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Résumé

Concevoir des structures au regard de leur comportement mécanique est une tâche
importante en ingénierie. Cependant, cette phase de conception peut s’avérer longue

et fastidieuse lorsque les relations de cause à effet ne sont pas correctement identifiées.
Plus spécifiquement, il est généralement difficile d’obtenir la meilleure forme d’une
structure (la forme optimale), car cela fait appel à de nombreuses compétences. En effet,
des outils avancés pour la modélisation géométrique sont nécessaires pour représenter
fidèlement la structure et pour explorer une large variété de formes. A cela s’ajoute le
besoin d’une méthode de calcul de structures compétente et rapide afin de réduire la
durée du processus d’optimisation. Un lien étroit entre le modèle géométrique et ce-
lui d’analyse est souhaité car tous deux sont amenés à communiquer successivement.
Ainsi, l’Analyse IsoGéométrique apparaît comme un outil adéquat pour les problèmes
d’optimisation paramétrique de formes. En effet, cette méthode s’appuie sur un modèle
unique pour décrire fidèlement la géométrie et pour effectuer l’analyse. Entièrement ba-
sée sur le concept de l’AIG, nous construisons une stratégie de conception optimale de la
forme pour les structures raidies, omniprésentes en aéronautique. Nous présentons une
formulation massif coque permettant d’imposer des variations continues d’épaisseur à
une structure mince. Nous formulons des sensibilités analytiques pour les éléments iso-
géométriques standards et coques. Aussi, nous présentons une approche immergée pour
appliquer des changements de forme aux structures raidies. Du point de vue de l’ana-
lyse, nous introduisons une formulation coque adaptée aux compositions géométriques
et nous construisons un algorithme dédié aux cas de discrétisations non-conformes en
s’appuyant sur les méthodes de couplage Mortar et de décomposition de domaine. In
fine, tous ces développements sont fusionnés et permettent de traiter divers exemples
avec des niveaux de complexité croissants.

Note : ce document est intégralement écrit en anglais. Un résumé détaillé écrit en français est
donné à la fin du document, en annexe A.
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Abstract

Designing structural parts against the material limits, the impact of loads, and many
other constraints, is of standard interest in engineering. However, improving the

design of a structure can be long and drawn out, especially when a clear understanding
of cause-effect relationships is missing. Finding the best possible design, namely the op-
timal design, is a complex task because it requires several competences. Usually, efficient
geometric modeling is needed to accurately represent the structure. Conjointly, the geo-
metric model should provide high flexibility during the design exploration. In addition,
structural analysis must be fast enough to shorten the overall process. Besides, for the
sake of compactness, a close connection between the geometric model and the structural
analysis seems essential. Finally, all modeling choices are deeply related, and thus, they
should be thought and built accordingly to the others. Therefore, IsoGeometric Analy-
sis appears as a powerful tool for structural optimization since it uses a unique model
with both high quality geometric and analysis properties. Here, we present a compact
framework built on the core idea of IGA. We strive to construct unified models with new
opportunities for structural design with a direct application to stiffened Aerostructures.
More specifically, we present a solid-shell approach to impose continuous thickness vari-
ations. We formulate analytical sensitivities for standard and shell formulations. Then,
we introduce an embedded technique that enables to impose complex shape updates.
From the analysis point of view, we build a shell formulation dedicated to geometric
compositions and we design a specific solver based on Domain Decomposition meth-
ods and Mortar approach for the coupling of non-conforming discretizations. Different
examples with increasing level of complexity show the performances of the adopted
methodologies.
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Chapter 1

Introduction

1.1 Motivations and Objectives

Numerical simulation occupies an important place in the engineering design pro-
cess. The numerical results guide numerous decisions regarding a final product. The
impact of these numerical methods on the final product is important and the choice of
a particular method against others can lead to a very unique design. If one gives the
task of designing a specific part, defined by a design brief, to two different engineers,
then one inevitably ends up with two different final products. Of course it varies for
example with the experience of each designer. A confirmed engineer will not make the
same choices than a junior engineer. However, this is not the only source of the differ-
ences. The numerical methods used by both of them can be one of the major sources
of these differences. In the case where two different numerical approaches are used by
each of them, then one could be certain that the final parts would differ. The efficiency
of the employed method is crucial. For example, if one numerical method is very fast
and the other is slow (but giving the same result), then using the fastest method enables
to explore much more configurations. At the end, it leads to a better final design. The
employed numerical methods need to be versatile such that the overall design process
is shorten. They also need to be accurate such that the final product has the desired
behavior.

In all industrial sectors, constant improvements are sought. This is particularly true
in aeronautics where the design of aircraft competes in a race for technological innova-
tion. A particular interest is to design aircraft with lower fuel consumption. Potential
improvements can be provided in many ways and we set out in this thesis to explore
one of them. It concerns the shape of the structural parts, namely the stiffeners. In fact,
stiffened structures are omnipresent in aeronautics. These structures are obtained by
the assembly of a main part (usually denoted the skin or the panel) with sub-parts as
stringers and ribs (the stiffeners). The fastening of the stiffeners with the skin gives a
final structure with a high stiffness to weight ratio. The construction of the wings or of
the fuselage are good examples of stiffened structures. Classical designs contain a lot of
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(a) (b)

(c)

Figure 1.1 – Stiffened structures are omnipresent in aeronautics: the fuselage (photo (a) from [1]
and photo (b) from [2]) and the wing (photo (c) from [3]) are built with this principle.

straight and aligned stiffeners uniformly distributed along the main structure (wing or
fuselage). Examples are shown in figure 1.1.

Recent works motivate the development of new innovative stiffened structures. It
seems promising to design stiffeners with new types of shapes. Particularly, defining
curvilinear stiffeners instead of straight ones can further improve the mechanical behav-
ior of the overall stiffened structures [4–14]. Figure 1.2 highlights what could be, in the
future, the aerostructures based on free-form stiffeners. The shape of a structure has a
high influence on its mechanical behavior. For example, the shape of an egg enables to
show great resistance when subjected to internal pressure. Possible great improvements
regarding the structures of airplanes could be obtained by designing stiffeners with new
innovative shapes.

In order to design these new stiffened structures, dedicated numerical methods are
required. This thesis focuses on the development of new methods that enable to design
these innovative stiffened structures by improving, for example, the shape and the po-
sition of the stiffeners. The goal is to built a general framework which is flexible and
robust. It should be flexible in order to tackle a lot of different examples using the same
strategy. For example, the method should be applicable to the design of the fuselage, the
wing, or any other part. The setting of the process should be easy to put in place such
that numerous cases can be performed. Robustness is sought in order to get trustful
results. It is also required to get a framework that is general and usable for as many
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Outline

(a) (b)

Figure 1.2 – Innovative stiffened structures with curvilinear stiffeners: (a) from [15], and (b)
from [16].

cases as possible.
We choose to build our framework based on IsoGeometric Analysis. IGA is a novel

numerical method for structural analysis (and numerical simulation in general) which
relies on geometric models to perform the simulation. It has gained relevance since its
introduction by Hughes et al. [17] in 2005. We will start by giving an overview of this ap-
proach along with justifications for using it in the presented context. Then step by step
we introduce new strategies for the shape optimization of aerostructures. We believe
that we end up with a framework that answers to several of the initial objectives. Apart
from the application to stiffened structures, this thesis deals with the shape optimiza-
tion of shell structures. Contributions to this research field can be found throughout
the document (see the list of publications and scientific presentation in the following
section 1.3).

1.2 Outline

More specifically, the document is organized as follows. Chapter 2 motivates IsoGe-
ometric Analysis in the perspective of structural shape optimization. Basics regarding
both IGA and shape optimization are presented. Then, more theoretical content is given
in chapter 3 which focuses on the shape optimization of shells. We present the use of
a solid-shell formulation for this purpose. It is presented in conjunction with an iso-
geometric Kirchhoff–Love shell. Analytical sensitivities are developed for both types of
shell. We show the different benefits brought by each of them and how they can be
combined. In order to tackled more complex structures, we deal with non-conforming
multipatch models in chapter 4. We introduce a Mortar coupling for Kirchhoff–Love
shells. We design a dual Domain Decomposition solver to efficiently analyze these mul-
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tipatch models with complex shell junctions. Chapter 5 deals with the difficulty in
handling these non-conforming multipatch models for performing shape optimization.
We present an embedded methodology which gives the possibility to generate stiffened
structures in a suitable way. It offers great flexibility regarding the imposition of the
shape variations. A specific shell formulation, namely the embedded Kirchhoff–Love
shell, is established. Several examples of shape optimization of stiffened structures are
presented in chapter 6. It enables to show how all the developed approaches are related
and how they can be concatenated into one final framework. In the final chapter, we
summarize the major results of the thesis. Further prospects and possible improvements
of the study are discussed.

1.3 Contributions

This thesis led to the following publications and presentations. Additional resources
will probably be added to this list, especially regarding the analytical sensitivities pre-
sented in this thesis.

Articles in scientific journals
T. Hirschler, R. Bouclier, A. Duval, T. Elguedj, and J. Morlier. “Isogeometric sizing and shape optimization

of thin structures with a solid-shell approach”. In: Structural and Multidisciplinary Optimization 59.3
(2019), pp. 767–785.

T. Hirschler, R. Bouclier, A. Duval, T. Elguedj, and J. Morlier. “The embedded isogeometric Kirchhoff–
Love shell: From design to shape optimization of non-conforming stiffened multipatch structures”. In:
Computer Methods in Applied Mechanics and Engineering 349 (2019), pp. 774–797.

T. Hirschler, R. Bouclier, D. Dureisseix, A. Duval, T. Elguedj, and J. Morlier. “A dual domain decomposi-
tion algorithm for the analysis of non-conforming isogeometric Kirchhoff–Love shells”. In: Computer
Methods in Applied Mechanics and Engineering 357 (2019), p. 112578.

Conference Articles
T. Hirschler, R. Bouclier, A. Duval, D. Crozes, T. Elguedj, and J. Morlier. “Analyse Isogéométrique pour

les problèmes d’Optimisation de Forme des Structures Coques”. In: 13e colloque national en calcul des
structures. Giens, Var, France, 2017.

T. Hirschler, R. Bouclier, A. Duval, T. Elguedj, and J. Morlier. “Un modèle isogéométrique aux discréti-
sations non-conformes pour la conception optimale des structures raidies”. In: 14e colloque national en
calcul des structures. Giens, Var, France, 2019.

Other Conference presentations
T. Hirschler, R. Bouclier, A. Duval, T. Elguedj, and J. Morlier. “Isogeometric Shape Optimization in the

context of Solid-shell Models”. In: 5th International Conference on Isogeometric Analysis. Pavia, Italy, 2017.

T. Hirschler, R. Bouclier, A. Duval, T. Elguedj, and J. Morlier. “Efficient Modelling for the Shape Opti-
misation of Shells and Stiffened Structures”. In: 6th European Conference on Computational Mechanics.
Glasgow, Scotland, 2018.
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Sitges (Barcelona), Spain, 2019.

T. Elguedj, T. Hirschler, R. Bouclier, A. Duval, and J. Morlier. “An Embedded Isogeometric Kirchhoff–Love
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Chapter 2

Isogeometric Analysis as a powerful
approach for Shape Optimization

The original idea behind IsoGeometric Analysis is to rely on geometric models to per-
form structural analysis. All this work follows this innovative mindset. This first

chapter aims at motivating our interest for IGA. The theoretical background of this method
along with underlying examples are presented. More precisely, the first task is to introduce
main aspects regarding geometric modeling. We outline the basis of Isogeometric Analysis
with the goal of motivating its use for shape optimization.
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2 Isogeometric Analysis as a powerful approach for Shape Optimization

2.1 Design Optimization

2.1.1 A crucial objective in Engineering Design

Design optimization is a very common task during the product development even if
it may not be called this way. In fact, when an engineer seeks to design a new product,
he tries to develop it accordingly to a design brief. The final product should match
the specifications in the best possible way. To that purpose, the engineer goes through
several design stages in order to get a final product that satisfies all the requirements. In
practice, it may be long and drawn out. The engineer often tries a lot of configurations
before the final design is obtained. Usually, a long succession of attempts is needed:
the final product is obtained by a trial-and-error learning process. The difficulty lies in
the fact that the cause-effect relationships are sometimes hard to identify. The problem
becomes more important when the engineer has no adequate resources to carry out the
product development.

time

Figure 2.1 – Evolution of cars over time.

Fortunately, the engineer can rely on all the know-how acquired over time. For
example, the engineer does not start from a blank page when designing a new car. All
the works done for the previous car models provide valuable knowledge to the engineer.
It helps him to take better decision during the design of the new car. The engineer also
considers the defaults of the existing cars, in order to improve the new one. This process
leads to the improvement of the product over time. In the case of cars, this evolution is
clearly visible as illustrated in figure 2.1. Cars have been improved regarding a lot of
criteria as comfort, security, fuel economy and efficiency, etc. Finally, this can be viewed
as an Optimization Process: cars are continuously ameliorated to perform better than
the precedents. At the end of the process, one should get the optimal product, i.e. the
best car ever, the one that cannot be improved in any sense. Of course, for complex
product as a car, getting the optimal one may not be possible. Firstly, several criteria
can be inconsistent: a car can hardly be the most comfortable but also the fastest or the
most practical. The consumer wishes may also vary between two people, and also over
time. The technology is also evolving which constantly gives new ways to improve the
product. Thus, getting the optimal car is quite utopian. Design improvement could be
a more realistic term than design optimization.

Numerical simulation has participated to very significant improvements in every
industry sector. It consists in building numerical models of a product and simulating
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Design Brief Numerical Optimization Optimal product

Figure 2.2 – Very schematic representation of numerical optimization.

its behavior with the help of a computer. It avoids to build real prototypes which are
replaced by virtual ones. In addition to be generally cheaper, using numerical models
enables to study the influence of a large variety of parameters in a reduced amount of
time. The trial-and-error learning process is done much faster. But even more interest-
ing, since the numerical models enable a priori to get the response of a product with
respect to any given set of input parameters, they give the possibility to find the optimal
configuration.

It gives rise to numerical methods which aim at solving optimization problem in
engineering. Obviously, even with a numerical model in hand, it is not feasible to try
every set of parameters out in order to identify the best configuration. Indeed, the cost
(in terms of time, money, etc.) of a numerical simulation is not null. Thus, specific
optimization methods have been developed in order to appropriately use the numerical
model to find the optimal configuration. The general idea of numerical optimization
is illustrated in figure 2.2. As of now, we understand that the modeling choices made
during the built of the numerical model are crucial. This work explores new modeling
choices to deal with a very specific optimization problem which is commonly referred to
as structural shape optimization. It consists in finding the optimal shape of a structure
regarding its mechanical behavior.

2.1.2 Current methods for Structural Optimization

The modeling options of a structure are multiple. The most common technique to
analyze an industrial structure is based on Finite Element Modeling [31–34]. But even
in this framework of Finite Element Analysis, a multitude of modeling choices can be
made which lead to different models of a same structure. Thus, several methods exist
to perform structural optimization.

Types of structural optimization The different methods employed in structural opti-
mization are usually categorized into one of the three principal classes, namely material
or sizing optimization, shape optimization, and topology optimization [36]. Figure 2.3
presents several optimization problems solved with the commercial software Tosca [35].
Topology optimization aims at searching the best material distribution within a given
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Sizing Optimization Shape Optimization Topology Optimization

Figure 2.3 – The three most common types of structural optimization problems [35].

domain. It is an interesting method to be used in the conceptual design stage since it
enables to investigate large design configurations [36]. The rise of additive manufactur-
ing gives the opportunity to directly manufacture the final design given by the topol-
ogy optimization process. This leads to final product with stunning shapes and great
mechanical performance [37, 38]. However, in case of more common manufacturing
processes, additional geometric modeling steps are necessary to create a design that can
effectively be manufactured. Sizing optimization comes into play during the detailed
design stage, i.e. when the overall shape of the structure is already known. It deals
with the optimization of internal parameters that does not change the geometry [36].
The most common problems solved by sizing optimization concerns the thickness dis-
tribution of shell structures [39], the cross sections of truss structure [40], or the material
properties of a structure [41]. Shape optimization is in between sizing and topology
optimization and can be performed at every stage of the design chain. The goal is to
optimize the shape of a structure without changing its topology [36].

Obviously, structural optimization methods play a crucial role in the design of aero-
nautic structures [37, 42–48]. Sizing, shape and topology optimization problems are
involved. An example of the design stages for the optimal design of the A380 wing
box ribs are presented in [42, 44] and repeated in figure 2.4. By looking at the design
chain in figure 2.4, one can predict that the overall process can be quite long. Espe-
cially, in this case the topology optimal result is only taken as a conceptual design. It
is reinterpreted as a stiffened structure. This geometric modeling task can hardly be
automatized and requires human intervention. The same step applies after the shape
and sizing optimization where the height of the stiffeners and the thickness distribution
are optimized. Human intervention is needed once again to generate the final geometric
model of the ribs. The modeling choices at each step of the process have great impacts
on the overall time. A close link between the models involved during for example, the
structural analysis, the geometric modeling, the optimization processes, etc. is highly
beneficial. In the study presented in figure 2.4, different software were repeatedly used
(Altair OptiStruct, Altair HyperMesh, and ICAD, see [42] for more information).
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Figure 2.4 – Optimization during design stages of an aircraft component as presented by Krog
et al. [42].

Structural shape optimization In this work we focus on shape optimization meth-
ods. Indeed, these approaches have shown great potential for designing stiffened struc-
tures [4–14]. Shape optimization has also been successfully applied to design specific
aircraft parts as for example pressurized bulkheads [49]. Shape optimization methods
are also intensively used in aircraft design [50].

However, the full potential of shape optimization for structural optimization seems
not to have been yet fully tackled. For instance, if we go back to the optimization
example of the wing box ribs (see figure 2.4 and source document [42]), one can notice
that the shape optimization concerns the height of the stiffeners only. The curvature of
the stiffeners, or the shape of the holes could have been additional features to integrate
into the optimization problem. Krog et al. [42] mention that this was not implemented
due to complexity and time restrictions. Thus, improvements can be done in many
ways and this work seeks to address some remaining difficulties of shape optimization
techniques.

Numerical approaches for the shape optimization of structures are not new and
robust strategies have been presented in the eighties and early nineties [51–56]. These
developments have led to two principal classes of methods: the node-based approaches,
and the CAD-based approaches. The node-based method uses the nodes of an analysis
model (i.e. the finite element mesh) as design parameters. The CAD-based method uses
two models of the same structure: the Computer-Aided Design model that describes
the geometry, and an analysis model to perform the structural analysis. Figure 2.5
presents examples (taken from [36]) of shape optimization problems solved with both
approaches.

The first CAD-based approach has been presented by Imam [51] in order to circum-
vent mesh distortion problems arising when moving independently FEM nodes, and
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Node-based shape optimizationCAD-based shape optimization

Figure 2.5 – Examples of CAD-based and node-based shape optimization as found in [36].

to reduce the number of design variables in comparison to node-based method. Hav-
ing two separated models (one design model and one analysis model) has shown great
benefits [52] and has been preferred over FEM-based methods for a specified time [56].
However, a major drawback of the method has restricted its deployment in design of-
fices. Indeed, it requires a close link between the design model and the analysis model.
To this purpose, very specific program needs to be dedicated [57]. For complex struc-
tures, the link between the geometric model and the finite element mesh is far from
straightforward. Also, the repeated mesh generations during the resolution burdens
this optimization process. Finally, CAD-based approaches are highly sensitive to the
definition of the design model and the design parameters. Thus, more recently, node-
based methods regain interest and efficient methods have been developed [58–61]. In-
terestingly, they reuse similar ingredients as CAD-based methods (for example spline
functions in the sensitivity filtering). According to Bletzinger [36], both methods appear
to merge. This is even more true with the contribution of IsoGeometric Analysis as
shown latter on.

2.2 General Purposes and Motivations for IGA

2.2.1 The need for CAD-CAE integration

IsoGeometric Analysis has been introduced by Hughes et al. [17] in 2005 with a prin-
cipal motivation: unify the fiels of Computer-Aided Design and Finite Element Analysis.
The initial issue being raised during the introduction of IGA concerns the existing gap
between these two disciplines. Following Cottrell et al. [62], the problem emerges from
the fact that FEA and CAD have evolved independently during past decades even if
they are closely linked during engineering designs. Engineering design involves, at one
side, the designer who generates geometric models through CAD file, and at the other
side, the stress analyst who builds the inputs accordingly to a FEA code. However, the
increasing complexity of both geometric and analysis models is beginning to cause some
drawbacks as they are based on different technologies.
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Figure 2.6 – IGA aims at improving engineering design by integrating Design and Analysis into
a single model: designers and engineers can better collaborate.

The translation of the CAD file into the FEA inputs is not straightforward as shown
in figure 2.6(a). It does not only concern the mesh generation but the integration of CAD
and FEA requires an efficient creation of appropriate simulation-specific geometries [62].
In fact, the designer endeavors to represent as faithfully as possible a conceptual ge-
ometry. It means that the generated CAD model usually presents a lot of details as
holes, fillets, and a lot of sub-parts as bearings, etc. Highly detailed CAD models are
rarely exploitable for the simulation since it usually contains irrelevant details as viewed
from the analyst. Thus, additionally to the mesh generation step, a lot of time is spent
to generate analysis-suitable geometries where the initial CAD model is defeatured (see
figure 2.6(a)). For sophisticated engineering systems, things turn out to be very tricky.
Different simulations as for example structural mechanics, fluid dynamics, heat transfer,
and many others, are performed. Each type of analysis has its own particular method,
and thus different models are required for each of them. Figure 2.7 illustrates this point:
for sophisticated engineering systems, for instance here an airplane, there are different
visions of the same product. Thus, it follows that appropriate simulation-specific geome-
tries are needed. For example, the aerodynamicist may focus on the outer geometry
of the aircraft whereas the stress analyst is mainly concerned by the internal structure.
Therefore, there is not an unique CAD model of the airplane but a lot of geometric
models are required depending on the simulation to be performed.

According to Cottrell et al. [62], the translation to analysis-suitable geometries in
addition to the meshing and the input setting for simulation codes, take de facto over 80%
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Stress AnalystAerodynamicistElectrical engineer

Figure 2.7 – Engineering systems: each engineer has its own vision and requirement of the same
product [adapted from: www.ruthmalan.com, artwork by C.W. Miller]

of the overall analysis time. It is clear that a stronger dialog between Computer-Aided
Design and Computer-Aided Engineering is crucial. The engineer should be aware of
what the designer does and vice versa. IGA brings this issue back to the table and has
fostered fruitful discussions regarding a better CAD-CAE integration. As explained in
figure 2.6(b), the goal of IGA can be seen as an attempt to ease the collaboration between
the designers and the engineers by integrating into a single model, efficient geometric
modeling possibilities and accurate simulation capabilities.

After almost 15 years, the initial paper [17] has been cited by more than 8000 research
works and the interest for IGA keeps going up. It proves that it has raised a significant
impact, at least in research. However, one may wonder if we achieve the process de-
picted in figure 2.6(b)? Today, the answer is still no since it does not exist commercial
software that enable a fully integration of Design and Analysis. But things are starting
to move forward in the industry. IGA has started to be integrated to well-known Finite
Element codes as for example LS-DYNA [63] or RADIOSS [64]. However, a key point re-
mains a challenge: no robust preprocessing tools are available yet. The difficulty lies in
some major choices that have been made regarding CAD geometries in the past. We can
list at least two sources of trouble: trimming procedures and Boundary-Representation.
Both procedures have received special attention from the analysis side [65] and are,
among others, not yet fully tackled. The issue of integrating CAD and CAE requires
a lot of effort of researchers from both fields. More than ever, both disciplines need to
work together in order to handle this common goal and defining the future of engineer-
ing design.

2.2.2 A suitable approach for parametric Shape Optimization

So far, we have not given theoretical explanations on how goes an optimization
process. We present all the key ingredients in chapter 3. However, if one is familiar with
numerical simulation and structural analysis, then one can easily suspect the benefit of
combining high quality geometric representation and efficient analysis capabilities into
one single model. Indeed, without providing details yet, shape optimization involves
an iterative process with three principal steps as explained in Bletzinger et al. [66] and
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General Purposes and Motivations for IGA
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geometry
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Figure 2.8 – Main steps of shape optimization (inspired from [66]): difficulties can occur during
the transition from one step to the next when either CAD-based or node-based optimization is
employed.

shown in figure 2.8. Depending on the modeling choices, the transition between these
steps in the design loop can become quite tedious.

In case of the CAD-based optimization, the link between the CAD-model and the
analysis model is not straightforward. A meshing step separates both models. This
creates also drawbacks when exploiting the results from the structural analysis. These
results come from the analysis model and should be transferred back to the design
model which has a different description (FEM/CAD models). In case of node-based
optimization, the difficulties lie in the treatments of the large number of design param-
eters. Indeed, the number of nodes of a FEM mesh can be significant. Thus, adequate
mathematical strategies should be put in place in order to process all the data. Special
care is needed to exploit the results coming from the FEA such that appropriate shape
updates are imposed.

That is why IGA seems to be a great framework to perform shape optimization of
structures. Wall et al. [67] were the first to show the benefit of IGA for this purpose.
It has been followed by an increasing number of papers dealing with IGA-based shape
optimization [18, 67–82]. It concerns not only structural shape optimization but also
other fields as heat conduction [83], electromagnetics [84, 85], fluid mechanics [86], and
many other optimization problems. A general procedure, which has been improved over
the years, is commonly adopted [87, 88]. But before we can highlight the potential of
IGA for shape optimization, we need to introduce key theoretical ingredients regarding
this new analysis methodology.
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2.3 Geometric Modeling

IGA as introduced by Hughes et al. [17] relies on NURBS modeling. The principal
idea is to perform the analysis directly on a model that has been generated using tra-
ditional CAD modeling tools. NURBS is the acronym for Non-Uniform Rational Basis
Spline which is a powerful tool used in computer graphics for generating and represent-
ing curves and surfaces. In this section, we give key element regarding this geometric
modeling technique, as it composes the basis of the presented strategy.

2.3.1 Parametric representation of complex geometries

NURBS, and spline functions in general, are parametric functions. Describing a
curve in the parametric form consists in expressing each coordinates of a point on the
curve separately as an explicit function of an independent parameter [89]:

C(u) =
(
x(u), y(u)

)
∀u ∈ U , (2.1)

where U defines the space of variation of the parameter u. It is often the normalized
interval [0, 1].

x

y

θ

a circle

a line

x

y

b x0 R

Figure 2.9 – Two simple planar curves.

Parametric description of simple curves as the line or the circle depicted in figure 2.9
can be done. For example, the line is defined as:

x(u) = u and y(u) = − b
x0

u + b. (2.2)

The parameter u takes any real value to represent the complete line or is bounded to
represent a segment of the line. Similarly, the curve of the circle can be parametrized as
follows:

x(θ) = R cos θ and y(θ) = R sin θ ∀θ ∈ [0, 2π]. (2.3)
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a sphere
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Re

Ri

H

a hollow cylinder

Figure 2.10 – Two simple geometric objects.

The parametrization is not unique and parametric forms are not the only way of
representing curves. Implicit equations are also a common method to describe curves.
For instance, the circle of radius R and centered at the origin can be described by the
equation:

x2 + y2 − R2 = 0. (2.4)

Both techniques have different advantages. The parametric form gives an easy way to
compute a point on a curve. On the other hand with the implicit form it is easy to
determine if a given point is on the curve or not.

We have presented the case of a curve lying in the xy plane but it can be extended to
three dimensional cases and also surfaces and volumes. There exist typical examples as
those represented in figure 2.10. For instance, the unit sphere can be parametrized as:

S(θ, ϕ) =
(
x(θ, ϕ), y(θ, ϕ), z(θ, ϕ)

)
, (2.5)

with

x(θ, ϕ) = sin θ cos ϕ

y(θ, ϕ) = sin θ sin ϕ ∀θ ∈ [0, π], ∀ϕ ∈ [0, 2π].

z(θ, ϕ) = cos θ

(2.6)

Two parameters are needed to describe a surface (θ and ϕ for the sphere). For describ-
ing a volume, three parameters are required. For example, the hollow cylinder from
figure 2.10 is described by:

V (r, θ, h) =
(

x(r, θ, h), y(r, θ, h), z(r, θ, h)
)
, (2.7)

with

x(r, θ, h) = r cos θ

y(r, θ, h) = r sin θ ∀r ∈ [Ri, Re], ∀θ ∈ [0, 2π], ∀h ∈ [−H/2, H/2].

z(r, θ, h) = h

(2.8)
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Figure 2.11 – A quadratic B-Spline curve on U = {0, 0, 0, 1
8 , 2

8 , . . . , 7
8 , 1, 1, 1}.
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Figure 2.12 – A quadratic B-Spline curve on a non-uniform knot vector. The initial knot u4 = 4
8

used in figure 2.11 has been changed by u4 = 9
20 (the dotted lines repeat the uniform case).

2.3.2 B-Spline and NURBS modeling

B-Spline curves One possibility to describe complex curves is the use of piecewise
polynomial curves. A popular technique is the use of B-Spline curves [89, 90]. It ex-
presses a curve in the parametric form as:

C(u) =
n

∑
i=1

Np
i (u)Pi u ∈ [a, b] (2.9)

where Pi is the control point associated to the pth-degree B-Spline basis function Np
i .

The n B-Spline basis functions are piecewise polynomials. Their expression is obtained
by specifying a knot vector U and the degree p. Thus, three inputs is required to define
B-Spline curve: the degree, the knot vector, and the control points.

The degree p takes an integer value and defines the degree of the basis functions.
The knot vector U = {u1, . . . , un+p+1} is a non-decreasing sequence of n + p + 1 real
numbers (i.e. the knots). For non-periodic curve, the first p + 1 knots are identical and
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equal to the parameter lower bound a, and the last p + 1 knots are identical and equal
to the parameter upper bound b. It leads to knot vectors of the form:

U =
{

a, . . . , a︸ ︷︷ ︸
p+1

, up+2, . . . , un, b, . . . , b︸ ︷︷ ︸
p+1

}
, (2.10)

where the interior knots verify the conditions ui ≤ ui+1 and a < ui < b.
Figure 2.11 presents a first example of a B-Spline curve. We depict both the B-Spline

basis functions and the curve. The curve is quadratic and the knot vector was chosen as:

U = {0, 0, 0, 1
8 , 2

8 , 3
8 , 4

8 , 5
8 , 6

8 , 7
8 , 1, 1, 1}. (2.11)

This knot vector is defined as uniform because all interior knots are equally spaced. The
influence of the knot vector is shown in figure 2.12. We only change one knot of the
vector such that:

U = {0, 0, 0, 1
8 , 2

8 , 3
8 , 9

20 , 5
8 , 6

8 , 7
8 , 1, 1, 1}. (2.12)

This knot vector is defined as non-uniform because the interior knots are not equally
spaced.

B-Spline basis functions So far, we did not mention how are formulated the B-Spline
basis functions involved in equation (2.9) and already depicted in figures 2.11 and 2.12.

u0.

1.

0. 1.0.15 0.5 0.75

linear

u0.

1.

0. 1.0.15 0.5 0.75

quadratic

u0.

1.

0. 1.0.15 0.5 0.75

cubic

u0.

1.

0. 1.0.15 0.5 0.75

quartic

Figure 2.13 – Examples of B-Spline basis functions of different degree. Same interior knots were
used (0.15, 0.50, and 0.75).
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Figure 2.14 – Differentiability of cubic basis functions in case of uniform knot vector (left), and
in case of double knots (right).

There exist different ways to define them [89]. We call on the recurrence formula:

N0
i (u) =

{
1 if ui ≤ u < ui+1

0 otherwise
,

Np
i (u) =

u− ui

ui+p − ui
Np−1

i (u) +
ui+p+1 − u

ui+p+1 − ui+1
Np−1

i+1 (u).

(2.13)

This recurrence formula is often known as the Cox-de Boor formula with reference to
the inventors (C. de Boor and M.G. Cox, see [89] for more information). The initial
functions N0

i are step functions. The function Np
i is expressed as a linear combination

of two (p− 1)-degree basis functions.
We display several examples of B-Spline basis functions in figure 2.13. One can

observed the influence of the degree. Many properties of these B-Spline basis functions
are given in dedicated works [89, 91, 92]. In particular, let us mention the differentiability
properties of the B-Spline basis functions. All derivatives of Np

i exist in the interior of a
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knot span. At a knot uj, Np
i is p− k times continuously differentiable, where k denotes

the multiplicity of the knot [89]. Figure 2.14 highlights this point: the second derivatives
of the cubic basis functions are discontinuous at the double knot. One existing way to
compute the kth derivatives is given by:

dk

duk

(
Np

i

)
=

p
ui+p − ui

dk−1

duk−1

(
Np−1

i

)
− p

ui+p+1 − ui+1

dk−1

duk−1

(
Np−1

i+1

)
. (2.14)

Again, we refer to Piegl et al. [89] regarding theoretical and implementation aspects.
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Figure 2.15 – An example of a NURBS curve: influence of the weights on the basis functions and
on the final curve with comparison to the B-Spline case.

NURBS curves Non-Uniform Rational B-Spline curves are very similar to B-Spline
curves and can be seen as generalized B-Splines. A NURBS curve takes the same form
than a B-Spline curve. Instead of equation (2.9), we now have:

C(u) =
n

∑
i=1

Rp
i (u)Pi u ∈ [a, b] (2.15)

where the Rp
i are piecewise rational basis functions. These NURBS basis functions are

expressed by adding weights to the B-Spline basis functions:

Rp
i (u) =

Np
i (u)wi

W(u)
with W(u) =

n

∑
j=1

Np
j (u)wj. (2.16)
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Figure 2.16 – Example of bivariate B-Spline basis functions. The lower continuity at repeated
knots of the univariate basis functions propagates along the knot lines due to the tensor product.

Thus, a NURBS curve takes the same inputs than a B-Spline curve, i.e. a degree p, a knot
vector U, and control points Pi, plus an additional set of n weights wi (one per control
point). Taking all the weights equal to one reverts to a B-Spline.

The weights give more shape control to the designer. In fact, by changing their
values, the curve is modified as shown in figure 2.15. It also enables to represent exactly
conic sections as circles or ellipses.

Surfaces and Volumes B-Spline and NURBS are not restricted to parametric curves.
Surfaces and volumes can also been described in the parametric form by using these
functions. The construction principle is identical to curves. In particular, a B-Spline
surface is a bivariate function of the form:

S(u, v) =
nu

∑
i=1

nv

∑
j=1

Npq
ij (u, v)Pij. (2.17)

The bivariate B-Spline basis functions Npq
ij take degree p in the u-direction and degree q

in the v-direction. They are obtained by the tensor product of univariate B-Splines:

Npq
ij (u, v) = Np

i (u)Mq
j (v). (2.18)

The basis functions Np
i (u) and Mq

j (v) are B-Spline basis functions of degree p and q,
respectively. They correspond to two different knot vectors U and V of size nu + p +
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free form surface

u

v
control points

Figure 2.17 – Example of free-form surface described with a cubic B-Spline surface.

1 and nv + q + 1, respectively. Examples of 2D B-Spline basis functions are given in
figure 2.16. One can observe that the lower continuity due to double knot leads to a
complete C0-line of the bivariate basis function. This is due to the tensor product nature
of B-Spline surfaces. Finally, in order to build of B-Spline surface, one should define
two degrees, two knots vectors, and nu × nv control points. An example of a B-Spline
surface is shown in figure 2.17.

The construction of a NURBS surface requires the additional definition of weights.
As for the NURBS curve, one weight per control points is set. More specifically, a
NURBS surface reads as:

S(u, v) =
nu

∑
i=1

nv

∑
j=1

Rpq
ij (u, v)Pij, (2.19)

where the bivariate piecewise rational basis functions Rpq
ij are given by:

Rpq
ij (u, v) =

Npq
ij (u, v)wij

W(u, v)
with W(u, v) =

nu

∑
k=1

nv

∑
l=1

Npq
kl (u, v)wkl . (2.20)

The same tensor product operation is involved for NURBS surfaces. As for NURBS
curves, the weights give more shape control on the surface and allow to describe exactly,
for example cylinders and spheres.

Finally, let us introduce the case of parametric volumes. These are trivariate functions
obtained with an additional tensor product. A NURBS volume can be expressed as
follows:

V (u, v, w) =
nu

∑
i=1

nv

∑
j=1

nw

∑
k=1

Rpqr
ijl (u, v, w)Pijk, (2.21)

where the trivariate piecewise rational basis functions Rpqr
ijl are given by:

Rpqr
ijk (u, v, w) =

Npqr
ijk (u, v, w)wijk

W(u, v, w)
with W(u, v, w) =

nu

∑
i=1

nv

∑
j=1

nw

∑
k=1

Npqr
ijk (u, v, w)wijk.

(2.22)
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Figure 2.18 – Example of a hollow cylinder described with a quadratic NURBS volume.

The trivariate piecewise polynomial basis functions are the generalizations of those for
B-Spline surfaces (equation 2.18). Thus, a volume is equipped with three knot vectors
for each u-, v-, and w-direction. Figure 2.18 depicts the case of a hollow cylinder. Thanks
to the weights, the circular part can be exactly represented.

2.3.3 Design features and shape parametrization

B-Spline and NURBS are interesting tools for geometric modeling because they offer
great flexibility in terms of shape control. Thus, a lot of CAD software are based on
these technologies. We will benefit of some of their interesting properties in this work,
especially the refinement strategies and the shape manipulation.

Refinement In fact, B-Spline and NURBS can be enriched while leaving the underlying
geometry intact. There are different refinement possibilities. The first possibility consists
in inserting new knots in the knot vectors. This process is called knot insertion. More
precisely, let us take the case of a p-degree B-Spline curve on U = {u1, · · · , un+p+1} with
n control points Pi. The knot insertion consists in adding m new knots ū1, . . . , ūm in the
knot vector (interior knots). The new refined version of the B-Spline curve takes the same
degree p but is built on the new knot vector which concatenate the initial knots ui with
the inserted ones ūj (in ascending order). The new knot vector Ū counts n + m + p + 1
knots. Thus, no computation step is required regarding the construction of the new
(refined) basis functions. The only calculation step concerns the control points. We need
to compute the coordinates of the n + m control points denoted here P̄i. Interestingly, it
takes the form of a linear application:

P̄ = RpP (2.23)

where Rp is matrix of size (m + n)× n, and the control points are stored in agreement:
P = (P1, · · · ,Pn)T and P̄ = (P̄1, · · · , P̄n+m)T. The refinement matrix is sparse and is
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Figure 2.19 – Refinement procedures apply to a B-Spline curve.

obtained recursively [62]:

R0
ij =

{
1 if uj ≤ ūi < uj+1

0 otherwise
,

Rq+1
ij =

ūi+q − uj

uj+q − uj
Rq

ij +
uj+q+1 − ūi+q

uj+q+1 − uj+1
Rq

ij+1, q = 0, 1, . . . , p− 1.

(2.24)

An example of refinement trough knot insertion is presented in figure 2.19. One can
see the changes in the basis functions and in the control points while leaving the initial
geometry intact.

The other refinement possibility is to elevate the degree of the B-Spline. The poly-
nomial degree of the basis functions is raised. In order to preserve the same level of
continuity at the knots, the multiplicity of each knot value is increased as much as the
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degree. Let us take the example from figure 2.19. The initial knot vector U and the
refined knot vector Ū are:

U = {0, 0, 0, 0.25, 0.50, 0.75, 1, 1, 1}
Ū = {0, 0, 0, 0, 0, 0.25, 0.25, 0.25, 0.50, 0.50, 0.50, 0.75, 0.75, 0.75, 1, 1, 1, 1, 1}

(2.25)

At the knot location, the continuity of the refined curve is still one: p−m = 4− 3 = 1
(m is the multiplicity of the interior knots). The computation of the new control points
can be perform in three steps [89]:

1. subdivide the curve into many Bézier curves by using the knot insertion algorithm,
2. elevate the degree on each of these segments,
3. remove exceeding knots to combine the Bézier curves into one B-Spline curve.

Steps 1 and 3 are done using the knot insertion procedure. The formula for the degree
elevation of Bézier curve can be found for example in Piegl et al. [89]. It is possible to
elevate the degree for p to p + t in one step:

Qt
i =

min (p,i)

∑
j=max (0,i−t)

(
p
j

)(
t

i− j

)
(

p + t
i

) Qj i = 0, . . . , p + t (2.26)

where Qi and Qt
i are the control points of the initial Bézier curve of degree p and of

the new Bézier curve of degree p + t (numbering starts at zero here). The interesting
point to notice is that the degree elevation procedure takes also the form of a linear
application. A refinement matrix can be built to express the new control points of the
degree-elevated B-Spline in relation to the initial ones [93]:

P̄ =
[
SrTtRi

]
P, (2.27)

where Ri is the matrix that decomposes the curve in multiple Bézier curves, Tt is the
matrix that elevate the degree of the Bézier curves, and Sr is the matrix that recompose
the B-Spline from the multiple Bézier curves. Matrix Sr can be seen as a lest-squares
inverse of an operator used for knot insertion.

The refinement procedures (knot insertion and degree elevation) can be combined
which offers great flexibility regarding the parametrization of the B-Spline curve. In this
case, degree elevation is performed first, and then the new knot values are inserted. It
leads to a curve with higher continuity level at these new knots, this the so-called k-
refinement [62]. Finally, we will denote by R the refinement matrix throughout the rest
of this document independently of the refinement procedure. Let us also mention that
same refinement operators can be used for NURBS curve by using the homogeneous
coordinates:

P̄w = RPw, (2.28)
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Intial curve Modification 1

Modification 2 Modification 3

Figure 2.20 – Example of shape modification by altering the spatial location of the control points.

where Pw has one more column than P: considering Pi = (xi, yi, zi) with associated
weight wi, then P w

i = (xiwi, yiwi, ziwi, wi). The refinement strategy can also be extended
to surfaces and volumes: the refinement is performed direction per direction.

Geometric modification B-Spline and NURBS give to the designer great flexibility over
the shape. We have already observed the influence of the knot values and the influence
of the weights. The designer can also operate shape changes by modifying the coor-
dinates of the control points as shown in figure 2.20. This possibility will be of great
interest for performing shape optimization. In the framework of isogeometric shape
optimization, the shape modifications can be imposed by altering the spatial location of
the control points, and in some case the weights.

2.4 NURBS-based Finite Element Analysis

2.4.1 Isogeometric Principle

General idea The idea behind isogeometric analysis is to use the spline-based parametriza-
tion to build approximation spaces when applying the Galerkin’s method [17, 62]. Here
we restrict ourselves to NURBS-based models. Thus, the solution space is defined as all
linear combinations of a given set of NURBS basis functions. This is finally the major
difference with the classical Finite Element Method from the analysis point of view. IGA
relies on same weak formulations than the standard FEM. The isoparametric NURBS ba-
sis turns these weak statements into a system of algebraic equations. In linear elasticity,
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it means that the displacement field is approximated as:

uh =
n

∑
A=1

RAuA, (2.29)

where the RA are the NURBS basis functions originated from the geometric model of
the structure. With this approximation solution space in hand, the Principle of Virtual
Work takes the form of the well-known linear system:

Ku = F , (2.30)

where K is the so-called stiffness matrix, u is the displacement vectors (vector of Degrees
Of Freedom), and F is the force vector. We do not go into the details here regarding
their expressions. Theoretical developments are presented in the next chapters with a
focus on shell analysis. This little introduction merely aims at linking IGA with the
standard method for structural analysis (i.e. FEM).

Performance IGA has shown great performance in term of computational results mak-
ing IGA often seen as a high-performance computational method. Many researchers
working in computational mechanics have been interested in this new technology. IGA
has been successfully applied to numerous mechanical problems. One can give a non-
exhaustive list of applications: shell analysis [94–96], contact problems [64, 97], fluid-
structure interaction [98, 99], shape optimization problems [18, 67, 71], material with
non-linear behaviors [100–102], fluid dynamics [103, 104], structural vibration [105, 106],
etc. Even more, IGA has even outperformed classical FEA in specific fields as for ex-
ample in the simulation of aortic valve closure where significant reduction of the anal-
ysis time was obtained [107]. It has been observed that the computational geometry
technologies (spline functions) used in IGA framework have great mathematical prop-
erties for numerical simulation. These smooth high-order functions enable to handle se-
vere mesh deformations that occur during non-linear simulations [108]. It also leads to
greater accuracy (per Degree Of Freedom) in comparison to standard approaches [109].

