maximum von Mises stress is slightly different (VMmax= 0.921Po) than the solution in
B,D and F in f gure 4.25 (VMmax = 0.915Po). Since the slopes of curves rapidly decrease when
approaching the gross-slip regime, and this slope should tend continuously to zero, it is worth
noting that difference observed are caused by a poor loading discretization.

Stress f elds observed for B are now presented for various coatings in f gure 4.26. It is shown
that the sticking radius rapidly decreases with the coating stiffness. The pressure prof les are
differs from the Hertz solution because of the coupling with the tangential problem, f nally the
contact area may slightly evolve for the same reason. More interesting is the evolution of the slip
prof les. In the stick/slip regime, both slips Sx and Sy were lowered by the coating softness. The
same conclusion can be made for Sx, however, slips along the transversal direction become much
higher in the gross-slip regime because of the coating softness.
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Figure 4.24: Fretting loop obtained for a circular contact at the onset of sliding and for
various coating properties
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Figure 4.25: Von Mises stresses for an uncoated surface submitted to a fretting loading
of large amplitude
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Figure 4.26: Von Mises stresses, pressures, shears and slips for various loadings at the
onset of gross-slip
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4. Coatings and other applications

In the stick/slip regime, the sticking area is larger for soft coatings reducing shears amplitudes.
Because of the reduced shear tractions on the surface, the tangential displacements and slips are
reduced. However, when the gross-slip regime arises, because of the softness of the coating,
transversal displacements and slips are increased and become more important than in stiff cases.

However, it would be awkward to draw a direct conclusion because Sx are still reduced by the
softness of the coating. It must be reminded that slips are found by simple summation of slips
computed between one loading step and the next one. Because the gross-slip regime was reached
earlier when considering hard coatings, and slips are maximum in the gross-slip regime, the slips
Sx are greater.

4.2.2.3 Word of caution about previous conclusions

Various simulations have been presented in previous sections, and prove the ability of this
method to deal with frictional coated contacts included in the stick/slip regime. However, those
simulations did consider a unique normal load P and a unique coating thickness h so the contact
radius a is equal to h. In this case, the maximum Von Mises stress is located in the coating.
Different results might be observed when the maximum Von Mises stress is located deeper into
the volume.

When applying a normal load, the stress levels globally increases and move closer to the
surface because of surface tractions. Radial shears and slips are also observed, however it is
diff cult to describe a smooth slip prof le when the geometrical ref nements are limited due to
computer capabilities. The inf uence of the interface on the evolution of the sticking radius has
been highlighted and should be investigated furthermore.

In the stick-slip and gross-slip regime, similar results are observed. The maximum von
Mises stress progressively increases when applying the tangential displacement δx, until it
reaches a maximum value in the gross-slip regime. The inf uence of coating properties have been
highlighted, and it has been observed that the response of the system may signif cantly evolve
depending on the coating properties. Since shears and slips are obtained precisely in both the
stick/slip and the gross-slip regime, it is now possible to determine the wear rates for various
coatings, based on the energy balance. The methodology will be def ned in the next sections.

note: Some discontinuities can be observed for slips Sy in the transversal direction. It is due to
the slips observed when loading, summed to the slips created while sliding. It is very diff cult to
obtain a good description of the radial slips when normally loaded, when the spatial discretization
is limited by the computer capabilities. More globally, when the slip distribution is drastically
changed from an increment to another, due to the poor loading or spatial discretization, such
discontinuities are frequently observed in the slip prof les.
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4.2.3 Wear of coatings

Motivations Because dovetail joints between fan blades and the disk of turbine engines
are subjected to fretting, the objective of this research is to realize wear prediction using a
fast-computational method. The goal is obviously the estimation of wear kinetics, but also to
obtain worn surfaces, and permit the manufacturer to realize complementary design analyses with
worn surfaces.

Actual method As seen in the previous sections, the actual method is based on an enrichment
technique where non-homogeneous elements of the half-space are enriched using enrichment func-
tions def ned for a cuboidal inclusion. Enrichment functions are related to the Young’s modulus,
the Poisson’s ratio of the matrix and the shape of the inclusion, and are calculated once at all at the
beginning of the computation considering the actual parameters. The shape factor of an inclusion
is classically def ned by the ratios ∆y/∆x and ∆z/∆x.
Considering a unique set of enrichment functions, it was assumed in [NEL 06] that based on a
strain criterion, a volume of material where the equivalent plastic strain found exceeds a threshold
value while located at the surface, will detach from the surface (See Figure 4.27a). This model
requires a very f ne mesh and increases the instabilities of the contact conditions because of rough
wear prof les (mesh is never f ne enough).

Figure 4.27:Techniques used to model rough surfaces

Fretting-wear problems require a much higher stability of the contact problem, since both the
normal and the tangential problems are considered. It is important to def ne a smooth wear prof le
and use it in the non-homogeneous solver (See Figure ??b). However, this is not compatible with
the unique shape factor used in the enrichment functions calculations. Obviously, it is not even
imaginable to compute a set of enrichment functions for each size (worn geometry of the element).
An homogenization method will be used to solve this issue, making wear prof les virtually smooth
in the non-homogeneous stress-solver.
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Wear modelling Initially, the contact surface was moving down when worn. This approach
is incompatible with the half-space theory, since the surface must remain f at (large radius are
assumed to be f at). It is commonly admitted that this problem is equivalent to another problem
when the wear depth is kept small. In consequence, the coating/substrate interface will move up
instead of the contact surface moving down, as seen in f gure 4.51. Obviously, it must be noticed
that shear tractions at the coating/substrate interface become obsolete for the most severe wear
prof les.

