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Résumé

Les vis à rouleaux convertissent la rotation en translation de manière très efficace et sont utilisées
dans des nombreuses industries. Mais même s’il présente beaucoup d’avantages, le mécanisme
reste complexe et relativement difficile à comprendre. Le principal but de cette thèse est de
quantifier la puissance dissipée par les vis à rouleaux standard et inversées, qui est un résultat
important pour toute étude liée à l’efficacité ou la distribution de température. De plus, il s’agit
d’un critère de conception dans le choix de paramètres optimaux pour une certaine application.

À cause des travaux peu nombreux en termes de recherche et des hypothèses restrictives
faites dans la littérature courante, ce mémoire commence avec une analyse géométrique de base
du mécanisme et envisage de généraliser les équations des surfaces filetées pour les différents
types de profils et conditions de jeu. La position des points de contact peut ensuite être déduite
avec un algorithme de type Newton-Raphson très rapide. Cette information est cruciale pour
toute étude ultérieure de force. Après, les équations classiques de Hertz sont adaptées à des
contacts peu conformes pour déterminer la forme, les dimensions et l’orientation des ellipses de
contact rouleau-vis et rouleau-douille. Il est prouvé que les directions principales de courbure
obtenues ici par géométrie différentielle sont différentes de celles supposées dans les précédents
travaux de recherche.

Ensuite, la cinématique du mécanisme est étudiée avec un modèle stationnaire, qui établit des
liens entre les mouvements uniformes de tous les composants et permet de calculer d’une manière
simplifiée le champ de vitesse de glissement en tout point de l’aire de contact. Le mouvement
local apparâıt comme une combinaison de spin et de glissement uniforme. Le modèle est calibré
sur un seul degré de liberté qui prend la forme d’un quotient de glissement, qui dépend de
conditions de lubrification et équations d’équilibre dynamique. Un banc expérimental est conçu
pour mesurer ce quotient et permettre donc la comparaison avec des valeurs numériques, ainsi
que les quelques modèles analytiques disponibles dans la littérature. Les résultats montrent
que les mesures sont très proches des conditions de fonctionnement idéales, ce qui fait que
les propriétés du lubrifiant et les coefficients de frottement deviennent les paramètres les plus
influents dans le peu de marge disponible pour l’amélioration cinématique.

Finalement, un modèle numérique en forces est développé et permet de calculer la puissance
dissipée pendant l’équilibre stationnaire. L’algorithme itératif détermine d’abord le quotient
de glissement atteint à l’équilibre et utilise ensuite le résultat pour déduire les autres variables
cinématiques et dynamiques liées au calcul. Une étude paramétrique est réalisée dans le but
d’identifier les facteurs importants pour l’efficacité et la puissance dissipée, ainsi que leur con-
tribution relative.

Mots-clés:
contact filet
quotient de glissement
couple de spin
puissance dissipée
vis à rouleaux
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Abstract

Roller screws are highly efficient rotation-translation converters used in a variety of industries.
Despite its numerous advantages, the mechanism remains complex and rather difficult to under-
stand. The main goal of this thesis is to quantify the amount of power dissipated by standard
and inverted roller screws, which is an important result for any study related to efficiency or
temperature distribution. Furthermore, it is used as a design criterion in choosing optimal
parameters for a given application.

Due to the limited amount of available research and the restrictive assumptions made in
current literature, this memoir starts with a basic geometric analysis of the mechanism and
attempts to generalize threaded surface equations for different types of profiles and backlash
conditions. The contact point locations can then be deduced using a very fast Newton-Raphson
algorithm. This information is crucial for any subsequent force analysis. Classic Hertzian
equations are then adapted to slightly conforming contacts in order to calculate the shape, size
and orientation of the roller-screw and roller-nut contact ellipses. It is shown that the principal
directions of curvature obtained here by differential geometry are different from the ones assumed
by previous research.

Next, the mechanism kinematics is investigated using a stationary model, which relates the
steady-state movement of all the different components and allows a simplified calculation of
the sliding velocity field at any point within the contact areas. The local motion proves to
be a combination of spin and uniform sliding. The model is set to have only one degree of
freedom in the form of a slip ratio, which depends on lubrication conditions and force balance
equations. An experimental setup is designed to measure this ratio and thus allow comparison
to numerical values, as well as the few analytical models available in the literature. Results
show that measurements are very close to ideal operating conditions, which makes lubricant
properties and friction coefficients the most influential parameters in the little room available
for kinematic improvement.

Finally, a numerical force model is developed, which calculates the power dissipated during
the steady-state regime. The iterative algorithm first determines the value of the slip ratio
reached during stationary equilibrium and then uses the result to deduce the other kinematic
and dynamic unknowns involved. A parametric study is conducted to identify the important
factors in efficiency and power dissipation, as well as their relative influence.

Keywords:
thread contact
slip ratio
spin torque
dissipated power
roller screw
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Notation

a [m] (> 0) major Hertz contact ellipse half-diameter
b [m] (> 0) minor Hertz contact ellipse half-diameter
c [m] (> 0) radial distance between screw/nut/carrier and roller axes
CI,J [Nm] contact spin torque at I or J
CS,N [Nm] external torque on the Screw or Nut
Dz [m] total backlash, Dz = DzS +DzN

DzS , DzN [m] Screw-roller or Nut-roller axial play
E′ [Pa] relative Young modulus of elasticity, see Eq. 1.79
FS,N [N] external force on the Screw or Nut
h(rm) [m] shape function, depending on the thread profile
h′, h′′ [ ,1/m] first and second derivatives of h(rm)
hc [m] (> 0) central lubrication film thickness
H [ ] (0 ≤ H ≤ 1) mechanism efficiency, see Eq. 3.52
k [ ] (≥ 1) ellipticity ratio, k = a/b
K [m] (> 0) geometrical constant K = p cosβ/4
l [m] lead; if right-handed: l > 0, left-handed: l < 0; in general: |l| = np
−→m [ , , ] modified normal at I or J due to friction, −→m = −→n − µI,J

−→
tI,J

n [ ] (≥ 1) number of thread starts
−→n [ , , ] surface/contact unit normal vector at point M
NI,J [N] (≥ 0) contact normal load at I or J
NC [ ] number of I or J contacts per roller
NR [ ] number of rollers
p [m] (> 0) axial pitch of the threaded profile
Ph [Pa] maximum Hertzian contact pressure, see Eq. 1.83
PD [Pa] discretized contact pressure, see Eq. 2.28
rB [m] (> 0) profile curvature radius
rm, θm, zm [m,rad,m] cylindrical coordinates for a point on the threaded surface
rmin,max [m] (> 0) minimal/maximal values for rm
rIS , θIS [m,rad] polar coordinates of I from the Screw axis
rIR, θIR [m,rad] polar coordinates of I from the Roller axis
rJN , θJN [m,rad] polar coordinates of J from the Nut axis
rJR, θJR [m,rad] polar coordinates of J from the Roller axis
rT [m] nominal (pitch) radius of the thread T
s [m2] surface of the Hertz contact ellipse, s = πab
TI,J [N] (≥ 0) total friction force for contact I or J
−→
tI,J [ , , ] total friction force direction at point I or J
−→
t1,2 [ , , ] principal directions of curvature at point M
−−→ut/p(M) [m/s,m/s,m/s] sum (rolling) velocity of (t) with respect to (p) at point M
−−→vt/p(M) [m/s,m/s,m/s] relative (sliding) velocity of (t) with respect to (p) at point M

Wt [W] (≤ 0) total power dissipated by the PRS mechanism
x, y, z [m,m,m] Cartesian coordinates
żn/s [m/s] lead speed (along z) of the nut (n) with respect to the screw (s)

viii



α [1/Pa] (> 0) pressure-viscosity coefficient
αg [rad] gear pressure angle, usually π/9
αn [rad] normal pressure angle, usually around π/4
αx [rad] axial pressure angle, tanαx = tanαn/ cosβ
β [rad] thread helix angle; if right-handed: β > 0, left-handed: β < 0
γ [ ] indicator for the top face of the thread (-1) or the bottom face (+1)
Γ [ ] (> 0) gear (overdrive) ratio, see Eq. 2.1
ε [ ] (0 ≤ ε ≤ 1) non-dimensional slip ratio, ε = ωp/n/ωs/n
ε∗ [ ] theoretically ideal value of ε, see Eqs. 2.16 and 2.17
η [Pa·s] dynamic viscosity of the lubricant
λ [ ] non-dimensional ratio related to ε by Eq. 2.4
µ [ ] friction coefficient
ρ1,2 [1/m] principal curvatures, |ρ1| ≤ |ρ2|
τ0 [Pa] (> 0) Eyring stress
χ [ ] boolean indicator of the PRS type: 1 for standard and 0 for inverted
ωs/n [rad/s] angular speed along z of the screw (s) with respect to the nut (n)

I roller-screw contact point
J roller-nut contact point

PRS abbreviation for Planetary Roller Screw
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General introduction

Screws are powerful rotation-translation converters which profoundly changed the way people
lived throughout history. In antiquity, they were used to raise water and produce wine and olive
oil. Today, we use them to adjust the mirrors in space telescopes. But even though the screw has
undergone many changes and optimization, its basic principle remains the same. Many types
of screws exist nowadays, with the classic friction screw primarily used as a fastener being the
most widely-spread. Also known as a bolt, it consists of an externally threaded shaft in direct
contact with an internally threaded nut.

In order to reduce the relatively high amount of friction, rolling elements (balls or threaded
cylinders) can be introduced between the screw shaft and the nut. We would then obtain ball
screws or roller screws, respectively. Roller screws, in particular, have very high efficiencies
(around 80% [1]) and are well suited for applications that require heavy-duty, high precision and
high loads [2]. They were invented in the 1950s by Carl Bruno Strandgren, who filed a series
of patents [3–9] and their remarkable qualities have persuaded engineers to consider them as
a replacement for hydraulic cylinders [10]. Their relatively low weight and compactness make
them useful in a variety of fields, including aeronautics, cars, robotics, the medical and space
industries.

Although several types of roller screws exist today, the most common ones, shown in Fig. 2,
are:

1. planetary or satellite roller screws (PRS)

(a) standard

(b) inverted

2. recirculating roller screws (RRS)

The three main components of a roller screw (screw shaft, rollers and nut) are all threaded,
but their number of starts can be different. Several geometric and kinematic conditions must
be maintained if the mechanism is to function correctly. While these conditions have been ex-
tensively studied [2, 12–14], reality shows that it is virtually impossible to satisfy all of them
simultaneously. This is mainly due to elastic deformations, wear and manufacturing imper-
fections. For these reasons, a planet carrier and a system of gears are added, such that the
mechanism works similarly to an epicyclic gear train, with the addition of axial movement and a
small amount of circumferential slip [14]. The gears were already present in the initial patent [4].

In a standard PRS, for example, there is no axial movement between the nut and the rollers
i.e. these components are part of an assembly that translates on the screw. This condition
requires the roller thread helix angle to be the same for the nut, such that the peaks of the
rollers fit perfectly inside the gaps of the nut. Furthermore, the two components must roll with
no sliding with respect to each other. The introduction of gears between the parts that are not
supposed to exhibit relative axial movement (in this case, rollers and nut) forces the rollers to
move to their correct positions.

Inverted PRS work in a similar way, but helix angles are matched and gears placed between
the screw and the rollers instead of the nut and the rollers. The recirculating RS, however, is
fundamentally different, since all the roller helix angles are nil. Hence, roller axial movement is
allowed with respect to both the screw shaft and the nut, which eliminates the need for gears. A

1



(a) Standard PRS: Cutaway view (b) Inverted PRS

(c) Standard PRS: Exploded view (d) Recirculating roller screw (RRS)

Figure 2: Different types of roller screws [11]

system of cams (see Fig. 2d) is added instead, preventing rollers from escaping the mechanism
after a few rotations.

The introduction of gears to constantly correct the position of the rollers only works if the
pitch diameter of the gear and thread are identical, otherwise a phenomenon known as roller
migration occurs [15]. As shown by Zhang and Zhao [16, 17], it is possible to machine the
two features at the same time and thus ensure a good synchronization. This reduces the axial
displacement error to a very small percentage (< 0.01% in [1]), making the roller screw one of
the most precise rotation-translation converters there is. Further studies on the transmission
accuracy have been performed by Ma et al. [18] under MSC Adams and by Mamaev et al. [19,20]
on an experimental apparatus for the PRS used in a radio telescope.

Depending on the way the load is distributed through the mechanism, some thread contacts
can deform more than others [21, 22]. This effect was investigated in the static case by Abevi
et al. [10,23,24], who developed finite elements models on an inverted PRS. For standard roller
screws, the axial stiffness has been studied by Ma et al. [25], Jones and Velinsky [26] and Zhang et
al. [27]. Finally, for the transient, dynamic case, Fu et al. [28] proposed a semi-analytical model
which uses a linear distribution for the normal contact forces on the different roller threads. The
model assumes all solids to be infinitely rigid. Moreover, roller backlash is considered along all
three possible directions (radial, transversal and axial).

Other researchers focused on specific aspects of the mechanism, like Aurégan et al. [29, 30]
who studied the stick/slip distribution within the contact areas and the damage modes related
to a specific coating. Sokolov et al. [31] developed principles for evaluating wear resistance. The
thermal aspect was analyzed using a 2D finite elements model in ANSYS [32]. The model uses
the frictional moment deduced in reference [25].

While much effort was put into this research, in many cases no experimental data was used

2



to verify the results. We believe that measurements on a real mechanism are the best way to
validate any proposed theory. Furthermore, some of the endurance tests undertaken by our
industrial partner have revealed a significant increase in the mechanism’s temperature at high
speeds and loads. A more complete understanding of the roller screw geometry and kinematics
was required before any attempt to provide a reliable explanation for the temperature increase.
Eventually, a dynamic model which takes lubrication into account was necessary for identifying
the most influential parameters related to power dissipation and the generated heat.

The current manuscript is the result of three years of research on the roller screw mechanism.
The developed equations are designed to work for both standard and inverted PRS, although
measurements and examples are mainly focused on the standard type, which is more common.

The first chapter deals with the global geometry, thread profile definitions and location of the
contact points. All solids are assumed to be infinitely rigid, although a model for investigating
contact areas is also developed. The local contact geometry is treated as a consequence of
loading, with no influence on the shape of the different components. Only axial backlash is
allowed, such that rollers always stay parallel with the screw and nut axes.

Roller screw kinematics and lubrication are investigated in the second chapter. We propose
a stationary model based on the amount of circumferential slip in the mechanism, which is
measured through experiments. The model also defines sliding velocities inside the contact
areas to show the difference between roller-screw and roller-nut interfaces. Results are used in
a lubrication model to calculate local friction coefficients.

Finally, the third chapter presents a stationary force equilibrium model which calculates
the amount of slip numerically and thus eliminates the need to perform experiments for each
particular case. The mechanism efficiency and dissipated power are also computed and used as
performance criteria in a parametric study. This study identifies the most important variables
involved in the roller screw design process, as well as their relative influence.

The main hypotheses made throughout the current work are summarized below:

1. The global geometry is composed of infinitely rigid solids

2. Local contact deformations have no effect on the global geometry

3. All rollers are identical

4. All roller-screw thread contacts are identical

5. All roller-nut thread contacts are identical

6. The screw and nut axis are identical at all times

7. The rollers and screw axis are parallel at all times

8. Gears are machined such that there is no roller migration
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Chapter 1

Roller screw geometry

1.1 Introduction

The thread geometry and location of the contact points are the first steps in any study involving
forces in the roller screw, yet most of the current literature proposes verified models only for some
particular mechanisms. A few general methods exist, but their complexity makes them hard
to apply from an engineering point of view. Moreover, a unifying geometrical background that
works for both standard and inverted PRS was needed. Finally, some authors have published
overly simplifying and/or inaccurate results which can lead to confusion. A simple, yet effective
solution to these issues was recently proposed by the authors of this work [11]. In this chapter,
elements from references [11, 14] are combined in a more legible fashion with regard to the
structure of the present memoir. A few novelties are included as well.

Roller screw geometry has been studied by many authors. One of the earliest studies on the
location of contact points was proposed by Jones and Velinsky [33]. Their analytical model can
be applied to both planetary and recirculating roller screws, but does not take backlash into
account and profile shapes cannot be modified. Moreover, we found some of the geometrical
assumptions to be inaccurate, as detailed in appendix A of this thesis.

Another analysis was later proposed by Liu et al. [13] for standard roller screws where all the
thread profiles are assumed to be straight. The paper shows that any contact between screw and
rollers occurs along a curve when all solids are infinitely rigid. In our view, only a line could be
obtained in such a case; the line would then shrink to a point as the roller curvature increases.
The influence of the roller profile shape was investigated by the authors in a later article [34],
and it was found that among the three studied profiles (circular, elliptical and parabolic), the
elliptical one gives the best results. However, we found that the proposed analytical solution is
inaccurate, as detailed in the third example in the current chapter. Furthermore, reference [34]
does not consider backlash at all.

Backlash along all three directions (radial, transversal and axial) was eventually considered
in a numerical model proposed recently by Fu et al. [35]. Even though only standard roller screws
are studied, manufacturing errors can also be included by modifying the pitch radius by a small
amount. This confirms a requirement mentioned by Fedosovsky et al. [36] in earlier work, which
states that backlash cannot be guaranteed unless one of the components is rectified during the
design process. On the other hand, reference [34] assumes the thread profiles to be straight for
the screw and nut, and the influence of other profile shapes is not studied. Furthermore, the
location of the contact points is only given as a general expression with matrices and no details
regarding computer implementation or algorithm performance are given.

Another important subject in terms of roller screw geometry concerns the shape, size and
orientation of the contact areas between threads. This topic has received little attention from
the research community, yet is of significant importance in choosing the optimal mechanism
dimensions for a given application. Fu et al. [28] used the Hertzian theory to model contact
areas, but without explaining how to obtain information about the ellipses. Principal surface
curvatures and directions of curvature are important model inputs, yet current literature [12,33]
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provides results without a clear justification. In this work, differential geometry is used to obtain
values which prove to be different.

Based on the advantages and shortcomings of current literature, the present chapter inves-
tigates the thread geometry for both standard and inverted PRS. The shapes of our profiles are
different from existing models and they are defined in the normal plane perpendicular to the
thread helix. This plane is more representative from the perspective of the tool tip machining
the surfaces. We also present the implementation details of a very fast Newton-Raphson algo-
rithm which computes the location of the contact points in 3D space for any combination of
profile curvatures.

The algorithm assumes all roller-screw contacts to be identical and the same for all the roller-
nut contacts. This hypothesis is not strictly true in reality, but allows much simpler equations to
be developed. All solids are treated as being infinitely rigid and local deformations are neglected
with respect to the global geometry and location of the contact points. Only axial backlash is
taken into account. This leads to a simple, yet effective method in designing and simulating the
roller screw geometry.

