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Abstract

The friction of interfacial surfaces greatly influences the performance of mechanical ele-
ments. Friction has been investigated experimentally in most studies. In this work, the friction
is predicted by means of numerical simulation under an elastohydrodynamic lubrication (EHL)
rough contact condition.

The classical Multigrid technique performs well in limiting computing time and memory
requirements. However, the coarse grid choice has an important influence on code robustness
and code efficiency to solve the rough problem. In the first part of this work, a coarse grid con-
struction method proposed by Alcouffe et al. is implemented in the current time-independent
EHL Multi-Grid code. Then this modified solver is extended to transient cases to solve the
rough contact problem.

The friction curve is usually depicted as a function of “Λ ratio”, the ratio of oil film thickness
to root-mean-square of the surface roughness. However this parameter is less suitable to plot
friction variations under high pressure conditions (piezoviscous elastic regime). In the second
part of this work, the friction coefficient is computed using the modified EHL code for many op-
erating conditions as well as surface waviness parameters. Simulation results show that there
is no single friction curve when the old parameter "Λ ratio" used. Based on the Amplitude
Reduction Theory, a new scaling parameter depends on operating condition and waviness pa-
rameters is found, which can give a unified friction curve for high pressure situation.

For more complex rough surfaces, a power spectral density (PSD) based method is pro-
posed to predict friction variations in the third part of this work. The artificial surface rough-
ness is employed to test the rapid prediction method firstly. Good agreement is found between
the full numerical simulation and this rapid prediction. Then the rapid prediction method is
applied to analyze the friction variation of measured surface roughness. A comparison is also
made between predictions and experiments.

Both the new scaling parameter and the friction increase predicted by the PSD method
show good engineering accuracy for practical use.

Keywords: Elastohydrodynamic lubrication, Numerical simulation, Piezoviscous elastic regime,
Amplitude Reduction Theory, Friction variation
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Résumé

Le frottement à l’interface des surfaces influence les performances des éléments mécaniques.
Le frottement a été étudié expérimentalement dans la plupart des études. Dans ce travail,
le frottement est prédit à l’aide d’une simulation numérique dans des conditions de contact
rugueux avec une lubrification élastohydrodynamique (EHL).

La technique classique Multigrille fonctionne bien pour limiter le temps de calcul et les
besoins en mémoire. Cependant, le choix de la grille grossière a une influence importante
sur la robustesse du code et son efficacité pour résoudre le problème brut. Dans la première
partie de ce travail, une méthode de construction de grille grossière proposée par Alcouffe et al.
est implémenté dans le code EHL Multigrille indépendamment du temps. Ensuite ce solveur
modifié est étendu aux cas transitoires pour résoudre le problème de contact avec rugosité.

La courbe de frottement est généralement représentée en fonction du « Λ ratio », le rapport
entre l’épaisseur du film d’huile et la valeur moyenne quadratique de la rugosité de la surface.
Cependant, ce paramètre est moins approprié pour tracer les variations de frottement dans
des conditions de haute pression (régime élasto piézo-visqueux). Dans la deuxième partie de
ce travail, le coefficient de frottement est calculé à l’aide du code EHL modifié pour de nom-
breuses conditions de fonctionnement ainsi que pour les paramètres d’ondulation de surface.
Les résultats de la simulation montrent qu’il n’y a pas de courbe de frottement unique lorsque
l’ancien paramètre « Λ ratio » est utilisé. En se basant sur la théorie de la réduction d’amplitude,
un nouveau paramètre de dimensionnement qui dépend des conditions de fonctionnement et
des paramètres d’ondulation est trouvé, ce qui peut donner une courbe de frottement unique
pour les situations de haute pression.

Pour les surfaces rugueuses plus complexes, une méthode basée sur la densité spectrale de
puissance (PSD) est proposée pour prédire les variations de frottement dans la troisième partie
de ce travail. La rugosité artificielle de la surface est utilisée pour tester d’abord la méthode
de prédiction rapide. Un bon accord est trouvé entre la simulation numérique complète et
cette prédiction rapide. La méthode de prédiction rapide est ensuite appliquée pour analyser
la variation de frottement de la rugosité de surface mesurée. Une comparaison est également
faite entre les prédictions et les expériences.

Le nouveau paramètre d’échelle et l’augmentation du frottement prédite par la méthode
PSD montrent une bonne précision technique pour une utilisation pratique.

Mots clés: Lubrification élastohydrodynamique, Simulation numérique, Régime élasto piézo-
visqueux, Théorie de réduction d’amplitude, Variation de frottement
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1.1 Background

Energy is the most important of all resources, which is needed to support economic and so-
cial progress and build a better quality of life. According to the report of IEEJ Outlook 2019
(Institute of Energy Economics, Japan), the world primary energy consumption will continue
growing from 2018 to 2050. Most of this growth comes from non-OECD (non-Organization for
Economic Cooperation and Development) countries, where demand is driven by strong eco-
nomic growth (shown in Figure 1.1). Fossil energy like oil, coal and natural gas are still the
largest energy source of the world, and the reserves of fossil energy are limited. Meanwhile,
the over-consumption of fossil fuel leads to the over-release of carbon dioxide (CO2), methane,
oxynitride (NOx ) and particulates into the air, which disturb the natural balance of the atmo-
sphere. The rapid rise in the carbon dioxide contributes to the serious global warming problem.
NASA (National Aeronautics and Space Administration) reported that the global surface tem-
perature has been persistently increasing since the late 19th century (shown in Figure 1.2). An
investigation from the U.S. Energy Information Administration (EIA) shows that the industrial
and transportation sectors have consumed the most energy (shown in Figure 1.3) as well as
produced the most CO2 emissions (show as Table 1.1).

However, a substantial amount of energy is not put to useful purposes. Researches [1–4]
show that a considerable amount of energy in industrial and transportation is consumed to
overcome friction. For instance, energy consumed to overcome friction over the total energy
consumption in heavy-duty vehicles is 33%, in paper machines is 32%, in passenger cars is
33% and in mineral mining industry is 40%. Recently, the increasing environment awareness
requires efforts to improve energy efficiency and reduce CO2 production. Correct lubrication
between engineering provides sufficient separation of the roughness present on the contact
surfaces, which contributes to reducing friction losses. Better understanding and control of
friction in mechanical components has the potential to offset large energy savings and CO2

emission reduction [5]. Studies [6–8] estimated that with the implementing advanced tribolog-
ical technologies, such as using new contact surface, materials, lubricants, energy losses due to
friction and wear could potentially be reduced by 40% in the long term (15 years) and by 18% in
the short term (8 years )and CO2 emissions globally can also reduced by 1,460 MtCO2 (million
tonnes CO2) in the short term and by 3,140 MtCO2 in the long term.
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Figure 1.1: World primary energy consumption (red column: Non-OECD, blue column: OECD).
(Source: IEEJ Outlook 2019 and Scenario)

Figure 1.2: The variation of mean global surface temperature relative to 1880-2017. (Source:
NASA/GISS)

Figure 1.3: Total consumption by End-Use Sector, from 2000 to 2017. (Source: Data from the
U.S. Energy Information Administration)

Hence, understanding the mechanisms of friction and improving frictional behavior be-
tween engineering contact surfaces still remains an important issue in today’s research, not
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only for meeting the increasing requirements of energy efficiency and CO2 emissions reduc-
tion but also for providing a theoretical tool in element design and optimization.

Table 1.1: U.S. CO2 emissions from end-use sectors, 2008-2017. (Source: U.S. Energy Informa-
tion Administration, August 2018 Monthly Energy Review)

Units: million metric tons

year
end-use sector 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
transportation 1898 1832 1848 1817 1779 1805 1823 1848 1886 1902

industrial 1608 1400 1508 1498 1489 1508 1511 1456 1428 1409
residential 1234 1127 1210 1149 1043 1100 1115 1037 982 956

commercial 1075 1007 1025 990 932 958 970 932 894 875

1.2 Literature review

Elastohydrodynamic lubrication (EHL) is the type of lubrication for frictional pairs having elas-
tic contact under very high pressure and forming lubricant film in non-conformal contacts,
such as rolling bearings, gears, human synovial joints and so on [9]. Lubricant film and sur-
face roughness play an important role for improving reliability and effectiveness of mechanical
parts as well as reducing friction losses. The majority of the published work on the influence
of surface roughness on friction has been experimental, the minority of theoretical work has
been done on friction prediction. This section represents the literature review on the methods
to solve the rough EHL contact problem as well as friction in rough EHL contacts.

1.2.1 Methods to solve the rough contact problem

Typically, the EHL model consists of five equations [10], in which the Reynolds equation Equa-
tion 1.1 is a partial differential equation and the film thickness equation Equation 1.2 contains
an integral term, both equations are required to be solved simultaneously, making these equa-
tions very complex. There are many approaches that can be used to solve this EHL model: the
inverse method [11], the Newton-Raphson method [12], the homotopy method [13], the finite
element method [14], the Multigrid method [15,16] and the Navier-Stokes approach [17]. So far,
the Multigrid algorithm has been considered as one of the most efficient methods and applied
frequently to EHL problems.

∂

∂x
(
ρh3

12η

∂p

∂x
)+ ∂

∂y
(
ρh3

12η

∂p

∂y
)−ur

∂(ρh)

∂x
= 0 (1.1)

h(x, y) = h0 + x2

2
+ y2

2
− r r (x, y)+ 2

π2

∫ +∞

−∞

∫ +∞

−∞
P (x ′, y ′)√

(x −x ′)2 + (y − y ′)2
d x ′d y ′ (1.2)

Where p represents the pressure, h denotes the film thickness, h0 is the mutual approach and
ur = (u2 +u2)/2 is the mean velocity of two contact surfaces. ρ and η are the density and vis-
cosity of the lubricant, respectively. The x axis is aligned with the direction of the mean velocity
ū, and the y axis is perpendicular to the x direction.

In engineering, no surface is perfectly smooth, the order of magnitude of the surface rough-
ness is often the same as or greater than that of the film thickness predicted by smooth contact
conditions [18]. Therefore, the surface roughness should be considered. Generally, there are
two methods to treat the rough lubrication problem numerically.
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One approach is called the "stochastic" method. Early work was conducted on the hydrody-
namic lubrication (HL) problem. Theoretical analysis of the implementation of the stochastic
theory on rough HL contact problem was described by Christensen [19, 20]. Then Patir and
Cheng [21, 22] proposed an average flow model to determine the effects of surface roughness
on rough-lubricated contacts. In this model the Reynolds equation is simplified as an average
Reynolds equation using a independent flow factor (shown in Figure 1.4). Since the pioneering
studies on the "average flow model", a number of authors have extended and generalized this
work. Tripp [23] re-computed the flow factors using a perturbation expansion of the pressure in
a nominal parallel film. When small roughness amplitude is considered, the flow factors calcu-
lated in Reference [23] agree well with that of Patir and Cheng [21]. Hu and Zheng [24] studied
the influence of boundary conditions, grid systems and statistics of rough surfaces on the flow
factors. Lunde and Tonder [25] calculated the flow factors for an isotropic rough bearing and
found that the boundary conditions of the selected bearing part can not affect the flow pass-
ing through. Subsequently, Zhu and Cheng [26] extended the flow factors method in the point
EHL contact problem. Some authors [27,28] applied the flow factors to deal with the cavitation
problem. Letalleur et al. [29] studied the flow factors for two rough cases: smooth-rough sta-
tionary case and rough-rough unstationary case. Sahlin et al. [30] developed a novel method
using a homogenization technique to compute the flow factors. However, in stochastic model,
roughness asperities are mainly treated as rigid.

Figure 1.4: Pressure flow factors. (Source: Reference [21])

Another way is to incorporate the surface roughness term r r (x, y, t ) in the film thickness
equation (shown as Equation 1.2) and to solve the system of equations directly. Due to the
limitation of computation of speed and storage space, preliminary research [31–35] studied
the steady state line rough contact problem, where the surface roughness is time-independent
and one-dimensional model was considered. Later on, the stationary two dimensional rough
contact problem [36–39] were carried out. With the increasing development of computational
technique, transient cases were studied by many authors [40–51]. Based on the previous stud-
ies on transient rough contact problem, Venner and Lubrecht et al. [52–60] published a series
of papers on the "Amplitude Reduction Theory" describing the relation between the surface
roughness deformation and operating conditions. They found that under very high pressure
situations (piezoviscous elastic regime), the surface roughness will deform, and this deforma-
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tion depends on operating conditions. A master curve (shown in Figure 1.5) describes this
relation quantitatively. Then Šperka et al. [61] verified the "Amplitude Reduction Theory" by
measuring the deformed surface roughness on an optical test rig, the comparison of the mea-
sured results and the predicted results can be found in Figure 1.6. Recently, some extension
work on the rough contact problem were addressed [62–65]. One of the most important studies
about the influence of surface roughness on friction will be represented in the next subsection.

Figure 1.5: Relative amplitude as a function of ∇2 under pure rolling, where ∇2 is dimensionless
wavelength parameter, Ai and Ad are amplitude of surface roughness and deformed surface
roughness respectively. (Source: Reference [58] )

Figure 1.6: Results obtained from measurements compared with theoretical attenuation curve
defined by [56]. (Source: Reference [61] )

The surface roughness term r r (x, y), which is often considered to be the same order of mag-
nitude as the oil film thickness, incorporated in Equation 1.2 makes the coefficient (ρh3)/(12η)
in the Reynolds equation jump orders of magnitude, which leads to a significant variation in
EHL equations. From a mathematical point of view, the coefficient (ρh3)/(12η) is continu-
ous, while in the numerical simulation, the coefficient causes a strong discontinuity in discrete
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Reynolds equation. Work by Alcouffe et al [66] proposed an efficient way to overcome the above
discontinuity through constructing the coarse grid in a Multi-grid code. The present work em-
ploys the Multigrid techniques [10] to solve the rough contact problem. In addition, the idea
provided by Alcouffe et al [66] is also applied to improve the code robustness and code effi-
ciency.

1.2.2 Friction in rough EHL contact problem

Most heavily loaded machine elements are working under elastohydrodynamically lubricated
conditions. Understanding the frictional behavior in such contacts plays an important role for
reducing friction, preventing wear as well as improving service life. To reveal the relation be-
tween fluid properties and friction, research has been conducted as follows: Crook [67] used a
disc machine for measuring frictional traction. It was shown that the rolling friction (the trac-
tion due to rolling) is independent of load and simply proportional to the film thickness in the
elasto-hydrodynamic regime. Johnson and Cameron [68] measured traction in a rolling contact
disc machine and results showed that the traction first increases and then decreases when the
sliding speed increases. Johnson and Roberts [69] observed the visco-elastic behavior of film
thickness through measuring shear forces on a rolling-contact test rig. Evans and Johnson [70]
constructed traction maps depending upon pressure, temperature as well as shear rate for dif-
ferent fluids, where different areas represent different traction behavior. Zhang et al. [71] stud-
ied the elliptical contact between rib face and roller end in tapered roller bearings by means
of a full numerical simulation. They found that the elastic deformation has a non-negligible
influence on the friction coefficient. Yu and Medley [72] studied the influence of lubricant ad-
ditives on friction via a side-slip disc machine. They concluded that the limiting shear stress,
which is a useful parameter for predicting friction, is affected by the lubricant additives. Jacod
et al. [73] predicted the coefficient of friction over a wide range of operating conditions and
obtained a single generalized friction curve based on a full numerical simulation for a non-
Newtonian EHL contact model. Vicente et al. [74] explored friction in rolling-sliding, soft-EHL
contacts numerically and experimentally. Numerical calculations of the Couette friction are in
good agreement with measured results. Very recently, Liu et al [75] calculated the friction co-
efficient in a gear contact interface numerically, based on a thermal starved EHL model. They
found that the maximum friction coefficient appears at the engaging-in point where a consid-
erable slide-to-roll ratio exists. Björling et al. [76] measured the friction under EHL conditions
on a ball-on-disc test rig for aged and fresh oils. Results showed that there is no difference in
friction. In addition, Zhang [77] measured the EHL friction for a wide range of base fluids and
compared the friction values for five different operating conditions. The study underlined the
importance of molecular structure of the base fluid in determining the EHL friction.

