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Michael Brun Professeur Univ de Lorraine Co-Directeur de thèse
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Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI071/these.pdf 
© [M. Gibert], [2022], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI071/these.pdf 
© [M. Gibert], [2022], INSA Lyon, tous droits réservés



Département FEDORA – INSA Lyon - Ecoles Doctorales  
 

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE 

 
CHIMIE  CHIMIE DE LYON 

https://www.edchimie-lyon.fr 
Sec. : Renée EL MELHEM 
Bât. Blaise PASCAL, 3e étage 
secretariat@edchimie-lyon.fr 
 

M. Stéphane DANIELE 
C2P2-CPE LYON-UMR 5265 
Bâtiment F308, BP 2077 
43 Boulevard du 11 novembre 1918 
69616 Villeurbanne 
directeur@edchimie-lyon.fr 
 

 
E.E.A. ÉLECTRONIQUE, ÉLECTROTECHNIQUE, 

AUTOMATIQUE 

https://edeea.universite-lyon.fr 
Sec. : Stéphanie CAUVIN 
Bâtiment Direction INSA Lyon 
Tél : 04.72.43.71.70  
secretariat.edeea@insa-lyon.fr 

M. Philippe DELACHARTRE 
INSA LYON 
Laboratoire CREATIS 
Bâtiment Blaise Pascal, 7 avenue Jean Capelle 
69621 Villeurbanne CEDEX 
Tél : 04.72.43.88.63  
philippe.delachartre@insa-lyon.fr 

 
E2M2 ÉVOLUTION, ÉCOSYSTÈME, 

MICROBIOLOGIE, MODÉLISATION 

http://e2m2.universite-lyon.fr 
Sec. : Sylvie ROBERJOT 
Bât. Atrium, UCB Lyon 1 
Tél : 04.72.44.83.62 
secretariat.e2m2@univ-lyon1.fr 
 

M. Philippe NORMAND 
Université Claude Bernard Lyon 1 
UMR 5557 Lab. d’Ecologie Microbienne 
Bâtiment Mendel 
43, boulevard du 11 Novembre 1918 
69 622 Villeurbanne CEDEX 
philippe.normand@univ-lyon1.fr 

 
EDISS INTERDISCIPLINAIRE SCIENCES-SANTÉ 

http://ediss.universite-lyon.fr 
Sec. : Sylvie ROBERJOT 
Bât. Atrium, UCB Lyon 1 
Tél : 04.72.44.83.62 
secretariat.ediss@univ-lyon1.fr 
 

Mme Sylvie RICARD-BLUM 
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires 
(ICBMS) - UMR 5246 CNRS - Université Lyon 1 
Bâtiment Raulin - 2ème étage Nord 
43 Boulevard du 11 novembre 1918 
69622 Villeurbanne Cedex 
Tél : +33(0)4 72 44 82 32 
sylvie.ricard-blum@univ-lyon1.fr 
  

INFOMATHS INFORMATIQUE ET MATHÉMATIQUES 

http://edinfomaths.universite-lyon.fr 
Sec. : Renée EL MELHEM 
Bât. Blaise PASCAL, 3e étage 
Tél : 04.72.43.80.46  
infomaths@univ-lyon1.fr 

M. Hamamache KHEDDOUCI 
Université Claude Bernard Lyon 1 
Bât. Nautibus 
43, Boulevard du 11 novembre 1918 
69 622 Villeurbanne Cedex France 
Tél : 04.72.44.83.69 
hamamache.kheddouci@univ-lyon1.fr 

 
Matériaux 

MATÉRIAUX DE LYON 

http://ed34.universite-lyon.fr 
Sec. : Yann DE ORDENANA 
Tél : 04.72.18.62.44 
yann.de-ordenana@ec-lyon.fr 

M. Stéphane BENAYOUN 
Ecole Centrale de Lyon 
Laboratoire LTDS 
36 avenue Guy de Collongue 
69134 Ecully CEDEX 
Tél : 04.72.18.64.37 
stephane.benayoun@ec-lyon.fr 

 
MEGA MÉCANIQUE, ÉNERGÉTIQUE, 

GÉNIE CIVIL, ACOUSTIQUE 

http://edmega.universite-lyon.fr 
Sec. : Stéphanie CAUVIN 
Tél : 04.72.43.71.70  
Bâtiment Direction INSA Lyon 
mega@insa-lyon.fr 

M. Jocelyn BONJOUR 
INSA Lyon 
Laboratoire CETHIL  
Bâtiment Sadi-Carnot 
9, rue de la Physique  
69621 Villeurbanne CEDEX  
jocelyn.bonjour@insa-lyon.fr 

 
ScSo ScSo*  

https://edsciencessociales.universite-lyon.fr 
Sec. : Mélina FAVETON 
INSA : J.Y. TOUSSAINT 
Tél : 04.78.69.77.79 
melina.faveton@univ-lyon2.fr 

M. Christian MONTES 
Université Lumière Lyon 2 
86 Rue Pasteur 
69365 Lyon CEDEX 07 
christian.montes@univ-lyon2.fr 

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie 

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI071/these.pdf 
© [M. Gibert], [2022], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI071/these.pdf 
© [M. Gibert], [2022], INSA Lyon, tous droits réservés



v

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE LYON

Abstract

A new robust co-simulation approach for transient Fluid-Structure

Interaction problems

Marie Gibert

This work proposes a coupling method for transient fluid-structure interaction (FSI)
problems, based on a monolithic formulation and solved by a co-simulation algorithm.
The aim is to use existing solvers for fluid and solid simulations and ensure a conser-
vative coupling, with quasi-optimal level of efficiency, robustness and accuracy.
The coupled problem’s monolithic formulation uses a Schur’s dual approach, to ensure
the normal velocities continuity at the interface. Then, the simulation algorithm is
based on an extension of the GC method for FSI problems, to couple heterogeneous
methods of discretization, integration scheme and time scales. The fluid sub-domain
is discretized by finite volumes method and an explicit Runge-Kutta scheme. The
solid sub-domain is discretized by finite elements method and an implicit Newmark
scheme. Each sub-domain is driven by its own time scale.
The proposed method is validated with academic test cases. Then, it is integrated
into the coupling library preCICE in order to run FSI simulations using existing CFD
and structural dynamics three-dimensional solvers. Thus, the FSI benchmarks of the
forward step problem and perpendicular flap problem are solved using OpenFOAM
and CalculiX.
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1

Introduction

Due to the need of understanding complex phenomena, dynamic multi-physics sim-
ulation is an active research field for the three past decades. In particular, many
studies have focused on the numerical simulation of Fluid Structure Interaction (FSI)
problems, for its wide range of applications, including aerospace [42, 72], civil engi-
neering [101, 58, 10] and bio-medical [87, 75]. In this kind of problems, a fluid, air or
gas, interacts with a solid material, with whom they share a common boundary called
interface. The interface is impacted at the same time by the fluid pressure and solid
displacement, see Fig.1. In the vast majority of cases, there is no analytical solution
to solve FSI problems. Moreover, laboratory experiments are limited in scope; for ex-
ample large scale problems as in civil engineering, expensive material as in aerospace
application and living tissue as for biomedical application. Thus, in order to investi-
gate the behaviour generated by the interactions between a fluid region and a solid
material, numerical simulations may be employed.

Fluid Solid

Interface

pres

disp

Figure 1: Interaction at the interface between a fluid sub-domain
and a structural sub-domain

To solve FSI problems, two main approaches are usually used; partitioned method
or monolithic method. In this work, they are defined according to their formula-
tion. The formulation of the partitioned method is made of the formulation of each
sub-domain, fluid and solid, in an uncoupled manner. Thus, the coupling condi-
tion of displacement and pressure are enforced as Dirichlet and Neumann boundary
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2 Introduction

conditions respectively. Partitioned methods have an appeal for their ease of imple-
mentation. Indeed, thanks to their uncoupled treatment of the FSI problem, this one
can be solved using existing dedicated solvers over each sub-domain. Nevertheless, in
the frame of transient dynamic resolution, to the staggered resolution, the resolutions
of both sub-domains are not synchronous. This induced time-lag involves a loss of
numerical accuracy from the interface coupling condition. Numerous improvements
and complex partitioned methods have been developed in order, among other objec-
tives, to limit the time-lag impact. Unfortunately, there is no proof of convergence in
the general case using these approaches.
The second kind of FSI problems’ formulations is called monolithic. Using these ap-
proaches, the global problem is solved synchronously, due to the fact that the fluid
sub-domain, the structural sub-domain and the interface condition are written to-
gether in the same formulation. The advantages of these methods are that they are
often more stable and more accurate than the partitioned approaches. Nevertheless,
they are often based on unified algorithms of resolution that do not allow using an
existing solver. Thus, the implementation of monolithic methods is difficult, more
intrusive and not easily generalizable. That is why partitioned methods remain more
popular than monolithic methods.

Then, ideally we would like to combine the strengths of both methods. First of all,
the objective is consistency, convergence and stability between the exact, the discrete
and the numeric solutions, as for any simulation, see Fig.2. To get closer to this goal,
a coupling simulation based on a monolithic formulation seems to be more appro-
priate. Besides, it would be desirable for the computation to be efficient and easily
usable with various cases. Therefore, partitioned approaches are really attractive.
Thus, the idea of the proposed method is to extend the Schur’s dual decomposi-
tion domain methods, as FETI methods developed for structural problems, to FSI
problems. These approaches, in particular the GC method [53], are conservative and
compute each sub-domain separately but synchronously.
Previous researches had shown promising results about the extension of the GC
method to FSI problems. A fully explicit coupling of finite elements and finite vol-
umes vertex centered has been proposed in [21]. Later, a multi-time scale coupling of
SPH and finite elements has been developed [89]. More recently, a multi-time scale,
fully lagrangian and explicit coupling of FE and PFEM, has been studied in [81].

P.D.E Discrete equation

Exact solution Discrete solution

Numeric solution

Convergence Stability

Consistency

Figure 2: Relation between exact, numeric and discrete solutions

The main result of this thesis consists in an extension of the GC method to FSI prob-
lems, using: formulations, spatial discretization methods, specific time integrators and
time/space scales over both sub-domains, very common and suited for each physic
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Introduction 3

(solid or fluid). In this manner, a co-simulation algorithm of resolution can be devel-
oped using efficient dedicated solvers over each sub-domain. Thus, the discretization
methods chosen have to be available in commercial and free existing solvers. To com-
pute the solid sub-domain, the choice was made to use the Finite Element Method
(FEM) in Lagrangian formulation and an implicit Newmark integration scheme, as
in Ansys Mechanical [6] or CalculiX [33]. Concerning the fluid sub-domain, the finite
volumes cells centered in Arbitrary Lagrangian Eulerian (ALE) formulation is used
with an explicit Runge-Kutta scheme.
Concerning the fluid-solid coupling, the dual problem is written as a monolithic for-
mulation, where the coupling condition is the normal velocity continuity at the inter-
face, enforced by the mean of Lagrange multipliers. Thus, the discrete problem can
be solved by a co-simulation algorithm. Thanks to this, a dedicated solver is used for
the sub-domains computation. More over, each sub-domain can use their own spatial
and temporal scales.

The first chapter of this thesis is dedicated to an overview of FSI approaches, in order
to justify the motivation of the proposed coupling method. A classification of FSI
problems is proposed. Also, the main approaches of interface motion management are
presented, as well as a short state of the art about domain decomposition methods.
Then the second chapter presents the method and its proof of concept. First, dis-
cretized equations solved over fluid and solid sub-domain are presented. Then the
proposed coupling method is described in details from its monolithic formulation to
its co-simulation algorithm of resolution. Finally, the method is validated thanks to
the academical one-dimensional test case of the piston.
The last chapter, sets out the implementation of the proposed method using existing
free software. The chosen solvers and coupling library are introduced. Afterwards,
the implementation of the proposed method in the library preCICE is described. To
finish, numerical results are presented thanks to the forward step and the perpendic-
ular flap benchmarks.
Conclusions and perspectives are discussed into the last chapter.
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5

Chapter 1

Overview of approaches for

Fluid-Structure interaction

problems

This first chapter presents a state of the art about FSI simulation. The objective here
is to develop issues of this particular kind of simulation, where structural and fluid
sub-domains are in interaction. Moreover, the aim is to present different approaches
commonly used to solve FSI problems as well as their advantages and drawbacks.
The first section presents a classification of the FSI problems in terms of physical
interactions and in terms of mathematical resolution. Then, special issues of the FSI
problems due to the fluid-structure interface are discussed. Finally, a succinct state
of the art of sub-domains decomposition methods is proposed, as well as a review of
the extension of these methods for FSI problems.

1.1 Classification of FSI problems

The literature about FSI is vast and uses a rich and varied vocabulary. The difficulty
is that there are no consensus or homogeneity about methods of classification and
description of FSI problems. This is why in this work, we try to carefully define every
term used.
The choice is to sort FSI problems according to two axes, see Fig.1.1. First we
consider the coupling problem in terms of physics. In this scope, a coupling can be
considered from weak, for example in the case of small deformations, to very strong,
as needed for biomedical applications. In the other way, a coupling problem can be
defined according to its numerical coupling. The following section proposes a state of
the art of FSI simulation in accordance with these two aspects of coupling.

1.1.1 Physical coupling

Fluid-structure interaction problems cover a large field of application domains, where
different kinds of physics step in. Two main categories of FSI applications can be
differentiated, when the fluid is a gas and when the fluid is a liquid.

First, when the fluid is a gas, it is most often considered inviscid or weakly viscous
and compressible. This is the case as example for the field of aerospace problems,
which was one of the first active research fields for FSI problems. In [12] or [42] for
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Figure 1.1: Coupling classification for FSI problems

example, authors study the fluid flow around deformable aircraft wing. The air flow
around a rocket engine is also studied as in [72]. Recently, more complex simulation
have been performed to evaluate the stability characteristic of a spacecraft parachute
system [109].
The study of airflow around deformable structure is not only a major point of interest
for flying objects but also for civil engineering. We can cite the well known example
of the Tacoma Narrows bridge which has been destroyed in 1940 after large oscillation
induced by aero-elasticity [69]. This event still remains an active subject of research
for FSI, see [108]. In the civil engineering domain, we can also cite the study about
flows around buildings. In [118], the authors investigated the turbulent flow past a
hemispherical building. Finally, a really active research field these past years is the
simulation of wind turbines as in [10] and [105] as example.
Concerning FSI simulation where the fluid is a gas, a really challenging field of re-
search is about biomedical applications. The phonation can be studied using these
FSI simulation models. In [75], the authors proposed a 2 dimensional Finite Element
approach to perform fluid-solid acoustic simulation of the human phonation. The res-
piratory system is also studied thanks to the FSI simulation approaches. As example,
[77] proposed a simulation FSI model of the trachea and [116] studied lower airways.
In most of these studies, difficulties obviously come from the coupling problem but
also from the fluid’s turbulence. In another way, the solid sub-domain is often con-
sidered linear elastic for the objective is to characterize the instability rather than
computing the post-breaking behaviour. The biomedical applications are though an
exception for the considered solids are often non-linear in terms of geometry and ma-
terial characteristics.

The other cases are when the fluid is liquid. Most of the time it is considered viscous
and incompressible or nearly incompressible. In this range of studies, hydraulic appli-
cation cases are numerous. There is the family of problems where a fluid flows around
a network of thermal exchangers, as used in nuclear plants. A review of this kind of
problems is proposed in [97]. There also is the group of the tanks problems, where
the fluid is enclosed into a solid in motion. As examples, [5] studied compressibility
and gravity effects in internal vibrations and [66] proposed to simulate a rocket tank.
Finally, hydraulic problems also treat of the range of turbine problem, of which a
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review is proposed in [112].
The FSI problem with liquid fluid is also a challenge for civil engineering. We can
cite the study of dams, in their normal states as in [101] or in breaking [103], [32].
Submissive waves as tsunami are also studied in the FSI scope as in [58].
Finally, one of the most recent and dynamic field of research of liquid-solid coupled
simulation is biomedical applications. The first researches have focused on blood flow
circulation, and remains really active today [11], [14]. Then, hemodynamic fluid-
structure coupling problems have been proposed for complex pathologies and patient
specific models as cerebral aneurysms [111] or aorthica dissection [2] as examples.
FSI simulation is also used for eye modeling. [62] studied the influence of intraocular
pressures on the human eye and [61] proposed a model to compute injury to the eye
caused by glass splinters.

This large field of application, deals with various kind of physics. Thus, according
to the physics of fluid and solid, the influence on the FSI phenomenon of each sub-
domain on the other is variable. If this influence is minor, the coupling is called weak
and respectively strong when major. To measure this fluid-structure influence, two
dimensionless numbers are commonly used. The first one is the mass number M,
which is the ratio of the fluid and solid density:

M =
ρ0
s

ρ0
f

(1.1)

Where ρ0
s is the initial structural density and ρ0

f is the initial fluid density. The more
this ratio is close to 1, the stronger is the coupling. The other one is the Cauchy
number C, which measures the magnitude of dynamic-induced deformations.

C =
ρ0
fv

0
f .v

0
f

Es
(1.2)

Where v0
f is the initial fluid velocity and Es is the Young modulus of the solid sub-

domain. A weak number of Cauchy induces a weak physical coupling, with a very
low density fluid and a rigid solid for example. Thus, a weak or a strong coupling
is not induced by the fluid’s state, being gas or liquid. From the previous examples,
the coupling model of the parachute is weaker than the aircraft wing FSI simulation
according to mass number and Cauchy number.
The objective while determining the physical coupling strength of the considered
problem is to choose an appropriate numerical coupling method, to solve it. The
stronger the physical coupling is, the more complex the numerical coupling should
be.

1.1.2 Numerical coupling

Concerning the numerical coupling, a large variety has been investigated, leading to
several classifications and definitions. Nevertheless, FSI problems are traditionally
classified on two main categories: partitioned methods and monolithic methods. Par-
titioned coupling methods treat FSI problems in an uncoupled way. In the other
way, with monolithic methods, the fluid sub-domain, the structural sub-domain and
the interface between them are thought together. The main advantages of partitioned
methods are their easy implementation, because existing CFD and structural dynamic
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8 Chapter 1. Overview of approaches for Fluid-Structure interaction problems

codes can be used successively. In this way, they are flexible and easily generalizable
from an FSI problem to another. Unfortunately, those kind of numerical coupling
methods lack accuracy due to the time lag, which is inherent to their formulation.
The monolithic methods turn out to be better in terms of accuracy and stability,
thanks to their synchronous resolution, but are often difficult to implement and not
easily generalizable. Then they are often developed for specific applications.

In literature, FSI coupling problems are always divided into partitioned or mono-

robustness, application-specificity

flexibility, generality
F S F S

Partitioned Coupling Monolithic Coupling

Figure 1.2: Numerical coupling approaches of FSI: partitioned or
monolithic coupling

lithic coupling. Even if the general definition is most of time really close, and matches
the definition given previously, there are some differences in the approach depending
on the authors. Some authors, as De Boer in [29], consider that the difference be-
tween a partitioned coupling method and a monolithic coupling method is in term of
solvers. A partitioned solution solves each sub-domain thanks to a dedicated solver,
while a monolithic solution is mono-code. In the other way, some authors as Benra in
[13], consider the FSI coupling classification in terms of formulation. For partitioned
coupling, the formulation of the FSI problem is written as the continuous formula-
tion of each sub-domain and then, coupling condition at the interface are added as
boundaries condition. Meanwhile, a monolithic approach treats the fluid sub-domain,
solid sub-domain and interface formulation globally to solve the coupled problem syn-
chronously. Finally, authors also mixed these two approaches in literature as in [56].
We chose to follow the same approach as Benra and classify FSI problems as parti-
tioned or monolithic coupling according to their formulations. Thus, in the following,
numerical coupling methods are described and refer to the chosen formulation of FSI
problems, which is neither because of their algorithms of resolution nor their kind of
solvers used.

Partitioned coupling

Partitioned coupling methods have been the first proposed and have had a lot of im-
provements through the last decades. The following subsection proposes to describe
coarsely the main kind of serial partitioned methods.
The easiest partitioned coupling is the one-way coupling. In this method, fluid and
solid sub-domains are solved separately at each temporal iteration and only one physic
impacts the other. Most of time, this coupling uses the hypothesis of rigid walls. The
fluid sub-domain is computed alone, but the fluid pressure is used to solve the solid
state, see Fig.1.3. This figure shows the procedure followed at each time step n to
solve a one-way coupling. First, the fluid sub-domain is solved alone and some fields
are known as solution state at the current time step, xn+1

f , fluid pressure for exam-
ple. Then, this pressure at boundaries between the fluid sub-domain and the solid
sub-domain is used as Neumann boundary conditions to solve the structural state at
tn+1. This kind of coupling is well suited for weak physical coupling, where small
deformations concerning the solid sub-domain occur, but the stress induced by the
fluid pressure into the structure is reached as in [84]. This kind of coupling is also

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI071/these.pdf 
© [M. Gibert], [2022], INSA Lyon, tous droits réservés



1.1. Classification of FSI problems 9

Sf xn+1
f Ss(xn+1

f ) xn+1
s

n← n+ 1

Figure 1.3: One-way partitioned serial explicit coupling where the
first computation is the fluid sub domain

often used as a first approach of very strong coupling, as for biomedical application.
In [63], aneurysm are studied considering vessels as rigid walls for the blood flow
computation and the fluid pressure is used to compute stress induced into vessels.
The reverse one-way coupling is also used, when the solid boundaries are moving but
considered non deformed by the fluid pressure, as in this simulation of peristaltic
pump [90]. These kinds of one way numerical-coupling are interesting due to their
lower computational time cost in comparison with two-way couplings, but they are
most of the time not close enough to real FSI problems.

To perform more accurate FSI simulations, two-way numerical couplings are used.
With this method, both sub-domains are alternately integrated in time. The inter-
action is taken into account by the boundary conditions of both solvers. The first
two-way coupling method has been proposed by Park et al. [91], here, we call it
partitioned serial explicit coupling, see Fig.1.4. As previously mentioned, we consider
that the fluid sub-domain is solved first. Thus, contrary to the one-way method,
the fluid is not solved alone but using an output field from the previous time step
solution of the solid xns as an input: displacements or velocities of the boundaries for
example. Then, using the fluid solution at the current time step xn+1

f as boundary
conditions, the solid sub-domain is solved and the temporal time step is increased.
As a consequence there is a time lag between the integrations of both fluid and struc-

xns Sf (xns ) xn+1
f Ss(xn+1

f ) xn+1
s

n← n+ 1

Figure 1.4: Two-way partitioned serial explicit coupling

tural sub-domains. Indeed, if the solid state is solved at the instant tn+1 using fluid
variables computed during the current times step, it is not the case for the fluid state
computation which uses solid variables from the previous time step. This kind of
sequential coupling method can create numerical instability as added mass effect [18].

In order to stabilize the solution from two-way partitioned explicit coupling, a fixed-
point iteration can be performed. This kind of coupling method is called serial implicit
coupling and has been introduced by Alonso and Jomeson [3]. The procedure on
each time step is the same as for the explicit serial coupling except that coupling
iterations can occur between the fluid and the solid solution, until convergence (or
until the maximum number of coupling sub-iterations is reached). Classical Gauss-
Seidel method is often used as in [60]. Quasi-Newton methods are also useful for
implicit FSI coupling as IQN-ILS [30] or MVQN [17].
Despite a large number of coupling iterations, the convergence is not guaranteed, due
to the fact that there is no proof of stability concerning the staggered resolution of
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xn+1,i
s Sf (xn+1,i

s ) xn+1,i+1
f Ss(xn+1,i+1

f ) xn+1,i+1
s

i← i+ 1

H

Figure 1.5: Two-way partitioned serial implicit coupling, after a non-
convergence iteration, the latest stored state is reloaded while when

the solution converges, the time step n is increased

the partitioned coupling in the general case [85].
Nevertheless, lots of researches have been proposed to improve the partitioned cou-
pling approach. This short state of the art only describes serial partitioned coupling
but explicit and implicit coupling methods have been parallelized [106]. Predictors
of the fluid pressure or of the interface displacement are also used to minimize the
mentioned time lag. Numerous other improvements have also been brought to the
partitioned methods such as different time-steps, complex integration time schemes
and discretization methods for fluid and structural domains.

Monolithic coupling

In this context, the monolithic numerical couplings propose a synchronous resolu-
tion instead of a sequential resolution of FSI problems. They were introduced later
than the partitioned coupling method due to the fact that they are less intuitive. In
1998, Blom [16] has extended the work of Feldkler [43], concerning static problems
solved by monolithic coupling, to dynamic FSI problems. He proposed a monolithic
coupling for a one-dimension problem using classical discretization method for both
sub-domains using the same time step. The formulation can be called unified, the
entire FSI problem, fluid, solid and interface, being solved by a unique solver. The
results are quite good in accuracy, but the generalization of such methods is difficult.
Later, most of the proposed monolithic coupling used ”structural” methods to com-
pute the fluid sub-domain using a unified formulation, including fluid computation
into structural solver [99], or completely re-building a new solver [9]. To improve
monolithic methods, Ryzhakov et al. proposed a Lagrangian formulation of the fluid
sub-domain and Mayr et al. [80] set up a coupling method where the temporal and
the spatial scales are different for fluid and structure.
However, the main drawbacks of the monolithic coupling methods still remain, namely
generalization. Indeed, in this kind of numerical coupling, the global formulation of
the FSI problem is unified and uses a primal formulation of interface coupling. Then,
particular solvers which are dependent on the hypothesis of the considered FSI prob-
lem are used. In this way, these numerical couplings are not often easily generalizable.
To minimize this drawback, monolithic formulations based on dual coupling and de-
composition methods have been proposed and will be presented later in section 1.3.2.

In this section, the variety of FSI problems in terms of application fields and in terms
of methods of resolution has been presented. FSI problems can be classified according
to their numerical coupling and according to their physical coupling. In this work,
concerning the numerical couplings, the choice is made to describe them according to
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their formulation. The proposed classification of the numerical coupling is summed
up on Fig.1.6.

FSI

Monolithic Partitioned

Primal Dual One-way Two-way

Explicit Implicit

F S F S

F ←→ S F↔|↔S F S F S

1 iterationF S x iterationsF S

Figure 1.6: Proposed classification of FSI numerical coupling

1.2 Fluid-Structure interface specificity

As said in the previous section, application fields of FSI problems are very diversified.
Then, multiple physics can step in, as well as various configurations. In this section,
the hypotheses of considered FSI problems are described in terms of the studied
physics and geometry. Moreover FSI problems have to deal with both physics and
with the behaviour of the interface between fluid and structural sub-domains. This
characteristic of coupling problems has a particular issue in the case of FSI due to the
different approaches of referential historically used for CFD and structural dynamic
problems.