2.4.2 Multi-level approach for Shape Optimization

The framework of this study draws on research dealing with isogeometric shape
optimization. A general procedure, which as been improved over the years is commonly
adopted [87, 88].

Figure 2.21 describes the main steps of the optimization process. It gets an initial
CAD model as a main input. CAD model has here to be understood as an analysis suit-
able NURBS geometry. As an output the optimal shape is given and, an interesting point
to notice is that this shape is a NURBS geometry too. Therefore, the result is directly
usable by designers and, thus, for production. There is no need to re-design the final
geometry in a CAD environment as it would be the case with FE-based optimization.
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Figure 2.21 – Isogeometric shape optimization flowchart: overview of the main steps.

The optimal NURBS geometry is obtained from an iterative process with three main
steps. Each iteration consists in:

1. updating the current shape in a better one by altering the spatial location of the
control points and in some case the weights,

2. running the analysis for this new geometry and then inferring mechanical and/or
geometrical properties of interest,

3. computing new design variations to further improve the structure.

A major asset of isogeometric shape optimization is the possibility to properly choose
both optimization and analysis spaces [68–72, 75, 84]. A fine NURBS discretization is
introduced as the analysis model in order to ensure good quality computations. Con-
versely, the optimization model is defined to impose suitable shape variations. Both
spaces describe the exact same geometry and are initially obtained through different
refinement levels of the CAD model as shown in figure 2.22.

It is clear that, the finer the analysis model, the better the results. The choice of the
refinement level used for the analysis model is principally dictated by the need for real-
istic computational cost. When it comes to the optimization model, the situation is quite
different. In this case, the choice of the refinement level has an impact on the complex-
ity of the optimal shape reached. A coarse optimization model may provide a simpler
optimal shape than a fine optimization model. Therefore, few questions can be asked
in order to accurately define the refinement levels for the analysis and optimization
models:
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Initial CAD Model Optimization Model Analysis Model

Refinement

Figure 2.22 – Multilevel design approach: optimization and analysis spaces describe the exact
same geometry and initially obtained through different refinement levels.

— How different from the initial geometry the optimal shape is allowed to be ?

— Depending on the intended level of shape variation complexity, how fine should
the analysis model be to ensure reliable results ?

These points are illustrated and discussed in more details in all the following examples
of this work.
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Chapter 3

Isogeometric Shape Optimization of
Shell Structures

Designing structural parts against the material limits, the impact of loads, and many
other constraints, is of standard interest in engineering. However, improving the

design of a structure can be long and drawn out, especially when a clear understanding of
cause-effect relationships is missing. Finding the best possible design, namely the optimal
design, is a complex discipline that combines mathematics and mechanics. This chapter
deals with this issue: it gives theoretical insights on structural shape optimization with
application to shell design. The principal goal is to study and highlight the benefit of IGA
for this particular issue.
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3 Isogeometric Shape Optimization of Shell Structures

3.1 Optimization Problems

3.1.1 Mathematical Formulation

The mathematical formulation of an optimization problem involves different quan-
tities. Firstly, we need to quantify the performance of the studied system. For instance,
in case of design optimization, we require a quantity that tell us what is the best design
between several possibilities. This quantity is called the objective and takes in practice
the form of a scalar function denoted here f . The objective is usually formulated such
that the best solution is the one which returns the smallest value assessed by function f .
At this point, we understand that the selection of the objective is a crucial point. In fact,
it will drive all the decisions made during the design process. The choice of a good
objective is not a simple task regarding complex real-world problems. The objective
depends on several characteristics of the system, called variables or unknowns. Once
again, in the specific case of design optimization, we need to set design parameters that
enable to vary the geometry of the structure. We designate these parameters as design
variables and we represent them as a vector of unknowns x. In this work, we only con-
sider the case of continuum variables. Finally, we need to describe the space in which
we are searching the optimal solution. This space is delimited through a combination of
restrictions called the constraints ci. These constraints act on the variables x and define
the domain where they live in. Mathematically, the constraints are defined as scalar
functions of x, and commonly takes the form of implicit equations or inequalities. With
these notations in hand, an optimization problem can be formulated as follows:

minimize f (x)

w. r. t. x ∈ Rn

subjected to ci(x) = 0, ∀i ∈ E
ci(x) ≤ 0, ∀i ∈ I

(3.1)

where E and I are set of indices for equality and inequality constraints, respectively.
Such a definition of an optimization problem can appear restrictive, but in fact it

offers great possibilities. Indeed, we can imagine an infinity of optimization problems
that can be written in the presented form. In the particular context of design optimiza-
tion of structures, a multitude of choices can be made for defining both the objective,
the design variables, and the constraints. The definition of these quantities ought to be
done by the designer: this is the modeling step.

Structural Optimization Let us describe the most common modeling choices in case of
structural optimization. A classification exists as discussed in the previous chapter (see
section 2.1). The differences between sizing, shape, and topology optimization reflect
in the definition of the design variables [110]. Figure 3.1 highlights this classification
and depicts what could be the design variables for each type of structural optimization

48

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI092/these.pdf 
      © [T. Hirschler], [2019], INSA de Lyon, tous droits réservés



Optimization Problems

geometric parameters
2. Shape Optimization

material distribution in Ω bounds ∂Ω
3. Topology Optimization

1. Sizing Optimization
cross section (height, width)

Goal: best design of a cantilever beam

Figure 3.1 – Type of optimization

problems for a simple case of cantilever beam. We can give a non-exhaustive list of
typical design variables associated to each category of optimization problems:

— material and sizing optimization
fiber angles or number of plies in a composite material, cross section of a beam
(area, moment of inertia), thickness of a plate,

— shape optimization
geometry variables such as nodal coordinates of a finite element mesh, control
point coordinates of a spline, CAD dimensions (length, width, radius),

— topology optimization
material distribution in a design space.

The boundary between all these categories is however not distinct as mentioned by Blet-
zinger [36]. For example, the method called SIMP (Solid Isotropic Material with Pe-
nalization) which deals with topology optimization consists in modifying the Young’s
modulus of each finite element (low value is associated to void and high value expresses
the presence of material). In this case, the design variables are similar to those involved
in material optimization or sizing optimization. Choosing the type of the design vari-
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3 Isogeometric Shape Optimization of Shell Structures

ables usually depends on the stage of product development. According to Bletzinger
[36], topology optimization is mainly used during the conceptual stage. Shape opti-
mization comes into play in preliminary design and in the detailed design. Sizing is
mainly used in the detailed design stage.

As for the design variables, there are also typical response functions that are com-
monly involved in structural optimization problems. We can list some of them:

— linear compliance,
— eigenfrequency,
— stress,
— mass,
— linear buckling,
— displacement at a specific location.

These response functions are chosen as the objective or the constraints in the prob-
lem (3.1). The choice of a response function is independent of the choice of the design
variables. Thus, same response function can be used, for instance, during a sizing
optimization and a shape optimization. Interested readers can refer to [111] for gen-
eral contents regarding structural optimization. More specialized works exist as for
instance [112] for composite material, and [113, 114] for topology optimization, etc.

3.1.2 Gradient-based Algorithm

There exists a wide number of algorithms that enable to solve the constraint opti-
mization problem (3.1). They share one similarity: each algorithm tends to find the
solution in an iterative way. Starting with an initial guess x0, the variables are modified
iteratively in order to reduce the value of the objective function, and also in order to
verify the constraints (which can induce the increase of the objective function). After a
certain number of iterations, the algorithm hopefully stops because the solution x∗ has
be founded.

Global and Local optimization A question is how to determine whether a given set
of variables x∗ is the solution of the optimization problem (3.1) or not. Firstly, let us
consider the case of an unconstrained problem (i.e. E ∪ I = ∅). In this case, one
can qualify x∗ as the global minimizer if the following relation holds (definition taken
from Nocedal et al. [115]):

f (x∗) ≤ f (x) for all x. (3.2)

Of course, this definition cannot be used in practice to identify an optimum since it is
not possible to evaluate the objective function for an infinite set of variables.

Thus, we require other criteria to identify the minimum. Fortunately, one can formu-
late necessary and sufficient conditions satisfied by the minimizer. Particularly, in case
of a smooth objective function (i.e. continuously differentiable function), a necessary
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Figure 3.2 – Recognizing a minimizer of a smooth function: (a) the first derivative equals to zero
at the global minimum, but this condition is not sufficient to identify the global minimizer as
highlight in cases (b) and (c).

condition to fulfill is:

∇ f (x∗) = 0. (3.3)

This equation is often called the First-Order Necessary Condition because it involves the
first derivatives. It is however not sufficient to identify x∗ as the global minimizer of
function f as described in figure 3.2. The points for which the equation (3.3) holds
are named as stationary points. In order to fully recognize a minimizer, one need to
look at the Hessian ∇2 f . Under the consideration that the Hessian is continuous, a
minimizer x∗ of function f can be recognize if the following condition is satisfied:

∇ f (x∗) = 0, and ∇2 f (x∗) is positive definite. (3.4)

It is the Second-Order Sufficient Condition and one can find the associated proof in, for
example, the book of Nocedal et al. [115]. However, we cannot conclude that a given
point x∗ which verifies the sufficient condition 3.4 is the global minimizer of our func-
tion f . In fact, in case of a non-convex function as the one depicted in figure 3.2(c),
there might exist multiple local minimums where this condition holds. Recognizing
and locating a global minimizer turns out to be very difficult in practice, especially
for large and complex engineering problems where the objective function is inevitably
non-convex. Many algorithms for nonlinear optimization problems enable to find local
solutions only. A local solution is the best solution in a neighborhood of feasible points.
Although most of the time local solutions are founded, these solutions highly improve
in many times the initial configuration.

Before describing the algorithms, let us mention that equivalent conditions to (3.3)
and (3.4) are available in case of constrained optimization problems. If x∗ denotes a local
solution of the constrained problem (3.1), then there is a Lagrange multiplier vector λ∗

51

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI092/these.pdf 
      © [T. Hirschler], [2019], INSA de Lyon, tous droits réservés
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such that:

∇xL(x∗, λ∗) = 0, (3.5a)

ci(x∗) = 0, ∀i ∈ E , (3.5b)

ci(x∗) ≤ 0, ∀i ∈ I , (3.5c)

λ∗i ≥ 0, ∀i ∈ I , (3.5d)

λ∗i ci(x∗) = 0, ∀i ∈ E ∪ I , (3.5e)

where the Lagrangian function denoted L is defined as:

L(x, λ) = f (x)− ∑
i∈E∪I

λici(x).

The necessary conditions (3.5) for an optimum is usually called the Karush–Kuhn–Tucker
conditions. Equivalently to the sufficient condition given in the specific case of uncon-
strained problem, e.g. equation (3.4), one can formulate sufficient condition verified
by a local solution to problem (3.1). Additionally to the KKT conditions, the Hes-
sian ∇2

xxL(x∗, λ∗) should be positive definite in the tangent space of the active con-
straints (sometimes called the critical cone). Interested readers can refer to Nocedal et
al. [115], for example.

We stop here giving details regarding the theory of optimization problems. We
give here the main results only. We mention these points because they underlie the
construction of optimization algorithms.

Optimization algorithms There exists a large number of algorithms that enable to
solve optimization problems of the form (3.1). Each algorithm is usually designed into
a specific framework. It means that there is not a single generic algorithm, but instead
there exists a large number of algorithms that are more or less efficient for specific classes
of optimization problems. We can distinguish different classes of problems depending
on the presence of constraints or not, the number of variables (small or large), the con-
vexity and the smoothness (linear, highly non-linear, continuity, differentiability) of the
objective function and constraints, etc. A good algorithm should however work well on
a wide variety of problems. Its efficiency is measured in view of the required computa-
tional resources (time and storage). A good algorithm should converge fast with a low
storage usage. It should also give the solution with precision and this without being too
sensitive to arithmetic rounding errors [115].

As a consequence, another additional task to the modeling step (formulation of
the optimization problem) consists in choosing the appropriate optimization algorithm.
This task is far from trivial. In case of structural shape optimization, gradient-based al-
gorithms are mainly used. One principal reason for this, is that the commonly adopted
functions (objective and constraints as mentioned previously in section 3.1.1) are usually
differentiable w.r.t. the design variables. Thus, gradients can be computed (we will see
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how later on). For large problem with hundred to thousand design variables, the use
of gradients is quasi-inevitable to build an algorithm that converges in an acceptable
amount of time. The information brought back by the gradients enables the algorithm
to make suitable decisions during the resolution. For large scale problems, gradient-free
algorithm may require much more evaluation of the objective and constraint functions
which drastically increase the overall computational time.

Without going into detail, let us mention the two fundamental strategies used by op-
timization algorithms: the line search strategy, and the trust-region. These two strategies
enable to solve unconstrained optimization problems. They aim at updating the current
iterate xk into a better one xk+1, as follows:

— line search

— the algorithm computes firstly a direction pk,

— it searches along this direction to find a new iterate which improves the solu-
tion: this give a scalar αk named the step length,

— then the variables are updated, i.e. xk+1 = xk + αk pk.

— trust-region

— the algorithm builds a model mk that approximates the problem near the
current point xk,

— it computes the minimizer of mk in a region close to xk, i.e. the trust region,

— if the solution of the approximate sub-problem improves sufficiently the so-
lution, it is used as the new iterate.

Furthermore, a close link between both strategies can be found (see again Nocedal et
al. [115]). In fact, the model mk used in trust-region is usually a quadratic function
involving the function gradient and an approximation of the Hessian Bk:

mk(xk + p) = f (xk) + pT∇ f (xk) +
1
2

pTBk p. (3.6)

For example, if the matrix Bk is set to zero, then minimizing the approximation (3.6)
in the trust-region gives a steepest descent step in which the step length correspond to
the trust-region radius [115]. Finally, let us mention the case of quasi-Newton methods
where the Hessian matrix is approximated trough the gradient variations during the
resolution. These methods are appealing because the Hessian is not directly computed,
which is particularly demanding in case of structural optimization. A popular method
is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) Hessian update strategy.

Algorithms for non-linear constrained optimization problem add other ingredients
in order to handle the inequality and equality constraints. We can list three main cate-
gories of algorithms:

— Penalty and Augmented Lagrangian methods
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3 Isogeometric Shape Optimization of Shell Structures

— Sequential Quadratic Programming
— Interior-Point methods

In the first category, the original constrained problem is replaced by a sequence of un-
constrained problems where terms are added to the objective function. SQP methods
generates iteratively quadratic programming sub-problems to be solved. Interior-Point
methods provide efficient algorithm to solve large-scale constrained optimization prob-
lems. These approaches use barrier functions to reformulate the optimization problems
as barrier problems. More information on optimization gradient-based algorithm from
both theoretical and practical sides can be found in Nocedal et al. [115].

Nowadays, robust implementations of optimization algorithms are provided in sci-
entific computing libraries. For instance, the optimization module of the python open
source package scipy offers a large choice of algorithms [116]. In this work, we do
not develop a specific optimization algorithm, even it could be of great interest. For
example, Nagy et al. [71, 117] introduce an efficient algorithm for sizing and shape
optimization in the IGA framework. Instead, in this work, we use the SQP algorithm
from Kraft [118] which is available in several python packages as for instance scipy [116]
or NLopt [119]. More specifically, the algorithm is denoted SLSQP in the aforementioned
packages, which stands for Sequential Least-Squares Quadratic Programming.

3.1.3 Methods for Sensitivity Analysis

When gradient-based optimization algorithm is used, a crucial issue is therefore the
computation of the gradients. This step is commonly named as sensitivity analysis where
the goal is to study the effect of an input variation on the quantities of interest (the
output). Once again, there are different possibilities with different levels of accuracy
and numerical cost (computational and implementation). Thus, the different options for
sensitivities can either be [120]:

— Discrete or Variational,
— Direct or Adjoint,
— Analytical or Approximate.

A review of these options for structural design sensitivities can found in Keulen et al.
[120]. They highlight the differences in the framework of linear static analysis. The dif-
ference between discrete derivatives and variational derivatives lies in the discretization
step. Continuum derivatives are obtained by differentiating firstly the continuum equa-
tions that governed the structural behavior. Then a discretization step enables to solve
the resulting sensitivity continuum equations which finally gives the sensitivities. The
discrete sensitivities are obtained by differentiating the discrete governing equation ver-
sus the design variables. Thus, the discretization step occurs in this case before the dif-
ferentiation. In the context of IGA-based shape optimization, Fußeder et al. [75] tackles
this issue by comparing these two schemes: optimize first–discretize then and, reversely,
discretize first–optimize then. Equivalence between these possibilities can be shown in
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several cases [75]. The notion of adjoint or direct sensitivities concerns both variational
and discrete derivatives. Adjoint sensitivity analysis is numerically more efficient if the
number of response functions involved in the optimization problem (objective and con-
straints) is lower than the number of design variables. In structural optimization, many
problems are self-adjoint [36], which means the adjoint sensitivities do not involve addi-
tional equations to be solved. Therefore adjoint sensitivities constitute a natural choice
in this case and the notion of adjoint or direct sensitivities is set aside. Finally, approx-
imation steps can be introduced during the sensitivity analysis in order to avoid, for
example, complex and long formulas which are tedious to implement without any mis-
takes. More specifically, the so-called semi-analytical discrete sensitivities are largely
used in structural analysis codes because they require very little programming effort
and almost no element-dependent sensitivity routines [36, 120].

Let us now give mathematical expression of some of these sensitivities in the context
of linear static analysis. We focus here on discrete sensitivities. In this context, we have
the discrete governing equations that takes the well-known form of a linear system of
equation:

K(x)u = F (x), (3.7)

where the stiffness matrix K and the load vector F are formulated through domain
integrals. It means that their expressions depend on the design variables x, and therefore
the displacement DOFs u does also. Classical structural responses can generally be
written explicitly in terms of the design variables and the state variables u:

f = f (x,u(x)). (3.8)

As an example, one can take the case of the compliance which can be written in the
discrete form as:

fcpl =
1
2
F (x) · u(x). (3.9)

Global Finite Difference A simple way to perform the sensitivity analysis consists in
perturbing each design variables with a small variation and evaluate the response of the
structure for each of these perturbations. The use of Finite Difference formula enables
then to obtain the derivatives. The most popular remains the forward difference:

d f
dxi

(x) ≈ f (x + ε ei)− f (x)
ε

, (3.10)

where the perturbation ε takes a small scalar value, e.g. ε = 10−6. Vector ei has the same
length than x, with all components equal to zero expected the component i which is set
to one. The accuracy depends on the parameter ε. In theory, the exact derivative is obtain
when it tends to zero. However, in practice the step size is limited due to arithmetic
accuracy and a too small value gives wrong results. Finally, one can understand the
importance of scaling the problem when approximated sensitivities are used. In order
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3 Isogeometric Shape Optimization of Shell Structures

to choose a step length which is less sensitive to the dimension of the problem, one can
scale the design variable so they vary between 0 and 1 for example.

If the function f depends on the state variable as for instance the compliance, then
the state equations (3.7) have to be solved for each perturbation which turns to be very
computational demanding in case of a high number of design variables. To limit the
computational cost, one can employ fast re-analysis techniques. For example, if an
iterative solver is used, a unique preconditioner for each perturbation is sufficient, and
the solution obtained without the shape perturbation can be used has a good starting
point. More discussion on this issue is tackled by Keulen et al. [120].

Analytical Discrete Sensitivity One can obtain analytical sensitivities by applying a
chain rule of differentiation. The starting point is the differentiation of the response
function as follows:

d f
dxi

=
∂ f
∂xi

+
∂ f
∂u
· du

dxi
. (3.11)

The term du/dxi is not explicitly known. We can identify this term by differentiating
the discrete state equations (3.7):

∂K
∂xi
u+ K

du
dxi

=
∂F

∂xi
. (3.12)

Solving this equation enables to get the required term du/dxi. It reads as:

du
dxi

= K−1
(

∂F

∂xi
− ∂K

∂xi
u

)
. (3.13)

Finally, we can substitute equation (3.13) into equation (3.11):

d f
dxi

=
∂ f
∂xi

+
∂ f
∂u
·K−1

(
∂F

∂xi
− ∂K

∂xi
u

)
︸ ︷︷ ︸
pseudo-load vector

. (3.14)

One can see that the inverse K−1 is involved in the expression of the derivative. To a
certain extent, it means that a resolution is required. There are two ways of dealing
with this issue which are actually the adjoint and the direct approaches we discussed
previously. In the adjoint method, one solves firstly the adjoint problem. The adjoint
problem does not depend on the number of design variable. Thus, for each design
variable, the adjoint solution is reused. This result reads as follows:

Ku∗ =
∂ f
∂u

⇒ d f
dxi

=
∂ f
∂xi

+ u∗ ·
(

∂F

∂xi
− ∂K

∂xi
u

)
. (3.15)

The direct method solves several linear systems with the so called pseudo-load vectors
as the right-hand sides:

Kvi =
∂F

∂xi
− ∂K

∂xi
u ⇒ d f

dxi
=

∂ f
∂xi

+
∂ f
∂u
· vi. (3.16)
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Optimization Problems

In direct sensitivity analysis there are potentially as many systems to be solved as design
variables. Thus, adjoint sensitivity analysis is often preferred as long as the number of
response function involved in the optimization problems is smaller than the number of
design variables. If not, there would be a large number of adjoint problems to be solved
(i.e. more than the number of systems involved in the direct approach).

Finally, let us take the case of the structural compliance expressed in equation (3.9).
We can specify the expression of the different terms involved in the general formulation
of the derivative (3.14):

∂ fcpl

∂xi
=

1
2

∂F

∂xi
· u, and

∂ fcpl

∂u
=

1
2
F . (3.17)

In this case, the problem is self-adjoint. In fact, the adjoint problem reads here as:

Ku∗ =
1
2
F ⇒ u∗ =

1
2
u. (3.18)

Thus, the adjoint solution is deduced from the state solution and no additional reso-
lution is needed. Finally, with these development in hand, one can get the following
derivative of the compliance:

d fcpl

dxi
= u ·

(
∂F

∂xi
− 1

2
∂K
∂xi
u

)
. (3.19)

The very last point consists now in the computation of the derivative of the stiffness
matrix and the load vector with respect to the design variables. This last step is the
most challenging. Their expressions depend on the nature of the design variables and
also on the finite element formulation. We will show in this work how it is achievable
especially in the context of isogeometric shape optimization of shells (see section 3.3).

Semi-Analytical Discrete Sensitivity An efficient way to simplify the calculation of
the derivatives of the stiffness matrix and the load vector with respect to the design
variables consists in approximating them using finite differences:

∂F

∂xi
≈ ∆F

∆xi
=
F (x + ε ei)−F (x)

ε
,

∂K
∂xi
≈ ∆K

∆xi
=

K(x + ε ei)−K(x)
ε

,

(3.20)

where step length is a small scalar value ε takes is small value as for the global Finite
Difference sensitivities (3.10). With semi-analytical discrete sensitivities, one has to build
as many stiffness matrices as the number of design variables. However, in contrast
with global Finite Difference sensitivities, there is no need to solve the state governing
equations for each design variable. Moreover, the stiffness matrix is defined as a sum of
elementary matrices of smaller size. One single design variable may not be related to
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3 Isogeometric Shape Optimization of Shell Structures

every elementary matrices. Thus, the stiffness variations are preferably approximated at
the elementary level. For the compliance, it gives something of the form:

d fcpl

dxi
= ∑

e∈Ei

ue ·
(

∆F e

∆xi
− 1

2
∆Ke

∆xi
ue
)

, (3.21)

where Ei is the set of active elements accordingly to the design variable xi.
One interesting feature of semi-analytical sensitivities, besides the appearing sim-

plicity, is the independence to the element formulation. This is very convenient from
an implementation point of view. No element dependent routines has to be formulated.
Thus, adding a new element formulation to an existing code is straightforward. How-
ever, it has been shown that this type of derivatives suffers from a very specific type of
approximation error [36, 55, 74, 110, 121]. In fact, they lead to inconsistent derivatives
regarding a rigid-body test, as discussed in [36]. Methods have been suggested in order
to correct the derivatives, see for example [55, 74, 121]. Without any correction, semi-
analytical derivatives are sensible to the mesh size and to the step size. This is especially
true for shell formulations as we will show in the following (see numerical experiments
in section 3.3).

Others issues There are still much to say about sensitivity analysis for structural shape
optimization. Let us lastly tackled few points that appears important to mention even if
we will not go into precise details here.

The influence of the discretization has been observed in the context of IGA-based shape
optimization in the work of Kiendl et al. [72] and theoretical insights on this issue has
been performed by Z.-P. Wang et al. [78] and similar results are addressed in [36, 61].
The discrete design derivatives do not represent the continuous shape gradient. This
issue can be observed on simple example tacking a rectangular plate for example [72,
78]. They found that an inconsistency originated from the discretization which induces a
discrete quadratic norm to represent the continuous Euclidean norm (more information
in [78]). However, the discretization-dependency is not specific to isogeometric shape
optimization but concerns every Finite Element-based shape optimization [61]. Simple
approaches have been suggested to overcome this inconsistency. The idea is to introduce
of weighting step, sometimes denoted as the sensitivity weighting. The components of
the search direction p are scaled with respect to the geometric influence of the design
variables:

pw = B−1 p. (3.22)

where B is the geometric influence matrix. This matrix takes a similar form than classical
mass matrices. In order to avoid the resolution of a linear system, diagonally lumped
mapping matrices are preferred in practice [78]. If the problem is convex, then taking the
normalization or not leads to the same result. However, in case of highly non-convex
optimization problems, ignoring the sensitivity weighting possibly results in poorer
local optimums [72].
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Shell Analysis

A common task in Node-based shape optimization is the sensitivity filtering (or gra-
dient smoothing). Non-smoothness of the gradients appears substantially when the
geometry is discretized with low-order function (typically a linear FEM mesh) [58, 59].
In the IGA framework, this task is, as it were, automatically taken into account. The
multilevel approach presented previously in section 2.4.2 enables to impose the shape
update on a coarser mesh than the one used for the analysis. This construction automat-
ically smooths the shape variations. Moreover, a multi-resolution strategy can be easily
put in place within IGA framework. Starting with a very coarse discretization, the opti-
mization model is refined successively each time a minimum is reached. It results in a
efficient filtering strategy as shown by Bandara et al. [122, 123]. Based on these observa-
tion and our own numerical experiments, we will omit in this work the introduction of
a filtering step during the sensitivity analysis. It seems necessary in the case of a very
large number of design variables only, e.g. up to 10 000 in the IGA framework.

Finally, there still exists other useful tools for the sensitivity analysis that we did not
mention yet. For instance, Automatic Differentiation has gained popularity [120]. It refers
to the differentiation of the computer code itself. If one has access to the source routines,
then there are tools that can generate new routines which correspond to the differen-
tiation of the initial ones. Basically, a routine is a collection of elementary operations
for which is possible to define partial derivatives. The program applies a long chain
rule of differentiation, starting from these elementary operations [124]. Application of
these techniques for structural shape optimization can be found in the literature, see
for example [125]. Let us also mention the complex-step approach which is an accurate
alternative to the global Finite Difference sensitivities. It is interesting for cases where a
response function is defined as a black-box function only (no access to the source code).
The only requirement for the Complex-step approach is that the black-box should han-
dle inputs and outputs of complex type (instead of real). If so, this approach is more
accurate than the global Finite Difference method for an identical level of computational
cost (and simplicity). Interested readers can refer to [126, 127].

3.2 Shell Analysis

The aim of this work is to build a numerical tool for the design of aeronautical struc-
tures, and more specifically stiffened structures. These types of structures are usually
referred as thin-walled structures. They are geometrically characterized by one very
small dimension, namely the thickness, in comparison with the two others. Since the
early development of numerical simulation, specific Finite Element formulations have
been introduced for these thin structures in order to analyze them in a accurate and
proper way. Efficient shell formulations enable a fast analysis. The analysis time with
shell elements can drastically be lower than with standard 3D Finite Elements. Thus,
shell elements are widely used by stress engineers and every commercial Finite Element
code offers these specific elements. In the present work, we seek to employ two types of
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Figure 3.3 – A shell body

shell formulations: a Kirchhoff–Love shell formulation and a solid-shell formulation.
For isogeometric shape optimization of shells, it seems that Kirchhoff–Love NURBS

elements have been mainly considered [71, 72, 122], while few research works adopt a
Reissner–Mindlin NURBS shell formulation [76]. However, the influence of the shell
formulations on the optimization results is not well-known, and, unfortunately, the
choice of one shell formulation rather than another is usually dictated by numerical
needs (which should not). Thus, the Kirchhoff–Love NURBS element is attractive due
to its low computational cost, but it should be borne in mind that it is restricted to thin
shells. In order to provide a broader framework that is also suitable for thicker shells,
we propose to consider in this work solid-shell NURBS-based element as well. We will
highlight that these elements can bring interesting features in the shell shape optimiza-
tion framework from the design point of view, in particular for the design of shells with
variable thicknesses.

3.2.1 An Isogeometric solid-shell formulation

The solid-shell NURBS element used in this work is the classical one introduced by
Bouclier et al. [128]. It is based on a 3D continuum mechanics-type formulation. The
idea is to take a 3D solid continuum element and, in order to limit the computational
costs, discretize the shell using a single layer of elements through the thickness. This
element is used in its raw form and no particular treatment (strain-projection, reduced
integration, etc.) is put in place here. To alleviate locking, the basic strategy of increasing
the polynomial degree of the analysis model is performed. Despite the simplicity of
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Figure 3.4 – Discretization with the isogeometric standard solid-shell element. Degree 2 is always
chosen through the thickness, no matter the degree in the two principal directions.

the formulation, this element has shown similar behaviours to those of Kirchhoff–Love
or of Reissner-Mindlin NURBS shell elements through several shell benchmarks [94,
128–130]. Other efficient NURBS-based solid-shell elements have been developed to
overcome locking phenomena [128, 131] and to analyze structures with geometric [132,
133] and material [101, 134] non-linearities.

3.2.1.1 The standard solid-shell NURBS element

Since the standard solid-shell formulation is nothing else than the classical 3D solid
element, the theoretical aspects are essentially the same than those already presented
in section 2.4. The only consideration made here, consists in always selecting degree 2
through the thickness. Based on the observations of Bouclier et al. [128], there is no need
to consider higher degree in this direction. Thus, when speaking of solid-shell elements
of degree p, the reader should understand that degree p is used in the main directions
and that quadratic approximation is set through the thickness. Figure 3.4 depicts this
discretization specificity.

Using curvilinear coordinates However, let us re-write the element formulation based
on curvilinear coordinates instead of Cartesian coordinates. Using curvilinear coordi-
nates is very convenient to describe complex shapes with curvatures, and it is therefore
widely used in shell theory. The position vector associated to a material point is con-
structed from curvilinear coordinates θi as shown in figure 3.3. The spatial mapping
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3 Isogeometric Shape Optimization of Shell Structures

defined through the curvilinear coordinates should preserve distinctness (i.e. injective
functions). Cylindrical and spherical coordinate systems are typical examples of curvi-
linear coordinate systems. For instance, locating a point P belonging to a cylinder is
simplified with the use of cylindrical coordinates, i.e. a radial coordinate r, an angular
coordinate θ, and a height z:

X(r, θ, z) = r cos θe1 + r sin θe2 + ze3, (3.23)

where X is the vector position associated to the material point P. Curvilinear coordi-
nates can finally be seen as a generalization of this type of geometric transformations.

We denote with capital and lowercase letters all quantities of the reference and de-
formed configuration, respectively. The displacement field of a material point is defined
as the difference vector of the position vectors, x and X , of the deformed and reference
configuration:

u(θ1, θ2, θ3) = x(θ1, θ2, θ3)−X(θ1, θ2, θ3), (3.24)

Hence, the displacement vector is defined as a function of the curvilinear coordinates.
Once the displacement field is defined, one can measure the deformation using different
strain quantities. More specifically, the second order Green–Lagrange strain tensor E is
formulated in curvilinear coordinates as the difference of the covariant metric coeffi-
cients, Gij and gij, of both reference and current configurations [135, 136]:

E =
1
2
(

gij − Gij
)
Gi ⊗Gj, (3.25)

There are quantities involved in the strain field (3.25) that have not been introduced yet.
We need especially to describe the covariant and contravariant basis vectors. The co-
variant vectors are represented in figure 3.3. These vectors are tangent to the coordinate
lines and are defined as:

Gi =
∂X

∂θi
= X ,i i = 1, . . . , 3. (3.26)

It is commonly adopted to use superscripts for contravariant quantities and subscripts
for covariant quantities. The covariant metric coefficients involved in equation (3.25) are
computed by the scalar product of covariant basis vectors:

Gij = Gi ·Gj. (3.27)

The covariant metric coefficients for the current configuration is defined equivalently.
The contravariant metric coefficients are obtained by the inverse of the covariant coeffi-
cient matrix: [

Gij ] = [ Gij
]−1. (3.28)

We have now the possibility to express the contravariant basis vectors:

Gi = GijGj. (3.29)
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Shell Analysis

Much more information on these geometric quantities can be found in Kiendl [135] and
Echter [136], and in the underlying references cited therein. Finally, for small displace-
ments, the linearized Green-Lagrange strain tensor ε reads as:

ε =
1
2
(
u,i ·Gj + u,j ·Gi

)
Gi ⊗Gj. (3.30)

In this work, we limit ourselves to this infinitesimal strain tensor.
Under the assumptions of a linear elasticity behavior of the material, the Saint-

Venant-Kirchhoff material model is commonly adopted:

S = C : E, (3.31)

where S denotes the second Piola-Kirchhoff stress tensor, and C denotes the elasticity
tensor. In the case of small displacements, the stress tensor S is approximated by the
linearized Cauchy stresses σ. Furthermore, with these assumptions the Saint-Venant-
Kirchhoff material law is given as the Hooke’s law:

σ = C : ε, (3.32)

where the material tensor is defined in the covariant basis:

C = CijklGi ⊗Gj ⊗Gk ⊗Gl ,

Cijkl = λGijGkl + µ
(

GikGjl + GilGjk
)

.
(3.33)

The material parameters λ and µ are the Lamé constants.

Isogeometric formulation The isogeometric framework sticks well with the use of
curvilinear coordinates. One can define those curvilinear coordinates as being the ge-
ometric parameters of the NURBS. The position vector X is defined by a tri-variate
mapping:

X(θ1, θ2, θ3) = ∑
k

Rk(θ1, θ2, θ3)Pk with (θ1, θ2, θ3) ∈ Ω̄, (3.34)

accordingly to the definition of a NURBS volume previously introduced (see section 2.3).
The covariant basis vectors are then obtain by partial derivation with respect to the
parameters θi which gives:

Gi(θ1, θ2, θ3) = ∑
k

Rk,i(θ1, θ2, θ3)Pk. (3.35)

Once these vectors in hand, one can compute the covariant metric coefficients Gij using
equation (3.27). Then, the contravariant metric coefficients Gij are obtained by inverting
a 3-by-3 matrix as given by equation (3.28). Those are the main calculation steps of
the formulation. Hence, using curvilinear coordinates is actually not a complex task,
especially with IGA. Finally, the internal virtual work reads as:

δWSSh
int = −

∫
Ω̄

(
σ : δε

)
|J|dΩ̄ (3.36)
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Figure 3.5 – Scordelis-Lo roof benchmark problem: performance study for the standard solid-
shell element.

where a change of variable has been made in order to integrate over the parameter
space Ω̄. This way, the integration variables are the curvilinear coordinates θi (i.e. we
have dΩ̄ = dθ1dθ2dθ3 in equation (3.36)). The Jacobian |J| of this change of variable can
be computed through the following triple product:

|J| = (G1 ×G2) ·G3. (3.37)

For the rest, everything is identical to classical Finite Element formulations: i.e. approxi-
mation of the displacement field, numerical integration using quadrature rule, etc. Even
if the intermediary steps are a bit different, one should keep in mind that the standard
solid-shell element written in the curvilinear fashion is strictly the same than the 3D
solid continuum element. At the end of the day, the stiffness matrices obtained with
both approaches are identical.

We present the solid-shell formulation in the curvilinear framework because it will
enable to write the analytical sensitivities in a convenient way (see section 3.3). More-
over, more elaborate solid-shells that integrate additional procedures to alleviate unde-
sirable phenomenon, as locking behaviors, are formulated based on this kinematic [101,
128, 131–134]. We depict in figure 3.5 a short performance study of this standard solid-
shell for the Scordelis-Lo roof benchmark example. Same results than Bouclier et al.
[128] are obtained.

Imposing shape variations With solid-shell elements, the structure is described by its
volume and not by its mid-surface. Thus, the standard strategy depicted in section 2.4.2
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Figure 3.6 – Definition of the design variables in the context of solid-shell isogeometric elements.
(a) A first set of design variables updates the master surface and (b) the slave surface follows the
shape variation through a second set of variables.

needs to be further improved: the shape control has to deal with volume. A solid-shell
is characterized by two outer skins. A natural idea is to define one of the outer skin
as the master surface and the other as the slave surface. This is carried out in this
work in two steps. A first set of design variables updates the master surface as it is
commonly done with shell structure and as already discussed. Then, a second set of
design variables moves the slave surface starting from the master surface. This idea is
illustrated in figure 3.6 which shows the shape parametrization of a tube. A master-
slave shape parametrization avoids adding a lot of geometric constraints to prevent
mesh distortion and self penetration (e.g. overlapping of the outer skins).

Each control point from the master surface has its equivalent on the slave surface. If
a variable s1 moves the master point from initial position P 0

m to Pm in direction n1 and
a second variable s2 further updates the neighbor slave point from P 0

s to Ps in direction
n2, then the design update follows:

Pm = P 0
m + s1n1,

Ps = P 0
s + s2n1 + s2n2.

(3.38)

By setting additional bounds to s2 we avoid undesirable shapes as for example over-
lapping of the outer skins. Generally, in shape optimization of shells, the thickness
is kept constant. For this purpose, we apply a simple approach where the second set
of design variables is not included in the optimization. In other words, same shape
variations are applied on both outer skins. If the optimization model has a higher de-
gree through the thickness than 1, then the intermediate control points are interpolated
between both outer skin. Finally, the use of solid-shell NURBS element offers the possi-
bility to optimize through the thickness. The thickness optimization issue seems to be
promising [137], and it is investigated in the present work (see section 3.4.2).

3.2.2 The Isogeometric Kirchhoff–Love shell

At the beginning of NURBS-based shell formulations, structural model approach
was firstly developed (see, e.g., the initial works of Kiendl et al. [94] on the Kirchhoff–
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Figure 3.7 – Kirchhoff–Love shell formulation:

Love theory and Benson et al. [129] on the Reissner–Mindlin theory, and then, more
recently, Echter et al. [95] and Dornisch et al. [138]). The structural model approach is
based on a discretization of the mean surface alone. It leads to fewer degrees of free-
dom per element in comparison with solid-shell element. This is particularly true with
the Kirchhoff–Love formulation where no rotational degrees of freedom are needed.
In return, Kirchhoff–Love shells require C1 continuity but thanks to NURBS surfaces,
this condition is easily satisfied. IGA based on NURBS surfaces offers Cp−1 continuity
throughout the element. Finally, one should keep in mind that Kirchhoff–Love shells
neglect transverse shear deformations, and thus they are accurate for analyzing thin
structures only.

Kinematics The starting point of the Kirchhoff–Love shell formulation consists in in-
voking specific kinematic assumptions, namely the Kirchhoff–Love hypotheses. These
hypotheses introduced by Kirchhoff [139] and Love [140] state that the normals to the
mid-surface in the reference configuration remain normal and unstretched in the de-
formed configuration. Figure 3.7 illustrates this point.

There are different strategies to impose the kinematic assumptions. Principally, shell
models can either be obtained via the direct approach or either the derivation from three-
dimensional continuum mechanics [141]. The Kirchhoff–Love shell formulation introduced
by Kiendl et al. [94] is based on the direct approach. It means that the shell is regarded
from the beginning as a two-dimensional surface (often named as a Cosserat surface)
and proper kinematic assumptions, representing the three-dimensional behavior, are
postulated [135]. Within this approach, the shell continuum is described by its mid-
surface S and director vectors:

X(θ1, θ2, θ3) = S(θ1, θ2) + θ3A3(θ1, θ2), θ3 ∈ [- t
2 , t

2 ], (3.39)

where t is the shell thickness. In the case of Kirchhoff–Love kinematic, the director
vector is taken as the normal at each point of the mid-surface:

A3 =
1
A
A1 ×A2, with A = |A1 ×A2|. (3.40)
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Putting equation (3.39) into equation (3.26) gives the expression of the covariant basis
vectors within Kirchhoff–Love theory:

Gα = Aα + θ3A3,α ,

G3 = A3 .
(3.41)

One can operate identically to describe the current configuration. We denote by v the
displacement field of the mid-surface. Thus, the position vector of the current configu-
ration reads as:

x(θ1, θ2, θ3) =
[
S + v

]
(θ1, θ2) + θ3a3(θ1, θ2). (3.42)

We can write the displacement field accordingly to equation (3.24):

u(θ1, θ2, θ3) = v(θ1, θ2) + θ3
[
a3 −A3

]
(θ1, θ2). (3.43)

Since we make the assumption of small displacements, we will neglect the quadratic
term w.r.t. the mid-surface displacement v in the difference vector w = a3 −A3. To this
purpose, let us write the Taylor’s theorem in Banach spaces:

w(v) = w(0) + wlin(v) +O(||v||2), (3.44)

where w(0) = 0, and the linearized vector wlin is given by:

wlin(v) =
1
A

{(
v,1 ×A2 +A1 × v,2

)
−A3

[
A3 ·

(
v,1 ×A2 +A1 × v,2

)]}
. (3.45)

This quantity is obtained by differentiating the vector w w.r.t. the mid-surface displace-
ment v. Mathematically, it is the Fréchet derivative of w at v = 0. Equivalent derivative
steps are done in the work of Kiendl [135, see for instance equation (5.26)]. It is also
interesting to make the link with the expressions presented by Echter [95, 136]. They
write the linearized difference vector as:

w[95] = Φ×A3, (3.46)

where the rotation vector Φ is given by:

Φ = ϕ1A1 + ϕ2A2, (3.47)

and the rotation angles ϕα are expressed as follows:

ϕ1 =
1
A
v,2 ·A3 and ϕ2 = − 1

A
v,1 ·A3. (3.48)

It possible to prove that it leads to identical formulas (i.e. wlin = w[95]). In order to prove
it, one can compute the scalar product between these linearized difference vectors and
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x
y

z

θ1

θ2

a2
a1

a3 A2A1
A3w

v,2v,1

Figure 3.8 – Link between the local basis vectors of the reference and the current configurations.

the surface covariant basis vectors Ai. Let us write few steps of the calculation with the
vector A1:

wlin ·A1 =
1
A
(v,1 ×A2) ·A1 w[95] ·A1 = (Φ×A3) ·A1

=
1
A
(A2 ×A1) · v,1 = ϕ2 (A2 ×A3) ·A1

= −v,1 ·A3 = −v,1 ·A3

We obtain the same result in both cases. For the two other vectors, A2 and A3, we
proceed the same way. One should get:

wlin ·A2 = w[95] ·A2 = −v,2 ·A3 and wlin ·A3 = w[95] ·A3 = 0.

Based on these observations, we conclude that both definitions of the linearized dif-
ference vectors (i.e. equations (3.45) and (3.46)) are identical. This is very interesting
to notice since the numerical results obtained by Echter et al. [95] are slightly different
than those obtained by Kiendl et al. [94]. The authors in [95] mention these differences
without understanding where they come from [95, see page 179]. By using wlin in the
following, we will manage to recover the formulation introduced by Kiendl et al. [94].
This makes us think that the theory presented in both papers [94, 95] is identical.