Studies [78–80] showed that surface roughness has a significant impact on the friction be-
havior of lubricated surfaces. A useful tool to investigate the frictional behavior between rough
surfaces is the classical Stribeck curve, showing the friction coefficient is a function of a ratio of
the averaged oil film thickness to the combined surface roughness. The original research about
the Stribeck curve dates back to the 19th century. In 1879, Thurston gave precise values of the
friction coefficient and he was probably the first person to report that the friction coefficient
passed through a minimum as the load increased [81, 82]. Twenty years later, Stribeck [83, 84]
systematically published results of a carefully conducted and wide-ranging series of experi-
ments on journal bearings, which are frequently referred to as ‘the Stribeck curve’ (shown in
Figure 1.7). Gümbel [85] organised Stribeck’s experimental results in a single curve by plotting
the friction against the parameter ηω/p̄, where η is the lubricant viscosity, ω is the angular ve-
locity of the shaft and p̄ is the load per unit length. At the same time, Hersey [86] conducted
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experiments on journal bearings and plotted the friction coefficient against the load, speed,
temperature, viscosity and rate of oil supply. He showed that hydrodynamic friction should be
a function of ηn/p in which n is the rotational speed and p is the pressure. Many years later,
Wilson and Barnard [87] replotted the Stribeck curve by introducing a new variable i.e. zn/p,
where the lower-case z stands for the lubricant viscosity. Subsequently, McKee [88] provided a
similar dimensionless group Z N /P . Vogelpohl et al. [89] incorporated the boundary and fluid
friction coefficient and showed a transition from the hydrodynamic lubrication regime to the
mixed lubrication regime. All of the work mentioned above is performed under low pressure
conditions, in the isoviscous rigid regime [90].

Figure 1.7: Friction coefficient versus speed for different loads. (Source: Ref. [83])

The situation for non-conforming contacts, such as those occurring in rolling element bear-
ings, gears and cams, is somewhat different [91]. Shotter [92] experimentally showed that the
friction increases with the surface roughness. Tallian and his co-workers [93, 94] proposed a
ratio |ξ0| between the elastohydrodynamic film thickness and the composite root mean square
roughness to represent the mixed elastodydrodynamic regime ( 1 < |ξ0| < 4 ). Poon [95] was
concerned with the transition from the boundary to the mixed regime with a dimensionless
parameter 1 É ξ É 2 and the transition from mixed to full EHL region with 2 < ξ É 2.4 by using
electrical-conductivity measurements. Bair and Winer [96] plotted the reduced traction coef-
ficient as a function of a lambda ratio by performing sliding-rolling experiments. They found
that when the lambda ratios is less than 2 the contact moves into the mixed regime. In gen-
eral, the Stribeck curve can be divided into three regimes [97]: λ > 3 represents the full-film
regime, 1 É λÉ 3 is the mixed EHL regime and λ< 1 indicates the boundary regime. However,
study [98] shows that this lambda ratio is not a suitable parameter to determine lubrication
states especially when some aspects such as non-Newtonian, thermal and transient effects are
considered. Transition locations from mixed to boundary lubrication regime or from full-film
to mixed lubrication regime are still ambiguous. Therefore, an appropriate grouping including
the speed, film thickness and roughness is required. Schipper [99] suggested a so-called Lu-
brication number L′ , which takes viscosity, speed and pressure into consideration, to detect
the variation of the friction coefficient. Recently, Gelinck [100] extended Johnson’s model [101]
to calculate the coefficient of friction for the whole mixed EHL regime. Lu and Khonsari [102]
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examined the behavior of the Stribeck curve theoretically and experimentally on a journal bear-
ing and found a good agreement. Wang et al. [103] presented a numerical approach developed
on the basis of deterministic solutions of mixed lubrication to evaluate sliding friction. Mean-
while, they measured the sliding friction on a commercial test rig. Both results were plotted
against sliding velocities and also showed good agreement. Kalin [104] investigated changes
of the Stribeck curve when one or two surfaces in the contact are non-fully wetted. After-
wards, Kalin [105] tested the variations of the friction coefficient with diamond-like carbon
coatings (DLC). Zhang [106] developed a numerical approach assuming the asperity interac-
tion friction is proportional to the contact area to predict the mixed EHL friction coefficient.
Bonaventure [107] and his co-authors conducted rolling-sliding experiments with random sur-
face roughness, they found that the onset of ML occurs at a higher entrainment product η0ue

(in which η0 is inlet viscosity and ue is entrainment speed) and a relevant roughness scalar
parameter was obtained to predict the onset position.

Most of the work on Stribeck curve was done by experiments. Current study employs the
Amplitude Reduction Theory [53] to study the frictional behavior in piezoviscous elastic regime
[108] by means of numerical simulation.

1.3 Research aims and Outlines

1.3.1 Research aims

Long term successful operation of mechanical devices greatly depends on correct lubrication
of the mechanical elements to provide sufficient separation of the roughness present on the
contact surfaces. However, lubrication provides another important role, reducing friction be-
tween rough contact surfaces.

The objective of the present research project is to develop an efficient and robust Multi-
Grid-based algorithm to study the frictional behavior between rough contact surfaces. Current
MultiGrid codes show the required efficiency, but are not sufficiently robust to treat the rough
surface problem in a general way. Difficulties may lie in the following aspects:

(i) The efficient construction of the coarse grid of EHL Multi-Grid model to guarantee the
code robustness and code efficiency of impact, rough surface EHL contact problems.

(ii) Tests of the increased robustness of the new EHL Multi-Grid solver.

(iii) Implementation applied to test the code robustness and code efficiency of rough surface
EHL contact problems.

(iv) The extension of the developed Multi-Grid lubrication code to transient contact prob-
lems.

(v) The computation of the friction coefficient of rough contact surfaces.

(vi) The unification of friction curves that differ according to operating conditions.

(vii) The extension of the lambda ratio parameter predicting the transition from mixed to full-
film regimes.

8



CHAPTER 1. INTRODUCTION

1.3.2 Outlines

According to the research aims listed in the previous sub-section. The layout of this thesis is as
follows:

Chapter 1: This chapter first emphasizes the important role of friction played in energy
consumption and environmental issues. Subsequently, a literature review on the methods to
solve rough contact problems and friction in rough contact problems is illuminated. The ob-
jective and structure of the present thesis are given in the last section.

Chapter 2: This chapter represents the numerical model and algorithm for solving the tran-
sient rough EHL contact problem. The governing equations for transient EHL model are intro-
duced first. Then the method proposed by Alcouffe et al [66] is employed to construct transfer
operators as well as coarse grid operator. Finally the Multi-Grid method [10] is implemented.

Chapter 3: In this chapter, lubricant rheological models are illustrated in the first place. The
relative friction coefficient, an indicator for the full-film-mixed lubrication regime transition,
is proposed in methodology section. Then the relative friction coefficient is calculated numer-
ically for isotropic as well as anisotropic harmonic surface roughness respectively. Finally, a
single friction curve is obtained using a new "lambda ratio" parameter.

Chapter 4: A rapid analytical prediction method using the power spectral density [109] is
proposed to study a more complex surface topography in this chapter, firstly. Then an artificial
surface roughness is employed to test this rapid prediction method. Finally, the prediction
method is applied to predict friction for measured rough surfaces.

Chapter 5: The main results of current work are summarized and recommendations of
future work are also made.

9



Chapter 2

Numerical model
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2.1 Introduction

Multi-grid methods have been used successfully to treat Elastohydrodynamic lubrication (EHL)
problems in the past [110–112]. However, when taking the surface roughness into account, film
thickness and viscosity jump violently, both of them are strongly discontinuous parameters in
discrete equations and will influence code robustness and code efficiency. The paper by R.
Alcouffe [66] proposed an efficient way to solve this problem through constructing the coarse
grid in a Multi-grid code. In this chapter, the Multigrid method is applied to solve the transient
EHL model, and the algorithm outlined in Reference [66] is also implemented.

2.2 Transient EHL model

2.2.1 Governing equations

The lubrication of rough surfaces in EHL contacts is inherently a highly transient process.
Study [40] shows that the surface roughness induced by the transient effect has a remarkable
influence on the pressure and film thickness profiles. For the time-dependent problem [10],
the Reynolds equation is given as:

∂

∂x
(
ρh3

12η

∂p

∂x
)+ ∂

∂y
(
ρh3

12η

∂p

∂y
)︸ ︷︷ ︸

poiseuille

−ur
∂(ρh)

∂x︸ ︷︷ ︸
couette

− ∂(ρh)

∂t︸ ︷︷ ︸
transient

= 0 (2.1)

with p = 0 on the boundaries and the cavitation condition p Ê 0 everywhere. Where p is the
pressure, h is the film thickness whose expression is shown as Equation 2.2 and ur = (u1+u2)/2
is the mean velocity (u1 and u2 are the velocities of two contact surfaces respectively). The

10
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direction of the x axis is as same as that of the mean velocity ur , the y axis is perpendicular to
x axis and t is time.

The equation used to describe the gap between the two contact bodies is the film thickness
equation:

h(x, y, t ) = h0(t )+ x2

2Rx
+ y2

2Ry
− r r (x, y, t )+ 2

πE ′

∫ +∞

−∞

∫ +∞

−∞
p(x ′, y ′, t )√

(x −x ′)2 + (y − y ′)2
d x ′d y ′

︸ ︷︷ ︸
elastic deformation

(2.2)

in which r r (x, y, t ) stands for surface roughness. Rx and Ry represent the reduced radius of
curvature in x and y direction respectively. h0 denotes the rigid body approach. E ′ is called the
reduced elastic modulus and its expression can be found below. The elastic deformation term
is calculated with the approach named multilevel multi-integration [10, 113].

2

E ′ =
1− v2

1

E1
+ 1− v2

2

E2

and E1 and E2 are the elastic moduli of the two contact bodies. v1 and u2 are the Poisson ratios.

In order to have a load balance. The integral of the pressure distribution should be equal to
the applied load w . ∫ +∞

−∞

∫ +∞

−∞
p(x ′, y ′, t )d x ′d y ′ = w(t ) (2.3)

In the Reynolds equation (2.1), ρ is the density and η is the viscosity of the lubricant. Both
of them are functions of pressure. A simply density pressure relation is given by Dowson and
Higginson [114]:

ρ(p) = ρ0
5.9×108 +1.34p

5.9×108 +p
(2.4)

where ρ0 is the atmospheric density. The simplest viscosity pressure relation is proposed by
Barus [115]:

η(p) = η0exp(αp) (2.5)

in which η0 is the atmospheric viscosity and α is the pressure viscosity coefficient. However,
this exponential Barus equation usually predicts a higher viscosity value when the pressure is
very large. A more realistic relation is derived by Roelands [116]:

η(p) = η0exp[(ln(η0)+9.67)(−1+ (1+ p

p0
)z )] (2.6)

where η0 is the atmospheric viscosity and z is the pressure viscosity index, typically z = 0.6 and
p0 = 1.98×108 Pa.

2.2.2 Dimensionless equations and parameters

To simplify the equation system and generalize the EHL model, the equations described above
are made dimensionless using dimensionless variables based on the Hertzian dry contact solu-
tion [117]. For the dry point contact case, the pressure distribution profile required for contact
deformation reads:

p(x, y) =
{

ph

√
1− (x/ah)2 − (y/ah)2 if x2 + y2 ≤ a2

h

0 otherwise
(2.7)
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with ah the radius of the contact area:

ah = 3

√
3wRx

2E ′ (2.8)

and ph is referred to as the Hertzian pressure:

ph = 3w

2πa2
h

. (2.9)

Then the dimensionless variables are introduced to simplify the EHL model:

X = x/ah Y = y/ah

P = p/ph H = hRx /a2
h

η̄= η/η0 ρ̄ = ρ/ρ0

T = ur t/ah ᾱ=αph

(2.10)

Substituting the dimensionless variables in Equation 2.1 yields:

∂

∂X
(
ρ̄H 3

η̄λ̄

∂P

∂X
)+ ∂

∂Y
(
ρ̄H 3

η̄λ̄

∂P

∂Y
)− ∂(ρ̄H)

∂X
− ∂(ρ̄H)

∂T
= 0 (2.11)

with X ∈ [Xa , Xb] and Y ∈ [−Ya ,Ya]. Where λ̄ = (12urη0R2
x )/(a3ph). And the boundary condi-

tions are P (Xa ,Ya) = P (Xa ,Y ) = P (Xb ,Y ) = P (X ,Ya) = P (X ,−Ya) = 0. The cavication condition
is P (X ,Y ,T ) ≥ 0.
The dimensionless film thickness equation becomes:

H(X ,Y ,T ) = H0(T )+ X 2

2
+ Y 2

2
−RR(X ,Y ,T )+ 2

π2

∫ +∞

−∞

∫ +∞

−∞
P (X ′,Y ′,T )√

(X −X ′)2 + (Y −Y ′)2
d X ′dY ′

(2.12)
where H0(T ) is determined by the dimensionless force balance equation:∫ +∞

−∞

∫ +∞

−∞
P (X ′,Y ′,T )d X ′dY ′ = 2π

3
(2.13)

The dimensionless density equation for a compressible lubricant reads:

ρ̄(P ) = 5.9×108 +1.34phP

5.9×108 +phP
(2.14)

The dimensionless forms of viscosity equations are:

Barus: η̄= exp(ᾱP ) (2.15)

and
Roelands: η̄= exp((ln(η0)+9.67)(−1+ (1+ ph

p0
P )z )). (2.16)

Beside the dimensionless variables mentioned in Equation 2.10, two dimensionless numbers
are often used to reduce the number of parameters, they are referred as Moes dimensionless
parameters [118, 119]. For point contact they are defined as [119]:

M = w

E ′R2
x

(
2η0ur

E ′Rx
)−3/4 (2.17)
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and

L =αE ′(
2η0ur

E ′Rx
)1/4. (2.18)

For convenience, the Moes parameters can be used to re-write the parameters ᾱ and λ̄:

λ̄= (
128π3

3M 4 )1/3

ᾱ= L

π
(

3M

2
)1/3

(2.19)

Hamrock and Dowson [120] introduced three parameters to simplify the study of film thick-
ness. For point contact they are written as:

W = w

E ′R2
x

U = η0ur

E ′Rx

G =αE ′

(2.20)

2.3 The finite difference scheme

The second-order self-adjoint elliptic partial differential equation considered by Alcouffe [66]
is

−∇· (D(x, y, t )∇U (x, y, t ))+σ(x, y, t )U (x, y, t ) = f (x, y, t ) (x, y) ∈Ω (2.21)

Compared to this equation, the Reynolds equation is of the same type with U = P , σ = 0, D =
−(ρ̄H 3)/(η̄λ̄) and f = ∂(ρ̄H)/∂X +∂(ρ̄H)/∂T . Rearranging the Reynolds equation (2.11) yields:

− ∂

∂X
(D

∂P

∂X
)− ∂

∂Y
(D

∂P

∂Y
) = ∂(ρ̄H)

∂X
+ ∂(ρ̄H)

∂T
(X ,Y ) ∈Ω (2.22)

In the present work, the calculation domain Ω is a rectangle [Xa , Xb]× [−Ya ,Ya]. This do-
main is covered with a uniform grids with a system of straight lines parallel to the coordinate
axes. The mesh size in the two directions is hx = (Xb −Xa)/Nx and hy = 2×Ya/Ny , in which Nx

and Ny are the number of mesh points in both directions.

Figure 2.1: Mesh point (xi , y j ) and it’s related mesh region ri , j
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To derive the difference scheme, a mesh region ri , j (shown as Figure 2.1) defined by the
lines x = xi −hx /2 , x = xi +hx /2 , y = y j −hy /2 and y = y j +hy /2 for each mesh point (xi , y j ) is
selected. In terms of each mesh point (xi , y j ), P (xi , y j , tk ) := Pi , j ,k is unknown, now integrating
Equation 2.22 over the corresponding mesh region ri , j :

−
∫

ri , j

∫
[
∂

∂X
(D

∂P

∂X
)+ ∂

∂Y
(D

∂P

∂Y
)]d xd y =

∫
ri , j

∫
[
∂(ρ̄H)

∂X
+ ∂(ρ̄H)

∂T
]d xd y (2.23)

According to Green’s Theorem [121], Equation 2.23 can be expressed as:

−
∫

ci , j

[(D
∂P

∂X
)d y − (D

∂P

∂Y
)d x] =

∫
ri , j

∫
[
∂(ρ̄H)

∂X
+ ∂(ρ̄H)

∂T
]d xd y (2.24)

where ci , j is the boundary of ri , j and the integration path along this boundary is anticlockwise.
Supposing f (xi , y j , tk ) := fi , j ,k , the double integrals of the right hand side of Equation 2.24 can
be simply approximated by means of∫

ri , j

∫
f (x, y, t )d xd y

.= fi , j ,k ·ai , j . (2.25)

where ai , j = hx·hy is the area of the rectangle region ri , j shown in Figure 2.2.

Figure 2.2: Mesh point (i , j ).