1.2.1 Reference problem

In this work, the studied FSI problems considered are reduced to continuous mechan-
ics. A fluid, considered inviscid and compressible, is in contact with a linear elastic
solid. Free-surfaces problems are not treated, neither are porous materials. Those
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12 Chapter 1. Overview of approaches for Fluid-Structure interaction problems

hypotheses are chosen arbitrarily, to fit with the test case simulation used for the pro-
posed method and presented in the next chapters. Nevertheless, one of the objectives
of the proposed method being to be generalizable to a large case of FSI simulation, a
discussion about the extension of physical hypotheses is presented in conclusion.

Geometry and sub domain definition

An enclosed FSI domain Ω is considered. Fig.1.7, shows a representation of studied
FSI problems and notations used.

Ωf Ωs

ΓFS

Γs

Γf
ns

nf

Figure 1.7: FSI problem geometry 2D representation

The solid sub-domain is called Ωs, considered homogeneous, continuous and isotropic
and is closed by the boundary Γs. Respectively, the fluid sub-domain is called Ωf ,
considered continuous, compressible and inviscid, and is closed by the boundary Γf .
There is no inter-penetration, overlap or empty space between the two sub-domains,
Ωs ∪ Ωf = Ω and Ωs ∩ Ωf = ∅. The two sub-domains are in contact through the
common part of their boundaries. This interface is called ΓFS . The external normals
of the interface, are called ns and nf for solid and fluid sub-domains respectively,
such as ns = −nf .
The behaviour of the FSI problem is studied from the initial time t0 = 0 to the
final time of the simulation tf = T . The state variables over the solid sub-domain,
displacement ds, velocity vs and acceleration as are linked to Ωs as well as the
secondary variables stress σ

s
and strain ε

s
. Initial conditions and boundary conditions

are additionally imposed. On Γs, Dirichlet condition imposes structural displacement
dD while Neumann condition imposes external forces f ext. Concerning the fluid sub-
domain Ωf , the conservative variables are considered, namely density ρf , momentum
ρfvf and energy Ef . Then the secondary variables, temperature Tf and pf are
calculated. As for the solid sub-domain, initial and boundary conditions are added.
On Γf fluid velocities or pressure are imposed.
Finally, coupling conditions on the interface ΓFS have to be added to completely
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1.2. Fluid-Structure interface specificity 13

define the fluid-structure problem. First, a kinetic condition is needed to enforce the
fluid and the solid sub domain to always fit, no detachment or overlap can occur.
Thus, the velocity continuities are enforced by equation (1.3a) Moreover, the solid
being deformable, a dynamic condition is needed to impose that the stress in the
fluid is equal to the stress in the solid, equation (1.3b).

vs = vf on ΓFSI × [0, T ]

σ
s
· ns + σ

f
· nf = 0 on ΓFSI × [0, T ]

(1.3a)

(1.3b)

Due to the inviscid hypothesis of the fluid, there is slip on ΓFS . Thereby, the coupling
condition (1.3) are re-written such as:

(ns · vs)ns = (nf · vf )nf on ΓFSI × [0, T ]

(σ
s
· ns)ns = pf on ΓFSI × [0, T ]

(1.4a)

(1.4b)

Thus, the FSI problem considered is well defined.

Management of the mobile fluid-structure interface

As said previously, the main point of FSI problem is the management of the coupling
conditions at the interface but also its motion. Indeed, due to the solid deformation
and the fluid pressure, the boundary ΓFS is mobile. For structural dynamic com-
putation, mobile boundaries are not a particular problem, and are usually defined
into the lagrangian referential, see section 1.2.2. Nevertheless, for CFD, the moving
wall is actually an issue, due to the eulerian referential, historically used for fluid
computation, see section 1.2.2. Thus, two kinds of approaches have been proposed in
literature to treat the interface motion for the fluid computation; interface tracking
and interface capturing, Fig. 1.8.

Interface capturing approach has been the first proposed in frame of FSI in [92] and
a review of these methods can be found in [83] and [64]. With interface capturing,
the fluid domain remains fixed according to time. Hence, a gap between the two
sub-domains as well as a overlap can occur. Coupling conditions are imposed thanks
to immersed boundary method as in [119], fictitious domain-mortar element method
as in [8], chimera method as in [104], arlequin method as in [44] and so on.
These methods are really effective because classical CFD methods can be used and
no re-meshing or mesh motion are needed. However, the interface position being
estimated for the fluid computation, coupling conditions and exchanged fields at the
interface can lose accuracy.

The other way to manage the fluid-structure interface motion is called interface track-
ing. Using this approach, the boundary ΓFS is computed at each time step for both
fluid and solid computations. Thus, the fluid sub-domain and the structural sub-
domain always fit. Hence, to fit the interface ΓFS , the fluid sub-domain has to move
according to time. In order to achieve that, the fluid sub-domain can use a eulerian
formulation and be re-meshed every time step but it will be incredibly costly. Then,
deformable meshes are used instead over the fluid sub-domain. Lagrangian formula-
tion can be used as for the solid computation, as proposed in [45], or ALE formulation
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Time step tn:

ΩsΩf

Time step tn+1: Tra
ck

ing Capturing gap

overlap

Figure 1.8: Management of the interface motion by tracking or cap-
turing for the fluid sub-domain

(see section1.2.2) as [65].
This approach is more accurate than interface tracking but is often more costly in
computation time. Indeed, if the interface displacements are large, the fluid sub-
domain should be re-meshed to avoid poor quality elements, which is a costly step.
Even using meshless methods, as SPH methods based on Lagrangian formulation in
[107] to ensure the interface tracking, re-meshing can occur.

Regarding the aims of the proposed method, an interface tracking approach is used
in chapter 2. Interface capturing approaches are more efficient but are less accurate
concerning the interfaces values. The proposed method of coupling having the objec-
tive of ensuring no interface energy dissipation, an accurate method for the interface
values seems to be more suitable.

1.2.2 Specific formulation of fluid and solid sub-domains

As said previously, issues concerning FSI problems is on one hand, the management
of the mobile interface (by interface tracking in this work), and on the other hand, the
coupling of two physics using historically different methods of computation including
different formulations. In continuum mechanic frame, the main formulations are the
Lagrangian formulation used for solid problem, and the Eulerian formulation used to
describe fluid flow. These two formulations are described bellow as well as a third
one, the Arbitrary Lagrangian Eulerian (ALE) formulation commonly used for FSI
tracking in FSI problems.
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1.2. Fluid-Structure interface specificity 15

Eulerian formulation

The eulerian formulation is based on the spatial domain Ωx, the referential domain
fixed in time. It is described by the spatial system of coordinate x. Then the physical
variables associated to material particles are studied passing through a fixed region
of the space.
At a discretized level, as shown on Fig.1.9, the mesh nodes (orange crosses) are where
variables are computed and remain fixed between two time steps. As often, here the
material domain is chosen to be the spatial domain at initial configuration. Then, the
referential grid, mesh nodes and connection are not mobile. The material particles,
blue circles, are moving between two time steps, and it’s not the quantities at the
materials point that are computed but the quantities of the particles crossing fixed
grid elements.

Time step tn:

Time step tn+1:

Material points

Mesh nodes

Nodes connection

Nodes motion (fixed)

Particles motion

Figure 1.9: Eulerian mesh motion between two time-steps

In this way, the Eulerian formulation allows to compute complex material motion since
mesh nodes are dissociated from the particles. Thus, this formulation is typically used
in fluid mechanics computation. Using this formulation, the material’s boundaries are
not computed which is problematic when interface tracking is used.

Lagrangian formulation

The Lagrangian formulation is based on the material domain called ΩX . The La-
grangian referential moves with the material domain deformation. The material co-
ordinates are noted X. The mapping ϕ between the material domain and the spacial
domain is defined as:

ϕ : ΩX × [0, T ]→ Ωx × [0, T ]

(X, t) 7→ ϕ(X, t) = (x, t)
(1.5)

We also define the material velocities v as:

v(X, t) =
∂x

∂t
|X (1.6)

Fig.1.10 shows a representation of discretized Lagrangian formulation. For every
time step, grid nodes are connected with the same material point. Nodes motions
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16 Chapter 1. Overview of approaches for Fluid-Structure interaction problems

and particles motions are combined. Physical variables associated with a particle are
computed at its attached node.

Time step tn:

Time step tn+1:

Material points

Mesh nodes

Nodes connection

Nodes motion

Particles motion

Figure 1.10: Lagrangian mesh motion between two time-steps

The Lagrangian frame then allows the tracking of moving boundaries. It is also useful
to take into account material history to compute the domain behaviour. These two
advantages are suitable for structural dynamic computation. For fluid flow, really
large deformation can occur, with vortices for example, the particle and then the
mesh motion can critically distort the grid.

ALE formulation

In the frame of fluid simulation for FSI problems with interface tracking, it appears
that neither the eulerian formulation, classically used (which cannot compute bound-
ary values) nor the Lagrangian formulation, used for structural computation (which
cannot manage very large particles motion) are appropriate. To avoid these draw-
backs, the ALE formulation has been introduced, first by [88] and [46]. In this
formulation the referential coordinate called Ωξ, with system of coordinate ξ, is used.
This one is different from the spatial domain Ωx. The mapping function between
these two domains is called φ, such as:

Φ : Ωξ × [0, T ]→ Ωx × [0, T ]

(ξ, t) 7→ Φ(ξ, t) = (x, t)
(1.7)

Then the ALE grid velocity w is defined as:

w =
∂x

∂t
|ξ (1.8)

The referential domain is also different from the material domain ΩX . The mapping
function between these two domains Ψ, is defined as:

Ψ : Ωξ × [0, T ]→ ΩX × [0, T ]

(ξ, t) 7→ Ψ(ξ, t) = (X, t)
(1.9)
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1.2. Fluid-Structure interface specificity 17

The mapping function ϕ can then be expressed as ϕ = Φ ◦Ψ−1, showing the relation
between the three mappings ϕ, Φ and Ψ, see Fig.1.11.

ALE
Referential

domain

ξ

Eulerian
Spatial
domain

x

Lagrangian
Material
domain

X
Ψ ϕ

Φ

Figure 1.11: Referential, Material and Spatial domains transforma-
tions

To understand the advantages of the ALE formulation, let’s move on to the discretized
representation of this one, Fig.1.12. The idea of the ALE formulation is to use a
moving grid, whose motions are arbitrary inside the domain, not connected with
material points; except on the boundaries where the mesh node are confused with
physical particles. In this way, the referential domain is allowed to fit moving walls.
Moreover the arbitrary motions of the nodes inside the physical domain are chosen
smoother than particles motion to avoid grid distortion.
Let’s remark that, if the ALE grid velocity is chosen as w = 0, the formulation
becomes eulerian. In the other way, using w = v, the Lagrangian formulation is
found.

Time step tn:

Time step tn+1:

Material points

Mesh nodes

Nodes connection

Nodes motion

Particles motion

Figure 1.12: ALE grid motion between two time-steps

Thus, the ALE formulation is adapted for interface tracking fluid computation. Thanks
to the Lagrangian behaviour of the ALE grid at boundaries, the motion of the inter-
face ΓFS can be computed. Moreover, thanks to the arbitrary motion of the ALE
grid inside the domain, the grid distortion can be avoided. Yet, this formulation is
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18 Chapter 1. Overview of approaches for Fluid-Structure interaction problems

more costly than eulerian and lagrangian formulations because the grid motion has
to be computed an updated at each time step. To reduce the computational cost,
the arbitrary function of the ALE grid motion is often chosen really simple, as linear
interpolation for example. Finally, if the interface motion is large, a re-meshing can
still become necessary.

In this section, FSI reference problem was presented, as well as different approaches
used to manage both fluid-structure formulations coupling and interface motion. This
brief presentation of advantages and drawbacks of the main existing solutions, justifies
the use of an interface tracking approach, using ALE formulation over fluid sub-
domain and lagrangian formulation over the structural sub-domain, for the proposed
coupling method.

1.3 Sub-domains decomposition state of the art

In this section coupling methods based sub-domains decomposition are described.
First, we leave the field of fluid structure interaction, to propose a brief state of the
art of solid sub-domains methods, which have been first developed. Then a review of
the studies that have extended these methods to FSI problems is proposed.

1.3.1 Sub-domains decomposition methods for structural problems

The idea to divide a large and/or complex problem into several smaller problems is
not recent and allows to gain computation time. They can be used for example to sim-
ulate two solid sub-domains with different characteristics as soil/structure simulation
in [94]. They also can be used to divide the global problem in smaller sub-domains
where different meshes are used according to their needs as in [4]. With these meth-
ods, an appropriate time step and a different time integrator can be used over each
sub-domain [76, 50]. This is useful for example when a complex phenomenon occurs
locally, and an explicit integrator and a smaller time step are required. Finally, these
approaches are useful to parallelize the simulation and optimize computation time
[120].
The decomposition in sub-domains can be with or without overlap. Here we are
not talking about sub-domain decomposition methods with overlap, since we have
already chosen an interface tracking approach for the proposed FSI methods. Then
we considered a solid domain Ω divided without overlap into sub-domains. To be
more readable, here, we consider a partition of only two sub-domains called Ω1 and
Ω2, separated by the shared boundary Γ. The problem definition is the same as the
one presented in section 1.2.1, replacing fluid and solid subscripts f and s by 1 and
2.

The two main approaches to solve this kind of problems are presented below; the
primal approach [78, 79, 110, 70] and the dual approach [38, 40, 15].
The primal approaches are based on the kinematic continuity at the interface. The
dynamic equilibrium is written on each sub-domain. Then, the kinematic variables,
also called primal variables, here displacements, are used to impose the interface
condition. Based on Finite Element Methods (FEM), described more in detail in the
following chapter 2.1.1, the semi-discretized form of the problem can be written by
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the system: 
A11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 AΓΓ




u1

u2

uΓ

 =


f1

f2

fΓ

 (1.10)

Where u1 and u2 are internal nodal displacements inside the sub-domains Ω1 and
Ω2 respectively. uΓ are the nodal displacement of the interface. Then the system is
solved by computing the interface displacements and then the internal displacements.
The detail of resolution procedures can be found in [34].
The dual approaches are them based on kinematic and dynamic conditions. They
impose synchronously kinematic and load equilibriums at the interface. The method is
based on the stationarization of the variational formulation over the entire domain Ω,
ensuring the kinematic continuity at the interface by the mean of Lagrange multipliers
method. Using FEM, the semi-discretized, dual formulation of the problem can be
written as: 

A1 0 LT1

0 A2 LT2

L1 L2 0




u1

u2

Λ

 =


f1

f2

0

 (1.11)

Where Λ is the vector of the discretized interaction force. L1 and L2 are interface
nodes selection vectors for nodes from sub-domain Ω1 and from sub-domain Ω2 re-
spectively. The system is solved by computing the interface problem and then, the
kinematic variables are solved. The procedure is detailed in [53] as example and is
detailed later.
Let’s compare primal and dual approaches. With primal approaches, the solution
is sought in the function space where the interface condition is valid. While, with
dual approaches, interface condition is induced in the weak formulation. Moreover,
primal methods require to manipulate DOF inside the sub-domains to build system
(1.10). Meanwhile, with a dual approach, that uses interface operators L1 and L2,
the sub-domains are computed apart, except for the interface problem, which has a
reasonable size as projected on the interface. This characteristic of dual approaches
is a really good advantage in the scope of FSI simulation, when dedicated solver is
to be used. Finally, dual methods enforce the load and the kinematic continuity at
the interface synchronously, which is very well suited to enforce FSI equations (1.4a)
and (1.4b). For these reasons, a domain decomposition dual approach is chosen for
the proposed method.

A fast review of the coupling methods for dual approaches for solid domains decom-
position is proposed below. Coupling methods for Schur’s dual problem using FEM
are called Finite Element Tearing and Interconnection (FETI) methods. Numerous
FETI methods have been proposed and the first one has been introduced in [41],
with proof of stability shown by [79]. Then, the method has been extended to solid
dynamic [39]. A lot of improvements have been proposed, using different integration
time, incompatibility in space and time [55, 28].
Concerning the simulation of sub-domains using different time scales, two approaches
have been proposed. The first one, introduced by [53], called GC method, proposed
to impose the coupling condition at the finer time scale. Moreover, authors have
shown that the use of the continuity of velocity through the interface, as kinetic con-
dition, leads to a stable algorithm, for mono-time scale and multi-time scales coupling.
Thus, the mono-time scale GC method is energy preserving, while the multi-time step
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20 Chapter 1. Overview of approaches for Fluid-Structure interaction problems

method can induce energy dissipation at the interface, due to required interpolation
at micro time step.
Later, the PH method has been introduced by [95, 96], where instead of imposing the
coupling conditions at the micro time scale, they are enforced at the macro time scale.
This method is more difficult to implement, more intrusive, but is energy preserving
even with multi time scale. However, a lack of accuracy can be observed concerning
the capturing of the interface motions, particularly if there are non-linear effects, due
to the fact that coupling conditions are not computed at micro time step.
The objectives of the considered problem being interface tracking and the use of ded-
icated solvers, the proposed FSI coupling method is based on the GC method.

The end of the section is dedicated to succinctly describe the procedure of the GC
method, for the coupling of two solid sub-domains, considered linear elastic, using the
same time scale. The multi-scale method is used and presented in the next chapter
2.2.
The equilibrium equations in dual formulation, over each sub-domain, are spatially
discretized using FEM and are temporally discretized using Newmark scheme [86].

Mka
n+1
k + Kkd

n+1
k = Fn+1

k + LTkΛn+1

vn+1
k = vpk + γk∆ta

n+1
k

dn+1
k = dpk + βk∆t

2vn+1
k

(1.12a)

(1.12b)

(1.12c)

Where k = 1, 2, the sub-domain subscript. Mk and Kk are mass and stiffness matrices
respectively. The state vector at the current time step tn+1, made on displacement,
velocity and acceleration [dn+1

k ,vn+1
k ,an+1

k ] is searched from the previous step known
at tn. tn+1 = ∆t+ tn, where ∆t is the common time step used for both sub-domains.
dpk and vpk are Newmark predictors see equations (2.32) and (2.33). Finally γk and βk
are Newmark parameters. For instance, the temporal integration scheme is explicit
for γk = 1

2 and βk = 0 and implicit for γk = 1
2 and βk = 1

4 .
Then the coupling condition can also be written in a discretized form:

L1v
n+1
1 + L2v

n+1
2 = 0 (1.13)

Let’s define the Steklov Poincaré operator as:

H12 = γ1∆tL1M̃
−1
1 LT1 + γ2∆tL2M̃

−1
2 LT2 (1.14)

Where M̃k = Mk + βk∆t
2Kk.

Then, including equation (1.12b) into equation (1.13) and using operator (1.14), La-
grange multipliers are expressed as:

H12Λ
n+1 = L1v

n+1
1free

+ L2v
n+1
2free (1.15)

vn+1
kfree

are introduced as the free nodal velocities of the sub-domains Ωk. Free variables

come from the computation of each sub-domain alone, without taking any interaction
between them into account, only materials history and boundary conditions are used.
Yet, the state vectors can be split into a free part and a link part. The link state
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vectors being the part of state vector which depends on interface interactions.
ank

vnk

dnk

 =


ankfree
vnkfree
dnkfree

+


anklink

vnklink

dnklink

 (1.16)

Thus, the system (1.12) is split into the free problem and the link problem for both
sub-domains. The free state vectors are computed such as:

an+1
kfree

= M̃−1
k (Fn+1

k −Kkd
p
k)

vn+1
kfree

= vpk + γk∆ta
n+1
kfree

dn+1
kfree

= dpk + βk∆t
2an+1
kfree

(1.17a)

(1.17b)

(1.17c)

And link state vectors are defined as:

an+1
klink

= M̃−1
k (−LTkΛn+1)

vn+1
klink

= γk∆ta
n+1
klink

dn+1
klink

= βk∆t
2an+1
klink

(1.18a)

(1.18b)

(1.18c)

Finally, the GC method solves this solid problem which is decomposed into two sub-
domains discretized by FEM and Newmark scheme implicit or explicit, with the same
time step, following the procedure described by Alg.1.

Algorithm 1 GC method procedure

1: Initialization of Ω1 and Ω2

2: Compute invariants : M̃1, M̃2,H12 ← (1.14)
3: while tn ≤ T do . Time loop
4: Compute Un+1

kfree
← (1.17)

5: Compute Λn+1 ← (1.15)
6: Compute Un+1

klink
← (1.18)

7: Compute Un+1
k ← (1.16)

8: end while

This section presented a brief review of the methods developed for structural domains
decomposition, with their advantages and drawbacks. The idea of the proposed cou-
pling method is to extend this kind of method to FSI problems. Regarding the FSI
issues considered; conservative coupling and use of dedicated solvers, the dual ap-
proach and the GC methods are the more appropriate.

1.3.2 Sub-domains decomposition for FSI problems

This section presents a review of the studies which have proposed to extend the dual
approach for structural domains decomposition methods to FSI problem.
The first method has been proposed by Casadei [21] in 2011. This work is based on
FETI method with mono-time scale. The solid sub-domain is discretized in space by
FEM, in Lagrangian formulation. The temporal discretization is led by an explicit
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22 Chapter 1. Overview of approaches for Fluid-Structure interaction problems

central difference scheme. The fluid sub-domain is discretized by vertex-centered Fi-
nite Volumes method in ALE formulation. Concerning temporal discretization, an
explicit backward Euler scheme is used with MUSCL-like technique in order to reach
order two in time. Finally, the coupling conditions are imposed by the mean of La-
grange multipliers which impose every time step the continuity of velocities at the
interface. Then, the author proposes a unified scheme of resolution for FE and FV.
Concerning the ALE grid variables, those are solved at mid-step using an explicit for-
mulation of their velocities. At full-time step, the ALE grid velocities are unknown.
That is why they are approximated as their values from the mid-step, and the ALE
grid is updated from here. The coupling method is based on a dual monolithic formu-
lation, couples FE and FV vertex centered, with explicit schemes and a mono-time
scale.

Li proposes in [73] a coupling method for FSI also based on dual approach of domain
decomposition, with mono time scale. The solid sub-domain is discretized using Fi-
nite Elements and Newmark implicit scheme. In order to ease large displacements
of the interface, the discretization method chosen is not the common FVM for fluid
problem, but SPH which is a mesh-less method. Nevertheless, the ALE formulation
is still used. For the temporal discretization, an explicit Runge-Kutta order 2 scheme
is used. The same temporal scale is used over both sub-domains. The velocities con-
tinuity is enforced at mid-step and full time step, using Lagrange multipliers. The
method is energy preserving. Contrary to the method proposed by Casadei, here,
there is no need to approximate the ALE grid quantities. Indeed, thanks to the SPH
discretization, only the grid velocity appears in fluid computation and the numerical
flux being explicit; the ALE velocities are always known. Thus, the method is based
on a dual monolithic formulation. It is heterogeneous coupling explicit SPF fluid and
implicit FE solid, and mono-time scale.

Later, Nunez Ramirez [89], proposes an extension on the work of Li to multi-time
scales resolution, based on the GC method. The solid sub-domain is discretized by
FEM and explicit Newmark scheme. The fluid sub-domain is discretized by ALE-
SPH and explicit Runge-Kutta scheme. Both sub-domains are discretized according
to their proper time step. Then, the continuity of the velocities through the interface
is imposed at the finer time-scale, as in the GC method. To sum up, in this work,
the method couples solid FE and fluid SPH-ALE, fully explicit, with multi-time scale.

Finally, Meduri [81], proposes also an FSI coupling based on multi-time scale GC
method but uses different formulation and discretization methods. In this work, the
solid and the fluid sub-domains use a Lagrangian formulation. The solid sub-domain is
discretized by FEM and the fluid sub-domain is discretized by Particle Finite Element
Method (PFEM), which is more adapted to fluid flow. The temporal discretization is
led over each sub-domain by the explicit central difference scheme, but with different
time step sizes. Finally, the velocity continuity is imposed at the finer time-scale. In
this way, the coupling method is fully explicit and Lagrangian, coupling FE and PFE,
with multi time scale.
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Conclusion

In this first chapter, generalities about FSI problems have been presented, in order
to explain our motivations and justify the chosen strategy of the proposed method in
this work.
First, a classification of coupling methods according to physical coupling and numer-
ical coupling based on the formulation was proposed. As mentioned in the introduc-
tion, the main objective of this work is to propose a preserving and stable coupling
method. Therefore, a monolithic formulation is used. Though, the advantages in-
duced by the implementation of the algorithms used for partitioned formulation are
very attractive. Then, the idea of the proposed method is to solve the monolithic for-
mulation, in order to ensure the global stability of the coupling, with a co-simulation
algorithm, in the style of the partitioned approaches resolution.
Then the issues induced by the fluid-structure interface have been highlighted. The
more popular approaches have been presented. Knowing their advantages and draw-
backs, an interface tracking approach managed by an ALE formulation on the fluid
sub-domain is chosen.
Finally, the main domain decomposition methods for solid problems have been pre-
sented as well as a review of the extension of these approaches to FSI simulation. The
proposed method is based on the extension of the GC method, as in some previous
works. The dual approach allows to account synchronously for pressure and veloc-
ities at the interface. Moreover, the enforcing of coupling conditions at the macro
time-step is easier to implement which is more adapted to co-simulation.
The objective is then to propose a version of the GC method for FSI coupling with
discretization methods used in existing solvers, in order to propose a code coupling
solution. In this way, the fluid sub-domain uses FVM cell centered and the solid sub-
domain uses FEM. Moreover, we want to propose a heterogeneous coupling method,
using an implicit temporal scheme on solid and an explicit scheme on fluid. This
coupling method is presented in the next chapter.
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Chapter 2

Towards a stable non-intrusive

FSI coupling method

The aim of this chapter is to theoretically present the proposed coupling method. As
exposed in the section 1.3 the idea is to extend the GC method to fluid-structure in-
teraction problems with classical discretization methods on each sub-domain in order
to use dedicated solvers with their own time scale. The solid sub-domain is discretized
using the Finite Element Method and an implicit Newmark scheme, as it is done in
Ansys Mechanical [6] or CalculiX [33] for example. Regarding the fluid sub-domain,
the spatial discretization is done thanks to the cell centered finite volume method, and
a temporal second order Runge-Kutta scheme is used. These discretization methods
are both available in Ansys Fluent [7]. First, the equations solved and the associated
chosen spatial and temporal discretization methods are described on each sub-domain
separately. Then, the proposed coupling method is presented from the monolithic for-
mulation to the algorithm of resolution. Finally, the results of the method are studied
on the academic test case of the 1D piston.