Figure 4.28:Worn coatings considering a moving surface or a moving interface

The coating/substrate interface is now moving in the elements of the grid. Once again, a par-
allel could be drawn between this technique and other enrichment techniques such as the X-FEM
techniques. The originality consists in using an homogenization technique, based on a weighted
mean technique.

βhomogenized=
Volcoating

Volsubstrate+Volcoating
.βcoating (4.4)

In f ne, a weight tensor W is used to describe the actual geometry. For each elements of the
domain Ω, divided in Ωsubstrateand Ωcoating, W is def ned by:

W =
Volcoating

Volsubstrate+Volcoating
(4.5)

Then, it comes:

W = 0. f or elements∈ Ωsubstrate (4.6a)
0. < W < 1. f or elements∈ Ωcoating+substrate (4.6b)
W = 1. f or elements∈ Ωcoating (4.6c)

Using this technique, the coating/substrate interface slowly moves inside the elements as the
weight tensor W decreases, as seen in f gure 4.29. This helps to prevent the non-linearities induced
by geometrical non-linearities.
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Figure 4.29:The weight tensor W used to def ne the moving interface

Wear law Wear can be understood through the energetic balance [ARC 53]. Friction is a dissi-
pative phenomenon, and a part of this energy is consumed by different processes (Material trans-
formations such as plasticity [NEL 06], physical-chemical processes, third body formation) that
conduct to wear. An empirical wear law that implicitly accounts for all those aspects will be used.
The wear law is based on the Archard’s law, modif ed by Fouvry and Paulin [PAU 05, PAU 06],
and is based on the friction dissipated energy:

V = α∑
N

Ed (4.7)

Classically, the energy dissipated locally on a surface Sis caused by the local shears qx, qy and
slips sx, sy and can be def ned by:

Ed = (s2x +s2y)
0.5.(q2x +q2y)

0.5.S (4.8)

In fretting applications, the wear coeff cient α is a consequence of debris formation and debris
ejection. Because the fretting tangential displacement δo relative to the reference fretting test
amplitude is responsible for the debris ejection, the wear law used derived from:

V = αre f
δo

δref
∑
N

Ed (4.9)

Because of equation 4.9, the wear law used in the partial sliding regime differs from the wear
law used in the full sliding regime:

• In the sliding regime, the wear coeff cient αsliding is related to the wear volume (mm3)
due to a dissipated energy Ed and is expressed in mm3/J. The wear law is very classical
V = α∑N Ed

• In the partial sliding regime, the wear coeff cient αstick−slip commonly used is equal to
αre f

δref

and is expressed in mm2/J. The wear law is then expressed locally and becomes V =
αstick−slip.(s2x +s2y)

0.5.∑N Ed
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Obviously, it must be noticed that the wear coeff cient was arbitrarily chosen. Therefore, the
number of cycles obtained are arbitrary, but the wear prof les and contact conditions obtained
remain valid. In the next sections, results will be presented as a function of the maximum wear
depth.

4.2.4 Wear of coatings: fully sliding contacts

Material properties and contact conditions used hereafter are similar to the parameters used in
section 4.1.4. However, the rigid indenter will be replaced by a coated elastic indenter sliding over
a rigid f at. Indeed, a rigid sphere sliding over a coated f at would create a very small groove on
the f at geometry, while looking at a coated sphere sliding over a rigid f at the wear depth will
increase continuously.

Figure 4.30:Coated sphere sliding over a rigid f at

The spherical indenter of def ned by (E2,ν2) and radius R is pressed against the rigid f at by a
normal load P so the contact radius a0 when unlayered is equal to the coating thickness h = 10.R
of material properties (E1,ν1).

Geometries Rigid f at Sphere of radius 200µm Coating of 20µm
Young’s modulus E = ∞ E2 = 210GPa E1
Poisson coeff cient ν = 0.3 ν = 0.3 ν = 0.3

Table 4.6:Material properties

Three different coatings are investigated: E1 = 0.5E2, E1 = E2 and E1 = 2E2. The coeff cient
of friction µ considered remains low µ = 0.25 so the coating/substrate interface remains highly
stressed (See Figure 4.10). Finally, the sliding amplitude for each cycle and the wear coeff cient
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are chosen arbitrarily, δx = 1m and coe f fwear = 1µm3/J. Both parameters have an inf uence on
the number of cycles calculation only. Wear increments are def ned by the maximum wear depth
wearmax normalized by the contact radius a0. Since the wear phenomenon is based on the energy
balance, it is necessary to verify that all simulations have the same energy balance. The wear
volume Wearvol is determined using the worn geometry by: Wearvol = ∆x∆yWeardepth. Finally,
the wear volume Wearvol versus the number of cycles Ncyclescurves are plotted in f gure 4.31 and
validate the equivalence of the energy balances.
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Figure 4.31:Dissipated energy: Wear volume vs. the number of cycles

Coatings are used in mechanical engineering to improve the wear resistance of the material.
The maximum wear depth max.weardepth is f rst investigated. Figure 4.32 presents the inf uence
of the Young’s modulus of the coating on the maximum wear depth obtained after a certain
number of cycles. Obviously, those comparison are limited since the coeff cients of friction used
are similar for various coatings, which is not necessarily true for real materials.

The coating properties obviously have a great impact on the evolution of the maximum
wear depth during the f rst cycles. The slope of the curve is 1.5 times steeper for the hard coating
compared to the uncoated surface, while the slope is less than 1.5 times more gentle than the
uncoated case.