Referring again to Figure 2.2, the line integal of Equation 2.24 over the four boundaries of
ri , j is approximated by means of central differences as:

−
∫

ci , j

[(D
∂P

∂X
)d y − (D

∂P

∂Y
)d x]

.= (hy)[Di+1/2, j ,k (
Pi , j ,k −Pi+1, j ,k

hx
)

+Di−1/2, j ,k (
Pi , j ,k −Pi−1, j ,k

hx
)]

+ (hx)[Di , j+1/2,k (
Pi , j ,k −Pi , j+1,k

hy
)

+Di , j−1/2,k (
Pi , j ,k −Pi , j−1,k

hy
)]

(2.26)
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Rewriting Equation 2.26 and combining Equation 2.25 gives:

Ai , j ,k (Pi , j+1,k −Pi , j ,k )+Ai , j−1,k (Pi , j−1,k −Pi , j ,k )+
Bi , j ,k (Pi+1, j ,k −Pi , j ,k )+Bi , j−1,k (Pi−1, j ,k −Pi , j ,k ) = Fi , j ,k

(2.27)

where

Ai , j ,k =−(
1

2
)(

hx

hy
)(Di , j ,k +Di , j+1,k )

Bi , j ,k =−(
1

2
)(

hy

hx
)(Di , j ,k +Di+1, j ,k )

Fi , j ,k = (hx ·hy) fi , j ,k

In terms of fi , j ,k , the same discrete schemes used in Reference [10] is adopted. At this point,
the right hand side of Equation 2.27 can be taken as:

Fi , j ,k
.= hy(1.5ρ̄i , j ,k Hi , j ,k −2ρ̄i−1, j ,k Hi−1, j ,k +0.5ρ̄i−2, j ,k Hi−2, j ,k )

+ hx ·hy

ht
(1.5ρ̄i , j ,k Hi , j ,k −2ρ̄i , j ,k−1Hi , j ,k−1 +0.5ρ̄i , j ,k−2Hi , j ,k−2)

(2.28)

where ht is the mesh size in time domain. A more detailed derivation of the above difference
scheme can be found in Reference [122].

2.4 Transfer operators

Intergrid transfers are used for connecting the fine grid with the coarse grid. After a number
of relaxations the error on the fine grid is smooth enough to be approximate on the coarse

grid. Hence a restriction operator I H
h is needed to transfer the approximated solution P̃

h
and

the residual r h . When the low frequency errors have been eliminated on the coarse grid, it

is necessary to define a new error υh (υh = P h − P̃
h

) on the fine grid to correct the fine grid

approximate solution P̃
h

. The classical bi-linear interpolation works quite well for most load
cases. However when D jumps by orders of magnitude, Alcouffe [66] proposed a more efficient
interpolation operator and this type of operator allows D∇P to be continuous over the whole
calculation domain and gives a more reasonable physical representation on the coarse grid
[123].

2.4.1 Interpolation

Having defined the coefficients A and B in Equation 2.27, it is time to define the interpolation
operator. In matrix form, the interpolation can be represented as:

υh = I h
HυH (2.29)

where υh and υH are the fine grid and coarse grid error vectors respectively. I h
H is the interpo-

lation operator and the superscripts h and H stand for the fine grid and the coarse grid respec-
tively. The new coarse grid construction method proposed by Alcouffe et al. [66] is used here,
the interpolation process will be illustrated as follows:
The first step is to interpolate the fine grid points (black points shown in Figure 2.3 (b)) coin-
ciding with the coarse grid points (green points shown in Figure 2.3 (a)):

υh
i F, j F,k = υH

iC , jC ,k (2.30)
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where υh is the error on the fine grid, and υH is the error on the coarse grid. Subscripts (i F, j F,k)
and (iC , jC ,k) are applied for illustrate the mesh points on the fine grid and on the coarse grid
at the kth time step respectively.
The second step is to obtain the middle points, represented as blue dots in Figure 2.3 (c), on
the fine grid. Along horizontal lines, the expression for middle points is:

υh
i F+1, j F,k =

(B h
i F, j F,kυ

H
iC , jC ,k +B h

i F+1, j F,kυ
H
iC+1, jC ,k )

(B h
i F, j F,k +B h

i F+1, j F,k )
(2.31)

A similar expression can be derived for vertical lines, which reads:

υh
i F, j F+1,k =

(Ah
i F, j F,kυ

H
iC , jC ,k + Ah

i F, j F+1,kυ
H
iC+1, jC ,k )

(Ah
i F, j F,k + Ah

i F, j F+1,k )
(2.32)

Finally, the central point represented as a red point in Figure 2.3 (d) on the fine grid, which is
obtained as:

υh
i F+1, j F+1,k = (Ah

i F+1, j F+1,kυ
h
i F+1, j F+2,k + Ah

i F+1, j F,kυ
h
i F+1, j F,k+

B h
i F, j F+1,kυ

h
i F, j F+1,k +B h

i F+1, j F+1,kυ
h
i F+1, j F+1,k )/

(Ah
i F+1, j F+1,k + Ah

i F+1, j F,k +B h
i F, j F+1,k +B h

i F+1, j F+1,k )

(2.33)

The above pointwise description (from Equation 2.30 to Equation 2.33) can be replaced by
the matrix expression Equation 2.29, in which the matrix is large and complex. A simply way to
describe this matrix is by using a stencil notation. As was shown in Figure 2.4, in the interpo-
lation process, the stencil provides weighting factors for dividing the coarse grid value in point
(iC , jC ,k) to the coinciding fine grid point (i F, j F,k) as well as its 8 adjacent points. Observing
those pointwise expressions, the contribution of the coarse grid point to the 9 corresponding
fine grids can be written as a stencil I h

H in Equation 2.34.

I h
H =


NW h

i F, j F,k N h
i F, j F,k N E h

i F, j F,k

W h
i F, j F,k C h

i F, j F,k E h
i F, j F,k

SW h
i F, j F,k Sh

i F, j F,k SE h
i F, j F,k

 (2.34)

where

C h
i F, j F,k = 1,

N h
i F, j F,k =

Ah
i F, j F,k

Ah
i F, j F,k + Ah

i F, j F+1,k

, E h
i F, j F,k =

B h
i F, j F,k

B h
i F, j F,k +B h

i F+1, j F,k

,

Sh
i F, j F,k =

Ah
i F, j F−1,k

Ah
i F, j F−2,k + Ah

i F, j F−1,k

, W h
i F, j F,k =

B h
i F−1, j F,k

B h
i F−1, j F,k +B h

i F−2, j F,k

,
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Figure 2.3: Interpolation process (green points: coarse grid points, black dots: fine grid points,
blue dots: middle points on the fine grid, red point: central point on the fine grid).

Figure 2.4: Weighting factors for the interpolation (blue points: coarse grid points, black dots:
fine grid points).

17



CHAPTER 2. NUMERICAL MODEL

N E h
i F, j F,k =

[B h
i F, j F+1,k Ah

i F, j F,k /(Ah
i F, j F,k + Ah

i F, j F+1,k )]

Ah
i F+1, j F+1,k + Ah

i F+1, j F,k +B h
i F+1, j F+1,k +B h

i F, j F+1,k

+
[B h

i F, j F,k Ah
i F+1, j F,k /(B h

i F, j F,k +B h
i F+1, j F,k )]

Ah
i F+1, j F+1,k + Ah

i F+1, j F,k +B h
i F+1, j F+1,k +B h

i F, j F+1,k

,

NW h
i F, j F,k =

[B h
i F−1, j F+1,k Ah

i F, j F,k /(Ah
i F, j F,k + Ah

i F, j F+1,k )]

Ah
i F−1, j F+1,k + Ah

i F−1, j F,k +B h
i F−2, j F+1,k +B h

i F−1, j F+1,k

+
[B h

i F−1, j F,k Ah
i F−1, j F,k /(B h

i F−1, j F,k +B h
i F−2, j F,k )]

Ah
i F−1, j F+1,k + Ah

i F−1, j F,k +B h
i F−2, j F+1,k +B h

i F−1, j F+1,k

,

SE h
i F, j F,k =

[B h
i F, j F−1,k Ah

i F, j F−1,k /(Ah
i F, j F−1,k + Ah

i F, j F−2,k )]

Ah
i F+1, j F−1,k + Ah

i F+1, j F−2,k +B h
i F, j F−1,k +B h

i F+1, j F−1,k

+
[B h

i F, j F,k Ah
i F+1, j F−1,k /(B h

i F, j F,k +B h
i F+1, j F,k )]

Ah
i F+1, j F−1,k + Ah

i F+1, j F−2,k +B h
i F, j F−1,k +B h

i F+1, j F−1,k

,

SW h
i F, j F,k =

[B h
i F−1, j F−1,k Ah

i F, j F−1,k /(Ah
i F, j F−1,k + Ah

i F, j F−2,k )]

Ah
i F−1, j F−1,k + Ah

i F−1, j F−2,k +B h
i F−2, j F−1,k +B h

i F−1, j F−1,k

+
[B h

i F−1, j F,k Ah
i F−1, j F−1,k /(B h

i F−1, j F,k +B h
i F−2, j F,k )]

Ah
i F−1, j F−1,k + Ah

i F−1, j F−2,k +B h
i F−2, j F−1,k +B h

i F−1, j F−1,k

.

2.4.2 Injection

In general, the restriction operator matrix is the transposed matrix of the interpolation operator
[10]:

I H
h = (I h

H )T (2.35)

In order to derive the restriction operator, a basis function e l
i , j whose value is 1 at the point (i , j )

on the l th grid is employed.

W H = (I H
h W h)(iC , jC ) = [(I h

H )T W h](iC , jC ) =
∑
i F

∑
j F

〈I h
H eH

iC , jC ,eh
i F, j F 〉

〈eH
iC , jC ,eH

iC , jC 〉
W h

i F, j F (2.36)

in which W H and W h are vectors of unknowns on the coarse and fine grid respectively. In terms
of the orthogonal basis e l

i , j , the dot products are 〈eH
iC , jC ,eH

iC , jC 〉 = HxHy and 〈eh
i F, j F ,eh

i F, j F 〉 =
hxhy.

Supposing the vectors of unknowns on coarse grid and on fine grid are marked as W H =
[uH

iC , jC ,k ] and W h = [uh
i F−1, j F+1,k ,uh

i F−1, j F,k ,uh
i F−1, j F−1,k ,uh

i F, j F+1,k ,uh
i F, j F,k ,

uh
i F, j F−1,k ,uh

i F+1, j F+1,k ,uh
i F+1, j F,k ,uh

i F+1, j F−1,k ]. According to Equation 2.36, one can obtain:

uH
iC , jC ,k = hx ·hy

H x ·H y
(C h

i F, j F,k uh
i F, j F,k +NW h

i F, j F,k uh
i F−1, j F+1,k +SW h

i F, j F,k uh
i F−1, j F−1,k

+SE h
i F, j F,k uh

i F+1, j F−1,k +N E h
i F, j F,k uh

i F+1, j F+1,k +N h
i F, j F,k uh

i F, j F+1,k

+Sh
i F, j F,k uh

i F, j F−1,k +W h
i F, j F,k uh

i F−1, j F,k +E h
i F, j F,k uh

i F+1, j F,k ).

(2.37)
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Hence, the stencil of the restriction operator I H
h is:

I H
h = hx ·hy

H x ·H y


nwh

i F, j F,k nh
i F, j F,k neh

i F, j F,k

wh
i F, j F,k ch

i F, j F,k eh
i F, j F,k

swh
i F, j F,k sh

i F, j F,k seh
i F, j F,k

 (2.38)

where

ch
i F, j F,k = 1,

nh
i F, j F,k =

Ah
i F, j F,k

Ah
i F, j F,k + Ah

i F, j F+1,k

, eh
i F, j F,k =

B h
i F, j F,k

B h
i F, j F,k +B h

i F+1, j F,k

,

sh
i F, j F,k =

Ah
i F, j F−1,k

Ah
i F, j F−2,k + Ah

i F, j F−1,k

, wh
i F, j F,k =

B h
i F−1, j F,k

B h
i F−1, j F,k +B h

i F−2, j F,k

,

neh
i F, j F,k =

[B h
i F, j F+1,k Ah

i F, j F,k /(Ah
i F, j F,k + Ah

i F, j F+1,k )]

Ah
i F+1, j F+1,k + Ah

i F+1, j F,k +B h
i F+1, j F+1,k +B h

i F, j F+1,k

+
[B h

i F, j F,k Ah
i F+1, j F,k /(B h

i F, j F,k +B h
i F+1, j F,k )]

Ah
i F+1, j F+1,k + Ah

i F+1, j F,k +B h
i F+1, j F+1,k +B h

i F, j F+1,k

,

nwh
i F, j F,k =

[B h
i F−1, j F+1,k Ah

i F, j F,k /(Ah
i F, j F,k + Ah

i F, j F+1,k )]

Ah
i F−1, j F+1,k + Ah

i F−1, j F,k +B h
i F−2, j F+1,k +B h

i F−1, j F+1,k

+
[B h

i F−1, j F,k Ah
i F−1, j F,k /(B h

i F−1, j F,k +B h
i F−2, j F,k )]

Ah
i F−1, j F+1,k + Ah

i F−1, j F,k +B h
i F−2, j F+1,k +B h

i F−1, j F+1,k

,

seh
i F, j F,k =

[B h
i F, j F−1,k Ah

i F, j F−1,k /(Ah
i F, j F−1,k + Ah

i F, j F−2,k )]

Ah
i F+1, j F−1,k + Ah

i F+1, j F−2,k +B h
i F, j F−1,k +B h

i F+1, j F−1,k

+
[B h

i F, j F,k Ah
i F+1, j F−1,k /(B h

i F, j F,k +B h
i F+1, j F,k )]

Ah
i F+1, j F−1,k + Ah

i F+1, j F−2,k +B h
i F, j F−1,k +B h

i F+1, j F−1,k

,

swh
i F, j F,k =

[B h
i F−1, j F−1,k Ah

i F, j F−1,k /(Ah
i F, j F−1,k + Ah

i F, j F−2,k )]

Ah
i F−1, j F−1,k + Ah

i F−1, j F−2,k +B h
i F−2, j F−1,k +B h

i F−1, j F−1,k

+
[B h

i F−1, j F,k Ah
i F−1, j F−1,k /(B h

i F−1, j F,k +B h
i F−2, j F,k )]

Ah
i F−1, j F−1,k + Ah

i F−1, j F−2,k +B h
i F−2, j F−1,k +B h

i F−1, j F−1,k

.
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Subsequently, the solution P H and the residual r H on the coarse grid are restricted as:

P H
iC , jC ,k = I H

h P h
i F, j F,k

= hx ·hy

H x ·H y
[ch

i F, j F,k P h
i F, j F,k +nh

i F, j F,k P h
i F, j F+1,k + sh

i F, j F,k P h
i F, j F−1,k

+wh
i F, j F,k P h

i F−1, j F,k +eh
i F, j F,k P h

i F+1, j F,k +nwh
i F, j F,k P h

i F−1, j F+1,k

+ swh
i F, j F,k P h

i F−1, j F−1,k + seh
i F, j F,k P h

i F+1, j F−1,k +neh
i F, j F,k P h

i F+1, j F+1,k ].

(2.39)

Special attention is needed when restricting the residual r h . The factor (hx ·hy)/(H x · H y) in
Equation 2.38 is used to restrict functions mathematically, which is not used to restrict flows
physically. For Reynolds equation, the restriction operator I H

h must be replaced by J H
h when

restricting the right hand side of the discrete Reynolds equation [124] .

J H
h = H x ·H y

hx ·hy
I H

h =


nwh

i F, j F,k nh
i F, j F,k neh

i F, j F,k

wh
i F, j F,k ch

i F, j F,k eh
i F, j F,k

swh
i F, j F,k sh

i F, j F,k seh
i F, j F,k

 (2.40)

yielding:
r H

iC , jC ,k = J H
h r h

i F, j F,k . (2.41)

2.5 Coarse grid operator

After defining the transfer operators, the coarse grid operator will be described here. The coarse
grid operator is formed by a restriction equation:

J H
h (Lhυh) = J H

h r h (2.42)

In which υh = I h
HυH and equation 2.42 can be represented as:

J H
h Lh I h

H (υH ) = J H
h r h (2.43)

Thus, the coarse grid operator can be defined as:

LH = J H
h Lh I h

H (2.44)

Assuming the stencil of Ll at point (i , j ) on level l and at k th time step is:

Ll =


Ll

nw (i , j ,k) Ll
n(i , j ,k) Ll

ne (i , j ,k)

Ll
w (i , j ,k) Ll

c (i , j ,k) Ll
e (i , j ,k)

Ll
sw (i , j ,k) Ll

s(i , j ,k) Ll
se (i , j ,k)

 (2.45)

The construction of the coarse grid operator can be seen in Appendix A.