2.1 Studied physical system and local equations

The first step is to describe the equations solved on each sub-domain. Let’s recall that
the method chosen for the mobile fluid-structure interface treatment is an interface
capturing method, see section 1.2.1. Thus, here a domain Ω closed by a boundary Γ is
considered. This domain is divided into two sub-domains Ωs and Ωf without overlap,
such as Ωs ∪ Ωf = Ω and Ωs ∩ Ωf = ∅. The boundary between the fluid sub-domain
Ωf and the solid sub-domain Ωs is named ΓFS , that is the Fluid-Structure interface,
see Fig.(1.7). The behavior of the domain Ω is studied from the initial time t0 = 0 to
the final time of the simulation tf = T .

2.1.1 Solid sub-domain

First, we consider, as shown in Fig.2.1, the solid sub-domain Ωs alone. It is subjected
to a volumic force f s in Ωs and a contact force f ext on ΓN . The displacement dD
is imposed on ΓD. ΓN and ΓN are the Neumann and Dirichlet boundary conditions
respectively, such as ΓN ∪ ΓD = Γs and ΓN ∩ ΓD = ∅.

Continuous problem

The solid sub-domain is homogeneous, continuous and isotropic. The studied material
is considered as linear elastic under small deformation. The theory of elasticity [49]
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Ωs

Γs

ΓN

f ext

ΓD

dD

f s

Figure 2.1: Solid sub-domain definition

allows us to write the strong formulation of the problem. The following continuous
equations system is written in Ωs × [0, T ], in the Lagrangian frame, to determine the
field of displacement ds.



∇ · σ
s
(X, t) + f s(X, t) = ρs

∂2ds(X, t)

∂t2
(X, t) ∈ Ωs × [0, T ]

σ
s
(X, t) = K : ε(X, t) (X, t) ∈ Ωs × [0, T ]

ds(X, t) = dD(X, t) (X, t) ∈ ΓD × [0, T ]

σ
s
(X, t) · n(X) = f ext(X, t) (X, t) ∈ ΓN × [0, T ]

ds(X, 0) = d0
s(X), vs(X, 0) = v0

s(X) X ∈ Ωs

(2.1a)

(2.1b)

(2.1c)

(2.1d)

(2.1e)

In order to be more readable, the space-time dependency notations, (X, t), are dropped.
The first two equations are the linear momentum equation and the constitutive law,
where σ

s
is the symmetric stress tensor, K is the Hooke tensor and ε is the linearized

strain tensor defined as:

ε =
1

2

(
(∇ds) + (∇ds)

T
)

(2.2)

The next two equations are the Dirichlet and Neumann boundary conditions, respec-
tively. The Dirichlet boundary conditions, also called essential conditions, impose the
kinematic variables, while the Neumann boundary conditions, also called natural con-
ditions, prescribe load quantities. The last two equations are the initial conditions,
with d0

s and v0
s the initial displacement and velocity, respectively.

The Finite Element Method, used for the spatial discretization, is based on the weak
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2.1. Studied physical system and local equations 27

formulation whose existence and uniqueness of its solution are studied in [35]. More-
over, in [57] the equivalence between the strong formulation (2.1) and the weak formu-
lation is demonstrated. The weak formulation can be obtained by the stationarization
of the Lagrangian, defined as (2.3), also called Hamilton principle [1].

Ls(ds) = K (ḋs)−
(
Wint(ds)−Wext(ds)

)
(2.3)

Such as:

δ

∫ T

0
Ls(ds) dt = 0 (2.4)

Where K , Wint and Wext are the kinetic energy, the internal energy and the external
energy, respectively, defined in linear elasticity such as:

K (ḋs) =

∫
Ωs

1

2
ρsḋs · ḋs dΩs

Wint(ds) =

∫
Ωs

1

2
K.ε(ds) : ε(ds) dΩs

Wext(ds) =

∫
Ωs

f s · ds dΩs +

∫
ΓN

f ext · ds dΓN

(2.5)

(2.6)

(2.7)

The weak formulation is also linked to the principle of virtual work [48]. This one
expresses that the sum of the internal virtual work called P ∗i and the virtual work
of the external forces called P ∗e are equal to the virtual work of the acceleration
quantities called P ∗a .
The internal virtual work is defined as:

P ∗i = −
∫

Ωs

σ
s
(ds) : ε(δXs) dΩs (2.8)

The virtual work of the external forces is the sum of the work of the volumic force f s
applied in the solid sub-domain Ωs and the surface forces f ext applied on ΓN :

P ∗e =

∫
Ωs

f s · δXs dΩs +

∫
ΓN

f ext · δXs dΓN (2.9)

Finally, the virtual work of the acceleration quantities is defined as:

P ∗a =

∫
Ωs

ρs
∂2ds
∂t2

.δXs dΩs (2.10)

Let us define U , the set of the admissible solutions; the field of displacement ds, which
respects the Dirichlet boundary conditions, is sufficiently continuous and regular, in
the functional space H 1:∫

Ωs

(ds)
2 dΩs < +∞

∫
Ωs

(
∂ds
∂x

)2 dΩs < +∞ (2.11)

We define U = {ds |ds ∈ H 1, ds = dD on ΓD}. In the same way, we define V 0

the set of the test functions kinematically admissible at 0 such as V 0 = {δXs | δXs ∈
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H 1, δXs = 0 on ΓD}. Finally, for all δXs ∈ V 0, the principle of virtual work
expresses as:

P ∗i + P ∗e − P ∗a = 0 (2.12)

To move to the weak formulation in space and in time of the problem, the principle of
virtual work (2.12) is integrated in time. The displacement field ds ∈ U is searched
for all δXs ∈ V 0, such as: ∫ T

0
P ∗i + P ∗e − P ∗a dt = 0 (2.13)

Where U = {ds |ds ∈H 1, ds(X, t) = dD(X, t) on ΓD×[0, T ],ds(X, 0) = d0
s(X) in Ωs,

vs(X, 0) = v0
s(X) in Ωs} and V 0 = {δXs | δXs ∈ H 1, δXs(X, t) = 0 on ΓD ×

[0, T ], δXs(X, 0) = 0 in Ωs, δXs(X, T ) = 0 on Ωs}.

Spatial dicretization

To solve this kind of continuous problem, the idea is to solve an approximated problem
on a discretized space. Here, we use the Finite Element Method, as traditionally for
solid problems [57]. The continuous space is approximated by a finite number nel of
geometrical elements ΩE

s , which are most of the time triangles or quadrangles in 2D
for example and whose vertices are called nodes, see Fig. 2.2.

ΩE
s

i

Figure 2.2: Solid sub-domain spatial discretization

Then, the continuous fields are discretized from the nodal quantities; the admissible
solution U is approximated by Un and the virtual functional V 0 is approximated
by V 0

n . Then, the equation (2.13) of the weak formulation of the equilibrium can
be approximated by the discretized Galerkin formulation. The displacement field
is obtained by the resolution at the nodes of the equilibrium equation. Then the
nodal displacements are interpolated over each finite element according to their shape
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2.1. Studied physical system and local equations 29

functions, and we define:

ds(X, t) ≈
ns∑
i=1

Ni(X)dsi(t) (2.14)

Where i ∈ [1, ..., ns] the index of the nodes of the mesh considered in its global
classification. Ni is the shape function associated to the node i.
The same interpolation is applied to the velocity field. By derivation, we get:

vs(X, t) ≈
∂(
∑ns

i=1 Ni(X)dsi(t))

∂t
=

ns∑
i=1

Ni(X)vsi(t) (2.15)

Finally, using Galerkin approach, the same discretization is assumed for the virtual
field, with δXsi denoting the virtual degrees of freedoms associated with the node i.

δXs(X, t) ≈
ns∑
i=1

Ni(X)δXsi(t) (2.16)

Thereby, using (2.14), (2.15) and (2.1b) into (2.13) the discretized weak formulation
of equilibrium, using Einstein convention, is written as:

∫ T

0

[
δXT

si

∫
Ωs

ρsN
T
i ·Nj dΩsasj + δXT

si

∫
Ωs

K : ε(Ni) : ε(Nj) dΩsdsj

]
dt =∫ T

0

[
δXT

si

∫
Ωs

Ni · f si dΩs +

∫
ΓN

Ni · f exti dΓN

]
dt (2.17)

Then the mass matrix Ms, of size (ns×ns) symmetric and positive definite is written
as:

Msij =

nel∑
E=1

∫
ΩE

s

ρsN
E
i ·NE

j dΩE
s i, j ∈ [1, ..., ns] (2.18)

Moreover, thanks to the hypothesis of linear elasticity of the material, the expression
of the internal forces can be written as the following vector:

Finti =

∫
Ωs

K : ε(Ni) : ε(Nj) dΩsdsj = Ksijdsj (2.19)

Where Ni and Nj are the matrices of the shape functions related to the node i and
j, respectively. Ks is the symmetric stiffness matrix defined such as:

Ksij =

nel∑
E=1

∫
ΩE

s

K : ε(NE
i ) : ε(NE

j ) dΩE
s i, j ∈ [1, ..., ns] (2.20)

Finally, the equation (2.17) being true for all δXs ∈ V 0
n , the matrix form of the

semi-discretized linear momentum equation is written as:

Msas(t) + Ksds(t) = Fs(t) ∀t ∈ [0, T ] (2.21)
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30 Chapter 2. Towards a stable non-intrusive FSI coupling method

Time discretization

The equation (2.21) is now discretized in space, but continuous in time. The resolu-
tion of this kind of structural dynamic problem is made by implicit or explicit time
integration schemes. First the continuous time interval [0, T ] is divided into a chosen
and finite number of time steps, called ∆ts, see Fig.2.3. Then the integration scheme
is used to compute the solution of the problem only at the discrete times.

∆ts

0 T

t0 t1 tn tn+1 tn+2

Figure 2.3: Time discretization

In this work, the time scheme chosen is the well-known Newmark scheme [86]. These
kinds of scheme are one step schemes, where the solution at tn+1, tn+1 = tn + ∆ts,
is computed thanks to the state at the previous time tn and boundary conditions at
the current time step tn+1.
First, the displacements at the current time step are expressed from the displacements
at the previous time and the integral term of the velocity across the time step:

ds(t
n + ∆ts) = ds(t

n) +

∫ tn+1

tn
vs(τ) dτ (2.22)

Then, adding a factor 1 under the integral and applying an integration by parts,
considering the integral of the factor 1 as (τ − tn+1), the equation (2.22) becomes:

ds(t
n + ∆ts) = ds(t

n)−
[
(tn+1 − τ)vs(τ)

]tn+1

tn
+

∫ tn+1

tn
(tn+1 − τ)as(τ) dτ (2.23)

Recalling the notation of the time step ∆ts = tn+1− tn and considering the following
notation for the discretized fields in space and time ds(t

n) = dns , the equation (2.23)
is re-written as:

dn+1
s = dns + ∆tsv

n
s +

∫ tn+1

tn
(tn+1 − τ)as(τ) dτ (2.24)

The velocities are now written in the same way as the displacements in (2.22) :

vn+1
s = vns +

∫ tn+1

tn
as(τ) dτ (2.25)

Now the integrals of the accelerations have to be approximated. Newmark approxi-
mation are given using the following weighting from the values at the beginning and
the end of the time step:

∫ tn+1

tn
(tn+1 − τ)as(τ) dτ ≈ (

1

2
− β)∆t2sa

n
s + β∆t2sa

n+1
s (2.26)
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2.1. Studied physical system and local equations 31

∫ tn+1

tn
as(τ) dτ ≈ (1− γ)∆tsa

n
s + γ∆tsa

n+1
s (2.27)

Where 0 < γ < 1 and 0 < β < 1
2 . With the γ = 0 and β = 0, the weighting is fully

backward while with γ = 1 and β = 1
2 it is fully forward.

Then, including (2.26) and (2.27) into the equations (2.24) and (2.25) respectively,
we get the discretized equations of displacements and velocities, corresponding to the
well known Newmark approximation:

dn+1
s = dns + ∆tsv

n
s + (

1

2
− β)∆t2sa

n
s + β∆t2sa

n+1
s (2.28)

vn+1
s = vns + (1− γ)∆tsa

n
s + γ∆tsa

n+1
s (2.29)

Finally, the last part of the Newmark scheme is the equilibrium equation. The equa-
tion (2.21) is re-written at the time tn+1:

Msa
n+1
s + Ksd

n+1
s = Fn+1

s (2.30)

Replacing dn+1
s by its value from (2.28) and reorganizing the equation (2.30), we get:

(
Ms + β∆t2sKs

)
an+1
s = Fn+1

s −Ks

(
dns + ∆tsv

n
s + (

1

2
− β)∆t2sa

n
s

)
(2.31)

Let us introduce the following notations:

dps = dns + ∆tsv
n
s + (

1

2
− β)∆t2sa

n
s

vps = vns + (1− γ)∆tsa
n
s

M̃s = Ms + β∆t2sKs

(2.32)

(2.33)

(2.34)

dps and vps are called displacement and velocity predictors, respectively.

The parameters γ and β are chosen according to convergence, stability, consistently
and conservation criteria. They also determine the kind of integration scheme used.
There are two main kinds of Newmark schemes:

• Explicit scheme : γ = 1
2 and β = 0

This scheme is of order two, symplectic and energy conservative. It is the most
interesting in terms of efficiency. Indeed, when β = 0 the displacements at tn+1 are
known directly from the state at tn. Moreover, M̃s = Ms and the mass matrix is
lumped to be diagonal. In this way the resolution of the accelerations is straight
forward. Nevertheless, this scheme is conditionally stable, the used time step ∆ts
should not be superior to the critical time step ∆tc = h

c , with the h geometrical
element size and c the P-wave, where c2 = E

ρs
for the 1D case. This scheme is well

suited for fast transient dynamics as crash for instance.

• Implicit scheme : γ = 1
2 and β = 1

4
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32 Chapter 2. Towards a stable non-intrusive FSI coupling method

This scheme is also order two and conservative, and unlike the explicit scheme, it is
unconditionally stable; as a consequence, any ∆ts can be chosen according to the load
evolution. It is well adapted for slow dynamics as earthquake for example.

An implicit time integrator scheme is adopted, since the considered solid material is
linear elastic.
Thus, the computation uses the following procedure. Considering that the state at
tn is already known, the goal is to calculate displacements dn+1

s , velocities vn+1
s and

accelerations an+1
s at the following time tn+1.

In a first stage, displacements and velocities predictors are computed as:

dps = dns + ∆tsv
n
s +

1

4
∆t2sa

n
s

vps = vns +
1

2
∆tsa

n
s

(2.35a)

(2.35b)

In a second stage, the equilibrium equation is solved to determine the acceleration at
tn+1:

M̃sa
n+1
s = Fn+1

s −Ksd
p
s (2.36)

In the last stage, displacements and velocities are computed as:

dn+1
s = dps +

1

4
∆t2sa

n+1
s (2.37)

vn+1
s = vps +

1

2
∆tsa

n+1
s (2.38)

2.1.2 Fluid sub-domain

Thereafter, the same development is made for the fluid sub-domain, in term of the
equations used to describe the fluid environment and their numerical methods of
resolution. The fluid sub-domain, called Ωf , is considered alone. Initially, as in
classical fluid problems, its formulation is Eulerian (see section 1.2.2); the frame used
is fixed, with coordinate x. It is studied from the initial time t0 = 0 until the final
time tf = T .

Continuous problem

The studied Newtonian fluid is considered compressible and inviscid. Moreover the
boundaries are adiabatic; no heat is exchanged with the physical environments, as
example between the fluid and the solid sub-domains. Under these assumptions, it
is modeled by the Euler equations [37], which are composed of the balance of mass,
momentum and energy. We choose to write them in their conservative form. The
admissible conservative variables including (density ρf , momentum ρfvf and total
volumic energy Ef ) are searched over the continuous space Ωf × [0, T ] such as:


∂ρf (x,t)

∂t +∇ · (ρf (x, t)vf (x, t)) = 0
∂ρf (x,t)vf (x,t)

∂t +∇ · (ρf (x, t)vf (x, t)⊗ vf (x, t) + pf (x, t)I) = 0
∂Ef (x,t)

∂t +∇ · ((Ef (x, t) + pf (x, t))vf (x, t)) = 0

(2.39)
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2.1. Studied physical system and local equations 33

From now, the space time dependency is skipped, but let’s keep in mind that the
frame used is Eulerian at this time.
The total volumic energy Ef is defined for a compressible flow as:

Ef =
1

2
ρfv

2
f − ρfe (2.40)

The internal energy e (per unit mass) can be interpreted as the energy associated
with the random translation and internal motion of molecules plus the energy of in-
teraction between them. Therefore, the internal energy is temperature and density
dependent.
Finally, Euler equations are not a complete set of equations and require some addi-
tional constraints to admit a unique solution: these are the equations of state of the
material considered. Here, a perfect gas is considered [26], whose pressure is defined
by the perfect gas law as:

pf = ρfRTf = (kf − 1)(Ef −
1

2
ρfv

2
f ) (2.41)

Where kf is the specific heat ratio, R the individual gas constant and Tf the fluid
temperature.
Adding a viscosity coefficient µf to the fluid, the equations (2.39) become the well-
known Navier-Stokes equations [37] defined as:

{ ∂ρfvf

∂t +∇ · (ρfvf ⊗ vf − σf)=0

∇ · vf = 0
(2.42)

where the stress tensor is written as:

σ
f

= −pfI + 2µfD (2.43)

with the strain rate tensor D defined by:

D =
1

2
(∇vf +∇vTf ) (2.44)

Let’s go back to the Euler equations, with µf = 0. To be more readable, they are
re-written using their vector form. The vector of conservative variables Uf and the
flux vector Ff are defined below:

Uf =


ρf

ρfvf

Ef

 Ff = Ff (Uf ) =


ρfvf

ρfvf ⊗ vf + pfI

(Ef + pf )vf

 (2.45)

The tensor notation is omitted to simplify this vector form. Then Euler equations
(2.39) are re-written as:

∂Uf

∂t
|x +∇x · Ff = 0 (2.46)

As said in the section 1.2, an interface tracking approach is chosen in order to easier
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34 Chapter 2. Towards a stable non-intrusive FSI coupling method

ensure zero interface energy in the fluid-structure coupling. That is why, an ALE
formulation (see section 1.2.2) is used on the fluid sub-domain. Hence, the fluid
problem has to be re-written in an ALE frame, defined by the system of coordinates
ξ which is time dependent. The velocity of the ALE grid is denoted by w = ∂x

∂t |ξ.
It is Lagrangian at the boundaries and arbitrary inside the domain. This grid is
different from the Eulerian grid, usually used for fluid problems, which remains fixed
according to time. Moreover, it is also different from the Lagrangian grid used for the
solid sub-domain where the velocity of the grid is the material velocity. Letus call J
the jacobian of the frame transformation as J = det∂x∂ξ |t.
The aim is now to rewrite the equation (2.46) in ALE formulation. First, the time
derivation at constant coordinate ξ of the state vector is considered.

∂Uf

∂t
|ξ =

∂Uf

∂t
|x +∇xUf ·

∂x

∂t
|ξ (2.47)

Using the definition of the ALE velocity and multiplying the equation (2.47) by J
this one becomes:

J
∂Uf

∂t
|ξ = J

∂Uf

∂t
|x + J∇xUf ·w (2.48)

The jacobian property is recalled as:

∂J

∂t
|ξ = J∇x ·w (2.49)

Multiplying (2.49) by Uf , and adding it to (2.48) we get:

J
∂Uf

∂t
|ξ + Uf

∂J

∂t
|ξ = J

∂Uf

∂t
|x + J∇xUf ·w + JUf∇x ·w (2.50)

Then the first member of the equation (2.50) is re-written such as:

∂JUf

∂t
|ξ = J

∂Uf

∂t
|x + J∇xUf ·w + JUf∇x ·w (2.51)

Notice that:

∇x · (Ufw) = Uf∇x ·w +∇xUf ·w (2.52)

Then the result of (2.52) is used into (2.51).

∂JUf

∂t
|ξ = J

∂Uf

∂t
|x + J∇x · (Ufw) (2.53)

Finally, the term
∂Uf

∂t |x is replaced by its definition given by the Euler equations in
eulerian formulation, equation (2.46).

∂JUf

∂t
|ξ = −J∇x · Ff + J∇x · (Ufw) (2.54)

Thereafter the ALE flux vector is defined as:

F̃f = Ff (Uf )−wUf (2.55)
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2.1. Studied physical system and local equations 35

Reorganizing (2.54) and using the notation (2.55) the vector form of the Euler equa-
tions in ALE formulation is finally known as:

∂JUf

∂t
|ξ + J∇x · F̃f = 0 (2.56)

Spatial dicretization

As for the solid sub-domain, in order to compute non-trivial solutions for the math-
ematical models derived, the differential equations have to be transformed into alge-
braic forms with a finite number of unknowns.
Concerning the spatial discretization, the choice is made in this work to use the com-
mon and powerful method for the fluid problems: the finite volume method. This one
is based on the integral form of the conservative Euler equations. Thus, the equation
(2.56) is integrated over a control volume called Vi.∫

Vi

∂JUf

∂t
dξ +

∫
Vi

J∇x.F̃f dξ = 0 (2.57)

Let us remark that the controlled volume Vi is variable in time considering the Eu-
lerian space, but in ALE coordinate it is time independent. Also, the partial time
derivative in the previous equation (2.57) is evaluated at constant ξ. In this way, it
can be moved out of the integral.

d

dt

∫
Vi

JUf dξ +

∫
Vi

J∇x · F̃f dξ = 0 (2.58)

Then, a variable change from ξ to x, with dx = Jdξ is operated to the equation (2.58)
such as:

d

dt

∫
Vi

Uf dx +

∫
Vi

∇x · F̃f dx = 0 (2.59)

Finally, the divergence theorem is used, and the integral form of Euler equations in
ALE formulation is written as:

d

dt

∫
Vi

Uf dx +

∫
Γi

F̃f · n dx = 0 (2.60)

Then, the cell centered finite volume method is used (see figure 2.4). The idea is to
divide the domain Ωf into a finite number of control volumes Vi with i = [1, . . . , ncell].
ncell is the number of finite volume as

∑ncell
i=1 Vi = Ωf . Then the equation (2.60) is

integrated over each control volume replacing the continuous state vector Uf and the
continuous ALE flux vector F̃f by discrete approximations [51].

Let us define Ufi , the approximation of Uf on the control volume Vi. It is defined as
the mean of Uf over the finite control Vi and is considered at the center of this one:

∫
Vi

Uf dx ≈ ∆ViUfi (2.61)

Hence, the name of the discretization method is cell centered finite volume. Vertex
centered finite volume also exists and could be suitable for our FSI problem. Indeed,

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI071/these.pdf 
© [M. Gibert], [2022], INSA Lyon, tous droits réservés



36 Chapter 2. Towards a stable non-intrusive FSI coupling method

UfiUfh Ufh

Ufh

Ufh

F̃fih F̃fih

F̃fih

F̃fih

Figure 2.4: Cell centered finite volume discretization in 2D

unlike the cell centered method, in the vertex centered method, the discrete conserva-
tive variables vector is not defined at centers of the cells, but at their vertices, see Fig.
2.5. The value of fluid quantities, as velocities, are known directly at the boundaries,
while they have to be approximated with the cell centered method. We will see later
that in this work the coupling condition imposed to the fluid-structure interface is
the velocity continuity. In this way, it would be more interesting to know accurately
and easily these values at the boundaries. Nevertheless, the vertex centered method
is harder to implement and less often used inside numerical solvers. For this reason,
the adopted method is the finite volume cell centered method. To circumvent the
problem of the unknown variable at the boundary, we use the ghost cells method.
First, we define quantities at the cell faces as the mean between the neighbourhood
cells of the considered face, illustrated by the black crosses on Fig. 2.5. Then, for
the external boundaries, we add ghost cells, in dashed gray, and define the values of
conservative variables at the center of those new cells as an extrapolation from the
inner adjacent cells. In this way, values of quantities of interest are computed at the
interface, exactly as for the other faces, as the mean between the adjacent ghost and
inner cells.

Cell centered Vertex centered

Figure 2.5: Finite volume discretization methods

Let us bring the digression about the vertex centered method to an end and go back
to the finite volume cell centered method where we have to discretize the other term
of the equation (2.60); the ALE flux vector. The flux is assumed as the sum of the
flux across the boundaries of the control volume Vi, see Fig.2.4. Moreover, the flux
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2.1. Studied physical system and local equations 37

from the control volume Vh to the control volume Vi neighbour, is assumed constant
on the boundary Γih and is evaluated at its middle.∫

Γi

F̃f · n dx ≈
∑

(∀Γih∈Γi)

sihF̃fih (2.62)

Where sih is the area of the shared face between the control volume Vh and the control
volume Vi. F̃fih is called the numerical flux and is defined as F̃fih = g(Ui, Uh, wi, wh).
With g a chosen function, which should be conservative and consistent.

Hence, the Euler equations are written in their semi-discretized vector form as:

d

dt

(
∆Vi(t)Ufi(t)

)
+

∑
∀Γih∈Γi

sih(t)F̃fih(t) = 0 ∀i ∈ [1, ..., ncell], ∀t ∈ [0, T ]

(2.63)

Time discretization

The next step consists now in the time discretization of the fluid sub-domain, as it
has been done over the solid sub-domain. The idea is the same; we define an interval,
called time step, and written ∆tf , such as tn+1 = tn+∆tf . Then the semi-discretized
equation (2.63) is solved only at discrete times.

First, we approximate the time derivative as:

d

dt

(
∆Vi(t)Ufi(t)

)
=

∆V n+1
i Un+1

fi
−∆V n

i Un
fi

∆tf
(2.64)

Then the choice of the function g defining the numerical flux, determines the time
integration scheme. If g is a function which depends on discrete conservative vari-
ables and ALE grid velocity at the instant tn, g(Uni , U

n
h , w

n
i , w

n
h), the scheme is ex-

plicit in time, while if it depends on those variables at the instants tn and tn+1,
g(Uni , U

n
h , w

n
i , w

n
h , U

n+1
i , Un+1

h , wn+1
i , wn+1

h ), the scheme is said implicit in time.
Thus, the general discretized formulation of the Euler equations in ALE formulation
is written as:

Un+1
fi

=
∆V n

i

∆V n+1
i

Un
fi
−

∆tf

∆V n+1
i

∑
∀Γih∈Γi

sn+α
ih F̃n+α

fih
(2.65)

Where α = 0 for an explicit scheme and α = 1
2 for an implicit one.