1.2 Threaded surface equations

First of all, we consider the external surface of a threaded shaft presented in Fig. 1.1. Any
point M on this surface is entirely defined by the cylindrical coordinates (rm, θm, zm). The axial
thread profile is defined as the section view obtained by cutting the shaft along the zx plane. In
the general case when the thread’s helix angle β is non-nil, this plane will not be perpendicular
to the thread’s direction. As shown in the figure, it is necessary to rotate the zx plane by an
angle β around the x axis in order to obtain the normal thread profile. During this process
distances measured along x remain constant, while distances along z are distorted by a factor
cosβ such that:

z′ = z cosβ (1.1)

Figure 1.1: Axial frame (xyz), cylindrical coordinates (rmθmzm) and normal frame (xy′z′)

The axial z distance between two thread peaks is called the pitch p and is always positive.
However, this is not necessarily equal to the axial distance traveled by the thread in one complete
turn, which is called the lead l. Pitch and lead have the same value for common friction screws,
but roller screws usually contain threaded parts with multiple starts, such that in the general
case:

|l| = np (1.2)

where n is a positive integer representing the number of thread starts. For the rollers in recir-
culating roller screws where the helix angle β is nil, n and l will also be nil. In the general case,
however, the lead is positive for right-handed threads (like the ones represented in Figs. 1.1-1.2)
and negative for left-handed threads.
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Figure 1.2: Lead and pitch

The helix angle β follows the same sign rules as the lead and is defined as:

tanβ =
l

2πrT
(1.3)

where rT is the nominal or pitch radius of the threaded shaft T . It represents the half-diameter
where, from an axial point of view, there is as much solid matter as empty space. As it will
be shown in the following sections, this radius is neither the inner nor the outer half-diameter.
Instead, it is located between the two radii, at a point where contact with another thread would
likely occur.

Let us now focus on writing the corresponding threaded surface equations. In order to
manipulate continuous and differentiable functions, it is convenient to separate the surface in
two parts, here called top and bottom. For determining which is which, imagine the following
scenario: if the threaded component is placed vertically in the rain, water falls on the top face.
For an externally threaded shaft, the two sides are represented in Fig. 1.1.

One way to write the surface equation is to express the axial zm coordinate of any point M on
the surface as a function of its radial and circumferential coordinates (rm and θm, respectively).
Since the thread is constructed by revolution along a helical path, variations of zm along θm will
be linear. It is thus sufficient to study the geometry of the threaded profile in order to obtain
the desired function.

We decided to study three types of profiles, named straight, convex and concave. Straight
profiles represent the classic V-shape of friction screws, often encountered in practice. Since they
are cheap to make, these profiles are usually used in the context of roller screws for machining
the screw and nut parts. Rollers, on the other hand, usually have a curvy, bumped profile for
minimizing the contact area, reducing wear and prolonging the working lifetime of the mechanism
[10]. If the roller profile were straight as well, we would obtain a line contact instead of a point,
even with infinitely rigid geometry. This scenario was investigated by Liu et al. [13] and is not
considered in this memoir.

In order to model the bump, we define convex profiles using circular arcs in the normal
plane. When transported in the axial plane, these arcs stretch and become elliptical. We were
inspired in this choice by the original roller screw design proposed by Strandgren [4]. Moreover,
Liu et al. [34] recently published a comparison between axially circular, parabolic and elliptical
roller profiles and it was found that elliptical threads provide the best performance among the
three. However, other ways to represent the bump also exist (see Morozov et al. [37] for involute
profiles, for example).

Our goal was to make equations general enough, so that the screw and the nut could also
take convex profiles like the rollers. Later on in this work, we study the influence of profile
shapes on the mechanism’s performance, which justifies some of the choices which are made
during the design process. Therefore, threaded surface equations had to be made independent
of the component they are attached to. Furthermore, since the nut is an internal thread, this
means that a convex nut profile actually appears concave when seen from the inside. For this
reason, specific equations were developed for a new profile shape, called concave.
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Figure 1.3: Common profile sketch in the normal plane for thread T

All of our profiles are constructed on a common sketch represented in Fig. 1.3, which was
obtained in the following way:

1. First of all, we considered that the nominal radius rT of thread T (screw, roller or nut) is
a known geometrical parameter. This allowed us to place point N at a distance rT from
the z′ axis.

2. Secondly, we assumed that the normal pressure angle αn is also known. By definition, this
angle is formed by the z′ axis and a line passing through N . In practice, it is often close
to π/4.

3. Next, if the lead and the number of starts of the thread are known, it is possible to calculate
the pitch and the helix angle. We define a constant K for the thread T such that:

K =
p cosβ

4
(1.4)

In the normal plane, length K represents one quarter of the distance between two consecu-
tive thread peaks. We placed points P and Q on the pressure line on either side of N such
that the z′ projection of segments NP and NQ is of length K. Since the nominal radius
rT was defined as the half-diameter where there is as much empty space as solid matter,
all profile shapes must include point N and be situated inside the rectangle of diagonal
PQ (i.e. grey area in Fig. 1.3).

4. Finally, the surface origin O was taken to be the projection of point P on the axis. This
allows to switch between the z′ coordinates of the top and bottom faces simply by changing
their sign.

1.2.1 Convex profile

The first roller screw designs proposed by Strandgren [4] suggest that slightly convex thread
profiles are better. Today, most manufacturers still machine the rollers according to his drawings,
i.e. considering that the thread profile is composed of circle parts centred on the axis and of
radius

rB =
rT

sinαn
(1.5)

where αn is the normal pressure angle.

Such a profile is represented in red in Fig. 1.4. It was constructed using circle parts of radius
rB and center C such that C is placed at the intersection of the z′ axis with the PQ line. Some
authors suggested that normal contact forces are transmitted along this line [38], but that is not
necessarily true.
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Figure 1.4: Normal convex profile (red) on the common profile sketch (black)

For any point M(rm, z
′
m) on the profile, the circle equation allows to write:

(rm − xC)2 + (z′m − z′C)2 = r2B (1.6)

where the coordinates of point C are:

xC = 0 (1.7)

z′C = K + rB cosαn (1.8)

This translates into:

z′m = K + rB cosαn −
√
r2B − r2m (1.9)

which is true for the bottom face of an external thread and θm = 0. In the general case, we can
deduce that:

zm =
γ

cosβ

(
K + rB cosαn −

√
r2B − r2m

)
+
θml

2π
(1.10)

Equation 1.10 expresses the surface equation of an external thread with a convex profile.
In order to draw multiple-threaded parts like the screw in a PRS, n individual threads would
need to be drawn with a z shift of p between them. Unless the total length of the threaded
part is specified, the angle θm can take any real value, while rm must be situated in the interval
[rmin, rmax], as shown in Fig. 1.4. These limit values can be calculated using the circle equation: (rmin − xC)2 + (−z′C)2 = r2B

(rmax − xC)2 + (2K − z′C)2 = r2B

(1.11)

yielding: 
rmin =

√
r2B − (rB cosαn +K)2

rmax =
√
r2B − (rB cosαn −K)2

(1.12)

1.2.2 Concave profile

As with the convex profile, it is possible to imagine a concave one as shown in red in Fig. 1.5.
Like in the previous section, the center C is on the PQ line. Writing the corresponding thread
surface equation is useful for modeling a convex nut, since the thread is internal and the profile
actually appears concave. The coordinates of point C can be deduced from triangle CSN :

sinαn =
xC − rT
rB

⇒ xC = rT + rB sinαn (1.13)

cosαn =
K − z′C
rB

⇒ z′C = K − rB cosαn (1.14)
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Figure 1.5: Normal concave profile (red) on the common profile sketch (black)

For any point M(rm, z
′
m) on the profile, it can be deduced from the circle equation that:

z′m = K − rB cosαn +
√
r2B − (rm − rT − rB sinαn)2 (1.15)

which under the general form is written:

zm =
γ

cosβ

(
K − rB cosαn +

√
r2B − (rm − rT − rB sinαn)2

)
+
θml

2π
(1.16)

Equation 1.16 expresses the surface equation of a thread with a concave profile. In this form,
it is valid for external threads, but internal ones can be deduced simply by changing the sign γ.
The limit values [rmin, rmax] can be deduced in the same way as before:

rmin = rT + rB sinαn −
√
r2B − (K − rB cosαn)2

rmax = rT + rB sinαn −
√
r2B − (K + rB cosαn)2

(1.17)

1.2.3 Straight profile

In practice, mainly due to cost issues, it is often interesting to produce threads with straight
profiles like the one shown in red in Fig. 1.6. These profiles are also commonly used in the
literature [2, 33, 38] for their simplicity and consist of segments perpendicular to the pressure
line PQ.

It is possible to find several other angles equal to αn and write that:

tanαn =
2K

rmax − rmin
=

K

rT − rmin
(1.18)

which yields: 
rmin = rT −

K

tanαn

rmax = rT +
K

tanαn

(1.19)
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Figure 1.6: Normal straight profile (red) on the common profile sketch (black)

For any point M(rm, z
′
m) on the profile, we can write that:

z′m = (rm − rmin) tanαn (1.20)

and generalize it into:

zm =
γ

cosβ
(K + (rm − rT ) tanαn) +

θml

2π
(1.21)

Equation 1.21 expresses the surface equation of an external thread with a straight profile. It is
completely defined using the same parameters as before, with the exception of rB. Furthermore,
it is possible to calculate the limit for rB →∞ in Eq. 1.16 and we would obtain Eq. 1.21. This
is the expected behaviour since the profile tends to flatten as the radius of curvature increases.

In conclusion, all the profile shapes used in the current work can be defined using a limited
number of independent parameters, which are summarized in table 1.1.

γ boolean indicating either the top face (-1) or bottom face (+1)
rT nominal or pitch radius of the thread T
rB curvature radius of the thread profile
αn normal pressure angle
l lead of the thread
n number of starts on the threaded surface

Table 1.1: Minimal list of parameters used to define any threaded surface

1.2.4 External unit normal

In the previous sections we showed that all the threaded surface equations based on convex,
straight or concave profile shapes can be expressed under the form:

zm(rm, θm) =
γ

cosβ
h(rm) +

θml

2π
(1.22)

where h(rm) is the z′m coordinate, a function which depends on the profile shape. One of the
main advantages of this form is that it allows an easy calculation of the external unit normal
vector at any point. For any 3D surface defined by an equation f(r, θ, z) = 0, the normal
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direction is given by the gradient
−→
∇f which can be written as:

−→
∇f(r, θ, z) =



∂f

∂r

1

r

∂f

∂θ

∂f

∂z


−→er ,−→eθ ,−→ez

=



∂f

∂r
cos θ −

1

r

∂f

∂θ
sin θ

∂f

∂r
sin θ +

1

r

∂f

∂θ
cos θ

∂f

∂z


−→x ,−→y ,−→z

(1.23)

In this particular case, f can be chosen such that:

f(rm, θm, zm) =
γ

cosβ
h(rm) +

θml

2π
− zm (1.24)

which means that its derivatives are:

∂f

∂rm
=

γ

cosβ
h′;

∂f

∂θm
=

l

2π
;

∂f

∂zm
= −1; where h′ =

dh

drm
(1.25)

Hence, the vector
−→
∇f always points in the negative z direction, but this is not always the case

for the threaded surface’s outwards normal vector. It only works for the bottom face. In general,
an extra factor γ is thus needed such that:

−→n = γ

−→
∇f
‖
−→
∇f‖

(1.26)

This translates into the following expression for the external unit normal in Cartesian coor-
dinates:

−→n (rm, θm) =
1√√√√( h′

cosβ

)2

+

(
l

2πrm

)2

+ 1



h′

cosβ
cos θm −

γl

2πrm
sin θm

h′

cosβ
sin θm +

γl

2πrm
cos θm

−γ


=

− 1√
n2x + n2y + 1

nxny
γ



(1.27)

As mentioned earlier, the function h(rm) depends on the shape of the threaded profile. Table
1.2 summarizes the first and second derivatives of h for the convex, straight and concave profiles
studied in this work.

The above considerations are true for externally threaded shafts, but can also be used for
internal threads (like the nut in a PRS) if we describe the shape of the air volume contained
within. This work does not provide any supplementary formulas for internally threaded parts.
Instead, we describe the geometry of the space which is exactly complementary to the one
occupied by the internally threaded component.

The general Eq. 1.27 for the external unit normal vector at any point can be used to deduce
the contact location between two threaded surfaces. If we assume that at least one of the
infinitely rigid surfaces has a curved profile, the contact will be a collection of single points;
lines would be obtained only if both surfaces were straight [13]. Some very particular curvature
combinations that involve concave profiles might even lead to multiple contact points or no
contact, but as they are unlikely to be found on usual roller screw designs, are not considered in
this memoir. The resulting system of equations is non-linear and has to be solved numerically,
but the details of a very efficient algorithm which computes the solution are given in appendix
A.
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profile convex straight concave

h′
1√

m2 − 1
tanαn

1√
m2 − 1

h′′
m3

rB(m2 − 1)3/2
0

m3

rB(m2 − 1)3/2

m
rT

rm sinαn

1
rm − rT
rB

− sinαn

Table 1.2: Derivatives of h(rm)

1.3 Surface assembly

Let us now focus on assembling the different roller screw surfaces together. We use S,R,N to
denote the surface of the screw, roller or nut, respectively. To ensure that the mechanism works
as intended, the pitch p must be the same for all three of them. For the purposes of the current
work, the pressure angle αn is also considered to be a constant.

Figure 1.7 depicts the typical PRS design, such that the screw and the nut are coaxial, while
the roller axis is placed at a distance c from the other two components. Roller-screw contacts
will be referred to as I and roller-nut contacts as J . The figure also provides a zoom on the
roller, with some dimensions exaggerated for clarity.

Figure 1.7: Surface assembly and zoom: screw(blue), roller(green), nut(magenta)

A rough approximation assumes that points I and J are placed on the OSOR line. Several
authors [2,12] use this assumption due to its simplicity. In reality, however, the locations of I and
J are shifted and have to be calculated using an algorithm like the one presented in appendix A.
Reference [33] used solid modeling to show that I is not collinear to the two origins. A section
view similar to Fig. 1.8a was obtained.

In general, the PRS mechanism allows for axial play i.e. even if no components are turning,
it is possible to move the parts axially with respect to each other for a small distance. This
distance is called backlash and is denoted Dz. It can be suppressed by introducing a custom
amount of preload during machining or assembly [1], but in the general case it can be present.
Throughout this work, we will consider that it is composed of two possible displacements, one
between the roller and the nut and the other between the screw and the roller such that:

Dz = DzS +DzN (1.28)
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(a) Screw surface: section AA (for a standard
PRS)

(b) Nut surface: section BB (for an inverted PRS)

Figure 1.8: Section views for the I1J2 configuration

The presence of backlash means there are actually two possible locations for the I and J
contacts, depending on the direction in which the mechanism is operated. They will be identified
with subscripts 1 and 2. Figure 1.8a was drawn for the first configuration, where the screw
threads (dark grey) touch the roller threads (light gray) at points I1, I1′ , etc. which correspond
to the screw’s bottom face and the roller’s top face. As shown in appendix A, switching the γ
orientation of the surfaces does not change the corresponding radii of contact, only the sign of the
contact angles. This means that the second configuration can easily be deduced by symmetry.

Even if it may seem like any of the four combinations of I and J contacts is possible, the
load transfer in the mechanism imposes only two global functioning modes, which were also
mentioned in [33]:

I1J2: screw bottom → roller top → roller bottom → nut top

I2J1: screw top → roller bottom → roller top → nut bottom

Note that Figs. 1.8a – 1.8b were drawn for the I1J2 configuration in the general case and do
not represent the same roller screw.

While the radial and circumferential coordinates of the contact points I and J can be de-
termined using the algorithm in appendix A, the z (axial) coordinates cannot be calculated by
simply applying the threaded surface Eqs. 1.10, 1.16 or 1.21. These equations refer to individual
surface origins, which may be shifted axially due to backlash conditions.

1.3.1 Backlash conditions

We will now explain how to calculate the backlash and relative z position of the origins of the
different surfaces in a PRS, when the radial and circumferential coordinates of the contact points
are known. First of all, we consider the screw surface represented in Fig. 1.8a. For simplicity,
the surface is right-threaded, although equations are true for both orientations.

Based on the convex, straight or concave profile definitions, the origin OS is always situated
on the axis such that its projection on the surface corresponds to the minimal radius. Let’s
assume it is placed as shown in Fig. 1.8a. The z coordinates of I1 and I2 can then be calculated
with Eq. 1.22:

zI1S =
1

cosβS
h(rIS) +

θISlS
2π

(1.29)

zI2S =
−1

cosβS
h(rIS)− θISlS

2π
(1.30)
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which means that:
zI2S = −zI1S (1.31)

The axial coordinates of the two contact points are thus opposite. Due to the form of equation
1.22, we can see that this holds true for all the surfaces studied in this work.

We define the gap gS as the empty-space axial distance between two consecutive contact
points and the axial thread width wS such that:

wS = p− gS (1.32)

It can be seen from the figure that:

gS = −
−−→
I1I2 · −→z = zI1S − zI2S = 2zI1S (1.33)

Let’s now consider the surface of the nut. As shown in Fig. 1.8b, since the thread is internal
we have:

wN =
−−→
J1J2 · −→z = zJ2N − zJ1N = 2zJ2N (1.34)

gN = p− wN (1.35)

On the nut side, the roller surface is similar to the screw presented before and we have:

wRN = p− gRN (1.36)

gRN =
−−→
J1J2 · −→z = zJ2R − zJ1R = 2zJ2R (1.37)

On the screw side, however, things are slightly more complicated for the roller, as shown in
Fig. 1.9. Since the contact angle θIR is large (close to −π), I1 and I2 will be rather far from
each other. Let I1′′ be the position of point I1 after one complete turn. The figure was drawn
for a right-handed thread, but the same can be done with a left thread to prove that:

wRS = p− gRS (1.38)

gRS = zI2R − zI1′′R = zI2R − (zI1R + lR) = −lR − 2zI1R (1.39)

Figure 1.9: 3D representation of the roller surface

We can now define the backlash as the difference between the gap of the screw or nut and
the width of the roller threads:

DzS = gS − wRS = 2(zI1S − zI1R)− lR − p
DzN = gN − wRN = 2(zJ2R − zJ2N )

(1.40)

where lR is the lead of the roller and p the pitch. In this formula, the z coordinates are obtained
simply by applying equation 1.22 to the different surfaces.

14



Once the backlash is known, we can easily calculate the relative z position of the surface
origins. For the I1J2 configuration we have:

−−−−→
ORON (J2) · −→z =

(−−−→
ORJ2 −

−−−→
ONJ2

)
· −→z = zJ2R − zJ2N =

DzN

2
(1.41)

−−−−→
OROS(I1) · −→z =

(−−−→
ORI1 −

−−−→
OSI1

)
· −→z = zI1R − zI1S = − lR + p

2
− DzS

2
(1.42)

and for the I2J1 configuration:

−−−−→
ORON (J1) · −→z =

−−−−→
ORON (J2) · −→z −DzN = −DzN

2
(1.43)

−−−−→
OROS(I2) · −→z =

−−−−→
OROS(I1) · −→z +DzS = − lR + p

2
+
DzS

2
(1.44)

1.3.2 Number of rollers

Figure 1.7 only sketches one roller. In reality, however, there are at least three of them, equally
spaced. Furthermore, there is also a maximum number of rollers that can fit into any given
screw-nut geometry.