The coarse grid operator defined here involves 9 points, while as equation 2.27 shows an
operator referring to 5 points on the finest grid, reads:

Lh(i F, j F,k) =


0 Ah

i F, j F,k 0

B h
i F−1, j F,k −Ah

i F, j F,k − Ah
i F, j F−1,k −B h

i F−1, j F,k −B h
i F, j F,k B h

i F, j F,k

0 Ah
i F, j F−1,k 0

 (2.46)
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2.6 Relaxation

Employing the grid operator Ll defined before, the discrete Reynolds equation for point (i , j ,k)
of the grid l at the k th time step is shown as follows:

Ll
c P l

i , j ,k +Ll
nP l

i , j+1,k +Ll
w P l

i−1, j ,k +Ll
sP l

i , j−1,k +Ll
e P l

i+1, j ,k+
Ll

nw P l
i−1, j+1,k +Ll

sw P l
i−1, j−1,k +Ll

se P l
i+1, j−1,k +Ll

ne P l
i+1, j+1,k =

(hl ·hl )(ρ̄H)l
x + (hl ·hl )(ρ̄H)l

t

(2.47)

with P l
i , j ,k = 0 for points on the boundary and P l

i , j ,k > 0 for the cavitation condition. In Equa-

tion 2.47, hl stands for the mesh size on the l th grid. In terms of the couette and the transient
term, their discrete forms are:

(ρ̄H)l
x =


ρ̄l

i , j ,k H l
i , j ,k−ρ̄l

i−1, j ,k H l
i−1, j ,k

hl if i = 1

1.5ρ̄l
i , j ,k H l

i , j ,k−2.0ρ̄l
i−1, j ,k H l

i−1, j ,k+0.5ρ̄l
i−2, j ,k H l

i−2, j ,k

hl if i Ê 2
(2.48)

and

(ρ̄H)l
t =


0 if nt = 0

ρ̄l
i , j ,k H l

i , j ,k−ρ̄l
i−1, j ,k H l

i−1, j ,k

ht if nt = 1

1.5ρ̄l
i , j ,k H l

i , j ,k−2.0ρ̄l
i−1, j ,k H l

i−1, j ,k+0.5ρ̄l
i−2, j ,k H l

i−2, j ,k

ht if nt Ê 2

(2.49)

with

H l
i , j ,k = H0(k)+

X 2
i ,k

2
+

Y 2
j ,k

2
+∑

i ′

∑
j ′

K l l
i ,i ′, j , j ′,k P l

i ′, j ′,k (2.50)

For the discrete Equation 2.47, Reference [10] shows that an iterative approach of combining
the Gauss-Seidel line relaxation and the Jacobi distribution line relaxation is pretty stable and
efficient. Hence, in this work the same method is applied. Figure 2.5 shows the relaxation
process represented in Reference [10], where ξl is the local coefficient and its definition can
been seen as Equation 2.51.

ξl
i , j ,k =

ρ̄(P l
i , j ,k )(H l

i , j ,k )3

η̄(P l
i , j ,k )λ̄

(2.51)

with ξl
i±1/2, j ,k = (ξi , j ,k +ξi±1, j ,k )/2 and ξl

i , j±1/2,k = (ξi , j ,k +ξi , j±1,k )/2.

Whether the Gauss-Seidel or the Jacobi distribution line relaxation is used, for each grid
point (i , j ,k) a new approximation P̄ l

i , j ,k to P l
i , j ,k is computed by:

P̄ l
i , j ,k = P̃ l

i , j ,k +ωδl
i , j ,k (2.52)

with

ωδl
i , j ,k =


ωg sδ

l
i , j ,k Guass-Seidel

ω j a[δl
i , j ,k −

(δl
i+1, j ,k+δl

i−1, j ,k+δl
i , j+1,k+δl

i , j−1,k )

4 ] Jacobi distribution

where ωg s and ω j a are the relaxation factors for the Guass-Seidel line relaxation and the Ja-
cobi distribution line relaxation respectively. The changes δl

i , j ,k for the line relaxation in the X
direction can be obtained from:

A jδl
j = r l

j (2.53)
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in which δl
j is a vector of changes δl

i , j ,k and r l
j is the residual vector r l

i , j ,k , both are nx element

vectors. A j is a matrix of coefficients A j
i ,m , whose derivation can be found in Appendix B.

Figure 2.5: Flow chart of the hybrid relaxation process

2.7 Implementation of the Multi-Grid method

So far, pre-preparations for implementing the Multi-Grid method to solve the transient EHL
equation system have already been prepared. Final step is to organize all steps together. Figure
2.6 shows a simple two-level "V" cycle which is used to illustrate the implementation of the
Multi-Grid method. The corresponding steps are as follows:

• Several relaxations on grid h to obtain an approximate solution P̃
h

by:

Lh〈P̃ h〉 = F h , (2.54)

compute residual on grid h below:

r h = F h −Lh〈P̃ h〉. (2.55)

• Compute Alcouffe’s coefficients A, B and D , prepare the transfer operators I H
h and I h

H ,
construct the coarse grid operator LH .
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Figure 2.6: Implementation of the Multi-Grid method with a two level "V" cycle.

• Coarsen pressure P̃
h

and residual r h to grid H :

P̃
H = I H

h 〈P̃ h〉
r H = J H

h 〈r h〉
(2.56)

with the right hand side term F H expressed as:

F H = LH 〈P̃ h〉+ r H . (2.57)

• Relax coarse grid solution P̃
H

on grid H through:

LH 〈P̃ H 〉 = F H . (2.58)

if grid H is the coarsest grid, the mutual approach H0 should be updated.

• Interpolate and correct P̃
h

from grid H to h using:

P̄
h = P̃

h + I h
H 〈P̃ H − I H

h P̃
h〉. (2.59)

• Relaxations on grid h.
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For simplicity, the current code uses "V" cycles to solve the EHL equation system. In terms of
the transient EHL model, the transient term ∂ρ̄H/∂X should be arranged in calculation cycles.
Here use the equation below to denote the transient Reynolds equation with the first order
backward discretization of transient term:

Ll 〈P l 〉− (hl ·hl )(ρ̄H)l
x = (hl ·hl )(

ρ̄l
i , j ,k H l

i , j ,k − ρ̄l
i−1, j ,k H l

i−1, j ,k

ht
). (2.60)

In order to construct the transient "V" cycle, Equation 2.60 will be rewritten as:

Ll 〈P l 〉− (hl ·hl )(ρ̄H)l
x − (hl ·hl )(

ρ̄l
i , j ,k H l

i , j ,k

ht
) = (hl ·hl )

(−ρ̄l
i−1, j ,k H l

i−1, j ,k )

ht
. (2.61)

Observing Equation 2.61, one finds that the right hand side term of the Reynolds equation is

(hl ·hl )
(−ρ̄l

i−1, j ,k H l
i−1, j ,k )

ht . As shown in Figure 2.7, the right hand side term of the Reynolds equation

for the (nt )th time step is the value of (hl ·hl )
(−ρ̄l

i−1, j ,k H l
i−1, j ,k )

ht for the (nt −1)th time step.

Figure 2.7: The time-dependent "V" cycles

2.8 Conclusion

In this chapter, the coarse grid construction method proposed by Alcouffe et al. [66] is imple-
mented in the current EHL Multi-Grid code. Instead of the bi-linear interpolation stencil used
in the class code [10], the new interpolation stencil applying Alcouffe’s method is derived. Then
the new restriction stencil is obtained through the Equation 2.35. A nine point coarse grid op-
erator is also constructed by the Galerkin method in Appendix A. Finally, the implementation
of the Multi-Grid method is introduced briefly.
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Chapter 3

Friction influence of harmonic surface waviness
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3.1 Introduction

As mentioned in Chapter 1, the friction of interfacial surfaces greatly influences the perfor-
mance of mechanical elements. Studies show that the surface roughness amplitude, wave-
length and anisotropy affect friction. Thus this chapter investigates the effect of surface wavi-
ness on the friction evolution, in which the surface waviness is defined by Equation (3.1). In this
chapter, a relative friction coefficient is proposed to indicate the transition from the full-film to
the mixed lubrication regime. The definition of the relative friction coefficient is illustrated in
Section 3.3. Subsequently, the influence of operating conditions and surface waviness topog-
raphy on friction are studied. Finally, a single friction curve is obtained depending on a new
"Lambda ratio" parameter including operating conditions as well as surface waviness parame-
ters. The waviness is defined as:

RR(X ,Y ,T ) = Ai ×10
−10[max(0, X−X̄

λx /ah
)2]

cos(2π
(X − X̄ )

λx /ah
)cos(2π

Y

λy /ah
) (3.1)

where X̄ = Xst +Urat ×T with Urat = u1/ur , Ai is the initial amplitude of the surface waviness,
λx and λy are the wavelengths in x and y direction respectively. At the same time, the param-
eter r (r = λx /λy ) is used to determine the surface waviness anisotropy. For convenience, the
parameter λ is defined as λ= min(λx ,λy ). The exponential term is used to avoid discontinuous
derivatives when the waviness moves into the calculation domain.

3.2 Lubricant rheological models

The lubricant rheology greatly determines the friction in a tribological contact [125]. Once
the rheology of the lubricant is given, the friction force can be obtained by integration of the
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shear stress over the contact area [126]. Figure 3.1 shows a typical shear stress-shear rate re-
lationship for an EHL contact. In the low shear strain rate range, the lubricant is Newtonian
and the shear stress increases linearly with the shear strain rate. This linear model is valid for
predicting hydrodynamic friction [127]. However, in the EHL regime of lubrication, the Newto-
nian assumption is insufficient, especially when large slide-to-roll ratios are employed. Stud-
ies [128–130] show that the lubricant in the inlet zone shows shear-thinning behavior (i.e. the
fluid viscosity decreases with increasing shear stress rate) which influences the film thickness.
Some frequently-used non-Newtonian fluid models are listed as follows:

Figure 3.1: Shear stress-shear rate relationship for the EHL contact.

• Ree-Eyring model (sinh-law model)

In 1977, Johnson and Tevaarwerk [131] proposed a simple constitutive equation for an
isothermal lubricant based on a "nonlinear Maxwell" model, which reads:

γ̇= 1

Ge

dτ

d t
+ τ0

η
sinh(

τ

τ0
) (3.2)

in which Ge is the elastic shear modulus, τ is the stress, τ0 is referred to as the Eyring
stress and γ̇ is the shear strain rate. The strain rate shown as Equation 3.2 consists of
two components where the first elastic term is always neglected [132]. Thus Equation 3.2
reduces to:

γ̇= τ0

η
sinh(

τ

τ0
). (3.3)

Observing Equation 3.3, when the Eyring stress τ0 approaches infinity, the limit of Equa-
tion 3.3 becomes the Newtonian constitutive equation, i.e.:

lim
τ0→∞

τ0

η
sinh(

τ

τ0
) = τ

η
. (3.4)

• Bair-Winer model

For larger strain rates the lubricant exhibits a limiting shear stress τL which is the thresh-
old of the shear stress. Bair and Winer [133] modified the "Maxwell" model applying this
limiting shear stress, yields:

γ̇= 1

G∞
dτ

d t
+ τL

η
ln(1− τ

τL
) (3.5)
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where G∞ is the limiting elastic shear modulus.

• Carreau-Yasuda model (power-law model)

Carreau and Yasuda [134] offered a more general model whose equation is:

η= η0[1+ (λt γ̇)2](n−1)/2 (3.6)

where λt is the time constant for the fluid and n −1 is the power-law slope.

• Circular fluid model

In order to overcome the difficulty lies in incorporating the Bair-Winer model into the
Reynolds equation, Lee and Hamrock [135] suggested an appropriate lubricant rheolog-
ical circular model, it reads:

γ̇= τ

η
[1− (

τ

τL
)2]−1/2 (3.7)

• Actual Ree-Eyring model

Bair [136] proposed an actual Ree-Eyring model for shear-shinning lubricants [137]:

τ=
N∑

i=1
xiτi sinh−1(λi γ̇) (3.8)

in which λi = η/τi is a characteristic time of the fluid and xi is a weighting factor (
∑N

i=1 =
1).

3.3 Methodology

3.3.1 Relative friction coefficient

Even though the previous section described several non-Newtonian rheological model, in this
section, we will use a Newtonian model to describe friction variations resulting from pressure
variations. Two arguments can be used.

• When the shear stress variations are small, a linearised model can be used. See the fol-
lowing example sinh.

• A linear model allows an FFT based sum over all wavelengths which a non-linear model
does not.

Example:

γ̇= τ0

η
sinh

τ

τ0

= τ0

2η
(eτ/τ0 −e−τ/τ0 )

= τ0

2η
(1+ τ

τ0
+ τ2

2τ2
0

+ ...−1+ τ

τ0
− τ2

2τ2
0

+ ...)

≈ τ

η
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For Newtonian lubricant, the above equation can be rewritten as:

τ= η
du

d z
(3.9)

where u is the velocity in rolling direction, which is defined as [138, 139]:

u = 1

2η

∂p

∂x
(z2 − zh)+ z

h
(u2 −u1)+u1. (3.10)

Substituting Equation 3.10 into Equation 3.9, yields:

τ= 1

2

∂p

∂x
(2z −h)+η

u2 −u1

h
(3.11)

where two parts contribute to the shear stress, the first term is a parabolic part due to the
Poiseuille flow and the second term is a linear part due to the Couette flow. Thus the viscous
shear force on the lower surface (z = 0) is obtained by integrating Equation 3.11 [140]:

f =−
Ï

(
∂p

∂x
· h

2
)d xd y +

Ï
(η · u2 −u1

h
)d xd y. (3.12)

In the full-film EHL regime, the friction force is dominated by the viscous shear force, the di-
mensionless friction force is:

Ffriction =−
Ï

(
∂P (X ,Y ,T )

∂X
· H(X ,Y ,T )

2
)d X dY +

Ï
(η̄ · SRR

H(X ,Y ,T )
)d X dY (3.13)

in which SRR = (u2 −u1)/ū is the slide-to-roll ratio.

Experimental results [141] also found that the Poiseuille force is lower than the Couette
force. Hence the dimensionless friction force is simplified as:

F (X ,Y ,T ) =
Ï

η̄[P (X ,Y ,T )] · SRR

H(X ,Y ,T )
d X dY . (3.14)

Different lubricant oils give different curves of friction coefficient. For the sake of simplicity, a
relative friction coefficient is proposed to detect friction variations, which is defined as:

µr

µs
(T ) = Fr

w
(T )/

Fs

w
= Fr

Fs
(T ) (3.15)

where subscripts r and s are used to distinguish the rough and smooth case.

3.3.2 Numerical solution

The numerical simulation uses the domain −2.5 É X É 1.5 and −2.0 É Y É 2.0 with 513×513
equal-spaced points. The time step is selected equal to the spatial mesh size on the finest grid,
i.e. with ∆T = hx = hy = 0.0078125. Meanwhile, the calculation starts with Xst =−2.5 and the
surface topography moves into the high pressure zone with the velocity of the rough surface u1.
The monitoring time should be long enough so that ‘steady oscillations’ of the results occur.
The present work considers small-amplitude roughness and a small slip parameter is selected
i.e. Ur at = 1.01(SRR = 0.02). This small slip assumption and and small amplitude allow us to
use the Amplitude Reduction Theory [53] for pure rolling, as shown in [61].
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The numerical code used in the present work is validated by comparing the current results
with results from Reference [53]. Figure 3.2 shows the relative deformed amplitude (Ad/Ai ) as
a function of f (r )∇2. This figure shows that results from the current model with SRR = 0 (blue
squares) fall onto the master curve on Reference [53].

Figure 3.2: Comparison of the relative deformed amplitude (Ad/Ai ) as a function of f (r )∇2 for
the current model (blue squares) with those on Reference [53] (solid line)

The choice of the mesh size influences computing time as well as precision. A large mesh
size leads to large discretization errors and a small mesh size causes long computation times.
This work applies an intermediate mesh size (513 × 513 points). Table 3.1 suggests that it yields
a friction precision better than 1%.

Table 3.1: Relative friction coefficient versus the number of mesh points for: M=1000, L=10,
λx /ah = 0.5, r=0.4 and Hc/Ai = 2.

Mesh points Relative friction coefficient
129 × 129 1.489
257 × 257 1.457
513 × 513 1.462

1025 × 1025 1.465

3.4 Time-dependent solution

Defined by Equation 3.1, Figure 3.3 shows the top view of the surface waviness for three cases:
the isotropic surface waviness of r = 1 and λ/ah = 0.5 (a), the longitudinal surface waviness of
r = 2 and λ/ah = 0.5 (b) and the transverse surface waviness of r = 0.5 and λ/ah = 0.5 (c).
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Figure 3.3: Top view of the surface waviness with λ/ah = 0.5 and Ai = 0.5Hc: (a) the isotropic
surface waviness r = 1, (b) the longitudinal surface waviness r = 2, (c) the transverse surface
waviness r = 0.5.

For the transient case, in the high pressure zone the Poiseuille term vanishes, the Reynolds
equation reduces to a transport equation:

− ∂(ρ̄H)

∂X
− ∂(ρ̄H)

∂T
≈ 0. (3.16)

In this case, the final film thickness and pressure profiles depend on the profiles of steady state
case as well as on the inlet disturbances [46]. Figures 3.4-3.6 show dimensionless pressure dis-
tribution P (X ,0) and dimensionless film thickness distribution H(X ,0) for three surface wavi-
ness cases, in which Hc is the central film thickness for the smooth case. For the operating
condition of M = 1000 and L = 10, the dimensionless central film thickness for the smooth
case is: Hc = 0.0243. In this work, we only focus on small surface waviness amplitude values
i.e. Ai /Hc ∈ [1,10]. Figures 3.4-3.6 show that the propagation speed of the pressure increase
is the same as that of the film thickness variation. This is due to the small slide-to-roll ratio,
the velocity of the rough surface is nearly the same as the entrainment velocity ū. In addition,
the wavelength of the pressure increase and the film thickness variation are the same as the
wavelength of corresponding initial surface waviness.