Here the time scheme used is the Runge-Kutta 2 scheme, [102, 68]. This one is a
two-step scheme, which is explicit and second order accurate. Applying this scheme
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to the equation (2.65), it becomes:

U
n+ 1

2
fi

=
∆V n

i

∆V
n+ 1

2
i

Un
fi
−

∆tf

2∆V
n+ 1

2
i

∑
∀Γih∈Γi

snihF̃
n
fih

Un+1
fi

=
∆V n

i

∆V n+1
i

Un
fi
−

∆tf

∆V n+1
i

∑
∀Γih∈Γi

s
n+ 1

2
ih F̃

n+ 1
2

fih

(2.66a)

(2.66b)

The final step is now to define the function g of the numeric flux. To be more
readable, the time indices would be omitted until the end of this section. Here, the
Roe flux difference splitting method has been chosen [100]. It is a method based on an
approximated Riemann solver which is well adapted for compressible fluid. Indeed,
for compressible flows, fluid properties are not only transported by the flow, but also
by the propagation of waves. This requires the flux interpolation to be stabilized
based on transport that can occur in any direction.

First, let’s define the Jacobian of the flux A, such as A =
∂Ff

∂Uf
. Then let’s call, κ the

eigenvalues of A, r the eigenvectors of A and α the Riemann invariants. K is the size
of the matrix A and physically meaning, it is the number of waves. Also, κK is the
velocity of the Kth wave, while rK and αK are its direction and strength respectively.
Here, due to the ALE formulation the grid velocity has also to be taken into account
in the computation of the wave velocity, in this way κ is replaced by κ̃, such as
κ̃K = κK −wi+ 1

2
.

Thus, the numerical flux, between cells Vi and Vh is written using the Roe flux different
splitting method as:

F̃fih =
1

2

(
F̃fh + F̃fi

)
− 1

2

5∑
k=0

αk|κ̃k|rk (2.67)

In order to define these values, we need to define them at Γih using the Roe average
as following:

ρfih =
√
ρfiρfh

vfih =
√
ρfivfi

+
√
ρfhvfh√

ρfi+
√
ρfh

hfih =
√
ρfihfi+

√
ρfhhfh√

ρfi+
√
ρfh

cfih =

√
(kf − 1)

(
hfih −

1
2 |vfih |2

) (2.68)

Where hf =
Ef+pf
ρf

is the enthalpy and cf =
√

kfpf
ρf

the sound velocity.

Then, the eigenvalues κ are defined according to the Roe average of the flow velocity
and sound velocity.

κ1 = vfxih − cih
κ2 = vfxih

κ3 = vfxih

κ4 = vfxih

κ5 = vfxih + cih

(2.69)
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Also, the values of the right eigenvectors of A could be found below :

r1 =



1

vfxih − cfih
vfyih

vfzih

hfxih − vihcfih


r2 =



0

0

vfyih

0

v2
fyih


r3 =



0

0

0

vfzih

v2
fzih



r4 =



1

vfxih

vfyih

vfzih

v2
fih


r5 =



1

vfxih + cfih

vfyih

vfzih

hfih + vfxihcfih



(2.70)

Finally, the Riemann invariants α are defined as :

α1 = 1
2cfih

(
(pfh − pfi)− ρfihcfih(vfxh − vfxi)

)
α2 = 1

cfih

(
c2
fih

(ρfh − ρfi)− (pfh − pfi)
)

α3 = ρfih(vfyh − vfyi)
α4 = ρfih(vfzh − vfzi)
α5 = 1

2cfih

(
(pfh − pfi) + ρfihcfih(vfxh − vfxi)

)
(2.71)

In this section, the physics of fluid and solid sub-domains have been described, and
the numerical methods used have been detailed. To sum up, a linear elastic solid
sub-domain is considered, discretized by the finite element method and an implicit
Newmark scheme. On the other side, the fluid sub-domain, compressible and inviscid
is discretized by the cell centered finite volume method in an ALE formulation with
a Roe flux difference splitting and an explicit Runge-Kutta scheme. In this way, we
have to couple a linear implicit problem and a non-linear explicit problem. Finally,
the time scales used on each sub-domain can be incompatible, if ∆ts 6= ∆tf .

2.2 Proposed coupling method

In this section, the proposed coupling method is detailed. The main objective is to
propose a stable method for code coupling. First of all, as the stability is sought,
as explained in the previous chapter, the proposed method is based on a mono-
lithic formulation. Then, the coupling method should be as accurate and efficient as
possible. Regarding these objectives, the use of appropriate, effective and existing
dedicated solvers for solid and fluid dynamic computation have been chosen. Thus,
a co-simulation algorithm is used to solve the monolithic system of equations. The
use of dedicated solvers allows us to employ heterogeneous discretization methods
over each sub-domain. Here, for the spatial discretization, the finite volume method
is used over the fluid sub-domain while the finite element method is used over the
structural sub-domain. Concerning the time discretization, fluid and solid solvers
use explicit and implicit schemes respectively, as detailed in section 2.1. Moreover,
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40 Chapter 2. Towards a stable non-intrusive FSI coupling method

non-conforming interfaces can be used, in space, as detailed later in section 3.1.1, and
also in time, with two different time scales.

2.2.1 Monolithic formulation

First, the monolithic formulation of the global coupled problem is presented. We
consider an FSI problem without overlap, as described in the section 1.2.1.
The first step is to introduce the continuous variational formulation in time over each
sub-domain, based on action integral. Over the solid sub-domain Ωs, the subscript k
is replaced by s respectively and f on the fluid sub-domain Ωf :

AΩk
=

∫ T

0
LΩk

dt k ∈ [s, f ] (2.72)

With the Lagrangian expressed as:

LΩk
= KΩk

−
(
WintΩk

−WextΩk

)
k ∈ [s, f ] (2.73)

Where K is the kinetic energy and
(
Wint − Wext

)
the potential energy, that is the

difference between the internal and the external energy.
The equilibrium equations of each sub-domain are obtained by stationarization of
these functionals, which is the Hamilton principle, defined as:

δAΩk
= 0 k ∈ [s, f ] (2.74)

The fluid-structure problem is then defined as the stationarization of equation (2.72)
over each sub-domain. Moreover, coupling conditions are added to ensure fluid-
structure interaction: the normal velocities continuity and the equilibrium condition
of the interface, due to the inviscid fluid hypothesis:

δAΩs = 0 ∀(X, t) ∈ Ωs × [0, T ]

δAΩf
= 0 ∀(ξ, t) ∈ Ωs × [0, T ]

(σ
s
· ns)ns = pf ∀(X, t) or (ξ, t) ∈ ΓFSI × [0, T ]

(ns · vs)ns = (nf · vf )nf ∀(X, t) or (ξ, t) ∈ ΓFSI × [0, T ]

(2.75a)

(2.75b)

(2.75c)

(2.75d)

Equations (2.75) can be viewed as a partitioned formulation of the FSI problem. On
one hand, the resolution of equation (2.75a) using equation (2.75c) as a Neumann
boundary condition, allows us to know the solid sub-domain behaviour. On the other
hand, the equation (2.75b) is solved with (2.75d) as Dirichlet boundary condition to
compute the behaviour of the fluid sub-domain. Each sub-system of equations can
be solved independently only using the velocity, respectively pressure, as boundary
conditions. As said in subsection 1.1.2, this kind of coupling gives some advantages,
but suffers from a lack of accuracy and have no proof of stability in the general case.

Thus, our objective being to propose a stable coupling method, the next step is to
move the partitioned system of equations (2.75) to a monolithic formulation. In this
formulation, the entire FSI problem is thought globally, contrary to the partitioned
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formulation. Thus, the variational functional of the FSI problem is written as the
sum of the functional of each sub-domain, fluid and structure.

δAΩ = δ
(
AΩs + AΩf

)
= 0

(σ
s
· ns)ns = pf

(ns · vs)ns = (nf · vf )nf

(2.76a)

(2.76b)

(2.76c)

Then, to ensure the coupling condition of normal velocities continuity, the choice is
made to transform the stationarization primal problem under constraints towards a
dual problem by the mean of the Lagrange multipliers method. Thus, the dual Schur
formulation of the functional of the FSI problem is written as:

δAΩ dt = δ
(
AΩs + AΩf

)
+ δ

∫ T

0
LΓFS

dt (2.77)

The equation (2.77) can be viewed as the monolithic formulation of the FSI problem.
The last term, LΓFS

, is the variational energy of the interface. This one imposes the
normal velocity continuity through the interface. Indeed, imposing this condition,
rather than displacements continuity as example, guarantees the condition of stability
for a general case as it has been proposed in [27]. Moreover, we recall that the
Lagrangian frame is used over the solid sub-domain and the ALE frame is used for
the fluid sub-domain. Both of these frames consider the boundaries as Lagrangian.
That is why, on the fluid-structure interface ΓFS , both frame coordinate systems are
equivalent, X = ξ, and they can be used without distinction. Then, the variational
energy of the interface between fluid and solid sub-domains is rewritten in Lagrangian
coordinates as:

LΓFS
=

∫
ΓFS

Λ ·
(
(ns · vs)ns − (nf · vf )nf

)
dX (2.78)

Thanks to the Hamilton principle, the solid variational functional LΩs and the fluid
variational functional LΩf

stationarization gives the corresponding weak form, for all
δXs and δXf respectively.
Thus the weak form of the solid equilibrium over Ωs is written as:

δAΩs =

∫ T

0

[ ∫
Ω1

[
− ρsas · δXs −K : ε(ds) : ε(δXs) + f s · δXs

]
dX

+

∫
Γsn

[
f ext · δXs

]
dX

]
dt (2.79)

In the same way, the momentum conservation over the fluid sub-domain Ωf is written
in its weak form as:

δAΩf
=

∫ t

0

∫
Ωf

δXf ·
(∂ρfvf

∂t
+∇.(ρfvf ⊗ vf + pfI)

)
dxdt (2.80)
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42 Chapter 2. Towards a stable non-intrusive FSI coupling method

Let’s now detail the stationarization of the interface functional. The first step is to
develop the expression as:∫ T

0
δLΓFS

dt =

∫ T

0
δ

∫
ΓFS

Λ
(
(ns.vs)ns − (nf .vf )nf

)
dXdt

=

∫ T

0

∫
ΓFS

δΛ ·
(
(ns · vs)ns − (nf · vf )nf

)
dXdt

+

∫ T

0

∫
ΓFS

Λ ·
(
(ns · δvs)ns − (nf · δvf )nf

)
dXdt

Then applying integration by part on the second term of the development, the equa-
tion (2.2.1) becomes:

∫ T

0
δLΓFS

dt =

∫ T

0

∫
ΓFS

δΛ ·
(
(ns · vs)ns − (nf · vf )nf

)
dXdt

+
[ ∫

ΓFS

Λ ·
(
(ns · δXs)ns − (nf · δXf )nf

)
dX
]T

0

−
∫ T

0

∫
ΓFS

Λ̇ ·
(
(ns · δXs)ns − (nf · δXf )nf

)
dXdt (2.81)

Remaining that the virtual variables δXs and δXf are defined on V 0 such as V 0 =
{δXk | δXk ∈H 1, δXk(X, t) = 0 on ΓD×[0, T ], δXk(X, 0) = 0 on Ωk, δXk(X, T ) =
0 on Ωk} where k is the sub-domain subscript. Then, at the boundaries of the time
integral, the virtual variables are equal to zero. Hence, the second term of the equation
(2.81) is deleted.
Finally, the last term is developed and split into two time integrals, one for each virtual
variables of both sub-domains. Hence, the expression of the interface functional is
expressed as:

∫ T

0
δLΓFS

dt =

∫ T

0

∫
ΓFS

δΛ ·
(
(ns · vs)ns + (nf · vf )nf

)
dXdt

−
∫ T

0

∫
ΓFS

Λ̇ · (ns · δXs)ns dXdt

+

∫ T

0

∫
ΓFS

Λ̇ · (nf · δXf )nf dXdt (2.82)

By including equations (2.79), (2.80), (2.82) into equation (2.77), we get the global
continuous monolithic equation of the FSI considered problem. Then, the idea is to
split it into three equations, each dependent on one of virtual field, δXs, δXf and
δΛ. These three equations are respectively the weak formulation of the momentum
conservation over structural sub-domain and over fluid sub-domain as well as the
coupling condition at the interface.
Finally, those three equations are discretized in space using the discretization methods
described in the previous section 2.1. The semi discretized equation of solid sub-
domain in Lagrangian formulation is directly obtained as given in the equation (2.83a).
The calculation of the semi-discretization in finite volume with ALE formulation from
the weak formulation of the fluid momentum conservation, is less straightforward. The
detailed calculation is presented into the Appendix A, and gives equation (2.83b) for
the cell i. The last one semi-discretized equation (2.83c), represents the continuity of
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2.2. Proposed coupling method 43

the nodal normal velocities at the interface.

Msas + Ksds = Fs + LTs Λ in Ωs

d

dt

(
∆ViUfi

)
= −

∑
∀Γih∈Γi

(
sihF̃fih + LfihΛih

)
in Ωf

Lsvsns = lfvfvertexnf on ΓFS

(2.83a)

(2.83b)

(2.83c)

Where Λ is the vector of the time discretized derived Lagrange multipliers. This one
is homogeneous to a force and could be viewed as interaction forces between the two
sub-domains.
We define Ls, the normal node selection matrix of the solid mesh belonging to the
interface ΓFS . In the same way, Lf is a (nvertex × 3) matrix, where the first and the
last columns are zeros vectors and the second column is the transposed of the normal
vertex selection matrix lf . The matrix Lf = [0, lTf ,0] allows us to take into account
interaction forces in the momentum conservation equation, for the cells whose one or
more faces are included in ΓFS . In other words, interaction forces do not influence
the mass and the energy conservation in the fluid computation. When the meshes
are compatible; when the node of the fluid mesh and solid mesh are common on the
interface, these operators are Boolean.
Finally, vfvertex is the vector of fluid velocities at the vertices. Since we used cell cen-
tered finite volume method as spatial discretization, fluid velocities are defined at cell
centers. Nevertheless, the interface functional imposes normal velocity continuity on
the interface ΓFS . Then, for the semi discrete form, we introduced the vector vfvertex .
This one could be built using different kind of approximation, such as gradient or
ghost cells and will be detailed for each test case.

Concerning the time discretization and for the sake of the generalization, we choose to
use a specific scale on each sub-domain. In view of hypotheses and time discretization
schemes, the fluid sub-domain is discretized using a micro time scale while the solid
sub-domain is discretized using a macro time scale. The explicit Runge-Kutta scheme
used over fluid sub-domain is conditionally stable according a critical time step, while
the implicit Newmark scheme used for structural computation, is unconditionally
stable. Thus ∆tf is the micro time step between the times tj−1 and tj , and ∆ts is the
macro-time step between the instants t0 and tm such as ∆ts = m∆tf , with m ∈ N∗.
In this work, we consider that the fluid and solid simulation start at the same time
and that the ratio between the two scales m is an integer. In this way, every m time
step both sub-domains are computed for the same time, as it is shown on Fig. 2.6
where m = 3.
About the time discretization of the coupling condition at the interface, equation
(2.83c), two options are available. It could be done at the micro time scale or at
the larger one. The main advantage of the coupling at the macro scale is that it is
conservative in term of energy, but the interface tracking on the explicit micro scale is
difficult and less accurate. On the other way, when the coupling condition is imposed
at the micro time step, the geometry motions of the interface is well known but this
method induces a small amount of dissipative energy [52]. Nevertheless, the loss of
energy is often considered small enough compared to the global energy balance, as in
[53, 95, 19]. Last but not least, the coupling at the fine time scale can be implemented
really more easily than at the macro scale. That is why, in this work the micro time-
step coupling has been chosen.
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∆ts m∆tf

t0 tm

interpolation

sub-domain solid

∆tf

tj−1 tj tj+1 tj+2

sub-domain fluid

Figure 2.6: Fluid and solid time scales with m = 3

Thus, the normal velocity continuity condition through the Fluid-Structure interface
is discretized at the fine time scale, in our case the fluid time scale. The coupling
condition is written at the Runge-Kutta mid-step and at the micro time step. Finally
the discretized equations of the global coupled problem, viewed as monolithic, are
written as:



M̃sa
m
s = Fm

s −Ksd
P
s + LTs Λm

∆V
j− 1

2
fi

U
j− 1

2
fi

= ∆V j−1
fi

Uj−1
fi
− ∆tf

2

∑(
sj−1
fih

F̃j−1
fih

+ LTfihΛ
j− 1

2
ih

)
∆V j

fi
Uj
fi

= ∆V j−1
fi

Uj−1
fi
−∆tf

∑(
s
j− 1

2
fih

F̃
j− 1

2
fih

+ LTfihΛj
ih

)
Lsv

j− 1
2

s n
j− 1

2
s = lfv

j− 1
2

fvertex
n

1
2
f

Lsv
j
sn

j
s = lfv

j
fvertex

njf

(2.84)

2.2.2 Co-simulation algorithm

The objective is now to solve the monolithic discretized system of equations (2.84) gov-
erning the FSI problem into a co-simulation algorithm. The idea of the co-simulation
algorithm is to allow the equations of each sub-domain to be solved by dedicated CFD
solver and solid dynamic solver.

As said previously, we made the choice to impose the coupling condition, the normal
velocities continuity, at the fine time scale, which is the fluid time scale. Moreover,
the fluid time discretization uses the two-step Runge-Kutta scheme. In this way, the
velocity continuity has also to be imposed at this Runge-Kutta mid step. Thus, the
first step is to define the solid velocities at the micro time scale and at the Runge-
Kutta mid-step, in order to solve the coupling equation. A simple linear interpolation
is used, as proposed by the GC method:

v
j− 1

2
s = (1−

j − 1
2

m
)v0
s +

j − 1
2

m
vms

vjs = (1− j

m
)v0
s +

j

m
vms

(2.85a)

(2.85b)
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The same kind of interpolation will be needed for the itnteraction forces Λ. Then
they are defined as:

Λj− 1
2 = (1−

j − 1
2

m
)Λ0 +

j − 1
2

m
Λm

Λj = (1− j

m
)Λs0 +

j

m
Λm

(2.86a)

(2.86b)

The idea of the co-simulation algorithm is based on a predictor-corrector decompo-
sition. First, the variables called ”free” are defined. They are the solid state vector
and the fluid conservative variables vector describing the behaviour of the solid sub-
domain and fluid-sub-domain respectively without taking into account the interface
interactions at the current time step. In other words, free variables depend on the
materials history, but do not depend on Λm, Λj− 1

2 or Λj . In this way, free state could
be viewed as a predictive state. On the other side, we define the ”link”variables which
describe the behaviour of each sub-domain induced by the fluid-structure interaction
forces alone. The sum of free states and the link states of each sub domain gets the
global structural state vector and conservative fluid variables, such as:

Ukfree + Uklink
= Uk k = s, f (2.87)

Then, solving the system of equations (2.84), it appears that Lagrange multipliers
only depend on free variables (see appendix B for more details). In this way, the res-
olution of the fluid-structure problem can be done by the general following procedure,
summarized in Fig.2.7. First, the ”free” states of each sub-domain are computed from
the previous time step and boundary conditions (except for the coupling condition).
Then, the interface operators are computed using the free velocities. Using those
ones, the link states of fluid and solid sub-domains can be computed. And finally, the
global state of the fluid-structure problem is known by the summation of free and link
solid state vectors in the one hand and the free and link fluid conservative variables
vectors in the other hand.

Fluid free Structure free

Interface
operators

Fluid link Structure link

Structure stateFluid state

Figure 2.7: Free/Link decomposition for the co-simulation algorithm

Following, the equations solved by the proposed algorithm are detailed. First, let
us split the discretized solid state vector into free variables and link variables. This
split comes immediately such as the free accelerations, amsfree are defined by the terms
non-depending on the Lagrange multipliers Λm while link accelerations amslink

are
defined only by the term depending on the interface operators. Then, displacements
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46 Chapter 2. Towards a stable non-intrusive FSI coupling method

and velocities are defined in the same way. The free states are calculated from the
Newmark predictions and the term depending on free accelerations, while the link
states are calculated from the term depending on link accelerations.

amsfree = M̃−1
s

(
Fm −Ksd

p
s

)
vmsfree = vPs +

∆ts
2

amsfree

dmsfree = dPs +
∆t2s

4
amsfree

(2.88a)

(2.88b)

(2.88c)

amslink
= M̃−1

s LTs Λm

vmslink
=

∆ts
2

amslink

dmslink
=

∆t2s
4

amslink

(2.89a)

(2.89b)

(2.89c)

The same split has to be done over the fluid sub-domain Ωf . This time, the operation
is less obvious than over the solid sub domain. Indeed, into the fluid equations of
the system (2.84), there are two kinds of variables which are dependent on interface

operators: the momentum
(
ρv
)j− 1

2
f

and
(
ρv
)j
f

and the cells volume ∆V j− 1
2 and

∆V j . That is why, instead of splitting the conservative variables vector alone, the cell
volumes and conservative variables vector are grouped. It is this new vector of grouped
variables that is split into free and into link states. Let’s call it mean conservative
variables vector, simply noted

(
∆VUf

)
. Thus, the free mean conservative variables

vector at Runge-Kutta mid step tj−
1
2 and at micro time step tj is computed by the

mean conservative variables from the previous time step and by the explicit numerical
flux: (

∆VUf

)j− 1
2

freei
= ∆V j−1

i Uj−1
fi
−

∆tf
2

∑
sj−1
ih F̃j−1

fih(
∆VUf

)j
freei

= ∆V j−1
i Uj−1

fi
−∆tf

∑
s
j− 1

2
ih F̃

j− 1
2

fih

(2.90a)

(2.90b)

On the other side, the link mean conservative variables vector is expressed by the
means of the interface operator dependent term, such as:

(
∆VUf

)j− 1
2

linki
= −∆t

2

∑
LTfihΛ

j− 1
2

ih(
∆VUf

)j
linki

= −∆t
∑

LTfihΛjih

(2.91a)

(2.91b)

Letus recall that the first and the last row of the fluid selection operator Lf are zeros
vectors. In this way, the first row of the link mean conservative variables vector is
zero,

(
∆V ρf

)
link

, as its last row,
(
∆V Ef

)
link

. Using this property, we can define the
fluid, free and link velocities even if the cells volumes are unknown, such as:

vffree =

(
∆V ρfvf

)
free(

∆V ρf
)
free

(2.92) vflink
=

(
∆V ρfvf

)
link(

∆V ρf
)
free

(2.93)

With these definitions, the interface operators can now be expressed. The equations
(2.88b) and (2.92) are included into the equation of the coupling condition, the last
equation of the system (2.84). Then, Runge-Kutta mid-step and micro-time step
interpolations, equations (2.85) and (2.86) are used. The detailed calculations are
available in Appendix B. Finally, interface operators at the Runge-Kutta mid step
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Λj− 1
2 and at the micro time step Λj are defined as follows:

(
Hs + H

j− 1
2

f

)
Λj− 1

2 = Lsv
j− 1

2
sfreen

j− 1
2

s + lfv
j− 1

2
vertexffree

n
j− 1

2
f(

Hs + Hj
f

)
Λj = Lsv

j
sfree

njs + lfv
j
vertexffree

njf

(2.94a)

(2.94b)

Where the Steklov Poincaré operators H for fluid and solid are defined as:

Hs =
1

2
∆tsLsM̃stfL

T
s

H
j− 1

2
f =

1

2
∆tf lfM

j− 1
2

−1

f lTf

Hj
f = ∆tf lfM

j−1

f lTf

(2.95a)

(2.95b)

(2.95c)

With Mf the fluid mass matrix, defined as Mf =
(
∆V ρf

)
vertex

I. Recalling that(
∆V ρf

)
link

is zero, the fluid mass matrix is known by the fluid ”free” computation.
Let’s remark that the Steklov Poincare operator for solid Hs is time independent,
contrary to the fluid one Hf . This is due to the assumption of compressible fluid. In
this way, the solid operator can be computed only once at the initialization while the
fluid operator should be updated at each Runge-Kutta mid-step and at each micro
time step.

We now get all the keys to detail the monolithic co-simulation algorithm of the fluid-
structure interaction problem considered. Fig 2.8 shows a representation of the pro-
posed algorithm with a ratio m = 2 between the fluid and the solid time scales.

∆ttj−1 tj

t0 tm∆T

Fluid

Solid

13

8

5

2

1

2 5 8 11

4 7 10 13

3 6 9 12

free computation

free interpolation

link computation

Λ computation

Figure 2.8: Multi time-step algorithm with m = 2

In the general case, the procedure is described below and by the Alg.2. First of all, let
us begin with the initialization. Thanks to the initial conditions, the states of the fluid
sub-domain Ωf and of the solid sub-domain Ωs are computed at t0 = 0. Moreover
the solid invariants, the modified mass matrix M̃s and the Steklov-Poincare operator
Hs, are evaluated.
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48 Chapter 2. Towards a stable non-intrusive FSI coupling method

Following which the time loop is started over the macro time scale until the final step
is achieved. At each macro-time step, the first step is to compute the free state vector
of the solid sub-domain Um

sfree
according to equations (2.88).

Then the micro-time loop is run, from j = 1 to j = m. First, the Runge-Kutta
mid-step is processed. The free structural velocities at the interface, are interpolated
by equation (2.85a) and the fluid free mean conservative variables are computed by
equation (2.90a). In order to solve the interface problem, the mean conservative

free variables vector is extrapolated at ΓFS . Then, the fluid operator H
j− 1

2
f can be

computed from equation (2.95b). Afterwards, the Lagrange multipliers are deter-
mined using equation (2.94a). Knowing interface operators, the mean conservative
link variables vector is computed, equation (2.91a). Thus, using the equation (2.93),
the relation (2.87) and the ghost cell method for the extrapolation at the interface,

the fluid velocities at Γ
j− 1

2
FSI are deduced. According to it, the ALE grid is updated.

Hence, the cells volumes ∆V j− 1
2 are no longer unknown. Finally, adding the free

and the link mean conservative variables vectors and divided it by the current cells
volumes, we get the total fluid conservative variables vector at the Runge-Kutta mid-
step.
Then, to know the fluid state at the end of the micro time step, exactly the same
procedure is followed for the second Runge-Kutta step. Where the explicit ALE flux
can be now computed since the grid velocities wj+ 1

2 have been computed by the pre-
vious grid update.
When the last micro time loop has been performed, j = m, we go out of the micro
time loop to go back to the macro one, with the aim to end the computation of the
structural state. Using the last Lagrange multiplier computed at the fine time step,
the link state vector is computed, equation (2.89). Finally, using the equation (2.87)
the total solid state is deduced at the end of the current macro time step. The macro-
loop is re-launched until the final time step is reached, such as tm = T .