In fact, it is due to the maximum pressures found by O’Sullivan. Since the problem is fully
sliding, shears and pressures are linked together by the coeff cient of friction µ = 0.25. Because
slips are arbitrarily taken equal to 1m, wear prof les are driven by the shears prof les only.

As seen in f gure 4.33 the maximum pressures tend to diminish rapidly, which is consis-
tent with the wear phenomenon. Wear acts in decreasing the stress level at the surface. Maximum
pressures drop and f nally converge to approximatively the same solution.

This is believed to be caused by the very particular geometry obtained after a certain time.
This geometry is supposed to be optimized for the wear resistance. Because wear is governed
by the shears only (so the pressure) in this model, the pressure prof les become particularly f at,
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Figure 4.32:Maximum wear depth vs. the number of cycles
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Figure 4.33:Maximum pressure vs. the number of cycles

as seen in f gure 4.34(right). Regardless of the material properties, the pressure prof le becomes
similar for such geometry. The wear prof les are also exposed on the left for various wear depth.
The contact area increases with the maximum wear depth, as seen in f gure 4.35.
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Figure 4.34: Wear depth normalized by the contact radius (left) and associated pressure
f elds (right)

Semi-analytical modeling of complex mechanical contacts:
Application to inclusions and wear of coated surfaces

181

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0061/these.pdf 
© [B. Fulleringer], [2011], INSA de Lyon, tous droits réservés



4. Coatings and other applications

0 1E12 2E12 3E12
0

1

2

3

4x 10
−3

Number of fretting cycles

co
n
ta

ct
su

rf
a
ce

(m
m

2
)

 

 

E1 = 0.5E2

E1 = E2

E1 = 2E2

Figure 4.35:Contact surface vs. the number of cycles

The worn geometries are easily found and an example is shown in f gure 4.36. In this case, the
geometry considered is a sphere of radius R= 0.2mmlayered with a thin coating of 0.02mm(E1 =
0.5E2). The geometry is shown as it was initially (left) and for wearmax/a0 = 2 or wearmax= 2µm.
Since the initial geometry is similar for all cases considered, the worn geometry has little interest.
The wear prof les exposed in f gure 4.34 (right) are much more interesting.
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Figure 4.36:Sphere of radius 0.2mm (left) and worn (right) for max.weardepth/a0 = 2
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Figure 4.37:Von Mises stress normalized by the Hertzian pressure, for various coatings
(E1 = 0.5E2,E1 = E2 and E1 = 2E2) and wear rates, for a sphere sliding over a rigid f at

Finally, the Von Mises stresses normalized by the Hertzian pressure is shown in f gure 4.38.
Because the contact zone increases, the stress levels drop signif cantly by almost one order of
magnitude for wearmax/a0 = 2. The location of the maximum stress is found deeper into the half-
space, and the conditions at the interface may also evolve when wear is considered, however the
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stress level at the interface is also signif cantly reduced. Wear is presented in this f gure since the
contact surfaces go down when ratios wearmax/a0 go up.

issues for highly worn surfaces In previous simulations, it was decided to update the ge-
ometry when wearstep≥ 0.02µm or wearstep/a0 ≥ 0.001 considering the contact size. If wear
rates are way too important, the results may differ signif cantly at the edge of the contact and
below the surface because of the geometrical non-linearities. In f gure 4.38 the wear step used is
wearstep≥ 0.05µm, only two and half times greater, but the stresses are located at the edge of the
contact and the shape of the stress prof les are quite modif ed. The wear step will have to be de-
f ned carefully, and the stability must be verif ed using a lower wear rate. Another issue observed
when prof les are highly worn, as seen in the last f gure. It is only due to numerical noise and errors
caused by the large contact. On the f rst hand, the contact touches the boundaries of the domain,
on the second hand the domain is no longer a half-space since high stress levels are observed at the
boundaries of the domain. Both reasons are responsible for instabilities observed on the surface,
that are slowly transmitted from an element to the element next to it onto the surface.
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Figure 4.38: Von Mises stress normalized by the Hertzian pressure for a soft coating
E1 = 0.5E2 highly worn.
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4.2.5 Fretting-wear of coatings: stick-slip conditions

Figure 4.39:Fretting cycle considering a coated surface

Previous results are now extended to the stick-slip regime, considering the normal and tan-
gential loadings def ned in section 4.2.2. The f rst loading (Figure 4.40 on the left) is known to
be in the stick-slip regime, and fretting loops created are relatively narrow. On the other hand,
the second loading (Figure 4.40 on the right) is at the onset of the gross-slip regime and f nally
become fully slipping. Fretting loops created in this case are wide opened.

Figure 4.40: Normal loading and tangential displacements for a sphere moving over a
worn coating

Both cases will be studied hereafter, however it must be noticed that the normal load P (Rigid
sphere of radius R= 200µm, P= 12.3N, substrate properties E2 = 210GPa,ν = 0.3, contact radius
a= 20µm) and coating thickness h (h= 20µm) have been def ned in section 4.2.2 and are the same
in the following simulations. Further studies will have to estimate the inf uence of the coating
thickness on the system response. Moreover, it is worth noting that considering a f ne discretization
of the tangential loading (20 increments per fretting cycle), and a f ne discretization of the wear
phenomenon, the wear depth obtained after 20 fretting cycles (400 increments) are still limited to
a few microns.
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4. Coatings and other applications

Note Wear criterion is now based on a wear coeff cient arbitrarily chosen and is set equal to
1.104mm3/J.mmfor simulations in the stick-slip regime and 1.101mm3/J.mmfor simulations at
the onset of the gross-slip regime . However, wear kinetics could be increased by changing this
wear criterion, performing fast computation with a reduced accuracy of the solution.