Figure 3.7 shows the dimensionless central film thickness Hcrough(0,0,T ) as a function of
time T for the above three rough cases. The initial amplitude of the surface waviness is Ai =
0.01215, while from those figures, one can observe that the amplitude of the central film thick-
ness is smaller. This means that the surface roughness is deformed under current operating
conditions. For those cases in Figure 3.7, the deformed amplitudes are: Ad = 0.0057 for r = 1,
Ad = 0.00375 for r = 2 and Ad = 0.0057 for r = 0.5. Reference [53] studied this deformation
over a large range of operating conditions, and a single equation is obtained as Equation 3.17.

Ad

Ai
= 1

1+0.15 f (r )∇2 +0.015( f (r )∇2)2 (3.17)

where

f (r ) =
{

e1−1/r , if r > 1

1, otherwise

r =λx /λy and ∇2 = (λ/ah)
p

M/L with λ= min(λx ,λy ).
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Figure 3.4: Central line pressure P (X ,0) (black lines) and central line film thickness H(X ,0)
(blue lines) of isotropic surface waviness (r = 1) for M = 1000, L = 10, λ/ah = 0.5 and Ai = 0.5Hc
during a time period. The central pressure line (red line) for the smooth case is plotted as a
reference.
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Figure 3.5: Central line pressure P (X ,0) (black lines) and central line film thickness H(X ,0)
(blue lines) of longitudinal surface waviness (r = 2) for M = 1000, L = 10, λ/ah = 0.5 and Ai =
0.5Hc during a time period. The central pressure line (red line) for the smooth case is plotted
as a reference.
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Figure 3.6: Central line pressure P (X ,0) (black lines) and central line film thickness H(X ,0)
(blue lines) of transverse surface waviness (r = 0.5) for M = 1000, L = 10, λ/ah = 0.5 and Ai =
0.5Hc during a time period. The central pressure line (red line) for the smooth case is plotted
as a reference.
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Figure 3.7: The dimensionless central film thickness Hcrough as a function of the dimensionless
time T for: M = 1000, L = 10, λ/ah = 0.5 and Ai = 0.5Hc: (a) the isotropic surface wavy case,
(b) the longitudinal surface wavy case r = 2, (c) the transverse surface wavy case r = 0.5.

Equation 3.15 shows that the relative friction coefficient is time-dependent. Figure 3.8 de-
picts the relative friction coefficient as a function of dimensionless time (T ) for the isotropic,
longitudinal and transverse cases with the same operating condition: M=1000, L=10, Ai =
0.5Hc and dimensionless waviness: λ= 0.5. Because the surface topography RR(T ) is periodi-
cal, the relative friction coefficient (µr /µs)(T ) is also periodical. For each operating condition,
the relative friction coefficient is defined as its average value (shown as blue dotted lines in Fig-
ure 3.8) i.e.

∑i=NT
i=0 (µr

µs
)i /NT in which NT is the number of the relative friction coefficient values

during one time period. Although the operating conditions for the three surfaces are the same,
their averaged friction values are very different i.e. µr /µs = 1.79 for r = 1, µr /µs = 1.57 for r = 2
and µr /µs = 1.48 for r = 0.5.

Figure 3.8: The relative friction coefficient µr /µs as a function of the dimensionless time T for:
M = 1000, L = 10, λ/ah = 0.5 and Ai = 0.5Hc: (a) isotropic surface wavy case, (b) longitudinal
surface wavy case r = 2, (c) transverse surface wavy case r = 0.5. (Blue dotted line: average
value of the relative friction coefficient.)

3.5 Effect of operating conditions

The relative friction coefficient can be plotted as a function of the classical parameter "lambda
ratio" i.e. Hc/Ai (Ai is varying and Hc is fixed) for a specific operating condition: Figure 3.9.
This figure shows that as Hc/Ai increases, the relative coefficient decreases monotonically.
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Early work on conformal condition shows that with the "Λ ratio" increasing, the friction coef-
ficient decreases to a minimum value (the transition position from the full-film to the mixed
lubrication regime) first then increases.

Figure 3.9: Relative friction coefficient as a function of Hc/Ai for a specific operating condition

The following work will detect the influence of the operating conditions M , L and surface
wavelength on the relative friction coefficient for the isotropic case.

Figure 3.10: Effect of the load parameter M on the relative friction coefficient for L = 10 and
λ/ah = 0.5: (a) relative friction coefficient as a function of Hc/Ai , (b) relative friction coefficient
as a function of M 0.33 · (Hc/Ai )

Figure 3.10 displays the influence of the load parameter M on the relative friction coeffi-
cient for L = 10 and λ/ah = 0.5. From Figure 3.10 (a), one can observe that for each M value,
there is a single curve. As M increases, the relative friction coefficient decreases, meanwhile
each single curve has a small left-shift. It seems that there is a scaling factor can be used to
combine all curves together. Figure 3.10 (b) shows that M 0.33 is an appropriate factor to scale
all curves.
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Figure 3.11 shows the influence of the material parameter L on the relative friction coeffi-
cient for M = 1000 and λ/ah = 0.5. From Figure 3.11 (a), one can observe that the parameter L
affects the relative friction coefficient. As L increases, the relative friction coefficient increases,
each single curve has a small right-shift. Once again, there exists a scaling parameter L−1.1

which can be applied to shift all curves together (shown in Figure 3.11 (b)).

Figure 3.11: Effect of material parameter L on the relative friction coefficient for M = 2000 and
λ/ah = 0.5: (a) relative friction coefficient as a function of Hc/Ai , (b) relative friction coefficient
as a function of L−1.1 · (Hc/Ai )

Figure 3.12: Effect of wavelength λ/ah on the relative friction coefficient for M = 1000 and
L = 10: (a) relative friction coefficient as a function of Hc/Ai , (b) relative friction coefficient as
a function of (λ/ah)0.67 · (Hc/Ai )

The relative friction coefficient is affected not only by the operating conditions M and L,
but also by the wavelength of the surface waviness. Figure 3.12 describes the effect of the wave-
length λ/ah on the relative friction coefficient for M = 1000 and L = 10. As λ/ah increases, the
relative friction coefficient decreases, each single curve has a small left-shift (shown in Figure
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3.12 (a)). The parameter λ/a0.67
h is a suitable factor to unify those curves (shown in Figure 3.12

(b)).
Figure 3.13 presents the relative friction coefficient as a function of the classical "lambda

ratio" Hc/Ai for many different operating conditions. This figure shows that for each operating
condition, a very smooth curve is obtained, however, one does not obtain a single curve as
for the low pressure case using the parameter Hc/Ai . According to the Amplitude Reduction
Theory [53, 58], for very high pressures, the surface roughness will deform. Instead of using
this simple parameter Ai or a measured surface roughness parameter σ, it is better to use the
deformed parameter Ad .

Figure 3.13: Relative friction coefficient as a function of the classical parameter "lambda ratio"
i.e. Hc/Ai for a large range of operating conditions.

Employing the scaling factors of Figures 3.10-3.12, it is possible to combine all results ob-
tained for different values of λ/ah , M , L as well as Hc/Ai into a single curve using a dimen-
sionless parameter θ2. Figure (3.14) shows the relative friction coefficient as a function of the
new parameter θ2 for 500 ≤ M ≤ 2000, 5 ≤ L ≤ 15, 0.25 ≤λ/ah ≤ 1.0 and 1.0 ≤ Hc/Ai ≤ 10. After
curve-fitting, the single curve can be described by the following equation:

µr

µs
= 1+0.56θ−2

2 +0.23θ−4
2 (3.18)

where θ2 = L−1.1M 0.33(λ/ah)0.67(Hc/Ai ). The physical justification of this scaling parameter
can be understood from a simplified analysis given in Appendix C.
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Figure 3.14: Relative friction coefficient as a function of the new parameter θ2, simulation re-
sults: black circles; fitted curve: the black dashed line.

3.6 Effect of surface anisotropy

The previous section demonstrated the influence of the operating conditions and the wave-
length on the relative friction coefficient for the isotropic case. Figure 3.8 shows that the surface
anisotropy affects the relative friction coefficient under the same operating conditions. This
section describes the influence of the surface anisotropy on the relative friction coefficient in
more detail.

3.6.1 Longitudinal and transverse wavy cases

Figure 3.15 shows the relative friction coefficient (µr /µs) as a function of Hc/Ai for different r
(1 ≤ r ≤ 32) values. It can be observed that the results of the longitudinal case show the same
trend as those of the isotropic wavy case (r = 1). That is, a decreasing trend of the relative fric-
tion coefficient when Hc/Ai increases. For each r value a single curve exists but it shifts to the
left compared to the curve with r = 1. For the case considered, the relative friction coefficient
monotonically decreases as r increases (shown in the right small figure in Figure 3.15).

Figure 3.15: Relative friction coefficient (µr /µs) as a function of Hc/Ai for different r (1 ≤ r ≤
32) values for: M = 1000, L = 10 and λy /ah = 0.5 (left), zoom from 2.3−2.7 (right).
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From Figure 3.15, one can conclude that the results for r = 16 and for r = 32 are almost
identical and the left shift is limited. It is assumed that a function can be used to shift all results
onto a single curve. The single curve is obtained as shown in Figure 3.16 when the horizontal
coordinate Hc/Ai in Figure 3.15 is multiplied by the following function:

ff(r ) = 1.23−0.23(
1

r
)1.4 (3.19)

in order to distinguish the surface roughness anisotropy function in Equation 3.17, in this work,
the anisotropy function is marked as ff(r ).

Figure 3.16: Relative friction coefficient (µr /µs) as a function of ff(r ) · (Hc/Ai ) for different r
(1 ≤ r ≤ 32) values for: M = 1000, L = 10 and λy /ah = 0.5.

The transverse case is studied for M = 1000, L = 10 and λx /ah = 0.5. Figure 3.17 shows the
relative friction coefficient (µr /µs) as a function of Hc/Ai for different r (0 ≤ r ≤ 1) values. Re-
sults for the transverse case are more complicated. It can be observed from Figure 3.17 that as
r increases (r varies from 0 to 0.33), the relative friction coefficient decreases gradually (shown
as blue lines) while for r varying from 0.4 to 1, the relative friction coefficient increases (shown
as black lines).

Once again, a function can be found to scale all results and form a single curve as shown in
Figure 3.18.

ff (r ) = 2.7r 2 +0.1

r 3 +1.7r 2 +0.1
(3.20)

Combining all anisotropy factors, the anisotropy function is expressed as:

ff (r ) =
{

(2.7r 2 +0.1)/(r 3 +1.7r 2 +0.1), if r < 1

1.23−0.23(1/r )1.4, otherwise
(3.21)

where r =λx /λy . Figure 3.19 shows the comparison of the simulation results of the anisotropy
factors and the final fitted function (shown as Equation 3.21).
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Figure 3.17: Relative friction coefficient (µr /µs) as a function of (Hc/Ai ) for different r (0 ≤ r ≤
1) values for: M = 1000, L = 10 and λx /ah = 0.5(upper), zoom from 2.4−2.6 (lower).

Figure 3.18: Relative friction coefficient (µr /µs) as a function of ff(r )× (Hc/Ai ) for different r
(0 ≤ r ≤ 1) values for: M = 1000, L = 10 and λx /ah = 0.5.

40



CHAPTER 3. FRICTION INFLUENCE OF HARMONIC SURFACE WAVINESS

Figure 3.19: ff (r ) as a function of r . Numerical results: red squares. Fitted curve: solid lines.

3.6.2 Purely longitudinal wavy case

Study [51] showed that the transient purely longitudinal case remains a stationary problem.
This phenomenon can also be seen in the current study. Figure 3.20 presents the compari-
son between the transient results and the stationary results for M = 1000, L = 10, Hc/Ai = 2,
λy /ah = 1.0 and λx =∞. In order to compare these results, the stationary result is also plotted
as a function of the dimensionless time T in Figure 3.20. Figure 3.20 shows that the value of
the relative friction coefficient is the same as the value of the stationary case, i.e. µr /µs = 1.673.
This is due to the waviness term (Equation 3.1) reduces to RR(X ,Y ) = Ai ×cos(2π Y

λy /ah
), which

is a time-independent term.

Figure 3.20: Comparison between the transient relative friction coefficient and that of the sta-
tionary case. Transient results: black line. Stationary results: magenta dash-dotted line.
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Figure 3.21: Relative friction coefficients for the purely longitudinal wavy case: (a) relative fric-
tion coefficient as a function of original "lambda ratio" Hc/Ai parameter, (b) relative friction
coefficient as a function of the new parameter θ∗2

The influence of the waviness anisotropy on friction can be found in Table 3.2. It is reported
that with r increasing from 1 to 32 the relative friction coefficient (µr /µs) decreases, while the
case r =∞ predicts the highest relative friction coefficient value.

Table 3.2: Relative friction coefficient versus different surface anisotropy parameters for: M =
1000, L = 10, λy /ah = 0.5 and Hc/Ai = 2.

r 1 2 4 8 16 32 ∞
µr /µs 1.789 1.566 1.508 1.491 1.489 1.487 2.041

Figure 3.21 gives the results of the relative friction coefficient for the purely longitudinal
wavy case for a relative large range of operating conditions: M ∈ [500,2000], L ∈ [5,15] and
λy /ah ∈ [0.25,0.8]. As usual, in Figure 3.21 (a), a very smooth curve as a function of Hc/Ai for
each operating condition. While, the old scaling parameter θ2 can not scale all cases together.
For the purely longitudinal cases considered, there is indeed a new parameter θ∗2 expressed
as Equation (3.22), and shown in Figure 3.21 (b) to unify all cases onto a single curve. The
operating conditions are: 500 ≤ M ≤ 2000, 5 ≤ L ≤ 15 and 0.25 ≤λ/ah ≤ 0.8.

θ∗2 = M 0.4L−1.2[−1.1(λy /ah)2 +2.1(λy /ah)+0.2](Hc/Ai ). (3.22)
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3.7 Conclusion

In this chapter, the relative friction coefficient is predicted by means of numerical simula-
tion for a large range of transient EHL operating condition and surface waviness anisotropy
(r =λx /λy ). A relation is derived for the relative friction coefficient for isotropic and anisotropic
harmonic surfaces. For the isotropic wavy case, all relative friction coefficient values can be
unified onto a single curve applying a dimensionless parameter θ2. For anisotropic wavy cases,
a roughness anisotropy function ff (r ) is used to scale all results together, when the same op-
erating conditions are considered. Finally, results of all cases can be combined into a single
equation:

µr

µs
= 1+0.56[ff (r )θ2]−2 +0.23[ff (r )θ2]−4 (3.23)

where

ff (r ) =
{

(2.7r 2 +0.1)/(r 3 +1.7r 2 +0.1), if r < 1

1.23−0.23(1/r )1.4, otherwise

and θ2 = M 0.33L−1.1(λ/ah)0.67(Hc/Ai ) with λ= min(λx ,λy ).

However, from a lubrication point of view, the purely longitudinal wavy case (r = ∞) has
a very different frictional behavior. A separate scaling parameter θ∗2 is obtained for the purely
longitudinal wavy case.

Early work on conformal contacts showed that the onset of mixed lubrication regime was
roughly around a "lambda ratio" equal to 3, in which the "lambda ratio" is defined as the ratio of
oil film thickness to the combined surface roughness. The current work reveals that besides the
classical "lambda ratio" parameter, the operating conditions as well as the surface topography
play an important role on the onset of the mixed lubrication regime.
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Friction of complex rough surfaces
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4.1 Introduction

The previous chapter has already predicted the friction increase for simple harmonic surface
waviness, while the range of wavelengths is limited. In reality, the real surface roughness is
more complicated. It contains very different wavelengths and amplitudes. On the other hand,
the full numerical simulation is time-consuming for real rough surfaces. In this chapter a rapid
prediction method based on the roughness power spectral density (PSD) is provided to pre-
dict the friction increase due to the roughness. Section 4.2 will describe this method in the
first place. Section 4.3 tests this method for an artificial fractal surface roughness. Finally, sec-
tion 4.4 predicts the transition of the full-film to the mixed lubrication regime by applying this
method for real measured surface roughness.

4.2 Power spectral density friction method

4.2.1 PSD friction model

The power spectral density (PSD) is a mathematical tool that decomposes a rough surface into
harmonic components of different frequencies [109], which enables the pressure increase to
be calculated analytically for each frequency component. Subsequently, the friction variations
for the whole rough surface can be obtained. At last, the relative friction coefficient is obtained.
The calculation process is as follows:
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A rough surface topography r rx,y can be expressed in the frequency domain by means of
the Fourier transform:

r rqx ,qy = (
4

Nx Ny
)
∑
x,y

(r rx,y )e−i (qx x+qy y) (4.1)

where r rx,y is the discrete form of the surface roughness r r (x, y), qx and qy are the wavenum-
bers in the x and y direction respectively. In general, Equation 4.1 is computed by the fast
Fourier transform (FFT) algorithm.