In this section, the proposed method for an FSI coupling based on a monolithic for-
mulation and solved by a co-simulation algorithm has been described. The objective
of the method is to aim for stability, accuracy and efficiency in numerical simulation
applied on FSI problems. Concerning the stability, the use of the monolithic formu-
lation instead of partitioned formulation should forestall performance degradation.
Moreover, stability is guaranteed by the coupling condition imposed synchronously
on the two sub-domains, by normal velocities continuity at the interface. Also, the
proposed method could be said heterogeneous which allows a better accuracy. Indeed,
each sub-domain uses a different discretization method, adapted to its hypotheses.
The solid sub-domain is discretized by the finite element method and an implicit
Newmark scheme, while the fluid sub-domain uses the finite volume method in ALE
formulation and an explicit Runge-Kutta scheme. Finally, to improve its efficiency,
the method proposes to use dedicated time and space scale on each sub-domain. The
meshes can be non-matching at the interface and the fluid sub-domain can be solved
using a finer time step than the one used on the structural sub-domain.
The proposed method has now to be validated with academic test cases which will
be presented is the next section.
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Algorithm 2 Multi time step FSI coupling with MCS method

1: Initial fluid Ωf and solid Ωs states
2: Compute structural invariant : M̃s,Hs ← (2.95a)
3: while tm ≤ T do . Macro time loop
4: Compute Um

sfree
← (2.88)

5: for j ∈ [1,m] do . Micro time loop

6: Interpolate v
j− 1

2
sfree ← (2.85a) . Runge-Kutta first step

7: Compute
(
∆VU

)j− 1
2

ffree
← (2.90a)

8: Extrapolate lf
(
∆V ρ

)j− 1
2

ffree
and lfv

j− 1
2

ffree
← (2.92)

9: Compute H
j− 1

2
f ← (2.95b)

10: Compute Λj− 1
2 ← (2.94a)

11: Compute
(
∆VU

)j− 1
2

flink
← (2.91a)

12: Compute lfv
j− 1

2
f ← (2.87) and (2.93)

13: Compute ∆V j− 1
2 ,wj− 1

2 ← mesh update

14: Compute U
j− 1

2
f ← (2.87)

15: Interpolate vjsfree ← (2.85b) . Runge-Kutta second step

16: Compute
(
∆VU

)j
ffree

← (2.90b)

17: Extrapolate lf
(
∆V ρ

)j
ffree

and lfv
j
ffree

← (2.92)

18: Compute Hj
f ← (2.95c)

19: Compute Λj ← (2.94b)

20: Compute
(
∆VU

)j
flink

← (2.91b)

21: Compute lfv
j
f ← (2.87) and (2.93)

22: Compute ∆V j ,wj ← mesh update
23: Compute Uj

f ← (2.87)
24: end for
25: compute Um

slink
← (2.92)

26: compute Um
s ← (2.87)

27: end while

2.3 Piston test case validation

The present section is dedicated to the validation of the proposed coupling method
for the considered fluid-structure interaction problems. The choice was made to use
the one dimensional piston test case which is a classical academic test case used to
evaluate FSI coupling methods. The aim will be to evaluate the performance of the
proposed method in terms of general results, error of coupling and energy preservation.
The results will also be compared with a partitioned coupling approach.

2.3.1 Presentation of the problem

The piston test case has been introduced in 1995 by Piperno [93] whose aim was to
compare several approaches for partitioned fluid-structure coupling.
We considered a one meter tube, where is enclosed air. The left end of the chamber
is closed by a wall while the right end is closed by a mass-spring system, see Fig.2.9.
This mass-spring system is the solid sub-domain considered and the tube is the fluid
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sub-domain.

Ωf

Ωs

x

ΓFS

v0
s

p0
f

Figure 2.9: 1D piston problem, geometry, initial and boundaries
conditions

This test case has been re-used latter to validate FSI coupling. As an example, Blom
[16] proposed to couple the finite volume method with ALE formulation for fluid sub-
domain to Lagrangian structure with a monolithic time integration algorithm with
linear extrapolation for the ALE grid. Then, Michler [82] proposed to couple Galerkin
finite element for fluid and solid sub-domains synchronously. Lefrançois [71] also used
this test case to study different formulation for the fluid sub-domain, using finite
element in eulerian, Lagrangian or ALE formulation. More recently, Ischinger [59]
proposed a monolithic coupling with interface capturing and discontinuous Galerkin
method on fluid sub-domain.
In all this work the materials’ parameters and initial conditions vary a bit. In this
work we chose to use the same set of parameters as the one used by Blom and
Ischinger. Concerning the materials, the fluid sub-domain Ωf is made of air, with
a specific heat ratio kf = 1.4 and initial density ρ0

f = 1.3Kg.m−3. It is considered
compressible and as a perfect gas. It is discretized by 100 finite volumes. The solid
sub-domain Ωs, is made of a linear mass-spring system undamped, where the mass is
ms = 0.8Kg and the stiffness is ks = 8000N.m−1. It is considered to have a single
degree of freedom. At the beginning of the simulation, the pressure of the fluid is the
same as the atmospheric pressure outside the tube as p0

f = 1e5Pa. Then an initial

velocity is given to the mass, such as v0
s = 20m.s−1. The set of parameters used is

recapitulated into the Tab.2.1.

Geometry symbol value

Length of the fluid chamber at rest l0f 1 m

Number of finite volumes of Ωf ncell 100
Number of degrees of freedom of Ωs ndof 1

Material symbol value

Specific heat ratio of Ωf kf 1.4
Mass of the Ωs mass ms 0.8 kg
Stiffness of the Ωs spring ks 8000 N m−1

Initial condition symbol value

Initial pressure of Ωf p0
f 1× 105 Pa

Initial density of Ωf ρ0
f 1.3 kg m−3

Initial velocity of ΓFS v0
s 20 m s−1

Table 2.1: Set of parameters for the 1D piston problem
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2.3. Piston test case validation 51

As we said earlier, the explicit Runge-Kutta scheme used for the fluid computation
is conditionally stable. In this way, the micro time step chosen to solve the fluid
sub-domain shouldn’t be inferior to the critical time step of the scheme. In this one
dimensional test case with ALE formulation, the critical time step is known as:

∆tcrit =
min(∆V )

cf + |vf −w| (2.96)

As the grid is moving, the critical time step is time dependent. Here, we simply used
a constant time step for each sub-domain. In this way, we have to use a fluid time
step smaller than the worst critical time step. This one is defined by the smallest
ALE grid configuration. Considering the behaviour of the coupling problem as un-
known, we choose the most unfavourable configuration as the maximum position of
the piston squeezed, when this one is computed without fluid interaction. Then we
get ∆tcrit = 2.5× 10−5 m s−1.

The last step to describe this test case is the way the ALE grid will be solved. Fig.
2.10 shows the configuration of the fluid mesh at two consecutive instants tj−1 and tj .
The grid motion is updated from the interface motion, conserving the same number of
cells. Moreover, the cells are of the same length at a given configuration. Considering
the state of the grid at tj−1 is known, to solve the fluid problem, we have to compute
at Runge-Kutta mid-step and micro time step, the cells volumes as well as the velocity
at the cell centers and faces.

Time step tj :

1 2 i i+1 end

Time step tj−1:
ΓFS

1 2 i i+1 end

djΓFS

Figure 2.10: 1D piston problem grid deformation

First, we imposed that the velocity of the last face, called end + 1
2 , included in the

fluid-structure interface ΓFS , gets the same velocity as the fluid and the solid at this
interface. Then, the velocity of the first face, numbered 1

2 , is imposed to zero. Then
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a linear interpolation is performed to get the velocity of inner faces, such as:

w
j− 1

2

i+ 1
2

=
i

end
v
j− 1

2
ΓFS

wj

i+ 1
2

=
i

end
vjΓFS

(2.97a)

(2.97b)

Then, the velocities of cells centers are defined by the means of the velocities of the
adjacent faces, wi = 1

2wi+ 1
2

+ 1
2wi− 1

2
.

Remark that here, in one dimension, velocities are all normal to the fluid structure
interface, then vΓFS

= vs = vf
end+ 1

2

.

Finally, to determine the cell volumes, we have to update the position of the faces.
As for velocities, the position of the first face is imposed to zero, the position of the
last face is imposed as the position of the interface, and linear interpolation is made
for the inner faces. The interface motion being defined as djΓFS

= ∆tfv
j
ΓFS

, we get:

x
j− 1

2

i+ 1
2

= xj−1

i+ 1
2

+
1

2
∆tf

i

end
v
j− 1

2
ΓFS

xj
i+ 1

2

= xj−1

i+ 1
2

+ ∆tf
i

end
vjΓFS

(2.98a)

(2.98b)

Thus, during the updating of the ALE grid, the volume of the cell i is computed
as ∆Vi = a(xi+ 1

2
− xi− 1

2
), where a is the chamber section, which is 1 in this one

dimensional test case.

2.3.2 Partitioned approach

In order to compare the results of the proposed method, the piston problem is also
solved with a partitioned serial explicit coupling. The term explicit has the meaning
here of direct, concerning the coupling. In opposition of implicit coupling where there
are several iterations between the fluid and the solid solution at the same time step,
see section 1.1.2. Also, the coupling is considered as serial due to the fact that the
sub-domains are solved one after the other and none in a parallel way. The parti-
tioned coupling method used here is the same as the one introduced in [41].
Obviously, an implicit coupling method will give better results in terms of accuracy.
Nevertheless, the idea is here to compare two direct coupling methods, with only
one computation per time step of each sub-domain. Moreover the comparison of the
result will be done only for mono time scale FSI coupling.
The method of resolution for the piston problem by a partitioned serial explicit and
mono time scale, is described below.

As said previously, partitioned approaches treat fluid and solid sub-domains in an
uncoupled way, meaning that interactions between the sub-domains are implemented
as boundary conditions. Thus, at the interface, the normal solid velocity is imposed to
the fluid, and the fluid pressure is imposed to the solid. Then, the fluid variables need
to be defined at the boundaries. As mentioned in section 2.1.2, the fluid variables are
defined at faces of the grid as the mean of the variables at the center of the adjacent
cells. Thus, in this one dimensional test case, fluid variables, as velocity or pressure
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noted qf , are approximated at the face i+ 1
2 as:

qf
i+ 1

2

=
1

2
qfi +

1

2
qfi+1 (2.99)

Nevertheless, for the first face, numbered 1
2 , and the last face, numbered end + 1

2 ,
there is only one adjacent cell, 1 and end respectively. This is why, fictitious cells
are defined adjacent at the boundaries, outside of the fluid domain. There are called
ghost cells and numbered 0 and end+ 1, see Fig.2.11.

ΓFS

0 1 i i+1 end end+1

end+1
2

1
2 i+1

2

Figure 2.11: 1D piston problem ghost cells definition

Then, conservative variables are imposed at ghost cells as one order extrapolation
from the inner cells and the boundary conditions.

The resolution of the piston problem is mono time scale. Thus, the objective is to
compute the behaviour of fluid and structural sub-domains at each discrete instant
in [0, ..., tn, tn+1, ..., T ] with tn+1 = ∆t + tn and ∆t = 2× 10−5 m s−1. Moreover
the sub-domains are discretized using the numerical methods as for the proposed
coupling method and described in section 2.1. After the initialization of the solid
state vector and conservative fluid variables vector, using the initial condition and
boundary conditions, the following procedure is computed for each time step.
First the ALE grid is updated at the Runge-Kutta mid-step tn+ 1

2 and at the next
tn+1. To solve equations (2.97) and (2.98) in order to know the grid velocities and

the cells volume, the interface velocity should be known at tn+1 and tn+ 1
2 , which is

not yet the case. In this way, those values are predicted. The prediction of vn+1
ΓFS

is
defined as a one order extrapolation from the previous time steps. And the interface
velocity at Runge-Kutta mid-step is considered as the linear interpolation between tn

and tn+1, such as:

pvn+1
ΓFS

= 2vnΓFS
− vn−1

ΓFS

pv
n+ 1

2
ΓFS

=
3

2
vnΓFS

− 1

2
vn−1

ΓFS

(2.100a)

(2.100b)

Now that the ALE has been updated, the fluid behaviour can be computed, using
equation (2.65). Then, the conservative variables vector has to be defined at ghost

cells centers, at tn+ 1
2 and tn+1. The ghost cell end+1 imposed the boundary condition

of the solid sub-domain over the fluid. The fluid velocity at the boundary ΓFS should
be the solid velocity. As for the ALE mesh update, the velocity of the interface
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computed by the solid is still unknown at the current time step. Then, instead of the
computed solid velocity, the predictive velocity at the interface defined by equations
(2.100), is used to impose the normal velocity condition trough the interface. The
other conservative variables are extrapolated from inner cells. Then, the conservative
variables vector at the right ghost cell is defined as:

U
n+ 1

2
fend+1

=


2ρ

n+ 1
2

fend
− ρn+ 1

2
fend−1

ρ
n+ 1

2
fend+1

(2pv
n+ 1

2
ΓFS
− v

n+ 1
2

fend
)

2E
n+ 1

2
fend
− En+ 1

2
fend−1



(2.101)

Un+1
fend+1

=


2ρn+1

fend
− ρn+1

fend−1

ρn+1
fend+1

(2pvn+1
ΓFS
− vn+1

fend
)

2En+1
fend
− En+1

fend−1



(2.102)

We also have to take into account the wall boundary condition and define the conser-
vative variables vector at the left ghost cell center. The objective is to enforce a zero
velocity at the fixed wall,vf 1

2

= 0. Then we imposed:

U
n+ 1

2
f0

=


2ρ

n+ 1
2

f1
− ρn+ 1

2
f2

−ρn+ 1
2

f0
v
n+ 1

2
f1

2E
n+ 1

2
f1
− En+ 1

2
f2

 (2.103)
Un+1
f0

=


2ρn+1

f1
− ρn+1

f2

−ρn+1
f0

vn+1
f1

2En+1
f1
− En+1

f2

 (2.104)

In a second phase, the solid state is computed at tn+1. Equations (2.31) are solved
where the mass and stiffness matrices are replaced by the scalar values ms and ks
respectively in this one dimensional problem. Also, an external force is applied which
is the interaction of the fluid onto the solid at the interface and is defined as:

Fn+1
s = a(pn+1

f
end+ 1

2

− p0
f ) (2.105)

Where the fluid pressure at the interface pn+1
f
end+ 1

2

is defined thanks to the ghost cell.

The algorithm 3 describes the serial explicit partitioned coupling method.

2.3.3 Monolithic co-simulation method

On the other side, the piston problem is computed by the monolithic co-simulation
method presented in section 2.2. The method is not described once again, applied to
the piston problem, due to the fact that it follows the algorithm 2. Nevertheless, here
is some precision.
First, concerning the solid resolution, the equations to solve are the same as (2.31),
except that, due to the one dimensional assumption, the mass matrix Ms and stiffness
matrix Ks are replaced by the scalar mass ms and stiffness ks of the spring.
Then, the ALE grid update is the same as the one used for the partitioned coupling,
solved by the equation (2.97) and (2.98). Where the interface velocity is not predicted
but computed by the equations (2.92 2.93 2.87) and the ghost cell interpolation, due
to the fact that in one dimension every velocity is normal to the interface, such as
VΓFS

= Vs = Vf
end+ 1

2

.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI071/these.pdf 
© [M. Gibert], [2022], INSA Lyon, tous droits réservés



2.3. Piston test case validation 55

Algorithm 3 Partitioned serial explicit coupling

1: Initial fluid Ωf and solid Ωs states
2: while tn+1 ≤ T do . Temporal loop

3: Extrapolate pv
n+ 1

2
ΓFS
← (2.100a) . Runge-Kutta first step

4: Compute ∆V n+ 1
2 ,wn+ 1

2 ← (2.97a 2.98a)

5: Compute U
n+ 1

2
f ← (2.66a)

6: Extrapolate U
n+ 1

2
f
end+ 1

2

← (2.101)

7: Extrapolate U
n+ 1

2
f 1

2

← (2.103)

8: Extrapolate pvn+1
ΓFS
← (2.100a) . Runge-Kutta second step

9: Compute ∆V n+1,wn+1 ← (2.97a 2.98a)
10: Compute Un+1

f ← (2.66a)

11: Extrapolate Un+1
f
end+ 1

2

← (2.101)

12: Extrapolate Un+1
f 1

2

← (2.103)

13: compute pn+1
f
end+ 1

2

← (2.105)

14: compute Un+1
s ← (2.37)

15: end while

Finally, the coupling condition are not imposed thanks to the ghost cells method,
but conservative variables vector still has to be defined at ghost cells to compute
the numerical flux at the boundaries and interpolate fluid velocities at the interface.
Thus, all the values of the conservative variables vector are extrapolated for the right
ghost cell such as:

U
n+ 1

2
fend

= 2U
n+ 1

2
fend−1

−U
n+ 1

2
fend−2

Un+1
fend

= 2Un+1
fend−1

−Un+1
fend−2

(2.106a)

(2.106b)

Concerning the left ghost cell, this one is defined as in the partitioned method, equa-
tions (2.103, 2.104), in order to impose the fixed wall boundary condition.

2.3.4 Energy balance

Those two coupling methods are implemented into python scripts and the results
are described in the next sub-section. Moreover, the energy balance of the coupling
problem will be studied and is presented below.
The mechanical energy E over each sub domain is written as:

Ek(t) = Wkink
(t) + Wintk(t)−Wextk(t) ∀t ∈ [0, T ] k = s, f (2.107)

Where Wkin is the kinetic energy, Wint the internal energy and Wext the external
energy. In the considered problem the external energy over each sub-domain in only
induced by the force of interface, no other external forces being considered.
First we considered the solid sub domain energy. Its internal and kinetic energies are
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computed at the end of each micro time step such as:

Wm
kins

= W 0
kins

+
1

2
vms msv

m
s −

1

2
v0
smsv

0
s

Wm
ints = W 0

ints +
1

2
dms ksd

m
s −

1

2
d0
sksd

0
s

(2.108)

(2.109)

Concerning the fluid sub domain, its total energy is computed at the end of every
thinner time step, not at the Runge-Kutta mid-step. It is defined by the equation
(2.40) and is computed by the resolution of the conservative Euler equation. Thus,
the total energy over the fluid sub-domain Wf is resolved as:

W j
f = W j−1

f +

ncell∑
i=1

∆V j
fi
Ejfi −

ncell∑
i=1

∆V j−1
fi

Ej−1
fi

(2.110)

Finally, the external coupling is computed differently according to the coupling method
used.
During the serial explicit coupling, the external energy is expressed according to the
interface force Fn+1

s from equation (2.105), such as:

Wn+1
ext = Wn

ext +
1

2
(Fn+1

s + Fn
s )(dn+1

s − dns ) (2.111)

In case of monolithic co-simulation coupling, the external energy is computed by the
mean of the Lagrange multipliers, and are called interface energy WΓFS

. For the solid
sub-domain balance, it is defined at the macro time step as:

Wm
ΓFSs

= W 0
ΓFSs

+
1

2
(Λm + Λ0)(dms − d0

s) (2.112)

For the fluid sub-domain balance, the contribution of the interface is computed every
micro time step. Instead of the solid displacement, the last face of the ALE grid,
which is included into the fluid-structure interface and whose position is computed at
the micro time scale, is used.

W j
ΓFSf

= W j−1
ΓFSf

+
1

2
(Λj + Λj−1)(xjΓFS

− xj−1
ΓFS

) (2.113)

Finally, the energy balance of each sub-domain is known by equation (2.107). Since
no external energy is added to the system, the sum of the fluid and solid balance
should remain constant.

2.3.5 Results

First we compare the results of the computation of the piston problem by the proposed
coupling method, a monolithic co-simulation approach, and by the serial explicit par-
titioned coupling, with the same time scale for the fluid sub-domain and for the solid
sub-domain.
Fig.2.12 shows the position of the interface ΓFS according to the time. The graph
on the left is the result from the partitioned coupling simulation while the one on
the right comes from the computation of the proposed coupling method. First, the
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positions of the interface computed with the solid displacement, the blue line, and by
the mean of the ALE grid updating, the dashed orange line, seem to be really close
for both methods, which validates the implementation of coupling condition and ALE
grid computation. To validate the sub-domains computation, the general appearance
of the results, maximum amplitudes and frequencies, are compared to the results from
the literature. As said earlier, in order to compare our results, the set of parameters
used are the sames as the one used by Blom in [16] and by Ischinger in [59], whose
results are shown in Fig.2.13. The behaviour of our test case piston computed by
both methods matches with the literature. Thus, the computational methods of each
sub-domain and the coupling appears to be validated. The main difference of the
interface position evolution concerns the amplitude. In Fig.2.12a, the computation
by the partitioned approach shows a large decrease of the amplitude while the ampli-
tude seems to be stable in Fig.2.12b computed by the proposed method. Let’s recall
that the spring is undamped, and the fluid is inviscid. Thus, the interface amplitude
should not decrease over time since there is no dissipative work in the system. In this
way, the amplitude decrease in the partitioned coupling doesn’t come from a loss of
physical energy but from numerical energy, induced by the coupling method.
A certain amount of amplitude loss is also observed on the results from literature,
even though it is very small with the method proposed by Ischinger which used Dis-
continuous Galerkin method, as showed on Fig.2.13b. Then the proposed method
of an FSI coupling based on monolithic formulation seems to reach the objective of
being conservative, contrary to the serial explicit partitioned coupling.

(a) Serial explicit coupling (b) Monolithic co-simulation coupling

Figure 2.12: Position of the interface according the time computed
by solid (blue line) and fluid (dashed orange line) sub-domains

Then we study the relative error of coupling for the velocities at the interface. This
one is computed as:

err =
|vn+1
s − vn+1

fΓFS
|

max(vs)
(2.114)

Fig.2.14 below shows the evolution of this values according to time. Fig.2.14b shows
that the relative coupling error is of computer’s accuracy order. This means that the
continuity of the velocities through the fluid-structure interface seems to be well im-
plemented. Concerning the partitioned coupling, the relative error is average of 2.5%,
which is not that bad but not as accurate as the proposed coupling method, while
both methods impose the velocity continuity. Indeed, the serial explicit partitioned
coupling imposes that the fluid velocity at the interface be equal to the solid velocity,
by the means of the ghost cell method, see (2.101) and (2.102). Nevertheless, due
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(a) Amplitude from 0s to 0.5s

(b) Interface position from 0s to 1s

Figure 2.13: Some results from literature, on the left the interface
amplitude [16] and on the right the interface position [59]

to the unknown solid velocity at this point of the algorithm, a prediction about it is
used, explaining the relative coupling error.

(a) Serial explicit coupling
(b) Monolithic co-simulation coupling

Figure 2.14: Relative coupling error between fluid and solid velocities
at the interface

The last data compared for the two coupling approaches are the energy balance. As
said previously, energy preservation is one of the main issues of FSI simulation and
the proposed method with mono time scale, should be conservative. Fig.2.15 shows
the energy balance of both computations. The blue line is the solid energy, the orange
line is the fluid energy, and the green one is the summation of the energy over the
two sub-domains. In Fig.2.15b the total energy is constant according to time, which
means that the proposed method is well conservative. While the energy balance of the
partitioned coupling is decreasing, see Fig.2.15a. This validates the amplitude loss
of the interface position coming from dissipative energy induced by the partitioned
coupling method.

After the comparison of the simulation run by the partitioned serial explicit algorithm
and the monolithic co-simulation algorithm with mono-time scales, let’s study the
results of the proposed method for multi-time scales simulation.
As said previously the thinner time scale is used to compute the fluid sub domain, and
we keep ∆tf = 2× 10−5 m s−1. Then, the solid sub-domain is solved using different
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(a) Serial explicit coupling (b) Monolithic co-simulation coupling

Figure 2.15: Energy balance over the fluid and structural sub-
domains

time steps such as ∆ts = m∆tf . The Fig.2.16 shows the position of the fluid-structure
interface ΓFS for several time step ratio m.

Figure 2.16: Displacement of the interface for different time scale
ratios

We can see that the positions over time of the interface for m = 1, 2, 5, 10, 20 are
quite similar. Nevertheless, the results seem to deteriorate with the increasing of m.
In particular since m = 10, where we can see the amplitude decrease significantly. As
said in section 2.2, we chose to impose the continuity of the velocities at the micro
time scale that can induce a small numerical dissipation energy, while ensuring the
global stability.
Indeed, Fig.2.17 shows energy balance of the piston simulation with different time
scales, and we can see the global energy decreasing over time. For m = 2 and m = 5,
the loss of energy can be considered negligible. This one is really larger for m = 10
and m = 20, and can not be neglected. Nevertheless, regarding the time ratio, it is
not that large, indeed for a factor 10 between the two time scales, the error of global
energy is less than 5% at the end of the simulation.
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(a) Time scales ratio m=2 (b) Time scales ratio m=5

(c) Time scales ratio m=10 (d) Time scales ratio m=20

Figure 2.17: Energy balance over the fluid and solid sub-domains

Conclusion

In this section, the proposed method has been tested thanks to the academic test
case of the one dimensional piston. First results have been validated according to
literature. Then performances of the proposed method with mono time scale have
been compared with performances of partitioned serial explicit method. The pro-
posed method is really more accurate since there is no deterioration of the amplitude
according to time, contrary to the partitioned approach. Moreover, the method in
mono time scale is conservative, the energy balance and the global stability of the
coupling are thus guaranteed. Concerning the multi-time step coupling, with a small
ratio between the two time steps, the results are really promising; global stability is
ensured, and small dissipative energy is obtained. For large time steps ratio, such as
m = 10, the degradation of the results are more important but could be interesting
in some cases regarding the saved computation time.
After the validation of the proposed method over an academical test case, the method
has to be applied to more complex and realistic simulations, computed with dedicated
solvers.
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Chapter 3

Implementation and numerical

results

In this chapter, the implementation of the proposed FSI coupling method is presented,
as well as numerical results on 3D test cases computations.
In the first place, the objective was to implement the coupling method into the soft-
ware suite from Ansys, the industrial partner of the thesis. Ansys solutions offer three
means to solve FSI problems, all based on partitioned formulation. The first devel-
oped was the system coupling tools [23]. This one works as a black box coupling; the
fluid finite volume solver Fluent [7] is coupled to the solid finite element solver Me-
chanical [6] through the coupling box. This one handles data exchange for partitioned
one-way, two-way explicit and two-way implicit coupling, with an interface tracking
approach. The coupling box also manages incompatible meshes at the fluid-structure
interface.
The second method is an intrinsic FSI solver from the Fluent software. A simple
solid linear elastic solver with first-order finite elements, has been developed inside
the Fluent environment. Then, a two way serial explicit coupling with compatible
meshes can be run.
The last method is fluid-structure solutions from LS-DYNA solver [98], acquired by
Ansys Inc in 2019. Several methods are available to solve FSI problems, which cou-
ples with a partitioned formulation, a solid explicit finite element solver with different
fluid solvers, in LS-DYNA environment. The first one is an incompressible flow solver
(ICFD) [31], which is based on finite element method for incompressible fluid. The
coupling between the two sub-domains is based on interface tracking and is either
explicit or implicit. For compressible fluid, Conservative Element/Solution Element
method (CESE) and dual-CESE solvers, satisfying the fluid conservative law, can be
used [121]. Interface tracking approach or interface capturing approach, thanks to
the immersed boundary method, can be used for the FSI coupling. The dual-CESE
solver uses a dual mesh approach that allows to achieve a better stability than the
CESE solver for the same element size.