Let us continue our developments. To summarize, we wrote the shell body displace-
ment field as:

u(θ1, θ2, θ3) = v(θ1, θ2) + θ3wlin(θ1, θ2). (3.49)

In order to express the deformation field, one can put equations (3.49) and (3.41) into
the expression of the linearized Green-Lagrange strains (3.30). For instance, we can take
a closer look at the component ε11:

ε11 = u,1 ·G1

=
(
v,1 + θ3wlin,1

)
·
(
A1 + θ3A3,1

)
= v,1 ·A1 + θ3

(
v,1 ·A3,1 + wlin,1 ·A1

)
+ (θ3)

2wlin,1 ·A3,1 .

(3.50)

The thickness of the shell is considered thin in the Kirchhoff–Love shell theory, thus
the last term which is quadratic w.r.t. the thickness coordinate θ3 is neglected. The
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Shell Analysis

same assumption is made on the other strain components. This way, the strains can
be separated into a constant part, namely the membrane strains e, and a linear part,
namely the bending strains κ. Furthermore, all the transversal strains vanish, i.e. εi3 = 0.
Mathematically, the strains is decomposed as follows:

ε = e+ θ3κ, (3.51)

where the covariant membrane components are:

eαβ =
1
2
(
v,α ·Aβ + v,β ·Aα

)
. (3.52)

Greek indices (α, β) takes on values 1 or 2. The covariant bending components are:

καβ = −v,αβ ·A3 +
1
A

(
v,1 · (Aα,β ×A2) + v,2 · (A1 ×Aα,β)

)
+
A3 ·Aα,β

A

(
v,1 · (A2 ×A3) + v,2 · (A3 ×A1)

)
.

(3.53)

We do not give all the mathematical developments one has to do in order to recover
these expressions. However, having equation (3.50) in hand almost directly leads to
the final expressions (3.52) and (3.53). One can also verify that these expressions are
equivalent to what is presented in [94, 135], among many others.

Material tensor The constitutive equations are obtained under some simplifications.
Here, we do not introduce the expressions of the vectors Gi, i.e. equation (3.41), into
the 3D continuum material law (3.33). In fact, when deriving shell theories by the direct
approach, two-dimensional material equations are postulated [141]. The constitutive
tensor will rely on the mid-surface metrics Aαβ instead of Gij. More specifically, the
isotropic material tensor is obtained by replacing Gij by Aαβ in equation 3.33. It reads
as:

C̄αβγδ = λ̄Aαβ Aγδ + µ
(

Aαγ Aβδ + Aαδ Aβγ
)

, λ̄ =
2λµ

λ + 2µ
. (3.54)

The material parameter λ̄ appears instead of the Lamé’s first parameter λ. An addi-
tional condensation of the material equations has been operated in order to include the
plane-stress condition. This is a common measure to eliminate the contradiction of hav-
ing ε33 = 0 and σ33 = 0 at the same time (without having a Poisson’s ratio ν = 0) [141].
One can also rewrite the material tensor in terms of Young’s modulus and Poisson’s
ratio:

C̄αβγδ =
E

1− ν2

[
νAαβ Aγδ +

1
2
(1− ν)

(
Aαγ Aβδ + Aαδ Aβγ

)]
. (3.55)

Stress resultants We already mention that plane-stress state is postulated. Moreover,
with the constitutive tensor C̄ just introduced, the stress field is also written as the sum
of membrane stresses and bending stresses:

σ = C̄ : e+ θ3C̄ : κ. (3.56)
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3 Isogeometric Shape Optimization of Shell Structures

Let us rewrite the internal virtual work for the Kirchhoff–Love shell:

δWint = −
∫

Ω̄

(
σ : δε

)
|J|dΩ̄

= −
∫

Ω̄

(
e : C̄ : δe+ θ3 [e : C̄ : δκ+ κ : C̄ : δe] + (θ3)

2κ : C̄ : δκ
)
|J|dΩ̄ .

(3.57)

At this point, it is quasi possible to integrate analytically through the thickness. Indeed,
the membrane strains, the bending strains, and the material tensor do not depend on
the thickness coordinates θ3. In order to integrate analytically, we assume this equally:∫

Ω̄

( )
|J|dθ1dθ2dθ2 =

∫
Ω̄0

{∫ t/2

−t/2

( )
dθ3

}
Adθ1dθ2, (3.58)

which is exactly satisfied in case of a plate with no curvature. The assumption made
here is identical to the one involved in the constitutive law (see discussion associated to
equation (3.54)). Now let us perform three intermediary computations:∫ t/2

−t/2
1 dθ3 = t,

∫ t/2

−t/2
θ3 dθ3 = 0,

∫ t/2

−t/2
(θ3)

2 dθ3 =
t3

12
.

Finally, the internal virtual work for the Kirchhoff–Love shell formulation reads as:

δWKL
int = −

∫
Ω̄0

(
n : δe+m : δκ

)
A dΩ̄0, (3.59)

where n and m denote the normal forces and the bending moments respectively. They
are expressed as follows:

n = t C̄ : e nαβ =
tE

1− ν2 Hαβγδeγδ, (3.60)

m =
t3

12
C̄ : κ mαβ =

t3E
12(1− ν2)

Hαβγδκγδ, (3.61)

with:
Hαβγδ = νAαβ Aγδ +

1
2
(1− ν)

(
Aαγ Aβδ + Aαδ Aβγ

)
. (3.62)

Isogeometric formulation The Kirchhoff–Love NURBS element is obtained by dis-
cretizing the mid-surface with a NURBS surface. This discretization is also used to
approximate the mid-surface displacement field:

S(θ1, θ2) = ∑
k

Rk(θ1, θ2)Pk, and vh(θ1, θ2) = ∑
k

Rk(θ1, θ2)vk. (3.63)

By putting these two discretized quantities in the equations presented before, i.e. (3.39)
to (3.62), one can get the so-called elementary stiffness matrices. For instance, the dis-
cretized membrane strains read as:

eh = ∑
k

Bm
k vk →


eh

11

eh
22

2eh
12

 = ∑
k


Rk,1 A

T
1

Rk,2 A
T
2

Rk,1 A
T
1 + Rk,2 A

T
2




v1k

v2k

v3k

 , (3.64)
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Figure 3.9 – Scordelis-Lo roof benchmark problem: performance study for the isogeometric
Kirchhoff–Love element.

where v1ik = vk · ei denotes the ith component of the displacement DOFs associated to
the control point Pk. Identically to the membrane matrices Bm

k , bending matrices Bb
k

enables to describe the discrete bending strains as follow:

κh = ∑
k

Bb
k vk →


κh

11

κh
22

2κh
12

 = ∑
k


Bk,11

T

Bk,22
T

2Bk,12
T




v1k

v2k

v3k

 , (3.65)

with:

Bk,αβ = −Rk,αβA3 +
1
A

(
Rk,1Aα,β ×A2 + Rk,2A1 ×Aα,β

)
+
A3 ·Aα,β

A

(
Rk,1A2 ×A3 + Rk,2A3 ×A1

)
.

(3.66)

71

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI092/these.pdf 
      © [T. Hirschler], [2019], INSA de Lyon, tous droits réservés



3 Isogeometric Shape Optimization of Shell Structures

The material tensor can be written as a 3-by-3 symmetric matrix using the Voigt notation.
For this purpose, one can build the following matrix:

H =
E

1− ν2


H11 11 H11 22 H11 12

∗ H22 22 H22 12

∗ ∗ H12 12

 , (3.67)

where the components Hαβγδ are given by equation (3.62). Then, the stiffness matrix of
the Kirchhoff–Love shell formulation can be built through 3-by-3 matrices of the form:

Ke
kl =

∫
Ω̄e

0

[
tBm

k
THBm

l +
t3

12
Bb

k
THBb

l

]
Adθ1dθ2, (3.68)

where k and l are indices of two control points related to element e. The integral is
later computed using numerical integration. For the external loads, three types are
considered: distributed loads p per unit of area applied on the mid-surface, axial forces t
per unit of length applied on the edges of the patch, and concentrated loads applied at
the vertices of the patch. The load vector, which expresses the external virtual work
once the displacement field discretized, reads as:

Fk =
∫

Ωp
0

RkpdΩ0 +
∫

Γt
0

RktdΓ0 . (3.69)

Once the element is implemented, one can go through different benchmark exam-
ples. For instance, we depict in figure 3.9 the results obtained for the Scordelis-Lo roof
shell problem. We get the exact same results than Kiendl et al. [94]. One can also no-
ticed that the performance of the isogeometric Kirchhoff–Love shell is very similar to the
standard isogeometric solid-shell presented in figure 3.5. In order to post-process the
results, the stress resultants commonly are transformed into a local Cartesian basis Ei

to get physical values [135]:

n̂αβ = nγδ
(
Eα ·Aγ

)(
Aδ ·Eβ

)
. (3.70)

The local Cartesian basis can for example be constructed as follows:

E1 =
A1

|A1|
, E3 = A3, E2 = E3 ×E1. (3.71)

3.3 Analytical Sensitivity in IGA

At present, we know how to perform the shell analysis and we gave the first de-
velopment steps for the sensitivity analysis (see section 3.1.3). Now, we show how it
is possible to perform analytical sensitivity analysis in the context of linear elasticity
problems. More specifically, we deal with the standard IGA solid-shell and the IGA
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Figure 3.10 – Shape parametrization for the plate with a hole and settings of the problem.

Kirchhoff–Love shell. For the sake of clarity, we repeat equation (3.15) which is our
starting point here:

d f
dxi

=
∂ f
∂xi

+ u∗ ·
(

∂F

∂xi
− ∂K

∂xi
u

)
.

In this section we show how the quantities ∂F/∂xi and ∂K/∂xi can be computed.

3.3.1 Sensitivity propagation

3.3.1.1 Linking the Design Variables to the Optimization model

The first step consists in changing the derivatives w.r.t. the design variables into
derivatives w.r.t. the control points of the optimization model. To this end, we will use
the relations between the design variables and these control points. This link is given
by the so-called parametrization step. The coordinates of the control points are expressed
as functions of several parameters (the design variables). A simple parametrization lies
in defining one independent design variable by movable control point. Each variable
moves its associated control point in a specific direction:

Pk = P 0
k + xknk. (3.72)
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3 Isogeometric Shape Optimization of Shell Structures

Identically, several design variables can be associated to a single control point. For
example, one variable moves the control point in x-direction and the second variable in
direction y. Furthermore, it can be interesting to link one specific variable to multiple
control points in order, for example, to preserve a geometric continuity or a symmetry.
This more general shape parametrization takes the form:

Pk = P 0
k + ∑

i∈Dk

xin
k
i , (3.73)

where Dk is the set of design variables acting on the kth control point. An example of
design parametrization is given in figure 3.10 for the problem of a plate with a hole.

By abuse of notation, let us express the derivatives w.r.t. the design variables through
the derivatives w.r.t. the control points of the optimization model:

∂•
∂xi

=
∂P

∂xi

∂•
∂P

(3.74)

where the symbol • denotes either the stiffness matrix or the load vector. The derivative
of the parametrization is given by:

∂P

∂xi
=

(
∂P1

∂xi
,

∂P2

∂xi
, . . . ,

∂Pncp

∂xi

)
with

∂Pk

∂xi
=

(
∂P1k

∂xi

∂P2k

∂xi

∂P3k

∂xi

)
, (3.75)

where P1k, P2k, and P3k are the three Cartesian components (in case of 3D problems) of
control point Pk. With similar notations, the derivative w.r.t. the control points reads as:

∂•
∂P

=

(
∂•

∂P1
,

∂•
∂P2

, . . . ,
∂•

∂Pncp

)
with

∂•
∂Pk

=

(
∂•

∂P1k

∂•
∂P2k

∂•
∂P3k

)
. (3.76)

Let us rewrite the equation (3.74) and give the complete expression of the derivative:

∂•
∂xi

=
ncp

∑
k=1

3

∑
j=1

∂Pjk

∂xi

∂•
∂Pjk

. (3.77)

Therefore, the first step to compute the analytical sensitivities is the derivation of the
control point coordinates w.r.t. the design variables. In case of the shape parametrization
of the form (3.73), this first step gives:

∂P

∂xi
=
(
n1

i ,n2
i , . . . ,nncp

i

)
. (3.78)

Thus, for each design variable xi, one has to build the operator ∂P/∂xi. It can be de-
fined as a matrix with size ncp × 3 or a vector with length 3ncp (ncp being the number of
control points of the optimization model). Furthermore, these operators are very sparse
and one should take advantages of this sparsity for numerical efficiency. In fact, one
design variable moves only few control points. Finally, with the shape parametrization
of the form (3.73), the operators remain unchanged during the whole resolution of the
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Figure 3.11 – Performing the sensitivity analysis in IGA based shape optimization.

optimization problem (see equation (3.78)). They are build once and for all at the begin-
ning. For the example of the plate with a hole (see figure 3.10), the derivatives of the
shape parametrization are the following:

∂P

∂x1
=
(
e1, 0, 0, 0, · · ·

) ∂P

∂x3
=
(

0, e2, 0, 0, · · ·
) ∂P

∂x5
=
(

0, 0, e2, 0, · · ·
)

∂P

∂x2
=
(

0, e1, 0, 0, · · ·
) ∂P

∂x4
=
(

0, 0, e1, 0, · · ·
) ∂P

∂x6
=
(

0, 0, 0, e2, · · ·
)

where the dots symbol (· · · ) indicates that the remaining components are filled with
zero. It corresponds to the control points that are fixed.

3.3.1.2 From the Optimization model to the Analysis model

The stiffness matrix and the load vector are constructed using the analysis model.
Therefore, the derivatives w.r.t. the control points of the optimization need to be trans-
formed into derivatives w.r.t. the control points of the analysis model. To that purpose,
we operate the chain rule:

∂•
∂P

=
∂Q

∂P

∂•
∂Q

. (3.79)
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3 Isogeometric Shape Optimization of Shell Structures

The link between the control points P of the optimization model and the control pointsQ
of the analysis model is given by the refinement matrix R (see the refinement procedures
presented in section 2.3.2). It gives:

Q = RP → ∂Q

∂P
= R. (3.80)

Thus, the chain rule (3.79) takes the form:

∂•
∂P

= RT ∂•
∂Q

. (3.81)

The refinement matrix R is a sparse rectangular matrix with size mcp×ncp (mcp being the
number of control points of the analysis model). Hence, the gradients ∂•/∂P and ∂•/∂Q

should have appropriate shapes so that equation (3.81) makes sense. Thus, similarly to
equation (3.76), the derivatives w.r.t. the control points of the analysis model takes the
form of a matrix of size mcp × 3:

∂•
∂Q

=

(
∂•

∂Q1
,

∂•
∂Q2

, . . . ,
∂•

∂Qmcp

)
with

∂•
∂Qk

=

(
∂•

∂Q1k

∂•
∂Q2k

∂•
∂Q3k

)
. (3.82)

Finally, let us notice that the refinement matrix does not change, as long as the refine-
ment levels of both optimization and analysis models remain unchanged. Thus, the
matrix is commonly built once and for all at the beginning, and can be reused during
the optimization process. In addition, this matrix is sparse and of moderate size (in
comparison with the stiffness matrix for instance). As a result, the transition between
both models is computationally cheap.

3.3.2 Differentiating IGA operators w.r.t. the Control Points

3.3.2.1 Differentiating standard IGA operators

By putting equation (3.74) and equation (3.81) into the formula of the derivative (3.15),
we are at a point where we need to compute these kind of quantities:

u∗ · ∂F

∂Q
and u∗ · ∂K

∂Q
u. (3.83)

Element-wise loop The stiffness matrix and the load vector are built element-wise.
The sensitivity analysis will be perform similarly, and we focus here mainly on the
stiffness matrix because it is the most challenging part. Summing over each element
gives:

u∗ · ∂K
∂Q
u = ∑

e

(
ue∗ · ∂Ke

∂Q
ue
)

. (3.84)

An important fact to notice is that only the control points associated to the current
element e give non-zero derivatives in the term ∂Ke/∂Q. Thus, for each element of the
analysis model, only the few components of the gradient are updated.
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Figure 3.12 – Settings and optimization results for the cantilever beam problem.

Moreover, for each element, it is numerically not efficient to build a large ma-
trix ∂Ke/∂Q. Instead, we use the following development:

ue∗ · ∂Ke

∂Q
ue = ∑

k
∑

l
ue∗

k ·
∂Ke

kl
∂Q

ue
l , (3.85)

where k and l denote two control point indices of the current element e. Finally, the
stiffness matrix of the standard IGA elements (discretization of equation (3.36)), can be
expressed as follows:

Ke
kl =

∫
Ω̄e

Bk
THBl |J|dΩ̄ (3.86)
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3 Isogeometric Shape Optimization of Shell Structures

Thus, the derivatives of the components of the elementary stiffness matrices w.r.t. the
control points are given by:

∂Ke
kl

∂Q
=
∫

Ω̄e

{(
∂Bk

T

∂Q
HBl + Bk

T ∂H
∂Q

Bl + Bk
TH

∂Bl

∂Q

)
|J| + Bk

THBl
∂|J|
∂Q

}
dΩ̄ . (3.87)

We can put this last equation into equation (3.85). By commuting the double sum and
the integral, we get:

ue∗ · ∂Ke

∂Q
ue =

∫
Ω̄e

{(
∂ε∗

∂Q
: σ + ε∗ :

∂σ

∂Q

)
|J| + (ε∗ : σ)

∂|J|
∂Q

}
dΩ̄ . (3.88)

Three terms can be identified:

1. Derivative of the Jacobian

(ε∗ : σ)
∂|J|
∂Q

with ε∗ = ∑
k

Bku
∗
k , σ = ∑

l
HBlul , (3.89)

2. Derivative of the (adjoint) Strains

∂ε∗

∂Q
= ∑

k

∂Bk

∂Q
u∗k , (3.90)

3. Derivative of the Stresses

∂σ

∂Q
= ∑

l

(
∂H
∂Q

Bl + H
∂Bl

∂Q

)
ul . (3.91)

We finally end up with a generic expression of the analytical sensitivities. However, the
partial derivatives w.r.t. the control points of the analysis model are achievable in the
context of element formulation based on curvilinear coordinates. This is also a reason
why we formulate the standard solid-shell with the use of curvilinear coordinates.

Derivative of the Jacobian In the case of the standard solid-shell formulation, the
Jacobian is given by equation (3.37) that we repeat here for the sake of clarity:

|J| = (G1 ×G2) ·G3.

Differentiating the Jacobian w.r.t. the control points reads as:

∂|J|
∂Q

= (G2 ×G3) ·
∂G1

∂Q
+ (G3 ×G1) ·

∂G2

∂Q
+ (G1 ×G2) ·

∂G3

∂Q
. (3.92)

We remind that the partial derivative ∂/∂Q contains the partial derivatives w.r.t. the
three components of the all active control points (denoted previously Qja which corre-
spond to the jth component of the control point number a). Differentiating the covariant
basis vectors Gi gives:

∂Gi

∂Qja
= Ra,i ej, (3.93)
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r = 1, p = 3 r = 2, p = 3 r = 3, p = 3

0. 6. 12.
Grad Magn. [×1e-4]

1.35 2.30 3.25
Disp Magn. [×1e-4]
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Figure 3.13 – Influence of the refinement level of the analysis model on the analytical sensitivity
for the plate with a hole (case of the compliance).

79

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI092/these.pdf 
      © [T. Hirschler], [2019], INSA de Lyon, tous droits réservés



3 Isogeometric Shape Optimization of Shell Structures

and finally, the complete expression for the derivatives of the Jacobian is:

∂|J|
∂Qa

= Ra,1G2 ×G3 + Ra,2G3 ×G1 + Ra,3G1 ×G2. (3.94)

The derivative ∂|J|/∂Qa takes the form of a vector with three components. The gradi-
ent ∂|J|/∂Q in equation (3.88) collects these derivatives where the index a corresponds
to the active control points (those from the current element e).

One can follow the same approach in case of surfaces, as for instance 2D problems
or shells. The Jacobian is given by equation (3.40). One should obtain the following
derivatives:

∂A
∂Qa

= Ra,1A2 ×A3 + Ra,2A3 ×A1. (3.95)

We will also use these results in order to compute the analytical sensitivities when a
volume or a surface area is involved in the optimization problems. From the perspective
of implementing the analytical sensitivities as presented in this work, we advice to start
with the case of the volume and surface area. It is a good preparation for the more
complex case of the compliance for example. Let us also notice that for the volume/area,
it is not necessary to perform the sensitivity analysis on the analysis model but one could
use the optimization model only since the geometry is exactly captured at any level of
refinement.

Derivative of the Strains In order to express the partial derivatives of the strains w.r.t.
the control points, let us repeat their expressions accordingly to equation (3.30) for the
sake of clarity:

εij =
1
2
(
u,i ·Gj +Gi · u,j

)
.

Therefore, the formal expression of the derivatives is simply given by:

∂εij

∂Q
=

1
2

(
u,i ·

∂Gj

∂Q
+

∂Gi

∂Q
· u,j

)
. (3.96)

We already know the derivative of the covariant vectors w.r.t. the control points, e.g. see
equation (3.93). Finally the term in equation (3.88) with the derivative of the (adjoint)
strains is not as hard as it may seem. One has to compute quantities of the following
form:

∂ε∗

∂Qa
: σ = ∑

ij

1
2

σij (u∗,iRa,j + Ra,iu
∗,j
)

, (3.97)

where the index a corresponds to the active control points. The result given by equa-
tion (3.97) should be seen as a vector with three components (derivation w.r.t. each of
the three components of Qa).
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(a) Plate with a hole
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(b) Cantilever beam

Figure 3.14 – History of structural analysis and sensitivity analysis during optimization of (a)
the plate with a hole (see figure 3.10), and (b) the cantilever beam (see figure 3.12).
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E = 30 GPa, ν = 0.30 , P = 1000 Pa
L = 50 m, h = 6 m, w1 = 15 m, w2 = 10 m

Parameters:
Mechanical

Optimization problem

V ≤ V0 = 3000 m3

1.5 m ≤ h ≤ 10 m,  2 m ≤ w2 ≤ 15 m

minimize compliance

Figure 3.15 – Problem settings for the shape optimization of the 3D beam.

Derivative of the Stresses Having the derivatives of the strains in hand is already
a first step to compute those of the stresses. Indeed, they are obtained by using the
constitutive equations (3.32). The differentiation w.r.t. the control points gives:

∂σij

∂Q
=

∂Cijkl

∂Q
εkl + Cijkl ∂εkl

∂Q
, (3.98)

where the derivatives of the strains ∂εkl/∂Q is already known (see equations (3.96)-
(3.97)).

The derivatives of the material tensor ∂Cijkl/∂Q are obtained by the derivation of the
equation (3.33) which is repeated here for sake of clarity:

Cijkl = λGijGkl + µ
(

GikGjl + GilGjk
)

.

A chain rule of differentiation leads to:

∂Cijkl

∂Q
= λ

(
∂Gij

∂Q
Gkl + Gij ∂Gkl

∂Q

)
+ µ

(
∂Gik

∂Q
Gjl + Gik ∂Gjl

∂Q
+

∂Gil

∂Q
Gjk + Gil ∂Gjk

∂Q

)
. (3.99)

Thus, the derivatives of the contravariant metrics w.r.t. to the control points are involved.
We have not yet computed these derivatives. To this purpose, let us remind how we get
these metrics in this work (3.28): [

Gij ] = [ Gij
]−1.
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Figure 3.16 – Sensitivity analysis and optimization results for the 3D beam problem.

They are obtained by inverting a 3-by-3 matrix which takes the covariant metrics as
components. One can notice that the following relation holds true:[

Gij ][ Gij
]
= I, (3.100)

where I denotes here the identity matrix of size 3. Differentiating this last equation leads
to: [

∂Gij

∂Q

][
Gij

]
+

[
Gij
][

∂Gij

∂Q

]
=

[
0
]

. (3.101)

Then, we multiply this result by the right with the matrix containing the contravariant
metrics in order to identify the derivatives of the contravariant metrics. Using equa-
tion (3.100) finally gives: [

∂Gij

∂Q

]
= −

[
Gij
][

∂Gij

∂Q

][
Gij
]

. (3.102)
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3 Isogeometric Shape Optimization of Shell Structures

This enables to express the derivatives of the contravariant metrics as functions of the
derivatives of the covariant metrics:

∂Gij

∂Q
= −∑

kl
GikGl j ∂Gkl

∂Q
. (3.103)

The covariant metrics are obtained by dot products between the covariant vectors as
given in equation (3.27). Thus, the derivatives of the covariant metrics w.r.t. the control
points is quite straightforward:

∂Gkl

∂Q
=

∂Gk

∂Q
·Gl +Gk ·

∂Gl

∂Q
, (3.104)

and by introducing equation (3.93) one can get the results we were interested in:

∂Gkl

∂Qa
= Ra,kGl + Ra,lGk. (3.105)

We now have all the ingredients to compute the derivatives of the stresses w.r.t. the
control points of the analysis model.

Discussion of the examples We depict several examples along with the theoretical
formulas in order to highlight the computation of the analytical sensitivities. The inter-
ested readers can use these three test cases to validate the implementation for example.
More specifically, we present firstly two well-known 2D problems: the plate with a
hole (see figures 3.10, 3.11, 3.13, and 3.14(a)) and the cantilever beam (see figures 3.12
and 3.14(b)). To show that the presented analytical sensitivities work also for general 3D
problem (and not only for the special case of the solid-shell formulation), we deal with
the optimal design of a thick beam subjected to bending deformation (see figures 3.15
and 3.16).

For each problem, we show the main steps involved during the optimization, namely
the structural analysis performed on the finest discretization (the analysis model), and
the sensitivity analysis. As explained, the sensitivity analysis is firstly calculated using
the analysis model, and then, it is transferred on the coarsest discretization (the opti-
mization model). For instance, one can observe this multilevel sensitivity computation
in figure 3.11 for plate with a hole and in figure 3.12 for the cantilever beam. All the
gradients presented in the mentioned figures represent the analytical sensitivities of the
compliance (3.19). Moreover, we omit the derivation of the load vector because it does
not come into play for these examples. Thus, the gradients that are displayed on the
analytical models correspond to:

d fcpl

dQ
= −1

2
uT ∂K

∂Q
u, (3.106)

and are computed accordingly to equation (3.88). Thereafter, the gradients that are
displayed on the optimization models are obtained using equation (3.81).
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Type d fcpl/dx1 d fcpl/dx2 d fcpl/dx3 d fcpl/dx4 d fcpl/dx5 d fcpl/dx6

FD (1e-4) -8.91674872 -2.90020134 -2.75637409 2.75637409 2.90020134 8.91674872
FD (1e-6) -8.91674878 -2.90020142 -2.75637401 2.75637402 2.90020121 8.91674871

sAN (1e-6) -8.91675602 -2.90020546 -2.75638323 2.75636483 2.90019719 8.91674136
sAN (1e-8) -8.91675076 -2.90020354 -2.75637295 2.75636794 2.90019289 8.91674717

AN (-) -8.91674869 -2.90020130 -2.75637405 2.75637405 2.90020130 8.91674869

Table 3.1 – Different types of gradients for the plate with a square hole as given in figure 3.11.

Going into more detail, figure 3.13 show the influence of the refinement level of the
analysis model. The refinement influences not only the solution (displacement field) but
also the sensitivities. Thus, the refinement level of the analysis model has to be chosen
so that both the objective function and the gradient are precisely computed. It is also
possible to compare the analytical sensitivities with approximated sensitivities (semi-
AN, or global FD). We give in table 3.1 the gradients for the case of the plate with a hole
as described in figure 3.10 and 3.11. Here, we use central Finite Differences for the FD
approximation, and forward semi-Analytical scheme for the sAN approximation. One
can observe the impact of the step length. Up to a certain precision, the result differs.
This is especially true in case of the semi-AN calculation. Using a central difference
during the approximation helps but it is unfortunately more expensive. In practice one
may compromise between precision and numerical cost. For this simple case of the plate
with a hole, the influence of the step length remains limited. However, for more complex
cases, it can become difficult to set this parameter. For instance, the design variables can
have a fully different level of influence on the solution and may require different step
length. Even if every quantities are scaled (range of the design variables between 0
and 1, normalization of the objective, etc.), it does not ensure that the influence of the
step length vanishes. Comparing the analytical sensitivities with the central FD results
confirms the correctness of the presented formulation (and implementation).

Lastly, let us mention that the numerical cost of the analytical sensitivities is lower
than the other types of gradients. It is especially true for larger problem as the thick
beam (figure 3.16). Another interesting point is that the computation cost is indepen-
dent of the number of design variables, since the main step is the differentiation of the
stiffness matrix w.r.t. to the control points of the analysis model. This is done once and
for all for each partial derivative w.r.t. to the design variables. Based on our observation,
the presented analytical sensitivity analysis is numerically cheaper in addition to being
more precise.

3.3.2.2 Differentiating Kirchhoff–Love operators

For the Kirchhoff–Love shell formulation, we follow the same logic as the standard
IGA solid-shell formulation we just deal with (see section 3.3.2.1). Thus, here we skip re-
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3 Isogeometric Shape Optimization of Shell Structures

dundant calculation steps. Especially, one can obtain the counterpart of equation (3.88)
for the Kirchhoff–Love shell formulation by applying the same reasoning. In that re-
spect, we can show that:

ue∗ · ∂Ke

∂Q
ue =

∫
Ω̄e

0

{(
∂e∗

∂Q
: n+ e∗ :

∂n

∂Q

)
A + (e∗ : n)

∂A
∂Q

}
dΩ̄0

+
∫

Ω̄e
0

{(
∂κ∗

∂Q
: m+ κ∗ :

∂m

∂Q

)
A + (κ∗ : m)

∂A
∂Q

}
dΩ̄0 .

(3.107)

We have two principal terms identified as a membrane and a bending contribution. As
for the solid-shell, we need to compute the derivatives of the Jacobian, the derivatives of
the (adjoint) strains (membrane and bending), and the derivatives of the stress resultants
(membrane and bending).

Derivative of the Jacobian We already introduced the expression of the derivatives
of the Jacobian w.r.t. the control points, see equation (3.95). We simply repeat the
expression here:

∂A
∂Qa

= Ra,1A2 ×A3 + Ra,2A3 ×A1.

Derivative of the Membrane Strains and Stresses The expressions of the membrane
strains eαβ and the membrane forces nαβ involved in the Kirchhoff–Love shell are essen-
tially similar to the strain and stress fields of the standard solid elements (2D problem).
Thus, we give here only the final results. One can recover the following equations by go-
ing through what has been presented for the solid-shell formulation. For the derivatives
of the membrane strains, we obtain:

∂e∗αβ

∂Qa
=

1
2
u∗,αRa,β + Ra,αu

∗,β. (3.108)

The derivatives of the membrane forces is obtained using the constitutive equation (3.60).
We have:

∂nαβ

∂Q
= t

∂C̄αβγδ

∂Q
eγδ + t C̄αβγδ ∂eγδ

∂Q
. (3.109)

The derivatives of the material tensor ∂C̄αβγδ/∂Q can be computed similarly to what has
been done for the 3D constitutive law (3.99).

Since the membrane part involved in the analytical sensitivities for the Kirchhoff–
Love formulation is very similar to classical 2D problems (e.g. by tacking thickness
equals to one and assuming plane-stress state), the interested readers can start by im-
plementing the analytical sensitivities in that context. One can refer to the simple bench-
mark problems already presented (see section 3.3.2.1).
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E = 1 MPa, ν = 0.00 , q = 10 Pa
L = 10 m, h = 1 m, w = 0.5 m, t = 0.5 m
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Optimization problem
minimize compliance
hopt = 5.4779 m, parabola
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z
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q
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(1.67, 3.63) (8.33, 3.63)

(5.00, 7.30)Optimization Results

Figure 3.17 – Settings for the shape optimization of an arch under constant load. The optimal
result is a parabola with a specific height to length ratio [72].

Derivative of the Bending Strains and Stresses The bending part involved in the
sensitivity (3.107) requires additional developments. However, the core idea remains
the same. A chain rule is applied until we get an expression with quantities that we
know how to derive w.r.t. the control points. Let us repeat the expression of the bending
strain (3.53):

καβ = −u,αβ ·A3 +
1
A

(
u,1 · (Aα,β ×A2) + u,2 · (A1 ×Aα,β)

)
+
A3 ·Aα,β

A

(
u,1 · (A2 ×A3) + u,2 · (A3 ×A1)

)
,

which is split into three terms as follows in order to describe the derivatives:

καβ = −u,αβ ·A3 + κ1
αβ + κ2

αβ. (3.110)

Thus, the derivatives of the bending strains w.r.t. the control points are given by:

∂καβ

∂Q
= −u,αβ ·

∂A3

∂Q
+

∂κ1
αβ

∂Q
+

∂κ2
αβ

∂Q
. (3.111)
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The derivatives ∂κ1
αβ/∂Q can be written as follows:

∂κ1
αβ

∂Q
=

∂A−1

∂Q

(
u,1 · (Aα,β ×A2) + u,2 · (A1 ×Aα,β)

)
+

1
A

(
(u,1 ×Aα,β) ·

∂A2

∂Q
− (u,1 ×A2) ·

∂Aα,β
∂Q

)
+

1
A

(
(Aα,β × u,2) ·

∂A1

∂Q
− (A1 × u,2) ·

∂Aα,β
∂Q

)
,

(3.112)

where some circular shifts have been performed in the scalar triple products. Identically,
the other term ∂κ2

αβ/∂Q is given by:

∂κ2
αβ

∂Q
=

∂Ãαβ

∂Q

(
u,1 · (A2 ×A3) + u,2 · (A3 ×A1)

)
+
A3 ·Aα,β

A

(
(A3 × u,1) ·

∂A2

∂Q
+ (u,1 ×A2) ·

∂A3

∂Q

)
+
A3 ·Aα,β

A

(
(u,2 ×A3) ·

∂A1

∂Q
+ (A1 × u,2) ·

∂A3

∂Q

)
,

(3.113)

with:
∂Ãαβ

∂Q
=

∂A−1

∂Q
A3 ·Aα,β +

1
A

∂A3

∂Q
·Aα,β +

1
A
A3 ·

∂Aα,β
∂Q

. (3.114)

We already know how are expressed the derivatives of the covariant basis vec-
tors ∂Aα/∂Q (see equation (3.93)) and the derivatives of the Jacobian ∂A/∂Q (see equa-
tion (3.95)). Nonetheless, there are some additional derivatives that are involved in the
differentiation of the bending strains. Regarding the inverse of the Jacobian, the deriva-
tives read as:

∂A−1

∂Q
= − 1

A2
∂A
∂Q

(3.115)

The derivatives of the director vector appears multiple times. After few developments,
one should obtain the following formula:

∂A3

∂Q
= − 1

A
A3

∂A
∂Q

+
1
A

(
∂A1

∂Q
×A2

)
+

1
A

(
A1 ×

∂A2

∂Q

)
. (3.116)

Scalar products between these derivatives ∂A3/∂Q and different vectors are involved.
Let us give a general expression of this type of quantities:

v · ∂A3

∂Qa
= − 1

A

(
(v ·A3)

∂A
∂Qa

+ (v×A2)Ra,1 + (A1 × v)Ra,2

)
, (3.117)

where v denotes any required vector. Lastly, let us give the following results:

v ·
∂Aα,β
∂Qa

= Ra,αβ v. (3.118)
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Figure 3.18 – Sensitivity analysis for the arch. The planar beam (left) leads to a zero gradient
and thus cannot be taken as the initial configuration. In the optimal configuration (right), the
z-component of the gradient is also null which reflects that a minimum has been found.

We now have all the ingredients in order to compute the derivatives of the bending
strains w.r.t. the control points of the analysis model. It contains quite a lot of terms.
Hence, it is worth spending some time to identify repetitive terms in order to make
numerical savings in the implementation. For instance, there are multiple cross and
dot products that seem better to compute once and for all at the beginning instead of
computing them for each control points Qa.

Finally, the derivatives of the bending moments are computed through the derivation
of the constitutive equation (3.61):

∂mαβ

∂Q
=

t3

12
∂C̄αβγδ

∂Q
κγδ +

t3

12
C̄αβγδ ∂κγδ

∂Q
. (3.119)

At this point, we now how to compute every terms, i.e. the derivatives of the material
tensor and the derivatives of the bending strains.
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Figure 3.19 – Settings and optimization results for the square roof problem.
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Analytical Sensitivity in IGA

Type d fcpl/dx1 d fcpl/dx2 d fcpl/dx3

FD (1e-6) -1.6957568 -8.4787011 -1.6957568
central FD (1e-6) -1.6959047 -8.4787644 -1.6959047

sAN (1e-6) -1.6959225 -8.4788029 -1.6959224
central sAN (1e-6) -1.6959047 -8.4787644 -1.6959046

full AN (-) -1.6959046 -8.4787644 -1.6959046

Table 3.2 – Different types of gradients for the arch as given in figure 3.18 (×1e-2).

Discussion of the examples As for the standard IGA element formulation, we give
several examples in order to demonstrate the good performance of the analytical sensi-
tivities for the Kirchhoff–Love shell. We deal with two examples: the arch problem as
depicted in figures 3.17 and 3.18, and the square roof as given in figure 3.19. For each ex-
ample, the external load is formulated so that it is constant for each shape configuration.
The external virtual work is given by:

δWext =
∫

Ω̄0

qz · δu Az dΩ̄0 with Az = (A1 ×A2) · z, (3.120)

where z denotes the director vector of the global coordinate basis as shown on fig-
ure 3.17 for the arch and figure 3.19 for the roof. Even if the load vector is constant
when modifying the shape in direction z, we decide to include its derivative during
the sensitivity analysis in order to provide a general framework. Indeed, if the shape
parametrization allows a shape modification in the other directions, the derivative of the
load vector should be taken into account. It means that the gradients represented along
with the fine parametrization in figures 3.18 and 3.19 are computed by:

d fcpl

dQ
= uT ∂F

∂Q
− 1

2
uT ∂K

∂Q
u, (3.121)

where the derivative of the stiffness matrix is done according to equation (3.107). The
derivative of the load vector is calculated as follow:

uT ∂F

∂Q
=
∫

Ω̄0

qz · δu ∂Az

∂Q
dΩ̄0, (3.122)

where:
∂Az

∂Qa
= (A2 × z)Ra,1 + (z ×A1)Ra,2. (3.123)

It is straightforward to see that this term does not add components in z-direction. Fi-
nally, the gradients represented over the coarse parametrizations in figures 3.18 and 3.19
are computed using equation (3.81).

In order to validate the presented analytical sensitivity for the Kirchhoff–Love shell
formulation, we compare the different types of gradient for the initial (curved) arch as
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3 Isogeometric Shape Optimization of Shell Structures

set in figure 3.17. The results are given in table 3.2. The optimization model is built with
2 elements with degree 3 in the main direction and degree 1 in the other. The analysis
model is then obtained by a level of refinement of 3 in the main direction (16 elements).
We also elevate the degree such that degree 2 is defined in the second direction. In
table 3.2 we present the semi-Analytical and global Finite Differences approximation
using both forward and central schemes. The results obtain with the central schemes
show the correctness of the analytical sensitivities. For both semi-AN and global FD,
the forward scheme induces inaccuracy up to a certain precision.

Concerning the numerical cost, we conclude the same as for the standard IGA formu-
lation. The computational cost of the presented analytical sensitivities is independent of
the number of design variables and is cheaper than the other approximate sensitivities,
especially for complex models.

3.4 Optimal Design of Shell Structures

Most results presented in this section have been published in Hirschler et al. [18].
This study has been done prior to the development of the analytical sensitivities. Semi-
analytical sensitivities with a forward Finite Difference scheme were used instead. How-
ever, this issue is transparent here. The goal is to explore the use of solid-shell elements
in the framework of isogeometric shape optimization of shells. We first compare the
solid-shell strategy with the commonly adopted strategy based on Kirchhoff–Love shell.
Then we take advantage of the geometric representation of the thickness brought by
solid-shell elements. It offers the interesting possibility of imposing continuous sizing
variations.

3.4.1 Solid-shell vs. Kirchhoff–Love

In order to investigate the use of isogeometric solid-shell elements for shape opti-
mization of shell structures, two optimization examples depicted in figure 3.20 are first
studied. Both the pinched cylinder and the pinched hemisphere are known from the
shell obstacle course [130]. These optimization problems are non-convex and are nu-
merically challenging. In fact, the pinched hemisphere and the pinched cylinder are
commonly studied to test high-efficient shell elements. The hemisphere is challenging
in terms of locking: it exhibits almost no membrane strains. The pinched cylinder is
even more severe. The loading and the displacement boundary conditions lead to a
highly localized strain state. The local loading associated with the curved geometry
make the problem challenging numerically in terms of both locking and representation
of complex membrane states. Optimizing this set of problems automatically requires
accurate analysis results.
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Figure 3.20 – Numerical examples to investigate the use of isogeometric solid-shell elements for
shape optimization of shell structures: (a) pinched cylinder and (b) pinched hemisphere.

Pinched cylinder We first deal with the test case of the pinched cylinder (see fig-
ure 3.20(a)). The optimization model is chosen relatively coarse in order to keep the
shape simple. Because of the complexity of the strain state generated by the local load-
ing, a fine optimization model would lead to a too complex final shape. Due to the sym-
metry of the problem, one eighth of the cylinder is considered, hence only one NURBS
patch is needed. The symmetric conditions are imposed through static condensation.
The optimization model is discretized by 3× 4 quadratic elements in the circumferential
and the axial direction respectively. With such an optimization model in hand, 6 design
variables update the geometry as depicted in figure 3.21(a). Variables named xi move
some control points in the x-direction, whereas variables denoted ri move some control
points in the radial direction. At the patch boundaries, groups of two or four control
points are set in order to preserve a smooth G1-continuous shape. All variables are con-
strained by bounds of [0, 60]. Analysis is performed with cubic elements. Refinement
level of 4 and 3 are set in the circumferential and the axial direction respectively, leading
to an analysis model of 1536 elements.

We run the shape optimization with the Kirchhoff–Love shell and with the standard
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Figure 3.21 – Shape optimization of the pinched cylinder: (a) 6 design variables update the
optimization model, (b) final shapes obtained by both shell formulations, and (c) comparison of
the final shapes depicted as the distance between their mid-surface.

x1 x2 x3 r1 r2 r3

Kirchhoff–Love 60.0 22.65 7.52 0.0 1.74 0.23
solid-shell 60.0 23.31 7.58 0.0 1.72 0.51

Relative Gap [%] 0.0 1.10 0.10 0.0 0.02 0.47

Table 3.3 – Optimal values of the design variables for the shape optimization of the pinched
cylinder.

solid-shell. Final shapes are identical as shown in figure 3.21. The difference between
both results is not visible when looking at the design modifications. To further compare
the results, the distance between the mid-surfaces is presented. The maximum gap
between the optimal surface obtained with Kirchhoff–Love elements and the final mid-
surface obtained with solid-shell elements is about 0.5 which is, by comparison with the
range of allowed design variation, very small. The maximum gap normalized by 60 is
lower than 1%. Table 3.3 gives the optimal values of the design variables for both shell
formulations. Results are similar and the relative gap (defined as |sKL − sSolid|/60) for
each variable does not exceed 1%.

The small difference in final design when using either Kirchhoff–Love elements or
solid-shell elements may be a result of the difference in converged solutions. It has
be shown that the converged solution using isogeometric solid-shell elements for the
pinched cylinder problem is a little softer than the reference solution [17, 128]. This lit-
tle difference in solution may influence the shape updates and finally lead to a slightly
different optimal design. Beyond that, the shape optimization of the pinched cylinder
reveals very similar behavior for both shell formulations. During the optimization pro-
cess, the shape updates are similar and it has been observed that the convergence is
reached after the same amount of iterations.
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Figure 3.22 – Shape optimization of the pinched hemisphere: (a) 25 design variables update the
optimization model, (b) final shapes obtained by both shell formulations, and (c) comparison of
the final shapes depicted as the distance between their mid-surface.