Combine Equation 4.1 and Equation 3.17, the deformed surface roughness r r d
qx ,qy

in the
frequency domain is:

r r d
qx ,qy

= (
Ad

Ai
)qx ,qy · |r rqx ,qy |. (4.2)

According to the relation between the pressure and the elastic deformation of the waviness
given in Appendix D, the pressure increase in the frequency domain follows the expression
below

δpqx ,qy =
πE ′

2k(r )λ
(r rqx ,qy − r r d

qx ,qy
) (4.3)

where λ is defined as λ= min(2π/qx , 2π/qy ). With the inverse discrete Fourier transform, the
pressure increase in the space domain is obtained:

δpx,y = (
4

Nx Ny
)

∑
qx ,qy

δpqx ,qy ·e i (qx x+qy y). (4.4)

According to the friction force Equation 3.14, the ratio of the shear stress τr /τs can be derived
as:

τr (x, y)

τs(x, y)
= ηr (x, y)

ηs(x, y)
· hs(x, y)

hr (x, y)
= ηr (x, y)

ηs(x, y)
· hs(x, y)

hs(x, y)−ad (x, y)
(4.5)

It is easy to obtain the shear stress distribution τs(x, y) for the smooth surface case, where the
pressure distribution for the smooth surface case can be replaced by a semi-elliptical pressure
distribution:

ps(x, y) =
{

ph

√
1− (x/ah)2 − (y/ah)2, if x2 + y2 ≤ a2

h

0, otherwise.
(4.6)

Afterwards, the pressure distribution for roughness cases is computed by ps +δp. The shear
stress distribution τr (x, y) for a rough surface case is obtained as:

τr (x, y) = ηr (x, y)

ηs(x, y)
· hs(x, y)

hs(x, y)−ad (x, y)
·τs(x, y). (4.7)

Finally, the shear forces for both the smooth case and the rough case are computed by integrat-
ing the shear stress τs(x, y) and τr (x, y), respectively. The relative friction coefficient is then
calculated according to Equation 3.15. A detailed description of the prediction process of the
relative friction coefficient is shown in Figure 4.1.
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Figure 4.1: Flow chart for the relative friction coefficient prediction

4.2.2 Model validation

To validate the model described in subsection 4.2.1, the relative friction coefficient evaluated
from a full numerical simulation is compared with that predicted by PSD under the same op-
erating conditions. The same calculation domain, mesh size and slide-to-roll ratio as in sub-
section 3.3.2 are used here. An artificial fractal rough surface is chosen to validate the model
mentioned in the previous subsection and the operating condition parameters are listed in Ta-
ble 4.1.

Table 4.1: Operating condition parameters.

Parameter Value Units
w 600 N
ur 0.84 m/s
Rx 0.018 m
E ′ 2.26×1011 Pa
α 2.2×10−8 Pa−1

η0 4×10−2 Pa · s
hc 0.233 µm
σ 5×10−8 m
Lx = Ly 8.29×10−4 m
qr 0 m−1

Hurst exponent 0.8
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Table 4.2 presents the friction ratio as a function of the number of mesh points for the two
methods. The results predicted by the two schemes are basically identical. The ratio of the
friction coefficients predicted by the PSD method changes slightly (< 0.08%) with decreasing
mesh size. However, in the full numerical simulation, a large mesh size leads to a relative large
error. This is because some high frequency components of the rough surface can not be cor-
rectly represented on such a large mesh size. In this chapter, the precision of the numerical
results simulated by a 513×513 points is considered acceptable.

Table 4.2: Relative friction coefficients as a function of the mesh points for two prediction
schemes.

Mesh points Nx ×Ny hx = hy µr /µs(PSD) µr /µs(EHL)
257×257 1/64 1.534 1.487
513×513 1/128 1.534 1.518
1025×1025 1/256 1.534 1.510

4.3 The artificial surface roughness

In this section, an artificial fractal surface roughness is selected to test the rapid friction predic-
tion method.

4.3.1 Surface roughness power spectrum

Many parameters like the root-mean square (Rq ), standard deviation (σ), skewness (Sk), kurto-
sis (K ) et al. are employed to describe a measured surface roughness [142]. The power spectral
density (PSD) is perhaps the most used method for the surface description. Reference [143]
gives the calculation of the PSD for a surface roughness:

C 2D
qx ,qy

= (Lx Ly )−1|r rqx ,qy |2 (4.8)

where Lx and Ly are the length of the measured surface roughness profiles in the x and y di-
rections. A 2D surface roughness is shown in Figure 4.2 (a) and it can be represented as a 2D
PSD C 2D in frequency space. When the surface is isotropic, its power spectral density is radially
symmetric (reported in Figure 4.2 (b)).

Figure 4.2: Surface roughness (a) and its 2D power spectral density (b)
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Many real rough surfaces show self-affine characteristic. A surface is self-similar when it
has the same statistical properties as a magnified version of itself [144].The power spectral den-
sity of a self-affine surface often follows the following equation [109, 145] and shown in Figure
4.3:

C i so(q) =


C0, if qL ≤ q < qr

C0q−2−2H , if qr ≤ q < qs

0, otherwise

(4.9)

in which q =
√

q2
x +q2

y , qL is the long-wavelength cut-off wave vector, qr is the long-wavelength
roll-off wave vector and qs is the short-wavelength cut-off wave vector. H is the Hurst exponent,
which is related to the fractal dimension D f of the surface [144] : H = 3−D f .

Once the power spectral density of a rough surface is obtained, other parameters like the
RMS roughness hrms, RMS slope h′

rms and RMS curvature h
′′
rms can be derived [146].

Figure 4.3: Power spectral density C i so of the self-affine surface(Figure 4.2(a)) with H = 0.8.

4.3.2 Friction increase prediction of a rough surface

The friction increase is determined by the non-linear viscosity variations from pressure vari-
ations caused by roughness deformation. In this subsection, these variables are plotted by
employing the artificial surface roughness with qr = 50000 m−1 shown in Figure 4.4.

Figure 4.4: The selected artificial surface roughness (a), amplitude distribution of this surface
roughness (b) and its power spectral density (c).
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The first step is to compute the deformed surface roughness based on the Amplitude Re-
duction Theory [53] with the operating condition in Table 4.1. Figure 4.5 (a) shows the ratio
of the deformed amplitude and the initial amplitude described by Equation 3.17. Combining
the initial amplitude distribution in Figure 4.4, the deformed surface roughness distribution is
depicted in Figure 4.5 (b).

Figure 4.5: The ratio of the deformed amplitude and the initial amplitude fitted as Equation
(3.17) (a) and the deformed surface roughness in frequency domain (b).

Figure 4.6 compares the initial surface roughness with the deformed surface roughness. It
can be observed that the initial surface roughness is deformed.

Figure 4.6: Comparison between the initial surface roughness (a) and the deformed surface
roughness (b).

Subsequently, the pressure increase can be computed by Equation 4.3 and Equation 4.4.
Figure 4.7 gives the pressure increase distribution in frequency and space domains, respec-
tively. Then the pressure distribution as well as film thickness distribution for the rough case
can be obtained as ps +δp and hs − r r d respectively. Shear stress for both cases are predicted
by η(u2 −u1)/h, which are shown in Figure 4.8. Those values are unrealistically high, and more
complex rheological models are required for an absolute shear stress prediction, but here we
are only interested in the relative shear. The shear stress for rough case is higher than that of
smooth case, this is because pressure variations caused by roughness deformations make a big
contribution to the viscosity. Finally, the friction force is calculated by Equation 3.14 and the
relative friction coefficient is given by Equation 3.15. For this rough surface, friction forces for

49



CHAPTER 4. FRICTION OF COMPLEX ROUGH SURFACES

the smooth case and the rough case are Fs = 1.0606×106 N and Fr = 1.3624×106 N, respectively.
The relative friction coefficient is µr /µs = 1.2846.

Figure 4.7: Pressure increase distribution in frequency (a) and space (b) domains, respectively.

Figure 4.8: Shear stress distributions for the smooth case (a) and for the rough case (b).

4.3.3 Comparison between the EHL simulation and the PSD prediction

The chosen artificial surface topography is generated by means of fractals without a roll-off
region. The friction prediction only occurs in the high pressure zone (X 2 +Y 2 ≤ 1.0), hence
in the full numerical EHL simulation this generated surface roughness is located in the high
pressure zone (shown in Figure 4.9 (b)). In order to make results keep periodical, the "patch"
also needs to be periodical shown in Figure 4.9 (c).

Figure 4.9: The generated surface roughness patch (a), the roughness patch in the high pressure
zone (b) and the periodical roughness pattern for full the numerical simulation (c).

50



CHAPTER 4. FRICTION OF COMPLEX ROUGH SURFACES

Figure 4.10: Top view of the deformed surface roughness for a specific time step for a full nu-
merical simulation (a) and for a PSD prediction (b). Central line r r d (x,0) of the deformed sur-
face roughness for the full numerical simulation (c) and for the PSD prediction (d). Central
line p(x,0) of the pressure distribution for the full numerical simulation (e) and for the PSD
prediction (f).

As shown in the previous subsection, one can find that the deformed amplitude is a fun-
damental intermediate variable. It is necessary to compare this parameter in the first place.
The resulting deformed micro-geometry, of which the original surface topography is shown in
Figure 4.9 (a) for a full numerical EHL simulation and a PSD prediction, are presented in Figure
4.10. In terms of numerical simulation results, the deformed micro-geometry r r d is obtained
by hs −hr and removing data outside the high-pressure zone (X 2+Y 2 ≤ 1). Once again, for this
specific surface, the operating conditions are the ones given in Table 4.1 where M = 1000 and
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L = 10. Both the deformed surface topographies r r d are shown in the same high pressure re-
gion. The maximum Hertzian pressure reaches 1.66 GPa and the maximum surface roughness
height deformed significantly from 1×10−7 m to 3.5×10−8 m. In addition, it is shown that the
height distribution of the deformed surface roughness from the EHL simulation and the PSD
prediction are very similar. Magnitudes of the central line r r d (x,0) and p(x,0) for both meth-
ods are also similar. However, the full numerical simulation shows a more "smooth" results in
terms of the deformed surface roughness, this is because small wavelength components can
not be represented correctly in full numerical simualtion. On the other hand, the Amplitude
Reduction Theory is valid for small roughness amplitude values, this is the reason for some
components shown in subfigure(d) whose maginitude is a little higher. In addition, the pres-
sure distribution predicted by the PSD method is the combination of a semi-elliptical pressure
distribution and the pressure deflection i.e. ps +δpx,y .

Figure 4.11: The relative friction as a function of dimensionless time employing the surface
roughness pattern in Figure 4.9 (c) for the full numerical simulation method.

Figure 4.11 shows the periodical relative friction coefficient variation when the surface rough-
ness pattern in Figure 4.9 (c) is used. As mentioned before, the relative friction coefficient value
should be the averaged value of the relative friction coefficient in one time period. The PSD
method only gives the value of the relative friction coefficient for one time step, hence one
should predict this value for each time step within one time period.

Twenty artificial random rough surfaces are generated (shown in Figure 4.12) with the same
input parameters i.e. the standard deviation σ = 5×10−8 m, lengths of final topography Lx =
Ly = 8.29×10−4 m, roll–off wave number qr = 0 m−1 and Hurst exponent=0.8. These generated
roughness are used to compare results from the full numerical simulation as well as the PSD
prediction.

The averaged relative friction coefficients for these artificial random rough surfaces are
given in Table 4.3, showing that the two different prediction methods give close results. The
average deviation is around 8%. It seems that the averaged relative friction values simulated
by the full numerical simulation are higher than those predicted by PSD. This is beacuse in
PSD prediction pressure spike effects are not taken into consideration. Here we need to notice
that when the number of mesh points is selected as 513×513, the calculation time of the full
numerical simulation is almost 3 days, this is because more than 2000 time steps are needed.
Meanwhile the calculation time of the PSD prediction is only 15 minutes.
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Figure 4.12: Top view of the twenty generated artificial random rough surfaces from N◦1 to
N◦20 with a same standard divation value σ = 0.05µm and a same set of operating conditions
listed in Table 4.1.

Table 4.3: The relative friction coefficient obtained by EHL simulation and PSD prediction for
20 artificial random rough isotropic surfaces.

Surface number µr /µs(EHL) µr /µs(PSD) Deviation(%)
1 1.40 1.30 7
2 1.45 1.36 6
3 1.12 0.96 14
4 1.15 1.03 11
5 1.42 1.34 6
6 1.23 1.11 9
7 1.37 1.29 6
8 1.14 1.00 11

(to be continue)
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Surface number µr /µs(EHL) µr /µs(PSD) Deviation(%)
9 1.19 1.07 10
10 1.37 1.29 6
11 1.21 1.09 9
12 1.42 1.37 4
13 1.34 1.36 1
14 1.42 1.36 4
15 1.29 1.17 9
16 1.09 0.93 15
17 1.34 1.24 7
18 1.25 1.12 10
19 1.29 1.19 8
20 1.33 1.22 8

4.4 Measured surface roughness

The surface roughness used in this section is the surface roughness measured from discs em-
ployed in friction experiments in Reference [140].

4.4.1 Friction prediction under a specific operating condition

In this subsection, the measured surface roughness dART is collected within an area of 1 cm2

and having a sampling interval of hx = hy = 3.653 µm [140]. This surface roughness is mea-
sured from a finished disc made of AISI 52100 steel with a 60 mm diameter and an 8 mm
thickness. The surface roughness is then corrected by removing large scales (through a high
pass-filtering operation), this corrected surface roughness and the original measured surface
roughness are shown in Figure 4.13. The root-mean-square of this surface roughness is Rq =
0.038µm.

Since the area of high pressure happens in an area of Hertz contact zone, small square win-
dows with the length of 2ah are used to extract effective prediction areas (shown in Figure 4.14).
For a measured surface roughness, more effective prediction areas are obtained.

Figure 4.13: Measured surface roughness dART: (a) corrected surface roughness and (b) raw
surface roughness.
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Figure 4.14: Effective prediction areas.

Table 4.4: Measured operating condition and lubricant parameters.

Parameter Value Units Parameter Value Units
w 10 N η0 0.7590 Pa · s
ur 0.29 m/s Tr oom 22 ◦C
Rx 9.525 mm SRR 25 %
E ′ 210 GPa ah 87.95 µm
α 2.0×10−8 Pa−1 ph 617.23 MPa

Figure 4.15: An extracted surface patch of dART: (a) surface roughness height of this surface
patch; (b) deformed surface patch; (c) pressure fluctuation of the surface patch.
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For each extracted sub-surface, the friction prediction process described in subsection 4.2.1
is applied to predict its relative friction coefficient under a specific operating condition. Mea-
sured operating conditions and lubricant parameters are listed in Table 4.4. Under this specific
operating condition, Moes parameters M = 9.09 and L = 16.23, Figure 4.15 shows a deformed
surface geometry and pressure increase distribution of a surface patch, meanwhile its relative
friction coefficient is 1.03.

Figure 4.16: Extracted 529 surface patch (left) and their relative friction coefficient values
(right).

Figure 4.16 shows the extracted 529 surface patches (left) and their values of the relative
friction coefficient (right). For this measured surface roughness dART under this specific op-
erating condition, the relative friction coefficient is defined as the averaged value of that of
sub-surfaces. From this figure, one can observe that all relative friction values are smaller than
2 except for a point whose value reaches 4, hence this high value point will be removed. Figure
4.17 shows the corrected relative friction coefficients. At this time, the mean relative friction
coefficient is 1.09 and the corresponding standard deviation is 0.071.

Figure 4.17: Corrected relative friction coefficient values for 528 surface patches (left) and its
histogram (right).

Figure 4.18 shows the mean relative friction coefficient as a function of total number of
extracted surface patches with operating condition in Table 4.4. It can be observed that the
variation of mean relative friction for different the number of surface patch are small. For the
sake of saving computation time, the number of surface patch for the rest study is selected as
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529.

Figure 4.18: Relative friction coefficient as a function of total number of surface patches under
the operating condition in Table 4.4.

4.4.2 Operating condition effects

The method to predict friction variations for measured rough surfaces has already described
in the previous subsection. In this subsection, effects of operating conditions on friction will
be investigated. Except for the rolling speed ur which is varying, the values of all the other
parameters are fixed as shown in Table 4.4. Equation C.1 shows that the pressure fluctuation
δp makes a significant contribution to the relative friction coefficient. Equation D.1 shows that
the amplitude deformation r r d of surface roughness is also an important variable. Therefore,
it is necessary to investigate δp and r r d . A surface patch shown extracted from the surface
roughness dART in figure 4.19 is extracted from the rough surface dART to study the variations
of δp and r r d when different operating conditions are employed (shown in table 4.5).

Table 4.5: Operating conditions of selected cases.