4.2.5.1 Small amplitudes of sliding

Wear coeff cient is arbitrarily chosen and is set equal to 1.104mm3/J.mm, and amplitude of sliding
considered is small, so the contacts remain in the stick-slip regime. As seen in previous sections,
considering such amplitude, the soft coating will stick longer and wear less than stiff coatings, as
seen in f gure 4.41. It must be observed that the stiffer coating is wearing much more than other
cases, and inf uence of wear after 15 fretting cycles (300 increments) will be signif cant. However,
in other cases, this inf uence is limited.
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Figure 4.41: Dissipated energy: Wear volume vs. the number of increments (left) and
Maximum wear depth vs. the number of increments (right)

For all cases considered, the partial-slip regime is the only source of dissipation and the slip-
ping annulus observed in section 4.2.2 causes the wear prof les to be strongly discontinuous, as
seen in f gure 4.42. It must be observed that wear prof les are not totally symmetric and can be
explained as follow: (i) the stick-slip problem is not totally symmetric, even when considering a
symmetric loading, because of anti-symmetric shear prof les created by the normal loading P and
(ii) because this wear prof les is actually observed at the loading step B. However, after a long time
it is currently observed that wear prof les are becoming symmetric.

Because of wear, the maximum pressure observed will increase for all cases (see f gure 4.43a).
For the soft coating case this evolution is not even visible because of the very low wear rates, but
it is more clear for the hard coating case. In this last case, two slopes can be observed. The f rst
slope can be explained by the elevation of the contact pressure observed in the center of the contact
because of the wear annulus surrounding it. Oddly, the second slope is much more important. It
could be explained by the shear and pressure prof les observed in f gure 4.45, where maximum
pressures are observed just at the edge of the sticking zone. Obviously this is due to geometrical
non-linearities created by the wear annulus, becoming sharp enough to create an annulus peak of
pressure at the edge of the sticking zone.
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Figure 4.42:Wear prof les observed after 15 fretting cycles for various coatings

The surface area slowly increases because of wear, but it is also observed that variations of
the contact area due to the fretting loading are also visible in f gure 4.43b. It is shown that for the
hard coating and the uncoated case, the variations of the contact surface are much more important
for worn geometries. Once again, it can be explained by the pressure prof les observed in f gure
4.45. It can be observed in f gure 4.45c (E1 = 2E2) that the contact pressures at the edges of the
contact are very low. As a matter of fact, points at the edges of the contact may easily jump from
the contact zone to the an exterior point during the fretting cycle, explaining the variations of the
contact surface observed during the fretting cycle.
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Figure 4.43:Maximum pressure vs. the number of increments (left) and contact surface
vs. the number of increments (right)

The global response of the system is presented in f gure 4.44. Energy dissipation causes the
fretting loops to move clock-wise, which is easily observed for stiffer cases according to f gure
4.41c. Since the maximum pressure, contact area and global response are changing, it is expected
a signif cant change in term of von Mises stresses, pressure and shears (See f gure 4.44). It is
observed that the stress levels globally increase when compared to von Mises stresses shown in
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4. Coatings and other applications

f gure 4.21, due to the geometrical singularities observed at the edge of the contact.
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Figure 4.44:Fretting loops obtained for various worn coatings in the stick slip regime
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Figure 4.45:Von Mises stress, pressure and shear stress distributions normalized by the
Hertz pressure, for various coatings (E1 = 0.5E2, E1 = E2 and E1 = 2E2) after 15 fretting

cycles, for a sphere sliding over a rigid f at in the stick-slip regime
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Applications

4.2.5.2 Large amplitudes of sliding

The wear coeff cient is arbitrarily chosen and is set equal to 1.101mm3/J.mm, and amplitude of
sliding considered are relatively large just after the onset of the gross-slip regime. As seen in
previous sections, considering such amplitude, the soft coating will stick longer than stiff coatings.
It implies that the wear volume, related to the dissipated energy, increases with the stiffness of
coatings (See f gure 4.46). It must be observed that the stiff and uncoated cases are wearing much
more than the soft coating. This is due to the importance of the partial-slip regime for the soft
coating case.
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Figure 4.46: Dissipated energy: Wear volume vs. the number of increments (left) and
Maximum wear depth vs. the number of increments (right)

The maximum wear depth is also logically higher for stiffer cases, since the contact pressure
increases with the stiffness of coatings and the gross-slip regime is reached. However, the maxi-
mum depth is observed in the middle of the contact if the gross-slip regime is the principal mode
of dissipation, which is observed for uncoated and stiff cases.
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Figure 4.47:Wear prof les observed after 15 fretting cycles for a soft, uncoated and stiff
coating
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4. Coatings and other applications

However, considering the soft case, the partial-slip regime remains an important source of
dissipation when compared to the gross-slip regime. In this case, wear prof les are different and
an annulus of maximum wear is observed, as seen in f gure 4.47.