As illustrated in Fig. 1.10, two adjacent rollers will interfere on their outer radii unless the
corresponding separation angle is greater than a minimal value such that:

sin
θmin

2
=
rmaxR
c

(1.45)

where c is the distance between the screw/nut and roller axis and rmaxR the maximum radius
of the roller profile.

Figure 1.10: Adjacent rollers in interference

On the other hand, the number of rollers is related to the separation angle θ such that:

θ =
2π

NR
(1.46)

which means that the maximum number of rollers for a given mechanism can be expressed as:

NRmax =

 π

sin−1

(
rmaxR

c

)
 (1.47)

where b c represents the floor function defined as:

bxc = max{m ∈ Z | m ≤ x} (1.48)

Equation 1.47 is similar to the one obtained by Ma et al. [12]. It means that the number of
rollers must be chosen such that:

3 ≤ NR ≤ NRmax (1.49)
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1.3.3 Design and Simulation

Finally, this section investigates how to fully define the geometry of a roller screw mechanism,
based on the user’s intent and a minimum number of input parameters. We have identified two
methods, depending whether the user’s goal is to simulate an existing mechanism or to create
one theoretically based on given specifications. These two methods will be called simulation
and design, respectively, and consist in establishing a list of variables that allows all the other
geometrical unknowns to be calculated. Here we only focus on the threaded components and
assume that the geometry of secondary parts (gears, planet carrier, retaining rings) could easily
be deduced. The two methods are presented in table 1.3 and were implemented in a program
for both standard and inverted PRS.

Input Simulation Design

- product type: standard or inverted PRS

rS > 0 measured pitch radius for the screw target pitch radius for the screw

rR > 0 measured pitch radius for the roller -

rN > 0 measured pitch radius for the nut -

lS > 0 lead of the screw

nS > 0 number of starts on the screw

nR > 0 number of starts on the roller

αn ' π/4 normal pressure angle

±1/rBS screw curvature: straight (0), convex (+) or concave (−)

±1/rBR roller curvature: straight (0), convex (+) or concave (−)

±1/rBN nut curvature: straight (0), convex (−) or concave (+)

c > 0 distance between screw/nut and roller axis -

DzS - desired roller-screw backlash

DzN - desired roller-nut backlash

NR ≥ 3 number of rollers

Table 1.3: Simulation and design input parameters

Firstly, let us assume we wish to create a new PRS mechanism. In that case, we would select
the design list of parameters. As it was summarized in table 1.1, all threaded surfaces (roller,
screw, nut) can be entirely determined using their corresponding pitch radius, profile curvature
radius, normal pressure angle, lead and number of thread starts. We will now explain how to
find these five parameters for each component based on the input information provided in table
1.3.

For all three components, the normal pressure angle is considered to be constant and is
directly given in table 1.3. For the screw, the lead and the number of starts are also given. We
can thus use Eq. 1.2 and calculate the pitch p of the mechanism. For the roller, only the number
of starts is given, but the lead can be determined using:

lR =

{
sgn(lS)pnR standard PRS

−sgn(lS)pnR inverted PRS
(1.50)

where sgn is the sign function. Due to kinematic constraints detailed in section 2.2.2, the leads
of the screw and the nut should be equal for both standard and inverted PRS, which means
that:

lN = lS ⇒ nN = nS (1.51)
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The profile types (convex, straight, concave) and curvature radii for the three components
are given in table 1.3 under the form of a signed curvature. Note that since the nut is an internal
thread, we describe it using the geometry of the empty space contained within (complementary
volume). This means that the sign convention is switched, since a convex nut contains a concave
volume with a negative profile curvature.

The last parameters that we need for defining the three individual surfaces are the pitch radii,
which have to be chosen such that the backlash conditions specified in table 1.3 are verified.
This is because in practice, roller screws are often designed with a predefined backlash which
is either nil or slightly negative, depending on preload. In all cases, however, we have at least
a rough idea of the screw nominal diameter, which ultimately determines the size of the whole
mechanism [1].

Assume we wish to design a standard PRS. In that case, rS in table 1.3 would represent a
rough approximation of the actual pitch radius of the screw we want to obtain. For this type of
roller screw, we have to make sure that helix angles are matched between the nut and rollers1.
Using equation 1.3 and previous considerations, this requirement can be rewritten as:

tanβR = tanβN ⇒ rN = rR
nN

nR
⇒ rR =

rS

nS

nR
− 2

(1.52)

Hence, the pitch radii of the nut and roller are calculated using the approximate screw radius
rS . Note that since all radii are positive, the above formula requires that nS > 2nR. In other
words, for single-start rollers in a standard PRS, the screw must have at least three starts.

Since the roller and nut surfaces are now entirely defined, it is possible to calculate the
distance c between their axes in order to satisfy the DzN condition. We achieve this using
a dichotomy (bisection) algorithm centered on c = rS + rR with a ±2% variation. At each
iteration, a more precise value of c is given, the location of the J contact points is calculated
and the resulting backlash is computed using Eq. 1.40. We tested the algorithm in several cases
and noticed that for an absolute error below 10−10m on backlash, convergence is achieved in a
negligible amount of time on a desktop computer.

Once c is known, the exact nominal radius for the screw can be calculated using a similar
approach, i.e. dichotomy centered on rS with a ±2% variation. Every iteration tries a more
precise value, calculates the location of the I contact points and compares the resulting backlash
to the value specified in table 1.3. After convergence, the screw surface and also the mechanism
as a whole are finally completely defined.

If we design an inverted PRS, on the other hand, we would like to determine the roller and
screw surfaces first and then adjust the pitch radius of the nut. In this case, rS represents the
exact nominal radius of the screw and we want helix angles to be opposite for the screw and the
rollers. Using a similar approach, we obtain:

tanβR = − tanβS ⇒ rS = rR
nS

nR
⇒ rR = rS

nR

nS
(1.53)

Note that equation 1.53 does not impose a condition on the number of starts like in the case of
a standard PRS. This is one of the two main reasons inverted roller screws are still produced
despite their higher manufacturing cost. The other reason is that it is easier to make the
mechanism waterproof.

Since rS and rR are now defined, the distance c can be calculated so that the DzS condition
is respected. Next, rN is computed such that DzN is verified. In both cases, we use dichotomy
algorithms very similar to the previous ones.

Let us now assume that the design phase is over and our mechanism has been machined.
Due to manufacturing errors, wear, deformations, etc., geometrical measurements on the real

1As with equation 1.51, this is a well-known condition which can be deduced from permanent contact kine-
matics.
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PRS will usually be slightly different from theoretical design values. Nevertheless, we might
want to visualize the obtained geometry on a computer in order to define better tolerances and
adjust the design. Hence, a set of parameters for completely defining the mechanism geometry
based on a limited number of measurements could prove to be very useful. One possibility is to
use the simulation list proposed in table 1.3.

As it can be seen, we assume that the geometry of the three individual surfaces is fully known.
Nominal radii, profile curvatures, the distance c and the normal pressure angle are supposed to
be measured accurately. The pitch p is considered to be exactly the same for all components,
which means that leads and number of starts are linked by the same relationships as before.
The only two unknowns are the backlash values, which can be calculated using equation 1.40.

In conclusion, both standard and inverted roller screws can be designed with predefined
backlash, but in that case the distance c cannot be chosen. Moreover, it is necessary to adjust
the nominal diameter of the screw (for standard PRS) or nut (for inverted PRS) if we want
these backlash conditions to be satisfied. This requirement was also explained by Fedosovsky et
al. [36]. The simulation list of parameters is somewhat complementary to the design list since
it allows more adjustments, particularly in the distance c and the nominal radii.

1.4 Hertzian contact ellipse

The current work assumes that all solids are infinitely rigid such that the contact between two
threaded components is always a set of single points. This approximation allows simpler dynamic
models to be developed without using finite elements. However, single points lead to very crude
approximations of the local sliding velocity field and friction forces. In chapter 3 (see Fig. 3.8),
we show that this hypothesis alone can seriously alter the results in terms of power dissipation.

An interesting compromise can be reached by analyzing the different scales involved in the
mechanism. We will prove in chapter 3 that single points can still be used accurately for the
global stationary model, as long as local contact wrenches are calculated using the shape, size
and orientation of the small areas which are expected to develop around the contact points.

The simplest way this information could be obtained is by applying the Hertzian theory of
elasticity, well-summarized by Johnson [39]. As shown in Fig. 1.11, it involves approximating
the two surfaces in contact with paraboloids around the contact point M . The contact must
be non-conforming, i.e. surfaces 1 and 2 should both be convex, as drawn. If the surface
normal vector at M is noted n, the resulting contact area is an ellipse located in the plane π
perpendicular to n, which includes point M .

Figure 1.11: Non-conforming Hertzian contact at point M

Depending on the normal load, surfaces 1 and 2 will approach for a small distance δ when
compared to the infinitely rigid case. However, the model developed in this work neglects the
influence of local deformations such as these on the global geometry, such that the location of
point M on the threads remains unchanged.
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Secondly, the threaded profile shapes commonly used in roller screw design might lead to
slightly conforming contacts. Although conforming contacts have been extensively studied before
for cases such as journal or roller bearings, less and/or more difficult to use support is provided
for saddle surfaces. Furthermore, the numerical results we obtain show that the differences to
the non-conforming case are usually small. Therefore, we decided to privilege simplicity and
generalize the Hertzian non-conforming theory in order to obtain coherent results for the slightly
conforming case. These details are presented in the following section.

1.4.1 Orientation

First of all, let us focus on determining the orientation of the theoretical Hertzian contact ellipse
centered at point M . As shown in Fig. 1.11 and explained by Johnson [39], we know that the
ellipse is contained in the plane π, which can easily be determined when the surface normal
vector −→n and the location of point M are known. If (

−→
t1 ,
−→
t2 ) is a given basis of this plane, the

two surfaces can locally be approximated to paraboloids such that:

z1 = A1t
2
1 +B1t

2
2 + C1t1t2 (1.54)

z2 = −(A2t
2
1 +B2t

2
2 + C2t1t2) (1.55)

where higher order terms in the Taylor expansion have been neglected. It is possible to choose
the (

−→
t1 ,
−→
t2 ) basis such that C1 = 0 or C2 = 0. Those particular directions are called principal

directions of curvature for the corresponding surface. Let us note them (
−→
t11,
−→
t12) for surface 1

and (
−→
t21,
−→
t22) for surface 2. We can then write:

z1 =
ρ11
2
t211 +

ρ12
2
t212 (1.56)

z2 = −
(ρ21

2
t221 +

ρ22
2
t222

)
(1.57)

where (ρ11, ρ12) and (ρ21, ρ22) denote the principal curvatures of surfaces 1 and 2, respectively.
As mentioned by Johnson [39], they represent the minimum and maximum values of all possible
cross-section curvatures of the corresponding surface and are assimilated to the signed inverse
of a radius. A way of calculating both the principal curvatures and the principal directions of
curvature using differential geometry is detailed in appendix B.

In this thesis, we use a convention which states that for all convexities, the first curvature is
always the minimum of the two in absolute value:

ρ > 0 convex surface

ρ = 0 plane surface

ρ < 0 concave surface

{
|ρ11| ≤ |ρ12|
|ρ21| ≤ |ρ22|

(1.58)

On the other hand, the gap g between the two surfaces is defined as:

g = z1 − z2 = (A1 +A2)t
2
1 + (B1 +B2)t

2
2 + (C1 + C2)t1t2 = At21 +Bt22 + Ct1t2 (1.59)

Like previously in the case of individual surfaces, it is possible to choose a particular basis
(
−→
t1 ,
−→
t2 ) such that C = 0. The corresponding vectors are called principal relative directions of

curvature. From now on, (
−→
t1 ,
−→
t2 ) will represent these particular directions, which are aligned

with the major and minor ellipse diameters, respectively. Furthermore, since the ellipse is
contained in the contact plane π, we can use the fact that:

−→
t1 ×

−→
t2 = −→n ⇒ −→

t2 = −→n ×−→t1 (1.60)

which means that, in the end, the orientation of the Hertzian ellipse is entirely defined by the
direction

−→
t1 .
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Figure 1.12: Principal directions of curvature and C = 0 condition when ϕ ∈ (0,
π

2
)

As shown in Fig. 1.12, the first principal directions
−→
t11 and

−→
t21 for the two surfaces are

generally not aligned and an angle ϕ exists between them, which we define as:

ϕ = min
(

cos−1(
−→
t11 ·
−→
t21), π − cos−1(

−→
t11 ·
−→
t21)
)

(1.61)

Taking the min in this expression ensures that ϕ ∈ [0,
π

2
] for all possible orientations of the

−→
t11

and
−→
t21 vectors.

According to our convention, the first principal direction for each surface corresponds to
the minimum curvature in absolute value. If the first surface was a cylinder, for example,

−→
t11

would be aligned with the cylinder’s axis, pointing towards the direction of minimal curvature
in absolute value, which in this case would be 0 (infinite radius). The same would apply to the
second surface. Therefore, we expect the major diameter of the contact ellipse to be situated
somewhere between

−→
t11 and

−→
t21, as shown in Fig. 1.12. This means that we can define two

non-oriented angles ϕ1, ϕ2 ∈ [0, π/2] such that:

ϕ = ϕ1 + ϕ2 (1.62)

The direction
−→
t1 can then be determined if ϕ1 is known.

For calculating ϕ1, we turned once again to the work of Johnson [39]. He realized that the
condition C = 0 in Eq. 1.59 is equivalent to the existence of the triangle drawn in Fig. 1.12.
The length ip can then be calculated with the cosine theorem:

ip2 =
(ρ12 − ρ11)2

4
+

(ρ22 − ρ21)2

4
+

(ρ12 − ρ11)(ρ22 − ρ21)
2

cos 2ϕ (1.63)

The sine theorem, on the other hand, gives:

ρ22 − ρ21
2 sin 2ϕ1

=
ip

sin 2ϕ
(1.64)

which allows to calculate the angle ϕ1:

ϕ1 =
1

2
sin−1

(
(ρ22 − ρ21) sin 2ϕ√

(ρ12 − ρ11)2 + (ρ22 − ρ21)2 + 2(ρ12 − ρ11)(ρ22 − ρ21) cos 2ϕ

)
(1.65)

In his work, Johnson [39] considers two non-conforming surfaces in contact. This is not
necessarily the case for planetary roller screws, where conforming contacts are possible. How-
ever, we can assume as a first approximation that surfaces can still be locally approximated
to paraboloids such that higher order terms in Eqs. 1.54-1.55 are negligible, even if one of the
curvatures is slightly negative. The calculations we performed showed that contacts in roller
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screws are still far from the case of a shaft in a bore, for example, where the conformity becomes
significant.

In order to detect whether the contact is conforming or not, it is possible to introduce a
variable s such that:

s = (ρ22 − ρ21)(ρ12 − ρ11) (1.66)

Then whenever s < 0 the contact will be conforming, since the first curvature is always the
minimum in absolute value. Depending on the values of s, ϕ and the curvatures, Eq. 1.65 is not
always valid and some particular cases have to be considered as well. The final solution for angle
ϕ1 is given in table 1.4, with explanations provided below. Once ϕ1 is known, the orientation
of the Hertzian contact ellipse can be calculated as:

−→
t1 = cosϕ1

(−→
t11

)
+ sinϕ1

(−→n ×−→t11) · sgn
(

(
−→
t11 ×

−→
t21) · −→n

)
· sgn

(−→
t11 ·
−→
t21

)
(1.67)

where the sgn functions are either -1,0 or 1. They were introduced to make sure the result is
robust and works well for all possible directions of curvature.

Condition Solution

ρ22 = ρ21 and ρ12 6= ρ11 ϕ1 = 0

s = 0 ρ22 6= ρ21 and ρ12 = ρ11 ϕ1 = ϕ

ρ22 = ρ21 and ρ12 = ρ11 ϕ1 ∈ R
ϕ = 0 ϕ1 = 0

ρ12 > ρ22 ϕ1 = 0

ρ12 < ρ22 ϕ1 = ϕ

ρ11 < ρ21 ϕ1 = 0

s 6= 0 ϕ =
π

2
ρ12 = ρ22 ρ11 > ρ21 ϕ1 = ϕ

ρ11 = ρ21 ϕ1 ∈ R

ϕ ∈
(

0,
π

2

)
ϕ1 =

1

2
sin−1

(
|ρ22 − ρ21| sin 2ϕ√

(ρ12 − ρ11)2 + (ρ22 − ρ21)2 + 2|(ρ12 − ρ11)(ρ22 − ρ21)| cos 2ϕ

)

Table 1.4: General solution for angle ϕ1 and the Hertzian ellipse orientation

If s is nil, it means that at least one of the two surfaces is either a plane or a sphere, such
that its curvatures are locally equal at the contact point. If this is true for both surfaces, the
contact area will be planar or circular and

−→
t1 could point in any direction (ϕ1 ∈ R). On the

other hand, if only one surface satisfies the condition, then the ellipse will align itself with the
first (minimal) curvature of the other surface, such that ϕ1 is either 0 or ϕ.

In the general case, when s 6= 0 and ϕ 6= π/2, we have to calculate ϕ1 using Eq. 1.65. A more
robust formula can be obtained by adding absolute values, as shown in table 1.4. This ensures
that the contact ellipse is oriented as expected, even if the surfaces are slightly conforming.

Figure 1.13: Example of first principal directions of curvature when ϕ =
π

2

If ϕ = π/2, the first principal directions of curvature are perpendicular and a separate
analysis is required. Let’s consider the example of two cylinders of different radii, as shown in
Fig. 1.13. In absolute value, the minimal curvatures are nil for both surfaces due to their shape.
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We can see in Fig. 1.13 that the ellipse aligns itself with the surface that has the maximum
curvature, such that:

−→
t1 =

{−→
t11 if ρ12 > ρ22
−→
t21 if ρ12 < ρ22

(1.68)

However, the result is more complicated if the two surfaces have the same maximum cur-
vature, i.e. ρ12 = ρ22. That case can be imagined as the contact between two identical and
perpendicular tori. The contact area will be a circle and

−→
t1 could take any value in the plane π

(ϕ1 ∈ R). But if we cut one of the tori and attempt to straighten it as a tube, the circle becomes
an ellipse along the tube. This direction corresponds to the surface with the minimal curvature,
such that:

if ρ12 = ρ22,
−→
t1 =


−→
t11 if ρ11 < ρ21
−→
t21 if ρ11 > ρ21

∈ π if ρ11 = ρ21

(1.69)

All in all, the solution proposed in table 1.4 allows to determine the orientation of the
Hertzian contact ellipse between any two surfaces (including slightly conforming), provided
that we can locally approximate them to paraboloids. Our approach ensures that

−→
t1 and

−→
t2

are aligned with the major and minor diameters, respectively, for all possible curvatures and
orientations of the principal directions for the two surfaces.