Pinched hemisphere Similarity with the second optimization example of the pinched
hemisphere can be found in Kiendl et al. [72]. Again, the symmetry of the problem
allows to consider only one quarter of the structure. Hence, only one patch is needed.
The optimization model is built with uniform knot vectors which discretize the geom-
etry in 5 quadratic elements per parametric direction. 25 design variables depicted in
figure 3.22(a) are defined in order to prescribe the shape modifications in radial di-
rection. Once again, the boundary control points are coupled in order the preserve a
smooth G1-continuous shape. All variables are constrained by bounds of [−1, 1]. Fur-
ther k-refinement is applied to perform the analysis, leading to an analysis model with
400 cubic elements. Tests showed that this refinement level was adequate to converge to
the good looking optimal design.

Once again, we run the optimization with the solid-shell and compare the results
with those provided by the Kirchhoff–Love shell. Figure 3.22(b) presents the optimal
design obtained by both formulations. Despite the complexity of this optimization prob-
lem, the final shapes are very similar: no visible difference can be observed. Similar
hollows and bumps are located on both optimal designs. To compare more in detail the
results, the distance between the two mid-surfaces is computed (see figure 3.22(c)). The
maximum gap in shape is about 6.34 · 10−3 which is very small in comparison with the
allowed range of design modification. Normalized by 2, the maximum relative distance
between the optimal mid-surfaces is lower than 0.5%. Final values of the cost function
also demonstrate the similarity between the optimal design obtained with the standard
solid-shell and the one obtained with the Kirchhoff–Love shell. The final compliance is
1.34 · 10−3 for the solid-shell case and 1.30 · 10−3 for the Kirchhoff–Love case. However,
the final shape obtained by Kirchhoff–Love shell is not better. Note that in order to cor-
rectly compare the final shapes, the compliance has to be evaluated on the same analysis
model [72]. Strain energy is evaluated for the optimized shapes in a post-processing step
using a fine mesh with quartic Kirchhoff–Love NURBS elements. This post-processing
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Figure 3.23 – History of compliance and shape during the optimization of the pinched hemi-
sphere when using Kirchhoff–Love NURBS shell elements and NURBS-based Solid-shell ele-
ments.

procedure reveals that both shapes give a final compliance of 1.34 · 10−3 which is 1.5%
of the initial value 9.24 · 10−2.

Beyond the similarity in final shape, the whole optimization histories look alike.
Figure 3.23 shows the convergence of the objective function in both cases either with
solid-shell NURBS elements or with Kirchhoff–Love NURBS elements. Optimization
processes converge at the same speed and stop after an equivalent number of iterations
within a given tolerance on function value. Some of the intermediary shapes are also
shown in figure 3.23. Shape updates are very similar and the different hollows and
bumps appear at the same iteration during the optimization.

3.4.2 Sizing Optimization with a Solid-shell approach

Stiffened cylinder problem The volume representation of the structure offers the pos-
sibility to optimize the thickness profile continuously. In order to highlight this feature,
we present the optimization of a stiffened cylinder. This examples is derived from the
pinched cylinder problem. Two stiffeners are added to the cylinder as depicted on fig-
ure 3.24. The stiffeners are located at heights 150 and 450. Initially, these stiffeners have
a constant rectangular cross-section of height 30 and thickness 3. The other geometric
and material parameters are detailed in figure 3.20. The optimization problem consists
in modifying the cross section along the stiffeners in order to improve the global stiff-
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Figure 3.24 – The stiffened cylinder: two stiffeners are added to the initial pinched cylinder test
case. The cross-section of the stiffener can be geometrically parametrized and thus optimized.
Here, for each section of control points, two variables impose local design modifications in (a)
the height and in (b) the thickness directions respectively.

ness of the structure. A volume constrain is set in order to keep the final volume lower
or equal to the initial one V0. Due to the symmetry of the problem, only an eighth of the
structure is considered.

Bi-step approach Since the thickness is much less sensitive than the height, combining
both quantities in a single optimization problem may lead to mostly modify the height
of the stiffener. That is why we came up with the idea of performing the optimization
in sequences of two steps, i.e. the shape step where we optimize the height, and the sizing
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Figure 3.25 – Optimization results of the stiffened cylinder: (a) final shape when only the stiff-
ener height is modified, and (b) final shape when both height and thickness are optimized
(annotations on figure 3.24 can be helpful to understand the detailed views of the stiffener).

step where we optimize the thickness.

For this purpose, we define a first set of design variables h that update the height of
the stiffener as depicted on figure 3.24(a). A second set of design variables t modifies
the thickness as shown in figure 3.24(b). The shape step consists in minimizing the
compliance with a maximal volume constrain. An additional bound is set in order
to limit the height of the stiffener h in the range [25, 100]. The sizing step minimizes
the volume V under the constrain that the final compliance is lower or equal to the
one obtained from the shape step c∗. The design space for the thickness t is limited
to [0.5, 3.0]. The global optimization process is made of sequences of a shape step
followed by a sizing step. The fixed point process iterates until the global convergence
is reached; that is, convergence on the design variables, the compliance and the volume.
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Figure 3.26 – Optimization history of the bi-step approach applied to the stiffened cylinder
problem. Three global iterations with successive shape and sizing steps are preformed until
convergence. Red zones denote the shape steps where the compliance is minimized and blue
zones denote the sizing step where the volume is minimized.

The kth sequence takes the following form:

hk , tk

−→

1. Shape Step

minimize fcpl
w. r. t. h ∈ Rn

such that 25 ≤ h ≤ 100
V ≤ V0

hk+1, tk

−→
c∗

2. Sizing Step

minimize V
w. r. t. t ∈ Rn

such that 0.5 ≤ t ≤ 3.0
fcpl ≤ c∗

hk+1, tk+1

−→ (3.124)

Both optimization problems are complementary. The shape step will use all the available
material in order to minimize the compliance. The sizing step rearranges the material
distribution through the thickness in order to save material. Then, this saving material
can be further use in the shape step in order to continue minimizing the compliance.
This sequential optimization strategy is sensitive to the initial starting point and may
lead to local optimum. The height and the thickness design variables are decoupled.
Thus, to ensure a good quality result, we performed a multi-start algorithm. On top
of that, we notice that multidisciplinary optimization strategies could be of interest to
properly solve this problem and we refer the interested reader to [142] and [143] for
futher details regarding this point.

99

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI092/these.pdf 
      © [T. Hirschler], [2019], INSA de Lyon, tous droits réservés
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Results The results of this study are given in figure 3.25. Optimizing through the
thickness leads to a better design in the sense of the compliance. It helps to make a
better use of the material volume. By reducing the thickness in some locations, the
height of the stiffener can be increased in others. The initial compliance in the case of
a straight stiffener is about c0 = 1.73e-06. When only shape optimization is employed,
the final compliance is about c1 = 1.68e-06. The final compliance when both shape and
sizing optimizations are performed is about c2 = 1.64e-06. Therefore, the compliance
gain when adding the sizing optimization is almost twice the compliance gain when
only the height of the stiffener is taken into the optimization process.

Figure 3.26 depicts the optimization history. It takes three global iterations to con-
verge. The main design changes are imposed during the first stage (i.e. the first succes-
sion of a shape and a sizing step) and the second shape step. For this optimization case,
these steps may be enough to get an optimal geometry. Finally, this example shows that
the solid-shell NURBS element offers an interesting way to deal with sizing optimiza-
tion. It extends all the advantages of the NURBS parametrization to sizing optimization
problem.

3.4.3 A multi-model optimization process

We present here a multi-model optimization. The idea is to combine the potential
of both Kirchhoff–Love and solid-shell formulations. In a first stage, the Kirchhoff–Love
formulation is used to perform a shape optimization in which the shell structure is
varied in the out-of-plane direction. Then, the optimal surface is used to generate a vol-
ume model of the structure. In the second stage, thickness optimization is done on the
volume model by using the developed solid-shell approach. We notice that this multi-
model optimization appears consistent since it corresponds to the design process of
structures. The first stage is the prototyping in which the influence of many parameters
is studied. It requires a model with low computational cost in order to perform many
simulations. Once the global shape of the structure is obtained, an high-fidelity volume
model is created. Instead of directly using this model to generate the CAD drawings,
one can perform a last optimization to apply final adjustments. Thank to the isogeomet-
ric approach, the final geometry can directly be transferred to the manufacturing step
since no conversion in a CAD format is required.

We show the reliability of the procedure to design the variable thickness roof. Fig-
ure 3.27 presents the main steps and results for this test case. The global shape (step
1 in figure 3.27) is obtained by solving the already tackled example of the square roof
problem (see figures 3.19 and associated discussion). This example is based on the work
of [144] and similar studies can be found for example in [145, 146]. The optimal posi-
tions of the control points are given on the top view and on the side view of the structure
on figure 3.27.

Once the global shape of the structure is obtained, one can build a volume model by
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offsetting the previous surface in z-direction with a distance of t = 0.10. We consider
only one quarter of the structure. The in-plane parametric directions are defined by the
same knot vector U = {0 0 0 1

6
2
6

1
2

3
4 1 1 1}. Degree one is chosen in the thickness

direction for building the optimization model. Thus, the optimization model counts
25 elements. The design variables modify the distance between the upper and lower
surfaces. They parametrize the distance between neighboring control points of both up-
per and lower surfaces. The design variables are bounded so that the distance between
the related control points varies in range tmin = 0.025 and tmax = 0.20. The control
points located on the symmetric planes are coupled in order to preserve the geometric
continuity which leads to a total of 36 design variables. Finally, we choose to keep the
upper surface unchanged by moving only the lower control points. For the analysis, a
refinement level of two is performed: it discretizes the structure with 20-by-20 quadratic
elements.

The sizing optimization (step 2) consists in minimizing the compliance under the
constraint of keeping the volume lower than the initial one. The optimization history
is presented in figure 3.27 (see step 2). The final ratio of the compliance is below 0.55.
Therefore, the thickness optimization drastically improves the behaviour of the struc-
ture. It can be observed that the thickness distribution of the final geometry is quite
complex. In case of discrete thicknesses, being able to accurately represent such a dis-
tribution may require a high number of elements. Thus, the number of design variables
would be higher. Finally, the optimal design (see figure 3.27, bottom) has regions with
thin thickness and regions with thick thickness. At the corners, the thickness is equal to
0.20 which is, regarding the slenderness of the structures, relatively important. Using
Kirchhoff-Love elements would not be relevant to analyze such a structure.
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Chapter 4

Domain Decomposition Methods

Efficient solvers for large-scale systems have been intensely studied over the past three
decades. In structural mechanics, non-overlapping domain decomposition methods

have shown strong potentials, and are now considered as robust strategies for solving
complex problems. In this chapter we take advantage of these established performances for
analyzing non-conforming isogeometric multipatch shell structures. To this purpose, we
first introduce a Mortar coupling for Kirchhoff–Love shells. Then, step-by-step we build
a dual domain decomposition algorithm. Relevant theoretical and practical key points are
presented, along with numerical investigations.
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4 Domain Decomposition Methods

4.1 Non-Conforming Parametrization

4.1.1 Multipatch Geometric Models

NURBS are recognized as a powerful tool for geometric design. Thus, it is the pre-
dominant technology in many CAD software for designing high-resolution geometries.
We now know that NURBS are also powerful for the analysis. Unfortunately, the pre-
requisites for the geometric modeling and for the numerical simulation are different. In
other words, an automatic transfer from a NURBS-based CAD model to an analysis-
suitable model is not straightforward.

More specifically, a single NURBS patch cannot represent complex industrial ge-
ometries. Instead, multiple NURBS patches are required where each of them describes
a specific part of the overall structure. Thus, it is crucial that IGA deals with multipatch
models if the purpose is to provide a new versatile method in engineering design. The
issue concerns the junctions between those multiple patches: how the coupling between
the patches is tackled during both geometric modeling and analysis steps ? Figure 4.1
illustrates this challenge. The difficulty lies in the fact that geometric modeling does not
pay a special attention to the presence of multiple patches: each patch is defined inde-

Matching
interface

Additional 
C0 lines

Non-matching
interface

Knots insertion

Matching
interface

Additional 
C0 lines

Complete 
reparametrization

Non-conforming
interface

Analysis 
suitable Model

Conceptual
Geometry

Geometric 
Modeling

Figure 4.1 – NURBS modeling generates multipatch geometries where each patch represents a
specific part of the complete structure. Naturally, these patches present non-matching or even
non-conforming parametrization at their interfaces. Additional procedures are required to get a
final model with conforming and matching interfaces.

104

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI092/these.pdf 
      © [T. Hirschler], [2019], INSA de Lyon, tous droits réservés



Non-Conforming Parametrization
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Figure 4.2 – Connecting conforming patches that are initially non-matching (a): the basis func-
tions of both patches need to be modified in order to become identical over the interface zone (b).

pendently. The parametrization of one patch is not defined under a particular constraint
due to any other patches. It leads to patch interfaces with non-matching or even non-
conforming properties. From here on, we use the following terminology to characterize
those interfaces [147]:

— it is non-conforming when some elements are overlapped by the interface,

— it is conforming but non-matching when the interface is aligned with the edges of
the patches but the control points on both sides do not match,

— it is matching when the discretizations are exactly the same on both sides of the
interface.

NURBS-based CAD models seldom, if ever, have matching interfaces. Depending on
the geometry, NURBS modeling can lead to non-matching interfaces as depicted in
figure 4.1, left. But in the more general case, non-conforming interfaces between the
patches are encountered (see figure 4.1, right).

4.1.1.1 Analysis suitable models

For the analysis of multipatch models, two approaches can be classified. The first
approach consists in calling on re-parametrization procedures to transform the patch
junctions into fully matching interfaces [148]. One can operate this way because match-
ing interfaces are easily tackled during the analysis by concatenating the duplicated
control points at the interface. By analogy with the standard FEM framework, it can
be seen as connecting two finite elements. However, generating matching interfaces
between NURBS patches is not a trivial task. In the simplest case of a non-matching
but conforming interface (see figure 4.1, left), knots insertion (or removal) and degree
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4 Domain Decomposition Methods

2D Basis Functions

Cut along the stiffener position

Interface zone Interface zone

Basis functions at the patch boundary

Figure 4.3 – Example of a stiffened panel with non-conforming parametrizations: the interface
crosses the elements from the panel. The trace spaces of both sides are particularly different.

elevation (or reduction) allow to comply the requirement for a matching interface. More
specifically, this re-parametrization procedures transform the basis functions of both
sides so that they become identical along the interface. The process is highlighted in
figure 4.2.

Transforming non-conforming interfaces into fully matching interfaces is trickier. It
cannot be done by invoking the fundamental geometric algorithms (knots insertion, de-
gree elevation, etc.) as for the non-matching case. The difficulty comes partly from the
tensor-product nature of NURBS. Let us take the example of the stiffened panel dis-
played in figure 4.1(right). We depicted the trace spaces for this example in figure 4.3.
From the panel side, the interface crosses several elements. When the whole cut is not
along one parametric direction, it is not possible to obtain a matching junction by modi-
fying the basis functions at the knot spans level. Instead, a complete re-parametrization
has to be performed if a matching interface is required. Despite its simple rectangular
shape, the panel needs to be decomposed into six patches to get an overall parametriza-
tion with matching interfaces as shown in figure 4.1. The problem stems from the
fact that this re-parametrization can hardly be automated, especially for volume mod-
els [149].

In contrast with the first approach based on re-parametrization procedures, the sec-
ond option for analyzing multipatch models consists in using advanced numerical tools
for coupling the non-conforming patches. In this work, we follow this methodology be-
cause it appears to us more appropriate for an optimization process. In particular, we
want to avoid to modify the parametrization of the model at every iteration of the reso-
lution. This would lead to a too cumbersome method.
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Non-Conforming Parametrization

4.1.1.2 Domain Decomposition

The examples depicted in figure 4.1 reveal an additional point: NURBS modeling
generates a natural decomposition of the domain. As already observed, we know that
multiple patches are needed to model a large structure with, for example, multiple parts.
From an analysis point of view, each patch can be seen as a sub-domain of the compu-
tational domain. This observation motivates us to focus on an efficient class of solvers:
the non-overlapping Domain Decomposition Methods [150]. Kleiss et al. [151] initially
noticed this natural link between IGA and DDM, and they developed an isogeometric
solver for matching multipatch models following this Domain Decomposition strategy.

Solve

(a) Reference problem (b) Domain Decomposition

Solve

Solve
Solve

Glue

Figure 4.4 – Non-overlapping Domain Decomposition Methods: (a) instead of solving one large
system defined over the whole the computational domain Ω, (b) the domain is subdivided into
multiple sub-domains Ω(s). The resolution is performed by solving local systems defined per
sub-domain, and interface condition are recovered through an iterative process.

The point of interest lies in the potential of DDM for solving large-scale systems. In
fact, those non-overlapping DDM have been actively studied over the past decades as
efficient parallel solvers for systems with possible millions of DOF. The idea is to subdi-
vide the computational domain into non-overlapping sub-domains: instead of solving
one large system, multiple independent local systems are solved per sub-domain and
interface conditions are recovered through an iterative process (see figure 4.4). More
specifically, the Finite Element Tearing and Interconnecting [152] and the Balancing Do-
main Decomposition [153] are often seen as originators of the two main branches of
those non-overlapping DDM. BDD is usually referred to as a primal approach since it
chooses the interface displacement field as main unknowns, whereas FETI is usually
referred to as a dual approach because it privileges the interface loads. Since then,
a large number of papers and variants have been developed and successfully applied
in many context: e.g. plate and shells [154–156], heterogeneous problems [157, 158],
contact problems [159], etc.

As stated above, the key aspect regarding how non-overlapping Domain Decom-
position Methods concerns the interface conditions between the sub-domains. In the
more general dual approach, the sub-domains are glued together through Lagrange
multipliers. In our case, the interfaces between the patches are possibly non-conform.
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4 Domain Decomposition Methods

Interestingly, there exists a method to couple non-conforming meshes through Lagrange
multipliers: the so-called Mortar method [160]. Thus, Mortar coupling and dual DDM
are strongly related, and this is why FETI methods with Mortar finite elements have
been studied in the classical FEM framework [161].

Based on all these discussions, we construct in the following a dual Domain Decom-
position algorithm for analyzing non-conforming multipatch models. The starting point
is the introduction of a Mortar method for the coupling of non-conforming Kirchhoff–
Love shells. Then, step-by-step we build the solver by calling upon the core strategy of
non-overlapping DDM.

4.1.2 Treatment of non-conforming interface

Before dealing with the particular case of Kirchhoff–Love shells, we shortly re-
view the main methods for coupling non-conforming patches in the context of classical
second-order linear elasticity problems. There exist three principal methods, namely
penalty coupling [162–164], Mortar coupling [19, 147, 165–170], and Nitsche coupling [171–
176]. Especially, Apostolatos et al. [171] compare these three methods for 2D linear elas-
ticity problems in the IGA framework.

Let us take the case of two patches occupying, respectively, sub-domains Ω(1) and Ω(2),
and joining at interface Γ. On each sub-domains (s), the following system of equations
holds:

div σ(s) + f (s) = 0 in Ω(s), (4.1)

σ(s) = C(s) : ε
(

u(s)
)

in Ω(s), (4.2)

σ(s)n(s) = g on Γg ∩ ∂Ω(s), (4.3)

u(s) = u0 on Γu ∩ ∂Ω(s), (4.4)

where the notations stand for as follows: volume effort f , elasticity tensors C, surface ef-
fort g and outward unit normal vector n defined on the Neumann boundary Γg, surface
displacement u0 imposed on the Dirichlet boundary Γu. The virtual work formulation
of this uncoupled problem can be written as:

δW(1)
int + δW(2)

int − δW(1)
ext − δW(2)

ext = 0, (4.5)

where Wint and Wext denote the internal and external works, respectively.
In order to get the coupled problem, additional conditions are set on the interface.

The continuity of the displacement and the equilibrium of the tractions need to be im-
posed through:

u(1) − u(2) = 0 on Γ, (4.6)

σ(1)n(1) + σ(2)n(2) = 0 on Γ. (4.7)
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Non-Conforming Parametrization

Combining these conditions (4.6) and (4.7) with the locals systems (4.1)–(4.4) is strictly
equivalent to a linear elasticity problem posed on the whole initial domain Ω. In case
of non-conforming interfaces, the coupling conditions cannot be imposed in the strong
way. Instead, those coupling conditions are prescribed in the weak sense, and thus,
the different coupling methods differ by the way those weak conditions are formulated.
Those coupling methods augment the virtual work formulation (4.5) by different contri-
butions.

Penalty coupling The penalty method enforces the displacement continuity (4.6) by
introducing the following penalty virtual work:

δWpenalty =
∫

Γ
αpen

(
u(1) − u(2)

)
·
(

δu(1) − δu(2)
)

dl, (4.8)

where αpen is a penalty parameter of large magnitude. The accuracy of the method
depends on the value of this parameter. If its value is too large, then the discrete coupled
system is ill-conditioned. Conversely, a too small value does not ensure the constraints
to be satisfied. Furthermore, the penalty value is often problem-dependent and thus, a
given value of αpen may not be appropriated for a variety of problems. Finally, note that
the basic penalty method as expressed in (4.8) cannot recover the interface conditions of
the strong form, and more specifically the effort equilibrium (4.7).

Mortar coupling The Mortar method introduces an additional field, the Lagrange mul-
tiplier field λ ∈ M (M being an ad-hoc space), which represents both of the interface
traction forces:

λ = −σ(1)nΓ = −σ(2)nΓ, with nΓ = n(1) = −n(2). (4.9)

The effort equilibrium (4.7) is included into the strong form of the problem through (4.9)
whereas the displacement continuity (4.6) is imposed in a weak sense. It results in
a mixed formulation where the additional virtual work performed by the Lagrange
multiplier field reads:

δWmortar =
∫

Γ

(
u(1) − u(2)

)
· δλ dl +

∫
Γ

(
δu(1) − δu(2)

)
· λ dl . (4.10)

Because the communication between the sub-domains is performed via the Lagrange
multiplier only, the Mortar approach enables to keep separated and unmodified the
local stiffness operators (i.e. associated to each sub-domain). This feature is the basis of
the non-overlapping DDM which will be used in this work to build our dual Domain
Decomposition solver. Finally, let us recall that a drawback of the Mortar approach is
the construction of the approximation space of M. Indeed, an inf–sup condition needs
to be satisfied in order to avoid undesirable energy-free oscillations [165].
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4 Domain Decomposition Methods

Nitsche coupling The Nitsche method also enforces the Neumann interface condi-
tion (4.7) in the weak sense. Starting with the Mortar coupling, the idea is to replace the
Lagrange multiplier by the mean interface force [177]. When the neighbor sub-domains
have close material properties, the mean weights are usually set identical and equal to
1/2. In this case, the contribution of the interface work for the Nitsche approach is given
by:

δWnitsche = −
∫

Γ

(
u(1) − u(2)

)
· 1

2

(
δσ(1) + δσ(2)

)
nΓ dl

−
∫

Γ

(
δu(1) − δu(2)

)
· 1

2

(
σ(1) + σ(2)

)
nΓ dl .

(4.11)

In addition, this formulation needs to be stabilized in order to ensure the ellipticity of
the Boundary Value Problem. This can be done by adding a term of form (4.8) and
by solving a generalized eigenvalue problem to appropriately estimate the stabilization
parameter [171, 172]. However, let us notice that a non-symmetric version of the Nitsche
method exist. This formulation does not require the introduction of additional stabiliza-
tion terms: the criterion for stability is weakly satisfied and the method converges with
optimal rates in the strain energy norm [173, 176, 178].

4.2 Mortar coupling for Kirchhoff–Love shells

In the particular context of isogeometric Kirchhoff–Love shells, both of the three
coupling methods (penalty, Mortar, and Nitsche) have been successfully applied for
large and complex industrial structures, even for non-linear analysis [164, 170, 179].
Among all methods, various arguments are put forward regarding different criteria as
for example the simplicity, the accuracy, the robustness, or even the range of applica-
tions. Nevertheless, a great potential of the Mortar method seems not to have been yet
fully exploited: as already mentioned, there exists a natural link between this class of
coupling methods and the family of Domain Decomposition algorithms. This point de-
serves particular attention, and we attempt in this work to motivate researches in that
direction.

4.2.1 Kinematic coupling conditions

We are interested in the analysis of stiffened structures as illustrated in figure 4.1,
right. The junction between the panel and the stiffener has only C0 continuity along the
non-conforming patch interface. We present a coupling method which enables to track
this type of interface.

In fact, few works dealing with the Mortar coupling of isogeometric Kirchhoff–Love
shells that consider the case of G1-geometric continuity interface can be listed [162,
170]. However, the formulation in the context of linear elasticity analysis of multipatch
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Mortar coupling for Kirchhoff–Love shells

(a) Initial Configuration (b) No coupling (c) Displacement only (d) Full coupling

Figure 4.5 – Kinematic constraints for Kirchhoff–Love shells: at the patch junction, the three
components of the displacement fields need to be coupled (c). Additionally, the continuity of
the rotation in the tangent direction of this interface curve is imposed (d).

Kirchhoff–Love shells which connect with arbitrary angles is not highly studied yet.
Some aspects can be found in Duong et al. [180] but the applicability for linear analysis
may not appear obvious: the kinematic constraints are built by dot and cross products
between quantities of neighboring patches which results in quadratic terms (w.r.t. the
displacement). It thus requires a linearization and the resolution is done by the Newton-
Raphson method [see appendix D.2. in 180].

For the sake of simplicity, the method is presented in the case of two non-overlapping
sub-domains Ω(1) and Ω(2) without loss of generality. At the common interface de-
noted by Γ, the continuity of the displacement has to be ensured. Furthermore, in
case of a shell junction with rigid hinge, an additional constraint is required which en-
forces the continuity of the rotation in the tangential direction associated to the interface
curve [181]. Thus, we formulate the kinematic constraints as:

u(1) = u(2) on Γ, (4.12)

Φ(1) · t = Φ(2) · t on Γ, (4.13)

where t is a unit tangent vector associated to the interface curve. Figure 4.5 highlights
the effect of these constraints. The T-Beam is built with two non-conforming patches.
Thus, without the coupling, there is no load transfer from the upper patch to the lower
one. With the imposition of the displacement continuity at the interface, the junction
acts as a hinge. Finally, the continuity of the rotation leads to a complete coupling
between the patches (see figure 4.5). The continuity of the displacement (4.12) leads to
three equations (each Cartesian components). The continuity of the rotation (4.13) leads
to one equation because we only enforce the rotation in a given direction (the expression
of the rotation vector Φ is given in equation (3.47)).

4.2.2 Weak coupling with a Mortar approach

In order to impose the continuity of the displacement (4.12) and the continuity of
the rotation (4.13), we make the use of a Mortar coupling. To this end, we introduce
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4 Domain Decomposition Methods

two Lagrange multipliers, one for each kinematic constraints as also done by Aposto-
latos et al. [171]. Let us denote λ̃ ∈ Ld and λ̂ ∈ Lr (Ld and Lr being ad-hoc spaces)
the Lagrange multipliers associated to the displacement and the rotation continuity con-
straints, respectively. The virtual work performed by these Lagrange multiplier fields is
given by:

δWmortarKL =
∫

Γ

(
u(1) − u(2)

)
· δλ̃ dl +

∫
Γ

(
δu(1) − δu(2)

)
· λ̃ dl

+
∫

Γ

(
Φ(1) · t−Φ(2) · t

)
δλ̂ dl +

∫
Γ

(
δΦ(1) · t− δΦ(2) · t

)
λ̂ dl .

(4.14)

We can now introduce the discretizations uh(1) and uh(2) of the displacement fields,
and λ̃h and λ̂h of the Lagrange multipliers as follows:

uh(s)(θ1, θ2) = ∑
i

R(s)
i (θ1, θ2)u

(s)
i s = 1, 2,

λ̃h(ξ) = ∑
i

R̃i(ξ) λ̃i,

λ̂h(ξ) = ∑
i

R̂i(ξ) λ̂i.

(4.15)

With these discretizations in hand, the variational principle written in the discrete form
gives the following coupled linear system to be solved:

K(1) 0 C(1)T Z(1)T

0 K(2) C(2)T Z(2)T

C(1) C(2) 0 0

Z(1) Z(2) 0 0





u(1)

u(2)

λ̃

λ̂


=



F (1)

F (2)

0

0


, (4.16)

where K(s) and F (s) denote the local stiffness matrices and load vectors, respectively.
The displacement coupling matrices C(s) and the rotation coupling matrices Z(s) consist
in sparse signed rectangular operators. The two last sets of equations of system (4.16)
weakly ensure the continuity of the displacement fields (see (4.12)) and of the rotations
in the tangent direction (see (4.13)):

C(1)u(1) + C(2)u(2) = 0, (4.17)

Z(1)u(1) + Z(2)u(2) = 0. (4.18)

Discretization The linear system (4.16) consists in a saddle point problem, implying
that the approximation spaces of the Lagrange multipliers must be carefully chosen
in order to satisfy an inf–sup condition. Recent works present optimal approximation
spaces for Mortar coupling in isogeometric analysis [165, 168–170]. In particular, Schuß
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Mortar coupling for Kirchhoff–Love shells

et al. [170] deals with the G1 coupling of non-matching Kirchhoff–Love shells. Based
on these works, one could build optimal approximation spaces for the Mortar coupling
of shells that intersect in an arbitrary, non-conforming manner (i.e. where the junction
crosses a patch, or where the patches intersect with an angle, etc.). This issue is not
tackled in this work. Instead, the strategy adopted here is only based on numerical
experiments. Let p denote the smallest degree of the discrete displacement field of both
subdomains Ω(1) and Ω(2). We define:

— for the displacement constraints, λ̃h as a vector-valued B-Spline function with de-
gree p− 1 since it is mainly related to traction forces,

— for the rotation constraint, λ̂h as a scalar-valued B-Spline function with degree
p− 2 because it transfers a bending moment,

— an identical mesh refinement for both Lagrange multipliers. We discretize these
fields using as many elements as the coarsest of the trace of domains Ω(1) and Ω(2)

along the interface.

We assert that with such a choice, we never encountered instabilities in our computa-
tions. All numerical examples presented in the this work highlight the good behavior of
this Mortar coupling. One can also notice that the choice of the approximation spaces
for the Lagrange multipliers is completely decoupled from the overall approach applied
in this work to build the Domain Decomposition solver. With other choices in hand, the
remaining part of the method performs identically.

4.2.3 Implementation aspects

Since now, we have not detailed yet the expression of the coupling operators C(s)

and Z(s). For this purpose, we opt for the same notation as done for example in Herrema
et al. [164]. We denote by l the global DOF number of the jth-component associated to
the displacement vector ub, such that ul = ub · ej (where ej refers to the basis of the
global Cartesian coordinate system). Similarly, let k denote the global DOF number of
the Lagrange multipliers. With these notations in hand, one can express the following
variations:

∂uh

∂ul
= Rbej,

∂λ̃h

∂λ̃k
= R̃aei,

∂λ̂h

∂λ̂k
= R̂a. (4.19)

The coupling matrices are obtained by deriving the Mortar virtual work (4.14) with
respect to the DOFs. The coupling matrix C that enforces the displacement continuity is
given by:

Ckl = ±
∫

Γ

∂λ̃h

∂λ̃k
· ∂uh

∂ul
dl = ±

∫
Γ

R̃aRbδij dl . (4.20)

Thus, the displacement coupling matrix has a similar structure than classical mass matri-
ces. It only brings into play products between the basis functions from the displacement
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Figure 4.6 – Non-conforming parametrization: the interface between both surfaces is represented
in their parameter spaces by using NURBS curves C̄(s). These curves are generated in order to
ease the building of the coupling operators for the Mortar approach.

and from the Lagrange multiplier fields. The symbol ± indicates whether the sub-
domain is the master (+) or the slave (−). Accordingly to equation (4.14), in this case
the sub-domain Ω(1) is the master patch and the sub-domain Ω(2) is the slave patch.

The expression of the coupling matrix Z associated to the continuity of the rotation
is expressed as:

Zkl = ±
∫

Γ

∂λ̂h

∂λ̂k

(
∂Φ
∂ul
· t
)

dl = ±
∫

Γ
R̂a

[
a3

J

(
Rb,θ2(a1 · t)− Rb,θ1(a2 · t)

)]
· ej dl . (4.21)

It involves the same geometric quantities as for the stiffness matrix. More specifically,
one has to compute the basis functions and their derivatives, and then compute the local
basis vectors. Finally, the only new quantity is the tangent unit vector t to the interface
curve. This vector is deducted during the numerical integration over the coupling inter-
face Γ as explain in the following.

Indeed, we still need to clarify how to integrate numerically over the interface. For
general non-conforming interface, the methodology adopted in this work is depicted
in figure 4.6. We manage to represent the interface in the parameter spaces through
NURBS curves. As mentioned by Bauer et al. [182], it results from a surface-to-surface
intersection problem which is a common task in CAD. Under the consideration that no
approximation is involved during the generation of the curves, we have two definitions
of the interface curve (one per subdomain). In other words, the following equation
applies:

S(1)
(
C̄(1)(ξ)

)
= S(2)

(
C̄(2)(ξ)

)
= C(ξ) ∀ξ ∈ [0, 1]. (4.22)
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Mortar coupling for Kirchhoff–Love shells

The embedded curves C̄ allows to perform a change of variables which results in the
following treatment to compute the coupling matrices. For instance, for matrix C, we
get:

Ckl = ±
∫
[0,1]

R̃a(ξ) Rb (C̄(ξ)) δij |T (ξ)| dξ , (4.23)

and we apply a similar treatment for matrix Z. The vector T is given by derivation as
follows:

T (ξ) =
d

dξ
S (C̄(ξ)) =

(
C̄,ξ(ξ) · e1

)
a1 +

(
C̄,ξ(ξ) · e2

)
a2. (4.24)

Vector T is tangential to the interface curve. Therefore, once normalized, one can obtain
the unit tangent vector t which comes into play in the rotation coupling matrix (4.21).
Finally, numerical integration is performed using a Gaussian quadrature rule. A refine-
ment by knot insertion of the embedded NURBS curves discretizes the interface in a
finite number of segments. The number of segments and the number of Gauss points
per-segment should be chosen such that the numerical error due to the quadrature rule
remains negligible. At the end, the assembly of the coupling matrices is performed with
a loop on the Gauss points of each segment:∫ 1

0
f (ξ)dξ = ∑

I

∫ ξ I+1

ξ I

f (ξ)dξ ≈ ∑
I

∑
gp

f (ξ Igp)JIgp ωgp, (4.25)

where ξ Igp denotes the position of the Gauss point on the parameter space of the em-
bedded curve, JIgp denotes the Jacobian of the last mapping such that the integral over
[ξ I , ξ I+1] is changed into an integral over [-1, 1], and ωgp denotes the quadrature weight.

4.2.4 Monolithic resolution

Prior to the development of the dual Domain Decomposition algorithm, we present
here preliminary numerical examples in order to highlight the correctness of our Mortar
coupling for Kirchhoff–Love shells. The resolution is done with a direct solver applied
to the coupled linear system (4.16).

Clamped

Interface Γ

Ω(2)

Ω(1)

q

x

yz

y
λ·z

10
 ̃

-q y
0 1

0

λ̂
qL/2

Lagrange multipliers:
displ. constraint rotation constraint

Figure 4.7 – Cantilever beam with end load: the beam is decomposed in two non-matching
pacthes and coupled with the Mortar approach. The shape of Lagrange multipliers for the
displacement and the rotation continuity constraints are shown one the right.
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4 Domain Decomposition Methods

Beam bending In order to investigate the good behavior of the coupling, we start by
considering simple test cases where analytical results are known. For instance, here we
study the case of a cantilever beam with end load as described in figure 4.7. Based
on the Euler–Bernoulli beam theory, it is possible to express along the beam, the verti-
cal displacement and the stress resultants. We adopt the following parameters: beam
length L = 20 m, width w = 1 m, and thickness t = 0.1 m, line load q = 100 N m−1,
Young’s Modulus E = 60 GPa, and Poisson’s ratio ν = 0.

The beam is decomposed in two non-matching cubic patches of same size (i.e. the
interface is located at half the length) as shown in figure 4.7. Since the deflection is
expressed as a polynomial of degree 3, we should recover the analytical solution. In-
terestingly, we can link the Lagrange multiplier fields to the analytical values of the
bending moment and the shear force. In fact, the z-component of the Lagrange multi-
plier λ̃ that imposes the continuity of the displacement represents the shear force, and
the Lagrange multiplier λ̂ that imposes the continuity of the rotation represents the
bending moment. Thus, we can verify that we numerically obtain the following values:

λ̃AN = −q = −100 N m−1, and λ̂AN =
qL
2

= 1000 N. (4.26)

The Lagrange multipliers are discretized with respect to the strategy suggested in sec-
tion 4.2.2: one quadratic B-Spline element for the displacement constraint, and one
linear B-Spline element for the rotation constraint. We run the analysis and we verify
that the theoretical results are exactly recovered. The error is of magnitude of the com-
puter precision. One should pick the patch Ω(2) as the master, and the patch Ω(1) as the
slave in order to get the same sign as in equation (4.26). This test case highlights the
mechanical meaning of the proposed Lagrange multiplier formulation. It is also useful
for validating the implementation of the coupling operators. Finally, instead of putting
the interface midway, one can cut the beam at different locations and investigate if the
analytical expressions are recovered (which should be the case).

T-Shape beam The T-beam problem is built using two planar patches that are con-
nected in a non-matching way as depicted in figure 4.8. The interface crosses the middle
of the upper patch. The upper patch has one more element than the other in the beam
direction, and both patches are discretized with cubic elements. We take the same nu-
merical setting as in Herrema et al. [164] which are also given in figure 4.8.

We obtain a similar deformation as in Herrema et al. [164] where penalty coupling
was performed. In order to show that the rotation constraint is well prescribed, we
plot in figure 4.8(c) the resulting angle between the patches along the interface. It can
be seen that it remains equal to 90° after deformation. Without the rotation constraint,
the angle between the patches was found to be equal to 86.6 at the end of the beam
because the interface acts as a hinge [164]. The presence of small oscillations for the
coarser parametrization may be due to the non-optimality of the chosen spaces for the
Lagrangian fields. Once again, it could be interesting to investigate the inf–sup condition
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Parameters
L = 20 m,  h = 2 m,  w = 2 m,  t = 0.1 m
E = 1.0 × 107 Pa,  ν = 0.
F = 10. N

Figure 4.8 – T-Beam non-matching coupling: (a) Description of the problem: the interface cuts
the upper patch at the middle of some elements. (b) Deformed configuration with scale factor
of 10 and the magnitude of the displacement field. (c) Angle between the patches along the
interface after deformation. Coarse case corresponds to the mesh depicted in (b). Fine mesh is
three times refined.

to clarify the stability of the method [165]. However, these oscillations vanish with a finer
parametrization which is satisfying.

Boundary conditions The coupling operators can be useful to impose boundary con-
ditions, especially for the rotation along the edges of a patch. In fact, since the Kirchhoff–
Love shell formulation does not have rotational DOFs, symmetric boundary conditions
cannot be imposed in a direct manner in general (e.g. eliminating some DOFs).

As an example, one can take the case of the tube with a square cross-section as
depicted in figure 4.9. Due to the symmetry of the problem, it is possible to consider
only one quarter of the tube, and thus to model the tube with a single patch. To that
purpose, additional boundary conditions have to be imposed as depicted in figure 4.9.
Along two edges of the patch, the rotation in the z-direction has to be fixed. One can
used the coupling matrix Z and solve the following linear system:K ZT

Z 0


 u

λ̂BC

 =

F
0

 . (4.27)

Here, we force the other displacement constraints (ux = 0 and uy = 0 as mentioned on
figure 4.9) strongly but one could also use the Mortar operator C introduced previously
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x
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y

z

uy = 0, Φz= 0 ux = 0, Φz= 0 

planes of symmetry

θ1

θ2

Figure 4.9 – Single patch model of a square shape tube under internal pressure: the constraints
for the rotation on the patch edges are imposed through the Mortar coupling operators. Look-
ing at the deformed configuration shows that the angles between the patch and the planes of
symmetry are kept fixed (right side, color map corresponds to the displacement magnitude).

for the displacement continuity (see equation 4.20). Figure 4.9(right) displays the de-
formed configuration of the tube and highlights the good imposition of the boundary
conditions. Finally, one can look at the expression of the rotation vector for this present
example of the tube. With the parametric directions as given in figure 4.9, the tangent
component of the rotation vector reads as follows:

Φ · t = α u3,θ1

where α is a constant and u3 is the displacement component normal to the shell. In
other words, we impose at the patch edges the kinematic condition: u3,θ1 = 0. Similar
conditions can be found in the literature, for instance in Schöllhammer et al. [183].

The rotation coupling matrix Z can also be used for imposing a bending moment at
the edge of a shell. As an example, we consider the case of a beam with one fixed end

x

yz Encastre

uz = 0
Mbnd

Disp uz [mm]
0.0 0.75 1.5 2.25 3.

0 10 20
x [m]

0
1
2
3

uz [mm]

0 10 20
x [m]-500

0
500
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My [ N ]

Figure 4.10 – Beam with one end fixed and a bending moment applied on the other edge. The
bending moment can be applied using the Mortar operator Z.
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A dual Domain Decomposition algorithm

and with a moment applied to the other end as depicted in figure 4.10. The geometric
parameters of the beam are the same as the cantilever beam with end load described in
figure 4.7. We impose a bending moment (per length unit) equals to Mbnd = 1000 N. To
this purpose, we solve the following system:

Ku = ZTλ̂bnd, (4.28)

where all the DOFs associated to the Lagrange multiplier λ̂bnd are equal to Mbnd. Based
on the Euler–Bernoulli beam theory, one can express the vertical displacement and the
bending moment along the beam. The bending moment is a linear function of the beam
position, and the displacement is of cubic order (see figure 4.10, right):

My =
Mbnd

2L
(3x− L) , uz(x) =

w Mbnd

4EIL
(
−x3 + x2L

)
,

where I = w t3/12 denotes the second moment of inertia. Thus, a patch with a sin-
gle cubic element is sufficient to recover the analytical results. This has been verified
numerically (see figure 4.10, right).

4.3 A dual Domain Decomposition algorithm

Henceforth, we address the general case of ns sub-domains (i.e. ns patches) Ω(s),
s = 1 . . . ns. We define as K = diag(K(1), K(2), . . . , K(ns)) the block diagonal matrix
that stores all the stiffness matrices of each sub-domain. We define the global load
vector F = (F (1)T ,F (2)T , . . . ,F (ns)T)T as well. The total displacement and Lagrange
multiplier DOFs are stored in column vectors u and λ respectively. We concatenate
the displacement and the rotation Mortar coupling matrices into single coupling matri-
ces B(s) such that:

B(s) =
[
C(s)T , Z(s)T

]T
. (4.29)

The matrices B(s) are of size Nλ× N(s)
u , where Nλ denotes the size of λ and N(s)

u denotes
the size of u(s). Thus, we introduce the global coupling operator B = [B(1), B(2), . . . , B(ns)].
With these notations, the generalization of the coupled system (4.16) reads:K BT

B 0


u
λ

 =

F
0

 . (4.30)

We are now looking for an efficient algorithm to solve the coupled linear system (4.30)
based on the Domain Decomposition Methods, as motivated previously (see section
4.1.1.2). The proposed solver belongs to the family of dual Domain Decomposition al-
gorithms, originally introduced by Farhat et al. [152] with the one-level FETI algorithm.
The following developments are based on these researches and provide an efficient algo-
rithm for the parallel computation of non-conforming multipatch Kirchhoff-Love shells.
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4 Domain Decomposition Methods

4.3.1 The one-level FETI problem

The first step of the approach consists in splitting problem (4.30) into the following
coupled set of equations:

K(s)u(s) = F (s) − B(s)Tλ, for s = 1, . . . , ns (4.31)
ns

∑
s=1

B(s)u(s) = 0. (4.32)

The goal is then to formulate a dual interface problem with the Lagrange multiplier
DOF as the only unknowns. This interface problem is obtained by introducing the local
equilibriums (4.31) into the coupling condition (4.32).