Because of wear, the maximum pressure observed will signif cantly drop for all cases, except
for the soft coating which has a different wear kinetic because of the stick-slip regime importance.
Oddly, the maximum pressure of the stiffest case will rapidly become the less severe case, which
is consistent with the variations of contact surfaces, as seen in f gure 4.48b.
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Figure 4.48:Maximum pressure vs. the number of increments (left) and contact surface
vs. the number of increments (right)

The global response of the system is presented in f gure 4.49. Energy dissipation causes the
fretting loops to slowly close, which is easily observed for stiffer cases according to f gure 4.46.
Since the maximum pressure, contact area and global response are changing, it is expected a
signif cant change in term of von Mises stresses, pressure, shears and slip prof les. However, it is
observed that the stress levels become similar after 15 fretting cycles (See f gure 4.50).
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Figure 4.49:Fretting loops obtained for various worn coatings in the gross slip regime

190 Semi-analytical modeling of complex mechanical contacts:
Application to inclusions and wear of coated surfaces

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0061/these.pdf 
© [B. Fulleringer], [2011], INSA de Lyon, tous droits réservés



Applications

 

x/a

E1 = .5E2 and µ = 0.5

 

z/
a

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.1

0.2

0.3

0.4

0.5

V Mmax =0.57969

 

x/a

E1 = E2 and µ = 0.5

 

z/
a

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

V Mmax =0.56195

 

x/a

E1 = 2E2 and µ = 0.5

 

z/
a

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

V Mmax =0.5556

−1.5 −1 −0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x/ao

p
/
P

o
a
n
d

q x
/
µ
P

o

−1.5 −1 −0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x/ao

p
/
P

o
a
n
d

q x
/
µ
P

o

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x/ao

p
/
P

o
a
n
d

q x
/
µ
P

o

Figure 4.50:Von Mises stress, pressure and shear distributions normalized by the Hertz
pressure, for various coatings (E1 = 0.5E2,E1 = E2 and E1 = 2E2) after 15 fretting cycles,

for a sphere sliding over a rigid f at at the onset of the gross slip regime

4.2.5.3 Evolution of fretting loops

The wear-coeff cient is now different for each case, and is globally increased signif cantly so the
wear depth are of about 6µm after 30 fretting cycles (600 loading increments). Worn surfaces
are presented and corresponding fretting loops are shown. It is observed that evolutions of the
fretting cycles observed previously are conf rmed for all cases (See f gures 4.51 and 4.53). Some
explications are also proposed.

−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
−40

5
10

15
20

25
30

35
−1

−0.5

0

0.5

1

δx/(µP )Fretting
cycles

Q
x
/
µ
P

Figure 4.51:Fretting cycle considering a coated surface (E1 = 0.5E2) highly worn

Semi-analytical modeling of complex mechanical contacts:
Application to inclusions and wear of coated surfaces

191

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2011ISAL0061/these.pdf 
© [B. Fulleringer], [2011], INSA de Lyon, tous droits réservés



4. Coatings and other applications

Two cases will be considered:

• The sliding amplitude is large enough and the gross-slip regime is reached. Wear prof les are
of the shape of an hyperbolic cosine function if the gross-slip regime is the principal mode
of dissipation, which is not the case for E2 = 0.5E1. However the evolutions of fretting loops
are very similar for all cases considered. From an initial state, wear will cause the fretting
loops to close progressively. The surface covered by each fretting cycle is progressively
diminished, meaning that the dissipation of energy has been globally reduced. Finally, the
fretting loops may close enough so the partial-slip regime is reached (for E2 = 0.5E1).

• The sliding amplitude is small enough and the gross-slip regime is not reached. In this
case, an annulus of wear is observed, and this annulus is different from a coating to another
since it was observed previously that a soft coating tends to stick longer and has a larger
sticking radius than a stiff coating. Fretting loops remain globally unchanged, however two
aspects can be considered. First of all, the surface covered by each fretting cycle is also
progressively diminished, proving that wear is still def ning an optimized geometry for its
wear resistance, which is commonly admitted. In addition, the inclination of fretting loops
is progressively reduced (fretting loops are moving clock-wise). Moreover, this inclination
is more important during the f rst fretting cycle, while it seems to be relatively stable after
a few cycles. It was observed that the inclination is modif ed by the ellipticity ratio of the
contact, which is consistent with observations since the wear prof les are not axi-symmetric.
It can be seen that the wear prof le is not axi-symmetric after the f rst fretting cycle, but
wear prof les become axi-symmetric after a few fretting cycles (See f gure 4.52). More
classically, it is caused by the changes in compliance of the contact.
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Figure 4.52:Comparison between the wear depth induced by the f rst fretting cycle (left)
and the tenth fretting cycle (right)
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Figure 4.53: Evolution of fretting loops considering severe wear depth for various coat-
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4. Coatings and other applications

4.2.6 Concrete used in civil engineering

Mechanical properties of concrete Concrete has a relatively high compressive strength, but
signif cantly lower tensile strength, and as such is usually reinforced with materials that are strong
in tension (often steel). Those reinforcements may be prestressed, as a method for overcoming
concrete’s natural weakness in tension, for use in beams, f oors or bridges with a long span (See
Figure 4.54). Prestressed steels or f bers are used to provide a clamping load which produces a
compressive stress that offsets the tensile stress that concrete would otherwise experience. Such
reinforcement could be considered using an alignment of non-homogeneities. Debounding be-
tween non-homogeneities and the matrix are not taken into account in the actual form of the code.
However it would be useless for two major reasons:

• when the cement paste within the concrete hardens this conforms to the surface details of
the steel, permitting any stress to be transmitted eff ciently between the different materials;

• Usually steel bars are rough or corrugated to further improve the bond or cohesion between
the concrete and steel;

Pre-stress of steel bars would be easily treated by simply adding a pre-strain εp along the bars’
direction (see equation 3.1).

Figure 4.54:Structure of a reinforced or prestressed concrete

Another major property is a relatively constant elasticity at low stress levels, which starts
decreasing at higher stress levels as matrix crackings develop. A closer look at it would highlight
such crackings, and would require a much f ner analysis. However, this loss of yield stress can also
be generalized throughout the matrix and a damage behavior based on some mechanical criterion,
such as the von Mises yield criterion, could be considered.