1.4.2 Shape

The shape of the Hertzian contact ellipse can be characterized by a unique parameter k called
ellipticity ratio. If a and b are the major and minor half-diameters of the ellipse, respectively, k
is defined as:

k =
a

b
(1.70)

which means that k ≥ 1.

In order to calculate k, we can start by replacing z1 and z2 from Eqs. 1.56-1.57 in the gap
Eq. 1.59. We would then obtain the values of A and B:

2A = ρ11 cos2 ϕ1 + ρ12 sin2 ϕ1 + ρ21 cos2(ϕ− ϕ1) + ρ22 sin2(ϕ− ϕ1) (1.71)

2B = ρ11 sin2 ϕ1 + ρ12 cos2 ϕ1 + ρ21 sin2(ϕ− ϕ1) + ρ22 cos2(ϕ− ϕ1) (1.72)

Following the example for individual surfaces, it is possible to define two relative principal
curvatures ρ1 and ρ2, corresponding to the

−→
t1 and

−→
t2 directions, respectively, such that:{

ρ1 = 2A

ρ2 = 2B
(1.73)

Since
−→
t1 is calculated as a combination of directions of minimal curvature in absolute value,

we would expect it to transmit the property: in practice, we should always obtain |ρ1| ≤ |ρ2|.
However, this is not always the case and sometimes the pairs (ρ1,

−→
t1 ) and (ρ2,

−→
t2 ) have to be

interchanged in the algorithm to ensure that the property is verified.

If the two relative curvatures ρ1 and ρ2 have opposite signs, it usually means that the contact
area does not exist. Also, when one of the curvatures is nil, we cannot calculate the shape of the
ellipse because the contact is either a stripe or a plane. Therefore, only if the condition ρ1ρ2 > 0
is satisfied, we can determine the ratio q defined by:

q =
ρ2
ρ1

(1.74)

The link between q and k has been studied by many authors, some of which are mentioned
in table 1.5.
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Hamrock & Dowson [40] k = 1.03q0.64

Hamrock & Brewe [41] k = q2/π

Johnson [39] k = q2/3

Antoine et al. [42] k = qγ(q)

Table 1.5: Expression of k as a function of q in current literature, in chronological order

Antoine [42] tested his model for a wide range of q ratios to obtain:

γ(q) =
2

3

(
1 + µ1X

2 + µ2X
4 + µ3X

6 + µ4X
8

1 + µ5X2 + µ6X4 + µ7X6 + µ8X8

)
; X = log10 q (1.75)

µ1 = 0.40227436 µ2 = 3.7491752e− 2
µ3 = 7.4855761e− 4 µ4 = 2.1667028e− 6
µ5 = 0.42678878 µ6 = 4.2605401e− 2
µ7 = 9.0786922e− 4 µ8 = 2.7868927e− 6

(1.76)

and we found that his results are relatively close to the expression k = q2/π provided in [41],
which is the one we preferred in the current work.

In conclusion, it is possible to find the shape of the contact ellipse by using the ellipticity
ratio k, which can be calculated as a function of surface curvatures and the ellipse orientation.
By adding information about the normal load and materials, the actual size of the ellipse can
also be determined.

1.4.3 Size

From Eqs. 1.71-1.72, the curvature sum Sρ can be obtained as:

Sρ = 2(A+B) = ρ11 + ρ12 + ρ21 + ρ22 = ρ1 + ρ2 (1.77)

Let us now assume that the two solids in Fig. 1.11 are made of homogeneous and isotropic
materials. The relative modulus of elasticity E′ is defined as:

2

E′
=

1− ν21
E1

+
1− ν22
E2

(1.78)

where ν1, ν2 and E1, E2 are the Poisson ratios and Young’s moduli for the two bodies, respec-
tively. In the current work, we will typically consider steel materials, such that ν1 = ν2 = 0.3
and E1 = E2 = 210 GPa, which leads to:

E′ = 230.77 GPa (1.79)

When E′ and the contact normal load N are known, half-diameters a and b and the surface
approach δ are given by Harris and Kotzalas [43]:

a =

(
6k2εkN

πSρE′

)1/3

b =
a

k
=

(
6εkN

πkSρE′

)1/3

(1.80)

δ = Fk

(
Sρ
2εk

(
3N

πkE′

)2
)1/3

(1.81)

In the above formulas, Fk and εk denote complete elliptic integrals of the first and second kind,
respectively. For the purposes of the current work, we have computed them numerically in the
Matlab environment using:

[Fk, εk] = ellipke

(
1− 1

k2

)
(1.82)
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where the value 1 − 1/k2 has been deduced in order to match the programmed formulas with
reference [43].

Finally, once the dimensions of the contact ellipse are known, the maximum Hertzian and
average pressures can also be calculated:

Ph =
3N

2πab
Pm =

N

πab
(1.83)

1.5 Application examples

1.5.1 Example 1: Simulation of a standard PRS

In this first example, we show how the method developed in this chapter can be used to simulate
a particular standard roller screw. We compare our results for the geometry of individual
components, the assembly and the location of the contact points to those obtained by Jones
and Velinsky [33], as summarized in table 1.6. Reference [33] was chosen because it provides
direct numerical values for this specific roller screw. Moreover, it was also used by Fu et al. [35]
to validate a contact analysis method where backlash is a 3-dimensional vector. The results
obtained in [35] show that the two papers lead to almost identical solutions. However, reference
[35] mainly presents figures and the contact location unknowns are only expressed as a system of
non-linear equations, without specific numbers. This is why we were unable to reliably compare
our results with [35], even though the study is more recent and general.

Variable [Unit] Example 1 Example 1 Example 2 Example 3 Example 4
[] Current work Jones and

Velinsky [33]
Current work Current work Current work

rS [mm] 15 15 15 9.75 9.8787
lS [mm] 10 10 10 10 9
nS [ ] 5 5 2 5 6
βS [deg] 6.0566 6.06 6.0566 9.2710 8.2503
±1/rBS [1/mm] 0 0 0 0 0
rminS [mm] 14.5028 - 13.7570 9.5527 9.4665
rmaxS [mm] 15.4972 - 16.2430 9.9473 10.2909

rR [mm] 5 5 7.5 3.25 10
lR [mm] 2 2 -5 2 3
nR [ ] 1 1 1 1 2
βR [deg] 3.6426 3.64 -6.0566 5.5938 2.7336
±1/rBR [1/mm] +1/7.07 +1/7.07 +0.0471 +0.2857 +0.0669
rminR [mm] 4.4453 4.5 6.1443 3.0036 9.5676
rmaxR [mm] 5.4535 5.5 8.6477 3.4070 10.4010

rN [mm] 25 25 30.1265 16.25 30
lN [mm] 10 10 10 10 9
nN [ ] 5 5 2 5 6
βN [deg] 3.6426 3.64 3.0241 5.5938 2.7336
±1/rBN [1/mm] 0 0 0 0 0
rminN [mm] 24.5010 - 28.8783 16.0511 29.5840
rmaxN [mm] 25.4990 - 31.3748 16.4489 30.4160

p [mm] 2 2 5 2 1.5
αn [deg] 45 45 45 68.21 42
c [mm] 20 20 22.5 13 19.9945
DzS [mm] -0.1071 - 0 -0.0656 +0.01
DzN [mm] 0 - 0 0 +0.01

rIS [mm] 15.0351 15.005 15 9.7586 9.9914
rIR [mm] 5.0177 5.05 7.5 3.2543 10.1112
rJR [mm] 5 5.03 7.4360 3.25 10
rJN [mm] 25 25.0301 29.8095 16.25 29.9945
θIS [deg] 2.3994 2.42 0 -1.4717 -5.9823
θIR [deg] 172.7935 172.78 -180 -175.5829 -174.0889
θJR [deg] 0 0 12.1996 0 8.4e-4
θJN [deg] 0 0 3.0217 0 2.8e-4

Table 1.6: Examples of PRS geometry results in the I1J2 configuration
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We consider the same geometry for individual components as reference [33]. In terms of the
location of the contact points I and J we obtain close, but not identical results. Due to the
equality of helix angles between the roller and the nut and the value imposed for the distance c,
the position of points J is not shifted and in both cases it is located in the zx plane, such that
θJR = θJN = 0.

As opposed to the referenced paper, we offer the possibility to calculate axial backlash for
the screw-roller contact (DzS) and the nut-roller contact (DzN ). In this particular example,
the roller fits perfectly inside the nut (DzN = 0), while the screw/roller threads appear to inter
penetrate for a small distance (DzS < 0). This does not necessarily mean that the mechanism
fails, since we deal with infinitely rigid solids and single point contacts.

Finally, we also define the minimal and maximal profile radii for each component, while the
cited article only provides these results for the roller. The pressure angle is taken to be constant
and equal to 45 degrees, although Jones and Velinsky calculate a different value for the roller at
the contact with the screw (45.2 degrees).

1.5.2 Example 2: Design of an inverted PRS

Figure 1.14: Threaded surfaces for an inverted PRS. Screw (blue), Roller (green) and Nut (magenta) with normal
vectors at the contact points. I1J2 configuration.

In this second example, we use the developed method to design an inverted PRS with the
dimensions shown in table 1.6. As opposed to the previous example, where the simulation list
of parameters was used, this time we employ the design list, as detailed in table 1.3. Only those
inputs need to be specified; the program calculates the rest of the geometrical unknowns.

We want to design a mechanism with no backlash, therefore the imposed values for DzS and
DzN are nil. The distance c and the nut nominal diameter rN are adjusted in order to satisfy
these conditions. We can see that the I contact points between the screw and the roller are
situated in the zx plane, at the intersection of the two nominal radii. This is expected for this
inverted PRS, due to the fact that βS = −βR and DzS = 0.

Regarding the location of the J contacts (roller-nut), we decided to compare our results with
those obtained by Fedosovsky et al. [36], who used a different numerical method involving a
grid on the same global geometry. Since the referenced paper expresses results in terms of (x, y)
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coordinates from the center of the screw, we had to perform a small calculation:{
xJ = rJN cos θJN = rJR cos θJR + c

yJ = rJN sin θJN = rJR sin θJR
(1.84)

in order to obtain the results summarized in table 1.7.

xJ yJ 2rN c

Current memoir 29.768 1.571 60.25 22.5

Fedosovsky et al. [36] 29.899 1.579 60.25 -

Table 1.7: Global location of J for an inverted PRS

It can be seen that the two methods yield close results in terms of the location of point J .
There seems to be a noticeable difference for the xJ coordinate, perhaps due to a difference in c
(interaxle distance in [36]) between the two papers. Although reference [36] does not provide the
value of c directly, it appears from the figures in the article that it is exactly equal to the sum
of the screw and roller nominal radii, which is also the case in the current work. Furthermore,
the adjusted pitch diameter of the nut is the same, validating the fact that during the design
process, at least one component in the roller screw needs to be rectified in order to guarantee
backlash.

The equations presented in the current work can also be used to write a program for drawing
the threads and therefore verify results visually. Figure 1.14, in this example, shows small parts
of the computed screw, roller and nut surfaces, as well as contact normal vectors drawn at the
location of the contact points.

1.5.3 Example 3: Influence of pitch

Figure 1.15: Contact point I location on the roller for different pitch values ∈ [0.5; 9.5]mm (constant increase of
0.5mm). Roller center is at x = 13mm, y = 0mm. Comparison with [34].

This third example aims to investigate the influence of pitch on the location of the I contact
points between the screw and the roller. In order to allow the comparison of our results with
current literature, we used the same surface geometry as reference [34]. The dimensions in table
1.6 were obtained by simulating a standard roller screw with the nominal radii values specified
in [34], along with a few other adjustments which are detailed below.
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The convex profiles defined in this thesis are circular in the normal z′x plane, but when
projected in the axial zx plane they appear elliptical. Hence, we can apply the theory proposed
in [34] with the following parameters:

ra = rBR = 3.5mm (1.85)

rb =
rBR

cosβR
(1.86)

where ra and rb are the two radii for the elliptical profile. As for the pressure angle, we used:

rBR =
rR

sinαn
⇒ αn = sin−1

rR
rBR

= 68.21◦ (1.87)

For values of p between 0.5 and 9.5mm, the locations of contact point I on the roller computed
according to this work are shown in black in Fig. 1.15. We can see that I is situated on the
nominal diameter for small pitches, then moves towards the outer radius as p increases. This
is the expected behavior and was mentioned by other authors as well [35]. The explanation is
that since the backlash is nonpositive, screw and roller helix angles will increase with the pitch,
leading to a more pronounced intersection that pushes the contact point towards the edge of the
thread. Reference [34] claims to obtain a similar tendency, although we were unable to retrace
their results based on the provided formulas. Furthermore, if the measurement units in Fig.
10 in the cited reference are to be trusted, it would mean that for a pitch value of 10mm, the
contact angle is around 60◦, which does not make sense.

Therefore, in Fig. 1.15, only the contact point radius rIR deduced in [34] by an analytical
method is used to trace the blue dots; the contact angle is calculated by us and is taken to
be the same as for the corresponding black dots. Nevertheless, the mentioned reference fails to
display the expected behavior, since the contact radius moves towards the inner radius when p
increases.

Another difference can be observed for the minimum and maximum profile radii, which vary
with pitch according to our model, while the authors of article [34] assume them to be constant
and equal to 3mm and 3.5mm, respectively. In our view, this variation is required for obtaining
top and bottom surfaces that match perfectly at rmin and rmax for all pitch values, as shown
in Fig. 1.14. Note that throughout this work, we considered the entire triangular profile with
sharp edges. In practice, edges are usually truncated depending on the machine tool; therefore,
the measured outer/inner diameters might appear to be independent of pitch.

1.5.4 Example 4: Influence of profile curvatures

Figure 1.16: Hertzian ellipse for I and J . Screw in blue, roller in green and nut in magenta. I1J2 configuration.
Normal contact vector at the I or J centers and principal relative direction of curvature

−→
t1 . Normal load

NI ≈ NJ ∈ 121± 1N. Hertzian pressures PhI = 1.4 GPa, PhJ = 1 GPa.
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In this final example, we analyze the influence of profile curvatures on the shape and ori-
entation of the Hertzian contact ellipse at I and J . In order to prove the capabilities of the
geometrical model presented in this memoir, we chose more exotic parameters in comparison
with previous examples. As detailed in table 1.6, the reference case consists in designing a
standard PRS with a positive, imposed backlash of 0.02 mm. The desired pressure angle is 42◦

and rollers have 2 starts instead of 1.

Table 1.6 presents the contact location results obtained for straight screw and nut profiles,
and a convex roller profile such that rBR = rR/ sin 42◦, according to Eq. 1.5. We can see that
the values for θJR and θJN are very small, but not zero. This is due to the imposed value for
DzN , which modifies the distance c slightly, such that the contact point J is no longer on the nut
nominal diameter. The value deduced for c, as well as the DzS axial play, impose a rectification
on the nominal screw diameter rS , which should otherwise have been 10 mm.

The computed contact areas for I and J are shown in the center of Fig. 1.16. In both cases,
the ellipticity ratio k is less than 2. The figure also shows the

−→
t1 direction, aligned with the

major diameter of the ellipse. The roller-nut ellipse appears to be more or less along the helical
thread direction, while the roller-screw ellipse is close to being perpendicular. Numerical results
issued from the model can be verified visually by analyzing the way Matlab manipulates light
through semi-transparent meshes. Areas which are very close to one another are automatically
displayed in a lighter shade than the basic color, as can be seen in Figs. 1.14-1.16. However,
this trick can only be used to verify shape and orientation results: the actual size of the contact
area depends on the normal load and can only be calculated.

curvature left center right

±1/rBS – 0.007 0 +0.6

±1/rBR +0.0669 +0.0669 +0.0669

±1/rBN +0.03 0 – 0.01

Table 1.8: Profile curvature values used in Fig. 1.16

In order to study the influence of profile curvatures, we have changed the rBS and rBN
values according to table 1.8. The left side of Fig. 1.16 corresponds to a concave screw and
nut, while the right side was drawn for convex surfaces. Curvature values in table 1.8 were not
randomly chosen: they are a rough approximation of the minimum and maximum values allowed
for this particular geometry, such that the contact location algorithm described in appendix A
works without returning any errors. Curvatures outside this interval lead to contacts placed on
impossible locations or on the edges of the threads.

Results show that there is a larger range in the choice of the screw profile curvature, when
compared to the nut. Increasing the screw convexity leads to a thinner Hertzian ellipse, which
eventually aligns itself with the helix direction. The fact that we can rotate the roller-screw
contact ellipse by roughly 90◦ becomes important when considering lubrication, since the sliding
velocity vector will generally not be aligned with the major diameter of the ellipse.

1.6 Conclusion

This chapter provides a detailed method for analyzing the thread geometry of both standard and
inverted roller screws. After a careful analysis of current literature, three different profile shapes
are defined, which can effectively model common surfaces used in designing the mechanism. The
corresponding surface equations are deduced, as well as a general formula for the external unit
normal vector.

Roller, screw and nut surfaces are then assembled into a model which computes the location
of contact points between threads by taking axial backlash into consideration. The model
proposes two ways of completely defining the roller screw geometry that minimize the number
of input parameters. The first possibility is intended for designing new mechanisms based on
the screw diameter and backlash, while the second is useful for simulating measured or imposed
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geometry. In contrast with existing literature, the choice of the most appropriate approach for
an application is left to the user in order to avoid over-defined or under-defined geometries and
confusion.

Differential geometry equations are then applied for calculating principal curvatures and
directions of curvature at any point on the studied surfaces. In terms of curvature values, our
results are found to be in agreement with literature. However, the directions of curvature we
obtain are different and possibly less intuitive. Nevertheless, we believe that the results presented
here are more systematic and general, since they come from the direct application of the theory,
instead of pre-made assumptions.

We were then able to model the shape, size and orientation of the contact areas between the
threaded surfaces using the Hertzian theory. The theory was extended for slightly conforming
contacts, which can be encountered in common roller screw designs. This required an in-depth
analysis of the involved equations, which were made more robust to ensure that all possible cases
were covered. The influence of local deformations on the global geometry and location of the
contact points was neglected.

Both the design and simulation sets of input parameters were employed in the examples
which compare the results of our model with those of other authors. We were able to confirm
the fact that at least one component in the mechanism needs to be rectified in order to guarantee
backlash and that the roller/screw contact point in standard PRS moves towards the outer radius
as the pitch increases. We have also studied the influence of profile curvatures on the shape and
orientation of contact areas, and it was shown that the Hertzian ellipse can turn up to 90◦ as
the screw profile becomes more bumped or convex. This has an important effect on lubrication
conditions.
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Chapter 2

Stationary regime kinematics

2.1 Introduction

In this chapter, we investigate roller screw kinematics in order to identify the major friction
phenomena which dissipate power in the threaded contacts. The subject has received little
attention in current literature, since only the global movement of different components is usually
studied. This work also puts significant attention into the local sliding speed to show the
difference between roller-screw and roller-nut contacts. Some of the results presented here have
already been published by the authors in another paper [14].