Equilibrium of floating sub-domains Generally, the local stiffness matrices K(s) are
not invertible. Indeed, if no Dirichlet boundary conditions are imposed on the floating
sub-domain Ω(s) then corresponding matrix K(s) is singular. Therefore, K(s) being sym-
metric, equation (4.31) has a solution if and only if the load vector F (s)−B(s)Tλ belongs
to the image of operator K(s). It leads to an additional equation, called the admissibility
condition, which is:

R(s)T
(
F (s) − B(s)Tλ

)
= 0, for s = 1, . . . , ns (4.33)

where R(s) is a rectangular matrix. Its columns describe a basis of the null space ker(K(s))

of matrix K(s). From a mechanical point of view, these vectors are the local rigid body
modes. Then, for each sub-domain, the equilibrium is given by:

u(s) = K†(s)
(
F (s) − B(s)Tλ

)
+ R(s)α(s), (4.34)

where α(s) is a vector that collects the different amplitudes of the rigid body modes
(or null-energy modes) for sub-domain s and K†(s) is a pseudo-inverse of the stiffness
matrix, i.e. that satisfies K(s)K†(s)K(s) = K(s). If the stiffness matrix is non-singular, then
the pseudo-inverse is unique and equal the inverse of matrix K(s), i.e. K†(s) = K(s)−1.

Substitution Now, the local solutions (4.34) can be introduced into the compatibility
condition (4.32). It yields the following equation:

ns

∑
s=1

B(s)K†(s)B(s)T λ −
ns

∑
s=1

B(s)R(s)α(s) =
ns

∑
s=1

B(s)K†(s)F (s). (4.35)

Finally, combining this last equation with the admissibility condition given by (4.33), we
end up with the interface problem. The resulting system is generally called the FETI
system and is given by:  F G

GT 0


λ
α

 =

d
e

 , (4.36)
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A dual Domain Decomposition algorithm

where α concatenates the rigid body unknowns of each sub-domain. The dual Schur
complement F, the constraint matrix G, and the right-hand sides d and e are expressed
as:

F =
ns

∑
s=1

B(s)K†(s)B(s)T ,

G = −
[
B(1)R(1) B(2)R(2) · · · B(ns)R(ns)

]
,

d =
ns

∑
s=1

B(s)K†(s)F (s),

e = −
(
F (1)TR(1) F (2)TR(2) · · · F (ns)TR(ns)

)T
.

4.3.2 Solving the interface problem

The resolution of system (4.36) relies on an iterative solver where only matrix-vector
products are performed. This way, there is no need for assembling the dual Schur com-
plement which would be computationally very demanding since pseudo-inverses K†(s)

are involved. Moreover, it avoids to inverse the dual Schur complement which has a
dense structure. More precisely, system (4.36) is solved in the following using a Pre-
conditioned Conjugate Projected Gradient algorithm. The idea is to iteratively solve a
symmetric positive definite linear system (involving F) under the constraint (4.33).

Projection In order to do so, an additional projection step enables to eliminate the DOF
associated to the rigid body motions of the floating sub-domains. More specifically, a
projector P onto the null space of GT, i.e. onto ker(GT), is introduced to satisfy (4.33).
Thus, by definition, we have the relations:

GTP = 0, and PTG = 0.

It allows to eliminate the unknowns α from the first set of equations of system (4.36).
To this end, we multiply these equations to the left by PT:

PT
[

Fλ+ Gα = d
]
⇒ PTFλ = PTd. (4.37)

The second equation GTλ = e of system (4.36) is explicitly fulfilled by introducing the
splitting:

λ = λ0 + Pλ̄, (4.38)

where the initialization λ0 satisfies the constraint GTλ0 = e. This splitting is operated
during the resolution by firstly choosing λ0 as the starting guess, and secondly by pro-
jecting the gradient during the update. Finally, these two projection steps transform the
interface problem (4.36) into the projected interface problem:

PTFP λ̄ = PT (d− Fλ0) , (4.39)
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4 Domain Decomposition Methods

Initialize
λ0 = QG(GTQG)-1e

r0 = d− Fλ0

Iterate k = 1, 2, . . . until convergence

wk−1 = PTrk−1 Project
zk−1 = Mwk−1 Precondition
yk−1 = Pzk−1 Re-project

pk = yk−1 −∑k−1
i=1 βip

i (p1 = y0) Conjugate

with βi =
yk−1 · Fpi

pi · Fpi

αk =
yk−1 ·wk−1

pk · Fpk Minimize

λk = λk−1 + αkp
k Update

rk = rk−1 − αkFpk Residual

Table 4.1 – The Preconditioned Conjugate Projected Gradient algorithm with reorthogonaliza-
tion. Operators P and M denote the projector and the preconditioner, respectively.

which is solved using the PCPG algorithm as described in table 4.1.
We still need to express the projector and the initialization. It brings into play a

symmetric matrix denoted Q for which the product GTQG is invertible. Matrix Q can
be taken as being the preconditioner, identity or a scaling matrix [184]. Finally, we have:

λ0 = QG
(

GTQG
)−1

e, (4.40)

P = I−QG
(

GTQG
)−1

GT. (4.41)

For most problems, the simplest choice Q = I is the most computationally efficient, and
many studies reported in the literature have been performed with this choice [184, 185].
We apply the same treatment herein. Finally, full or partial re-orthogonalization of the
gradient at every iteration is commonly adopted to overcome the poor conditioning of
the dual Schur complement [150]. In this work, a full re-orthogonalization is performed.

Note: parallel computing A crucial feature of this algorithm is that it fits well with
parallel computing. This is not surprising as it was originally intended for that particular
purpose [152]. To understand this point, one can observe what happens during the
product between a vector y and the dual Schur complement F:

Fy =

[
∑

s
B(s)K†(s)B(s)T

]
y = ∑

s

(
B(s)K†(s)B(s)Ty

)
. (4.42)
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A dual Domain Decomposition algorithm

It results in a sum of local contributions that can be computed independently. Each local
contribution involves the local pseudo-inverse K†(s) and the coupling matrix B(s) which
remain unchanged during the iterative resolution, and thus are build once and for all at
the beginning. Each local contribution is computed into three steps as follows:

y −→

Sub− domain

step 1
v
(s)
1 = B(s)Ty

−→
step 2

v
(s)
2 = K†(s)v

(s)
1
−→

step 3
v
(s)
3 = B(s)v

(s)
2

−→ v
(s)
3

Thus, a sub-domain can be seen as a black box: tacking as an input a vector y, it returns
the local contribution v3

(s). Summing all these local contributions give the desired prod-
uct Fy. The most time consuming step is the product by the pseudo-inverse (i.e. step 2).
As discussed in the next section, the pseudo-inverse is generally given as a factorization
(as a classical inverse). As a result, this step can be seen as the resolution of a linear
system where the matrix is already factorized. Finally, let us notice that a sub-domain
does not need to know all the Lagrange multiplier DOFs but only those coming from the
Lagrange multipliers that are actually acting on this sub-domain. Thus, a vector y is not
communicated completely to each sub-domain, but only the active part y(s) is required,
which is extracted using trace operators. For example, taking the sub-domain Ω(1) from
the case depicted at figure 4.11, we understand that only the DOFs coming from the La-
grange multiplier λ12 is required. It also means that in practice the coupling matrix B(s)

does not have a number of row equals to the total number of Lagrange multiplier DOF,
but only equals to those related to the considered sub-domain.

Unlike the dual Schur complement, there is however a step which occurs during the
projection that can apparently not be done in parallel (see the algorithm described in
table 4.1). Indeed, in the expression of the projector (4.41), there is the so-called coarse
problem which is the term (GTQG)−1. This coarse problem takes the rigid body DOF as
unknowns. It is therefor of low dimension and easy to be factorized before entering into
the gradient loop. It can be seen as a coarse correction that plays a particular role in the
scalability of the algorithm. Finally, we do not go into more details regarding this issue
of parallel computing of the algorithm. Interesting readers can find a large amount of
information in the literature since DDMs have been intensely developed during the past

Ω(1) Ω(4)Ω(2) Ω(3)

λ12 λ23 λ34
Figure 4.11 – Parallel computing: the communication between the sub-domains is done through
the Lagrange multipliers.
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(a) Rigid body motions (2D case)

Translation x Translation y

Translation z Rotation (O,z)

Rotation (O,x) Rotation (O,y)x
y

z

(b) Rigid body motions (3D case)

Figure 4.12 – Rigid body motions

decades (see, for example, Jolivet [186] and Kozubek et al. [187]).

4.3.3 Null-space and Pseudo-inverse

Up to now, we did not mention how are formulated the null space R(s) and the
pseudo-inverse K†(s) that come into play in the one-level FETI solver. There are differ-
ent possibilities but here we resort to a purely algebraic method because of the embed-
ded Kirchhoff–Love shell formulation which will be introduced in the next chapter 5.
This shell formulation has the particularity of being non-isoparametric which involves
potential difficulties to build the null space, as discussed in the following.

4.3.3.1 Explicit construction of the kernel

Let us firstly deal with the column matrix R(s). The null space of a stiffness matrix is
commonly associated to the space of rigid-body modes. For 3D elasticity problem and
under the condition that no Dirichlet boundary conditions are imposed, we know that
there exist 6 rigid-body motions consisting of 3 translations (modes numbered 1, 2, and
3) and 3 rotations (modes numbered 4, 5, and 6) around 3 non-collinear axes. Figure 4.12
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presents these rigid-body modes for a simple geometry.
Considering a shell with mid-surface S(θ1, θ2), an arbitrary kernel element r is :

r(θ1, θ2) = a + b×S(θ1, θ2), (4.43)

where a ∈ R3 defines a translation and b ∈ R3 defines a rotation. In order to build a
basis of the null space, one can successively describe the translations and the rotations
with respect to the global unit vectors ei. We can re-write equation (4.43) in the discrete
form in order to identify the DOF corresponding to these unitary rigid-body modes:

∑
k

Rk(θ1, θ2)r
i
k = ei, and ∑

k
Rk(θ1, θ2)r

i+3
k = ei ×S(θ1, θ2), (4.44)

where Rk are the NURBS basis functions of the discretized displacement field. It is
obvious that taking all DOF ri

k equal to ei enables to describe the translation rigid-body
modes. For the rotations, it depends on the discretization of the shell mid-surface:

— in the case of an isoparametric shell formulation, the displacement field is approx-
imated using the same discretization as for the mid-surface which gives:

∑
k

Rk(θ1, θ2)r
i+3
k = ∑

k
Rk(θ1, θ2) ei × Pk ⇒ ri+3

k = ei × Pk. (4.45)

— in the case of a non-isoparametric shell formulation, the displacement field and
the mid-surface are discretized differently (Rk for the displacement and Ml for the
mid-surface), leading to the linear system of equations:

∑
k

Rk(θ1, θ2)r
i+3
k = ∑

l
Ml(θ1, θ2) ei × Pl , ∀ (θ1, θ2). (4.46)

System (4.46) cannot be solved in general. One can choose a set of parameters {(θ1, θ2)1,
(θ1, θ2)2, . . .} and build an approximation of the null space by interpolation for instance.
However, it does not ensure that equation (4.46) is exactly satisfied (i.e. true for every
couple of parameters (θ1, θ2)) which means that this approximation of the null space
may not be energy-free. Thus, we cannot explicitly build the kernel of the stiffness
matrix in case of a non-isoparametric shell formulation.

In a first attempt, we studied the expression of the null space in the case of a floating
sub-domain without any Dirichlet boundary conditions, because we were interested
in the approach presented by Dostál et al. [188] called the Total-FETI. This method
partly aims at simplifying the implementation of the original FETI method since the
same treatment for each sub-domain is performed. Within this approach, the column
matrix R(s) is always taken as the explicit description of the kernel of the all floating
sub-domains. Then, they suggest to build the pseudo-inverse by a regularization of the
semi-definite stiffness matrix which can be done again through the use of the rigid body
modes (see [187, 189] for more details). Because it is not possible to build explicitly
the null space for a non-isoparametric shell formulation, the Total-FETI approach does
not seem to be applicable in this context. Consequently, we resort to a purely algebraic
method to build the null spaces and the pseudo-inverses involved in the algorithm.
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Deformed configuration
( Color: Displacement magn. )Cube in compression

Figure 4.13 – Pure neumann problem: cube in compression with Poisson’s ratio ν = 0.30.

4.3.3.2 Algebraic method

For clarity, we voluntarily skip here the sub-domain identification through super-
script (s), but the reader should view the following operators as local quantities. The
purely algebraic method used in this work has been presented in Farhat et al. [190]
and already used in Farhat et al. [152]. The pseudo-inverse and the null space are con-
structed during the factorization of the stiffness matrix. It is based on the partition of
matrix K ∈ Rn×n as:

K =

[
K11 K12

K12
T K22

]
, (4.47)

where K11 ∈ Rr×r is a submatrix with full rank r equal to the rank of the initial matrix
(i.e. r = rk K = rk K11). With such a partition in hand, the following relation holds:

K22 −K12
TK−1

11 K12 = 0. (4.48)

One can define the pseudo-inverse and the null space as:

K† =

[
K−1

11 0
0 0

]
, R =

[
−K−1

11 K12

I

]
, (4.49)

where I is the identity matrix of size m = n− r.
In practice, partition (4.47) is not known in advance but it is obtained in an unordered

form during a Gaussian-based factorization (as for example a LU decomposition). At
each step of the factorization, one can check if a null pivot is encountered. If true, the
corresponding equation is redundant and is removed from the system. The reduced
column can be recycled to later recover the null space. Furthermore, note that a small
tolerance needs to be set to detect the null pivots (i.e. the right term in (4.48) is, in
practice, not exactly equal to zero). It enables for instance to track the rotation rigid-
body modes in the case of the embedded Kirchhoff–Love shell (see next chapter 5 for the
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A dual Domain Decomposition algorithm

details). More information regarding the algebraic approach can be found in Farhat et
al. [190]. Alternative methods, based for example on the Singular Value Decomposition
(SVD) are also available [191]. Pure Neumann problems as for instance the cube in
uni-axial compression presented in figure 4.13 typically resort to pseudo-inverses of
semi-definite system. If required, several works can be found in the literature that deal
with this type of singular problems (e.g. [189, 192]).

4.3.4 Preconditioning

Last but not least ingredient involved in the FETI algorithm is the preconditioner
already introduced in table 4.1 through operator M. Its goal is to reduce the condition
number of the linear problem to be solved. Since the rate of convergence of iterative
solvers depends on the condition number of the system, they are usually combined
with a preconditioner. Moreover, a good preconditioner is crucial for the computational
performance of the iterative resolution. The preconditioner can be seen as an approx-
imation of the inverse of the system. The better the approximation, the more efficient
is the preconditioning step during the iterative resolution. However, a good precondi-
tioner can be computationally expensive to be built and evaluated, which can override
the positive effect of faster iterative convergence.

Dirichlet preconditioner Several preconditioners of the dual Schur complement have
been studied in the literature. In the context of FEM matching grids, the Dirichlet
preconditioner is said to be optimal regarding the asymptotic bound and thus offers an
excellent numerical scalability [193]. The Dirichlet preconditioner is obtained under the
approximation that the inverse of the sum of the local contributions is the sum of the
inverses of each of these local contributions. More precisely, it is obtained by exactly
inverting the local dual Schur complements and summing each local contribution. In
case of Mortar interface, we can re-write this Dirichlet preconditioner as:

F̃−1
I =

ns

∑
s=1

(
B(s)B(s)T

)−1
B(s)

[
0 0
0 S(s)

bb

]
B(s)T

(
B(s)B(s)T

)−1
, (4.50)

where matrix S(s)
bb denotes the primal Schur complement and is given by:

S(s)
bb = K(s)

bb −K(s)
bi K(s)

ii

−1
K(s)

ib , (4.51)

where indices b correspond to the boundary DOF on the interface and indices i corre-
spond to the internal DOF.

Proof. Let us prove that expression (4.50) corresponds to the sum of the inverses of the local dual
Schur complements. To this purpose, we can re-write the local dual Schur complement F(s) by

127

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI092/these.pdf 
      © [T. Hirschler], [2019], INSA de Lyon, tous droits réservés
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using the splitting of the boundary DOF and the interface DOF. It reads as:

F(s) =
[
0 B(s)

b

] [K(s)
ii K(s)

ib

K(s)
bi K(s)

bb

]−1 [
0

B(s)
b

T

]
(4.52)

Next, we introduce the following quantities C(s)
i and C(s)

b such that:[
C(s)

i

C(s)
b

]
=

[
K(s)

ii K(s)
ib

K(s)
bi K(s)

bb

]−1 [
0

B(s)
b

T

]
. (4.53)

Thus, we can re-write the equation (4.52) by using the notation from equation (4.53):

F(s) =
[
0 B(s)

b

] [C(s)
i

C(s)
b

]
= B(s)

b C(s)
b ⇒ C(s)

b = B(s)
b

T
(

B(s)
b B(s)

b
T
)−1

F(s). (4.54)

One can multiply equation (4.53) to the left by the stiffness matrix K(s). It results the following
equations:

K(s)
ii C(s)

i + K(s)
ib C(s)

b = 0, (4.55)

K(s)
bi C(s)

i + K(s)
bb C(s)

b = B(s)
b

T. (4.56)

Now, we substitute equation (4.55) into equation (4.56). The local primal Schur complement as
previously defined in equation (4.51) appears:[

K(s)
bb −KbiK

(s)
ii

−1
K(s)

ib

]
C(s)

b = B(s)
b

T ⇒ S(s)
bb C(s)

b = B(s)
b

T (4.57)

Introducing the result from equation (4.54) into this equation (4.57) gives:

S(s)
bb B(s)

b
T
(

B(s)
b B(s)

b
T
)−1

F(s) = B(s)
b

T (4.58)

Finally, we multiply this last equation by the left by the term (Bb
(s)Bb

(s)T)−1Bb
(s). We get the

final result: (
B(s)

b B(s)
b

T
)−1

B(s)
b S(s)

bb B(s)
b

T
(

B(s)
b B(s)

b
T
)−1

F(s) = Ib (4.59)

We find the expression presented in equation (4.50).

Generalized preconditioner More specifically, some works deal with the particular
case of Mortar coupling and improvements to the initial version of the Dirichlet pre-
conditioner have been studied in this context [161, 185, 193, 194]. For instance, scaling
factors can be added in order to take into account the possible gap between the stiff-
nesses on both sides of the interface [195, 196]. These heterogeneities are particularly
numerous in the case of stiffened structures with the presence of T-junctions, different
shell thicknesses and material behaviors [156]. Thus, it is primordial to efficiently deal
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∆u(1) ∆u(2)

∆F(1)∆F(2) correction Δλ

average jump wk

Step 1 - displacement correction

Step 2 - local Dirichlet 
problems

Step 3 - averaging reaction

Figure 4.14 – Illustration of the preconditioning step during the iterative resolution of the dual
Domain Decomposition solver (adapted from Gosselet et al. [150]).

with those heterogeneities to analyze complex shell structures. Therefore, in the present
paper, it is proposed to follow the extended Dirichlet preconditioner suggested by Rixen
[193] and mentioned by Stefanica [185] which can be written as:

F̃−1
D =

ns

∑
s=1

(
BDBT

)−1
B(s)D(s)

[
0 0
0 S(s)

bb

]
D(s)B(s)T

(
BDBT

)−1
, (4.60)

where matrix D(s) is chosen here as the superlumped scaling: D(s) =
(

diag K(s))−1. The
global matrix D is the diagonal block assembly of all these local scaling matrices, which
leads to a diagonal matrix in the present case.

The extended Dirichlet preconditioner has shown better performance in comparison
with the original Dirichlet preconditioner in the case of Mortar interfaces [161, 185, 194].
Rixen [193] shows that this preconditioner is mechanically consistent and mentions its
mechanical meaning: once applied to the residual of the interface problem (4.32), it
computes the correction for the Lagrange multipliers. Figure 4.14 highlights this point.
On can split the preconditioner into three steps to understand its mechanical meaning:

1. Make the interface compatibility (4.32) satisfied. Let uk and wk be respectively the
displacement and the residual at iteration k (i.e. Buk = wk). We are looking for
the displacement correction ∆u such that:

B(uk − ∆u) = 0, which gives B∆u = wk. (4.61)
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4 Domain Decomposition Methods

Thus we can build the correction, in a least-square sense, as:

∆u = DBT
(

BDBT
)−1

wk, (4.62)

where matrix D is invertible.

2. Compute the interface efforts corresponding to the jump correction. It is done at the
sub-domain level through the local primal Schur complements S(s):

∆F (s) = S(s)∆u(s). (4.63)

3. Make the Lagrange multipliers represent these interface efforts. We are looking for the
correction ∆λ such that:

BT∆λ = ∆F . (4.64)

As for step 1, this equation can be satisfied, in a least square sense:

∆λ =
(

BDBT
)−1

BD ∆F . (4.65)

These three steps are illustrated in figure 4.14.
Stefanica [185] discusses the parallelization properties of this generalized precondi-

tioner. The critical point concerns the two global multiplications by (BDBT)−1 which
cannot be done in parallel. One may build local matrices B̃(s) = (BDBT)−1B(s) once and
for all at the beginning of the resolution. In order to preserve the sparsity, biorthogonal
Mortars could be helpful in this case [169, 185].

4.4 Numerical investigation of the developed algorithm

In this section, we run several examples to highlight the good behaviour of the pro-
posed algorithm. Firstly, 2D test cases are presented, then we study several shell test
problems. For every example, we depict the number of iterations versus the level of
refinement of the mesh given a fixed decomposition. In most cases, the convergence
study is only given without preconditioner and with the generalized Dirichlet precon-
ditioner (4.60). We do not present, for all examples, the case of the classical Dirichlet
preconditioner (4.50). Especially, for homogeneous domain, both presented precondi-
tioners (4.50) and (4.60) improve the convergence rate in an approximately same manner.
Thus, for the sake of clarity, we omit to report the convergence study for the classical
Dirichlet preconditioner when it leads to identical results than the generalized precondi-
tioner. We highlight the benefits of the scaling brought by the generalized preconditioner
on three heterogeneous problems (the heterogeneous beam, the bending plate, and the
stiffened panel).

The convergence criteria is defined as a relative tolerance on the projected resid-
ual (namely wk in table 4.1) set as ||wk|| < 10−8||w0||. The results are given in tables
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Displacement

Stress (Von-Mises)

1C

1B

1A

Ω(2)Ω(1)

Ω(1) Ω(2) Ω(3) Ω(4)

Ω(1) Ω(2)
Ω(3) Ω(4)

Figure 4.15 – Description and results of the cantilever beam problem. Three decompositions 1A,
1B, and 1C are studied.

1A 1B 1C

ref Ntot Nλ I F̃−1
D Ntot Nλ I F̃−1

D Ntot Nλ I F̃−1
D

0 330 12 4 4 702 36 13 8 630 60 48 13
1 946 20 9 7 1966 60 19 9 1686 100 85 14
2 3138 36 21 9 6414 108 36 10 5334 180 149 15
3 11 362 68 45 9 22 990 204 64 10 18 774 340 251 15
4 43 170 132 71 9 86 862 396 95 10 70 230 660 347 16

Table 4.2 – Performance study for the homogeneous cantilever beam problem described in fig-
ure 4.15.

where the headers Ntot and Nλ denote the numbers of total and interface DOF respec-
tively (i.e., by referring to (4.30), Nλ is the size of λ, and Ntot is the total number of
unknowns). Columns with headers I, F̃−1

I and F̃−1
D give the iteration number without

a preconditioner, with the classical Dirichlet preconditioner, and with the generalized
preconditioner, respectively.

4.4.1 Plane stress problems

The two plane stress problems considered here are tackled using a standard La-
grange multiplier formulation to couple the 2D displacements only. One could perform
the same computation using a Kirchhoff–Love formulation with its associated Mortar
coupling.
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4 Domain Decomposition Methods

Homogeneous domain The first test case consists in the bending of a 2D cantilever
beam with homogeneous material as described in figure 4.15. The geometric and me-
chanical parameters are chosen as: length L = 20 m, height h = 5 m, Young’s Modu-
lus E = 60× 109 Pa, Poisson’s ratio ν = 0.30, and tangential uniform load P = 1000 Pa.
Three different configurations are studied and we denote these decompositions as:

— 1A – two non-matching patches with a similar geometry,

— 1B – four non-matching patches with a similar geometry,

— 1C – four non-matching patches with different geometries.

For every configuration, the patches are discretized with cubic NURBS.
As can be seen in figure 4.15, the displacement and stress fields are smooth and

clearly traduce the bending of the beam. Then, table 4.2 summarizes the convergence
results for the FETI algorithm for this first test case. One can see that the algorithm
requires very few iterations to reach convergence when the preconditioner (4.60) is used.
For each decomposition, it converges in a relatively constant number of iterations. It
accounts for the numerical scalability of this preconditioner which is in good agreement
with the observations of Stefanica [161, 185] and Rixen [193]. For finer refinement levels,
the gain is significant in comparison with the un-preconditioned version. It is especially
true for the more complex decomposition 1C.

Heterogeneous domain The second test case consists in a heterogeneous beam. The
description of the problem is given in figure 4.16. The role of the preconditioner is
known to be critical when the sub-domains have large differences of material proper-
ties [157, 195]. The beam is made from a sequence of hard and soft regions. One side of
the beam is fixed and the other side is subjected to a traction load. Each hard region is
defined by a 5 m by 4 m rectangle and has a Young’s Modulus equal to E = 60× 109 Pa.
Each soft region is defined by a 3 m by 4 m rectangle and has a Young’s Modulus equal
to E = 6× 109 Pa. Same Poisson’s ratio equal to ν = 0.30 is chosen for both regions. We
consider two cases:

— 2A – three non-matching patches; two made of hard material separated by one
made of soft material,

— 2B – five non-matching patches; three made of hard material separated by two
made of soft material.

Table 4.3 gives the convergence results for the present case. As for the previous ex-
ample of the homogeneous cantilever beam, the algorithm requires very few iterations
to reach convergence when the preconditioner F̃−1

D is used, and this number of iterations
does not grow with the refinement level. This does not hold true without the precon-
ditioner (columns with header I). Therefore, the heterogeneity is correctly tackled by
the preconditioner thanks to the superlumped scaling. We also give in table 4.3 the
convergence when the classical Dirichlet preconditioner F̃−1

I is used. One can see that
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Ω(1) Ω(2) Ω(3)

Displacement

2A

Displacement

2B

Ω(1) Ω(2) Ω(3) Ω(4) Ω(5)

(Soft)(Hard) repeat

Figure 4.16 – Description and results of the heterogeneous beam problem. The beam is made of
a sequence of hard and soft regions. Configuration 2A has two hard regions separated by one
soft region. Configuration 2B has three hard regions separated by two soft regions.

2A 2B

ref Ntot Nλ I F̃−1
D F̃−1

I Ntot Nλ I F̃−1
D F̃−1

I

0 204 16 6 5 6 368 32 10 6 12
1 448 24 9 7 10 812 48 14 8 16
2 1224 40 15 9 15 2228 80 22 10 21
3 3928 72 29 9 21 7172 144 38 10 26
4 13 944 136 55 10 27 25 508 272 69 11 34

Table 4.3 – Performance study for the heterogeneous beam problem described in figure 4.16.

1e-8

1e-7

1e-6

1e-5

0.0001

0.001

0.01

0.1

1 Relative residual

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Iteration

No Preconditioner
Dirichlet no scaling
Generalized Dirichlet

Figure 4.17 – Convergence of the dual DD solver when applied to the heterogeneous beam
problem with five sub-domains 2A (refinement level 4 according to table 4.3). The scaling step of
the generalized Dirichlet preconditioner improves drastically the convergence rate.
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the benefit is not as good as one can expect from a preconditioner. In fact, for the low
levels of refinement, there are no iteration savings when using the classical Dirichlet pre-
conditioner in comparison with the un-preconditioned cases. For finer discretizations,
it improves slowly the convergence. The figure 4.17 depicts the convergence histories
in case of the configuration 2A with the highest level of refinement (refinement level
equals to 4 according to table 4.3). For this particular case, the solver convergence is
twice as fast with the preconditioner F̃−1

I . However, the generalized Dirichlet precon-
ditioner drastically improves the convergence (see figure 4.17). Thus, we highlight here
an already known issue: the scaling during the preconditioning is essential to correctly
balance the effort between the sub-domains.

4.4.2 Application to non-conforming Kirchhoff–Love shells

Plate bending The third example consists in the bending of a plate as described in
figure 4.18. The plate is fully fixed at one side while an uniform pressure is applied
over the whole structure. We decompose the plate into two patches and we consider
two cases:

— 3A – two patches with the same thickness (homogeneous plate),

— 3B – two patches with different thicknesses such that the ratio is t(1)/t(2) = 0.1
(heterogeneous plate).

Cubic NURBS are used and the discretization of the patch with the fixed edge is twice
finer than the second one (see figure 4.18). For this particular test case, we observe better
results (quality of the stress field) when the Lagrange Multipliers are discretized using
the trace space of the finer patch. We opt for this choice here even if the strategy pre-
sented in section 4.2.2 leads to acceptable results too. Finally, the parameters of the study
are as follows : length L = 20 m, width l = 10 m, Young’s Modulus E = 60× 109 Pa,
Poisson’s ratio ν = 0.20, and uniform pressure P = 1.0 Pa. In the homogeneous case,
the thickness of both patches is t = 0.1 m. In the heterogeneous case, the thickness of
the fixed patch is t(1) = 0.1 m and the thickness of the free patch is t(2) = 1.0 m.

Table 4.4 presents the performance study of the algorithm for this problem. The re-
sults are similar for both the homogeneous and the heterogeneous configurations. More
specifically, without the preconditioner the algorithm converges in the same number of
iterations in both cases. It can be seen that, with preconditioner F̃−1

D the algorithm con-
verges in slightly less iterations for the heterogeneous plate. Furthermore, the number of
iterations is kept low even for the finer meshes when this preconditioner is used. Con-
cerning the convergence of the solver with the classical Dirichlet preconditioner F̃−1

I ,
good results are obtained in the homogeneous case 3A. Surprisingly, the convergence
rate is even better than with the generalized Dirichlet preconditioner for the finest dis-
cretization (see refinement level 4 for configuration 3A). However, for the heterogeneous
plate with different thickness per patch, this preconditioner performs worse than pre-
conditioner F̃−1

D which takes into account the relative stiffness at the interface between
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-0.62 52.8 106 158 210.4
Bnd Moment My [Pa·m2]

-14.3 0 14.1 28.2 42.1
Bnd Moment Mx [Pa·m2]

3B - Heterogeneous

x

y
z

Ω(2)
Ω(1)

E = 60 GPa , ν = 0.20 
L = 20 m, l = 10 m

t(1) = 0.1 m,
t(2) = {0.1 m  for 3A, 1.0 m  for 3B}

Parameters:

-0.37 53.4 107 160 213.1
Bnd Moment My [Pa·m2]

3A - Homogeneous

-3.4 8.1 16.9 31.1 42.6
Bnd Moment Mx [Pa·m2]

Figure 4.18 – Description and results of the bending plate problem. The plate is decomposed
into two non-matching patches. Two cases are studied: 3A the homogeneous case where the
patches have the same properties, and 3B the heterogeneous case where the shells have different
thicknesses.

3A 3B

ref Ntot Nλ I F̃−1
D F̃−1

I Ntot Nλ I F̃−1
D F̃−1

I

0 222 28 9 6 6 222 28 7 4 7
1 510 44 14 7 9 510 44 14 4 11
2 1446 76 29 11 12 1446 76 28 6 18
3 4758 140 60 18 14 4758 140 59 11 28
4 17 142 268 118 26 14 17 142 268 117 16 33

Table 4.4 – Performance study for the bending plate problem described in figure 4.18.
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the sub-domains. This point was predictable.
Ideally, the number of iterations should be constant versus the mesh refinement as

observed for the plane stress problems 4.4.1. Here, we do not have a perfect numerical
scalability but it is not surprising. In fact, the one-level FETI equipped with the Dirichlet
preconditioner is known to be numerically scalable for second-order problems. How-
ever, it does not hold true for fourth-order problems as shown for example by Farhat
et al. [154]. That is why extensions of the classical FETI method, as for instance the
two-level FETI and latter on the FETI-DP, have been introduced to optimally deal with
plates and shells [154, 155]. Based on these remarks, we understand the increase of the
iteration counts versus the mesh refinement and the same behaviour is expected for the
other shell problems tackled in this work. Nevertheless, for this test case of a plate, the
presented dual Domain Decomposition algorithm performs well and leads to entirely
acceptable results.

Scordelis–Lo roof The Scordelis–Lo roof is part of the shell obstacle course which is
widely used to study the performance of shell formulations [130]. It consists of a portion
of cylinder subjected to a vertical gravity load and fixed at its two end sections using
rigid diaphragms. The study parameters and some results for this test case can be found
in the abundant shell literature: e.g. [94, 128, 130]. We decompose the Scordelis-Lo roof
into three non-matching configurations as depicted in figure 4.19:

— 4A – three patches with a curved interface obtained by using the embedded Kirchhoff–
Love formulation (introduced later on in chapter 5),

— 4B – four quasi-identical patches which intersect at a cross point,

— 4C – nine patches with different levels of refinement. The coarsest are quartic
patches while the finest are cubic patches.

Figure 4.19 shows the vertical displacement field and the distribution of a bending
moment for each configurations, which appear smooth as expected. The results investi-
gating the numerical scalability are given in table 4.5. It can be seen that the benefit of
the preconditioning step is increasing from the first configuration 4A to the third config-
uration 4C. For the first configuration 4A, the iteration count is only reduced by a factor
of 2 or 3 (except for the coarsest mesh). For the second configuration 4B, the iteration
count is reduced by a factor of 4 for the refinement levels above 1. Finally, for the more
complex decomposition 4C, the iteration count is drastically reduced when using the
generalized Dirichlet preconditioner. Looking at the refinement levels 3 and 4 in ta-
ble 4.5 (and columns referred to the configuration 4C), we observe that the number of
iterations is reduced by a factor of 10, and 15 respectively. Thus, the benefit provided by
the preconditioner is all the more remarkable in case of complex Domain Decomposi-
tion. Even if numerical scalability is not fully reached, the growth of the iteration count
with the refinement level is very slow for each configuration and it leads to satisfactory
results.
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Figure 4.19 – Description and results for the Scordelis–Lo roof test case. Three different non-
matching decomposition are studied: 4A is made of three patches with curved interfaces, 4B is
made of four quasi-identical patches (two patches have one more element per direction), and 4C
is made of nine patches with different levels of refinement and degrees. (Note: The displacement
has unit of length and the bending moment has unit of moment per unit length, respectively).

4A 4B 4C

ref Ntot Nλ I F̃−1
D Ntot Nλ I F̃−1

D Ntot Nλ I F̃−1
D

0 527 78 47 34 708 92 70 34 1513 276 167 44
1 1399 142 73 35 1652 156 117 38 3017 468 317 52
2 4295 270 124 45 4692 284 188 48 7537 842 558 64
3 14 695 526 158 59 15 380 540 276 64 22 625 1620 949 87
4 53 927 1038 175 81 55 188 1052 405 86 76 993 3156 1783 121

Table 4.5 – Performance study for the Scordelis-Lo shell problem described in figure 4.19.

137

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI092/these.pdf 
      © [T. Hirschler], [2019], INSA de Lyon, tous droits réservés



4 Domain Decomposition Methods
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Figure 4.20 – Description and results for the stiffened panel problem. It consists in the assembly
of a rectangular plate with three stiffeners; two with a parabolic shape crossed by a straight
one. It leads to four non-conforming patches and five coupling interfaces (three stiffener/panel
and two stiffener/stiffener interfaces). The main stress resultants for the panel are the bending
moments whereas the stiffeners are mainly subjected to membrane forces.

Stiffened panel The problem of the stiffened panel is presented in figure 4.20. It
consists in the assembly of a square plate with sub-parts called the stiffeners. We design
three stiffeners: two with a parabolic shape and the third one with a straight shape. The
straight patch intersects the two curvilinear stiffeners. As a result, five non-conforming
interfaces are defined: each interface cuts several isogeometric elements. Every patch is
discretized using cubic Kirchhoff–Love shells. The material and geometric parameters
of the study are given in figure 4.20. The edges of the panel are fixed (no displacement).
The uniform pressure is equal to P = 1000 Pa. We denote by 5A this problem of the
stiffened panel.

Once again, we run the analysis for several levels of refinement with and without
the preconditioning step. The results of the study are given in table 4.6. We also depict
the convergence in figure 4.21 for the refinement level equal to 2 (which correspond
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Numerical investigation of the developed algorithm

5A

ref Ntot Nλ I F̃−1
D F̃−1

I

0 1227 147 109 50 81
1 3313 259 193 68 94
2 10 365 483 341 85 110
3 35 989 931 613 103 137
4 133 317 1827 1106 125 189

Table 4.6 – Performance study (left) for the stiffened panel problem 5A described in figure 4.19.
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Figure 4.21 – Convergence plot of the dual DD solver when applied to the stiffened panel 5A
(refinement level 2 according to table 4.6). Without the preconditioning step, the solver faces
difficulties to converge. The scaling of the generalized Dirichlet preconditioner accelerates the
convergence in comparison with the classical Dirichlet preconditioner.

to the mesh where the color maps are presented in figure 4.20). We observe the same
behaviour than for the previous test cases. Indeed, the iteration count is drastically
reduced with the use of the preconditioner and it is all the more true when increasing the
refinement level. We give the results for both the classical Dirichlet preconditioner F̃−1

I
and the generalized preconditioner F̃−1

D in order to highlight the positive influence of
the scaling step occurring in the second one. In fact, in case of stiffened structures,
the T-shape interfaces are source of heterogeneities even if both sub-domains are of the
same material properties. For instance, the stiffener is mainly subjected to membrane
forces whereas the panel works in bending. This leads to high differences in stiffness
at the interface. A shell is much stiffer under membrane loading than under bending
loading. Thus, as shown in table 4.6 and in figure 4.21, the generalized preconditioner
performs better than classical Dirichlet preconditioner.

As for the previous shell problems, the numerical scalability is not completely achieved
but the growth of the number of iterations remains slow while introducing the precon-
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4 Domain Decomposition Methods

ditioning step. Especially, satisfactory results are obtained even for very fine meshes.
For instance, with the refinement level of 4, the dual decomposition domain algorithm
converges in 125 iterations even though the total number of DOF is over 100 000. This is
a crucial point. Because the algorithm solves an interface problem where the unknowns
are the Lagrange Multiplier DOF (see equation (4.39)), we are able to measure, during
the resolution, the residual of the coupling condition (4.32). The convergence criteria is
formulated on this residual which, in other words, ensure the good fulfillment of the
coupling condition. For large problem, the monolithic solution obtained with a basic
direct solver applied directly to the linear system (4.30) does not give suitable results.
The numerical errors during the resolution significantly affect the correct imposition of
the coupling conditions. Thus, we believe that the presented algorithm is viable and
therefore attractive to tackle more complex models as encountered in industrial appli-
cation.
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Chapter 5

Multipatch Shape Optimization

Moving a method from a proof-of-concept to a robust industrial process is neither
automatic nor evident in practice. Research sometimes lacks of continuity and

multiple innovative works unfortunately remain to their initial-stage. Based on what
has been yet successfully developed in this work, this chapter aims to apply isogeometric
shape optimization for engineering applications, especially for designing Aerostructures.
The key point concerns the use of non-conforming multipatch discretizations for shape
design. We present a methodology inspired from Free-Form Deformation techniques and
we introduce an embedded shell formulation. It enables to impose complex geometric
constraints between non-conforming patches in a simple and suitable manner.
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5 Multipatch Shape Optimization

Circumferential stiffener Longitudinal stiffener

Figure 5.1 – Designing simple stiffeners lying on a portion of cylinder.

5.1 Free-Form Deformation

Applying the isogeometric shape optimization strategy for designing large stiffened
aerostructures is a challenging task from both geometric and analysis sides. From the
analysis point of view, we have now an efficient strategy to couple non-conforming
discretizations (see the previous chapter 4). It will be useful here and we will rely on
this coupling strategy. Indeed, the use of non-conforming discretizations is convenient
during the shape update since it avoids, for example, to call on cumbersome procedures
to impose matching meshes between the stiffeners and the panel. However, looking at
geometric aspects, we had to develop an adequate methodology in order to impose the
shape modification to complex structures with multiple parts. This issue is tackled in
this section.

5.1.1 Complex geometric constraints

Let us start with a simple example of a portion of cylinder where the goal is to design
a flat stiffener. For instance, one can define a simple flat stiffener in the circumferential
or the longitudinal directions as described in figure 5.1. Both cases can be done quite
easily.

Now let us try to impose shape modifications for this simple case of the portion of
cylinder with one flat stiffener. Based on the isogeometric shape optimization process
presented in chapter 3, these shape updates are assigned by moving the control points
of the NURBS. In case of the circumferential stiffener, the control points associated to
the stiffener can be moved, for example, along the longitudinal direction. This shape
modification is depicted in figure 5.2 (top) and does not present any particular problem.
However, it becomes more tricky with the longitudinal stiffener. To modify its shape,
one can try to move the control points in the circumferential direction as described
in figure 5.2 (middle). A first difficulty arises. In fact, we want the bottom of the
stiffener to perfectly lie on the cylinder. This geometric constraint is not easily fulfilled.
Sliding the control points along the edge of the cylinder disconnects the surfaces. The
second difficulty arises when modifying the global shape (here the portion of cylinder)
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Free-Form Deformation

• Local modification / planar direction 

• Local modification / non-planar direction 

• Global modification

penetration

Figure 5.2 – Moving a stiffener lying on a portion of cylinder. Imposing the shape update in
non-planar directions is challenging due to the violation of the bonding condition.

while keeping the substructure connected. More precisely, the question here is how to
transfer the shape update from the global part to its substructure? An illustration of
the problem is shown in figure 5.2 (bottom). If we move one control point of the main
surface, the stiffener does not lie anymore on it. In this simple case, one could formulate
an appropriate condition in order to glue the stiffener but, in general, it is not a trivial
task. In case of curvilinear stiffeners lying on a curved surface, re-parametrizations
and approximations appear inevitable if the standard NURBS-based strategy for shape
optimization is adopted. Instead, we are looking for a compact approach that does not
require cumbersome re-parametrization procedures. This is particularly crucial to get a
robust shape optimization strategy.

To summarize, we are looking for a geometric strategy that enables to impose the
following shape modifications in a convenient way:

— global shape optimization of a whole structure that contains multiple parts,
— local shape optimization of specific sub-parts (such as stiffeners).
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Figure 5.3 – Construction of a stiffened structure using embedded surfaces. The final surface
describing the stiffener is obtained by the composition of a NURBS surface and a NURBS volume.
This construction ensures that the stiffener is perfectly lying on the portion of cylinder.

5.1.2 Using NURBS compositions for shape updating

Embedded surface We introduce the concept of embedded surface in order to over-
come the geometric challenges highlighted in the previous section. The idea comes
from Bauer et al. [182] who considered univariate embedded entities. More precisely,
they embed a curve into a surface. This technique allows them to model cables in mem-
brane structures or to apply line loads and supports to a shell structure without being
limited to the edges of the surface.

We took this idea of embedding entities to define the stiffeners. We will not use
classical NURBS surfaces to describe the stiffeners. Instead of a simple surface, we
introduce the composition of a NURBS volume and a NURBS surface. In other words,
we immerse a surface into the parametric space of a volume. The volume can be seen
as a mapping that smartly transforms the embedded surface in order to create a final
surface with the desired properties. Figure 5.3 illustrates this process.

This idea offers a novel strategy to generate geometric models of stiffened structures.
This new approach is presented in figure 5.4. The construction contains four steps:

1. build the panel (main part to be stiffened) using a standard B-Spline or NURBS
surface,

2. extrude the surface representing the panel so as to generate a volume,
3. embed surfaces into the parameter space of the generated volume,
4. transform these embedded surfaces using the volume mapping.

The final surfaces obtained by the composition of the embedded surfaces and the volume
mapping give the geometric representation of the stiffener. With this procedure, the
stiffeners are perfectly lying on the panel. No approximations are introduced during
the geometric modeling.
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Free-Form Deformation

initial surface

Step 1. take a NURBS surface

generated volume

Step 2. generate a volume by extrusion

Step 4. transform the embedded surface
through the volume mapping

surface obtained 
by composition

embedded surface

Step 3. embed a NURBS surface into 
the parameter space of the volume

parameter space 
of the volume

Figure 5.4 – Generating a geometric model of a stiffened structure by using the embedded
strategy.