Case of a pre-stressed bar In this part, both the steel bar and the concrete are purely elastic.
Approximate material properties of steel (E1 = 210GPa,ν = 0.3) and concrete (E2 = 50GPa, ν =
0.3) are used. The contact is not loaded at this time, but the steel bar is then pre-stressed by
considering an additional strain f eld εp = 1%, in the direction of the bar and for the bar’s volume,
in the heterogeneous solver. This additional strain is arbitrarily chosen. Results obtained are
presented in f gure 4.55. Obviously, stress levels observed are purely theoretical and are linearly
proportional to εp at this time. (Note that the results are normalized by Po, the same Hertzian
pressure as used in the next paragraph)
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Figure 4.55: Von Mises stress around a pre-stressed steel bar of f nite dimensions and
located below a free surface

The pre-stress is transmitted to the concrete through the steel-concrete interface which is con-
sidered perfectly bonded. This problem should be two dimensional when considering a bar of
inf nite length. However, because of the f nite length of the steel bar, the stress f eld may vary at
the tip of this bar, while it is two dimensional far away. This prove the ability of the method to
deal with f ber reinforcements at this stage.

Case of an arrangement of bars under contact loading A normal loading is then applied
using a spherical indenter. The normal load P is applied so the Hertz pressure Po and contact radius
ao are found in the homogeneous case.

Figure 4.56:Von Mises stress around two pre-stressed steel bars of f nite dimensions and
located below a free surface, normally loaded
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4. Coatings and other applications

Parameters are chosen arbitrarily, and results shown hereafter are normalized by this Hertz
pressure. However, it must be noticed that f bers of radius Rf iber = 0.625ao are here located at
a depth z1 = ao and z2 = 2.2ao for y = ±0.625ao. Bars are still pre-stressed, but stress levels
caused by the contact loading are much higher than the pre-stress f eld observed in the previous
paragraph. The von Mises stress f eld normalized by Po is shown in f gure 4.56.
A coupling exists between the normal, tangential and non-homogeneous problem so the contact
pressure changes because of the steel bars existence. This pressure f eld is shown in f gure 4.57 and
normalized by the Hertzian pressure Po, while the Hertzian pressure is also shown for reference.
It can be seen that the presence of both steel bars close to the surface will signif cantly modify the
pressure f eld, and two extrema are now observed.
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Figure 4.57: Pressure f eld normalized by the maximum Hertz pressure (left) and com-
pared to the Hertz solution (right) for a loaded contact on a pre-stressed concrete

Conclusion In this short example, the Young’s modulus of a cylindrical volume is accounting
for f ber reinforcements. The f ber-matrix interface is perfectly bonded, and may eventually lead
to some non-physical solutions. The case of a pre-stressed concrete is brief y exposed, and the
von Mises stress observed at the steel-concrete interface are presented.
A contact loading is then considered. Four pre-stressed steel bars are placed below a spherical
contact. The pressure prof les are signif cantly modif ed because of the presence of non-
homogeneities below the surface, and the resultant von Mises stress f eld is presented.

This approach could be generalized, and the reinforcement f bers could account for com-
posite materials. However, the size of the domains and ref nement required in such analysis
should be carefully considered. Many improvements are still required in order to account for
complete composite structures. However, this approach is an example of the kind of application
that could be dealt with a semi-analytical solver that is no longer limited to the homogeneous
case.
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4.2.7 Nano indentation of human bones

Overview of bone structure Bone is a relatively hard and lightweight composite material,
and its structure is very complex since it is a multi-scale composite material, so multi-scale ex-
periments are necessary to describe macro, micro and nano-mechanical properties. The primary
tissue of bone, osseous tissue, is mostly formed of calcium phosphate in the chemical arrangement
termed calcium hydroxyl apatite. It has a relatively high compressive strength of about 1800 MPa,
but poor tensile strength of 104-120 MPa. It is also brittle and damage may occur at higher stress
levels, even if it does have a signif cant degree of elasticity, contributed chief y by collagen f bers.

Figure 4.58:Trabecular and cortical bone structure

At a higher level, bone structure can be simplif ed in two main regions (See Figure 4.58):

• The outer layer of bones is much harder than the inner bone. Its structure is relatively
compact and its porosity is 5-30%. This layer will be called cortical bone. This tissue gives
bones their smooth, white and solid appearance, and accounts for 80% of the total bone
mass of an adult skeleton.

• The inner bone is the trabecular bone or spongy bone. It is an open cell porous network of
rod and plates which accounts for the remaining 20% of total bone mass while its porosity
is 30-90%. It is lighter and allows room for blood and marrow.

Numerical modelling Cortical bone has been extensively studied at the Notre-Dame
University by Timothy Ovaert, because of its importance in mechanical resistance of bones.
Both experimental and numerical work can be found in [ZHA 08]. Typical load vs. indentation
depth curves have been obtained using a f nite-element model and considering a visco-elastic
plastic-damage behavior, using a set of parameters def ned experimentally. However, because of
the viscous aspect, the indentation speed were increased and viscous properties are found while
holding. This is obviously incompatible with the actual semi-analytical model. Moreover, the
Berkovitch tip used is not ideal for the Semi-analytical method. For this reason, an indentation
test was specif cally realized by T. Ovaert using a spherical indenter and low indentation speeds
(See Figure 4.60b).
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Figure 4.59:Elastic-plastic damage properties of cortical bone [ZHA 08]

It was assumed by Zhang and al. that the constitutive response of bones was characterized
by an elastic-plastic-damage model def ned by the material parameters described hereafter. First
of all, the cortical bone is supposed to be perfectly plastic. The Young’s modulus E is equal
to 18.6GPa. The compressive yield stress σc is set equal to 100MPa. Finally, an empirical
plastic-damage curve is def ned in [ZHA 08] and will be used to def ne the damage-rate dc

related to the equivalent plastic strain ep. This plastic-damage curve has been interpolated and an
analytical form is used in the computations (See Figure 4.59). Actually, this kind of model is very
similar to the cohesive models used for concrete in civil engineering.