First of all, the global mechanism kinematics is analyzed in the stationary regime. The model
proposed here is centered on the amount of slip in the PRS, which has two components: axial
slip, inherent to the translation of the nut with respect to the screw, and circumferential slip,
which can exist because the PRS is not a planetary gear train. Both of these components depend
on geometry, lubrication conditions, loading, etc. Circumferential slip, however, is particularly
difficult to control and usually has to be determined.

One of the earliest references in current literature [2] attempted to tackle the problem by
dividing the screw rotation angle in two parts: one without slip and the other characterized
by pure sliding. The relative velocity at contact points is then calculated. This research was
followed by a more elaborate dynamic analysis [44] which showed that the planet carrier turns
slightly slower when friction forces are considered, with respect to the purely kinematic, no-slip
behavior.

Other authors quantify circumferential slip through numerical simulations [18] or complex
dynamic models [28]. Experiments have been performed in some cases [19, 38], but they focus
on the axial positioning error. In any case, these solutions are not very flexible since they can
only be applied to some particular PRS.

The analytical kinematic model developed in the current chapter was specifically designed
to work for both standard and inverted roller screws. We study circumferential slip through a
non-dimensional variable called the slip ratio, which is left undetermined. Instead of predicting
the steady-state value numerically (this is done in chapter 3), we calculate the theoretical ideal
and then measure the ratio through experiments.

The global model is then taken a step further and we also determine the sliding velocity field
at all points within the contact areas. Results are used to deduce local friction coefficients which
are consistent with classic grease lubrication tests. These coefficients have a direct impact on
the power dissipated within the mechanism.

2.2 Global slip model

From a kinematic point of view, roller screws work similarly to planetary gear trains, with the
addition of axial movement and some inherent slip. Here, we study the stationary regime of an
idealized mechanism, i.e. all speeds are assumed constant and there is no geometrical error due
to machining, wear or deformation that would prevent roller-nut or roller-screw thread contacts
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from being identical between themselves. Rollers are assumed to be identical, such that their
rotation axis and geometrical axis coincide at all times.

In these conditions, we can draw the kinematic diagram of a roller screw as shown in Fig.
2.1. Let us assume that (O, x, y, z) is a Galilean frame fixed to the test bench on which the
mechanism operates. The screw S pivots with respect to this frame, such that only a rotation
around z is permitted. The nut N , on the other hand, can only translate in this direction.
Although in reality there are actually two planet carriers, it is assumed that the rollers pivot in
between with axes parallel to the z direction, such that the two sides of the carrier P exhibit an
identical movement at all times. Furthermore, this movement is assumed to be a pure rotation
around the same z axis as the screw and nut. Note that the figure was drawn for a standard
PRS and therefore there is no contact between the carrier and the screw. For an inverted PRS,
P would pivot around S instead of N .

Figure 2.1: Kinematic diagram of a standard PRS with respect to the test bench (left) and the planet carrier
(right)

Let c be the radial distance between the screw/nut/carrier and roller axes during the sta-
tionary regime. As shown on the right side of Fig. 2.1 and mentioned in [34] and [33], as well as
detailed in the first chapter of this thesis, the contact points I between the screw and a given
roller are usually not included in the plane formed by the axes of the two objects for a standard
PRS. This is due to the difference in helix angles. The same is true for the contact points J
between the nut and a roller in the case of an inverted PRS.

Let us now consider a reference frame (Op, xp, yp, z) attached to P such that xp points
towards the center of one of the rollers. If the carrier is fixed as a reference, the relative motion
of the other 3 components in the xpyp plane corresponds to pure rotations around z, which
means that the geometrical xp and yp coordinates of the contact points remain constant in this
frame. This simplifies equations a lot, because instead of deducing the contact points location
during motion, we can use purely geometrical formulas like the ones deduced in appendix A and
previously published in reference [11].

In the stationary regime, the mechanism’s kinematics can be entirely defined by four vari-
ables, one for each component (S,R,N and P). This is because all links on the left side of Fig.
2.1 only have one degree of freedom. Three of these variables are chosen to represent relative
rotation speeds around z with respect to the planet carrier (ωs/p, ωr/p, ωn/p), while the fourth
variable quantifies the axial translation speed along z of the nut assembly with respect to the
screw (żn/s).

In the following paragraphs, we show how it is possible to reduce the number of kinematic
variables from four to one, for both standard and inverted PRS. We thus obtain a kinematic
model of the roller screw with only one degree of freedom in the form of a non-dimensional slip
ratio ε, which could afterwards be adjusted according to the forces, materials and lubricants
present in the mechanism. The advantage of the proposed model is that it remains simple,
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without making rough approximations on the location of the contact points and by allowing
the lubricant and/or surface finish to have an influence on kinematics, as one would expect in
reality.

The reduction of the number of variables becomes possible if we find three equations to link
them. The first equation comes from assigning a numerical value to one of the speeds. For
example, let us assume that the mechanism is powered by an external motor which imposes a
constant rotation speed around z ωs/n = ω0 on the screw with respect to the Galilean frame (or
the nut, since it can only translate along z).

The second equation is obtained by expressing the fact that gears are present between some
of the components and therefore two of the three rotation speeds are always linked. When the
gear pitch diameters are equal to the thread nominal diameters, we say that gears are perfect.
This feature is required when machining the rollers and it was investigated by Zhang et al. [16]-
[17]. If the condition is not satisfied, roller migration might appear [15]. However, for perfect
gears we have: 

ωn/p

ωr/p
= Γ =

rR
rN

if standard PRS

−
ωs/p

ωr/p
= Γ =

rR
rS

if inverted PRS

(2.1)

where Γ represents the gear (overdrive) ratio, obtainable from pitch radii of PRS components.

Since the screw input speed ωs/n is imposed, we prefer replacing the ωn/p and ωr/p variables
with the following non-dimensional ratios:

ε = −
ωn/p

ωs/n
=
ωp/n

ωs/n
λ =

ωr/p

ωs/n
(2.2)

The first of these two ratios expresses how fast the planet carrier turns inside the nut,
compared to the screw. It would be illogical for P to turn faster than S, therefore ε ∈ [0, 1] in
all cases. For a standard PRS, the value ε = 0 means that the carrier does nut turn at all with
respect to the nut. Due to the presence of gears, rollers will also have their rotation blocked,
which means that the only component which turns is the screw. The mechanism is equivalent
to a friction screw, where no rolling occurs. As ε increases, the planet carrier starts to move
and most of the pure sliding friction gets gradually transformed into rolling. This is why roller
screws are interesting over friction screws in the first place. Therefore, ε has a strong physical
meaning and is an indicator of the mechanism performance. From now on, ε will be called slip
ratio and we will make it the only degree of freedom left in the kinematic model, as mentioned
earlier.

With these considerations, the perfect gear Eq. 2.1 transforms into:
− ε
λ

= Γ if standard PRS

−1− ε
λ

= Γ if inverted PRS

(2.3)

which can further be simplified by introducing a boolean variable χ equal to 1 for standard roller
screws and 0 for the inverted type. This leads to:

λ = −εχ+ (1− ε)(1− χ)

Γ
(2.4)

Finally, the third equation in our model is obtained by expressing the link between the axial
z displacement of the nut assembly and the angle for which the screw turns in order to produce
this displacement. From this point of view, roller screws must function exactly like friction
screws in order to guarantee precision: no matter how well the rollers turn and what lubricant
is used, one full turn of the screw must correspond to an axial displacement of the nut exactly
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equal to its lead. The condition can be easily verified in practice and was also deduced by
Velinsky et al. [2] using a different approach. If θs/n is the signed angle for which the screw
rotates with respect to the nut, we can express the equation as:

zn/s = − ls
2π
θs/n ⇒ żn/s = − ls

2π
ωs/n (2.5)

Unknowns Equations

ωs/p ωs/n = ω0 imposed input speed

ωr/p → λ Eq. 2.4 perfect gear condition

ωn/p → ε

żn/s Eq. 2.5 stable displacement

Table 2.1: Kinematic model summary

A summary of the 4 unknowns and 3 equations used in our kinematic model is presented
in table 2.1. The non-dimensional slip ratio ε is left undetermined. For standard PRS, higher
ε values mean more rolling and less sliding, which is desirable. On the other hand, note that
inverted PRS work the other way around. The full sliding case corresponds to ε = 1, when λ = 0
and the rollers don’t turn with respect to the planet carrier. Due to gears between the screw
and rollers, it is as if P and S were connected, both moving at the same speed within the nut.
Rolling is added with decreasing values of ε, although the value ε = 0 cannot be reached.

Hence, there exists a minimal value ε∗ which should be calculated. The same is true for
standard PRS, where ε = 1 is impossible and a maximal value for ε can be determined. In
both cases, this extreme value of ε called ε∗ would represent ideal functioning conditions for the
mechanism, where sliding is reduced to a minimum. A method for calculating ε∗ is proposed in
the following sections.

2.2.1 Sliding velocity at contact points

Figure 2.2: Velocity at a point M belonging to object T . Drawn in the xpyp plane of the planet carrier.

Let’s consider an object T that turns around its center of rotation Ot, which translates along
z in the frame of the planet carrier, as shown in Fig. 2.2. The only non-zero component of its
rotation is along the z axis and its magnitude is noted ωt/p. We are interested in calculating the
relative velocity vector at a point M of cylindrical coordinates (rm, θm). Since the point belongs
to the solid object T , we can write:

−−→vt/p(M) = −−→vt/p(Ot) +
−−→
Ωt/p×

−−−→
OtM =

 0
0
żt/p

+

 0
0
ωt/p

×
rm cos θm
rm sin θm

0

 =

−ωt/prm sin θm
ωt/prm cos θm

żt/p

 (2.6)

where all vectors are expressed in the frame of the planet carrier. From now on, this will always
be the case unless otherwise specified. This frame is preferred because the xy location of points
I and J is fixed with respect to it, which allows us to use some useful equations in terms of
geometry.
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Equation 2.6 can then be applied to an object T which is either the screw, roller or nut in a
PRS mechanism. When M corresponds to the location of the contact points I or J , we obtain:

−−→vs/p(I) =

−(ωs/n − ωp/n)rIS sin θIS
(ωs/n − ωp/n)rIS cos θIS

−χżn/s

 −−→vr/p(I) =

−ωr/prIR sin θIR
ωr/prIR cos θIR

0

 (2.7)

−−→vn/p(J) =

 ωp/nrJN sin θJN
−ωp/nrJN cos θJN

(1− χ)żn/s

 −−→vr/p(J) =

−ωr/prJR sin θJR
ωr/prJR cos θJR

0

 (2.8)

The polar coordinates which define the radial and circumferential locations of I and J can
be calculated using the numerical model proposed in appendix A or reference [11]. They are
geometrically linked by Eq. A.1 such that:{

rIS sin θIS − rIR sin θIR = 0

rIS cos θIS − rIR cos θIR = c

{
rJN sin θJN − rJR sin θJR = 0

rJN cos θJN − rJR cos θJR = c
(2.9)

Finally, if we also take into account Eqs. 2.2 and 2.5, we obtain the relative (sliding) velocity
vectors at the I and J contact points:

−→vI = −−→vs/r(I) = −−→vs/p(I)−−−→vr/p(I) =


(ε+ λ− 1)rIS sin θIS

cλ− (ε+ λ− 1)rIS cos θIS

χ
ls
2π

ωs/n (2.10)

−→vJ = −−→vn/r(J) = −−→vn/p(J)−−−→vr/p(J) =


(ε+ λ)rJN sin θJN

cλ− (ε+ λ)rJN cos θJN

(χ− 1)
ln
2π

ωs/n (2.11)

2.2.2 Kinematic constraints

To ensure that the roller screw mechanism functions correctly, the leads of the screw and the
nut must be equal. However, this condition is often implicit and literature fails to provide a
clear reasoning as to why it must be true. Some authors [2] have suggested basic geometry to be
the cause, without giving any more details. Ma et al. [12] correctly identified kinematics as the
real reason behind the condition, although the proof proposed by the authors uses simplifying
assumptions.

In this section, we show how Eqs. 2.10 and 2.11 are used to deduce the ln = ls condition.
One of the main hypotheses made in the current work is that solids are infinitely rigid at the
macroscopic scale, such that local deformations have no effect on the global geometry. Therefore,
in order to maintain permanent contact, the relative velocity at the contact points must be nil
when projected in the normal directions at those points. We call these the non-penetration
conditions: {−→vI · −→nI = 0

−→vJ · −→nJ = 0
⇔

{
vIxnIx + vIynIy + vIzγI = 0

vJxnJx + vJynJy + vJzγJ = 0
(2.12)

where −→nI and −→nJ are unit normal vectors, external to the roller surface at I and J . The
corresponding γI and γJ orientations are functions equal to -1 if the top face of the roller is used
and 1 if the bottom face is in contact instead. For both the I1J2 and the I2J1 configurations,
current literature [11,33] shows that the mechanism is always loaded such that γI = −γJ .

The nIx, nIy and nJx, nJy components are projections of the corresponding contact normal
vectors in the x, y directions, multiplied by a negative constant such that the z projection equals
γ. It is interesting to proceed this way due to the analytical form of −→n provided by Eq. 1.27.
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That equation can also be used to deduce the following geometric properties:
2πrIS(nIx sin θIS − nIy cos θIS) = γI ls

2πrIR(nIx sin θIR − nIy cos θIR) = γI lr

2πrJN (nJx sin θJN − nJy cos θJN ) = γJ ln

2πrJR(nJx sin θJR − nJy cos θJR) = γJ lr

(2.13)

When combined with Eq. 2.9, these properties transform the two non-penetration conditions
into: {

(ε+ χ− 1)ls + λlr = 0

(ε+ χ− 1)ln + λlr = 0
(2.14)

which means that ls = ln in all cases, unless the mechanism is equivalent to a friction screw,
when pure sliding occurs. This result supports the claim that the condition is required by the
mechanism’s kinematics and not only by its geometry.

Another interesting kinematic constraint can be deduced in the particular case when ma-
chining is perfect. For a standard PRS, this corresponds to an exact equality between the helix
angles of the roller and the nut, such that the roller-nut contact J is centered and placed on the
nominal radius, i.e. rJN = rN and θJN = 0. Contact point velocity vectors in Eqs. 2.10-2.11
were written without taking into account the perfect gear Eq. 2.4, but if the relation is used we
can deduce that −→vJ =

−→
0 , which means that there is no sliding between the nut and the rollers.

A similar analysis can be performed for inverted PRS, where no sliding can occur between the
screw and the rollers if rIS = rS and θIS = 0. In the general case, however, sliding can occur
in all three directions and it is impossible to remove it completely. As mentioned by Velinsky
et al. [2], a fixed amount of axial sliding will always be present. This corresponds to the z
component of −→vI for standard PRS or −→vJ for the inverted type.

Figure 2.3: Non-dimensional sliding velocity at M (I for standard and J for inverted) for different ε values.

On the other hand, it might be possible to significantly reduce sliding by modifying the value
of the slip ratio ε. Figure 2.3 shows qualitatively how the non-dimensional modulus of the sliding
velocity at M (where M is either point I for a standard PRS or point J for the inverted type)

varies according to ε. Note that the y-axis corresponds to
|−→vM |
c ωs/n

, where −→vM was computed using

Eqs. 2.10-2.11. The two sides of Fig. 2.3 use different mechanism geometries, although in both
cases, the screw diameter is roughly 30 mm and its lead equals 10 mm.

The figure shows that for both standard and inverted PRS, there exists an ideal value of
ε for which sliding gets minimized. This value, called ε∗, also limits the range of possible slip
ratios. We can calculate ε∗ according to the following equation:

d|−→vM |
dε

= 0 (2.15)
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which eventually leads to:

standard PRS: ε∗ =

− Γ

(
1− Γ− c

rIS
cos θIS

)
(1− Γ)

(
1− Γ− 2

c

rIS
cos θIS

)
+

(
c

rIS

)2 (2.16)

inverted PRS: ε∗ =

1 + Γ− (2 + Γ)
c

rJN
cos θJN +

(
c

rJN

)2

(1 + Γ)

(
1 + Γ− 2

c

rJN
cos θJN

)
+

(
c

rJN

)2 (2.17)

Hence, the ideal slip ratio ε∗ can be obtained from Eqs. 2.16 – 2.17, which only depend on
geometrical quantities. These formulas were used to draw the vertical lines in Fig. 2.3.

In conclusion, it is possible to express all the stationary regime kinematics in the PRS
mechanism as a function of the screw input speed ωs/n and one degree of freedom, in the form
of the non-dimensional slip ratio ε. However, the speed can easily be specified, while ε is much
more difficult to control. It is possible to calculate the value numerically using a dynamic model
like the one published by Fu et al. [28] or in the stationary case, the model described in the third
chapter of the current work. But the program needs to take into account all the different friction
sources, lubrication conditions, thermal effects, etc. which makes it a complex and potentially
expensive task.

In the next section, we explore a different option. Instead of calculating the stationary
value of ε, we attempt to measure it experimentally to see if there is significant room left for
improvement. In all cases, the kinematic model developed earlier predicts a certain allowed
interval for this slip ratio, as well as an ideal value ε∗, which should be approached to reduce
the amount of sliding in the mechanism. These conditions are summarized below:

standard PRS: ε ∈ [0, ε∗] where ε∗ defined by Eq. 2.16
inverted PRS: ε ∈ [ε∗, 1] where ε∗ defined by Eq. 2.17

2.2.3 Experimental results

screw pitch radius rs 14.95 mm
screw lead ls 10 mm
screw thread ns 5 starts
roller thread nr 1 start
pressure angle αn 45◦

number of rollers NR 9
number of contacts NC 28
grease SKF LGWA 2
length of track 250 mm
motor acceleration 500 mm/s2

Figure 2.4: Experimental apparatus for measuring ε

As shown in the previous sections, the amount of sliding which occurs in a given roller screw
can be characterized by the slip ratio ε. For the purposes of the current work, ε was measured
using the setup presented in Fig. 2.4. The experimental device uses a standard PRS and follows
the same kinematic diagram as the one shown in Fig. 2.1, where the screw is powered by a motor
to rotate with respect to the test bench, while the nut assembly can only translate. When the
screw turns clockwise, it pushes the nut assembly towards the right. The motor is placed on
the left side and is not shown in Fig. 2.4. Two thermocouples used to monitor temperature are
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also present on the apparatus, although we don’t discuss thermal effects on ε in this memoir.
All the experiments were conducted at a room temperature of 20◦C.

The motor can be controlled such that we are able to specify a target speed for the screw.
As the screw starts turning, the nut assembly translates along its track with increasing speed.
The stationary regime, which corresponds to approximately constant velocities, begins when the
target screw speed is attained. It lasts long enough for us to gather sufficient data points, then
ends when the end of the track is reached and the mechanism stops.