The presented strategy can be related with Free-Form Deformation techniques [197].
These methods are commonly used in graphic design to deform objects and are also
applied in engineering fields as, for example, aerostructural optimization [198]. In that
sense, the design approach presented in this work is not entirely disconnected from the
current industrial methods.

Finally, we will interpret the embedded entities as slave parts since their shapes are
driven by external geometric properties. Conversely, the master parts are those which
dictate specific constraints during the shape update. For example, in the case depicted
in figure 5.3, the portion of cylinder is the master part and the stiffener constitutes the
slave part: modifying the master part imposes to transfer shape modification to the
slave part and, in turn, the possible shape modifications of the slave part are restricted
to follow the master geometry.
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5 Multipatch Shape Optimization

Mathematical description Let us now give the mathematical definitions of the quanti-
ties involved in the presented strategy. We define the mapping V as a NURBS volume:

V (ξ1, ξ2, ξ3) = ∑
ijk

Rijk(ξ1, ξ2, ξ3)Pijk, (5.1)

where Rijk are trivariate NURBS basis functions and Pijk are the related control points.
The parametric coordinates ξ1, ξ2 and ξ3 are defined over the parametric domain Ω̄. The
embedded surface S̄ is a NURBS surface defined as:

S̄(θ1, θ2) = ∑
ab

R̄ab(θ1, θ2)P̄ab, (5.2)

with R̄ab some bivariate NURBS basis functions and P̄ab their associated control points.
Under the consideration that the codomain of S̄ is included in domain Ω̄, we finally
compose the two previous mapping (5.1) and (5.2) to get the physical surface:

S(θ1, θ2) = V
(
S̄(θ1, θ2)

)
. (5.3)

The surface S is parametrized by the same set of variables (θ1, θ2) as the embedded
surface S̄ and it returns value in the physical space R3.

Potential The potential of using embedded entities is multiple from the design point
of view. Our first motivation is to design stiffened structures found in aeronautics but,
of course, it should not be limited to this purpose.

Figure 5.5 shows the potential of the presented approach from the design point of
view. The approach eases the construction of complex stiffened structures. It also of-
fers interesting feature related to shape optimization. For instance, we now have two
possibilities to impose shape modifications to a structure with multiple parts. One can
impose global shape deformation to the whole structure by acting on the control points
associated to the volume mapping. This is finally a Free-Form Deformation process.
Using NURBS compositions also enables to impose local shape modifications to spe-
cific parts without worrying about the bonding conditions at the interface. Due to the
construction (see figure 5.4), the geometric constraints of non-separation between the
different parts are automatically fulfilled. The uni-directional translation of the embed-
ded surfaces will slide the stiffener along the panel while automatically respecting its
curvature, if one exists. More complex examples are presented in chapter 6 that take
advantage of this versatile approach for geometric modeling.

5.2 An Embedded Kirchhoff–Love shell

We have introduced the use of NURBS compositions for geometric requirements.
In order to perform the shape optimization using this approach, we know, since chap-
ter 3, that we also need to carry out the structural analysis. In other words, we need a
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An Embedded Kirchhoff–Love shell

Global shape modification
- Physical space

- Parameter space (of the volume)

Move the Control Points
of  the Volume

Move the Control Points
of  the Volume

No changes No changes

Move the Control Points
of  the Embedded Surface

Move the Control Points
of  the Embedded Surface

- Physical space

- Parameter space (of the volume)

Same volume mapping Same volume mapping

Local shape modification

Figure 5.5 – Using NURBS compositions offers two possibilities for imposing shape deforma-
tions. By modifying the volume, one can act on the global shape. By acting on the embedded
entities, one can modifying specific parts, as for instance the stiffeners. The bonding condition
at the interfaces are automatically satisfied.
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Figure 5.6 – Computing the covariant basis vectors in case of a NURBS composition.

shell element that can be use in case of NURBS compositions. Thus, in this section we
present the embedded Kirchhoff–Love shell that fulfills this need. The theoretical results
presented in section 3.2.2 for the standard isogeometric Kirchhoff–Love shells serve as
prerequisites here.

5.2.1 Discretizations aspects

Mid-surface defined by NURBS composition The continuum formulation of the em-
bedded Kirchhoff–Love is formally identical to the standard Kirchhoff–Love formula-
tion. The same kinematic assumptions are postulated. It means that all the equations
from (3.39) to (3.62) remain true. Things become different at the discretization step.

The first difference is that the mid-surface is no longer described by a single NURBS
surface but by the NURBS composition of an embedded NURBS surface and a NURBS
volume. We already formulate these geometric quantities in equation (5.3). However,
the surface obtained by a NURBS composition is still a parametric surface. We can take
the geometric parameters of the embedded surface as the curvilinear coordinates (θ1, θ2)

involved in the shell formulation. Hence, the covariant basis vectors Aα (derivatives of
the position vector w.r.t. the curvilinear coordinates, see equation (3.26)) are obtained by
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An Embedded Kirchhoff–Love shell

applying a chain rule differentiation to equation (5.3). We get:

Aα = (Āα · e1)G1 + (Āα · e2)G2 + (Āα · e3)G3 (5.4)

where Āα and Gi denote the covariant vectors associated respectively to the embed-
ded surface and the volume mapping (see figure 5.6). With the same notations as in
equations (5.1) and (5.2), these vectors are given by:

Gi := Gi
(
S̄(θ1, θ2)

)
= ∑ Rijk,i

(
S̄(θ1, θ2)

)
Pijk, (5.5)

Āα := Āα(θ1, θ2) = ∑ R̄ab,α(θ1, θ2)P̄ab. (5.6)

Then, the calculation of the director vectorA3 is done as for the standard Kirchhoff–Love
shell. Let us repeat equation (3.40) that defines this vector:

A3 =
1
A
A1 ×A2, with A = |A1 ×A2|.

Finally, one can already calculate the geometric quantities involved in the membrane
strains (3.52). Indeed, it only requires the covariant vectors:

eαβ =
1
2
(
v,α ·Aβ + v,β ·Aα

)
.

Let us also repeat the expression of the material tensor (3.54) for sake of clarity:

C̄αβγδ = λ̄Aαβ Aγδ + µ
(

Aαγ Aβδ + Aαδ Aβγ
)

.

Again, the contravariant metrics Aαβ are computed as would be in the case of standard
Kirchhoff–Love NURBS elements. Thus, regarding implementation aspects, the part of
the code that computes the quantities in question is exactly the same for the standard
and the embedded shell.

The only additional adjustments considering the geometric quantities appear in the
bending terms. Let us rewrite the expression of the bending strain given by equa-
tion (3.53):

καβ = −v,αβ ·A3 +
1
A

(
v,1 · (Aα,β ×A2) + v,2 · (A1 ×Aα,β)

)
+
A3 ·Aα,β

A

(
v,1 · (A2 ×A3) + v,2 · (A3 ×A1)

)
.

The derivatives of the covariant vectors w.r.t. the curvilinear coordinates are required.
Their expressions are somewhat more complicated than for the standard NURBS-based
shell. We apply one more time the chain rule to equation (5.4). It reads as:

Aα,β = ∑
i
(Āα,β · ei)Gi + ∑

i
∑

j
(Āα · ei)(Āβ · ej)Gi,j . (5.7)
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5 Multipatch Shape Optimization

At this point, we mentioned all the differences regarding the geometric quantities be-
tween the standard isogeometric Kirchhoff–Love shells and the embedded Kirchhoff–
Love shells. Finally, the only changes concern the covariant vectors (5.4) and their
derivatives (5.7). Thus, one has to add very little modifications to an existing code in-
cluding the standard Kirchhoff–Love NURBS elements such that it offers the embedded
version.

Approximation space for the displacement field In addition to the discretization of
the geometry, we need to clarify how the displacement is discretized to get the embed-
ded Kirchhoff–Love shell elements.

Applying Galerkin’s method raises the question of the choice of the approximation
space V h for the displacement field. In fact, the isoparametric concept may not be
applicable in case of a NURBS composition. We need to define the solution space as
all linear combinations of a given set of basis functions. Since second derivatives of the
displacement field are involved in the bending term, the approximated displacement
field has to be C1 as the geometry. Two choices emerge:

1. based on the trivariate NURBS discretization of the mapping:

uh(θ1, θ2) = ∑
ijk

Rijk
(
S̄(θ1, θ2)

)
uijk, (5.8)

2. based on the bivariate NURBS discretization of the embedded surface:

uh(θ1, θ2) = ∑
ab

R̄ab(θ1, θ2)uab. (5.9)

The first choice provides an immersed-like approach where the deformation of the shell
is prescribed by the surrounding volume [199–202]. The second choice is close to the
standard Kirchhoff–Love isogeometric shell. The mapping only plays a role from the
geometric point of view since it modifies the shape of the embedded surface but it is
not involved in the solution space. Depending on the application, one can adopt either
one or the other approach. The first approach can be interesting if the volume which
surrounds the surface is a structural part. In case of void, a lot of degrees of freedom
may be inactive leading to an ill-conditioned system, which is a well-known drawback of
immersed method. Special treatments, such as penalization techniques [202, 203], have
to be performed. It is particularly true for higher continuity discretizations since the
supports of the NURBS basis functions becomes larger. The second approach leads to a
smaller system because it uses a bivariate parametrization (instead of a trivariate one for
the first approach). No regularization is required and higher continuity discretizations
(cubic and quartic for example) can be used. We notice that the second approach is
also easier from the implementation point of view, especially during the stiffness matrix
assembly.
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Figure 5.7 – Overview of the embedded isogeometric Kirchhoff–Love shell elements. The dis-
placement field is approximated by the same parametrization as the embedded surface. How-
ever, the embedded surface does not describe the geometry of the shell. An additional mapping
step further modifies the geometry of the shell.

In this work, we apply the second methodology (A.18). An overview of the approach
is depicted in figure A.9. Compared to the classical isogeometric Kirchhoff–Love shell,
the difference lies in the additional trivariate mapping step that modifies the shape of
the undeformed configuration. We name it the FFD step since it reminds the Free Form
Deformation technique [197].

5.2.2 Structural Analysis

With the approximation uh in hand, one can build the stiffness matrix associated to
the embedded Kirchhoff–Love shell. It takes the same form as the standard NURBS-
based elements (see equation (3.68)):

Ke
kl =

∫
Ω̄e

0

[
tBm

k
THBm

l +
t3

12
Bb

k
THBb

l

]
Adθ1dθ2,

where the membrane strain matrices Bm, the bending strain matrices Bb, and the mate-
rial tensor H take similar expressions as in equation (3.64), (3.65), and (3.67), respectively.
To avoid some confusion, let us note that the basis functions involved in these matri-
ces are those from the embedded surface (denoted previously R̄ab). For example, the
membrane matrix should be viewed as:

Bm
ab =


R̄ab,1 A

T
1

R̄ab,2 A
T
2

R̄ab,1 A
T
1 + R̄ab,2 A

T
2

 (5.10)
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Figure 5.8 – Analyzing the Scordelis-Lo roof using the embedded Kirchhoff–Love shell formula-
tion.

where the covariant vectors Aα are calculated accordingly to equation (5.4).

We now have all the ingredients to perform the structural analysis directly on geo-
metric models built with a NURBS composition. In figure 5.8, we present the analysis
of the Scordelis-Lo roof with this new approach. The geometry of the roof is obtained
by embedding a square surface into a volume that describes one quarter of a cylindrical
annulus. The geometrical parameters of the embedded surface and the volume mapping
are defined such that the composition gives a final surface with the correct dimensions
(i.e. those given in figure 3.5). Once the geometric model is generated, one can per-
form the analysis. Figure 5.8 shows the vertical displacement field and one component
of the bending resultants. The embedded shell is discretized into 16-by-16 quartic B-
Spline elements. Since the volume only acts on geometrical quantities and not on the
approximation of the displacement field, its refinement level has no influence on the so-
lution. We recover the results obtained with the standard NURBS-based Kirchhoff–Love
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formulation (see figure 3.9).
Finally, let us remind that our initial motivation for introducing an embedded shell

formulation was to analyze stiffened structures. The presented approach depicted in
figure 5.4 leads to non-conforming meshes between the stiffeners and the panel. How-
ever, thanks to the Mortar coupling and the Domain Decomposition solver presented in
chapter 4, this issue is already tackled. The non-conforming interfaces are tracked in
the exact same way than for the standard Kirchhoff–Love shell elements. We have even
already presented an example where the embedded Kirchhoff–Love shell were used (see
the Scordelis-Lo with curved interfaces in figure 4.19). Thus, we are now able to gen-
erate geometric models of stiffened structures and to perform the structural analysis.
The examples tackled in the remaining part of this work will demonstrate the good
performance of this approach.

5.2.3 Sensitivity Analysis

In order to perform the shape optimization using the presented embedded strategy,
we still need to do deal with the sensitivity analysis step. Again, we take for granted all
the results presented in chapter 3 that deals with the standard isogeometric approach
for shape optimization. The essential points to remember concerning the analytical
sensitivity calculation are the following:

1. the shape parametrization links design variables to the control points of the opti-
mization model,

2. the sensitivity propagation between the optimization and the analysis models is
done through the refinement matrix,

3. depending on the objective functions and the constraints, adjoint problems need
to be solved,

4. analytical derivation of the pseudo-load vector w.r.t. to the control point coordi-
nates is achieved by formulating the finite elements using curvilinear kinematics.

Points 2 and 3 remain identical here. For the shape parametrization, we now have two
possibilities. We can associate the design variables either to the embedded entities or
to the FFD mapping. Consequently, regarding the point 4, the isogeometric operators
(stiffness matrix, load vector, etc.) need to be differentiating w.r.t. to the control points
of either the embedded entities or the mapping transformation.

Shape parametrization Let us take the example of the arch under constant load from
figure 3.17 to highlight the two possibilities regarding shape parametrization step. Fi-
nally, we already dealt with this issue in figure 5.5 which shows how local and global
shape modifications can be imposed.

Firstly, the design variables can be related to the control points of the volume map-
ping. We call this approach the FFD-like shape update because it recalls Free-Form
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Figure 5.9 – Resolution of the arch optimization problem with embedded Kirchhoff–Love el-
ements in case (top) of FFD-based shape updates, and (bottom) in case of embedded shape
updates.

Deformation techniques [197]. Secondly, the design variables can be linked to the con-
trol points of the embedded surface in order to modify the shape of the shell. This
second approach is referred to the embedded shape update. Figure 5.9 illustrates the
resolution of the arch optimization problems with these two techniques. Obviously, the
parametrizations used here are not the unique way to solve the problem. For the FFD
shape update, we define the embedded surface as a parabola with an arbitrary length
to height ratio, because we know, in this particular case, that the final volume we are
looking for is a linear mapping that corrects the ratio in order to obtain the expected
parabola. Figure 5.9 shows the optimized solution. The final volume has a rectangular
shape as predicted. It gives a parabola with the correct height. Note that another initial-
ization than a parabola could have been considered and also lead to the correct optimal
design. In case of embedded shape updates, the volume is fixed. We define it suffi-
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ciently large to ensure that the design space contains the optimal solution. Figure 5.9
shows that the optimized shape corresponds once again to the analytical solution.

Analytical sensitivities The results depicted in figure 5.9 have been obtained using an-
alytical sensitivities. We need to clarify how this is achievable. As said before, the main
theoretical results from chapter 3 are postulated here, and we voluntary skip redundant
steps. In fact, the calculation follows the exact same procedures.

Let us only remind few key elements. The goal is to calculate the gradients of a
function denoted f w.r.t. design variables. After introducing the shape parametrization,
the adjoint solution, and the sensitivity propagation, we are at the point where we need
to compute the following quantity:

d f
dQ

=
∂ f
∂Q

+ u∗ ·
(

∂F

∂Q
− ∂K

∂Q
u

)
,

where Q denotes the control point coordinates of the analysis model (while P denotes
those of the optimization model). Thus, in case of NURBS composition, we have both
the control points associated to the volume mapping and those associated to the em-
bedded surface. Obviously, the derivatives w.r.t. the coordinates of the control points
of the mapping are involved in the FFD shape optimization. Conversely, the derivatives
w.r.t. the coordinates of the control points of the embedded surface enable to perform
embedded shape optimization.

Then, let us recall another main result, i.e. equation (3.107), that we repeat here for
the sake of clarity:

u∗ · ∂K
∂Q
u =

∫
Ω̄0

{(
∂e∗

∂Q
: n+ e∗ :

∂n

∂Q

)
A + (e∗ : n)

∂A
∂Q

}
dΩ̄0

+
∫

Ω̄0

{(
∂κ∗

∂Q
: m+ κ∗ :

∂m

∂Q

)
A + (κ∗ : m)

∂A
∂Q

}
dΩ̄0 .

As for the standard Kirchhoff–Love shell, we need to compute the derivatives of the
membrane strains and stresses, the bending strains and stresses, and the Jacobian. Once
again, this is done similarly for the embedded Kirchhoff–Love shell formulation.

The initial point for computing these derivatives, leads to the derivation of the co-
variant vectors. In the case of NURBS composition, the two covariant vectors A1 and A2

are given by equation (5.4). Thus, by differentiating their expression (5.4) w.r.t. to the
control points, we get:

∂Aα

∂Q
= ∑

i=1,3

(( ∂Āα

∂Q
· ei

)
Gi +

(
Āα · ei

)∂Gi

∂Q

)
(5.11)

This is a generic formula. In order to distinguish the derivatives, let also us identify
with a bar the control points of the embedded surface of the analysis model. Having
the expressions of the embedded covariant vectors Āα (given in equation (5.5)), and the
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mapping covariant vectors Gi (given in equation (5.6)), we can detail the derivatives
involved in equation (5.11). Let us start with the derivatives w.r.t. the mapping control
points (denoted without the bar superscript). We obtain:

∂Āα

∂Qja
= 0, and

∂Gi

∂Qja
= Ra,iej, (5.12)

where Qja denotes the jth-component of the mapping control point a (i.e. Qja = Qa · ej).
Identically, one can calculate those derivatives w.r.t. the embedded control points. One
should get:

∂Āα

∂Q̄ja
= R̄a,αej, and

∂Gi

∂Q̄ja
= R̄aGi,j . (5.13)

Finally, by introducing equations (5.12) and (5.13) into the general formula (5.11), one
can calculate the derivatives w.r.t. the control points associated to the volume mapping
and the embedded surface, respectively. For the volume mapping, the final expression
of these derivatives reads as:

∂Aα

∂Qja
= ∑

i=1,3
(Āα · ei) Ra,i ej. (5.14)

For the embedded control points, we obtain:

∂Aα

∂Q̄ja
= R̄a,αGj + ∑

i=1,3
(Āα · ei) R̄aGi,j . (5.15)

We can almost stop here our developments. In fact, at this point, one should be able
to compute the derivatives of the membrane strains and stresses, and the derivatives
of the Jacobian involved in equation (3.107). As for the structural analysis, implement-
ing the sensitivity analysis for the presented embedded Kirchhoff–Love formulation
requires only few modifications when having in hand its implementation for the stan-
dard Kirchhoff–Love formulation. One simply has to put the derivatives (5.14) or (5.15)
instead of the basis derivatives (3.93) used in the standard case. Only a last term in
the bending component still needs to be investigated to get the complete sensitivity. In
the differentiation of the bending strains, the derivatives ∂Aα,β/∂Q are required. To
compute these derivatives, we differentiate equation (5.7). Firstly, let us give a gen-
eral expression without distinguishing the mapping and embedded control points. We
obtain:

∂Aα,β
∂Q

= ∑
i=1,3

(( ∂Āα,β
∂Q

· ei

)
Gi +

(
Āα,β · ei

)∂Gi

∂Q

)
+ ∑

i=1,3
∑

j=1,3

(( ∂Āα

∂Q
· ei

)
(Āβ · ej) + (Āα · ei)

( ∂Āβ

∂Q
· ej

))
Gi,j

+ ∑
i=1,3

∑
j=1,3

(Āα · ei)(Āβ · ej)
∂Gi,j

∂Q
.

(5.16)
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Figure 5.10 – Sensitivity analysis of a parabolic beam using the embedded Kirchhoff–Love shell
formulation.
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5 Multipatch Shape Optimization

The derivatives of the covariant basis vectors associated to the embedded surface and the
volume mapping have already been expressed in equations (5.12) and (5.13). Similarly,
let us compute the missing derivatives. For the mapping control points, we have:

∂Āα,β
∂Qka

= 0, and
∂Gi,j

∂Qka
= Ra,ijek, (5.17)

and the derivatives w.r.t. the embedded control points are:

∂Āα,β
∂Q̄ka

= R̄a,αek, and
∂Gi,j

∂Q̄ka
= R̄aGi,j,k . (5.18)

The vector Gi,j,k requires third order derivatives of the NURBS basis functions associ-
ated to the volume mapping:

Gi,j,k = ∑
b

Rb,ijkQb . (5.19)

This vector is null in case of a quadratic NURBS volume.
We have now tackled all the differences involved by the embedded approach in

comparison with the standard approach. We will not repeat all the equations here,
and the interested reader can refer to section 3.3.2.2 to get the overall expression of the
analytical sensitivities in case of the embedded Kirchhoff–Love shell.

Validation In order to validate the correct implementation of the gradients, one can
perform at first all the examples tackled for the standard IGA-based shape optimiza-
tion 3.3. For instance, one can define the volume mapping as the identity transformation.
Computing the gradients w.r.t. the embedded control points should give the exact same
results than for the standard approach (i.e. with and without the volume mapping).

In order to further validate the sensitivities, we build a parabolic arch using a NURBS
composition as shown in figure 5.10. The mechanical settings are those from the arch
presented in figure 3.17. The geometric settings are directly given in figure 5.10. The
final surface obtained by the NURBS composition describes a parabola of length L =

10 and of height h = 5. The volume mapping is defined with one single B-Spline
element. Degree 2 is set in direction x while degree 1 is set in the two others. The
coarse discretization of the embedded surface (optimization model) is made of two B-
Spline elements with degree 2 in the main direction and degree 1 along the width. The
analysis model is obtained through k-refinement such that the mesh counts 16 quadratic
elements. We display both the gradients of the compliance w.r.t. the mapping and the
embedded control points (given by equation (3.121)).

Again, we can compare these analytical sensitivities with full FD or semi-AN ap-
proximations. For this purpose, we study two shape parametrizations: an embedded
shape parametrization as presented in figure 5.11, and an FFD shape parametrization
as presented in figure 5.12. The results of the sensitivity analysis are given in tables 5.1
and 5.2. For both the embedded and the mapping shape parametrizations, the analyt-
ical sensitivities are close to the approximations when a central scheme is used. The
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Figure 5.11 – Shape parametrization of the arch through the embedded surface.

Type d fcpl/dx1 d fcpl/dx2 d fcpl/dx3 d fcpl/dx4

FD (1e-6) 1.60593949 -1.60502817 -1.60502803 1.60593957
central FD (1e-6) 1.60574315 -1.60574318 -1.60574318 1.60574321

sAN (1e-6) 1.60576036 -1.60572716 -1.60572717 1.60576047
central sAN (1e-6) 1.60574314 -1.60574318 -1.60574321 1.60574319

full AN (-) 1.60574316 -1.60574316 -1.60574316 1.60574316

Table 5.1 – Different types of gradients for the arch with the settings from figure 5.10, and with
the embedded shape parametrization as in figure 5.11 (factor ×1e-03).
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Figure 5.12 – Shape parametrization of the arch through the volume mapping.
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Type d fcpl/dx1 d fcpl/dx2 d fcpl/dx3

FD (1e-7) -0.07765254 -1.45041246 -0.07765202
central FD (1e-5) -0.07766358 -1.45041602 -0.07766357

sAN (1e-6) -0.07766173 -1.45041168 -0.07766161
central sAN (1e-5) -0.07766357 -1.45041602 -0.07766357

full AN (-) -0.07766357 -1.45041602 -0.07766357

Table 5.2 – Different types of gradients for the arch with the settings from figure 5.10, and with
the mapping shape parametrization as in figure 5.12 (factor ×1e-03).

results are exactly the same up to 7th decimal. With a forward Finite Difference scheme,
both the full DF or the semi-AN sensitivities are less accurate. For example, in case
of the FFD shape parametrization 5.12, the relative error for the first design variable
(i.e. d fcpl/dx1, line corresponding to DF) is equal to 1.4e-4. Even by changing the step
length in the approximation, we do not achieve to improve the accuracy. We observe the
same limit for the semi-AN sensitivities. Perhaps the precision suffers from the incon-
sistency regarding the rigid-body test as discussed in section 3.1.3 (see more specifically
the paragraph about semi-AN sensitivities page 57).

Thus, this study regarding the sensitivities enables to validate the computation of
analytical gradients for both the embedded and the mapping shape parametrizations.
It also show that the semi-Analytical with forward FD approximations (which is the
cheapest approximated gradient) is only correct up to a certain precision. The inaccu-
racy of the gradient can have bad influence on the convergence during the optimization.
For example, unwanted dissymmetries may appear during the iteration of the algorithm
because of the accumulation of small (but not insignificant) errors. Finally, let us men-
tion that, within our code, the analytical sensitivity requires the lowest computational
time in comparison with the other types of gradients. For this simple example of the
arch, the difference is not important. However, for larger problem we observe major
gains.

5.3 Potential for designing multipatch shell structures

Now, we want to highlight the potential of the presented embedded approach for
shape optimization. We show here how it allows to optimize multipatch structures that
contain non-conforming meshes. Specifically, we focus on stiffened structures.

5.3.1 Sensitivity analysis of non-conforming multipatch structures

A last ingredient is required to be able to optimize complex multipatch structures. So
far, we have not integrated the Mortar coupling in our optimization process. Especially,
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we need to take a look at the computation of the sensitivities when several patches are
coupled through the Mortar method (as introduced earlier, see section 4.2.2).

5.3.1.1 Using Mortar coupling in optimization

Let us take the simple case of two patches coupled with the Mortar method. We re-
mind the coupled linear system to be solved (see equation (4.16)). It takes the following
form: 

K(1) 0 B(1)T

0 K(2) B(2)T

B(1) B(2) 0



u(1)

u(2)

λ

 =


F (1)

F (2)

0

 , (5.20)

where the coupling operators B(s) can be computed by equation (4.29) in case of Kirchhoff–
Love shells.

In order to perform the sensitivity analysis, let us also remind, once again, the
generic formula for adjoint-based discrete sensitivities (see equation (3.15)):

d f
dxi

=
∂ f
∂xi

+ u∗ ·
(

∂F

∂xi
− ∂K

∂xi
u

)
.

In case of two patches coupled with the Mortar method, the state variables, the adjoint
solution, the global load vector, and the global stiffness matrix are respectively given by:

u =


u(1)

u(2)

λ

 , u∗ =


u∗(1)

u∗(2)

λ∗

 , F =


F (1)

F (2)

0

 , K =


K(1) 0 B(1)T

0 K(2) B(2)T

B(1) B(2) 0

 . (5.21)

Then, one can get the expression of the sensitivity by substituting these expressions
into the general formulation of the adjoint-based discrete sensitivities (3.15) that we just
repeated. For two patches coupled with the Mortar method, we have:

d f
dxi

=
∂ f
∂xi

+ u∗(1) ·
(

∂F (1)

∂xi
− ∂K(1)

∂xi
u(1)

)
+ u∗(2) ·

(
∂F (2)

∂xi
− ∂K(2)

∂xi
u(2)

)

− λ∗ ·
(

∂B(1)

∂xi
u(1) +

∂B(2)

∂xi
u(2)

)
− λ ·

(
∂B(1)

∂xi
u∗(1) +

∂B(2)

∂xi
u∗(2)

)
.

(5.22)

The coupling between the patches introduces additional terms where the derivatives
of the coupling operator w.r.t. the design variables are involved. We will show that
these terms are computed analogously to the derivatives of the stiffness matrices (al-
ready tackled). Depending on the shape parametrization, these coupling terms in the
derivative (5.22) vanish.
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However, prior to that, let us tackle the specific case of the compliance. Its initial
expression (3.9) reads in the case of two weakly coupled sub-domains as:

fcpl = f (1)cpl + f (2)cpl =
1
2
F (1) · u(1) +

1
2
F (2) · u(2) (5.23)

Equivalently to equations (3.17) and (3.18), one can calculate the partial derivatives ∂ fcpl/∂xi

and the adjoint solution. By putting the obtain quantities into the expression (5.22), one
should get the following formula of the sensitivity of the compliance:

d fcpl

dxi
=

∂ f (1)cpl

∂xi
+

∂ f (2)cpl

∂xi
− λ · ∂B(1)

∂xi
u(1) − λ · ∂B(2)

∂xi
u(2), (5.24)

with:
∂ f (s)cpl

∂xi
= u(s) ·

(
∂F (s)

∂xi
− 1

2
∂K(s)

∂xi
u(s)

)
. (5.25)

Up to now, we are able to compute analytically the term in equation (5.25). However, to
get the complete gradient, we need to deal with the Mortar operators.

5.3.1.2 Shape parametrization

We need to look at the shape parametrization that requires some attention to be able
to perform the shape optimization with multiple non-conforming patches. The principle
does not change. The design variables move the control points of the different patches
as defined by equation (3.73):

Pk = P 0
k + ∑

i∈Dk

xin
k
i .

However, this shape parametrization should also be aware of updating the interface
curves. In fact, while modifying the shape of the different patches, the non-conforming
interfaces may change. The problem is that the link between the design variables and
the control points P̆ of the interface curves may not be easy to get. In general, this link
cannot be explicitly formulated. Thus, during the sensitivity analysis, one option is to
approximate the derivatives that cannot be explicitly calculated. For instance:

∂P̆

∂xi
≈ P̆ (xi + ∆xi)− P̆ (xi)

∆xi
, (5.26)

where P̆ (xi + ∆xi) are the control points of the interface curves after perturbing the
overall shape by applying a small change to the design variable xi. Those control points
may be obtained from a surface-to-surface intersection problem (CAD task).

Fortunately, with the presented embedded approach we have a suitable way to cir-
cumvent this issue. It is possible to define a shape parametrization that explicitly takes
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Figure 5.13 – Definition of the interface curves with the embedded approach. For the stiffener,
the interface curve C̆(2) lies on one edge of the embedded surface. For the panel, the interface
curve C̆(1) can be extracted from the embedded surface.

into account the update of the interface curves. This is made possible within the geo-
metric modeling process introduced previously in figure 5.4. To highlight this point, we
refer to figure 5.13. In our construction of stiffened structures, one face of the volume
mapping (in which the stiffener is embedded) is matching with the surface describing
the panel. Therefore, we can locate the parameter space of the panel in the parameter
space of this volume. Then, one can notice in figure 5.13 that the embedded surface is
lying on the parameter space of the panel. Hence, the interface curve on the panel side
can be extracted from the embedded surface. We can build a B-Spline curve that is fully
matching with the edge embedded surface:

C̆(1)(ξ) = S̄(2)(ξ, 0), ∀ξ. (5.27)
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For the stiffener, the construction of the interface curve is straightforward:

C̆(2)(ξ) = (ξ 0), ∀ξ. (5.28)

It can be defined using a linear NURBS curve with two control points. For the numerical
integration, both interface curves are further refined.

Thus, the control points of the panel interface curve can be explicitly connected to
the movement of the stiffener. The design variables move the panel interface curve and
the edge of the embedded surface in the same way. On the other side, the stiffener
interface curve usually does not need to be updated. For instance, the same edge of the
embedded surface may represent the interface during the whole optimization process.
This point could be foreseen in figure 5.5. Of course, this issue cannot be generalized
and is specific to the stiffened structures generated through the presented strategy.

5.3.1.3 Differentiating the Mortar operators

The differentiation of the Mortar coupling matrices is done in the same manner as
for the stiffness matrices. For instance, by invoking the chain rule, we express the deriva-
tives w.r.t. the design variables using the derivatives w.r.t. the control point coordinates
of the optimization model. Then, the refinement matrix is introduced in order to prop-
agate the sensitivity between the optimization model and the analysis model (see the
procedure from section 3.3.1). These chain rules bring us to calculate quantities of the
type:

λ · ∂B(s)

∂Q
u(s).

We do not differentiate direct and adjoint quantities in what follows, but one can con-
sider the vectors of DOF, λ or u, as being either one or the other. We also voluntarily
skip the sub-domain identification through superscript (s) because the expression is the
same independently of the sub-domain.

The derivatives of the Mortar operators w.r.t. the control points of the analysis model
is performed component-by-component:

λ · ∂B
∂Q
u = ∑

k
∑

l
λk

∂Bkl

∂Q
ul , (5.29)

where λk and ul are DOFs of the Lagrange multipliers and the sub-domain displacement
field, respectively. Bkl is the component of matrix B related to these DOFs.

Displacement continuity To go further, let us firstly take the case of the Mortar ma-
trix C that imposes the continuity of the displacement field at the interface (see equa-
tion (4.20)). We repeat its expression for the sake of clarity:

Ckl = ±
∫
[0,1]

R̃a(ξ) Rb
(
C̄(ξ)

)
δij |T (ξ)| dξ.
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We refer to equation (4.20) and its associated relations to fully understand the notation
if needed (especially equation (4.19)). The derivatives of the coupling matrix C w.r.t. the
control points is given by:

∂Ckl

∂Q
= ±

∫
[0,1]

{
R̃a

∂Rb

∂Q
|T |+ R̃aRb

∂|T |
∂Q

}
δij dξ . (5.30)

Then, we can put this last equation into equation (5.29). By commuting the double sum
and the integral, we get:

λ̃ · ∂C
∂Q
u = ±

∫
[0,1]

{(
λ̃h · ∂uh

∂Q

)
|T | +

(
λ̃h · uh

) ∂|T |
∂Q

}
dξ . (5.31)

where:

— λ̃h is the discretized Lagrange multiplier:

λ̃h(ξ) = ∑
a

R̃a(ξ) λ̃a, (5.32)

— uh is the discretized displacement field:

uh(θ1, θ2) = ∑
b

Rb(θ1, θ2)ub (5.33)

The derivative of the displacement field w.r.t. to the control point coordinates
is involved in equation (5.31) because of the change of variables that has been
made to perform the numerical integration. In fact, we have introduced embedded
curves to represent the interfaces on the parameter space of the patch. Let us give
the formal expression of the derivative for clarification:

∂uh

∂Q
= ∑

b

∂Rb

∂Q

(
C̄(ξ)

)
ub (5.34)

Clearly, the derivative is non-zero only for the control points of the interface curve.
Similar derivatives for the Lagrange multiplier (i.e. ∂λ̃h/∂Q) might be included
in equation (5.31) if it was not express as a function of the interface curvilinear
parameter ξ.

— |T | is the Jacobian of the change of variables made in the integral. It is interesting
to look at the term that multiplies the derivatives ∂|T |/∂Q. Especially, in case of
two sub-domains where the Mortar method is applied to enforce the displacement
continuity at the interface, the following condition is weakly imposed:

uh(1) − uh(2) = 0.

As a consequence, if equivalent derivatives of the Jacobian ∂|T |/∂Q are involved
for each sub-domains, summing the mentioned terms leads to zero. Depending on
the shape parametrization, the overall sensitivity coming from the Mortar coupling
vanishes. We will return to this point with the help of illustrative examples.
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In order to finalize the expression of the sensitivity, let us give the resulting deriva-
tives for the displacement field. Using the preliminary result from equation (5.34), we
get:

∂uh

∂Q
=

(
∂C̆

∂Q
· e1

)
uh

,1 +

(
∂C̆

∂Q
· e2

)
uh

,2 (5.35)

with

uh
,α =

∂uh

∂θα
= ∑ Rb,αub . (5.36)

Let us distinguish the nature of the control points of the analysis model as follows.
In case of a standard IGA element (solid or Kirchhoff–Love shell), the control points
number a of the patch is denoted Qa. For the embedded Kirchhoff–Love shell, we add a
bar in order to identify the control points of the embedded surface (i.e. Qa is associated
to the volume mapping, and Q̄a to the embedded surface). We denote the control points
of the interface curves as Q̆a. With these notations, we can give the derivative of the
interface curve w.r.t. the several types of control points. We have for standard elements:

∂C̆

∂Q̆αa
= R̆aeα,

∂C̆

∂Qia
= 0, (5.37)

and for the embedded shell:

∂C̆

∂Q̆αa
= R̆aeα,

∂C̆

∂Q̄ia
= 0,

∂C̆

∂Qia
= 0. (5.38)

We deduce the following relation:

λ̃h · ∂uh

∂Q̆αa
= R̆a

(
uh

,α · λ̃h
)

(5.39)

which can be then put in equation (5.31).
Finally, we need to describe the derivatives of the Jacobian ∂|T |/∂Q. Let us remind

equation (4.24) where the expression of the vector T is given:

T =
(
C̆,ξ · e1

)
A1 +

(
C̆,ξ · e2

)
A2.

By using the relation |T | = (T ·T )1/2, one can derive the Jacobian and get the following
result:

∂|T |
∂Q

=
∂T

∂Q
· t, (5.40)

where t = T/|T | is the unit vector tangent to the interface curve that has been already
introduced to impose the continuity of the rotation for the coupling of shells. The
derivation of the vector T reads as:

∂T

∂Q
=

(
∂C̆,ξ

∂Q
· e1

)
A1 +

(
∂C̆,ξ

∂Q
· e2

)
A2 +

(
C̆,ξ · e1

) ∂A1

∂Q
+
(
C̆,ξ · e2

) ∂A2

∂Q
. (5.41)
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At this point, we need to gather all the previous results. In fact, we already know
how to compute several partial derivatives involved in the derivation of the Jacobian.
For instance, we know how to compute the derivatives of the covariant vectors w.r.t.
the control points related to the shell mid-surface (see equation (3.93) for the standard
elements, and equations (5.12) and (5.13) for the embedded approach). We require to
give the derivatives of the covariant vectors w.r.t. to the control points of the interface
curve. We have:

∂Aα

∂Q̆a
=

(
∂C̆

∂Q̆a
· e1

)
Aα,1 +

(
∂C̆

∂Q̆a
· e2

)
Aα,2. (5.42)

Then, recalling equation (5.37) (or (5.38) for the embedded shell), we get the desired
result:

∂Aα

∂Q̆βa
= R̆aAα,β. (5.43)

To get the full expression of the derivative of the Jacobian, we need to express the last
intermediary formulas:

∂C̆,ξ

∂Q̆αa
= R̆a,ξeα ,

∂C̆,ξ

∂Q̄ia
= 0 ,

∂C̆,ξ

∂Qia
= 0. (5.44)

We now have all the ingredients to compute the analytical sensitivity as formulated in
equation (5.31).

Rotation continuity What has been done for the Mortar operator that enforces the
continuity of the displacement can be generalized. For instance, in the case of the Mortar
operator that enforces the continuity of the rotation, the sensitivity reads as:

λ̂ · ∂Z
∂Q
u = ±

∫
[0,1]

{
λ̂h ∂

∂Q

(
Φh · t

)
|T | + λ̂h(Φh · t

)∂|T |
∂Q

}
dξ . (5.45)

where Φh is the rotation vector as given by equation (3.47) applied to the discretized
displacement field:

Φh =
1
A

(
uh

,2 ·A3

)
A1 −

1
A

(
uh

,1 ·A3

)
A2. (5.46)

Without giving the details, let us mention that:

∂

∂Q

(
Φh · t

)
|T |+

(
Φh · t

)∂|T |
∂Q

=
∂Φh

∂Q
· T + Φh · ∂T

∂Q
, (5.47)

which enables to simplify a bit the calculation of the sensitivity. At this point, we only
need to mix all the presented results to get the full expression of the sensitivity. In fact,
we just formulate the derivatives of the vector T in the foregoing (see equation (5.41) and
the related ones). For the derivatives of the discretized rotation vector, one has to apply
a chain rule to equation (5.46). We know how to compute the derivatives of the covariant
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Figure 5.14 – Definition of the interface curves with the embedded approach.

vectors. In addition, we have seen that the derivatives of the area A and the director
vector A3 w.r.t. the control points are also expressed in terms of the derivatives of the
covariant vectors. Finally, the only intermediate result that is missing is the following:

∂uh
,α

∂Q
=

(
∂C̆

∂Q
· e1

)
uh

,α1 +

(
∂C̆

∂Q
· e2

)
uh

,α2 , (5.48)

which is similar to the result from equation (5.35). Hence, by merging all the mentioned
results, one should be able to calculate the derivative of the rotation vector w.r.t. every
type of control points. Thus, as for the Mortar operator that enforces the continuity of
the displacement, it is also possible to compute the analytical sensitivity for the Mortar
operator that enforces the continuity of the rotation.
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Potential for designing multipatch shell structures

Validation The correct computation of the sensitivities with the Mortar operator can be
verified on simple examples. One can for instance take a simple planar beam subjected
to an uniform pressure and supported at two locations as depicted in figure 5.14. Here,
the beam is described using a single patch and the displacement boundary conditions
are imposed through the Mortar operators. The optimization problem consists in finding
the best position of the supports that minimizes the compliance. Hence, the shape
parametrization imposes the translation of the interface curve along the beam. One
single design variable, which correspond to parameter a in figure 5.14, is defined.

Analytical formulation of the internal energy can be obtained. The beam is in pure
bending deformation, and thus, the strain energy is reduced to the integration of one
single term:

Ean =
1
2

∫
Ω̄

mxxκxx dxdy. (5.49)

Let us give the expression of the non-zero component of the bending moments. Its
expression depends on the position x along the beam. We have:

mxx =
1
2
(L/2− x)2 P − 1

2
L(a− x)P, 0 ≤ x ≤ a, (5.50)

mxx =
1
2
(L/2− x)2 P, a ≤ x ≤ L/2. (5.51)

The bending strain κxx is related to the bending moment as follows:

κxx =
1

EI
mxx, with I = t3/12. (5.52)

With the expression of the bending moment in hand, we are now able to calculate
analytically the strain energy:

Ean =
w
EI

∫ a

0
mxx

2dx +
w
EI

∫ L/2

a
mxx

2dx, (5.53)

which gives:

Ean =
wP2

EI

(
1
20

(
L
2
− a
)5

+
1
4

(
a5

5
+

2
3

a3c + c2a
))

, c = L2/4− aL. (5.54)

It is possible to get the analytic expression of the derivative of the internal energy
w.r.t. the parameter a. One has to derive equation (5.54), and should get the following:

dEan

da
=

wP2

4EI

(
−
(

L
2
− a
)4

+ a4 + 2a2c− 2
3

a3L + c2 − 2caL

)
, (5.55)

which can possibly be simplified.
Figure 5.14 gives the comparison between the analytic solution and the numerical

results. We show the good agreement of the IGA results for the internal energy and
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for the gradient. We display the relative errors when varying the parameter a for two
discretizations: a coarse mesh with 16 quartic elements and a fine mesh with 64 quartic
elements. The relative error for the gradient presents a pic near the optimal solution.
This is normal since at this location, the gradient is zero. However, the numerical gradi-
ent does not give exactly zero, and thus the relative error is high at this specific location
(infinite because dividing by zero). That being said, this study allows to validate the
computation of the sensitivities of the Mortar approach as presented in equation (5.31).
Since the shape of the beam does not change in this problem, only the derivatives of
the Mortar operator is involved in the sensitivity of the compliance. Looking at the re-
sults presented in figure 5.14, one can notice that we fully recover the analytic results.
The errors are small and they decrease with the mesh refinement. The computation of
the sensitivities can be done with the standard Kirchhoff–Love formulation or with the
embedded formulation. One can perform similar studies where the rotations are also
involved in order to validate the expression and implementation of the sensitivities of
the Mortar operator Z. Such a study is not presented here, but the remaining examples
will allow us to validate the computation of the sensitivities with the rotation continuity.

5.3.2 Local optimization of specific parts of a complete structure

It is time to use the developed strategy for shape optimization. We tackle here the
local optimization strategy based on what has been presented in figure 5.5. To this end,
we deal with the optimization of a hyperbolic paraboloid shell with stiffeners. This
example is presented in figure 5.15. A similar test case can be found in Dornisch et al.
[204] without shape optimization.