Semi-analytical modelling Ordinary elastic-plastic constitutive models based on linear or
power law hardening are not able to capture the complete unloading response during indentation
of bone, particularly near the end of unloading, due to the decrease in stiffness. A rigid sphere
of radius R= 2µmwas progressively pressed against the material until it reaches P = 10µN, and
then unloaded. Damage is related to the equivalent plastic strain and modif es the strain level
because of the stiffness degradation. The strain level will directly impact on the addition of
plastic deformation, that are irreversible. In consequence it is of a great importance to couple
both problem using a very low coeff cient of relaxation on the plastic strains in order to target the
physical solution, the risk would be to over-shoot this solution.

In f ne, the actual model highlights a stiffness degradation at the end of unloading, which
is experimentally quite characteristic while indenting cortical bones, as seen in f gure 4.60
(radius of the indenter used here is unknown). The plastic-damage behavior clearly modif es
the unloading response, especially at the end of unloading. Moreover, it must be noticed that
the maximum depth remains close for both the plastic and the plastic-damage model which has
been numerically observed by Zhang et al. However, a damage level of 90% was obtained by
Zhang, which seems to be far from the constitutive equations of the SAM which is based on the
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small strain theory. Finally, the equivalent plastic strain ep for the plastic and plastic-damage are
compared in f gure 4.61.

Figure 4.60:Plastic-damage model compared to a typical bone micro-indentation exper-
imental curve [ZHA 08]

Conclusion In this short example, the Young’s modulus of the matrix changed progressively
and was based on a plastic criterion. This elastic-plastic-damage model has been used in order
to perform a spherical indentation simulation. Almost no difference can be observed while
loading and unloading, until the end of unloading, when compared to the elastic-plastic case.
The maximum depth remains almost unchanged, while the f nal print is greatly reduced in the
elastic-plastic-damage case.

This approach could be generalized, and the criterion used could be changed in order to
treat other behaviors. However, this approach is an example of the kind of application that could
be run with a semi-analytical solver that is no longer limited to the homogeneous case. Concrete
presented in previous subsection and ceramics described in section 1.5.2 are brittle and could also
be treated using such approach, in addition to the effect of their f ber reinforcements.
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4. Coatings and other applications

Figure 4.61:Plastic-damage model results compared to Plastic model results

4.3 Conclusion

The Equivalent Inclusion Method has been extended in order to consider many other inhomoge-
neous aspects. A 3D-FFT algorithm has been used to perform such computations in a reduced
computing time. Stress and pressure f elds for a coated surface obtained using such method are
compared to numerical results found in the literature. The rigid sphere is (i) indented and then
(ii) fully sliding over the coated surface [O’S 88]. Results are also compared to numerical re-
sults [PLU 98] for various coating thickness. Coupling is then added, and the stick/slip regime
is f rst investigated for a normal loading. It is observed that the coating has a great inf uence on
the contact regime while normally loaded. The ratio c/a, where c is the sticking radius and a is
the contact radius, signif cantly changes while considering different coatings. The very particular
stress state at the coating/substrate interface is believed to have a great inf uence on the contact
conditions. A tangential displacement is then imposed, and pressure, shear and stress f elds are
observed. Two cases have been considered: (I) the stick/slip regime and (II) at the onset of the
gross slip regime. It is shown that soft coatings are sticking more than hard coatings and should
wear less than hard coatings when considering the same wear coeff cient. A technique has been
proposed so that wear of coatings become possible. This is of a great importance since coatings
are no longer of uniform thickness. Wear is f rst investigated in the fully-sliding regime using
simulation (ii). Wear signif cantly reduces the maximum pressure and increases the contact area.
Pressure prof les are progressively f attened after many cycles regardless of the coating properties.
However, wear kinetics are different depending on the coating properties. This study is extended
to the stick-slip regime. Previous simulations ((I) and (II)) are then used while considering a wear
coeff cient chosen arbitrarily. As supposed in previous experiments, soft coatings tend to wear
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less than hard coatings in the stick-slip regime while imposing a tangential displacement. But,
more interesting is that surfaces covered by fretting loops in the gross-slip regime are reduced
after many cycles. The energy dissipated after each cycle is reduced by wear. Previous analysis
were considering a unique elastic coating of uniform or non-uniform thickness. But many elastic-
plastic coatings could be considered without any diff culty. This technique can be used for many
other non-homogeneities. In order to prove the interest of this method, two cases are considered
and results are presented without going any further. The case of a pre-stressed concrete is con-
sidered with a unique pre-stressed steel-bar. Stress observed at the interface are presented. Then,
an arrangement of four steel bars is considered under contact loading and stresses observed below
the surface prove that f ber reinforcements play a key role in the determination of stress levels in
the matrix. Moreover, it is shown that the contact pressure may be signif cantly modif ed because
of f ber reinforcements. In order to deal with brittle materials, enrichment of elements can be
based on a plastic criterion in order to account for damage. Results are compared to the elastic and
elastic-plastic case and a great difference has been observed. It is shown that brittle materials tend
to have the same loading curve than plastic materials, and the same slope at the onset of unloading.
However, the residual print is greatly reduced while considering a plastic-damage model. Despite
real numerical comparisons, same tendencies are observed both experimentally and numerically.
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Conclusion