The roller screw is loaded using a system of two parallel hydraulic cylinders, not shown
in Fig. 2.4. These cylinders apply a constant resistive force on the nut assembly, directed
towards the left. Its magnitude is adjustable and can be measured with a sensor based on
deformable elements. This sensor can also measure the torque applied on the nut, which allows
the measurement of mechanism efficiency.

A more precise value of the screw speed can be obtained from a Hall effect sensor, placed
close to an encoder wheel fixed to the shaft. The wheel has grooves machined into it, which can
be counted to determine the angle traveled by the screw in a certain amount of time. A similar
setup is used to measure the angular speed of the planet carrier. If the two values are known,
their ratio is equal to ε, according to Eq. 2.2.

We have investigated two methods for determining ε from the speed signals. The first
method consisted in plotting ε as the point-by-point ratio of the carrier and screw speeds, then
calculating the average of the obtained signal when the mechanism was in a steady state. This
method proved to be very inaccurate with regard to the expected behavior and was discarded.
In the second method, we calculated the averages of the two speed signals first, then computed
ε as the ratio of the obtained averages. Better tendencies were observed and the method was
retained.

A total of 15 experiments have been performed using a standard PRS with dimensions and
lubricant mentioned in the table in Fig. 2.4. The rectified screw diameter was approximately
30 mm. Each experiment was conducted for different values of the external force on the nut
FN and input speed on the screw ωs/n, in order to sweep the entire range available on the test
bench. The tested domain with the obtained values for ε and the measured torque on the nut
CN are presented in Fig. 2.5.

# FN (kN) CN (Nm) ωs/n (rpm) ε

1 10.9 22.9 50.5 0.3740

2 10.4 22.0 100.3 0.3740

3 10.2 22.0 200.0 0.3730

4 20.9 43.0 199.8 0.3735

5 35.3 74.5 200.6 0.3733

6 34.7 71.1 403.2 0.3730

7 33.8 68.7 642.8 0.3723

8 42.8 89.2 199.9 0.3735

9 43.0 88.7 403.0 0.3727

10 42.6 87.6 642.1 0.3727

11 50.7 109.1 50.5 0.3745

12 50.1 106.3 101.0 0.3738

13 50.1 105.4 200.6 0.3732

14 49.5 102.7 403.3 0.3722

15 48.9 101.0 642.9 0.3723

Figure 2.5: Test domain and results

For each experiment, the number of discrete points in the speed and force/torque signals
was different. However, a minimum of 3000 points on the speeds and 600 points on the force
and torque has been assured for calculating the averages shown in Fig. 2.5. In some of the
experiments, we have recorded up to 25,000 points on the speeds and 11,000 points on the
force. However, we found that in all cases the minimum number is large enough to guarantee
a sufficient precision on the computed averages. Even if we took 3 times less points than the
minimum, the results in Fig. 2.5 would only change their last digit (in blue). Hence, the order of
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magnitude for the measurement error is 10−1 on the force (kN), torque (Nm) and speeds (rpm)
and 10−4 on the slip ratio ε.

Let us now compare these experimental results with the kinematic model described in the
previous sections. For the particular dimensions of the tested roller screw, the theoretical value
of ε∗ calculated using Eq. 2.16 yields:

ε∗ = 0.3741 (2.18)

which is higher than most of the measured values presented in Fig. 2.5, as expected. Only
experiment 11 yields a value higher than ε∗, but the difference can be attributed to measurement
error. These results confirm the fact that Eq. 2.16 is a good estimation for the maximum value
of ε. On the real PRS, there is always a small amount of circumferential slip which prevents
ε from reaching ε∗. This slip is inherent to the PRS and is necessary for overcoming some of
the internal power dissipation sources, like the spin motion described in the following sections.
Highly dissipative mechanisms require more sliding; therefore, one should try to reduce the
|ε− ε∗| difference by using better lubricants or optimized geometrical parameters such as profile
curvatures.

Furthermore, we can define the optimality of the mechanism as a percentage:

%ε =
ε+ χ− 1

ε∗ + χ− 1
· 100 (2.19)

in order to show how close we are to the ideal ratio ε∗, for both standard and inverted PRS.
Based on the results in Fig. 2.5, this percentage has been plotted in Fig. 2.6, where the black
dots represent measured data and the mesh is a linear surface interpolation, computed using the
griddata function in Matlab.

Figure 2.6: Measured optimality on the test domain, with linear interpolation

We can see that optimality takes slightly higher values at lower speeds, which is expected
since sliding is less likely to occur in those regions and for a standard PRS, optimality (and ε)
increases as the amount of sliding decreases. This is because at lower speeds the lubrication
regime is less hydrodynamic and mixed contacts are more likely to occur, increasing the friction
coefficients and leading to less sliding. Note that speed variations are obtained on a limited
range, due to the current capabilities of the test bench.

In terms of the resistive force on the nut, optimality variations are not sufficiently clear and
cannot be interpreted. We expected sliding to decrease with increasing force, as the surfaces
are pushed together more, making dry contacts more likely to occur on the surface roughness.
Therefore, optimality (and ε) values should increase with the force. From Fig. 2.6, however,
we cannot confirm this prediction. The observed behavior as a function of load may be due to
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more complex system deformations. In the current study, infinitely rigid solids are used for the
global geometry and kinematics.

The overall optimality is higher than 99.5%, which leaves little room for improvement in
terms of stationary regime kinematics. This particular roller screw performed very well in the
test conditions. However, other greases or loading parameters might lead to a different scenario.

2.2.4 Comparison with literature

The idea that on a standard roller screw, ε should be slightly inferior to an ideal ε∗ is not new
in current literature. Jones et al. [44], for example, mentions that the orbital angular velocity
of the roller (ωp/n in the current work) is lower in the dynamic system, in comparison with
the slip-free kinematic behavior. The authors do not measure ε experimentally; instead, they
propose a transient, dynamic model which calculates it as a function of time. If we rewrite their
equations with the notations used here, we would obtain the following value for ε at steady-state:

ε = rIS

c cos θIS − rIR
(

1

Γ
− 1

)
(cos θIS cos θIR + sin θIS sin θIR)

r2IR

(
1

Γ
− 1

)2

+ c2 − 2crIR

(
1

Γ
− 1

)
cos θIR

(2.20)

Hence, for the dimensions of the PRS which we tested, the model in reference [44] yields
ε = 0.3740, which is close to some of the measured values and also lower than ε∗. Although
this confirms that the cited paper provides a satisfying method to obtain the kinematic ratio ε
without performing any experiments or simulations, the result solely depends on geometry. In
our view, the screw input speed, lubricant properties and/or dynamics should also have an effect
on the value of ε. A more complete numerical model is proposed in chapter 3 in the current
memoir.

Reference [44] was recently used by Fu et al. [28] to validate an advanced transient dynamic
model of the PRS, providing one way to take the additional variables into consideration. The
authors performed numerical simulations on a standard roller screw with different dimensions
than the one we used for our experiments, so comparing ε values with the current work would be
inaccurate. However, the model in reference [28] shows that at steady-state, a higher resistive
force on the nut increases ε, as expected. Higher friction coefficients are shown to have the same
effect.

Finally, a quick and much simpler alternative to Eq. 2.20 has been proposed by Ma et al. [18]
and Velinsky et al. [2]:

ε =
1− 2Γ

2(1− Γ)
(2.21)

which yields for Γ = 0.2 a steady-state value of ε = 0.3750. The same result can be obtained
from Eq. 2.20 by taking θIS = 0 and θIR = −π and would correspond to a roller screw which
closely resembles planetary gear trains. The value is not influenced by the contact position,
kinematics or dynamics, but does provide a fast, approximate estimation of the maximum value
that ε (or even ε∗) could take.

2.3 Local contact model

This section links the global kinematic model described earlier with the local geometry of the
contact areas investigated in chapter 1. We provide a way of obtaining the relative velocity field
at all points within the Hertzian ellipse. This is very useful for investigating local phenomena
involved in the power dissipation of the PRS.

Let us assume that the shape, size and orientation of the Hertzian ellipse are known for both
the roller-screw contact and the roller-nut contact in a given PRS. The rectangle bordering the
contact area can be discretized by a grid made of N1 × N2 points, as shown in Fig. 2.7. The
relative (sliding) velocity vector at the center of the ellipse has been calculated before for I and
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J as a function of geometry and the kinematic ratio ε (see Eqs. 2.10-2.11) and it has been shown
that −−→v1/2(M) ·−→n = 0 (non-penetration conditions), where −→n =

−→
t1 ×
−→
t2 is a surface normal vector

at M and the subscript 1/2 refers to surfaces 1 and 2 in contact (see Fig. 1.11). We are now
interested in the sliding velocity at any given point D within the ellipse.

Figure 2.7: Contact area discretization for N1 = 11 and N2 = 8

If the coordinates of D in the (
−→
t1 ,
−→
t2 ) frame are (t1D, t2D), we can express −−→v1/2(D) as:

−→vD = −−→v1/2(D) = −−→v1/2(M)+
−−→
Ω1/2×

−−→
MD ⇔


−→vD ·
−→
t1 = −→vM ·

−→
t1 − ω1/2 (−→n · −→z ) t2D

−→vD ·
−→
t2 = −→vM ·

−→
t2 + ω1/2 (−→n · −→z ) t1D

−→vD · −→n = ω1/2

(−→
t1 · −→z

)
t2D − ω1/2

(−→
t2 · −→z

)
t1D ≈ 0

(2.22)
where point M can either be the screw-roller contact I or nut-roller contact J . We also assumed

that the relative angular velocity vector can only have an axial component, i.e.
−−→
Ω1/2 = ω1/2 ·−→z .

This is true for the idealized PRS mechanism studied in this memoir, where roller axes remain
parallel to the screw and nut axes at all times.

Equation 2.22 shows that −→vD · −→n is not nil, in general. It is only true if D coincides with the
ellipse center M . In reality, however, we would expect the non-penetration condition to hold true
for all points within the contact area. The model proposed here neglects the influence of local
deformations on the global geometry and location of the contact points, which are deduced for
infinitely rigid solids. Therefore, points on the calculated Hertz ellipse do not necessarily belong
to actual surfaces. In the following, −→vD · −→n is considered to be negligible compared to the other
two components, which are taken to be the only relevant ones for modeling local kinematics.

The relative angular speed ω1/2 can be easily deduced for I and J using Eq. 2.2:

ωs/r = ωs/n − ωp/n − ωr/p = (1− ε− λ)ωs/n (2.23)

ωn/r = −ωp/n − ωr/p = −(ε+ λ)ωs/n (2.24)

where λ and ε are linked by the gear Eq. 2.4.
According to these considerations, the sliding velocity vector at any point D inside the roller-

screw or roller-nut contact areas can be calculated as a function of the rigid geometry, ε and
the input speed on the screw. The shape and orientation of the Hertzian ellipse can also be
determined from rigid geometry and if the contact normal force is also known, we can deduce
its actual size. As an example, the −→vD velocity field for both the I and J contacts is presented
in Fig. 2.8 for the standard PRS used in the previous section to measure ε.

We can see from the figure that the two contacts are quite different in terms of the local
sliding velocity field. The movement at the roller-nut contact J is a pure spin, while the roller-
screw contact I is characterized by a combination of spin and uniform sliding, where the latter
is predominant. This is due to the geometrical position of points I and J , which imposes the no
sliding condition to occur between the nut and the rollers (−→vJ =

−→
0 ). Of course, this can only

be true for a standard PRS and the two figures should be swapped for the inverted type. Also,
note that the arrow amplitudes for contacts I and J were not plotted using the same scale. For
the left side of Fig. 2.8, the maximum sliding speed is 107 mm/s, while on the right side, the
maximum is only 9.3 mm/s.
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Figure 2.8: Sliding velocity field for the PRS in Fig. 2.4. Normal forces NI = 223N, NJ = 197N, N1 = N2 = 11
points, ε = 0.3730 and ωs/n = 400rpm.

2.3.1 Friction coefficient

Any quantitative analysis of the power dissipated through thread contacts in the PRS mechanism
also involves identifying the ratio between tangential and normal contact forces. This ratio
(known as the friction coefficient µ) can be imposed, measured or determined through a variety
of models, some of which are investigated in the current section. Lubrication conditions should
have a direct impact on µ, global kinematics and roller screw performance, contrary to some of
the models found in the current literature.

The simplest solution would be to use the Coulomb friction model and assume the friction
coefficient to be constant. In view of the results detailed later in this section, this approach could
be sufficiently accurate for estimating power dissipation through thread contacts. However, the
convenience of its simplicity comes at a cost, since the model needs a carefully chosen value
of µ which corresponds to reality. For any lubricant, it is hard to correctly impose µ without
previously performing more advanced studies.

Another option would be to assume that the lubricant is an incompressible, Newtonian fluid,
in which the shear stress is proportional to the sliding velocity gradient developed within the
film thickness. For a steady, Couette flow, this relationship could be written as:

µN

s
= η
|−→vD|
hc

(2.25)

where N is the contact normal load, s the surface of the Hertz ellipse and hc the film thickness.
The relative (sliding) velocity −→vD can be calculated using Eq. 2.22 and the proportionality
coefficient η represents the dynamic viscosity of the lubricant.

This approach for calculating µ has several problems. First of all, it would only work for
one contact type (the roller-screw contact I for the standard PRS or the roller-nut contact J
for the inverted PRS). This is because the sliding velocity field −→vD is roughly constant for those
contacts only, as shown in Fig. 2.8. In order to account for friction losses through spin, a local
model needs to be developed, such that the friction coefficient µ is no longer a constant, but a
scalar field over the discretized contact area.

The second problem is that the dry contact pressure can increase up to several GPa as
we move closer to the center of the Hertz ellipse. On the one hand, we could assume that the
viscosity of the lubrication fluid is an independent variable, equal to the one measured at ambient
pressure (105Pa). The most viscous of lubricants rarely reach 1 Pa · s; for a film thickness of
300 nm the example in Fig. 2.8 would yield a friction coefficient of the order 10−4 for I, which
is extremely low and does not make sense. On the other hand, if we suppose that viscosity is a
function of pressure, such that it can be modeled by a Barus [45] or even Roelands [46] relation,
µ values would be much higher than 1, which again is inaccurate.
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Given these considerations, we decided to develop a non-Newtonian lubricant model using
the Eyring stress. This approach was studied for a wide range of operating conditions by Jacod
et al. [47], who proposed a simple, general formula predicting the friction coefficient in smooth,
isothermal, elliptic EHL contacts as a function of the characteristic shear stress:

µ = sinh−1
(
τc
5

)
(2.26)

Equation 2.26 uses non-dimensional variables, which are detailed in reference [47]. The
authors used three different types of lubricants and also compared their findings to some of the
experimental data available in the literature at the time. However, the predicted coefficient of
friction is a unique value for the whole contact. In the current work, we discretize the ellipse
and use Eq. 2.26 to deduce the local, scalar µD field. We do this mainly to account for friction
losses in the case of pure spin, because considering the central sliding speed only would result
in zero power losses for pure spin (see Fig. 3.8 in chapter 3). Therefore, the model is defined as:

µD =
τ0
PD

sinh−1
(
ηD · SD

5Hc

)
(2.27)

where τ0 is the Eyring stress, PD the local pressure field, ηD the non-dimensional local viscosity,
Hc the non-dimensional central film thickness and SD a local parameter which depends on the
slide to roll ratio.

According to the Hertzian dry contact model, the local pressure PD depends on the distance
from the center point M in Fig. 2.7 such that:

PD = Ph

√
1−

(
t1D
a

)2

−
(
t2D
b

)2

(2.28)

where (t1D, t2D) are the coordinates of D in the (
−→
t1 ,
−→
t2 ) frame and Ph is the maximum Hertzian

pressure given by Eq. 1.83. Hence, pressure is highest at the contact center, then decreases to
negligible values near the edge of the ellipse.

The non-dimensional viscosity field ηD is modeled by a Roelands [46] relation to local pres-
sure:

ηD = exp

(
(ln η0 + 9.67) ·

((
1 +

PD
P0

)0.6

− 1

))
(2.29)

where η0 is the ambient pressure viscosity and P0 a constant equal to 0.198 GPa.
Regarding the non-dimensional slide to roll ratio SD, reference [47] suggests that:

SD =
2

τ0

|−→vD|
|−→uD|

√
|−→uD|η0E′ρx (2.30)

where E′ is the relative Young modulus given by Eq. 1.79 and ρx a characteristic curvature in
the sliding direction. The problem with PRS contacts is that the sliding velocity is usually not
aligned with the ellipse axes. Moreover, it is impossible to identify a unique sliding direction for
a field of pure spin, like the one showed for J in Fig. 2.8. Luckily, common ellipticity ratios are
relatively close to 1, such that for this particular aspect we can safely assume the contact to be
smaller, but circular without changing the results much. In the current work, we use:

ρx = max(|ρ1|, |ρ2|) = |ρ2| (2.31)

where ρ1,2 are the two relative principal surface curvatures, calculated at the contact center
using Eq. 1.73.

In order to compute the discretized slide to roll ratio SD, we need not only the relative
(sliding) velocity field −→vD, but also the sum (rolling) velocity field −→uD. At points I and J , this
field can be easily calculated by changing the sign of λ in Eqs. 2.10 – 2.11:
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−→uI = −−→vs/p(I) +−−→vr/p(I) =


(ε− λ− 1)rIS sin θIS

−cλ− (ε− λ− 1)rIS cos θIS

χ
ls
2π

ωs/n (2.32)

−→uJ = −−→vn/p(J) +−−→vr/p(J) =


(ε− λ)rJN sin θJN

−cλ− (ε− λ)rJN cos θJN

(χ− 1)
ln
2π

ωs/n (2.33)

We could then compute −→uD at any discretization point using something similar to Eq. 2.22:
−→uD ·
−→
t1 = −→uM ·

−→
t1 − (ω1/p + ω2/p) (−→n · −→z ) t2D

−→uD ·
−→
t2 = −→uM ·

−→
t2 + (ω1/p + ω2/p) (−→n · −→z ) t1D

−→uD · −→n = −→uM · −→n + (ω1/p + ω2/p)
(

(
−→
t1 · −→z )t2D − (

−→
t2 · −→z )t1D

) (2.34)

However, as the (t1D, t2D) coordinates of D are small and the sum velocity is usually much
higher than the relative velocity, we can safely neglect the second components due to transport,
such that:

−→uD ≈ −→uM ∀D (2.35)

where point M is either the screw-roller contact I or the nut-roller contact J . Furthermore, as
we are only looking for the projection of rolling velocity in the contact plane, it leads to:

|−→uD| = −→uM ·
(
−→n ×

( −→uM
|−→uM |

× −→n
))

= |−→uM | −
(−→uM · −→n )2

|−→uM |
∀D (2.36)

where −→uM can be determined with Eqs. 2.32 – 2.33.
Finally, the last parameter we need for computing the friction coefficient in Eq. 2.27 is the

non-dimensional central film thickness Hc. In the current work, we preferred to use the same
expression as reference [47], which is a simplification of the general Moes-Venner formula for
circular contacts:

Hc = 1.7M−1/9L3/4 (2.37)

M =
Nρ2x
E′U3/4

L = αE′U1/4 U =
η0|−→uD|ρx

E′
(2.38)

where N is the normal contact load and α the pressure-viscosity coefficient of the lubricant. The
dimensional central film thickness can then also be computed:

hc =
Hc

√
U

ρx
(2.39)

2.3.2 Numerical results

An example of the type of results which can be obtained with the Jacod [47] friction model
described earlier is presented in Fig. 2.9. The figure plots the scalar µD field computed with
Eq. 2.27 for both the I and J contacts of the standard PRS described in Fig. 2.4 and used in
the experiments to measure the slip ratio ε. Normal contact forces, ε, lubricant parameters and
the screw speed ωs/n were imposed, in order to obtain a numerical simulation of experiment #6
from the list in Fig. 2.5.