First, the coupling box solution has been considered. As an existing complete code
coupling solution, it seemed suitable for the implementation of the MCS method. Nev-
ertheless, this tool is complex, and the access to the code is limited. In this regard,
the use of the system coupling tool was not appropriate for a first implementation
and has been given up. In order to use a simpler environment, the intrinsic Fluent
solver solution has been considered in a second time. The issue of this approach is
that it cannot be easily extended to more complex FSI problems, such as non-linear
solid, incompatible meshes at the interface or multi-time scale approach. That is
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why this solution has also been left aside. Finally, the LS-DYNA solutions for FSI
problems have not been studied due to the fact that the acquisition occurred during
the thesis. Therefore, a direct coupling between Fluent and Mechanical, developed
from scratch to implement the MCS method seemed to be the more appropriate so-
lution. The fields would be exchanged by writing and reading function added to each
solvers, User Define Function (UDF) for Fluent and Ansys Parametric Design Lan-
guage (APDL) for Mechanical. Moreover, the interface operator computation would
be done into UDF. After some tries, this solution was hard to set up without direct
access to solvers codes. Besides, the field exchange would not have been sufficiently
efficient and the FSI problem size would have been limited. In addition, the extension
to FSI problems with multi-time and space scale would have been complex.

Thus, even if the objective remains to implement the proposed co-simulation algo-
rithm to existing fluid and solid solvers as little intrusively as possible, the access
to the solvers codes is still required. Hence, we chose to couple existing open-source
solvers but with the constraint that they were based on the same discretization meth-
ods as Fluent and Mechanical. Finally, instead of a direct coupling between physical
solvers, a coupling environment was adopted in order to robustly manage the field
exchanges, incompatible meshes and different time scales. The coupling Precise Code
Interaction Coupling Environment (preCICE) was chosen [20].
First, this chapter presents the preCICE coupling library and the used solid and fluid
solvers. Then the implementation of the proposed coupling method is detailed. Fi-
nally, numerical results corresponding to two benchmarks of the forward step and the
perpendicular flap, are shown.

3.1 Presentation of coupling library and used solvers

The aim of this section is to present how preCICE library works for FSI simulations
and its existing features. Then, the chosen free software used for sub-domains simula-
tion are presented; their solvers and discretization methods, as well as their adapters,
employed by preCICE for performing FSI simulation.

3.1.1 The coupling library preCICE

The first implementation of preCICE library dates from 2014, with the main contri-
bution carried out in Gatzhammer’s PhD thesis [47], based on an extension of the
software ”FSI*”. In 2016, Ukerman proposed in his PhD thesis [114] major improve-
ments about communication and architecture of the library, as well as parallelization
of the coupling. Since that, the library mainly has kept the same framework and is
maintained and developed at the University of Stuttgart and the Technical University
of Munich.
Figure Fig.3.1 from preCICE documentation, presents an overview of the utilities
and functioning of the library. The library proposes to couple physical solvers with
a peer to peer approach. The solvers communicate directly with each other, by the
mean of coupling adapters based on application programming interface (API). The
API is natively in C++, but bindings for C, FORTRAN, Matlab and Python exist.
The library can perform several multi-physics computations, but is only used in this
work for FSI problems composed of two sub-domains. The library preCICE steers
the coordination of the coupled simulation and data transfer. Several partitioned
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coupling schemes are available. Furthermore, the meshes at the fluid-solid interface
can be incompatible. The preCICE features are described succinctly below.

Figure 3.1: Overview of the library preCICE features

Coupling schemes

The preCICE library allows to run FSI simulation based on a partitioned formulation,
see section 1.2.2. Concerning the explicit schemes, they can be serial, based on
explicit conventional serial staggered (CSS) algorithm, or parallel, using the explicit
conventional parallel staggered (CPS) algorithm, see Fig.3.2.

Sn Sn+1 Sn+2
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Fn+1 Fn+2

2
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1
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(a) CSS

Sn Sn+1 Sn+2

Fn
Fn+1 Fn+2

2

2

1

1

(b) CPS

Figure 3.2: Partitioned explicit schemes available in preCICE

Implicit coupling schemes, serial or parallel, are also available into the preCICE li-
brary. Each solver is run until the defined convergence criterion is satisfied or when
the maximum number of coupling iterations is reached. The implicit coupling can use
SIMPLE under relaxation method, adaptive Aitken method or several Quasi-Newton
methods.

Data mapping

The preCICE library allows the coupling between two incompatible meshes at the
interface; the mesh surfaces fit, based on interface tracking method, but the nodes on
either side are not shared.
The mapping between the two meshes has to verify one of these constraints, consistent
or conservative mapping. With a conservative mapping, the value at a node belonging
to the discrete coarse surface is computed as an aggregation of the corresponding
nodes belonging to the fine discrete surface, see Fig.3.3a. This constraint is used for
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quantities that are absolute, such as force or mass quantities. On the other hand,
with one consistent mapping, the value at a coarse node is the same as the value at
the corresponding fine nodes, see Fig.3.3 b. This constraint is imposed to normalize
quantities such as temperature or pressure.

f = 1

f = 2

f = 1

f = 1

f = 2

f = (1 + 2)

f = (1 + 1 + 2)

(a) Conservative mapping, for forces f , as in-
stance

T = 1

T = 2

T = 1

T = 1

T = 2

T = 2

T = 1

(b) Consistent mapping, for temperature T , as
instance

Figure 3.3: Data mapping constraint on nearest-neighbor method

Three mapping methods can be used with preCICE. The easiest and fastest mapping
method is the nearest-neighbor method which is first order. The nearest-projection
method, is a bit more complex, due to the fact that nodal connectivity is required.
Nevertheless, it is mostly order two. This method uses linear interpolation within each
element, see Fig.3.4b Finally, Radial-Basis Function mapping has been implemented
into the library thanks to Lindner’s PhD thesis, more detailed can be found in [74].

(a) Nearest neighbor (b) Nearest projection

Figure 3.4: Data mapping methods

The mapping can be computed only once at the initialization stage, which can be
sufficient for small interface deformation. In case of large deformation, the mapping
can be re-computed at each time step or simply on demand, to reduce the computation
cost.

Time interpolation

The time interpolation feature is still under development. In the case of different time
steps adopted by the fluid and the solid solvers, preCICE can manage the proceeding
of the coupling simulation. However, variables exchanged are not interpolated at the
finer time step; they are considered fixed. In this case, the exchanged fields from
the solver using the larger time scale to the solver using the finer timer scale are not
updated for the micro time step computation.

Communication

Two protocols can be used for the communication between the two solvers called also
participants. The communication channel is based on TCP/IP sockets by default,
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API
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Figure 3.5: Overview of data exchange procedure for FSI coupling
with preCICE

but MPI ports can also be used, even if not recommended.
Let us describe more precisely the data exchanges between the two participants for a
partitioned FSI simulation using preCICE, as shown in Fig.3.5. The fluid solver uses
solid displacement of the interface as Dirichlet boundary conditions, whereas the solid
solver uses the fluid forces onto the interface as Neumann boundary conditions. Each
participant uses its own mesh for which its physical solution is computed. Then, to
allow data exchanges, one of the participants also has to use the mesh from the other
participant. In this example, the fluid solver uses the fluid mesh MeshF and the solid
mesh MeshS, while the solid solver only uses MeshS. Thus, data are mapped between
the two meshes of the fluid participant, MeshF provided by the fluid solver and MeshS

from the solid participant. Then, data are transferred between the two participants
on MeshS which is shared by both participants.

Thus, the preCICE library allows non-intrusive coupling of Fluid and Solid solvers,
for partitioned coupling with non-matching meshes. The configuration of the coupling
is written into an XML file which is read during the initialization stage of the coupling.
An example of XML file used for the coupling configuration in the simulations presented
in the following can be found in Appendix C.1.

3.1.2 Solid solver: CalculiX

The preCICE library allows for the use of several solid dynamic solvers for multi-
physics simulation. We chose to use CalculiX; the next subsection describes this
software and then the adapter developed to run it with preCICE.

CalculiX is a free software developed in C and Fortran by Guido Dhont [33]. Its
naming conventions and input style formats are based on the software Abaqus. Cal-
culiX proposes solvers based on FEM for continuum mechanics simulation. Mechan-
ical, thermal fluid and electromagnetic solvers are available. The simulation run can
be static, modal or dynamic. The software is divided into two modules. CalculiX
GraphiX (cgx) has pre-processing capabilities and is used for post-processing. Cal-
culiX CrunchiX (ccx) manages pre-processing and solution.
In this work, CalculiX is used as the solid dynamic solver only, in order to calculate

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI071/these.pdf 
© [M. Gibert], [2022], INSA Lyon, tous droits réservés



66 Chapter 3. Implementation and numerical results

the response of a structure subjected to dynamic loading using a direct time inte-
gration of the equations of motion. Concerning the spatial discretization, more than
fifty types of finite elements are available. In this thesis, regarding the linear elastic-
ity assumption for the solid sub-domain, and the 3D problem explored in this work,
only C3D8 elements are used. The C3D8 element is a general purpose linear brick
element, fully integrated. Concerning the time integration scheme, GalculiX uses the
generalized α-method [25], where the α parameter is such as α ∈ [−1

3 , 0]. Choosing
α = 0, the implicit Newmark scheme is retrieved, as used in section 2.1.1.

As said in the introduction of this section, the preCICE library uses a peer to peer
approach; the solvers are communicating directly with each other, through the API
of the coupling adapters. That is why the use of CalculiX for FSI coupling in the
preCIE environment requires an adapter. There are three ways for preCICE adapters
implementation: direct modification (not recommended), adapter class and callback
functions.
The adapter for CalculiX is based on the adapter class method. The implementation
has been proposed first by Cheung [22] for thermal coupling and has been extended to
FSI coupling later [113]. A new routine nonlingeo_precice.c is created and called
instead of nonlingeo.c, which is called for nonlinear static or dynamic calculation, for
preCICE simulations. nonlingeo_precice.c is identical to nonlingeo.c except that
some preCICE functions are added. In the general case, any adapter has at least to call
three preCICE functions: initialize which establishes the communication channels
and sets up the coupling configuration, advance, which is called after every time
step to advance the coupling and finalize which frees the preCICE data solid and
closes the communication channels. The pseudo algorithm of the CalculiX adapter is
summarized in Alg.4.

Algorithm 4 CalculiX adapter

1: ccx initialization
2: Precice_Setup . initialize is called
3: while Precice_IsCouplingOngoing do . Temporal loop
4: Precice_AdjustSolverTimestep

5: Precice_ReadCouplingData

6: if Precice_IsWriteCheckpointRequired then . for implicit coupling
7: Save checkpoint
8: end if
9: ccx solid computation

10: Precice_WriteCouplingData

11: Precice_Advance

12: if Precice_IsReadCheckpointRequired then . coupling not convergence
13: Load variables from checkpoint
14: else
15: end time step
16: end if
17: end while
18: PreCICE_FreeData . finalize is called

In this way, CalculiX uses the same time discretization methods as used for the
demonstrator of the MCS method in the second chapter and can be employed into
the preCICE environment thanks to its adapter.
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3.1.3 Fluid solver: OpenFOAM

Concerning the fluid software, available adapters to preCICE are less numerous as for
solid solvers. An adapter exists for the Open-source Field Operation and Manipula-
tion (OpenFOAM) software [117], which will be used in this work.

OpenFOAM is a C++ free software which uses a high level programming and a
friendly syntax for partial differential equations. It proposes solvers for continuum
mechanics problems (most prominently including CFD), based on FVM.
More than seventy solvers are distributed. Concerning CFD solvers, they can be
divided into two categories adopting distinct approaches. Most of CFD solver, from
OpenFOAM and other software, are pressure based solvers. This approach has been
the first developed and is historically used to compute incompressible fluid with low
Mach number. This kind of solvers computes the fluid variables with a sequential
approach, where the pressure and the velocity are coupled in an elliptic manner. The
flowchart of this kind of algorithm is shown in Fig.3.6.

Initialization

t = t + ∆t

Update properties

Solve momentum equations

Solve pressure correction, update
pressure field and mass flow rates

Solve energy, turbulence
and other scalar equations

converged ?

t=T ? stop

yes

no

yes

no

Figure 3.6: Pressure based CFD solvers flow chart

The other approach developed later is called density based. This type of solvers is
mainly used for compressible flow with high Mach number. The density based solvers
use a global approach where the conservative variables that are density, momentum
and volumic energy are solved simultaneously, see Fig.3.7. Regarding the proposed
MCS coupling, which is based on energetic methods, the second kind of solvers, den-
sity based ones, seems to be really more appropriate. Moreover, using an explicit
time integration scheme, no convergence loop is needed, as presented in 2.1.2, with
the Runge-Kutta scheme of second order. Nevertheless, there is no solver from open-
FOAM which is density based, explicit and second order accurate. This is why we
focus on the solver rhoCentralDymFaom, presented below.

The rhoCentralFoam solver has been proposed in [54]. It is a density based solver for
transient inviscid or viscous, compressible flow. The space is discretized according
to the cell centered finite volume method, and the numerical flux are computed by
central-upwind schemes of Kurganov and Tadmor [67]. For the time discretization,
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Figure 3.7: Density based CFD solvers flow chart

an explicit backward scheme is used, which can be assimilated as a one step Runge-
Kutta scheme, of the order one.
The rhoCentralDymFoam is the ALE version of the rhoCentralFoam solver which
is based on the Eulerian formulation. Numerous solutions can be used for the grid
resolution, which is mobile and arbitrary deformed according to the motion of the
Lagrangian moving wall, which plays the role of the interface in FSI problems.
Some simple modifications of the proposed coupling method in chapter 2, have to be
done to fit the backward Euler scheme instead of the Runge-Kutta scheme. First, in
the discretized equations of the global coupled problem (2.84), the fluid conservative
equations are only written at tj as:

∆V j
fi

Uj
fi

= ∆V j−1
fi

Uj−1
fi
−∆tf

∑(
sj−1
fih

F̃j−1
fih

+ LTfihΛjih
)

(3.1)

Concerning the ALE grid updating, following the explicit first order accurate compu-
tation over the fluid sub-domain, the interface displacement can be written as:

djΓFS
= dj−1

ΓFS
+ ∆tfw

j−1
ΓFS (3.2)

Then, as the interface velocity is enforced as the solid velocity at the interface, equa-
tion (3.2) becomes:

djΓFS
= dj−1

ΓFS
+ ∆tfv

j−1
sΓFS

(3.3)

The solid velocity at the interface can be split into its normal component and its
tangential component. Finally, recalling that, at the micro time step at the interface,
the continuity of fluid and solid normal velocities is enforced, equation (3.3) is re-
written as:

djΓFS
= dj−1

ΓFS
+ ∆tf

(
(tj−1
s · vj−1

sΓFS
)tj−1
s − (nj−1

f · vj−1
fΓFS

)nj−1
f

)
(3.4)
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Hence, free conservative variables and link velocities are re-written such as:

Uj
ffreei

=
∆V j−1

i

∆V j
i

Uj−1
fi
−

∆tf

∆V j
i

∑
sj−1
ih F̃j−1

fih

vjflinki
=

∆tf

ρjfi∆V
j
i

∑
lTfihΛj

ih

(3.5)

(3.6)

To sum up, the algorithm of the monolithic co-simulation method Alg.2 is modified
such as given in Alg.5.

Algorithm 5 MCS modified to backward Euler scheme

1: Initial fluid Ωf and solid Ωs states
2: Compute solid invariant : M̃s,Hs ← (2.95a)
3: while tm ≤ T do . Macro time loop
4: Compute Um

sfree
← (2.88)

5: for j ∈ [1,m] do . Micro time loop
6: Interpolate vjsfree ← (2.85b)

7: ALE grid update djΓFS
← (3.4)

8: Compute Uj
ffree

← (3.5)

9: Extrapolate lf
(
∆V ρ

)j
ffree

and lfv
j
ffree

10: Compute Hj
f ← (2.95c)

11: Compute Λj ← (2.94b)
12: Compute vjflink

← (3.6)

13: Compute Uj
f ← (2.87)

14: end for
15: compute Um

slink
← (2.92)

16: compute Um
s ← (2.87)

17: end while

The adapter developed to use OpenFOAM with the library is based on a callback
function approach [24]. The adapter is an OpenFOAM function object (equivalent to
UDF in Fluent): a shared library whose methods are called from predefined points in
a solver’s code. Function objects can be called, in the beginning of the first iteration
of the time loop, during every iteration of the time loop and at the end of the last
iteration of the time loop as example. Then, the adapter is loaded at runtime, using
the existing controlDict configuration file, and the needed preCICE functions are ex-
ecuted according to the temporality of their function object.
The function object read, is called once at the beginning of the configuration. It
reads the configuration and calls the preCICE function initialize.
The function object execute is executed at the end of every time or convergence iter-
ation, after the fluid computation. It writes the coupling data, then calls the function
advance and finally reads the coupling data.
The function object from the adapter end, calls the function finalize, closes the
communication channels and frees the variables.

In this section, one CFD software, one dynamic solid software and a coupling library,
all of them open-source, were presented. The chosen solvers from CalculiX and Open-
FOAM use the same discretization methods as the methods presented in Chapter 2,
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except for the fluid time integration scheme, where the explicit Runge-Kutta scheme
is replaced by the explicit backward Euler scheme. Moreover, the coupling library
preCICE can be used with these solvers to run FSI simulations, in a non-intrusive
way. This library orchestrates the coupling simulation, manages the communication,
the data transfer and mapping at the interface. The library also runs problems with
different time scales even if the coupling data are not yet interpolated.
Thus, the idea is to integrate the proposed coupling method into preCICE in order
to run FSI simulations with dedicated solvers, multi-time and space scales based on
monolithic formulation and solved by a co-simulation algorithm. Fig.3.8 shows a rep-
resentation of the coupling workflow that has to be implemented, where the ratio
between the two time scales is m = 2.

t0 tm

tj−1 tj tj+1

1 2

2 5

8

5 8

λj λm

3

3

4

6

6

7

7

ALE grid update

free computation

free interpolation

link computation

communication

Figure 3.8: Preview of the MCS implementation workflow in pre-
CICE with m = 2

The green arrows represent the exchanged data where the communication is handled
by preCICE. Compared to a preCICE explicit coupling simulation, presented in sec-
tion 3.1.1, the only feature which has to be modified from the library, is the coupling
scheme. Fig.3.8 shows an optimized implementation of the MCS algorithm where sev-
eral actions can be done in parallel, the boxed number being the order of execution.
The implementation proposed below is fully sequential, but the prioritization order
remains the same. The purple box represents the interface computation. This task
can be executed by Python Action, a feature of the preCICE library which allows to
execute python script at run time. Finally, the free states, blue arrows, and the link
states, orange arrows, can be computed by the solvers into the adapters.
After this feasibility study, the implementation of the proposed method in this envi-
ronment is presented in details into the next section.

3.2 Integration of the MCS algorithm into the library

preCICE

In this section, the implementation of the proposed coupling method, called MCS for
Monolithic Co-simulation, into the preCICE library and the CalculiX and openFOAM
adapters, is detailed. The objective of the section is to describe in practice the
implementation, but to remain at an architectural or algorithmic level to be as clear
as possible. More details about the code implementation can be found in Appendix
C.
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3.2. Integration of the MCS algorithm into the library preCICE 71

3.2.1 Data exchanged

First, the data exchanges during the coupling computation are studied. The commu-
nication is led by TCP/IP sockets, data are exchanged from one adapter to the other
by communication channels opened and closed by preCICE. Data fields are written
or read on meshes from their respective solvers. Moreover, each mesh can hold only
one field in writing and one field in reading. The exchanged fields are only variables
projected on the fluid-structure interface.

Data written and read by the fluid adapter are now presented. First of all, fluid free
normal velocities are required for the computation of interface operators, equation
(2.94b). The FSI module of the openFOAM adapter does not allow the writing of
velocities. Then, following the model of the script Displacement.C, the script Ve-

locity.C is created, with a function that writes the normal velocity at the interface
nodes into the buffer, see C.2. This variable is defined in preCICE by the mean of the
XML configuration file of the simulation, as a vector called nVelF defined on Fluid-

Mesh-Nodes, the nodal fluid mesh of the interface.
A second field required in writing for the MCS coupling is the values of the fluid mass
at the interface,

(
∆V ρ

)j
fΓFS

, in order to compute the fluid operator Hj
f , equation

(2.95c). Then, the script Mass.C, see C.3, is implemented to create a field, located
at each cell’s center, which is the mass of the adjacent cells of the interface, using
their volume and density. Then they are projected to the cells’ face included in the
interface. This field is defined for preCICE as the scalar massF written on the mesh
Fluid-Mesh-Faces.
In reading, the first field of interest is the Lagrange multipliers which are used to
compute the link velocities of the fluid equation (3.6), and then, the total fluid state
(2.87). In this way, the function read from VelocityLink.C script is called in the
adapter by ReadCouplingData, see C.4. Hence, the forces of interaction are read at
each cell’s faces, from the buffer. Then the velocity at the center of the cells, whose
at least one face is included into the interface, is modified, adding the link velocity
term. At the preCICE configuration, Lagrange multipliers are vectors named lambda

read at the meshes Fluid-Mesh-Faces, as for imposed forces or pressure in fluid com-
putation based on FVM.
Finally, the last required field for the openFOAM adapter, is the tangential solid ve-
locity at the interface, used for the computation of the ALE fluid grid, equation (3.4).
The vector tVelS, read from the mesh Fluid-Mesh-Nodes, is used into GridDisp.C

to compute, with the normal fluid velocities, the nodal displacements of the interface,
see Appendix C.5.

Concerning the solid sub-domain, the CalculiX adapter writes, as for the fluid, the
normal velocities vectors, called nVelS. They are defined at the node of the solid
mesh, Solid-Nodes1. The writing of the tangential velocities vectors, tVelS, is also
required. These values are also computed at the node of the solid mesh. Nevertheless,
only one write per defined coupled mesh is allowed. Thus, a second instance of the
solid mesh, Solid-Nodes2 is created, where the tangential solid velocities are written.
Finally, a third exchange field and a third instance of the solid mesh have to be cre-
ated; they are not directly used for the solid sub-domain computation but mandatory
for the implementation of the exchanged fields of the MCS scheme. These void fields
have to be three dimensional vectors. Then zero are written at Solid-Mesh3. The
solid solver CalculiX uses only one nodal mesh, but three instances of this one are
defined in the coupling configuration due to the need of writing three different fields
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72 Chapter 3. Implementation and numerical results

for the coupling. This written fields were not available into CalculiX adapter. For
this purpose, they have been added, see Appendix C.6.
In reading, the CalculiX adapter requires the interface forces, in order to compute the
solid link vector state. Thus the preCICE configuration defines the vectors Lambda at
the mesh Solid-Nodes1. This field is read by the adapter using the existing function
getNodesForces.

Henceforth, variables that have been exchanged are defined from the adapter to their
meshes, and the communication procedure is presented. First, as mentioned in sec-
tion 3.1.1, the communication between the two solvers is run by the transfer of data
from the same mesh, available into the fluid participant or into the solid participant.
Here we choose to define solid meshes, into the fluid participant, due to the fact that
the fluid sub-domain is run by the finer time scale. Then, six exchanged fields have
been introduced but only five communication channels are created. Indeed, thanks to
pythonAction, which can modify the value of exchanged data at run time, two chan-
nels use two different fields during the communication. Fig.3.9 shows a representation
of the data exchange used for the proposed coupling. The blue and orange arrows
represent the variables written to and read from the adapters fluid and solid respec-
tively. Mappings are illustrated with black arrows while data transfers are shown by
green arrows. When a variable is modified during its exchange, the variable’s name
is made of the two fields names separated with an underscore. The name of the
current field, contained in the variable is highlighted in color. Recalling that commu-
nication is lead from one adapter to the other, the five data exchanges are described:
the fields they contain and where they are written, with no temporality consideration.

CalculiX

OpenFOAM

Adapter

Adapter

Solid-Nodes1

Solid-Nodes2

Solid-Nodes3

Solid-Nodes1

Solid-Nodes2

Solid-Nodes3

Fluid-Nodes

Fluid-Faces

zero_Lambda

tVelS

nVelF_Lambda

nVelS

nVelF_Lambda

tVelS
zero_Lambda

MassF

write map

read map
read map

write map

nVelS

nVelF_Lambda

tVelS

MassF

zero_Lambda

Figure 3.9: Exchanged data diagram for MCS coupling

First, the solid normal free velocities nVelS are written from the CalcluliX adapter
to the mesh Solid-Nodes1. Then, they are transferred to the mesh Solid-Nodes1

of CalculiX, where they are used for the interface computation but the exchange is
stopped here.
Also, the OpenFOAM adapter writes the normal free velocities into nVelF_Lambda,
at the mesh Fluid-Nodes. Then they are mapped to the meshes Solid-Nodes1 on
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the fluid side. At this point, the Lagrange multipliers are computed, and their values
replace the fluid normal velocities into nVelF_Lambda. Finally, they are transferred
to the mesh Solid-Nodes1 of the solid participant. And the Lagrange multipliers are
read by CalculiX adapter.
The OpenFOAM adapter also writes MassF at Fluid-Faces, which is mapped on
Solid-Nodes3 from the fluid participant. Data are finally transferred to the Solid par-
ticipant even if they are not used into the CalculiX adapter, the write_coupling_data
function of the adapters being called by the preCICE data transfer.
The CalcuiX adapter fills Zero_Lambda with zero vectors. Then this data is trans-
ferred from the solid participant to the fluid participant through the mesh Solid-

Nodes3. Then the exchange variables are replaced by the fields of the interface in-
teraction forces, and mapped to the mesh Fluid-Faces where they are read by the
openFOAM adapter. Finally, the last communication channel is for tVelS, written
by CalculiX adapter to Solid-Nodes2 and transferred to the fluid participant be-
fore they are mapped to Fluid-Nodes and read by the fluid adapter to update the
interface displacements.