Contact solvers based on the semi-analytical method need elementary analytical solutions to
compute. Love [LOV 52] and Cerruti [CER 82] solutions used in elastic contact solver are
elementary solutions relating the surface pressure and shear distributions to the subsurface stress
state and surface displacements for homogeneous and isotropic media. New elementary solutions
are required when plasticity is involved. While Chiu [CHI 78, CHI 77] described the effect
of a unique plastic zone on the residual stress and strain states, Jacq et al. [JAC 01, JAC 02]
related analytically the subsurface plastic strains to the normal surface displacements. All these
elementary solutions have been used in a three-dimensional semi-analytical elastic-plastic contact
code. A special attention to the tangential effects involved by plasticity should be paid since it
has not been properly considered until now. Analytical expressions that relate the components of
the strain tensor of an incompressible cuboïd of uniform strain on the tangential displacements
of any point of the free surface of a half-space is then expressed [FUL 10]. Both normal and
tangential solutions have been compared to a f nite element analysis and a very good agreement
was found, which validates the analytical solutions. Those solutions have been implemented into
an elastic-plastic contact solver to investigate frictional contact problems.

In order to highlight the inf uence of plasticity on the contact regime, three fretting modes
have been investigated in the second section of this manuscript: (i) indentation and (ii) incipient
motion have been more carefully studied. However, (iii) the torsional mode is studied without
going any further. Considering FEM non-linearities encountered in contact problems, which
generate cumbersome computations, models based on semi-analytical methods, with such new
ingredients to account for plasticity, could be an interesting alternative.

The third part is related to the Eshelby’s theory dealing with spherical non-homogeneities.
Using such method, spherical non-homogeneities made of a different material are considered
equivalent to a spherical inclusion with the same elastic properties. This transition is possible
using a tensor, related to the shape of the inclusion considered, known as the Eshelby’s tensor.
Because spherical inhomogeneities are easy to use and require limited numerical computations,
this shape has been f rst studied here. Inf uence on the contact has been investigated for a unique
or a cluster of non-homogeneities of various properties.
The Eshelby’s tensor for a cube is determined, and spherical inclusions are then discretized in
many cubical inclusions. Solutions obtained are then compared to the analytical solutions, and a
reasonably good agreement is found. Any shape of inclusion is now possible, considering such
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discretization. A short example is then proposed, considering a large inclusion and a fretting
loading.

The fourth part shows that such approach can be extended in order to deal with other in-
homogeneous aspects. A 3D-FFT algorithm as been successfully implemented in the contact
solver, allowing much larger models in about the same computing time, making computing time
affordable in conjunction of an elastic-plastic analysis. It was also the unique possibility in the
non-homogeneous case. A 2D-FFT was available in the elastic-plastic case.
Stress and pressure f elds for a coated surface indented by a rigid sphere were compared to
numerical results given by O’Sullinvan [O’S 88]. Fully sliding contacts were then studied when
the coupling is temporarily neglected. A good agreement is observed and studies have been
extended farther. Elastic-plastic properties can be def ned in those non-homogeneities and lead
to much complicated problems, among which are (i) elastic-plastic coatings, (ii) elastic-plastic
inclusions, (iii) brittle materials with damageable media and many other applications.
A technique is then proposed in order to wear coatings. Wear of coatings is f rst studied in the
fully-sliding regime. It is then extended to the stick-slip regime, considering a partially sliding
contact and a contact at the onset of the gross-slip regime. Variation of the contact regime is then
investigated.
In f ine, two examples are presented without going any further.(i) The case of a pre-stressed
concrete is then considered with a unique steel bar pre-stressed. An arrangement of four steel
bars is considered under contact loading. (ii) Enrichment of elements is then based on a plastic
criterion in order to account for damage. Results are compared to the elastic and elastic-plastic
case. It is shown that despite real experimental and numerical validations, same tendencies are
observed both experimentally and numerically.
To conclude, the gap between numerical and semi-analytical methods has to be reduced. Many
improvements have been made in this f eld and friction is now taken into account with hardening
problems. Moreover, spherical non-homogeneities can be considered with elastic-plastic
properties allowing further study on the inf uence of metallic purity on crack initiation and
propagation. A complete study presents the inf uence of a unique or a cluster of inclusions of
various elastic properties on the contact conditions. Coatings are then considered, results obtained
are successfully compared to the literature. Those results are extended to the stick-slip regime,
considering a full coupling of all problems. The simulation of the coating wear becomes possible
and few results are presented, among other applications. Many developments in this f eld can now
be carried on.
This work can be extended in order to study the inf uence of f ber reinforcements on the local
stress levels and the contact response. Elementary solutions for a cubical inclusion presented
in this work will have to be extended to the f rst and the second order, so that gradients could
be taken into account and solution’s accuracy improved. Using such technique, f bers will be
explicitly meshed. Other coeff cients of inf uence can also be extended from the isotropic to
the anisotropic half-space. Fiber reinforcements are no longer considered explicitly, but the
anisotropic behavior accounts for the reinforcement structure. If the contact area is large enough
compared to the f bers’ size, results obtained using the f rst method could be faced to the results
obtained using the second one.
Various techniques should be found in order to consider a coating particularly thin, which
becomes important for severe wear rates. In some cases, the substrate may appear into the contact,
another coeff cient of friction could be def ned locally, and wear kinetics could be investigated.
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