Settings The goal is to design the stiffeners in order to increase the overall stiffness of
the structure. To do this, we apply the embedded strategy that enables to parametrize
the shape of the stiffeners in an effective manner. The construction of the model is high-
lighted in figure 5.15. The principle remains the same: starting with the NURBS surface
representing the panel, a NURBS volume is built by extrusion. Then, NURBS surfaces
are embedded into the parameter space of the extruded volume. The final surfaces that
represents the stiffeners are obtained by the composition of these embedded surfaces
and the volume mapping. We give in figure 5.15, the control point coordinates of the
volume mapping as used here. The patch contains one single element with quadratic
degree in the two principal direction (those coming from the panel), whereas linear de-
gree is set in the extrusion direction. The embedded surfaces are modeled using patches
with four elements each. Degree two and one are set in the direction 1 and 2, respec-
tively (accordingly to figure 5.15). Uniform knot vectors are used. The data given in
figure 5.15 should be sufficient for anyone interested in carrying out the same study.

In order to impose shape variations to the stiffeners, we link several design variables
to the control points of the embedded surfaces. Here, we choose to impose identical
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Figure 5.16 – Optimization results for the hyperbolic paraboloid with stiffeners.

172

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI092/these.pdf 
      © [T. Hirschler], [2019], INSA de Lyon, tous droits réservés



Potential for designing multipatch shell structures

shape updates to the stiffeners. Thus, seven design variables are introduced as given in
figure 5.15. Bound constraints are set on the design variables to avoid the intersection
of the stiffeners and to maintain the embedded surfaces into the parameter space of the
volume. Finally, the design space is constrained such that the area (or indirectly the
mass) of the stiffeners cannot exceed 105% of the initial one which is equal to A0 =

0.25 m2.
The analysis model is defined thanks to the refinement procedures. The panel is

discretized with 32-by-32 quartic standard Kirchhoff–Love shell elements. Each stiffener
counts 64-by-8 quartic embedded Kirchhoff–Love shell elements. The Lagrange mul-
tipliers are discretized accordingly to the strategy presented in section 4.2.2. For the
displacement coupling, the Lagrange multiplier is discretized with 32 cubic elements.
For the rotation coupling, the Lagrange multiplier is discretized with 32 quadratic ele-
ments.

Optimization results The optimization results are given in figure 5.16. The optimiza-
tion algorithm converges quickly and the final design is achieved after less than 20
iterations. We depict in figure 5.16 several shape updates obtained during the resolu-
tion. We present the evolution of the displacement field, and the evolution of the shape
of the stiffeners. This example shows the great benefit of the developed embedded strat-
egy. Indeed, the stiffeners automatically follow the curvature of the panel. One should
notice that we do not apply any specific treatment to impose the bounding (geometric)
condition at the interface between the panel and the stiffeners. Due to the construction,
when moving the control points of the embedded surfaces, the stiffeners smoothly slide
along the panel. No geometric approximation is involved in the entirely process. Look-
ing at the shape evolution of the embedded surfaces (see again figure 5.16), one can see
that the shape updates are relatively simple. However, despite its apparent simplicity, it
integrates the complex task of taking into account the curvature of the panel.

Finally, let us give some quantitative results regarding the optimal design. The com-
pliance is decreased by more than 30%. More specifically, the initial compliance in the
case of straight stiffeners is equal to c0 = 38.53. The final compliance for the optimal
shape is equal to copt = 26.56, which gives the ratio copt/c0 = 0.6894. It highlights that a
true benefit can be brought by designing curvilinear stiffeners instead of simple straight
stiffeners. The final design does not differ that much from the initial one but it behaves
much better (in terms of stiffness).

Because the number of design variables is low, we can express their final values:

xopt =
(

0.4 0.4 0.4 0.328 0.204 0.128 0.124
)

.

Several views of this final design are depicted in figure 5.16. This example may consti-
tute a good test case if one tries to apply our methodology, or if one want to confront
their results provided by an alternative approach with ours. In fact, to the authors’
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Figure 5.17 – The shape update in case of non-conforming multipatch models should be aware
of preserving the geometric continuity at the patch interfaces.

knowledge, there do not exist benchmark examples for the shape optimization of curvi-
linear stiffened structures.

5.3.3 Optimizing the global shape of a multipatch structures

The presented embedded strategy also enables to optimize the global shape of a mul-
tipatch structure. Once again, the benefit lies in the fact that the connecting constraints
at the patch interfaces are directly taken into account without any specific treatment.
For that purpose, we apply the global optimization approach based on what as been
presented in figure 5.5. We will impose the shape updates through the volume map-
ping.

To highlight the capability of our approach, we will reuse the optimization prob-
lem of the square roof already tackled with a monopatch model (see figure 3.19 and its
associated discussion). The difference is that the initial square plate is modeled here
with a non-conforming multipatch model. The goal of this study is to underline that
the embedded Kirchhoff–Love shell brings general insights for the shape optimization
of non-conforming multipatch structures and should not be restricted to stiffened struc-
tures. We reserve the case of stiffened structures to chapter 6 which is dedicated to these
specific type of application.

Geometric constraints Let us consider having a given model in hand that contains,
for instance, several non-conforming patches. As an example, take the square plate
made of two non-matching patches as described in figure 5.17. The question is how
shape optimization can be performed with this multipatch model ? It is straightforward
that the control points of each patch cannot freely move at the interface (as done in
figure 5.17), but on the contrary, some constraints need to be imposed such that a certain
level of continuity is preserved at the interface during the shape updates.

This question is not new and solutions have already been studied. In particular,
Schmidt [205] deals with the enforcement of geometric continuity (G1-continuity) in
the case of a design model that has non-matching patches. They introduce variational

174

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI092/these.pdf 
      © [T. Hirschler], [2019], INSA de Lyon, tous droits réservés



Potential for designing multipatch shell structures

xy
z

Initial model

xy
z

FFD box

L

Surround by a Box
• 3D view

patch 1
patch 2

non-matching 
interface

x
y

LL

√2L

√2L

x
y

Control points of the box• 2D view

Figure 5.18 – Setting up a FFD shape parametrization in order to impose shape modifications
that preserve the geometric continuity between the non-conforming patches.

equality constraints in the optimization problem which enforce the geometric continuity
in a weak sense.

Here, we show how the embedded Kirchhoff–Love shell constitutes an alterna-
tive approach that has the advantage of explicitly taking into account the geometric
constraints of preserving a certain level of continuity at the interface between non-
conforming patches of an optimization model. The approach is inspired by the Free-
Form Deformation technique widely used in aerodynamic shape optimization [50, 206–
208]. The idea consists in diving the initial model into a morphing box. This FFD box
enables to deform the shape of the immersed object, for example airfoils and wings.

175

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI092/these.pdf 
      © [T. Hirschler], [2019], INSA de Lyon, tous droits réservés



5 Multipatch Shape Optimization

FFD of non-conforming models To illustrate the approach, let us take the case of the
non-conforming multipatch model of the square plate as shown in figure 5.18. We can
define a box that surrounds the plate. The box is built using a B-Spline volume that
represents the identity transformation. Its parameter space and its physical space are
identical. Now the initial surfaces defining the geometry of the plate can be seen as em-
bedded surfaces of the volume. The geometry of the shell is henceforth defined through
NURBS compositions. This is a major difference with the traditional FFD approach since
the box does not act on the node (or control point) coordinates of the immersed entity
but the deformed shapes are obtained through this composition of the initial model and
the volume mapping (NURBS composition in our case):

S(θ1, θ2) = V
(
Sinit(θ1, θ2)

)
(5.56)

We can impose shape modifications to the plate by modifying the volume mapping.
Taking the volume as a quadratic B-Spline ensures that the geometric continuity at the
non-matching patches is preserved. This requirement is therefore automatically ful-
filled. Thanks to the embedded Kirchhoff–Love shell formulation, we are finally able to
perform the structural analysis and the sensitivity analysis directly on this model based
on NURBS compositions.

Settings In order to illustrate the capability of the presented approach, we recall the
square roof problem tackled with a monopatch model in chapter 3 (see figure 3.19). It
consists in a square roof which is fixed at its corners and subjected to a constant vertical
load. We consider here the model of the plate with two non-matching patches and the
FFD box as already described in figure 5.18. Of course, the definition of the volume is
not unique and other choices could have been done. The presented configuration has
the advantage that the four corners of the plate are located on the faces of the box. If
one does not want to modify the location of these corners, one can simply keep these
faces untouched. We make this choice here. We decide to associate the design variables
only to the control points from the upper face of the box (besides those in common with
the other faces).

More specifically, the box is built starting from a linear patch with one single element.
The knot vectors are defined as follows:

Ξ = H = {0, 0,
√

2L,
√

2L}, Z = {−L/2,−L/2, L/2, L/2}.

The degree is then elevated by one in the first two directions (corresponding to the knot
vectors Ξ and H, and to the directions x and y in figure 5.18). Uniform knot insertions
are also performed such that the refined box counts 8-by-8-by-1 elements. It leads to 64
design variables. They move the control points in the z direction only.

The two embedded surfaces (patch 1 and 2 in figure 5.18) are discretized with 33-by-
16 and 32-by-16 cubic elements. Their common interface describe a parabola of height
h = 2 m and of length L = 10 m. The mechanical coupling is applied using the Mortar
approach as presented in section 4.2.
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iter 0 iter 50

iter 100 iter 150

iter 200 iter 250

Figure 5.19 – Optimization history of the Free-From Deformation approach applied to the shape
optimization problem of the square roof with a non-conforming multipatch model.
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5 Multipatch Shape Optimization

Standard Approach FFD monopatch FFD multipatch

0. 0.5 1.
Disp Magn. [1e-5]

0. 0.5 1.
Disp Magn. [1e-5]

0. 0.5 1.
Disp Magn. [1e-5]

Figure 5.20 – Comparison of the results obtained for the shape optimization of the square
roof. The FFD approach applied to the multipatch model gives very similar results than both
monopatch resolutions (standard and FFD).

Optimization Results We give in figure 5.19 several shapes obtained during the reso-
lution of the square roof problem. The starting point is not the square plate because it
is a saddle point of the problem, but a slight curvature is set (design variables equal to
one instead of zero). One can see how the volume is modified, and what are the conse-
quences for the shape of the shell. Looking at the optimal design, we recover a similar
shape than the one obtained with a monopatch model and the standard Kirchhoff–Love
shell. To highlight this point, we present several results in figure 5.20. We present the
result obtained with the standard IGA-based approach where the optimization model
counts 96 design variables. We consider this optimal geometry as the reference solution
here. The differences between this reference optimal design (left in figure 5.20) and the
non-matching multipatch result (right in figure 5.20) are almost undetectable. Looking
at the displacement fields of both these configurations also confirms the correctness of
the multipatch resolution.

In order to study the influence of having a multipatch model, we also solve the
optimization problem with the FFD approach applied to a monopatch model. Instead
of considering the multipatch model in figure 5.18, we take a simple square surface with
32-by-32 cubic elements. The final result is presented in figure 5.20 (middle). Again, a
similar optimal shape is achieved. More specifically, we can quantify the differences
between both FFD results by looking at the final values of the design variables. Let us
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0. 1.75 3.5
Grad Magn.

Initial design
(scale factor: -1)

0. 0.002 0.004
Grad Magn.

Optimal design
(scale factor: -1000)

Figure 5.21 – Comparison of the sensitivity analysis results of the FFD approach when applied
to the monopatch or the multipatch model.

denote by xmono and xmulti the final design variables for the FFD monopatch and FFD
multipatch resolution, respectively. We can evaluate the gap between these two results
as follows:

Emulti =
||xmono − xmulti||
||xmono + xmulti|| = 0.137%.

It proves that it leads to the same result. A slight asymmetry exists for the multipatch
case. It originates from the initial discretization of the square plate that is not symmetric
due to the curved interface. Lastly, we give in figure 5.21, the results of the sensitivity
analysis for the initial and the final designs for both monopatch and multipatch cases. It
enables to show that the influence of having a non-matching multipatch model is very
low. It leads to the same sensitivities as with the monopatch model. Thus, similar shape
updates and final optimal shapes are expected. We observe this behavior in this exam-
ple. Finally, let us briefly notice that, in the sensitivity analysis of the multipatch case,
there is no need to compute the terms coming from the Mortar coupling. It vanishes
here since the interface is moving identically from the perspective of each patch.

To conclude, this example demonstrates the capability of the presented FFD ap-
proach to handle complex multipatch for shape optimization. The use of NURBS com-
positions and of the dedicated embedded shell formulation has a high potential for this
purpose. The approach seems applicable for the shape optimization of more complex
models that contains, for example trimming patches. The difficulty of preserving the
geometric continuity is automatically removed, even for these types of configurations.
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Chapter 6

A robust framework for designing
innovative Aerostructures

New methodologies are considered as attractive only if they are able to solve problems
of real interest. The goal of this last chapter is to highlight the potential of the

presented strategies for designing innovative aerostructures. To this purpose, we firstly
show how all the developed work can be concatenated into one single framework. Several
examples of shape optimization of stiffened structures are then presented. It brings to light
the capabilities of our framework to design futuristic stiffened structures.
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6 A robust framework for designing innovative Aerostructures

6.1 Unify Domain Decomposition and Multipatch Optimiza-
tion

Structural optimization is computationally expressive because it requires a large suc-
cessive number of structural analysis (and sensitivity analysis). If the goal is to design
complex real-world structures, then it is crucial that each step of the resolution is ade-
quately developed. Since chapter 4, we know of to handle non-conforming discretiza-
tions and how to analyze such multipatch models in an efficient manner thanks to the
dual Domain Decomposition solver. In chapter 5, we developed an embedded strategy
which allows to perform shape optimization on non-conforming multipatch models in
a smooth manner. However, we did not mention yet how both approach can be merged.
In this section we discuss this issue.

6.1.1 Shape update in Domain Decomposition

The domain decomposition adopted in this work consists in taking each patch as a
sub-domain. During the resolution with the dual Domain Decomposition, we mention
that a sub-domain can be seen as a black-box (see discussion on parallel computing on
page 122). It takes the interface effort as an input, and it returns the displacement (and
the rotation for shells) at the interface. We wonder if we can adopt the same vision to
perform shape optimization on multipatch models: viewing each patch as a sub-domain
(black-box), what would be the inputs and the outputs ?

Simple example Let us take a simple example of a panel with one stiffener depicted
in figure 6.1. The structure is built using the construction method presented in sec-
tion 5.1.2. Thus, the stiffener is defined through the composition of a volume mapping
and an embedded surface. The design variables can be associated to the surface repre-
senting the panel, to the volume mapping, or to the embedded surface. The key point
is that the shape parametrization cannot be independent for each patch. The shape up-
date of the panel is transferred to the stiffener through the shape modification of the
volume. Conversely, the shape modification of the stiffener may lead to motion of the
interface over the panel. Thus, the panel should be aware of this motion. It means
that information about the shape modifications have to be communicated between the
sub-domains.

Figure 6.1 illustrates this dependency of the design variables related to each sub-
domain. Let X panel and X stiffener denote two sets of design variables acting on the panel
and on the stiffener, respectively. For the panel, the design variables can either be
applied to the control points of the surface or on the control points of the interface
curve. Mathematically, we can decompose the set X panel as follows:

X panel = X surface ∪ X curve.

182

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI092/these.pdf 
      © [T. Hirschler], [2019], INSA de Lyon, tous droits réservés



Unify Domain Decomposition and Multipatch Optimization

panel

stiffener

xvolume

xsurface = xvolume

Sub-domain 2

xembedded

Sub-domain 1

xsurface

xcurve = xembedded

xsurface

xembedded

Figure 6.1 – Dependency between the sub-domains regarding the shape parametrization.

For the stiffener, the design variables can either act on the volume mapping or on the
embedded surface. Thus, we can view X stiffener as:

X stiffener = X volume ∪ X embedded.

The intersection between these two sets, X panel and X stiffener, is not null. As shown in
figure 6.1 and as already mentioned, every design variables from the panel side should
be transferred to the stiffener in order to update the volume. In the other side, some of
the design variables acting on the embedded surface should be transferred to the panel
in order to update the interface curve. In other words, the set X comm of design variables
that needs to be communicated between the two sub-domains is given by:

X comm = X panel ∩ X stiffener = X surface ∪ X embedded.

Finally, the panel and the stiffener share quite a lot of design variables. Only the stiffener
may have independent design variables (associated to the volume excepted the face
matching with the stiffener, and to the embedded surface excepted the edge representing
the interface).
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• Matching case motion of the
panel mesh 

motion of the
panel mesh 

• Non-conforming case
same panel mesh same panel mesh 

Figure 6.2 – The discretization of the panel need to be update at each shape modification of
the stiffener when a matching multipatch model is used. Using model with non-conforming
discretization enables to keep the mesh of the panel untouched.

Generalization Based on what has been observed on the simple example, we can
briefly generalize to models with multiple panels/stiffeners. When a stiffener and a
panel are coupled,

— the panel sends the shape update of its surface to the stiffener,
— the stiffener receives this information in order to update the volume mapping,
— the stiffener sends the shape update of the embedded surface to the panel,
— the panel receives this information in order to update the interface curve.

Hence, we understand, as of now, that the communication between the sub-domain
does not only involve quantities coming from the structural analysis. Implementing the
resolution in parallel is more challenging than that.

6.1.2 Parallel computing and Numerical efficiency

We have not implement the method in parallel within the scope of this work. We
discuss this issue here in order to motivate researches in this direction.

Non-design parts A first interesting point to notice concerns the structural analysis. If
the mesh of a patch is not modified during the shape optimization, then several savings
in term of computational time can be made. In fact, the sub-domain stiffness matrix K(s)

will not change during the whole process. More importantly, its pseudo-inverse K†(s)

needs to be built once and for all at the beginning of the resolution. This can represent
a great numerical saving. This is true when only the shape of the stiffeners is optimized
and the panel is kept fixed. The pseudo-inverses associated to the panel are built only
once, and it can be reused during the whole resolution. It is also interesting to point out

184

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI092/these.pdf 
      © [T. Hirschler], [2019], INSA de Lyon, tous droits réservés



Unify Domain Decomposition and Multipatch Optimization

that the panel remains unchanged because of the use of non-conforming meshes. As
shown in figure 6.2, in the case of a model with matching meshes between the stiffener
and the panel, the mesh of panel is modified during the shape update of the stiffener
even if the overall shape remains the same (i.e. a rectangle). This is an interesting feature
provided by the use of non-conforming discretizations.

Regarding the PCPG algorithm 4.1 involved in the dual Domain Decomposition
solver, the choice of the starting point λ0 may be improved by taking the solution of
the previous design. The algorithm may converge faster with such a choice, notably
when the design changes between two successive iterations are not important. The so-
lution of the FETI problem should not differ a lot when the design changes are low.
Thus, the use of non-conforming meshes and the dual Domain Decomposition solver
can significantly accelerate the structural analysis step.

Sensitivity analysis / Adjoint problem As for the structural analysis, the sensitivity
analysis may also be performed in parallel. Let us remind the generic expression of the
discrete sensitivity as given by equation (3.14):

d f
dxi

=
∂ f
∂xi

+
∂ f
∂u
·K−1

(
∂F

∂xi
− ∂K

∂xi
u

)
.

Either for the direct method (3.16) or the adjoint method (3.15), the calculation of the
sensitivities often requires the resolution of a system (or even multiple ones). But thanks
to the dual Domain Decomposition solver, this resolution step in the sensitivity analysis
can be done in parallel. Furthermore, since the pseudo-inverses K†(s) have already been
built during the structural analysis, the numerical cost for solving the linear systems
could be largely reduced. The same remark about the improvement of the starting point
for the PCPG algorithm is also true here.

Regarding the communications between the sub-domain (in other words between the
processors), we have seen that they share common design variables. For instance, the
derivative of the respond function w.r.t. a design variable xsrf associated to the surface of
the panel has two terms: one coming from the panel and on coming from the stiffener:

d f
dxsrf =

(
d f

dxsrf

)panel

+

(
d f

dxsrf

)stiffener

(6.1)

Therefore, it raises the question how to store the components of the gradient. It may no
be necessary that each sub-domain knows the whole gradient. In the example given by
equation (6.1), a solution could be that the stiffener sends its contribution to the panel
only. There is a priori no need that the panel sends its contribution to the stiffener. Thus,
only the panel knows the complete derivative. A closer look at this point should be of
great interest.

Optimization algorithm Lastly, there is the question of the optimization algorithm. If
the design model is really large with a lot of design variables, then the optimization
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point cloud

upper surface 2

lower surface 2

upper surface 1

lower surface 1

Figure 6.3 – Defining the outer skins of the wing from a point cloud. Four surfaces are interpo-
lated.

algorithm should be adequately chosen. It seems, in this case, not efficient to associate
one single processor to handle the optimization algorithm. Indeed, the number of com-
munication with the sub-domain would be high. For instance, it would, in this case,
receive the contribution of each sub-domain for the gradient etc. Topology optimization
requires all a lot of computational resources and works have been done in order to deal
with very large model with millions of design variables [38, 209–213]. An impressive
result can be found in [38] where the design of the internal structure of a full-scale
aeroplane wing is presented. Other interesting ideas could surely be found by looking
at the methods developed in multidisciplinary optimization [142, 143, 214]. Instead of
solving one large optimization problem, multiple local optimization problems could be
solved at the sub-domain level. Thus, interesting ideas taken from these cited works
could surely be applied in our framework in order to get a full parallel implementation
of the code.

6.2 Innovative Design of Stiffened Structures

We present in this section several optimization of stiffened structures that have been
done with the methods developed in this work. It highlights that our approach is quite
general and can be applied to a large variety of problems.

No software has been used (except paraview for the post-processing). The core part
of the code is written in Fortran programming language (stiffness matrices, coupling
operators, sensitivities, post-processing outputs, etc). These main routines are latter
wrapped using f2py. It enables to interface the Fortran routines into Python scripts.
Python programming language has the advantage of supporting object-oriented pro-
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Lower surface

Internal volume

Upper surface

Figure 6.4 – The upper surface and the lower surface are used to generate a volume that fills the
domain delimited by the skin of the wing.

gramming. Several classes have been created in order to get a convenient way to set
up an optimization problem.

6.2.1 Versatile construction of an Aircraft Wing

We have presented and built our embedded approach in order to generated stiffened
structures (see the process in figure 5.4). Since now, we have mainly showed how it
enables to add stiffeners to curved panel (see for example the stiffened paraboloid from
figure 5.15). Nevertheless, the method is capable the generate more complex geometries.
In order to prove this point, let us try to build a model an aircraft wing with its internal
sub-structure.

Outer surfaces The starting point is the representation of the external skins that de-
fine the outer geometry of the wing. This can be done either by using a CAD software
as Rhinoceros 3D [215] or by directly interpolating a point cloud. The NASA com-
mon research model [216, 217] is used in this work. The geometric data for the CRM
wing [216] enables to generate a point cloud that represents the outer geometry of the
wing. Then, four B-Spline surfaces are generated by interpolation/least-square approx-
imation of these points. Information about interpolation techniques with Splines can be
found in Piegl et al. [89]. We end up with the surfaces depicted in figure 6.3.

Internal volume The next step consists in the construction of volumes that fill the do-
main delimited by the skins. To generate these volumes, we simply rely on the surfaces.
We define two B-Spline volumes. These volumes are defined such that two of their faces
match with the upper and the lower skins. Linear degree is chosen in the additional
direction of the volume (from lower surface to the upper one). The knot vector is sim-
ply taken as Z = {0, 0, 1, 1}. Thus, no additional control points are generated during
the definition of the volumes. An example of a volume is given in figure 6.4. The two
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Final geometry with the 
internal sub-structure

ξ1

ξ2

ξ3

Embedded surfaces
for the Ribs

Embedded surfaces
for the Spars

• Parameter space (of the volume)

Ribs

Spars

• Physical space

Volume mapping

Figure 6.5 – Geometric modeling of the internal substructure: the spars and the ribs are defined
by embedding NURBS surfaces into the parameter space of the previously generated internal
volumes (see figure 6.4).

generated volumes do not represent a structural part of the wing. They are built only
for geometrical purposes.

Internal sub-structure In fact, once the internal volume is defined, we apply the em-
bedded strategy in order to describe the ribs and the spars that compose the internal
sub-structure of the wing (the wing box). We embed surfaces into the parameter spaces
of the volumes. Then, the compositions of these embedded surfaces and the internal
volumes give the final surfaces of the internal sub-structure. An example of the model-
ing process is shown in figure 6.5. This construction guarantees that the sub-parts are
perfectly inside the domain delimited by the outer surfaces. The ribs and the sparse can
easily be defined such that they perfectly lie on the skins.

Structural Analysis Interestingly, the model is directly usable for structural analysis
by using the tools developed in this work. Firstly, the geometric modeling of the spars
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Figure 6.6 – Structural analysis of the CRM wing.

Wing

ref Ntot Nλ I F̃−1
D

0 9246 2272 1874 258
1 28 554 4096 - 299
2 102 444 7744 - 378

Table 6.1 – Performance study for the wing problem.

and the ribs is done through NURBS composition. However, thanks to the embedded
Kirchhoff–Love shell formulation, we are able to analyze these parts directly. Secondly,
the Mortar coupling enables to deal with the non-conforming junctions between the
different parts. The model contains 16 patches: 4 quadratic standard Kirchhoff–Love
shells for the skin, 8 and 4 cubic embedded Kirchhoff–Love shells for the ribs and the
spars, respectively. Finally, the dual Domain Decomposition solver gives an efficient
way to perform the structural analysis. Each patch is taken as a sub-domain for our
solver.

Figure 6.6 presents an example of results that have been obtained on the wing model.
The mechanical properties are the following: every part (the skin, the ribs, and the spars)
has a Young’s Modulus E = 210 GPa, and a Poisson’s ratio ν = 0.30. The thickness of the
skin is taken as tskin = 30 mm, the thickness of the ribs is taken as tribs = 40 mm, and the
thickness of the spars is taken as tspars = 50 mm. The root side of the wing is fixed and
a uniform pressure P = 10 kPa is applied on the upper skins (made of two surfaces, see
figure 6.3). For the other geometric settings, we refer once again to Vassberg et al. [216].
A scale factor is applied such that wing has the following dimensions: the span is 15 m,
the sweep angle is 35°, the root and tip chords are equal to 7 m and 1 m respectively.
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Figure 6.7 – Structural analysis of the CRM wing.

In order to highlight the correct imposition of the coupling conditions, we depict
detail views of the different non-conforming interfaces in figure 6.7. One can see the
continuity of the displacement over these interfaces. Concerning the convergence of the
dual Domain Decomposition algorithm, we were only able to run the resolution with-
out the preconditioning step for the coarsest discretization. In this case, it already takes
almost 2000 iterations to converge (see table 6.1). For the highest level of refinement,
it does not converge before the stopping criteria of maximal iteration number set to
2000. However, the generalized Dirichlet preconditioner drastically accelerates the con-
vergence as shown in table 6.1. It enables to analyze refined versions of the wing model
in an acceptable number of iterations. We get a slow growth of the iteration count ver-
sus the refinement level. It demonstrates that the generalized Dirichlet preconditioner
introduced in section 4.3.4 is robust even for more complex cases as the aircraft wing.

6.2.2 Global optimization: the stiffened roof

The stiffened roof problem highlights the potential of our approach to optimize the
global shape of stiffened structures. Here we apply the Free-Form Deformation shape
parametrization as introduced in chapter 5 (see more specifically figure 5.5, and sec-
tion 5.3.3). The shape modification is done through volume that contains embedded
surfaces.

Settings The problem of the stiffened roof is derived from the initial shape optimiza-
tion problem of a roof under vertical uniform load [144, 145]. We also dealt with the
square roof problem multiple times in this work: see the standard monopatch resolution
in figure 3.19, and the multipatch resolution in section 5.3.3.
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Figure 6.8 – Settings of the stiffened roof problem. The geometric modeling employs the embed-
ded approach: a volume is extruded from a square plate, and then, the stiffener are generated
by embedding surfaces into the parameter space of this volume.
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Figure 6.9 – Several intermediary shapes obtained during the optimization of the stiffened roof.

Two stiffeners are added to the initial square plate. We introduce two embedded
surfaces to define these stiffeners as shown in figure 6.8. The construction can be di-
vided into two steps. First, the volume mapping is generated by the extrusion of the
square plate. We set the degree to one in the direction of extrusion (i.e. the knot vec-
tor in direction ξ3 is defined as W = {0 0 1 1}). Thus, the generation of the volume is
straightforward. The volume shares half of its control points with those associated to
the square plate. The additional control points are a copy of the previous ones where the
z-component is set to an offset value. The second step consists in embedding surfaces
into the parameter space of the created volume. These embedded surfaces, once com-
posed with the volume mapping, give the final surfaces within the physical space that
define the stiffeners. Here, the embedded surfaces are B-Splines of one single element
with degree 2-by-1. Thus, each surface has six control points as depicted in figure 6.8.
The coordinates of their control points can directly be interpreted from this figure con-
sidering the ratio d1/d2 = 0.35. The other geometric and mechanical parameters of the
problem are given in figure 6.8.
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Figure 6.10 – Final design and result for the stiffened roof problem once the algorithm has
converged. The optimal design is much more stiffer than the initial one.

In this problem, the embedded surfaces remain unchanged during the optimization.
We apply the FFD design technique. The shape modifications of the stiffeners are only
imposed by the design updates of the surface representing the roof. To this purpose,
the design variables are associated to the control points of the mapping. The volume
mapping is discretized using 4-by-4-by-1 elements. Degree 3 is taken in directions ξ1 and
ξ2 while degree 1 is kept in direction ξ3 (red points in figure 6.8). Thus, the optimization
model has 45 design variables that move the control points of the mapping in the vertical
direction z. The analysis model is defined such that the roof and both stiffeners are
discretized into 1024 and 256 bi-cubic elements respectively. The area of the roof without
the stiffeners is constrained to be lower than 110% of the initial area of the square plate
(.i.e. lower than V0 = 110).

Results Figure 6.9 shows the shape evolution of the optimization model and the analy-
sis model. Due to the construction, the stiffeners follow exactly the shape modifications
of the roof (the panel). No additional procedures are needed to enforce this constraint.

The final shape is obtained after 125 iterations of the optimization algorithm when
setting the stopping criteria regarding the relative objective function to 1e-8. Figure 6.10(c)
depicts the evolution of the relative compliance during the resolution of the optimiza-
tion problem. The compliance is drastically reduced: final relative compliance is equal
to copt/c0 = 2.217e-3. The optimized structure deforms much less than the initial stiff-
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ened plate. The final displacement field is presented in figure 6.10(b). Looking at the
continuity of the displacement field at the interface further confirms the suitability of
the presented approach. It is interesting to note that the final shape has two planes of
symmetry (see figure 6.10(a)). This is expected since the problem presents these sym-
metries. Therefore, some design variables have identical optimal values. The fact that
we obtain the symmetries without setting groups of design variables is a meaningful
indication to validate the result.

From an engineering point of view, this problem of the stiffened roof highlights
an interesting issue. We manage to solve the optimization problem with the substruc-
ture. One could also simplify the problem by ignoring in the optimization process the
stiffeners assuming that they only have small influence on the behaviour of the global
structure. We tried to solve in a first step the optimization problem without the stiffen-
ers, and we built the substructure afterwords. We computed the compliance on this new
global structure and we got a compliance approximately 15% higher than the one ob-
tained when optimizing the structure with the stiffeners. It highlights that tacking into
account, during the optimization, sub-parts as stiffeners, holes, and other geometric
details can be essential to design even better structures.

6.2.3 Local optimization: the curved wall

The curved wall problem highlights the potential of the presented approach to op-
timize the local shape of stiffened structures. Here we apply the embedded shape
parametrization as introduced in chapter 5 (see more specifically figure 5.5, and sec-
tion 5.3.2). The shape modification is done through the embedded surfaces while the
mapping volumes are kept fixed. With this example of the curved wall we want to
highlight that the approach enables to design stiffeners with complex shape. It is not
restricted to flat stiffeners (as for the hyperbolic paraboloid with stiffeners from sec-
tion 5.3.2).

Settings The construction principle of the stiffened curved wall is the same than the
already presented examples. Starting from the surface defining the wall, we create
a volume by extrusion. Once the volume is obtained, a surface is embedded in the
parameter space of the volume. The composition of the embedded surface with the
volume mapping gives the surface defining the stiffener in the physical space.

More specifically, the wall is defined by a quadratic NURBS surface. This surface
originally represents a quarter cylinder. We move some control points to generate the
final curved wall depicted in figure 6.11. We also give the coordinates of the control
points and their weights in this figure. The embedded surface is defined by a quadratic
NURBS with 2-by-4 elements. Its initial shape is described in figure 6.11.

In order to perform the shape optimization of the stiffener, a set of design variables is
associated to the control points of the embedded surface. These design variables mod-
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Figure 6.11 – Settings of the curved wall problem and construction of the model.
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ify the cross-section and the position of the stiffener along the wall. With the chosen
parametrization, six groups of four control points are spread out along the main direc-
tion of the stiffener. For each group of control points, we define four design variables
xi = [xi

1, xi
2, xi

3, xi
4] as explain in figure 6.11 (i identifies the group number). Thus, a total

of 6× 4 = 24 design variables is used for this example. The initial shape is obtained by
setting the design variables of each group equal to x0 = [0.3, 0.90, 0.06, 0.05]. The area
of the stiffener is constrained to be lower than the initial one which is A0 = 21.579 m2.
Additional inequality constraints are included to the optimization problem in order to
prevent undesired shapes during the resolution:

xi
3 − xi

1 ≤ 0, xi
1 + xi

3 − 1 ≤ 0, xi
4 − xi

3 ≤ 0. (6.2)

The first two constraints ensure that the embedded surface remains in the parameter
space of the volume mapping. The third constraint limits the curvature of the cross-
section of the stiffener. Finally, bound constraints set the range of variation of the design
variables. The lower bounds are xlo = [0., 0.1, 0.05, 0.01] and the upper bounds are
xup = [1., 1., 0.15, 0.15].

The analysis model is defined trough k-refinement of the optimization model. More
specifically, the wall is discretized with 32-by-32 bi-cubic NURBS elements and the clas-
sical Kirchhoff–Love formulation is used. The embedded surface is discretized with 16-
by-64 cubic NURBS elements and the embedded Kirchhoff–Love formulation is applied.
The mechanical parameters of the problem are defined in figure 6.11. The pressure is
applied over the mid-surface of the wall. The bottom of the wall and the bottom of the
stiffener are both fixed. With this analysis model in hand, the compliance for the initial
configuration of the multipatch structure is found to be equal to c0 = 38.79 N m.

Results The optimization results are given in figures 6.12 and 6.13. During the reso-
lution, the stiffener moves along the wall until it is located at the middle. The stiffener
follows perfectly the curvature of the wall. With the embedded approach, no geomet-
rical approximations at the interface are introduced. Moreover, it avoids calling on
cumbersome procedures as mesh projection etc. The shape parametrization is finally
quite simple (already presented in figure 6.11): the uni-directional translation of the em-
bedded surface leads to the motion of the whole stiffener along the wall. This is true no
matter the shape complexity of the wall and of the embedded surface.

Due to the symmetry of the problem, it was predictable that the final stiffener is
located at the middle of the wall. The optimal shape has this symmetry which demon-
strates the good quality of the result. Especially, the weak coupling between the non-
conforming patches is well defined and is not source of inaccuracy during the shape
updates. The cross-section of the stiffener is larger at the bottom than at the top of the
wall. A large cross-section at the bottom improves the fixation of the overall structure.
The cross-section also becomes larger where the deformations are critical. Reducing
the deformation at the bottom decreases the global deformation of the structure. The
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Figure 6.12 – Optimization histories for the resolution of the curved wall problem: evolution of
the geometry and the displacement field, and evolution of the compliance and the volume.

compliance of the final multipatch shape is equal to copt = 24.04 N m, which is 38%
lower that for the initial configuration. More details on the optimal shape are given in
figure 6.13. Information about the final coordinates of the control points associated to
the embedded surface can be found in this figure.

We believe that our framework enables to solve this optimization problem of the
curved wall in a suitable way. We are not sure whether commercial software as Op-
tistruct (see www.altair.com/optistruct) could handle this type of shape optimization
problem, and more specifically the junction between the stiffener and the wall during
the shape modification of the stiffener. Thus, we believe that our framework offers new
possibilities from the design point of view. It can be used to design new innovative
stiffened structures. Indeed, it offers alternatives to straight and flat stiffeners which
could further increase the performance of stiffened structures.
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Figure 6.13 – Optimal configuration of the stiffened curved wall: (a) final geometry and (b) the
magnitude of the displacement. (c) The final embedded surface: side, top views and 3D views.
The 2D views give information on the coordinates of the control points.

6.2.4 Designing an aircraft wing box

We show in section 6.2.1 how it is possible to generate a model of an aircraft wing
with our framework. We saw that structural analysis can directly be applied on this
model thanks to the developed tools. It is possible to go further by exploiting the ability
of the model to impose shape changes, and thus performing shape optimization.

Shape parametrization Several parametrization-based methods have been recently sug-
gested in order to obtain alternative designs to classical wing box designs characterized
by straight and parallel ribs and spars [4, 8–10, 13]. The inspiration for curved structural
members comes from dragonfly wings [218]. A good parametrization method should
provide a large design space described by a relative small number of design variables [8].
Dubois et al. [13] underlines the importance of having a parametrization scheme that
can be equipped with a full analytical sensitivity analysis. For complex geometries, ob-
taining gradient information is a challenging task [219]. The main issue comes from
the numerous intermediary steps that separate the definition of the design parameters
to the numerical results. Analytical sensitivities can be computed only if a close link
between the design variables and the analysis model exists.

The adopted strategy has already been introduced in this work for others optimiza-
tion problem (as for example the stiffened curved wall that we tackled just before). We
use the embedded shape parametrization in order to prescribe shape changes to the
structural members of the wings (spars and ribs). In fact, let us remind that we defined
the geometry of these structural members through the use of NURBS composition of
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Figure 6.14 – Shape parametrization of the internal sub-structure of the wing. The shape modi-
fications of the ribs and spars are done by moving the control points of the embedded surfaces.
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embedded surfaces and mapping volumes (see figure 6.5). By moving the control points
associated to the embedded surfaces, we have the possibility to impose shape modifica-
tions to the internal sub-structure of the wing. This process is highlighted in figure 6.14.
Due to the construction, the curvature and the cross-section variation of the wing are au-
tomatically taken into account. The volume mapping serves the function of keeping the
structural members inside the volume delimited by the skins. It ensures that the internal
sub-structure is perfectly coincident with the skins independently of the complexity of
the shape update. Thus, the designer does not need to worry about these geometrical
constraints. No additional procedures are required that could have broken the link be-
tween the shape parameters and the final geometric model of the wing. It finally offers
a convenient way to define the shape of the spars and ribs. In fact, it is based on NURBS
which is recognized as a powerful tool for building parametrization-based approaches.
In figure 6.14 we show how a uni-directional translation of the embedded surface in the
parameter space of the mapping leads to a smooth translation of the rib which follows
the skins. More arbitrary and complex shape changes can also be imposed in simple
manner.

Finally let us mention that our method shares some similarities with existing frame-
works. For instance, the SpaRibs framework [8–10] uses spline curves defined in a nor-
malized one-by-one 2D square. The design variables are linked to the control points of
these curves. Then, several steps including mapping, projection, extrusion, meshing, etc.
lead to the final analysis model. The shape parametrization scheme presented by Dubois
et al. [13] (which seems to be the only one that provides analytical sensitivity analysis)
also starts with a 2D representation of the structural layout where each spar/rib is de-
fined as a second-order polynomial. Then, each part is discretized and then extended
vertically to generate a 3D representation of the wing structure. The extrusion should
be aware of the geometry of the upper and lower skins of the wing. This can be complex
in case of large curvature changes. It also forces the shape of the structural members
to have a direction of extrusion. For instance, they cannot have holes or out-of-plane
curvatures. With the presented embedded strategy, we can imagine to define the spars
as cylinders instead of straight rectangles. This is the advantage of using a 3D represen-
tation of the ribs/spars at each step of the geometric modeling. Finally, the presented
strategy can be applied to other purposes and is not limited to the parametrization of
wing-boxes. Shape parametrized models of a fuselage can be done by following the
exact same methodology.

Shape Optimization It is time to exploit the generated model of the aircraft wing and
to perform a shape optimization of the internal sub-structure. The problem is presented
in figure 6.15. The geometric and mechanical settings are the same than for the structural
analysis of the wing presented previously in section 6.2.1. The definition of the design
variables is depicted in figure 6.15. Each rib is described with a B-Spline of one single
element with degree two in the main direction, and degree one in the vertical direction.
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Figure 6.15 – Settings for the shape optimization problem of the internal sub-structure of a wing.

The same goes for the spars except that they are discretized with two elements which
allows to set more design parameters. The control points of the spars are movable in
the ξ1-direction of the volume parameter space. The same motion is prescribed to the
edges joining the upper and the lower skin. Thus, four design variables per spar are set.
One common design variable is defined at the junction between the spars embedded in
the volume 1 and 2 in order to maintain there connection. Additionally, three design
variables per rib are defined, and move the control points in the ξ2-direction of the
volume parameter space (see figure 6.15). We end up with a total of 38 design variables.
Here we choose to prevent the crossing between the ribs during the shape evolution.
We add geometric constraints into the formulation of the optimization problem that
guarantees a minimal distance between the ribs. It is simply done in this work by
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Figure 6.16 – Shape evolution during the optimization of the internal sub-structure of the wing.
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Figure 6.17 – Optimization histories for the resolution of the wing problem, and final design of
the ribs and spars.

settings a minimal difference between two design variables of two neighboring ribs.
We also voluntarily skip to enforce the coupling between the ribs and the spars for the
sake of simplicity. In fact it avoids to locate their intersections during the optimization
process (see the discussion from section 5.3.1.2).

The optimization results are given in figures 6.16 and 6.17. The evolution of the
shape of the internal sub-structure is shown in figure 6.16. One can observe the shape
modifications of the embedded surfaces and their consequences on the shape of the ribs
and the spars. One could also observe the evolution of the deformation of the wing.
The overall displacement of the wing is drastically reduced during the optimization.
The maximal displacement of the final design is 10 times lower than the one of the
initial design (129 mm for the initial versus 12.8 mm for the optimal). The compliance is
reduced to a great extent, copt/c0 = 0.213, whereas the overall area (in other words the
mass) is kept constant. For the resolution, we use the MMA algorithm [220] due to the
quite large number of constraints we set in the optimization problem. The convergence
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is fast for the example as shown in figure 6.17.
The final design has ribs and spars with curved shapes. It proves that curved struc-

tural members can largely improve the mechanical behavior of the wing. It coincides
with the observations from other works [4–14]. Such innovative designs can surely
improve further aircraft structures, and more generally, stiffened structures. It also mo-
tivates the construction of robust and efficient frameworks that enable to design these
new future designs. We hope that this example confirms the potential of the methodol-
ogy developed in this work.
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Chapter 7

Conclusion

7.1 Final Overview

The core objective of this thesis was to study the benefits of IsoGeometric Analysis
for the shape optimization of structures, and especially, for the shape optimization of
complex stiffened structures as found in aeronautics. The benefits of IGA for shape opti-
mization turns out to be true in view of existing works. However, several issues needed
to be tackled to broaden the scope of application of isogeometric shape optimization.

More specifically, we started in chapter 3 by looking at the specific case of shells. In
the context of isogeometric shape optimization of shells, very little work has tackled the
influence of the chosen shell formulation. Thus, we explored the use of a solid-shell
formulation for the shape optimization of thin-structures. We carried out a range of
numerical experiments to compare the results of the proposed solid-shell approach with
the commonly adopted technique based on the Kirchhoff–Love formulation. Similar
results have been observed for the two shell formulations in terms of final optimized
design and in terms of global behavior during the optimization process (convergence
speed, intermediary shapes). Unlike pure shell elements, we emphasize that the solid-
shell element used in this work is based on a 3D solid continuum element. With any
simple IGA code in hand, one can perform shape optimization of shells without almost
any additional developments by imposing identical shape updates on both inner and
outer surfaces. Of course, this is restricted to preliminary studies, and more accurate
solid-shell formulations that treat the numerical locking should be used to build a robust
framework.