Cases ur (m/s) M L µr /µs

1 0.010 114.79 6.97 5.21
2 0.046 36.40 10.22 2.02
3 0.100 20.35 12.41 1.54
4 0.154 14.73 13.82 1.38
5 0.195 12.38 16.65 1.31

Figure 4.19: A extracted surface patch (left) and its average initial amplitude as a function as q .
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Figure 4.20: The deformed surface patch shown in Figure 4.19 (left) and its pressure variations
for case 1.

Figure 4.21: The deformed surface patch shown in Figure 4.19 (left) and its pressure variations
for case 2.

Figure 4.22: The deformed surface patch shown in Figure 4.19 (left) and its pressure variations
for case 3.

Figure 4.23: The deformed surface patch shown in Figure 4.19 (left) and its pressure variations
for case 4.
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Figure 4.24: The deformed surface patch shown in Figure 4.19 (left) and its pressure variations
for case 5.

Figures 4.20-4.24 show the deformed surface patches and their pressure variations as func-
tions of the wave vector q for all the operating conditions in table 4.5. The values at q = 0
in these figures are removed, because there are no deformations of sub-surfaces when q = 0.
According to observation, when the rolling speed ur increases, the value of the deformed sub-
surface increases while the value of the pressure increase decreases.

4.4.3 Friction curves for measured surface roughness

Friction variations for two measured surface roughness are plotted in this subsection. For the
roughness dART (shown in Figure 4.13), the variations of the Moes load parameter M and ma-
terial parameter L using geometry and lubricant parameter in Table 4.4 are shown in Figure
4.25.

Figure 4.25: Moes parameters M and L as a function of ur for the roughness dART.

Figure 4.26 shows variations of the relative friction coefficient employing the operating con-
ditions shown in Figure 4.25. It can be observed from this figure that as rolling speed ur in-
creases, the relative friction coefficient decreases. This decrease trend can also be found in
Reference [140] Figure 6.1 (b). According to Hamrock-Dowson central film thickness equa-
tion [120], hc is a function of rolling speed ur , hence Figure 4.26 can be re-plotted as a function
of the "Λ ratio" (shown in Figure 4.27).

59



CHAPTER 4. FRICTION OF COMPLEX ROUGH SURFACES

Figure 4.26: The relative friction coefficient as a function of ur for the roughness dART.

Figure 4.27: The relative friction coefficient as a function of "Λ ratio" for the roughness dART.

Figure 4.28: Surface roughness dARTEb (left) and the top view of this roughness (right).
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Another surface roughness dARTEb (shown in Figure 4.28) is collected from a finished and
roughening steel disc, with its root-mean-square Rq = 0.132µm. The size of this disc is the same
as the one for surface roughness dART.

Figure 4.29: Moes parameters M and L as a function of the rolling speed for the surface rough-
ness dARTEb.

Figure 4.30: The relative friction coefficient as a function of ur for the surface roughness dAR-
TEb.

For the surface roughness dARTEb, operating conditions can be seen in Figure 4.29. And
friction variation curves for this roughness is shown in Figure 4.30 and Figure 4.31. The classical
Stribeck curve has a minimum friction point, which is often regarded as the transition point
from the mixed lubrication to hydrodynamic lubrication regime. However, for friction curves
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shown in these two figures, minimum friction points do not occur. Reference [147] defined the
transition position as the intersection between two tangent lines to the friction curve (shown
as blue crosses in Figure 4.27 and 4.31). For conformal contact, the transition from the mixed
lubrication to full-film lubrication regime occurs around Λ = 3.0. For non-conformal contact
cases considered in this subsection, the onset of the "mixed regime" at hc/Rq varying from 4 to
5. At the same time, two different surface roughness show different friction behaviour(shown
in Figure 4.32).

Figure 4.31: The relative friction coefficient as a function of the "Λ ratio" for the surface rough-
ness dARTEb.

Figure 4.32: The relative friction coefficient as a function of the rolling speed ur for the surface
roughness dART and dARTEb, respectively.
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4.5 Conclusion

This chapter proposes a rapid analytical method using the power spectral density to predict
friction increase which is due to non-linear viscosity variations from pressure variations caused
by surface roughness deformation. This method is validated for an artificial surface rough-
ness by comparing the results with those of a full numerical simulation. A good agreement is
found between the full numerical simulation and the PSD prediction. Then the PSD predic-
tion method is also employed to analyse friction variations for a measured surface roughness.
Prediction results show that as the "Λ ratio" increases, the friction decreases. The minimum
friction point describing the transition from the mixed lubrication to the full-film lubrication
regime does not occur for high pressure cases. The same result has also been found in experi-
mental work [140, 147].
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Conclusion and perspectives
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5.1 Conclusion

Proper lubrication and low friction play essential roles in energy conservation. The Stribeck
curve is a good tool to describe the friction variation throughout the entire lubrication regime.
However, most of the work to obtain this friction curve was related to low pressure condition
(conformal contact), and the work was mainly experimental. The motivation for conduct-
ing this work is to determine the frictional behaviour under high pressure conditions (non-
conformal contact) when the surface roughness is taken into consideration. The main conclu-
sions are listed below:

(i) Current MultiGrid codes show good efficiency to solve lubricated contact problems, but
are not sufficiently robust to treat the rough surface problem in a general way. This is be-
cause for very rough surfaces, large variations of the coefficient ρh3/η in Reynolds equa-
tion occur on a small scale. Alcouffe et al [66] proposed an efficient way to restore the
performance by constructing the coarse grid operator and the intergrid transfers. An new
transient EHL code is modified by implementing the coarse grid construction method
into the existing EHL MultiGrid code. The new code shows better performance in solving
the rough contact problem.

(ii) The Stribeck curve shows that the "Λ ratio" is a suitable parameter to plot friction vari-
ation. According to the Amplitude Reduction Theory [53, 58], under very high pressure,
the surface roughness will deform and this deformation depends on the operating con-
ditions as well as on the surface roughness parameters. This means that the old "Λ ratio"
is not a proper parameter. In this work, using harmonic surface waviness, an elaborate
scaling parameter θ2ff(r ) including the old "Λ ratio", operating conditions and surface
anisotropy parameters is found. Using this new parameters, all simulation results can be
unified into a single curve and a curve-fitting equation is obtained.

(iii) A rapid analytical prediction method using the power spectral density is proposed in this
work to predict friction increase for a complex surface roughness. This friction increase is
due to non-linear viscosity variations from pressure variations caused by surface rough-
ness deformation. This method is validated by the comparison between predictions and
full numerical simulations when an artificial surface roughness is employed. Then this
rapid prediction method is applied to analyse measured surface roughness.
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5.2 Perspectives

The work carried out in this thesis offers a useful tool to detect friction variations under high
pressure conditions. However, what we presented in this work is related to Newtonian lubri-
cant, sufficient lubrication and isothermal model. Future work can be suggested as follows:

• In current work, a small slide-to-roll ratio is used to predict friction force and a unique
curve is obtained. Larger slide-to-roll ratios should be applied and the theory should be
extended.

• The EHL model used in this work is isothermal and Newtonian. Thermal effects and
non-Newtonian lubricant can be considered in future study.

• The work studied in this thesis is numerical, more relevant experiments should be con-
ducted to give comparable results.
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Appendix A

Construction of the coarse grid operator

The coarse grid operator is:
LH = J H

h Lh I h
H (A.1)

In order to get the coarse grid operator, orthogonal basis vectors are needed. The first step is to
compute I h

H 〈eH
iC , jC ,k〉:

I h
H 〈eH

iC , jC ,k〉 =C h
i F, j F,k eh

i F, j F,k +NW h
i F, j F,k eh

i F−1, j F+1,k +SW h
i F, j F,k eh

i F−1, j F−1,k

+SE h
i F, j F,k eh

i F+1, j F−1,k +N E h
i F, j F,k eh

i F+1, j F+1,k

+N h
i F, j F,k eh

i F, j F+1,k +Sh
i F, j F,k eh

i F, j F−1,k

+W h
i F, j F,k eh

i F−1, j F,k +E h
i F, j F,k eh

i F+1, j F,k

(A.2)

Then, substituting Equation A.2 in Lh〈I h
H eH

iC , jC ,k〉 reads:

Lh〈I h
H eH

iC , jC ,k〉 = Lh[C h
i F, j F,k eh

i F, j F,k +NW h
i F, j F,k eh

i F−1, j F+1,k +SW h
i F, j F,k eh

i F−1, j F−1,k

+SE h
i F, j F,k eh

i F+1, j F−1,k +N E h
i F, j F,k eh

i F+1, j F+1,k

+N h
i F, j F,k eh

i F, j F+1,k +Sh
i F, j F,k eh

i F, j F−1,k

+W h
i F, j F,k eh

i F−1, j F,k +E h
i F, j F,k eh

i F+1, j F,k ]

(A.3)

in which the influence of Lh need to act on every term, as illustrated in Figure A.1 for 3 terms:

• The influence of Lh on the central point (i , j ) (shown as Figure A.1 (a)):

Lh〈C h
i F, j F,k eh

i F, j F,k〉 =C h
i F, j F,k Lh〈eh

i F, j F,k〉
=C h

i F, j F,k [Lh
c (i F, j F,k)eh

i F, j F,k

+Lh
nw (i F, j F,k)eh
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sw (i F, j F,k)eh
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ne (i F, j F,k)eh
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+Lh
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+Lh
s (i F, j F,k)eh

i F, j F−1,k +Lh
e (i F, j F,k)eh

i F+1, j F,k ]

• The influence of Lh on the east point (i +1, j ) (shown as Figure A.1 (b)):

Lh〈E h
i F, j F,k eh

i F+1, j F,k〉 = E h
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i F, j F+1,k +Lh
sw (i F +1, j F,k)eh
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i F+2, j F,k ]
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• The influence of Lh on the north-east point (i +1, j +1) (shown as Figure A.1 (c)):
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i F, j F+2,k

+Lh
sw (i F +1, j F +1,k)eh

i F, j F,k

+Lh
se (i F +1, j F +1,k)eh

i F+2, j F,k

+Lh
ne (i F +1, j F +1,k)eh

i F+2, j F+2,k

+Lh
n(i F +1, j F +1,k)eh

i F+1, j F+2,k

+Lh
w (i F +1, j F +1,k)eh

i F, j F+1,k

+Lh
s (i F +1, j F +1,k)eh

i F+1, j F,k

+Lh
e (i F +1, j F +1,k)eh

i F+2, j F+1,k ]

Figure A.1: Influences of the coarse grid operator Lh on central point, east point and north-east
point.

From the three equations above one observes that the operator Lh influences fifteen points
around point (i , j ) in total. By that analogy, with respect to nine terms in Equation A.3 twenty
five points around point (i , j ) are affected by the operator Lh . Coefficients of 25 points around
(i , j ) is denoted as:

IC (i F −2, j F +2,k) IC (i F −1, j F +2,k) IC (i F, j F +2,k) IC (i F +1, j F +2,k) IC (i F +2, j F +2,k)

IC (i F −2, j F +1,k) IC (i F −1, j F +1,k) IC (i F, j F +1,k) IC (i F +1, j F +1,k) IC (i F +2, j F +1,k)

IC (i F −2, j F,k) IC (i F −1, j F,k) IC (i F, j F,k) IC (i F +1, j F,k) IC (i F +2, j F,k)

IC (i F −2, j F −1,k) IC (i F −1, j F −1,k) IC (i F, j F −1,k) IC (i F +1, j F −1,k) IC (i F +2, j F −1,k)

IC (i F −2, j F −2,k) IC (i F −1, j F −2,k) IC (i F, j F −2,k) IC (i F +1, j F −2,k) IC (i F +2, j F −2,k)


(A.4)

where:

IC (i F −2, j F +2,k) = NW h
i F, j F,k Lh

nw (i F −1, j F +1,k)
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IC (i F −2, j F +1,k) = NW h
i F, j F,k Lh

w (i F −1, j F +1,k)

IC (i F −2, j F,k) = NW h
i F, j F,k Lh

sw (i F −1, j F +1,k)

+SW h
i F, j F,k Lh

nw (i F −1, j F −1,k)+W h
i F, j F,k Lh

sw (i F −1, j F,k)

IC (i F −2, j F −1,k) = SW h
i F, j F,k Lh

w (i F −1, j F −1,k)+W h
i F, j F,k Lh

sw (i F −1, j F,k)

IC (i F −2, j F −2,k) = SW h
i F, j F,k Lh

sw (i F −1, j F −1,k)

IC (i F −1, j F +2,k) = NW h
i F, j F,k Lh

n(i F −1, j F +1,k)+N h
i F, j F,k Lh

nw (i F, j F +1,k)

IC (i F −1, j F +1,k) =C h
i F, j F,k Lh

nw (i F, j F,k)+NW h
i F, j F,k Lh

c (i F −1, j F +1,k)

+N h
i F, j F,k Lh

w (i F, j F +1,k)+W h
i F, j F,k Lh

n(i F −1, j F,k)

IC (i F −1, j F,k) =C h
i F, j F,k Lh

w (i F, j F,k)+NW h
i F, j F,k Lh

s (i F −1, j F +1,k)

+SW h
i F, j F,k Lh

n(i F −1, j F −1,k)+N h
i F, j F,k Lh

sw (i F, j F +1,k)

+Sh
i F, j F,k Lh

nw (i F, j F −1,k)+W h
i F, j F,k Lh

c (i F −1, j F,k)

IC (i F −1, j F −1,k) =C h
i F, j F,k Lh

sw (i F, j F,k)+SW h
i F, j F,k Lh

c (i F −1, j F −1,k)

+Sh
i F, j F,k Lh

w (i F, j F −1,k)+W h
i F, j F,k Lh

s (i F −1, j F,k)

IC (i F −1, j F −2,k) = SW h
i F, j F,k Lh

s (i F −1, j F −1,k)+Sh
i F, j F,k Lh

sw (i F, j F −1,k)

IC (i F, j F +2,k) = NW h
i F, j F,k Lh

ne (i F −1, j F +1,k)+N E h
i F, j F,k Lh

w (i F, j F −1,k)

+N h
i F, j F,k Lh

n(i F, j F +1,k)

IC (i F, j F +1,k) =C h
i F, j F,k Lh

n(i F, j F,k)+NW h
i F, j F,k Lh

e (i F −1, j F +1,k)

+N E h
i F, j F,k Lh

w (i F +1, j F +1,k)+N h
i F, j F,k Lh

c (i F, j F +1,k)

+W h
i F, j F,k Lh

ne (i F −1, j F,k)+E h
i F, j F,k Lh

nw (i F +1, j F,k)

IC (i F, j F,k) =C h
i F, j F,k Lh

c (i F, j F,k)+NW h
i F, j F,k Lh

se (i F −1, j F +1,k)

+SW h
i F, j F,k Lh

ne (i F −1, j F −1,k)

+SE h
i F, j F,k Lh

nw (i F +1, j F −1,k)+N E h
i F, j F,k Lh

sw (i F +1, j F +1,k)

+N h
i F, j F,k Lh

s (i F, j F +1,k)+Sh
i F, j F,k Lh

n(i F, j F −1,k)

+W h
i F, j F,k Lh

e (i F −1, j F,k)+E h
i F, j F,k Lh

w (i F +1, j F,k)
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The last step is to compute J H
h 〈Lh I h

H eH
iC , jC ,k〉. The way to extend the restriction coefficients

on 25 points in Equation A.4 is the same as that of computing Lh〈I h
H eH

iC , jC ,k〉. There is no need
to do a restriction for 25 points. As was shown in Figure A.2, besides coincidental points (blue
points) themselves, 3 points contribute to each corner point (shown as Figure A.2 (a)), 5 points
influence each middle point (shown as Figure A.2 (b)) and 8 points impact on central point
(shown as Figure A.2 (c)).

Figure A.2: Influences of the injection operator J H
h on nine coincidental points (blue points).