These results show that friction coefficients are higher for the roller-screw I contact, when
compared to J . This is expected, since sliding velocities are much higher, while the maximum
Hertzian pressure and predicted film thickness is roughly the same (hcI = 438 nm / PhI = 2.5
GPa and hcJ = 495 nm / PhJ = 2.1 GPa). The shape of the field is also different: µD looks like
a molten chocolate cake for I and more like a doughnut for J . This results from the combination
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Figure 2.9: Discrete friction coefficient for the PRS in Fig. 2.4. Numerical simulation of experiment #6 in Fig.
2.5. Normal loads NI = 223N (PhI = 2.5 GPa), NJ = 197N (PhJ = 2.1 GPa), N1 = N2 = 21 points, ε = 0.3730
and ωs/n = 400 rpm. Lubricant (SKF LGWA2): η0 = 166.5 mPas, α = 30 GPa−1, τ0 = 12 MPa.

of the velocity fields shown in Fig. 2.8 (which leads to a nil vector at point J) and the pressure
dome given by Eq. 2.28, which changes the viscosity.

Globally, however, µD does not vary that much inside the contact area, which leads us to
believe that a simple Coulomb model would also be sufficiently accurate in predicting power
dissipation, provided that relevant friction coefficients are given for I and J . One way to obtain
these constant coefficients would be to use the described numerical model to compute an average
µa for all Na points inside the ellipse:

µa =
1

Na

∑
µD (2.40)

For the example given in Fig. 2.9, µa = 0.111 for I and µa = 0.083 for J . It would also be
interesting to see how the model behaves when different lubricant parameters and slip ratios are
chosen. Figure 2.10 shows the computed average friction coefficient µa for several lubricants,
with a detailed legend in table 2.2.

Figure 2.10: Influence of ε and lubricant parameters on the average friction coefficient µa in Fig. 2.9

The figure shows that higher slip ratio values, which are closer to the ideal ε∗, decrease the
friction coefficient at I. This is due to a reduction in the screw-roller sliding velocity when ε
increases. An opposite, but less pronounced tendency is observed for J , where very low ε values
mean that the rollers turn too slow, which leads to almost no spin at the nut-roller contact.
Finally, friction coefficients decrease with viscosity and the Eyring stress, as expected.
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Lubricant T (◦C) α (GPa−1) η0 (mPas) τ0 (MPa)

traction fluid [47] 40 28.7 28.4 8

hot traction fluid [47] 100 16.5 4.6 8

5P4E [47] 40 35.0 266.0 8

grease B - 30.0 166.5 8

grease C - 30.0 166.5 10

SKF LGWA2 40 30.0 166.5 12

Table 2.2: Lubricant parameters used in Fig. 2.10. The Eyring stress τ0 was chosen by the user.

In conclusion, the numerical Jacod [47] model described earlier in this chapter appears to
provide a reasonable method for calculating friction in the threaded contacts of a PRS mecha-
nism, even when applied locally to a point inside the contact area. Based on the general formula
proposed by Jacod et al. [47], the model can predict a friction coefficient for both sliding and
spin. However, it assumes smooth surfaces and thermal effects are limited to a modification
of the ambient viscosity and maybe α. In the end, the fundamental problem of the Coulomb
law remains unsolved, as one of the lubricant parameters (the Eyring stress τ0) still has to be
carefully chosen by the user.

Reference [47] used a limited range of τ0 values (4, 6 and 8 MPa) to verify Eq. 2.26. As
shown in Fig. 2.10, even the highest value (8 MPa) leads to relatively low friction coefficients
for the most viscous lubricants. In reality, we would expect friction to be higher due to surface
roughness, starvation and other phenomena, which is why τ0 was increased for the greases used
in table 2.2.

Nevertheless, the choice of a realistic Eyring stress value remains an open point. In chapter
3, we show that τ0 = 12 MPa leads to numerical results which are close enough to experiments
in terms of efficiency and dissipated power. Another option would be to measure the friction
coefficient in conditions similar to the actual threaded contacts in a PRS. This possibility is
investigated in the next section.

2.4 HFRR measurements

In this section, we measure the friction coefficient and relative film thickness using a classic
HFRR rig in order to compare the behavior of two different greases commonly used in the roller
screw industry and hopefully extract realistic values for µa and τ0 to use in the local numerical
model described earlier.

ball diameter Db 6 mm
disc diameter Dd 10 mm
disc thickness Ld 3 mm
load mass m 500 g
gravitational acceleration g 9.81 ms−2

stroke length s 1 mm
oscillation frequency f 20 Hz
ball roughness Rb

a < 0.05 µm
disc roughness Rd

a < 0.02 µm
ball/disc materials: steel E′ 230.77 GPa

Figure 2.11: High frequency reciprocating rig (HFRR) diagram and characteristics

The experimental device is based on the contact between an oscillating ball and a fixed disc,
as schematized in Fig. 2.11. The ball is fixed with a pressure screw (not shown) such that it
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cannot roll on the disc surface; it only slides in the horizontal direction at a fixed frequency f .
A load of 500 g ensures permanent contact.

The disc is heated to a temperature of 30◦C and then measurement points are taken every
second for 10 minutes. Afterwards, the device stops to allow the disc temperature a rise of 20◦C.
A new set of measurement points is taken in the next 10 minutes and the process is repeated
up to a maximum of 110◦C.

This device can measure the horizontal friction force on the ball and thus deduce the friction
coefficient µ. Using the electrical resistance between the two surfaces, it can also obtain a relative
value of the average lubrication film thickness. These results are plotted in Fig. 2.12 for two
greases commonly used in the roller screw industry.

Figure 2.12: HFRR results for two common greases: Stabutherm GH461 and SKF LGWA2

As shown in the figure, friction coefficients are slightly lower for the first grease (Stabutherm
GH461), although the stable µ signals indicate good performance for both samples. There is a
noticeable increase in terms of friction and a lubrication film drop at 90◦C for the first grease and
70◦C for the second. Therefore, the first grease seems to be better suited for the temperature
range in which roller screws usually operate.

For both cases, the friction coefficient is roughly comprised between 0.11 and 0.16, which are
higher than the values we obtained previously with the numerical contact model (µa = 0.111
for I and µa = 0.083 for J, see Fig. 2.9). The model used lubricant properties (η0, α) found
in the product description of the second grease (SKF LGWA2), since for the first grease this
information was unavailable.

In any case, some of the HFRR test conditions were not as close as we would have liked to real
PRS contacts. For example, the dry Hertzian pressure which corresponds to the experimental
device can be calculated as:

PHFRRh =
3mg

2πa2b
where ab =

3

√
3mgDb

4E′
(2.41)
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which leads to a value of PHFRRh = 1.12 GPa. This is only around half the pressure we would
expect in actual roller screws. On the other hand, in order to obtain 2.5 GPa on the HFRR
machine, we would need to use a mass load of roughly 5.5 kg, which was impossible given the
rather small dimensions of the experimental device. It would be interesting to perform these
friction coefficient measurements on a setup which can create higher contact pressures.

In terms of the sliding speed, a maximum value is obtained on the HFRR device when the
ball passes by the central position of its oscillatory motion. For a sinusoidal speed signal imposed
on the ball, this maximum value can be determined as:

vHFRRmax =
π

2
vHFRRavg where vHFRRavg = 2sf ⇒ vHFRRmax = πsf = 62.8mm/s (2.42)

which is consistent with the order of magnitude of sliding speeds commonly encountered in real
PRS. In Fig. 2.8, for example, we had obtained 107 mm/s for the I contact, for a screw rotation
speed of ωs/n = 400 rpm.

In conclusion, the HFRR experiments allowed us to compare the performance of two greases
and choose the better one based on a friction and film separation analysis (results might evolve
with other criteria). Friction coefficients are comprised between 0.11 and 0.16, which are higher
than what we had expected through the Jacod [47] lubrication model. This indicates that an
Eyring stress value of minimum 12 MPa should be used in the numerical calculations. However,
the measurement device did not allow ideal test conditions to be achieved, as the real threaded
contacts in a PRS are characterized by higher pressures. The development of a better suited
experimental procedure might be interesting for future research, but in the current work we
chose the torque and efficiency measurements in Fig. 2.5 for calibrating the numerical models.
This investigation is detailed in the next chapter.

2.5 Conclusion

The current chapter introduces an analytical kinematic model of the PRS centered around the
amount of circumferential slip. This slip is quantified using a non-dimensional ratio ε which can
only take values in a specific interval. Since the ratio is difficult to control in practice, we treat
it as an unknown which is measured. Experiments confirm that stationary values are very close
to the theoretical ideal (the difference is less than 1%), which leaves little room for kinematic
improvement.

The model works for both standard and inverted PRS and is able to express all the mech-
anism’s stationary regime kinematics as a function of this slip ratio ε and the input speed on
the screw. Sliding velocity vectors at contact centers are calculated in order to determine the
minimal and maximal allowed values for ε. One of the two extremes corresponds to pure slid-
ing, when the mechanism behaves like the usual friction screw, while the other represents the
theoretical ideal ε∗ for which sliding velocity gets minimized.

Kinematic constraints are developed to show that the leads of the screw and the nut must
always be identical, while previous research assumes this condition is only due to geometry. Fur-
thermore, contact areas are discretized to calculate the local sliding velocity vector at any point
contained inside. This information is used to show that roller-screw and roller-nut interfaces
are very different in terms of kinematics: one of them is characterized by a motion of pure spin,
while the other has a combination of spin and uniform sliding, where the latter is predominant.

Finally, these results are used in a numerical model to deduce local friction coefficients,
which are very influential parameters in terms of the PRS efficiency and dissipated power.
Classic grease lubrication tests are performed to verify the consistency of the obtained values
and identify the best available lubricant.
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Chapter 3

Dynamics and dissipated power

3.1 Introduction

The goal of the current chapter is to quantify the power dissipated in the PRS mechanism, which
is an important result for any further study related to efficiency or temperature distribution.
Furthermore, it can be used as a design criterion in choosing the optimal parameters for a given
application. Based on the main hypotheses used throughout this memoir (rigid solids, parallel
rollers, etc.), a numerical force model is developed, which computes the dissipated power at
steady-state. The model determines the slip ratio reached during stationary equilibrium and
uses the result to deduce all the kinematic and dynamic unknowns that were considered. A
glimpse of this research has already been published by the authors in an article [14].

This subject has received limited attention in current literature. The mechanism efficiency
and load capacity were first analyzed by Velinsky et al. [2], who used a simple Coulomb model,
single-point contacts and only considered friction caused by rolling and sliding. Jones et al. [44]
continued the research, integrating viscous friction and more realistic contact point locations.
Spin torques were later modeled by Ma et al. [12, 32], who included other power dissipation
sources as well.

The most complete numerical dynamic model to date was published by Fu et al. [28]. It
works for both the transient and stationary regimes and considers the transversal movement of
roller axes as well, such that normal contact forces on the threads follow a linear distribution.
Five sources of friction are taken into account, including the planet carrier and gears. While this
ambitious and rather complex model seems to provide consistent results, it lacks a pragmatic
approach in terms of power dissipation. Friction coefficients are set to be higher for the roller-
carrier contacts, in comparison with threaded contacts (0.1 versus 0.03 or 0.05). Furthermore,
we believe that in reality, the carrier turns inside the nut with a higher radial play (0.5 mm
versus 0.01 mm in the cited paper). In our view, these auxiliary friction sources should have
a much lower impact and most of the dissipated power is expected to come from the threaded
roller-screw and roller-nut contacts.

Moreover, the model in reference [28] was only developed for standard roller screws and no
information on the shape of the threaded profiles is given. The present model was verified for
both standard and inverted PRS and special attention is put on the influence of thread geometry
and other design parameters on efficiency and the dissipated power. We consider a constant load
distribution among threads, such that the rollers and screw axis remain parallel at all times.

3.2 Stationary equilibrium model

Most roller screws can be used in two ways: either to transform rotation into translation (actu-
ator mode) or the other way around (generator mode). In this thesis, only the actuator mode
is considered. A simplified dynamic diagram for both standard and inverted PRS in this case is
shown in Fig. 3.1. It can be seen that standard PRS turn the input torque on the screw into
a linear translation of the nut, while inverted PRS turn the nut rotation into screw translation.
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Figure 3.1: Dynamic diagram and friction sources for the standard and inverted PRS in actuator mode (rotation
→ translation). Continuous lines for input forces and torques and dotted lines for link reactions.

This explains why the placement of pivot and slider links is different on the left and right sides
of the figure.

The numerical dynamic model developed in this work assumes that a stationary regime has
been reached, such that components turn or advance with constant velocities. In the previous
chapter, we have shown that these steady-state speeds can be linked (see table 2.1), such that
it becomes possible to deduce all the kinematic unknowns from only one degree of freedom,
identified as the slip ratio ε. We defined this ratio as the rotation speed of the planet carrier
compared to the one of the screw and explained that its value is potentially influenced by
lubrication conditions, loads, the input speed, etc. An experimental approach for measuring
ε was also presented. The dynamic model which will be described here proposes a way of
calculating this slip ratio numerically using a relevant set of equilibrium equations. However,
the model can also compute forces and powers for an imposed value of ε, without taking these
equations into account.

Let us first consider the case of a standard PRS, where an external motor applies a positive
input torque CS on the screw, making it turn at a constant speed ωs/n with respect to the nut.
This will cause the nut assembly to translate in the negative z direction with a speed żn/s given
by Eq. 2.5. Some amount of pushing load will accompany this movement, which means that a
positive, reaction force FN should also be applied by external means on the nut. For inverted
PRS, a similar analysis can be performed with the input torque CN on the nut and the input
reaction force FS on the screw.

Since the current work assumes all solids to be infinitely rigid, the input force gets entirely
transmitted through the mechanism to the pivot links where the motor torque is applied, such
that the link reaction is always its opposite:

FS = −FN (3.1)

From now on, we will assume that the external force on the nut FN is constant and imposed,
just like the rotation speed of the screw. For both standard and inverted PRS, the signs of these
two parameters have to be linked in order to correctly describe a mechanism in actuator mode:

FN · ωs/n > 0 (3.2)

Figure 3.1 also places the five sources of friction which were considered. Apart from the main
power losses through the roller-screw (R/S) and roller-nut (R/N) contacts, the model takes into
account a few auxiliary sources related to the planet carrier, including friction with roller heads
(P/R), the screw (P/S) and the nut (P/N). For standard PRS, the P/S friction is nil, since
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there is usually no contact between the two components (unless wipers are used [1]). The same
is true for the P/N friction in the case of inverted roller screws.

Figure 3.2: 2D view of the 3D contact forces and spin torques on the roller for the I1J2 configuration.

We start the stationary dynamic analysis by studying the contact forces and torques on the
roller for a single pair of I and J contacts. The common scenario for the I1J2 configuration
is represented in Fig. 3.2, which is a 2D view in the xy plane. Forces are 3D vectors, so we
only see their radial/circumferential projection. For the torques, only the axial (z) projection is
represented.

The left side of the figure corresponds to inverted PRS and the right side to standard PRS.
Depending on the type of roller screw studied, the contact points location varies accordingly.
However, the position of only one of the points is shifted, while the other is almost always placed
on the OPOR line. Exceptions can occur if component geometry is imposed1, but in all cases
the shift of the second point is much smaller.

In the general case, there will always be a contact normal load and a smaller tangential force
due to sliding friction. Usually, the no sliding condition occurs for one of the contacts, leading
to a nil relative velocity at the center of the ellipse, as shown in Fig. 2.8. In this case, the
resulting tangential force should also be nil. As for the friction caused by the spin motion, it
can be modeled by a torque applied in the direction of the surface normal vector. If −→nI and −→nJ
denote these external unit vectors for the roller, it means that we can express the associated
contact wrenches as:

FS/R(I)

{
TI
−→
tI −NI

−→nI = −NI
−→mI

CI
−→nI

(3.3)

FN/R(J)

{
TJ
−→
tJ −NJ

−→nJ = −NJ
−→mJ

CJ
−→nJ

(3.4)

A better understanding of the equilibrium model can be achieved if we introduce two friction
coefficients µI and µJ such that:{

TI = µINI

TJ = µJNJ

⇒

{−→mI = −→nI − µI
−→
tI

−→mJ = −→nJ − µJ
−→
tJ

(3.5)

These coefficients are nil unless sliding friction is present, which modifies the direction of the
normal contact load. They do not have the same meaning as the average coefficient µa described
by Eq. 2.40 and can therefore take other values. Also note that −−→nI,J and

−→
tI,J are unit vectors,

while the modified direction −−→mI,J has a different module.

1see simulation list of parameters in table 1.3
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3.2.1 Sliding friction

It would be interesting to compute −−→mI,J in order to see how much of a difference the sliding
friction makes. This requires the calculation of the tangential force vector. If the contact ellipse
is discretized as shown in Fig. 2.7, we can define this vector as the sum of local contributions
such that:

TM
−→
tM =

∑−→
TD ⇒ µMNM

−→
tM =

∑
µDPD

−→vD
|−→vD|

ds (3.6)

where point M is either I or J and PD the local contact pressure on a small surface ds around
D given by:

ds =
4ab

N1N2
(3.7)

The local friction coefficient µD can be imposed by a simple Coulomb law or calculated with
a lubrication model like the one given by Eq. 2.27. As for the local pressure PD, it can be
calculated according to the Hertzian dry contact model used in Eq. 2.28. Finally, since in the
current work we neglect the normal component of the sliding velocity (−→vD · −→nM ≈ 0), it follows
that:

−−→mM = −→nM −
6

πN1N2

∑µD
√

1−
(
t1D
a

)2

−
(
t2D
b

)2

· (−→nM ×−→vD)×−→nM√
(−→vD ·

−→
t1 )2 + (−→vD ·

−→
t2 )2

 (3.8)

where the local relative velocity −→vD can be determined with Eq. 2.22.

The numerical application of Eq. 3.8 yields results which are very close to the normal surface
vector −→nM , which means that the tangential sliding friction force is usually much smaller than
the normal contact load and therefore does not change its direction much. However, since purely
normal contact forces do not dissipate power, the tangential sliding friction becomes important
in estimating power losses. Later in this chapter, we show that it actually has the largest
contribution, accounting for more than 90% of the total power lost.