We also developed analytical sensitivities for both Kirchhoff–Love and solid-shell for-
mulations in the context of linear elasticity. The presented sensitivities are adjoint-based
discrete sensitivities. Their expression is based on the use of curvilinear coordinates in
the element formulation. This is very convenient with IGA since splines represent the
geometries in the parametric form. We mainly considered the case of the compliance
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but the developed analytical sensitivities enable to tackle other structural responses as
a specific displacement or stress components, etc. Because the considered solid-shell
formulation is based on a 3D solid continuum element, the analytical sensitivities are
also available for standard solid elements (we deal with both 2D and 3D examples). The
numerical cost of these analytical sensitivities turned out to be low which is essential
for complex structures.

Finally, the major interest of solid-shell elements concerns the geometric representa-
tion of the thickness. Continuous and smooth thickness variations can be imposed by
modifying the control point coordinates of one outer surface. Thanks to NURBS func-
tions, very few design variables were required to describe quite complex geometries.
The direct link with the CAD format provided by the NURBS functions is also highly
attractive in this context. The volume representation of the structure makes the optimal
shape directly available for CAD drawings, and thus the transfer to the manufacturing
step is simplified. The presented multi-model optimization process combined the bene-
fits of both Kirchhoff–Love shell and solid-shell. It consisted in using the Kirchhoff–Love
shell in a first stage to optimize the global shape of a structure. In a second stage, thick-
ness optimization was operated on a high-fidelity volume model using the solid-shell
approach.

In order to deal with the shape optimization of stiffened structures, we required to
face the difficulty of handling multipatch models with non-conforming parametriza-
tions. This is the cornerstone of the problem and developments have been done from
both the geometric and analysis points of view. From the analysis side, we built a dual
Domain Decomposition solver for the analysis of non-conforming multipatch isogeo-
metric shell models (see chapter 4). The starting point was the definition of a Mortar
coupling which weakly imposes the coupling conditions through Lagrange Multipliers.
Thus, we developed a new Mortar method for the coupling of Kirchhoff–Love shells.
In the literature, one argument against Mortar methods is commonly claimed; it con-
cerns the additional unknowns introduced by the Lagrange multiplier field that increase
the overall size of the system to be solved. We believe that this argument may be not
relevant and the present work fully takes advantage of those additional DOF. In fact,
it allowed us to formulate an interface problem, namely the one-level FETI problem,
where the unknowns of the system were these interface DOF. We highlighted for differ-
ent examples with increasing levels of complexity that it enabled to accurately analyze
non-conforming multipatch structures, even for very fine level of refinement, since we
tracked the interface residual during the resolution.

From the geometric side, we introduced in chapter 5 an embedded strategy in order
to properly impose shape changes to stiffened structures. It consisted in geometrically
defining the shell mid-surface by a NURBS composition of an embedded surface with a
volume mapping. We illustrated this construction principle on multiple examples and
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Prospects

we applied it for stiffened structures. We managed to directly use the NURBS compo-
sition for the analysis by introducing the embedded Kirchhoff–Love shell formulation.
This means that the original idea behind isogeometric analysis was maintained since
both the design and the analysis are performed on an common model. It is particularly
attractive when it comes to structural optimization. This way, analytical sensitivities
were achieved in this work. Moreover, the presented Free-Form Deformation technique
offered a smooth and an effective way to impose complex shape variations. It eliminated
sophisticated geometric rules, reparametrizations and other approximations one could
introduce when designing large and complex multipatch structures.

Thus, we were able, for example, to create a versatile model of a wing with its
substructure. Not only the position and the shape of the stiffeners were easily modified
but also the shape of the whole design of the wing could have been parametrized.
One could have changed the shape of the outer skins by acting on the control points
associated to the volume mapping. Due to the use of embedded entities, the internal
substructure of the wing automatically would have followed the update of the outer
geometry.

Finally, we ended up with a consistent framework to perform the shape optimization
of complex structures. In chapter 6, we highlighted how all the developed methods
of this thesis could be merged into one single framework in order to tackle industrial
problems. It led to innovative designs of stiffened structures. It brougt the possibility
to explore new types of design, and finally further improve the mechanical behavior
of aerostructures. In the usual aero-structural optimization framework, it seems that
mainly sizing variables such as the thickness are introduced into the design process.
The use of an isogeometric model with embedded entities can be very attractive to
enlarge the design space by adding shape variables as the position and the curvature of
the stiffeners.

7.2 Prospects

This works opens up new promising perspectives and motivations for further im-
provements. Let us mention several issues that come to mind.

Firstly, we hope that this thesis motivates researches on IGA-based shape optimiza-
tion. We truly believe that shape optimization is a great application of IGA, and that,
consequently, IGA could democratize the use of shape optimization methods in design
offices. In order to do so, there still exist points to look at. For instance, we did not
study the influence of the optimization algorithm. Instead, we mainly used black-box
solvers in this work. Designing specific optimization algorithms for IGA-based shape
optimization appears essential to get a general method that works for any given shape
parametrization. The question concerns the update of the design variables. The shape
updates should be managed such that mesh overlapping and self-intersection are pre-
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vented. The handling of such free-form shape parametrization is required to automatize
the setting of new optimization problems.

The analytical sensitivities could also be enlarged to other structural behaviors as
non-linearity (geometric or material). It seems also crucial to take into account other
phenomena such as buckling. This is particularly true for stiffened structures. Due to
their simplicity, those mechanical behavior should be more easily tracked with solid-
shell formulations than with pure shell formulations. Indeed, differentiating the geo-
metric stiffness matrix of the Kirchhoff–Love shell formulation w.r.t. the control point
coordinates involves much more terms than in case of the solid-shell formulation.

Regarding the multipatch modeling, the developed solver is naturally parallelizable.
In fact, the presented algorithm belongs to the FETI family which has been intensively
developed over the past decades. Those Domain Decomposition algorithms have shown
great performances to analyze very large problems with millions of DOF. Implementing
the overall developed framework in parallel is necessary to handle industrial structures.
Furthermore, alternatives to the initial one-level FETI problem, regarding for example
the formulation of the interface problem or the preconditioning step, have been sug-
gested and studied in the literature. All those works can be applied to develop efficient
analysis solvers for complex isogeometric models. The present work aims at motivating
researches in that direction. Finally, the approximation space of the Lagrange multipli-
ers in the Mortar approach is of high interest. Optimal discretization spaces still need
to be formulated in case of non-conforming Kirchhoff–Love shells. This would improve
the quality of the multipatch solutions. Thus, the direct use of geometric models with
non-conforming interfaces and trimming procedures for the structural analysis could
be pushed forward with those new Domain Decomposition solvers and optimal Mortar
coupling approaches.

The application of the developed strategies is surely not limited to stiffened aerostruc-
tures. The presented approach is versatile and can be applied to other purposes. Note
that, in order to do so, the availability of pre-processing tools is necessary. Developing
these tools is essential to democratize the use of IGA-based shape optimization and even
the use of Isogeometric Analysis.
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Appendix A

Résumé des travaux (en Français)

Ce chapitre reprend en français les éléments principaux présentés dans cette thèse. La
structure de ce résumé est semblable à l’organisation du manuscrit. Il s’agit dans

un premier temps de motiver l’utilisation de l’Analyse IsoGéométrique pour l’optimisation
paramétrique des structures coques. Nous rappelons certains éléments théoriques centraux
et montrons l’intérêt des formulations massifs coques et Kirchhoff–Love dans ce contexte.
Afin de traiter le cas des structures raidies, nous introduisons un algorithme basé sur les
méthodes de décomposition de domaine pour analyser efficacement des modèles aux dis-
crétisations non-conformes. Enfin, une approche immergée issue de l’infographie 3D nous
permet de paramétrer tant la forme globale de la structure que la forme des raidisseurs.
Des exemples permettent de justifier le potentiel de l’approche développée tout au long de
ce travail.
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A Résumé des travaux (en Français)

A.1 Introduction

L’optimisation de forme des structures requiert une combinaison harmonieuse entre
une description géométrique précise et un modèle d’analyse performant d’un même
objet. Plus encore, un lien étroit entre les modèles géométrique et d’analyse est néces-
saire puisqu’ils communiquent simultanément durant la résolution du problème d’op-
timisation. Ainsi, l’optimisation de forme est une application intéressante de l’Analyse
Isogéométrique (IGA) [17] car cette méthode s’appuie sur les fonctions NURBS pour
représenter d’une part la géométrie et, d’autre part pour effectuer l’analyse. Cet atout a
été démontré et l’optimisation isogéométrique de forme suscite un intérêt grandissant
depuis 10 ans, et cela pour différents champs d’application [18, 67, 72].

L’optimisation isogéométrique de forme reste cependant restreint à des cas d’école
et la viabilité de l’approche n’a pas encore été démontré pour des cas plus complexes
semblables à des cas industriels. Dans ce travail, nous cherchons à développer des outils
numériques d’aide à la conception des structures raidies comme on peut les trouver
en aéronautique. Ces structures sont obtenues par l’assemblage d’une pièce principale
(appelée la panneau ou la peau) et de sous-structures (appelés les raidisseurs). C’est
l’assemblage des raidisseurs avec le panneau qui donne une structure finale avec un
comportement mécanique intéressant pour une masse généralement faible. On retrouve
ce principe de construction pour le fuselage ou encore les ailes (voir figure 1.1). Des tra-
vaux récents ont montré qu’une voie d’amélioration dans la conception de ces structures
raidies consiste à proposer des formes innovantes. En effet, au lieu de concevoir des rai-
disseurs droits et de les disposer de manières uniformes tout le long de la structure, il
peut être bénéfique de concevoir des raidisseurs présentant des courbures et de les dis-
poser plus spécifiquement (cf. figure 1.2). On propose d’étendre les outils d’optimisation
isogéométrique de forme pour construire une stratégie de conception des structures rai-
dies innovantes. Bien que l’objectif semble restreint à une application précise, les outils
et les méthodologies développés sont finalement généralisables et ont pour but d’être
appliqués à bien d’autres applications.

Nous reprenons ici les points principaux présentés dans ce manuscrit de thèse. La
section A.2 présente les bases sur l’optimisation isogéométrique de forme pour les struc-
tures coques. On présente une approche multi-modèle qui combine les avantages des
formulations coques de type Kirchhoff–Love et à ceux apportés par des éléments mas-
sifs coques. La section A.3 introduit les outils développés pour effectuer l’analyse sur
des modèles aux discrétisations non-conformes. Finalement, la section A.4 présente l’ap-
proche immergée qui permet d’imposer des variations de formes sur des structures
complexes, et plus spécifiquement les structures raidies. Cela nous amènera à formuler
des conclusions sur ce travail et de présenter les perspectives qu’il nous semble intéres-
santes.

212

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI092/these.pdf 
      © [T. Hirschler], [2019], INSA de Lyon, tous droits réservés



Optimisation Isogéométrique des Structures coques

Mise à jour de la Forme
Modèle d'Optimisation

Analyse de la structure
Modèle d'Analyse 

Algorithme
d'Optimisation

Forme Optimale

Modèle CAO

raffinement

resultats
Non

Oui

variables
de design

grandeurs
d'intérêt

x

J
raffinement

Figure A.1 – Fonctionnement de l’optimisation de forme dans le cadre de l’IGA ; visualisation
des étapes principales.

A.2 Optimisation Isogéométrique des Structures coques

A.2.1 Optimisation paramétrique

La méthode d’optimisation adoptée dans ce travail s’appuie sur des travaux déjà
existant quant à l’utilisation de l’analyse isogéométrique pour les problèmes d’optimi-
sation paramétrique de forme [87, 88]. Le fonctionnement général de l’approche est
présenté en figure A.1. A partir d’un modèle CAO initial (modèle NURBS), la forme
optimale est obtenue itérativement. Chaque itération contient trois étapes principales :

— mise à jour de la géométrie en déplaçant les points de contrôle et, dans certains
cas, en modifiant leurs poids,

— effectuer l’analyse de structure pour cette nouvelle géométrie et calculer des gran-
deurs d’intérêts,

— traiter les données issues de l’analyse pour déterminer la prochaine modification
de forme.

Un point intéressant apporté par l’utilisation de l’analyse isogéométrique est la pos-
sibilité de choisir proprement les espaces d’optimisation et d’analyse [68-72, 75, 84]. En
effet, une discrétisation fine est choisie afin de garantir une bonne qualité de résolution.
D’un autre côté, le modèle d’optimisation est défini de manière à contrôler les variations
de forme.

Le niveau de raffinement du modèle d’optimisation est généralement moins élevé
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Modèle CAO initial Modèle d'Optimisation Modèle d'Analyse

Raffinement

Figure A.2 – Optimisation de forme dans le cadre de l’IGA ; l’optimisation peut s’effectuer sur
le modèle CAO initial, sur le modèle fin d’analyse, ou pour des niveaux de raffinement intermé-
diaires.

que celui du modèle d’analyse (voir figure A.2). En effet, un modèle d’optimisation
fin peut engendrer une forme finale très complexe. Réduire son niveau de raffinement
garantit que la forme obtenue ait un niveau de complexité contrôlé (courbure maximale
par exemple). Ce qui différencient les modèles d’analyse et d’optimisation est la densité
de leur polygone de contrôle. Cependant, tous deux représentent exactement la même
géométrie. Aussi, le passage de l’un à l’autre s’effectue facilement grâce aux procédures
de raffinement propres aux NURBS (et splines en général).

A.2.2 Calculs de coques

Deux formulations coques différentes sont envisagées dans ce travail : une formu-
lation massif-coque et une formulation Kirchhoff–Love (voir figure A.3). De nombreux
travaux envisagent l’utilisation d’éléments de type Kirchhoff–Love [71, 72, 122]. Ces élé-
ments coques ont l’avantage d’être peu gourmand en ressources numériques. Cependant
nous montrons que les éléments massifs coques peuvent aussi être intéressants dans le
contexte de l’optimisation de forme : la représentation explicite de l’épaisseur permet
de représenter des variations continues de celle-ci.

Formulation massif coque La formulation massif-coque employée dans ce travail s’ap-
puie sur les observations faites par Bouclier et al. [128]. Elle fait appel à une cinéma-
tique 3D classique. L’idée est d’utiliser qu’un seul élément solide dans l’épaisseur de
la coque. De plus, un degré deux est fixé dans l’épaisseur peu importe le degré choisi
dans les directions principales. Par commodité, on utilise ici les coordonnées curvilignes
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Une structure mince
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S(θ1,θ2)
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θ3
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G3
G2G1

X(θ1,θ2,θ3)

Massif-coque
Lignes 

coordonnées

Figure A.3 – Deux approches pour le calcul de coques : l’approche massif-coque où la structure
est entièrement représenté et l’approche Kirchhoff–Love où seulement structure est décrite à
partir de la surface moyenne uniquement.

pour formuler l’élément : le vecteur position prend la forme d’un volume paramétrique
(i.e. de la forme X := X(θ1, θ2, θ3)). Dans le cadre de l’élasticité linéaire, le tenseur de
Green-Lagrange généralisé s’écrit (dans un système de coordonnées curvilignes) :

ε =
1
2
(
u,i ·Gj + u,j ·Gi

)
Gi ⊗Gj. (A.1)

oùGi etGi sont respectivement les vecteurs covariants et contravariants. Tous les détails
de la formulation sont présentés en section 3.2.1.

Formulation Kirchhoff–Love Une formulation isogéométrique de type Kirchhoff–Love
est également utilisée dans ce travail. L’idée est de décrire le comportement de la struc-
ture globale uniquement à l’aide de quantités définies sur la surface moyenne. Ainsi, la
géométrie globale (le volume) est décrit ainsi :

X(θ1, θ2, θ3) = S(θ1, θ2) + θ3A3(θ1, θ2), θ3 ∈ [- t
2 , t

2 ], (A.2)

où le vecteur directeur est défini comme le vecteur unitaire normal à la surface tout au
long de la déformation. Par conséquent, les déformations de cisaillement transverse sont
négligées limitant cette formulation au cas de structures minces. A nouveau, les détails
quant à cette formulation sont donnés en section 3.2.2.

A.2.3 Une approche multi-modèle

Dans ce travail, plusieurs exemples ont été présentés pour montrer la viabilité de
l’approche massif coque pour les problèmes d’optimisation des structures minces. Pour
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Figure A.4 – Approche mutli-modèle : dans une première phase de conception, une formulation
coque type Kirchhoff–Love permet d’optimiser la forme globale de la structure. De cette pre-
mière étape, un modèle volumique est généré afin de représenter explicitement toute la structure.
Ensuite, l’approche basée sur les éléments massifs coques permet d’optimiser la carte d’épaisseur
jusqu’à obtenir la géométrie finale.
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Γ

Domaine 2
[ K(2), F(2), u(2) ]

Couplage non-conforme
[ λ, λ ] ̃ ˆ

Domaine 1
[ K(1), F(1), u(1) ]

Figure A.5 – Couplage par multiplicateurs de Lagrange de deux domaines non-conformes à
l’interface.

cela nous avons comparé sur des exemples simples les résultats obtenus à l’aide des deux
approches massif coques et Kirchhoff–Love. Cette étude est donnée en section 3.4.1 et
montre qu’elles conduisent à des géométries optimales similaires.

L’intérêt d’utiliser des éléments peu coûteux en terme de temps de calcul comme le
sont les éléments Kirchhoff–Love, est de pouvoir explorer une large variété de forme
rapidement. Ainsi, cette approche est très intéressante en phase de prototypage où plu-
sieurs configurations peuvent être traitées. Une fois qu’une idée globale de la forme
optimale est obtenue, l’approche massif coque permet de faire une étude plus détaillée
et d’introduire des variations d’épaisseur afin d’apporter des améliorations supplémen-
taires quant au comportement de la structure. C’est l’approche multi-modèle appliquée
pour le cas d’un toit en figure A.4. Finalement le résultat final est directement exploitable
pour la phase production. Le modèle obtenu s’appuie sur une description volumique de
la géométrie et utilise des outils issus de la CAO (B-Spline/NURBS etc.).

A.3 Calculs multipatch pour les structures complexes

A.3.1 Couplage Mortar

Les structures raidies sont obligatoirement modélisées par plusieurs patchs : plu-
sieurs surfaces NURBS et/ou compositions de NURBS. Pour pouvoir analyser la struc-
ture complète il faut donc coupler ces patchs. Les discrétisations sont généralement
non-conformes aux interfaces (voir figure A.5), et les conditions de raccords sont alors
nécessairement imposées faiblement. Considérons le cas de deux domaines Ω1 et Ω2

modélisés par des coques dont l’intersection Γ décrit une courbe (cas sans recouvre-
ment). Les conditions cinématiques de raccord s’écrivent ainsi :

u(1) = u(2) on Γ, (A.3)

Φ(1) · t = Φ(2) · t on Γ, (A.4)
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A Résumé des travaux (en Français)

A l’interface, on impose la continuité des déplacements. De plus, on impose la continuité
de la rotation de la surface moyenne par rapport à la tangente à l’interface t. Il existe dif-
férentes méthodes pour imposer faiblement ces conditions cinématiques. On peut citer
les approches de couplage par pénalisation, par multiplicateur de Lagrange ou encore
les méthodes de Nitsche. Dans ces travaux, nous adoptons une méthode de couplage
par multiplicateurs de Lagrange. On introduit deux multiplicateurs de Lagrange λ̃ ∈ Ld

et λ̂ ∈ Lr (Ld et Lr étant des espaces Ad hoc pour les déplacements et la rotation respec-
tivement). Le principe variationnel écrit sous forme discrète donne le système linéaire à
résoudre : 

K(1) 0 C(1)T Z(1)T

0 K(2) C(2)T Z(2)T

C(1) C(2) 0 0

Z(1) Z(2) 0 0





u(1)

u(2)

λ̃

λ̂


=



F (1)

F (2)

0

0


, (A.5)

où les vecteurs u(1), u(2), λ̃ et λ̂ collectent les degrés de liberté des discrétisations de u(1),
u(2), λ̃ et λ̂ respectivement. Les opérateurs de couplage pour les déplacements C(s) et les
rotations Z(s) sont des matrices rectangulaires creuses. Comme les matrices de rigidité
K(s), elles sont obtenues par assemblage de matrices locales et traduisent les conditions
données dans les équations (A.3) et (A.4).

A.3.2 Décomposition de domaine

Le système couplé A.5 peut être utilisé comme tel pour analyser des modèles non-
conformes. Cependant, il est possible de faire appel à des stratégies plus performantes
basées sur les méthodes de décomposition de domaine [150]. L’idée générale est de ne
pas résoudre un unique système de grande taille mais de résoudre plusieurs systèmes
à l’échelle des patches et d’itérer jusqu’à satisfaire les conditions de couplage aux inter-
faces des patches.

Construction de l’algorithme Nous commençons par écrire l’équilibre de chaque sous-
domain (ou chaque patch) soumis à des efforts extérieurs F (s) et d’interface B(s)Tλ :

u(s) = K†(s)
(
F (s) − B(s)Tλ

)
+ R(s)α(s), (A.6)

où K†(s) est un pseudo-inverse associé à la matrice de rigidité du patch, et R(s) et α(s)

correspondent respectivement à une base et à l’amplitude des mouvements de corps
rigide du sous-domaine considéré. La matrice B(s) concatène les deux matrices de cou-
plage C(s) et Z(s). De même, les degrés de liberté des efforts d’interfaces, λ̃ et λ̂, sont
fusionnés dans le vecteur λ.

Ensuite, nous introduisons deux conditions supplémentaires. Pour que le sous-domaine
soit à l’équilibre, c’est-à-dire, pour que l’équation (A.6) ait du sens, il faut que l’ensemble
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des efforts qui s’appliquent sur le patch le permette. C’est la condition d’admissibilité
du chargement qui s’exprime ainsi :

R(s)T
(
F (s) − B(s)Tλ

)
= 0. (A.7)

Finalement, le saut à l’interface des déplacements et des rotations doit être nul : c’est la
condition de compatibilité :

ns

∑
s=1

B(s)u(s) = 0. (A.8)

L’algorithme de décomposition de domaine résout itérativement l’équation (A.8). Les
inconnues du problème sont les amplitudes des mouvements de corps rigides des sous-
domaines ainsi que les efforts d’interface. Plus précisément, les solutions locales (A.6)
sont substituées dans l’équation (A.8) ce qui, combinée avec les équations d’admissi-
bilité (A.7), donne un système où les inconnues sont les d.d.l. des multiplicateurs de
Lagrange et les amplitudes des mouvements de corps rigide. Ce système est connu sous
le nom one-level FETI problem et prend la forme : F G

GT 0


λ
α

 =

d
e

 , (A.9)

où l’opérateur F est le complément de Schur dual :

F =
ns

∑
s=1

B(s)K†(s)B(s)T. (A.10)

Les expressions des autres quantités intervenant dans le système (A.9) ne sont pas rap-
pelés ici et le lecteur intéressé peut se référer aux équations données en section 4.3.1.
Comme évoqué, la résolution se fait à l’aide d’un algorithme itératif de sorte à effectuer
uniquement des produits matrice-vecteur. Ainsi, le complément de Schur n’a pas besoin
d’être assemblé ni inversé (ce qui serait très coûteux). Encore plus important, la multipli-
cation du complément de Schur par un vecteur (correspondant aux efforts d’interface)
prend la forme d’une somme de contribution calculée par sous-domaine. Cela en fait
une approche naturellement parallélisable. L’utilisation d’un algorithme itératif requiert
néanmoins une étape de préconditionnement afin de diminuer le nombre d’itérations et
de garantir la robustesse de l’algorithme.

Exemples Différents exemples ont été présentés en section 4.4. Le but était d’étudier
l’efficacité du solveur développé. Les résultats obtenus ont montré que le précondition-
neur utilisé (voir section 4.4) accélère convenablement la convergence de l’algorithme.
Il permet également de bien distribuer les efforts entre les patch en prenant en compte
les différences de rigidité. Nous avons étudié l’influence du raffinement du maillage
sur la convergence de l’algorithme. Idéalement, peu importe le niveau de raffinement,
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Figure A.6 – Description et résultats pour l’analyse par décomposition de domaine d’un panneau
raidi.

l’algorithme converge en un même nombre d’itération. Pour le cas des coques, la sca-
labilité n’est pas totalement observée mais l’influence du niveau de raffinement reste
faible. Aussi, des exemples relativement compliqués comme le panneau raidi avec plu-
sieurs raidisseurs repris en figure A.6, ont pu être traité avec le solveur développé. Un
point intéressant est que le critère d’arrêt de l’algorithme se fait sur le saut à l’interface.
Il s’arrête uniquement lorsque l’équation de compatibilité est vérifiée (à une tolérance
près). Ainsi, même pour des discrétisations très fines et des interfaces compliqués, nous
avons un moyen de mesurer le saut à l’interface et donc de vérifier que le couplage est
bien pris en compte.

A.4 Approche immergée pour modéliser les structures raidies

On cherche ici à construire un modèle paramétrique de structures complexes gé-
néralement obtenues par assemblage des plusieurs pièces. Afin de s’inscrire dans un
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(c)(b)

(a)

Modification
du

raidisseur

Modification
du

cylindre

Figure A.7 – Portion de cylindre avec un raidisseur : (a) deux surfaces NURBS permettent de dé-
crire cette géométrie. Cependant le paramétrage de la forme est délicat : (b) modifier la position
des points de contrôle du raidisseur ou (c) ceux du cylindre déconnecte les deux pièces.

processus d’optimisation de forme, il est nécessaire d’éviter toutes étapes d’approxi-
mation géométrique, de reparamétrisation, et autres règles géométriques sophistiquées.
L’objectif est de pouvoir piloter simplement la forme de la structure.

A.4.1 Modèle géométrique versatile

A.4.1.1 Forme paramétrique d’objets complexes

Afin d’observer la difficlté de créer un modèle parametrique d’une structure raidie,
considérons un exemple simple d’une portion de cylindre avec un raidisseur comme
représenté en figure A.7. Chacun de ces deux objets, la portion de cylindre et le rai-
disseur, peuvent être construit à l’aide d’une surface NURBS. Maintenant, imaginons
que nous voulons modifier la forme de ces deux objets. Pour cela, il est communément
adopté de modifier la position des points de contrôle. La difficulté ici est illustrée en
figure A.7. Lorsqu’on modifie le raidisseur, le lien à l’interface avec la portion de cy-
lindre est perdu. Aussi, lorsqu’on modifie la portion de cylindre, le raidisseur ne suit
pas les changements de géométrie. La raison est qu’il n’existe pas de lien explicite entre
la géométrie du raidisseur et celle du cylindre. Dans des cas simples, on peut imaginer
des relations entre les points de contrôle des différentes pièces, mais dans le cas général
cela n’est pas envisageable.
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Figure A.8 – Construction d’une structure raidie en utilisant les surfaces immergées. La surface
finale décrivant le raidisseur est obtenu pour la composition d’une surface NURBS et d’un vo-
lume NURBS. Cette construction garantit que le raidisseur repose parfaitement sur la portion de
cylindre.

A.4.1.2 Techniques avancées issues de l’infographie 3D

Pour remédier à la difficulté de paramétrage des structures complexes, nous intro-
duisons le principe de surface immergée. Dans le cas précédent de la portion de cylindre
raidie (voir figure A.7), l’idée est de construire le raidisseur par composition d’une sur-
face et d’un volume. Pour cela, une surface NURBS est immergée dans l’espace para-
métrique d’un volume NURBS. C’est la composition de ces deux transformations qui va
décrire la surface finale du raidisseur. Le volume NURBS est définit de manière à garan-
tir que la surface finale repose sur le cylindre. Pour cela, le volume peut être généré par
extrusion de la portion de cylindre. Cette idée est illustrée en figure A.8. En infographie
3D, ces techniques de paramétrisations de forme emboîtées sont connues sous le terme
Free-Form Deformation (FFD).

Maintenant, la forme est paramétrée et l’on peut la piloter simplement. Bouger les
points de contrôle de la surface immergée va modifier le raidisseur tout en garantissant
la contrainte géométrique de contact à l’interface. Aussi, il est possible de modifier la
position des points de contrôle associés au volume afin d’optimiser la forme globale de
la structure. Les exemples de la section A.4.3 illustrent ces possibilités et montrent la gé-
néralisation du principe de construction présenté ici pour le cylindre avec un raidisseur.

A.4.2 Formulation Kirchhoff–Love immergée

Pour répondre à des exigences du point de vue géométrique, nous avons introduit
le principe de surfaces immergées et de composition de fonctions NURBS. Désormais,
il s’agit d’effectuer l’analyse des structures ainsi construites. Le but est d’appliquer le
concept de l’analyse isogéométrique, c’est à dire d’utiliser directement le modèle géo-
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métrique pour effectuer l’analyse. Pour cela deux ingrédients sont nécessaires : une
formulation coque adaptée au composition de NURBS, et une méthode de couplage
pour des paramétrisations non-conformes.

Composition de NURBS L’introduction de la composition de fonctions NURBS ne
permet pas d’utiliser directement les formulations coques connues. Une surface S ob-
tenue par composition de NURBS n’est pas une surface NURBS. Son expression est un
peu plus compliquée, et est donnée par :

S(θ1, θ2) = V
(

S̄(θ1, θ2)
)

(A.11)

où

V(ξ1, ξ2, ξ3) = ∑
ijk

Rijk(ξ1, ξ2, ξ3)Pijk [volume NURBS] (A.12)

S̄(θ1, θ2) = ∑
ab

R̄ab(θ1, θ2)Qab. [surface immergée] (A.13)

Le volume NURBS V est construit à l’aide de fonctions de bases NURBS à 3 variables Rijk

et des points de contrôle Pijk. De manière similaire, la surface immergée S̄ est définit par
de fonctions de bases NURBS à 2 variables R̄ab et des points de contrôle Qab.

Formulation isogéométrique Nous proposons une formulation de type Kirchhoff–
Love [94], particulièrement intéressante pour l’optimisation de forme de structures minces (cf.
section A.2). Les hypothèses cinématiques conduisent à décrire le champ de déplace-
ment u3D de la coque uniquement à partir du champ de déplacement u de sa surface
moyenne. Le champ des déplacements est donné par :

u3D(θ1, θ2, θ3) = u(θ1, θ2) + θ3 [Φ×A3] (θ1, θ2), (A.14)

où θ3 ∈ [- t
2 ; t

2 ], t étant l’épaisseur de la coque. Le vecteur unitaire normal à la surface
moyenne A3 est définie à l’aide des vecteurs covariants A1 et A2 associés à la surface
paramétrée S. Ces vecteurs sont déterminés par les relations suivantes :

A1 = ∑
k=1,3

[
S̄,θ1 · ek

]
V,ξk

(
S̄
)
, A2 = ∑

k=1,3

[
S̄,θ2 · ek

]
V,ξk

(
S̄
)
, A3 =

1
J
A1 ×A2 , (A.15)

où J = |A1 ×A2|. Le taux de rotation Φ de la normale à la surface est donné par :

Φ = ϕ1A1 + ϕ2A2, avec ϕ1 =
1
J
u,θ2 ·A3 et ϕ2 = −1

J
u,θ1 ·A3. (A.16)

Il reste à décrire le champ de déplacement de la surface moyenne. L’application de la
méthode de Galerkine pose la question de l’espace d’approximation V h du déplacement.
Le principe isoparamétrique n’est pas applicable pour les compositions de NURBS. Pour
construire cet espace d’approximation, deux choix apparaissent envisageables :
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Figure A.9 – Formulation Kirchhoff–Love immergée. Le champ des déplacements est approché
par la même paramétrisation que la surface immergée S̄. Cependant cette surface ne décrit pas
la géométrie de la coque mais une transformation volumique supplémentaire est appliquée. La
configuration déformée est obtenue en additionnant le champ des déplacements à la composition
de NURBS.

1. utiliser les fonctions de base associées à la transformation volumique :

uh(θ1, θ2) = ∑
ijk

Rijk
(
S̄(θ1, θ2)

)
Uijk, (A.17)

2. utiliser les fonctions de base associées à la surface immergée :

uh(θ1, θ2) = ∑
ab

R̄ab(θ1, θ2)Uab. (A.18)

Le premier choix constitue une approche immergée. Les degrés de liberté sont imposés
sur les points de contrôle du volume dans lequel est immergée la surface. Ces approches
nécessitent une attention particulière pour ne pas obtenir un système mal-conditionné.
Cela est dû aux supports compacts des fonctions de base. Dans l’équation (A.17), il
se peut que l’image de la surface immergée S̄ n’intersecte pas le support de certaines
fonctions de base Rijk. Ainsi, les degrés de liberté associés à ces fonctions sont inactifs
et doivent être retirés du système d’équations. Ici nous adoptons la seconde approche
où le déplacement est approché à l’aide de la paramétrisation de la surface immergée.
Cette approche a l’avantage de conduire à des systèmes de petites tailles car les fonc-
tions de base sont celles d’une surface (et non d’un volume comme dans le premier cas).
Avec ce choix d’approximation des déplacements (A.18) et les quantités définies dans
les équations (A.11) à (A.16), il est désormais possible de construire un élément coque
de type Kirchhoff–Love où la surface moyenne est décrite par composition de NURBS.
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Figure A.10 – Construction de la géométrie du toit raidi : à partir d’une plaque plane, un volume
est généré par extrusion puis deux surfaces sont immergées dans l’espace paramétrique (en
haut) de ce volume. Les deux raidisseurs dans l’espace physique (en bas) sont alors obtenus par
composition.

Les expressions du champ des déformations, des contraintes et la matrice élémentaire
sont données en section 5.2. Le lecteur intéressé pourra également se référer à la for-
mulation coque Kirchhoff–Love initiale [94] et remplacer les quantités évoquées par les
expressions données ici. Un aperçu global de l’approche est décrit en figure A.9.

A.4.3 Application pour l’optimisation de forme

En combinant l’approche de modélisation géométrique par composition de NURBS,
la formulation coque immergée, l’approche Mortar pour le couplage, ainsi que l’algo-
rithme de résolution par décomposition de domaine, nous obtenons un outil numé-
rique d’aide à la conception de structures raidies. Nous reprenons dans cette section
deux exemples qui illustrent les capacités de l’approche développée. D’autres exemples
peuvent être trouvés dans le coeur de cette thèse et plus spécifiquement dans les cha-
pitres 5 et 6.

A.4.3.1 Optimisation globale d’une structure raidie

Le premier exemple est un toit auquel est fixé deux raidisseurs curvilignes. Initia-
lement, le toit est représenté par une plaque carrée. Ses quatre coins sont fixés et la
structure est soumise à une pression uniforme verticale. La construction du modèle est
expliquée en figure A.10. Les raidisseurs sont construits par composition de NURBS où
la transformation volumique est générée par extrusion de la surface NURBS définissant
la plaque carrée.

L’intérêt de cette construction est la possibilité de modifier la forme du toit tout en
garantissant que les raidisseurs suivent ces modifications de forme. Durant l’optimisa-
tion, les raidisseurs reposent constamment et parfaitement sur la surface représentant le
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Figure A.11 – Résultats pour le problème du toit muni de deux raidisseurs. A gauche, modifi-
cation de la forme imposée par le mouvement vertical des points de contrôle du volume (points
rouges). Le champ de couleurs quantifie cette variation de forme. A droite, le modèle d’analyse
de la géométrie finale.

toit. Pour cela, les variations de forme sont imposées au travers des points de contrôle
de la transformation volumique. Les surfaces immergées sont contenues dans le volume
et subissent automatiquement la variation de forme globale (voir figure A.11). C’est le
concept de Free-From Deformation largement utilisé en optimisation aérodynamique par
exemple.

Des résultats du problème d’optimisation sont présentés en figure A.11. L’évolution
de la forme du toit est donnée pour différentes itérations de la résolution. On note que
le modèle d’analyse (maillage fin représenté en figure A.11) est obtenu par raffinement
du modèle d’optimisation sur lequel sont définies les variables de design. Le niveau
de raffinement est choisi de manière à garantir une bonne qualité de résolution. Les
fonctions NURBS jouissent de procédures de raffinement simples à mettre en place et
peu coûteuses (applications linéaires) [62]. Finalement, le comportement de la géométrie
optimale est bien meilleur au regard du problème considéré. La compliance relative de
la géométrie finale est de Copt/C0 = 2.217e-3 pour les paramètres utilisés ici.
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Figure A.12 – Construction et paramétrisation de forme de la structure interne d’une aile. Un
volume est généré à partir de deux surfaces représentant la géométrie extérieure de l’aile. Il est
alors possible d’immerger et de déplacer des surfaces dans l’espace paramétrique du volume
pour construire la structure interne.

A.4.3.2 Optimisation locale de la structure interne d’une aile

Finalement, on présente ici un exemple d’une aile simplifiée où le but est de conce-
voir sa structure interne (note : le cas d’une aile plus réaliste est présentée dans le cha-
pitre 6). La géométrie globale est fixée par les peaux extérieures. Du point de vue de la
géométrie, la surface extérieure de l’aile impose une contrainte géométrique à la struc-
ture interne : celle-ci doit être contenue à l’intérieur du domaine délimité par la surface
extérieure. La construction illustrée en figure A.12 permet de naturellement prendre en
compte cette contrainte. L’idée est de définir un volume remplissant l’intérieur de l’aile.
Ce volume est généré par interpolation à partir de deux surfaces qui représentent les
peaux supérieure et inférieure. Finalement, les éléments composants la structure interne
sont créés en immergeant des surfaces dans l’espace paramétrique de ce volume. La
forme de la structure interne peut facilement être modifiée en déplaçant les points de
contrôle associés aux surfaces immergées. Par exemple, sur la figure A.12, une trans-
lation unidirectionnelle de la surface immergée va déplacer la surface finale le long de
l’aile. Les variations de section de l’aile ainsi que sa courbure sont automatiquement
prises en compte.

La figure A.13 illustre des résultats d’optimisation pour le problème de conception
de la structure interne de l’aile. Les deux cas considérés consistent à disposer 4 et 8 rai-
disseurs le long de l’aile. Initialement ces raidisseurs sont espacés de manière uniforme.
En suivant la procédure décrite en figure A.12, une variable de design est associée à cha-
cun des raidisseurs afin de paramétrer leur position le long de l’aile. L’aile est encastrée
en son bord et est soumise à une pression uniforme sur sa surface du haut. Les résultats
du problème d’optimisation donnent les positions optimales des raidisseurs garantis-
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Figure A.13 – Optimisation de la structure interne d’une aile : distribution optimale de 4 et de 8
raidisseurs la long de l’aile. Un meilleur positionnement des raidisseurs rigidifie l’ensemble de
la structure.

sant une plus grande rigidité de la structure globale. La compliance finale a diminué de
15.1% pour le cas à 4 raidisseurs, et de 7.69% pour le cas à 8 raidisseurs.

A.5 Conclusion

Ce travail permet de justifier de l’intérêt de l’analyse isogéométrique pour l’opti-
misation paramétrique de forme. Le gain apporté par l’utilisation d’un unique modèle
pour représenter fidèlement la géométrie et effectuer l’analyse avec précision est réel-
lement bénéfique. La procédure d’optimisation se trouve allégée car la communication
entre le modèle d’optimisation sur lequel sont imposées les modifications de forme et le
modèle d’analyse est naturelle. L’intérêt pour le concepteur est réel car ce lien étroit per-
met indéniablement d’accélérer la phase de prototypage par exemple. Cela peut être un
outil intéressant dans un contexte d’optimisation multidisciplinaire. La communication
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Conclusion

entre les différentes disciplines est facilité lorsque le modèle utilisé par chacune d’elles
est identique.

L’approche principale développée dans ce travail est la stratégie immergée mise en
place pour pouvoir traiter le cas des structures raidies. Cette approche permet d’étendre
le cadre de l’optimisation isogéométrique à des cas plus compliqués où plusieurs patches
sont utilisés. La composition de NURBS donne accès à des paramètres globaux associés
à la forme globale de la structure, mais également des paramètres locaux permettant
de modifier des pièces spécifiques tout en garantissant automatiquement le respect de
contraintes géométriques imposées par les pièces environnantes. L’utilisation de mé-
thodes avancées pour traiter des discrétisations non-conformes ont pu conduire à une
approche finale robuste et générale. Le champ d’application est large et n’est pas can-
tonné à la conception des structures raidies.
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RÉSUMÉ
Concevoir des structures au regard de leur comportement mé-
canique est une tâche importante en ingénierie. Cependant,
cette phase de conception peut s’avérer longue et fastidieuse
lorsque les relations de cause à effet ne sont pas correctement
identifiées. Plus spécifiquement, il est généralement difficile
d’obtenir la meilleure forme d’une structure (la forme optimale),
car cela fait appel à de nombreuses compétences. En effet, des
outils avancés pour la modélisation géométrique sont néces-
saires pour représenter fidèlement la structure et pour explorer
une large variété de formes. A cela s’ajoute le besoin d’une
méthode de calcul de structures compétente et rapide afin de
réduire la durée du processus d’optimisation. Un lien étroit en-
tre le modèle géométrique et celui d’analyse est souhaité car
tous deux sont amenés à communiquer successivement. Ainsi,
l’Analyse IsoGéométrique apparaît comme un outil adéquat
pour les problèmes d’optimisation paramétrique de formes. En
effet, cette méthode s’appuie sur un modèle unique pour décrire

fidèlement la géométrie et pour effectuer l’analyse. Entièrement
basée sur le concept de l’AIG, nous construisons une stratégie
de conception optimale de la forme pour les structures raidies,
omniprésentes en aéronautique. Nous présentons une formu-
lation massif coque permettant d’imposer des variations con-
tinues d’épaisseur à une structure mince. Nous formulons des
sensibilités analytiques pour les éléments isogéométriques stan-
dards et coques. Aussi, nous présentons une approche im-
mergée pour appliquer des changements de forme aux struc-
tures raidies. Du point de vue de l’analyse, nous introduisons
une formulation coque adaptée aux compositions géométriques
et nous construisons un algorithme dédié aux cas de discréti-
sations non-conformes en s’appuyant sur les méthodes de cou-
plage Mortar et de décomposition de domaine. In fine, tous ces
développements sont fusionnés et permettent de traiter divers
exemples avec des niveaux de complexité croissants.

Mots clés : Optimisation de forme, Analyse Isogéométrique, Coques, Structures raidies, Couplage, Décomposition de domaine.

ABSTRACT
Designing structural parts against the material limits, the impact
of loads, and many other constraints, is of standard interest in
engineering. However, improving the design of a structure can
be long and drawn out, especially when a clear understanding
of cause-effect relationships is missing. Finding the best possible
design, namely the optimal design, is a complex task because it
requires several competences. Usually, efficient geometric mod-
eling is needed to accurately represent the structure. Conjointly,
the geometric model should provide high flexibility during the
design exploration. In addition, structural analysis must be fast
enough to shorten the overall process. Besides, for the sake of
compactness, a close connection between the geometric model
and the structural analysis seems essential. Finally, all modeling
choices are deeply related, and thus, they should be thought and
built accordingly to the others. Therefore, IsoGeometric Analy-
sis appears as a powerful tool for structural optimization since it

uses a unique model with both high quality geometric and anal-
ysis properties. Here, we present a compact framework built on
the core idea of IGA. We strive to construct unified models with
new opportunities for structural design with a direct applica-
tion to stiffened Aerostructures. More specifically, we present a
solid-shell approach to impose continuous thickness variations.
We formulate analytical sensitivities for standard and shell for-
mulations. Then, we introduce an embedded technique that
enables to impose complex shape updates. From the analysis
point of view, we build a shell formulation dedicated to geo-
metric compositions and we design a specific solver based on
Domain Decomposition methods and Mortar approach for the
coupling of non-conforming discretizations. Different examples
with increasing level of complexity show the performances of
the adopted methodologies.

Keywords: Shape optimization, Isogeometric analysis, Shells, Stiffened structures, Coupling, Domain decomposition.
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