Hence, the coarse grid operator whose stencil is:

LH =


LH

nw (iC , jC ,k) LH
n (iC , jC ,k) LH

ne (iC , jC ,k)

LH
w (iC , jC ,k) LH

c (iC , jC ,k) LH
e (iC , jC ,k)

LH
sw (iC , jC ,k) LH

s (iC , jC ,k) LH
se (i c, jC ,k)

 (A.5)

in which:

LH
nw (iC , jC ,k) = IC (i F −2, j F +2,k)ch

i F−2, j F+2,k + IC (i F −1, j F +2,k)wh
i F−1, j F+2,k

+ IC (i F −2, j F +1,k)nh
i F−2, j F+1,k + IC (i F −1, j F +1,k)nwh

i F−1, j F+1,k

LH
sw (iC , jC ,k) = IC (i F −2, j F −2,k)ch

i F−2, j F−2,k + IC (i F −2, j F −1,k)sh
i F−2, j F−1,k

+ IC (i F −1, j F −2,k)wh
i F−1, j F−2,k + IC (i F −1, j F −1,k)swh

i F−1, j F−1,k

LH
se (iC , jC ,k) = IC (i F +2, j F −2,k)ch

i F+2, j F−2,k + IC (i F +1, j F −2,k)eh
i F+1, j F−2,k

+ IC (i F +2, j F −1,k)sh
i F+2, j F−1,k + IC (i F +1, j F −1,k)seh

i F+1, j F−1,k

LH
ne (iC , jC ,k) = IC (i F +2, j F +2,k)ch

i F+2, j F+2,k + IC (i F +1, j F +2,k)eh
i F+1, j F+2,k

+ IC (i F +2, j F +1,k)nh
i F+2, j F+1,k + IC (i F +1, j F +1,k)neh

i F+1, j F+1,k
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LH
n (iC , jC ,k) = IC (i F, j F +2,k)ch

i F, j F+2,k + IC (i F −1, j F +2,k)eh
i F−1, j F+2,k

+ IC (i F +1, j F +2,k)wh
i F+1, j F+2,k + IC (i F, j F +1,k)nh

i F, j F+1,k

+ IC (i F −1, j F +1,k)neh
i F−1, j F+1,k + IC (i F +1, j F +1,k)nwh

i F+1, j F+1,k

LH
s (iC , jC ,k) = IC (i F, j F −2,k)ch

i F, j F−2,k + IC (i F −1, j F −2,k)eh
i F−1, j F−2,k

+ IC (i F +1, j F −2,k)wh
i F+1, j F−2,k + IC (i F, j F −1,k)sh

i F, j F−1,k

+ IC (i F −1, j F −1,k)seh
i F−1, j F−1,k + IC (i F +1, j F −1,k)swh

i F+1, j F−1,k

LH
w (iC , jC ,k) = IC (i F −2, j F,k)ch

i F−2, j F,k + IC (i F −2, j F +1,k)sh
i F−2, j F+1,k

+ IC (i F −2, j F −1,k)nh
i F−2, j F−1,k + IC (i F −1, j F,k)wh

i F−1, j F,k

+ IC (i F −1, j F +1,k)swh
i F−1, j F+1,k + IC (i F −1, j F −1,k)nwh

i F−1, j F−1,k

LH
e (iC , jC ,k) = IC (i F +2, j F,k)ch

i F+2, j F,k + IC (i F +2, j F +1,k)sh
i F+2, j F+1,k

+ IC (i F +2, j F −1,k)nh
i F+2, j F−1,k + IC (i F +1, j F,k)eh

i F+1, j F,k

+ IC (i F +1, j F +1,k)seh
i F+1, j F+1,k + IC (i F +1, j F −1,k)neh

i F+1, j F−1,k

LH
c (iC , jC ,k) = IC (i F, j F,k)ch

i F, j F,k + IC (i F, j F +1,k)sh
i F, j F+1,k + IC (i F, j F −1,k)nh

i F, j F−1,k

+ IC (i F −1, j F,k)eh
i F−1, j F,k + IC (i F +1, j F,k)wh

i F+1, j F,k

+ IC (i F −1, j F +1,k)seh
i F−1, j F+1,k + IC (i F −1, j F −1,k)neh

i F−1, j F−1,k

+ IC (i F +1, j F −1,k)nwh
i F+1, j F−1,k + IC (i F +1, j F +1,k)swh

i F+1, j F+1,k
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Appendix B

Derivation of matrix A j for line relaxation

According to the discrete Reynolds equation in Chapter 2, the dynamic residual r l
i , j ,k is

defined as:

r l
i , j ,k = p f l

i , j ,k−(Ll
c P l

i , j ,k +Ll
nP l

i , j+1,k +Ll
w P l

i−1, j ,k +Ll
sP l

i , j−1,k +Ll
e P l

i+1, j ,k

+Ll
nw P l

i−1, j+1,k +Ll
sw P l

i−1, j−1,k +Ll
se P l

i+1, j−1,k +Ll
ne P l

i+1, j+1,k )

+hl (1.5ρ̄l
i , j ,k H l

i , j ,k −2.0ρ̄l
i−1, j ,k H l

i−1, j ,k +0.5ρ̄l
i−2, j ,k H l

i−2, j ,k )

+ (hl )2

ht
(1.5ρ̄i , j ,k Hi , j ,k )

(B.1)

and the left hand side equation is:

Ll
i , j ,k〈P l 〉 =(Ll

c P l
i , j ,k +Ll

nP l
i , j+1,k +Ll

w P l
i−1, j ,k +Ll

sP l
i , j−1,k +Ll

e P l
i+1, j ,k

+Ll
nw P l

i−1, j+1,k +Ll
sw P l

i−1, j−1,k +Ll
se P l

i+1, j−1,k +Ll
ne P l

i+1, j+1,k )

−hl (1.5ρ̄l
i , j ,k H l

i , j ,k −2.0ρ̄l
i−1, j ,k H l

i−1, j ,k +0.5ρ̄l
i−2, j ,k H l

i−2, j ,k )

− (hl )2

ht
(1.5ρ̄i , j ,k Hi , j ,k ).

(B.2)

Reference [10] recommend that the switch parameter ξl
limit = 0.3 is a good choice to have an

efficient smooth performance.

B.0.1 Gauss-Seidel line relaxation

When the local coefficient ξl satisfies the below condition, the Gauss-Seidel line relaxation is
applied.

ξl
i±1/2, j ,k

(hl )2
> ξl

limit and
ξl

i , j±1/2,k

(hl )2
> ξl

limit. (B.3)

Then the matrix A j
i ,m is given by:

A j
i ,m = (

∂Ll
i , j ,k〈P l 〉
∂P l

m, j ,k

)
P h=P̃

h (B.4)

for 0 < m < nx and 0 < i < nx .

The matrix A j
i ,m have different expressions for different conditions:

• if |i −m| > 1:

A j
i ,m =−hl (1.5ρ̄l

i , j ,k K l l
|i−m|,0 −2.0ρ̄l

i−1, j ,k K l l
|i−m−1|,0 +0.5ρ̄l

i−2, j ,k K l l
|i−m−2|,0)

− (hl )2

ht
(1.5ρ̄i , j ,k K l l

|i−m|,0)
(B.5)

• if i = m:

A j
i ,i = Ll

c −hl (1.5ρ̄l
i , j ,k K l l

0,0 −2.0ρ̄l
i−1, j ,k K l l

1,0 +0.5ρ̄l
i−2, j ,k K l l

2,0)

− (hl )2

ht
(1.5ρ̄i , j ,k K l l

0,0)
(B.6)
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• if i > 1:

A j
i ,i−1 = Ll

w −hl (1.5ρ̄l
i , j ,k K l l

1,0 −2.0ρ̄l
i−1, j ,k K l l

0,0 +0.5ρ̄l
i−2, j ,k K l l

1,0)

− (hl )2

ht
(1.5ρ̄i , j ,k K l l

1,0)
(B.7)

• if i < nx −1:

A j
i ,i+1 = Ll

e −hl (1.5ρ̄l
i , j ,k K l l

1,0 −2.0ρ̄l
i−1, j ,k K l l

2,0 +0.5ρ̄l
i−2, j ,k K l l

3,0)

− (hl )2

ht
(1.5ρ̄i , j ,k K l l

1,0).
(B.8)

B.0.2 Jacobi distributive line relaxation

When the local coefficient ξl can not satisfy the condition Equation B.3, the Jacobi distributive
line relaxation is used.

Subsequently, the matrix A j
i ,m is:

A j
i ,m = [

∂Ll
i , j ,k〈P l 〉
∂P l

m, j ,k

− 1

4
(
∂Ll

i , j ,k〈P l 〉
∂P l

m+1, j ,k

+
∂Ll

i , j ,k〈P l 〉
∂P l

m−1, j ,k

+
∂Ll

i , j ,k〈P l 〉
∂P l

m, j+1,k

+
∂Ll

i , j ,k〈P l 〉
∂P l

m, j−1,k

)]
P h=P̃

h (B.9)

for 0 < m < nx and 0 < i < nx . For convenience, introducing a parameter ∆Km, j to simply the

expression of A j
i ,m :

∆K l l
m,n = K l l

m,n − 1

4
(K l l

m−1,n +K l l
m+1,n +K l l

m,n+1 +K l l
m,n−1). (B.10)

For different i values, the matrix of A j
i ,m are represented as:

• for |i −m| > 2:

A j
i ,m =−hl (1.5ρ̄l

i , j ,k∆K l l
|i−m|,0 −2.0ρ̄l

i−1, j ,k∆K l l
|i−m−1|,0 +0.5ρ̄l

i−2, j ,k∆K l l
|i−m−2|,0)

− (hl )2

ht
(1.5ρ̄i , j ,k∆K l l

|i−m|,0)
(B.11)

• for i = m:

A j
i ,i = Ll

c −
1

4
(Ll

e +Ll
w +Ll

n +Ll
s)

−hl (1.5ρ̄l
i , j ,k∆K l l

0,0 −2.0ρ̄l
i−1, j ,k∆K l l

1,0 +0.5ρ̄l
i−2, j ,k∆K l l

2,0)

− (hl )2

ht
(1.5ρ̄i , j ,k∆K l l

0,0)

(B.12)

• for i > 2:

A j
i ,i−2 =−1

4
Ll

w −hl (1.5ρ̄l
i , j ,k∆K l l

2,0 −2.0ρ̄l
i−1, j ,k∆K l l

1,0 +0.5ρ̄l
i−2, j ,k∆K l l

0,0)

− (hl )2

ht
(1.5ρ̄i , j ,k∆K l l

2,0)

(B.13)

• for i > 1:

A j
i ,i−1 = Ll

w − 1

4
(Ll

c +Ll
n w +Ll

s w)

−hl (1.5ρ̄l
i , j ,k∆K l l

1,0 −2.0ρ̄l
i−1, j ,k∆K l l

0,0 +0.5ρ̄l
i−2, j ,k∆K l l

1,0)

− (hl )2

ht
(1.5ρ̄i , j ,k∆K l l

1,0)

(B.14)
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• for i < nx −1:

A j
i ,i+1 = Ll

e −
1

4
(Ll

c +Ll
ne +Ll

se)

−hl (1.5ρ̄l
i , j ,k∆K l l

1,0 −2.0ρ̄l
i−1, j ,k∆K l l

2,0 +0.5ρ̄l
i−2, j ,k∆K l l

3,0)

− (hl )2

ht
(1.5ρ̄i , j ,k∆K l l

1,0)

(B.15)

• for i < nx −2:

A j
i ,i+2 =−1

4
Ll

e −hl (1.5ρ̄l
i , j ,k∆K l l

2,0 −2.0ρ̄l
i−1, j ,k∆K l l

3,0 +0.5ρ̄l
i−2, j ,k∆K l l

4,0)

− (hl )2

ht
(1.5ρ̄i , j ,k∆K l l

2,0).

(B.16)
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Appendix C

Derivation of the scaling parameter θ2

According to the Barus [115] viscosity-pressure equation, the shear stress ratio can be ap-
proximated as:

τr

τs
≈ eᾱ·∆P = 1+ ᾱ ·∆P + (ᾱ ·∆P )2

2!
+ (ᾱ ·∆P )3

3!
+ (ᾱ ·∆P )4

4!
+ ... (C.1)

where the pressure increase ∆P is the following function of the deformation [117], i.e.:

∆P = π2 Ai

2λ/ah
(1− Ad

Ai
).

Using a first order approximation of the dimensionless pressure increase ∆P , ᾱ ·∆P reduces to:

ᾱ ·∆P ≈ ᾱ
π2 Ai

2λ/ah
≈ [

L

π
(

3M

2
)1/3]

π2Hc

2λ/ah
(

Hc

Ai
)−1 (C.2)

where ᾱ is expressed as ᾱ= (L/π)(3M/2)1/3. Defining H D
c the dimensionless film thickness film

thickness value using the well-known Hamrock-Dowson Equation [120], H D
c = 1.69G0.53U 0.67W −0.067

2 (1−
0.61exp(−0.73k)) with k = 1.03 for circle contact (i.e. H D

c = 1.2L0.53U 0.49M−0.067). Now the di-
mensionless central film thickness Hc can be rewritten as:

Hc = R2
x

a2
h

·H D
c (C.3)

in which R2
x /a2

h is expressed as R2
x /a2

h = (3/2)−2/3M−2/3U−1/2. Substituting Equation C.3 into
Equation C.2 gives:

ᾱ ·∆P ≈ 1.6467[L−1.03M−0.4(λ/ah)1(Hc/Ai )]−1. (C.4)

Applying a second order approximation of ∆P , ᾱ∆P yields:

ᾱ ·∆P ≈ π2 Ai

2λ/ah
(1− Ad

Ai
) ≈ 0.24[L−1.03M−0.1(λ/ah)0(Hc/Ai )]−1 (C.5)

where Ad/Ai ≈ 1−0.15∇2 ≈ 1−0.15(λ/ah)(M/L)0.5.

Observing Equation C.4 and Equation C.5, the exponent for the parameter M , L and λ/ah

are summarized in Table C.1. Hence the expression of the θ2 parameter using M 0.33, L−1.1 and
(λ/ah)0.67 obtained by curve-fitting, has coefficients that fall in the range outlined above.

Table C.1: Range of the exponent for each parameter.

Parameter Range

M −0.10 ∼ 0.40

L −1.03 ∼−1.53

λ/ah 0 ∼ 1

Hc/Ai 1
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Appendix D

The relation between the elastic deformation and corre-
sponding pressure for 2D wavy surfaces

Reference [117] gives the relation between the elastic deformation and pressure for 1D wavy
surfaces is:

δp = πE ′∆
λ

(D.1)

and for 2D wavy surfaces, which consists of two separate components:

δp = πE ′∆x

λx
+ πE ′∆y

λy
. (D.2)

For the surface waviness expressed as Eq.3.1, there is no explicit equation to describe this rela-
tion. Hence, it is necessary to give such relation. Assuming a pressure distribution:

p(x, y) = Ap
i cos(

2πx

λx
)cos(

2πy

λy
) (D.3)

with x ∈ [−4,4] and y ∈ [−4,4]. Where Ap
i is the initial amplitude of the pressure distribution.

The equation to compute the corresponding elastic deformation is:

D(x, y) = 2

πE ′

Ï
p(x ′, y ′)√

(x −x ′)2 + (y − y ′)2
d x ′d y ′. (D.4)

Figure D.1: Pressure distribution and the corresponding elastic deformation.
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APPENDIX D. THE RELATION BETWEEN THE ELASTIC DEFORMATION AND
CORRESPONDING PRESSURE FOR 2D WAVY SURFACES

Figure D.1 shows that the elastic deformation due to the pressure shown as Figure D.1 (a)
has the same harmonic waviness. Thus the elastic deformation Equation D.4 can be re-written
as:

D(x, y) = AD
d cos(

2πx

λx
)cos(

2πy

λy
) (D.5)

in which AD
d is the amplitude of the elastic deformation.

Figure D.2: Amplitude of the elastic deformation AD
d as a function of initial pressure amplitude

Ap
i for the following cases: (a) isotropic, (b) purely transverse, (c) purely longitudinal.

Figure D.2 shows the relation between the amplitude of the elastic deformation AD
d and the

initial pressure amplitude Ap
i for three r values. From this figure, it is can be found that the

deformation amplitude AD
d is proportional to the initial pressure amplitude Ap

i :

AD
d πE ′ ∝ Ap

i . (D.6)

Figure D.3: Amplitude of the elastic deformation AD
d as a function of wavelength λ (λ =

min(λx ,λy )) for the following cases: (a) isotropic, (b) purely transverse, (c) purely longitudi-
nal.
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APPENDIX D. THE RELATION BETWEEN THE ELASTIC DEFORMATION AND
CORRESPONDING PRESSURE FOR 2D WAVY SURFACES

Figure D.3 shows the relation between the amplitude of the elastic deformation AD
d and

the wavelength λ for three r values. From this figure, it is can be found that the deformation
amplitude AD

d is proportional to the the wavelength λ:

AD
d πE ′ ∝λ. (D.7)

Figure D.4 shows the relation between the amplitude of the elastic deformation AD
d and the

anisotropy parameter r . From this figure, it is can be found that the deformation amplitude AD
d

is proportional to a curve-fitting function k(r ):

AD
d πE ′ ∝ k(r ) (D.8)

where

k(r ) =
{
−0.3r 1.7 +1.0, if 0 É r É 1

−0.3r−1.7 +1.0, r > 1
(D.9)

with r =λx /λy .

Figure D.4: Amplitude of the elastic deformation AD
d as a function of anisotropy parameter

r =λx /λy .

Combing Equation D.6, Equation D.7, Equation D.8 and Equation D.9, the relation between
the initial amplitude of pressure Ap

i and the corresponding elastic deformation AD
d is:

Ap
i = πE ′

2k(r )λ
AD

d (D.10)

with λ= min(λx ,λy ) and

k(r ) =
{
−0.3r 1.7 +1.0, if 0 É r É 1

−0.3r−1.7 +1.0, r > 1

where r =λx /λy .
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