3.2.2 Python action

As said previously, several operations occur during the data exchange to modify vari-
ables at runtime. These modifications occur by the mean of Actions, Python scripts
written by the user and executed at runtime. They are defined at a mesh and can
access the available data on this mesh, the time step and time. They can be executed
at different moments of the coupling simulation, before or after mapping is read or
written, or at the end of the coupling step. The Action is configured into the XML file
of the coupling simulation. Four Actions are used during the implementation of the
proposed coupling method, which are available in Appendix C and their functioning
are described below.

The first Action is called computeHf.py. It is defined on mesh Solid-Nodes3 from
the fluid participant and is run at each micro time step, after the mapping of massF
between Fluid-Faces and Solid-Nodes3 has been performed. The function per-

formAction of this script, uses the time step and the massF variable to compute the
fluid operator Hj+1

f , equation (2.95c), at the solid nodes. Then this two dimensional
numpy arrays, are written into a numpy binary file Hf.npy.

The most complex and important Action is computeLambda, which solves the inter-
face problem. It is defined in the fluid participant, on the mesh Solid-Nodes1 and its
performAction function is called after the mapping of nVelF_Lambda from Fluid-

Nodes to Solid-Nodes1.
If it is initialization, the operator M̃s, written beforehand into a .txt file by the Cal-
culiX adapter, is loaded and used to compute the solid interface Hs following (2.95a).
Then, it is saved into Hs.npy.
After that, at each time step, interface operators are loaded from Hf.npy and Hs.npy

and used with the normal free velocities, solid and fluid both available on this mesh,
to compute the interaction forces, equation (2.94a). If needed, the solid free normal
velocity is first interpolated at the micro time step. Finally, Lagrange multipliers are
saved to Lambda.npy, but also written into nVelF_Lambda instead of the free fluid
velocities.
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The Action TransferData.py is used to allow the openFOAM adapter to also read
the interface interaction forces. Thus, this action is defined on the mesh Solid-

Nodes3, before the mapping of the data Zero_Lambda to the Fluid-Faces mesh. In
this way, Zero_Lambda can get the values of the Lagrange multipliers loaded from
Lambda.npy, which had been previously written at the same mesh.

The last Action called computeMicro, is defined before the reading of the mapping
from the mesh Solid-Nodes2, in order to interpolate the tangential solid velocities
at the previous fluid time step tj−1, if two different time scales are used. The variable
tvelS then receives the value of the interpolation. This last one is used for the ALE
grid interface correction, see equation (3.4).

3.2.3 Temporality of the coupling scheme

The implementation of the proposed coupling scheme algorithm is based on the serial
explicit scheme from preCICE. A new coupling scheme tag is created into the cou-
pling library MCS. If this one is used in the coupling configuration file, the coupling
is initialized as an explicit coupling scheme. Then, thanks to the defined exchanged
fields, the Actions and the modification of the adapters, the MCS coupling algorithm
is run instead of the serial-explicit coupling algorithm. Also, the first participant has
to always be the CalculiX participant and the coupling time step has to be defined
by the method first-participant. In case of two different time scales, with macro
scale for solid integration and micro scale for fluid integration, the coupling data are
transferred only at the macro time step.

Some modifications have been made for the CalculiX adapter comparing to its al-
gorithm 4. First, at the initialization of the simulation, the effective mass ma-
trix M̃s is written into a .txt file, in order to be used in the action compute-

Lambda.py to construct the solid operator Hs. Then, the logical variable Pre-

cice_isMcsCouplingScheme is created at the coupling set up. It is used to modify
the adapter coupling scheme, in particular when reading and writing of the coupling
data occur. Recalling that for serial explicit scheme, at each time step, coupling data
are read. Then the solid is solved using coupling data as Neumann boundary condi-
tion. Finally, the coupling data from this computation are written into the buffer to
be sent to the other participant, while the CalculiX adapter moves to the next time
step. During the MCS coupling scheme, coupling data are read after the preCICE
advance function. Also, the link computation is added, see details in C.7. Algorithm
6 gives the algorithm of the modified CalculiX adapter.

Concerning the OpenFOAM adapter, such modifications do not have to be imple-
mented due to the fact that the function object execute, which is called after fluid
computation, calls the writing of the coupling data, then advance preCICE function
and finally the reading of the coupling data. The only missing instruction to com-
plete the MCS procedure is the link computation and the grid correction which are
directly implemented into the coupling data reading functions, see respectively C.4
and C.5.
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Algorithm 6 CalculiX adapter with MCS implementation

1: ccx initialization
2: write M̃s

3: Precice_Setup . initialize is called
4: while Precice_IsCouplingOngoing do . Temporal loop
5: Precice_AdjustSolverTimestep

6: if Precice_isMcsCouplingScheme == False then
7: Precice_ReadCouplingData

8: end if
9: if Precice_IsWriteCheckpointRequired then . for implicit coupling

10: Save checkpoint
11: end if
12: ccx solid computation

13: Precice_WriteCouplingData

14: Precice_Advance

15: if Precice_isMcsCouplingScheme == True then
16: Precice_ReadCouplingData

17: ccx Link computation
18: end if
19: if Precice_IsReadCheckpointRequired then . for implicit coupling
20: Load variables from checkpoint
21: else
22: end time step
23: end if
24: end while
25: PreCICE_FreeData . finalize is called

Finally, Fig.3.10 shows the global time loop of the fluid-structure MCS coupling or-
chestrated by preCICE. The grey instructions are executed by the solvers. Orange
and blue instructions are respectively executed by CalculiX and OpenFOAM adapters.
Data transfers are shown in green, mapping in black and Action in purple; all of them
being performed by preCICE.

This section presented the implementation of the coupling method proposed in Chap-
ter 2, to couple CalculiX and OpenFOAM to run FSI simulations using the preCICE
library. Some functionalities have been added regarding exchanged fields and the
coupling algorithm, only the coupling library and the adapters have been modified,
solvers were not. The configuration required to run such a coupling problem, see
AppendixC.1, shows a good overview of the implementation operating.
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Figure 3.10: Temporal resolution of MCS coupling in preCICE en-
vironment

3.3 Numerical test cases

Now the MCS method is available in the preCICE environment, this one can be used
to solve FSI simulation using CalculiX and OpenFOAM for sub-domains computation.
Both solvers are three dimensional solvers. In this way, the presented problems are
solved in three dimensions even if they come from two dimensional benchmark. They
are mapped in three dimensions, but in the z direction, there is only one layer of
finite elements or finite volumes to discretize the solid and the fluid sub-domains,
respectively. Then, symmetry boundary conditions are enforced on the front faces
and the back faces. The two FSI test cases chosen to test the MCS method are the
forward step problem and the perpendicular flap problem, where different physics of
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fluid-solid interaction are involved. The following section presents the test cases and
the numerical results issued from MCS co-simulation.

3.3.1 Forward step

The first test case studied, is the forward step problem. This test case has been
introduced in [36] as a fluid supersonic test case, which is extended here to fluid-
structure interaction simulation. We consider a wind tunnel with a step which is the
solid sub-domain. The wind tunnel is 1 meter wide and 3 meters long, full of air,
at atmospheric pressure. The inlet is a uniform flow at Mach 3 velocity, 1023 m s−1.
The step is located at 0.6 meter from the inlet and is 0.2 meter high with a density of
7800 kg m−3 and Young’s modulus of 2× 1011 N m−2. Fig.3.19 presents the geometry
and boundary conditions of the considered problem. The green dot in Fig.3.19a
shows the localisation of the interest point where the displacements of the interface
are studied. Thus, this test case treats of a stiff but deformable solid sub-domain,
and an high speed velocity flow. These hypotheses are often used for aerospace FSI
simulation for example.

3

0.8
1

0.6

(a) Geometry in meter

Inlet
1026 m s−1

1× 105 Pa

Outlet

(b) Boundary conditions

Figure 3.11: Definition of the forward step FSI problem

Concerning the spatial discretization, the nodes of both meshes are consistent at the
fluid-structure interface. The Fig.3.12 presents the discretized sub-domains which are
made of 16000 finite volumes for the fluid sub-domain and 3072 finite elements for
the solid sub-domain.
The first simulation run is mono scale in space and time. The time step used over both
subdomains is ∆ts = ∆tf = 1× 10−6 s, which is inferior to 3× 10−6 s, the critical
time step, induced by the explicit time integration scheme over the fluid sub-domain.
The problem is computed from 0 s to T =0.01 s.
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(a) Fluid sub-domain mesh (b) solid sub-domain mesh

Figure 3.12: Three dimensional forward step case conforming meshes

The first results presented are the velocities into the fluid sub-domain. Fig.3.13, shows
the magnitude of the flow velocities at six successive times. The results are consistent
and really close to the one way simulation of the problem, where the solid sub-domain
is considered as a rigid wall. The main difference is that for the mono scale MCS
coupling, the computed velocities at the Fluid-Solid interface are slightly higher.

(a) At 0.0001 s (b) At 0.002 s

(c) At 0.004 s (d) At 0.006 s

(e) At 0.008 s (f) At 0.01 s

Figure 3.13: Velocity magnitude of the fluid sub-domain at different
times, with mono time-space scale and conforming meshes

During, a second phase, the simulation is recomputed with the same meshes but using
different time steps for each solver. The fluid sub-domain uses the thinner time scale,

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI071/these.pdf 
© [M. Gibert], [2022], INSA Lyon, tous droits réservés



3.3. Numerical test cases 79

∆tf =1× 10−6 s as previously, whereas the solid sub-domain is computed less often,
using a larger time step such as ∆ts = m∆tf . Fig.3.14, shows the same results as
Fig.3.13 in terms of fluid velocities, but these results have been obtained during a
simulation with a time step ratio of 10 between the two sub-domains. Despite this
main difference between the two co-simulations, the results in velocity are very con-
sistent between each other.

(a) At 0.0001 s (b) At 0.002 s

(c) At 0.004 s (d) At 0.006 s

(e) At 0.008 s (f) At 0.01 s

Figure 3.14: Velocity magnitude of the fluid sub-domain at different
times, with time step ratio m = 10 and conforming meshes

To investigate the performance of the multi-time scale resolution, which exhibited
accuracy degradation with the increase of the ratio m in the previous chapter, the
displacements of a point of interest are studied. The chosen point is the corner of
the solid domain, shown by the green dot in Fig.3.19a. Thereby, Fig.3.15, shows the
displacements of this point for a mono-time scale simulation, in blue, and for multi-
time scale simulations with m = 5, in orange, and m = 10 in green.
The displacements for each simulation are in the same range, but the differences of
the results are more obvious than for the velocities results in the fluid sub-domain.
For the computation with m = 5, the displacements are close to the reference values,
the mono time scale simulation, but are a bit under estimated. For the results with
a solid time step ten time larger than the fluid time step, the displacements of the
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considered point of the interface seem to be a phase shifted compared to the reference,
probably induced by a weak loss of energy. Nevertheless, the results seem to be slightly
impacted by the increase of the time step ratio, in the frame of conforming meshes
at the interface.

Figure 3.15: Displacements of the point of interest according to the
time, with different time scale ratio and conforming meshes

The physics of the test case and the integration scheme imposed a mesh with small
elements for the fluid-domain which is not necessary for the linear elastic solid sub-
domain. In order to run a coupling simulation with appropriate time and spatial
scales, used for each sub-domain, a second mesh is proposed, see Fig.3.16. For this
simulation the solid mesh is four times larger than the fluid mesh. In this way, meshes
at the interface are not conform.

(a) Fluid sub-domain mesh (b) Solid sub-domain mesh

Figure 3.16: Three dimensional forward step case non-matching
meshes

Then, the simulation is first run with the same time step used by the fluid and the
solid solvers. The results in terms of velocity inside the fluid sub-domain are visual-
ized in Fig.3.17 and show good similarities in comparison to the previous results.
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(a) At 0.0001s (b) At 0.002 s

(c) At 0.004 s (d) At 0.006 s

(e) At 0.008 s (f) At 0.01 s

Figure 3.17: Velocity magnitude of the fluid sub-domain at different
times, with mono time-space scale and non-conforming meshes

Finally, a multi-time and space scale simulation is run, with m = 10. Fig.3.18 presents
the displacements of the point of interest. The dotted lined represents the results
discussed previously for a simulation with conforming meshes while the solid lines are
the results obtained by the computation of the problem with the larger mesh for the
solid. The blue lines concern mono time scales simulation, while the orange lines are
computed with m = 10. As for the increase of the time step ratio, the non-conforming
meshes simulation shows results in displacement a bit different from the referential
solution. But the differences seem to be reasonable regarding the performance increase
with the use of appropriate time and space scales.
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Figure 3.18: Comparison of the displacements of the point of in-
terest according to the time, for conforming (dotted lines) and non

conforming (solid lines) meshes, with m = 1 and m = 10

3.3.2 Perpendicular Flap

The second test case used to validate the implementation of the proposed method,
is the well-known FSI problem of the perpendicular flap. The fluid domain is con-
stituted of a channel of air, with a velocity of 10 m s−1 at the inlet. In the center
of the bottom of the fluid sub-domain, a flexible flap, perpendicular to the flow is
embedded. This flap, is the solid sub-domain for FSI simulation, with Young’s mod-
ulus of 4× 106 N m−2 and a density of 3000 kg m−3. The geometry and dimension
parameters of the problem are shown in Fig.3.19a. Once again, a point of interest is
chosen and indicated by a green dot, at the top left corner of the flap. This test case
can be assimilated to a biomedical simulation, where low velocity flows and important
deformations of the solid can occur.
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3

0.1

(a) Geometry in meter

Inlet
10 m s−1 Outlet

(b) Boundary conditions

Figure 3.19: Definition of the forward step FSI problem

As in the previous test case, first a mono-time scale co-simulation is considered, with
∆ts = ∆tf = 1× 10−5 s, which is inferior to the critical time scale involved for fluid
computation of 2× 10−5 s. The simulation is run from t0 = 0s to T = 5s. Fig.3.20,
gives the magnitude of the fluid velocity at different successive times. In the following,
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these results will be considered as reference results for comparison purpose.

(a) At 0.01 s (b) At 1 s

(c) At 2 s (d) At 3 s

(e) At 4 s (f) At 5 s

Figure 3.20: Velocity magnitude in the fluid sub-domain at different
times, obtained with mono time-scale co-simulation

The Fig.3.21 allows to visualize the ALE grid deformation at different times for the
mono-time scale co-simulation. We can see, comparing to the velocity, that the ALE
grid velocities is well updated according to time and does not follow the fluid veloc-
ities, enabling us to prevent severe distortion in the fluid mesh. Moreover, at the
fluid-solid interface, the fluid mesh is deformed to fit the solid domain motion, the
fluid mesh is being considered as Lagrangian at the boundaries, which simplifies the
data transfer orchestrated by the coupling library preCICE.
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(a) At 0.01 s (b) At 1 s

(c) At 2 s (d) At 3 s

(e) At 4 s (f) At 5 s

Figure 3.21: Displacement magnitude of ALE grid at different times,
obtained with mono time-scale co-simulation

Finally, the problem is computed using dedicated time scales depending on sub-
domains. Then, the co-simulation is performed, where the solid time scale is five
times and ten times larger than the fluid time scale. Fig.3.22 presents the velocities
of the fluid flows for m = 10. Again, the results inside the fluid sub-domain are close
to the reference ones.
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(a) At 0.01 s (b) At 1 s

(c) At 2 s (d) At 3 s

(e) At 4 s (f) At 5 s

Figure 3.22: Velocity magnitude of the fluid sub-domain at different
times, obtained with multi time-scales, m = 10, co-simulation

In order to study the potential degradation of the results induced by the increase of
the time step ratio, variables of interest are studied at the fluid-solid interface. In
this way, the x component of the displacement at the point of interest is plotted in
Fig.3.23, for several co-simulations.
First, the co-simulation has been computed with the explicit serial coupling scheme
with mono time scale, based on partitioned formulation, available in the preCICE
library. The results are shown by the purple line. The loss of amplitude is quite
important.
Then this result is compared to mono-time scale co-simulation run by the MCS scheme
implemented in the preCICE library. The displacement according to x are plotted
with the blue line, its amplitude remains stable.
Finally, MCS multi-time scales cases are studied. The dashed orange and dotted green
results are the displacements in the x direction of the tip of the flap for the compu-
tation with m = 5 and m = 10 respectively. A very weak loss of amplitude occurs
with the multi-time scale simulation. This loss is larger for m = 10 than for m = 5,
remaining very reasonable, compared to the total amplitude. Also, it is really smaller
than the results from the serial explicit mono-time scale resolution even when m = 10.
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Figure 3.23: x component of the position of the point of interest,
for MCS coupling with different time scales and mono time scale par-

titioned serial explicit coupling

The MCS results from this test case are convincing, and confirm the relevance of the
proposed approach detailed previously in the piston problem, in Chapter2.

Conclusion

In this chapter, the problems of the implementation method have been discussed, and
the chosen software have been presented. Then, the architecture and the orchestration
developed for the integration of the method were detailed. Finally, the implementa-
tion was tested with two different FSI benchmarks: aerospace and biomedical. The
implementation allows running simulations at multiple time and space scales. The
results of the variables of interest at the fluid-structure interface can be slightly de-
graded. Nevertheless, the results inside the sub-domains remain close to the reference
results. Therefore, computation time can be saved in return for a reasonable loss of
accuracy.
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General conclusion and

perspectives

This thesis presents the work carried out to develop a new method of coupling for
transient FSI problems, in order to couple dedicated solvers, using their own dis-
cretization methods, as less intrusively as possible. In space, fluid and solid sub-
domains use different discretization methods, and the meshes at the interfaces can be
incompatible. Regarding time, different integration schemes are employed and each
solver is computed with a dedicated time scale. Generally speaking, the proposed
method is flexible, stable and based on energy preservation.

The first chapter, proposed a review of the existing coupling approaches for FSI sim-
ulation. We proposed to divide FSI problems according to their formulations into
partitioned or monolithic approaches. On the one hand, partitioned couplings pro-
pose to solve FSI problems, computing fluid and solid sub-domains separately. They
are flexible but can lack stability and accuracy. On the other hand, monolithic ap-
proaches propose to solve each sub-domain synchronously, which is more stable and
accurate but in return is more difficult to implement and rarely generalizable. Finally,
this chapter presented domains decomposition methods for solid problems and then
their extension to FSI simulation. These approaches are really attractive because they
allow to combine the advantages of partitioned and monolithic couplings. For all of
these reasons, the choice was made for the proposed coupling method, to be based on
a Schur dual monolithic formulation, with an interface tracking approach, for stabil-
ity and accuracy, solved by a co-simulation algorithm based on the GC method, for
flexibility.

In the second chapter, the discretization methods used for each sub-domain and the
proposed coupling method were presented. The solid sub-domain, considered contin-
uous and linear elastic, is spatially discretized using FEM in Lagrangian formulation
and is temporally integrated by an implicit Newmark scheme. Concerning the fluid
sub-domain, it is considered inviscid and compressible, written with an ALE for-
mulation. It is discretized using cell centered finite volume method and an explicit
Runge-Kutta of order two scheme. For the FSI simulation, each sub-domain uses its
own time step, and the fluid sub-domain uses the thinner time scale, due to the explicit
time integration. Then, the coupled problem is solved using a free/link decomposition
based on the GC method. Compared to a standard serial explicit coupling scheme,
the proposed MCS scheme is a bit costlier due to the computation of the interface
problem. Nevertheless, concerning the simulation of the piston test case presented at
the end of the chapter, its results are really more accurate. First, the error of the
normal velocities continuity at the interface is around the computer accuracy. More-
over, the coupling is energy conservative in case of a mono time scale simulation. A
reasonable loss of energy is noticed for multi-time scale coupling. Nevertheless, con-
cerning the variables of interest at the interface, as velocities or displacements, the
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results are slightly degraded, by the increase of the ratio between the fluid and the
solid time steps. There is no loss of amplitude at all for mono-time scale while this
loss is important for the serial explicit coupling.

Finally, the last chapter was dedicated to the implementation of the method into a
free environment, in order to be run with dedicated CFD and solid dynamic solvers,
thus allowing the computation of various and more complex FSI problems. The
choice was made to use the library preCICE; a coupling library which allows the
coupling of existing solvers to run FSI simulation according to several partitioned
coupling schemes, managing the communication and the data mapping. The solid
sub-domain is computed by the free software CalculiX, while the fluid sub-domain
is run using OpenFOAM. Due to the fact that, no second order explicit integration
scheme are available in openFOAM, some changes had to be made in the proposed
coupling method, to pass the fluid resolution from Runge Kutta to backward Euler
scheme. Then, the CalculiX and openFOAM adapters as well as the preCICE library
have been modified to allow a new coupling scheme, called MCS for monolithic co-
simulation, developed in chapter 2. Three dimensional computation of the test cases
of the forward step and of the perpendicular flap were studied. Their results were
presented with several configurations, using different time step ratio between the two
solvers and using matching or non-matching meshes at the interface. The simulations
showed good results with mono time scale and conform meshes. The results of the
interface quantities are slightly degraded with the increasing of the time step ratio
and with a larger mesh on the solid sub-domain but the general results remains really
close to the reference results.

Ross proposed in [101], to define the three challenges of FSI simulation as ”discretiza-
tion heterogeneity”, ”non matching space and time scales” and ”forestalling perfor-
mance degradation”. The coupling method tried to answer to these three challenges.
Concerning the forestalling of the performance degradation, thanks to the Schur dual
monolithic formulation imposing the normal velocity continuity at the interface, the
stability is guaranteed and the method is energy preserving with mono-time scale.
Moreover, the discretization methods are heterogeneous since the solid sub-domain
is discretized using FEM and implicit integration scheme while the fluid sub-domain
is discretized by FVM and explicit integration scheme. Finally, the MCS scheme im-
plemented is multi-time scale, and the preCICE library allows the mapping between
non-matching meshes at the fluid-structure interface. In this way, the new proposed
method of FSI coupling seems to be well adapted for FSI issues and shows promising
results. Naturally, the development of the implementation can be upgraded and fur-
ther improvements are also considered.

The MCS method is well adapted for FSI simulations and has been validated with
benchmarks. It should now be confronted to more complex and realistic FSI simula-
tions. The idea of this work is to propose a general coupling solution for FSI, then,
in order to be used for a larger field of simulation, the method should receive some
improvement.
First, this work has only presented simulations with linear elastic solid. It would be
interesting, in particular in frame of FSI problems, to compute simulations with non-
linear solid sub-domain. This can be possible replacing the direct MCS algorithm by
an iterative algorithm, with a convergence loop on the macro time step. This could be
very costly but can allow the simulation of solid non-linearity in the FSI computation.
During the implementation, we have been limited by the OpenFOAM solver. Into the
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current version of OpeFOAM, the only solver density based explicit is rhoCentral-

Foam, which is discretized with backward Euler scheme, order one. To increase the
order of convergence of the coupling simulation, it would be interesting that all the
discretization methods be order two. Recently, a new solver, based on Runge-Kutta
integration scheme has been proposed, [li2200scalability], but not yet integrated
into the openFOAM distribution. This one could be used instead of rhoCentralFoam
for the MCS software integration, allowing the proposed method from chapter two to
be used without any change. Also, the exchanged fields of the current implementation
have to be fixed to allow using the mean conservative variables.
Finally, the most important improvement should concern the fluid computation. In
this work, the fluid is considered compressible and inviscid. In order to compute more
diversified fluid sub-domains, the method should also allow to couple incompressible
flows. These kind of fluids are often solved by Navier-Stokes equation with pressure
based solver as PISO (Pressure Implicit with Splitting of Operators). As said pre-
viously, these solvers sequentially compute the velocity and the pressure, which does
not allow the implementation of the MCS coupling method where the direct resolu-
tion of the mean conservative variables is required. In [115], the author proposed an
implementation of the projection method for pressure–velocity coupling into open-
FOAM. A solver for incompressible flow, explicit Runge–Kutta based projection was
proposed. With some developments, this solver could be used in the frame of MCS
implementation, and a larger field of FSI problems could be simulated.
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Appendix A

Calculation of the fluid

semi-discretized equations

The aim of this appendix is to detail the calculation of governing semi-discretized
equations, over the fluid sub-domain, of the proposed method. We start with the
weak formulation of the fluid, obtained by the stationarization of the Lagrangian of
the fluid-structure problem in monolithic formulation. Thus the objective is to obtain
the semi-discretized equations (2.83b). To be lighter, the sub-domain subscripts will
be omitted, in this appendix only the fluid sub-domain is treated.

A.1 From weak to strong formulation

The weak form of the fluid sub-domain is made of the terms depending on the virtual
field δXf in equation (2.77). There are the stationarization of the variational of the
fluid sub-domain, equation (2.80) and the term depending on δXf in the variational
of the fluid interface, equation (2.82). The virtual field δXf is re-written δX and the
weak formulation of the monolithic governing equation over the fluid sub-domain is
written as:∫ t

0

∫
Ωf

δX
(∂ρv
∂t

+∇x · (ρv ⊗ v + pI)
)

dxdt+

∫ t

0

∫
ΓFS

Λ̇(n · δX)n dXdt = 0 (A.1)

Let’s introduce the continuous function of vertexes selection such as:

l(X) =

{
0 if X ∈ Γf ,X /∈ ΓFS

n if X ∈ ΓFS
(A.2)

Then the equation (A.1) is re-written as:

∫ t

0

∫
Ωf

δX
(∂ρv
∂t

+∇x · (ρv ⊗ v + pI)
)

dxdt+

∫ t

0

∫
Γf

l · Λ̇(n · δX) dXdt = 0 (A.3)

On the boundaries of the sub-domains the ALE coordinate and the Lagrangian coor-
dinate are combined, ξ = X. Then (A.3) becomes:

∫ t

0

∫
Ωf

δX
(∂ρv
∂t

+∇x · (ρv ⊗ v + pI)
)

dxdt+

∫ t

0

∫
Γf

l · Λ̇(n · δX) dξdt = 0 (A.4)
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Applying the divergence theorem, we get:∫ t

0

∫
Ωf

δX
(∂ρv
∂t

+∇x · (ρv ⊗ v + pI)
)

dxdt+

∫ t

0

∫
Ωf

∇ξ · l · Λ̇δX dξdt = 0 (A.5)

Using the definition of the ALE coordinate, dx = Jdξ, equation (A.5) becomes:

∫ t

0

∫
Ωf

δX
(∂ρv
∂t

+∇x.(ρv ⊗ v + pI) + J−1∇ξ.(l · Λ̇)
)

dxdt = 0 (A.6)

The above equation is true for all δX in the virtual space. Thus, the strong for-
mulation in eulerian frame, of the momentum over the fluid domain, for the dual
formulation of the fluid-structure problem, is :

∂ρv

∂t
|x +∇x.(ρv ⊗ v + pI) + J−1∇ξ.(lΛ̇) = 0 (x, t) ∈ Ω× [0, T ] (A.7)

Adding the mass conservation equation and the energy conservation equation, equa-
tion(A.7) is re-written in vectorial form such as:

∂U

∂t
|x +∇x.F + J−1∇ξ.(LΛ̇) = 0 (x, t) ∈ Ω× [0, T ] (A.8)

From here, the tonsorial notation is leaved and replaced by the bold notation. We
define L = [0, lT ,0].

A.2 From eulerian to ALE formulation

We wish now re-write the equation (A.8) in ALE formulation, in the referential of
coordinate ξ.
Let defined the temporal derivative at constant ALE coordinate of the conservative
variables vector.

∂U

∂t
|ξ =

∂U

∂t
|x +∇xU.

∂x

∂t
|ξ (A.9)

Let’s recall the ALE grid velocity, w = ∂x
∂t |ξ. Using it the previous equation (A.9)

and multiplying this one by J, we get:

J
∂U

∂t
|ξ = J

∂U

∂t
|x + J∇xU.w (A.10)

Let’s write the jacobian property as following:

∂J

∂t
|ξ = J∇xw (A.11)

The previous equation (A.11) is multiplied by U:

U
∂J

∂t
|ξ = JU∇xw (A.12)
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Summing equations (A.10) and (A.10), we get :

J
∂U

∂t
|ξ + U

∂J

∂t
|ξ = J

∂U

∂t
|x + J∇xU.w + JU∇xw (A.13)

First, the left member is factorized. Then the first term of the right member is
replaced by its definition, the equation (A.8). Finally, the last two terms are also
factorized. Then equation (A.13) becomes:

∂JU

∂t
|ξ = J

(
−∇x.F−

1

J
∇ξ.(LΛ̇)

)
+ JU∇x(Uw) (A.14)

The equation (A.14) is re-organized and the ALE flux is defined as F̃ = F − wU.
Thus, the strong formulation on ALE coordinate over the fluid sub-domain of the
dual problem is written as:

∂JU

∂t
|ξ + J∇x.F̃ +∇ξ.(LΛ̇) = 0 (A.15)

A.3 From continuous to integral equations

The objective is now to descretized spatially the equation (A.15). As said previously,
the finite volume method is based on the integral formulation, whose the obtaining
is developed following.
The equation (A.15) is integrated over a control volume Vi of boundary Γi.∫

Vi

∂JU

∂t
|ξ + J∇x.F̃ +∇ξ.(LΛ̇)dξ = 0 (A.16)

With the ALE formulation, the controlled volume Vi is time independent. Thus, the
temporal derivative is moved outside the spatial integral.

d

dt

∫
Vi

JUξdξ +

∫
Vi

J∇x.F̃dξ +

∫
Vi

∇ξ · (LΛ̇)dξ = 0 (A.17)

Using the property of the ALE frame, such as dx = Jdξ, equation (A.17) becomes:

d

dt

∫
Vi

Udx +

∫
Vi

∇x.F̃dx +

∫
Vi

∇ξ · (LΛ̇)dξ = 0 (A.18)

Using the divergence theorem for the last two integral term, we get:

d

dt

∫
Vi

Udx +

∫
Γi

n.F̃dx +

∫
Γi

L(n · Λ̇)dξ = 0 (A.19)

A.4 From integral to semi-discretized equations

Finally the equation (A.19) can be descretized using the finite volumes cell centered
method. The conservative variable vector is descretized following equation (2.47) and
the numerical flux is discretized by equation (2.62).
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The integral of the Lagrange multipliers is discretized using the same approximation as
the flux. Nevertheless, the cell face surface sif are also integrated into the discretized
interface operator vector. Thus, the continuous Lagrange multipliers vector Λ̇, which
is homogeneous to a pressure appears as the normal forces of interaction discretized
Λ, homogeneous to a force, in Newton.
Finally, the semi-discretized equations of the fluid sub-domain based on the dual
monolithic formulation is written as following:

d

dt

(
∆ViUi

)
= −

∑
∀Γih∈Γi

(
sihF̃ih + LihΛih

)
(A.20)
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Appendix B

Lagrange multipliers calculation

The aim of this appendix is to detail the obtaining of the expression (2.94) of the
interface operators, from the coupling discretized system of equation (2.84) and the
interpolation of solid velocities at the interface, equation (2.85), and Lagrange mul-
tipliers, equation (2.86), at the micro time scale. Lets recall of these equations, into
the following system:

dms = dps +
1

4
∆t2sa

m
s

vms = vps +
1

2
∆tsa

m
s

M̃sa
m
s = Fm

s −Ksd
P
s + LTs Λm

∆V
j− 1

2
fi

U
j− 1

2
fi

= ∆V j−1
fi

Uj−1
fi
−

∆tf
2

∑(
sj−1
fih

F̃j−1
fih

+ LTfihΛ
j− 1

2
ih

)
∆V j

fi
Uj
fi

= ∆V j−1
fi

Uj−1
fi
−∆tf

∑(
s
j− 1

2
fih

F̃
j− 1

2
fih

+ LTfihΛj
ih

)
Lsv

j− 1
2

s n
j− 1

2
s = lfv

j− 1
2

fvertex
n

1
2
f

Lsv
j
sn

j
s = lfv

j
fvertex

njf

v
j− 1

2
s = (1−

j − 1
2

m
)v0
s +

j − 1
2

m
vms

vjs = (1− j

m
)v0
s +

j

m
vms

Λj− 1
2 = (1−

j − 1
2

m
)Λ0 +

j − 1
2

m
Λm

Λj = (1− j

m
)Λ0 +

j

m
Λm

(B.1a)

(B.1b)

(B.1c)

(B.1d)

(B.1e)

(B.1f)

(B.1g)

(B.1h)

(B.1i)

(B.1j)

(B.1k)

This system could be solved by the by the Gauss pivot method or the costliest method
proposed in section 2.2.2, that came from the following procedure.
First we consider the coupling condition equations at the Runge-Kutta mid step (B.1f)
and the micro time step (B.1g):

Lsv
j− 1

2
s n

j− 1
2

s = lfv
j− 1

2
fvertex

n
j− 1

2
f

Lsv
j
sn

j
s = lfv

j
fvertex

njf

(B.2a)

(B.2b)
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Then, the interpolations of the solid velocities at the interface, equation (B.1h) and
(B.1i) are injected in (B.2a) and (B.2b) respectively:

Ls
(
(1−

j − 1
2

m
)v0
s +

j − 1
2

m
vms
)
n
j− 1

2
s = lfv

j− 1
2

fvertex
n
j− 1

2
f

Ls
(
(1− j

m
)v0
s +

j

m
vms
)
njs = lfv

j
fvertex

njf

(B.3a)

(B.3b)

Then, the fluid velocities at vertices,vfvertex , are re-written according to the extrapo-
lation function called V defined by the simulation problem, from its velocities values
at cell center in the inner fluid sub-domain. In this way, equations (B.3) becomes:

Ls
(
(1−

j − 1
2

m
)v0
s +

j − 1
2

m
vms
)
n
j− 1

2
s = lfV

(
v
j− 1

2
fi

)
n
j− 1

2
f

Ls
(
(1− j

m
)v0
s +

j

m
vms
)
njs = lfV

(
vjfi
)
njf

(B.4a)

(B.4b)

The next step is to replace the solid velocity value at tm with equation (B.1b) :

Ls

(
(1−

j − 1
2

m
)v0
s +

j − 1
2

m

(
vps +

1

2
∆tsa

m
s

))
n
j− 1

2
s

= lfV
(
v
j− 1

2
fi

)
n
j− 1

2
f

Ls

(
(1− j

m
)v0
s +

j

m

(
vps +

1

2
∆tsa

m
s

))
njs = lfV

(
vjfi
)
njf

(B.5a)

(B.5b)

One can now replace the fluid velocities by their values. These velocities are expressed
according to the fluid mean conservatives variables, using the equation (2.92):

Ls

(
(1−

j − 1
2

m
)v0
s +

j − 1
2

m

(
vps +

1

2
∆tsa

m
s

))
n
j− 1

2
s

= lfV
((∆V ρv)j− 1

2
fi(

∆V ρ
)j− 1

2
fi

)
n
j− 1

2
f

Ls

(
(1− j

m
)v0
s +

j

m

(
vps +

1

2
∆tsa

m
s

))
njs

= lfV
((∆V ρv)j

fi(
∆V ρ

)j
fi

)
njf

(B.6a)

(B.6b)

Finally, the the Lagrange multipliers vector appears replacing the solid acceleration

and sms by their values equation (B.1c), and the fluid mean momentum
(
∆V ρv

)j− 1
2

fi

and
(
∆V ρv

)j
fi

using equations (B.1d) and (B.1e):
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(B.7a)

(B.7b)

The last step before simplification, is to use the equation (B.1j) into (B.7a), re-
spectively (B.1k) into (B.7b) to replace the Lagrange multipliers at the macro time
step.
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(B.8a)

(B.8b)

Then, into solid terms of each equation(the first member) the terms depending on Λ0

can be simplified. Then the equations are reorganized; the terms depending on the
current forces of interaction, Λj− 1

2 and Λj are put on the left member of equation
(B.8a) and (B.8b) respectively, while the term non depending on the current forces
of interaction are put into the right side.
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(B.9b)

Where, the time dependent fluid mass matrix, Mj
f , is defined as a diagonal matrix

such as: Mj
fi

= V
((

∆V ρ
)j
fi

)
Moreover, in the first member, the Steklov-Poincare operators Hj

f respectively H
j− 1

2
f

and Hs appear, as defined by equations (2.95).
Finally, the free-link decomposition appears, (2.7). In this way, using the fluid free
mean momentum, equation (2.90), and the free solid velocities (2.88b) and the link
solid velocities (2.89b), the equation (B.9) are re-written such as :
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(B.10a)

(B.10b)
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Then using then the equation (2.87) on the solid velocities at t0, and simplifying the
expression of fluid velocities the equations (B.12) become:
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(B.11a)

(B.11b)

Then, using the solid velocities interpolation (B.1h) and (B.1i) and the definition of
the function V, the found equations (2.94) appear :(
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(B.12a)

(B.12b)
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Appendix C

Implementation into CalculiX

and OpenfOAM adapters

C.1 XML configuration file for the forward step problem

C.2 OpenFOAM adapter: Velocity.C

#include "Velocity.H"

using namespace Foam;

preciceAdapter::FSI::Velocity::Velocity

(

const Foam::fvMesh& mesh

)

:

mesh_(mesh),

U_(

const_cast<volVectorField*>

(

&mesh.lookupObject<volVectorField>("U")

)

)

{

dataType_ = vector;

}

void preciceAdapter::FSI::Velocity::write(double * buffer, bool meshConnectivity,

const unsigned int dim)

{

int bufferIndex = 0;

// For every boundary patch of the interface

for (uint j = 0; j < patchIDs_.size(); j++)

{

int patchID = patchIDs_.at(j);

//- set-up interpolator

primitivePatchInterpolation patchInterpolator

(
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U_->mesh().boundaryMesh()[patchID]

);

vectorField n = mesh_.boundary()[patchID].nf();

vectorField UFaceValues = U_->boundaryFieldRef()[patchID];

//- Perform interpolation of normal vector

vectorField UPointValues

=

patchInterpolator.faceToPointInterpolate((n&UFaceValues)*n);

// For every cell of the patch

forAll(UPointValues, i)

{

// Copy the normal free velocities into the buffer

// x-dimension

buffer[bufferIndex++] = UPointValues[i].x();

// y-dimension

buffer[bufferIndex++] = UPointValues[i].y();

if(dim == 3)

// z-dimension

buffer[bufferIndex++] = UPointValues[i].z();

}

}

}

C.3 OpenFOAM adapter: Mass.C

#include "Mass.H"

using namespace Foam;

preciceAdapter::FSI::Mass::Mass

(

const Foam::fvMesh& mesh

)

:

mesh_(mesh)

{

dataType_ = scalar;

}

void preciceAdapter::FSI::Mass::write(double * buffer, bool meshConnectivity,

const unsigned int dim)

{

volScalarField rho_ = mesh_.lookupObject<volScalarField>("rho");

volScalarField cellMass

(
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IOobject

(

"cellMass",

mesh_.time().timeName(),

mesh_,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh_,

dimensionedScalar("zero", dimMass, 0.0)

);

cellMass.ref()= mesh_.V()*rho_();

cellMass.write();

int bufferIndex = 0;

// For every boundary patch of the interface

for (uint j = 0; j < patchIDs_.size(); j++)

{

int patchID = patchIDs_.at(j);

scalarField massFaceValues = cellMass.boundaryFieldRef()[patchID];

// For every feces of the patch

forAll(massFaceValues, i)

{

// Copy the mass into the buffer

buffer[bufferIndex++] = massFaceValues[i];

}

}

}

C.4 OpenFOAM adapter: VelocityLink.C

#include "VelocityLink.H"

#include "TimeState.H"

#include "surfaceInterpolate.H"

using namespace Foam;

preciceAdapter::FSI::VelocityLink::VelocityLink

(

const Foam::fvMesh& mesh,

const Foam::Time& runTime

)

:

U_(

const_cast<volVectorField*>

(

&mesh.lookupObject<volVectorField>("U")

)
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),

mesh_(mesh),

runTime_(runTime)

{

dataType_ = vector;

}

void preciceAdapter::FSI::VelocityLink::read(double * buffer,

const unsigned int dim)

{

int bufferIndex = 0; // buffer get lagrange multipliers

volScalarField rho_ = mesh_.lookupObject<volScalarField>("rho");

// For every boundary patch of the interface

for (uint j = 0; j < patchIDs_.size(); j++) {

int patchID = patchIDs_.at(j);

// For every faces of the patch

forAll(mesh_.boundaryMesh()[patchID], faceI)

{

//cell number whose contain the current face

const label& ownerI = mesh_.boundaryMesh()[patchID].faceCells()[faceI];

//link velocity correction at cell center

U_->ref()[ownerI].x()

=

U_->boundaryFieldRef()[patchID][faceI].x() -

runTime_.deltaT().value()/(mesh_.V()[ownerI]*rho_.ref()[ownerI])

*buffer[bufferIndex++];

U_->ref()[ownerI].y()

=

U_->boundaryFieldRef()[patchID][faceI].y()

runTime_.deltaT().value()/(mesh_.V()[ownerI]*rho_.ref()[ownerI])

*buffer[bufferIndex++];

U_->ref()[ownerI].z()

=

U_->boundaryFieldRef()[patchID][faceI].z() -

runTime_.deltaT().value()/(mesh_.V()[ownerI]

*rho_.ref()[ownerI])*buffer[bufferIndex++];

//correct boundary values for next flux computation

U_->boundaryFieldRef()[patchID][0].x() = U_->ref()[ownerI].x();

U_->boundaryFieldRef()[patchID][0].y() = U_->ref()[ownerI].y();

U_->boundaryFieldRef()[patchID][0].z() = U_->ref()[ownerI].z();

}

// writhe total state

U_->write();

}

}
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C.5 OpenFOAM adapter: GridDisp.C

#include "GridDisp.H"

#include "TimeState.H"

#include "volPointInterpolation.H"

using namespace Foam;

preciceAdapter::FSI::GridDisp::GridDisp

(

const Foam::fvMesh& mesh,

const Foam::Time& runTime

)

:

pointDisplacement_(

const_cast<pointVectorField*>

(

&mesh.lookupObject<pointVectorField>("pointDisplacement")

)

),

U_(

const_cast<volVectorField*>

(

&mesh.lookupObject<volVectorField>("U")

)

),

mesh_(mesh),

runTime_(runTime)

{

dataType_ = vector;

}

void preciceAdapter::FSI::GridDisp::read(double * buffer, const unsigned int dim)

{

int bufferIndex = 0; //buffer get tangential normal velocity

// For every boundary patch of the interface

for (uint j = 0; j < patchIDs_.size(); j++) {

int patchID = patchIDs_.at(j);

// Get the displacement on the patch

fixedValuePointPatchVectorField &pointDisplacementFluidPatch

(

refCast<fixedValuePointPatchVectorField>

(

pointDisplacement_->boundaryFieldRef()[patchID]

)

);

//- set-up interpolator

primitivePatchInterpolation patchInterpolator

(

U_->mesh().boundaryMesh()[patchID]

);
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// Get normal faces of the interface

vectorField n = mesh_.boundary()[patchID].nf();

vectorField UFaceValues = U_->boundaryFieldRef()[patchID];

//- Perform interpolation of normal vector

vectorField UPointValues

=

patchInterpolator.faceToPointInterpolate((n&UFaceValues)*n);

// For every point of the patch

forAll(pointDisplacement_->boundaryFieldRef()[patchID], i)

{

// Set the nodal displacement as explicit prediction for next time step

pointDisplacementFluidPatch[i][0]

=

pointDisplacementFluidPatch[i][0] + runTime_.deltaT().value()

*(UPointValues[i].x() + buffer[bufferIndex++]);

pointDisplacementFluidPatch[i][1]

=

pointDisplacementFluidPatch[i][1] + runTime_.deltaT().value()

*(UPointValues[i].y() +buffer[bufferIndex++]);

pointDisplacementFluidPatch[i][2]

=

pointDisplacementFluidPatch[i][2]+runTime_.deltaT().value()

*(UPointValues[i].z()+buffer[bufferIndex++]);

}

//correction boundary bit no writing, correction for next time step

pointDisplacement_->correctBoundaryConditions();

}

}

C.6 CalculiX adapter: WriteCouplingData

#include <stdlib.h>

#include "PreciceInterface.h"

#include "ConfigReader.h"

#include "precice/SolverInterfaceC.h"

void Precice_WriteCouplingData( SimulationData * sim )

{

printf( "---[preciceAdapter] Adapter writing coupling data...\n" );

fflush( stdout );

PreciceInterface ** interfaces = sim->preciceInterfaces;

int numInterfaces = sim->numPreciceInterfaces;

int i, j;

int iset;
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if( precicec_isWriteDataRequired( sim->solver_dt )

|| precicec_isActionRequired( "write-initial-data" ) )

{

for( i = 0 ; i < numInterfaces ; i++ )

{

for( j = 0 ; j < interfaces[i]->numWriteData ; j++ )

{

switch( interfaces[i]->writeData[j] )

{

case TEMPERATURE:

...

break;

case HEAT_FLUX:

...

break;

case CONVECTION:

...

break;

case DISPLACEMENTS:

...

break;

case DISPLACEMENTDELTAS:

...

break;

case NVELOCITIES:

iset = interfaces[i+2]->faceSetID + 1; // TODO: define correctly +2

FORTRAN( getnormalvel, (sim->co,

sim->mi,

&iset,

sim->istartset,

sim->iendset,

sim->ipkon,

*sim->lakon,

sim->kon,

sim->ialset,

sim->veold,

interfaces[i]->nodeVectorData

)

);

precicec_writeBlockVectorData(interfaces[i]->velocitiesDataID,

interfaces[i]->numNodes,interfaces[i]->preciceNodeIDs,

interfaces[i]->nodeVectorData );

break;

case TVELOCITIES:

iset = interfaces[i]->faceSetID + 1; //Adjust index before calling Fortran

FORTRAN( gettangentialvel, (sim->co,

sim->mi,

&iset,

sim->istartset,

sim->iendset,
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sim->ipkon,

*sim->lakon,

sim->kon,

sim->ialset,

sim->veold,

interfaces[i]->nodeVectorData

)

);

precicec_writeBlockVectorData( interfaces[i]->velocitiesDataID,

interfaces[i]->numNodes, interfaces[i]->preciceNodeIDs,

interfaces[i]->nodeVectorData );

break;

case POSITIONS:

...

break;

case FORCES:

getNodeForces( interfaces[i]->nodeIDs, interfaces[i]->numNodes,

interfaces[i]->dim, sim->fn, sim->mt, interfaces[i]->nodeVectorData );

precicec_writeBlockVectorData( interfaces[i]->forcesDataID,

interfaces[i]->numNodes, interfaces[i]->preciceNodeIDs,

interfaces[i]->nodeVectorData );

break;

}

}

}

if( precicec_isActionRequired( "write-initial-data" ) )

{

precicec_markActionFulfilled( "write-initial-data" );

}

}

}

C.7 CalculiX adapter: Link computation

/*If the coupling method is MCS, the solid state is corrected (=free+link)*/

if(Precice_isMcsCouplingScheme()){

/*clear all the external contributions*/

for(k=0;k<*nforc;++k){

xforc[k] = 0 ;

}

for(k=0;k<*nload;++k){

xload[k] = 0 ;

}

/*Read the interacton force into xforc*/

Precice_ReadCouplingData( &simulationData );

/*Constrct the fext vector (only Lambda for MCS correction)*/

FORTRAN(mafillsmforc,(nforc,ndirforc,nodeforc,xforc,nactdof,

fext,ipompc,nodempc,coefmpc,mi,&rhsi,fnext,
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nmethod,ntrans,inotr,trab,co));

/*Computation of the second memeber b=fext

(f internal contribution have ever been take

into account into the free computation)*/

for(k=0;k<neq[0];++k){

b[k]=fext[k];

}

/* compute acc, b<-Mtilde*b */

if(*isolver==0){

...

}

/*Compute the total state = free+link for displacement, velocity and acceleration*/

results(co,nk,kon,ipkon,lakon,ne,v,stn,inum,stx,

elcon,nelcon,rhcon,nrhcon,alcon,nalcon,alzero,ielmat,

ielorien,norien,orab,ntmat_,t0,t1act,ithermal,

prestr,iprestr,filab,eme,emn,een,iperturb,

f,fn,nactdof,&iout,qa,vold,b,nodeboun,

ndirboun,xbounact,nboun,ipompc,

nodempc,coefmpc,labmpc,nmpc,nmethod,cam,&neq[1],veold,accold,

&bet,&gam,&dtime,&time,ttime,plicon,nplicon,plkcon,nplkcon,

xstateini,xstiff,xstate,npmat_,epn,matname,mi,&ielas,&icmd,

ncmat_,nstate_,stiini,vini,ikboun,ilboun,ener,enern,emeini,

xstaten,eei,enerini,cocon,ncocon,set,nset,istartset,iendset,

ialset,nprint,prlab,prset,qfx,qfn,trab,inotr,ntrans,fmpc,

nelemload,nload,ikmpc,ilmpc,istep,&iinc,springarea,

&reltime,&ne0,thicke,shcon,nshcon,

sideload,xloadact,xloadold,&icfd,inomat,pslavsurf,pmastsurf,

mortar,islavact,cdn,islavnode,nslavnode,ntie,clearini,

islavsurf,ielprop,prop,energyini,energy,&kscale,iponoel,

inoel,nener,orname,network,ipobody,xbodyact,ibody,typeboun);

/*clear all the interface contributions for the next time step free computation*/

for(k=0;k<*nforc;++k){

xforc[k] = 0 ;

}

}

C.8 Action: computeHf.py

def performAction(time, dt, sourceData, targetData):

s= '---[precice] Python action Compute Hf'
print(s, flush=True)

Mf = sourceData # store (reference to) sourceData for later use
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Hf = dt*np.linalg.inv(np.dot(Mf,np.eye(Mf.shape[0]*3))

np.save('Hf.npy', Hf)

C.9 Action: computeLambda.py

def performAction(time, dt, sourceData, targetData):

s= '---[precice] Python Action Compute Lambda'
print(s, flush=True)

m = 1 #Time step ratio, ToDo reat it from xml config

dt_f = dt/m

#Computation of the structural operator at initialization

if (0<time and time <= dt) :

#Read and create Mtilde

diag_file = open('Mtilde_diag.txt')
uptri_file = open('Mtilde_tri.txt')
diag_lines = diag_file.readlines()

uptri_lines = uptri_file.readlines()

Mtilde = np.zeros((len(diag_lines),len(diag_lines)))

for i in range(len(diag_lines)) :

Mtilde[i,i] = float(diag_lines[i])

k = 0

for i in range(1,len(diag_lines)-1) :

for j in range(i):

Mtilde[i,j] = float(uptri_lines[k])

Mtilde[j,i] = float(uptri_lines[k])

k = k+1

#Steklov Pointcare operator

Hs = 0.5*dt*np.linalg.inv(Mtilde)

np.save('Hs.npy', Hs)

#Save first free old vel in case of multi time step interpolation required

vel_free_solid_old = np.zeros(Hs.shape[0])

np.save('vel_free_solid_old.npy', vel_free_solid_old)

if time >= dt :

j = int(time/dt_f)%m

if j == 0:

j=m

#Read the free velocity

vel_free_f = targetData #free normal velocities fluid at micro time step

vel_free_s= sourceData #free normal velocities solid at macro time step

#solid micro time step interpolation

vel_free_s_old= np.load('vel_free_solid_old.npy')
vel_free_s_j = (1-j/m)*vel_free_s_old + j/m*vel_free_s
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#Read operator

H_s = np.load('Hs.npy')
H_f = np.load('Hf.npy')

#Compute interaction force

Lambda = np.dot(np.linalg.inv(H_s+H_f), vel_free_f-vel_free_s)

for i in range(targetData.shape[0]):

myTargetData[i] = Lambda[i]

np.save('Lambda.npy', myTargetData)

#save old solid for next micro time interpolation

if j ==m:

np.save('vel_free_solid_old.npy', vel_free_s)

C.10 Action: transferLambda.py

def performAction(time, dt, sourceData, targetData):

s= '---[precice] Python Action Transfer Lambda'
print(s, flush=True)

if time != 0. :

Lambda = np.load('Lambda.npy')
for i in range(targetData.shape[0]):

targetData[i] = Lambda[i]

C.11 Action: computeMicro.py

def performAction(time, dt, sourceData, targetData):

s= '---[precice] Python Action Compute micro'
print(s, flush=True)

m = 1 #Time step ratio, ToDo reat it from xml config

if (m !=1) : #if multi time step

#Saved init old value

if (0<time and time <= dt) :

vel_tan_old = np.zeros(sourceData)

np.save('vel_tan_old.npy', vel_tan_old)

if time >= dt :

j = int(time/dt_f)\%m

if j == 0:

j=m

#tangential velocities solid at macro time step

vel_tan_m= sourceData

#tangential velocities solid at previous macro time step
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vel_tan_old= np.load('vel_tan_old.npy')
#tangential velocities at previous micro time step

vel_tan_j1 = (1-(j-1)/m)*vel_tan_old + (j-1)/m*vel_tan_m

for i in range(targetData.shape[0]):

myTargetData[i] = vel_tan_j1[i]

#save old solid for next micro time interpolation

if j ==m:

np.save('vel_tan_old.npy', vel_tan_m)
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des structures. Vol. 2. Masson Paris, 1993.
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