3.2.2 Spin torques

The second largest source of power dissipation is usually caused by the axial projection of the
contact spin torques CI and CJ represented in Fig. 3.2. If point M denotes either I or J , these
torques can be computed from local sliding friction moments as:

CM
−→nM =

∑−−→
MD ×

−→
TD (3.9)

When using the same assumptions as before (−→vD · −→nM ≈ 0 and ds given by Eq. 3.7), this
eventually leads to:

CM =
6NM

πN1N2

∑µD
√

1−
(
t1D
a

)2

−
(
t2D
b

)2

· (−→vD ·
−→
t2 )t1D − (−→vD ·

−→
t1 )t2D√

(−→vD ·
−→
t1 )2 + (−→vD ·

−→
t2 )2

 (3.10)

The numerical application of Eq. 3.10 shows that the axial projections of the contact spin
torques at I and J always oppose the angular velocity of the roller, for both standard and
inverted PRS. This confirms their dissipative nature. Also note that spin torques are caused
by the presence of a contact area: if single point contacts are considered (N1 = N2 = 1), they
become nil. Discretization quality affects the results for low N1 and N2, but we show later that
convergence is achieved for sufficiently high values.
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3.2.3 Normal loads

We have seen how both the tangential friction and the contact spin torque can be expressed as
functions of the local sliding velocity field −→vD, the friction coefficient and the normal load. Here
we propose a way of determining this load from the total external force on the nut FN , which is
supposed to be constant and imposed in the stationary regime.

In the current work, we assume that all rollers are parallel and identical, such that FN gets
equally distributed among all roller-nut contacts. If we write Newton’s second law to describe
the axial z force equilibrium of the nut in Fig. 3.1, it leads to:

FN
NRNC

+NJ
−→mJ · −→z = 0 ⇔ NJ = − FN

NRNC
−→mJ · −→z

(3.11)

where NR represents the number of rollers and NC the number of roller-nut (or roller-screw)
contacts per roller. Figure 3.1 was drawn for NC = 8 to privilege clarity, although real values
are usually higher. The modified direction −→mJ was used in order to include the axial projection
of sliding friction, even though its contribution is usually small.

In a similar way, we can write the z force equilibrium of the roller to deduce that:

−NI
−→mI · −→z −NJ

−→mJ · −→z = 0 ⇔ NI =
FN

NRNC
−→mI · −→z

(3.12)

Once the normal contact loads are known, it becomes possible to determine the total external
torques CS and CN on the screw and nut, respectively. With the assumptions made so far, there
is no reason for these torques to have the same modulus; this is only true for the external axial
forces FS and FN (see Eq. 3.1). Instead, the torques should be deduced from the z moment
equilibrium equations of the screw and nut:

CS + CP/S +NRNC

(−→
OI ×NI

−→mI − CI −→nI
)
· −→z = 0 (3.13)

CN + CP/N +NRNC

(−→
OJ ×NJ

−→mJ − CJ −→nJ
)
· −→z = 0 (3.14)

where point O is situated on the screw (and nut) axis of rotation and CP/S and CP/N are possible
friction torques exerted by the planet carrier, as shown in Fig. 3.1. When using the contact
points location described in Fig. 1.7, it leads to the following results:

CS = NRNC

CI −→nI · −→z −NIrIS

− sin θIS
cos θIS

0

 · −→mI

− CP/S (3.15)

CN = NRNC

CJ −→nJ · −→z −NJrJN

− sin θJN
cos θJN

0

 · −→mJ

− CP/N (3.16)

3.2.4 Static equilibrium

Let us now investigate the simplest scenario, where the PRS mechanism is axially loaded (FN 6=
0), but none of the components move (ωs/n = 0). In this case, the local sliding velocity fields
will be nil, which means that −−→mM = −→nM according to Eq. 3.8. There is no spin and contact
wrenches are reduced to the sole presence of normal loads.

We already know that the axial z force equilibrium of the nut and rollers is satisfied, since
that is how normal loads are deduced (see Eqs. 3.11 – 3.12). The same can be said about the
screw, due to the obtained results and Eq. 3.1. We would like to discuss equilibrium in terms
of other degrees of freedom.

If we suppose that the planet carrier does not cause any friction in the static case, it means
that the external z torques on the screw and nut can be expressed as:

C0
S = FN rIS

−→nI ·

 sin θIS
− cos θIS

0


−→nI · −→z

C0
N = −FN rJN

−→nJ ·

 sin θJN
− cos θJN

0


−→nJ · −→z

(3.17)
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Some of the geometrical properties of the contact normal vectors detailed in Eq. 2.13 allow
a very interesting simplification of these results:

C0
S =

FN ls
2π

C0
N = −FN ln

2π
(3.18)

which means that the external torques on the screw and nut take identical, but opposite values.
Moreover, these values are not nil, which means that in the static case, the motor has to apply
the corresponding torque to prevent the system from moving.

The z moment equilibrium of the screw and nut were guaranteed by Eqs. 3.15 – 3.16.
However, the condition is also true for the rollers, since in this case the only contributions to
their axial torque is due to normal loads, which lead to moments of equal modulus and opposite
signs in view of the geometrical properties given in Eq. 2.13.

The x and y torque equilibrium equations are not discussed in the current memoir, because
the corresponding rotations are supposed to be forbidden for all PRS components. The screw,
nut and all the roller axes are assumed to be parallel at all times. Therefore, the only remaining
equations to be checked describe radial x and circumferential y forces.

For the screw and nut, these two equations will always be verified due to the symmetric
distribution of identical rollers. In statics, the resulting y contact force on a roller would be
written as:

−→
F c/R ·−→y = −NI

−→nI ·−→y −NJ
−→nJ ·−→y =

FN
NRNC

(
−
−→nI · −→y
−→nI · −→z

+
−→nJ · −→y
−→nJ · −→z

)
=
−FN (nIy + nJy)

NRNC γI
(3.19)

On the other hand, Eqs. 2.9 – 2.13 can be combined to deduce a much simpler expression
for nIy: [

sin θIS − cos θIS
sin θIR − cos θIR

]
·
[
nIx
nIy

]
=
γI
2π

[
ls/rIS
lr/rIR

]
(3.20)

[
nIx
nIy

]
=

γI
2πrISrIR (sin θIR cos θIS − sin θIS cos θIR)

[
− cos θIR cos θIS
− sin θIR sin θIS

]
·
[
lsrIR
lrrIS

]
(3.21)

nIy =
γI (lr − ls) rIS sin θIS

2πrIS sin θIS (rIS cos θIS − rIR cos θIR)
=
γI (lr − ls)

2πc
(3.22)

The same can be done with nJy to obtain that:

nIy + nJy =
γI (lr − ls)

2πc
+
γJ (lr − ln)

2πc
= 0 ⇒

−→
F c/R · −→y = 0 (3.23)

which means that the y force equilibrium on the roller is also satisfied in the static case, when
only normal loads are present. We showed that this is due to several geometric properties
relating normal surface vectors and the location of the contact points.

Finally, we have to check the x force equation on the roller. The corresponding total load is
written as:

−→
F c/R · −→x = −NI

−→nI · −→x −NJ
−→nJ · −→x =

−FN (nIx + nJx)

NRNC γI
6= 0 (3.24)

Unfortunately, numerical results confirmed that this force is not nil like in the previous case
for y. This means that even in the simplest scenario which corresponds to statics and purely
normal contact forces, it is impossible to satisfy all the equilibrium equations with the stationary
model presented so far (screw + nut + rollers). However, the problem can be solved by including
the equilibrium of the other PRS components, like the planet carrier. In the static case, we could
imagine that a positive resulting contact force in x would push the rollers towards the outside
until their heads touch the cylindrical wall of the carrier, as shown in Fig. 3.3 for a standard
PRS. At that point, an additional load on the rollers coming from the planet carrier would
appear; this load would make sure that every roller x force equilibrium is satisfied. Due to the
symmetric distribution of rollers, the carrier would also be in equilibrium.
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3.2.5 Auxiliary contributions

In the previous section, we showed that static equilibrium could be ensured if radial x forces
on the planet carrier were taken into account. The dynamic stationary model presented in
this memoir includes resistive torques on the carrier caused by possible friction with the screw
or nut. Therefore, we should also include an active component, which makes the carrier turn
and guarantees its constant rotation speed. This component can only exist in the form of a
circumferential y force exerted by the roller heads.

Figure 3.3: Auxiliary forces and torques on the roller and the planet carrier

The right side of Fig. 3.3 depicts the typical scenario which occurs for standard and inverted
PRS. In both cases, c represents the radial distance between the screw/nut/carrier and roller
axes during the stationary regime, such that the contact points location is calculated accordingly.
The cylindrical holes machined in the planet carrier are usually larger than the roller heads and
ensure a relatively large amount of radial play (around 0.2 mm). Nevertheless, the model should
include an auxiliary friction torque at this level. This torque will be called CP/R and will quantify
the friction exerted by the carrier on both roller heads (see Fig. 3.1).

The z moment equilibrium equation for the planet carrier can then be written as:

NR c
−−−→
FR/P · −→y − CP/S − CP/N −NRCP/R = 0 (3.25)

which allows us to compute the active force required by a roller to move the carrier:

−−−→
FR/P · −→y =

NRCP/R + CP/N + CP/S

cNR
(3.26)

This circumferential force should produce an active torque which has the same sign as ωp/n.
The friction moment CN/P , which usually exists for standard PRS only, opposes this movement.
On the other hand, the screw always turns faster than the carrier, which means that the screw
friction torque CS/P and ωp/n should have the same direction for both the standard and inverted
cases. This explains the way arrows were drawn in Fig. 3.3.

Numerical results show that the radial force contributions
−−−→
FR/P · −→x are much higher than

their circumferential counterparts given by Eq. 3.26. This means that rollers tend to be pushed
towards the outside for a standard PRS and inwards for the inverted type. However, there is no
reason for these forces to be equal to the combined (screw + nut) contact loads on the roller. As
detailed in Eq. 3.24, this is only true in the static case. For the stationary regime, the resulting
contact force disequilibrium gets balanced by the combined effect of the planet carrier and the
gears, as shown in Fig. 3.3.
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In the general case, we can write the resulting disequilibrium force per I and J contact pair
as: −−→

Fc/R = −NI
−→mI −NJ

−→mJ (3.27)

When also taking gears and the planet carrier into account, the roller y force equilibrium
equation is written as:

NC
−−→
Fc/R · −→y +

−−−→
FE/R · −→y −

−−−→
FR/P · −→y = 0 ⇒

−−−→
FE/R · −→y =

−−−→
FR/P · −→y −NC

−−→
Fc/R · −→y (3.28)

which in combination with Eq. 3.26 allows us to compute the circumferential component of the
gears’ action on the roller. If we consider that steady state is characterized by only one pair of

intermeshed teeth, such that
−−−→
FE/R is aligned with the gear line of action as shown on the left

side of Fig. 3.3, the radial x component can then also be deduced using a simple geometrical
formula: −−−→

FE/R · −→x = (1− 2χ)|
−−−→
FE/R · −→y | tanαg (3.29)

where αg is the gear pressure angle (usually 20◦) and χ a boolean variable equal to 1 for standard
roller screws and 0 for the inverted type. Note that the sign of the x component only depends
on the PRS type, while the sign of the y component is a function of contact loads and friction.
Figure 3.3 depicts the typical scenario where CP/N and CP/S are negligible. We can see that in
this case, gears help the roller turn by producing an active z torque, which has the same sign
as ωr/p.

The gear parts for the screw or nut are machined separately, then fixed to the threaded

components. Due to the symmetric distribution of rollers,
−−−→
FE/R does not need to be retaken

into account in the screw or nut force equilibrium equations. Furthermore, considering the

geometry represented in Fig. 3.3, we can usually neglect the z torque produced by
−−−→
FE/R · −→x ,

since its moment arm is small (around half the tooth thickness). However, the circumferential
gear force component creates a non-negligible torque which should be added to Eqs. 3.15 – 3.16
to obtain:

CS = NRNC

CI −→nI · −→z −NIrIS

− sin θIS
cos θIS

0

 · −→mI

− CP/S + (1− χ)NR(c− rR)
−−−→
FE/R · −→y

(3.30)

CN = NRNC

CJ −→nJ · −→z −NJrJN

− sin θJN
cos θJN

0

 · −→mJ

− CP/N + χNR(c+ rR)
−−−→
FE/R · −→y

(3.31)

where rR is the nominal radius of the roller, where the gear contact is supposed to take place.

Finally, once
−−−→
FE/R is known, we can write the roller equilibrium in terms of radial x forces

to deduce
−−−→
FR/P · −→x :

NC
−−→
Fc/R ·−→x +

−−−→
FE/R ·−→x −

−−−→
FR/P ·−→x +Fcf = 0 ⇒

−−−→
FR/P ·−→x =

−−−→
FE/R ·−→x +NC

−−→
Fc/R ·−→x +Fcf (3.32)

In the previous expression, Fcf quantifies a possible contribution of the centrifugal force,
which tends to push the rollers outwards at high speeds:

Fcf = mRc ω
2
p/n (3.33)

where mR represents the mass of a roller. Unless the carrier rotation speed is high (> 500 rpm)
and the studied PRS is very large and heavy (mR ≈ 1 kg), the effect of this force is usually
negligible in comparison to the other contributions.

In conclusion, the x and y auxiliary forces caused by gears and the planet carrier can be

determined from the resulting contact disequilibrium on the roller
−−→
Fc/R and the auxiliary friction

torques CP/S , CP/N and CP/R. These torques can be imposed or calculated with a small model.
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In the context of the current work, CP/S and CP/N are directly specified by the user and usually
assumed to be nil due to the large radial play available to the planet carrier (around 0.5 mm),
as well as the geometry of the retaining rings which make the P/S and P/N contacts possible.
The implementation of a dedicated model was only investigated for CP/R.

As suggested in Fig. 3.3, the cylindrical contacts between roller heads and the corresponding
holes in the planet carrier could be treated as plain journal bearings. The friction torque CP/R
can then be obtained from many formulas available in current literature.

Figure 3.4: Simplified roller geometry such that Lb ≈ Db ≈ rR

In practice [1], roller heads are commonly machined such that their length and diameter
take close values, as shown in Fig. 3.4. For finite length bearings and a Lb/Db ratio of 1, the
non-dimensional friction torque Ca can be found in tables [48, p. 140] as a function of the
Sommerfeld number S defined by:

S =
η0LbD

3
b |ωr/p|

4e2b Fb
(3.34)

where ωr/p is the rotation speed of the roller inside the planet carrier and eb is the maximum
allowed eccentricity or half the radial play. In the current work, eb = 0.1 mm is a common
value. We assume that the bearing uses the same lubricant as the threaded contacts and that
its viscosity η0 is the one measured at ambient pressure. Finally, the load Fb per roller head
should be calculated from:

Fb =
1

2

√
(
−−−→
FR/P · −→x )2 + (

−−−→
FR/P · −→y )2 (3.35)

However, this approach becomes an iterative problem, since we already need CP/R to calcu-

late
−−−→
FR/P , according to Eq. 3.26. We can get around this by assuming that

−−−→
FR/P · −→y is much

lower than
−−−→
FR/P · −→x , such that Fb is mostly caused by the resulting contact disequilibrium in

the radial x direction. This assumption was confirmed by numerical results. From Eq. 3.28,
3.29 and 3.32, it leads to:

Fb ≈
1

2
NC

∣∣∣∣−−→Fc/R · −→x + (1− 2χ)|
−−→
Fc/R · −→y | tanαg +

Fcf
NC

∣∣∣∣ ≈ 1

2
NC |
−−→
Fc/R · −→x | (3.36)

In the end, the global torque CP/R for the entire roller can be computed as:

CP/R = 2 sgn(ωs/n) CaSebFb (3.37)

where the sign function was added to make sure that it always opposes the roller movement.

3.2.6 Dynamic equilibrium

In the previous sections, we saw that the static equilibrium of the idealized PRS mechanism
studied in this work can be achieved by including radial forces between roller heads and the
planet carrier. The stationary, dynamic case also requires gears to be taken into account in
order to satisfy the equilibrium equations. We now investigate if all of these equations have
been considered for the available degrees of freedom.

Table 3.1 summarizes the kinematic and dynamic unknowns and equations used in the current
model. Since the x and y rotations which correspond to transversal movements are not studied
because the R, S, N and P axes are assumed to be parallel, we can see that all the other
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Unknowns Equations

K
in

em
a
ti

c S/N rotation speed ωs/n
R rotation ratio λ

slip ratio ε

lead speed żn/s

4

imposed input speed ωs/n
perfect gear condition Eq. 2.4 for λ

stable displacement Eq. 2.5 for żn/s

3
ex

te
rn

a
l

N actions FN , CN
S actions FS , CS

4
imposed force on the nut FN
gear line of action Eq. 3.29

2

co
n
ta

ct normal loads NI , NJ

modified normals −→mI ,
−→mJ

spin torques CI , CJ

6

m
o
d
el

s sliding friction Eq. 3.8 for I and J

spin torques Eq. 3.10 for I and J

imposed by user CP/N , CP/S
journal bearing Eq. 3.37 for CP/R

7

D
y
n
a
m

ic

a
u
x
il
ia

ry

P/R friction torque CP/R

P/N friction torque CP/N

P/S friction torque CP/S

R/P x, y force
−−−→
FR/P

gear x, y force
−−−→
FE/R

7

eq
u
il
ib

ri
u
m

P S N R

Fx symmetric distribution Eq. 3.32
Fy of rollers Eq. 3.28

Fz 0 Eq. 3.1 Eq. 3.11 Eq. 3.12

Cx not available
Cy in this model

Cz Eq. 3.26 Eq. 3.30 Eq. 3.31 Eq. 3.43

9

21 21

Table 3.1: Stationary dynamic model summary

equilibrium equations have already been written and considered, except for the z moment on
the roller. In our view, this last equation should help us calculate a numerical value for the slip
ratio ε, which would otherwise remain unknown. This makes sense because friction and external
actions should have an influence on the mechanism kinematics, as explained in chapter 2.

Of course, it remains possible for the user to impose the value of ε, based on measurements
for example. This allows all the kinematic and dynamic unknowns to be determined and satisfies
the equilibrium equations written so far, but does not guarantee a nil z moment on the roller.
However, we could imagine an iterative process which eventually gets close enough. This would
allow us to obtain the numerical value of ε reached during stationary equilibrium. The flowchart
for such an algorithm is presented in Fig. 3.5.

As shown in the figure, the model first computes the normal contact loads and external
torques in the static case. The I and J contact ellipse sizes can therefore be determined and
we can geometrically discretize these areas. Afterwards, we have to choose a reasonable value
for ε, situated in the interval allowed by the PRS type and the ideal slip ratio ε∗ given in Eqs.
2.16 – 2.17. It was explained in chapter 2 that once ε and the input speed ωs/n are known, any
other kinematic unknown can be determined. We can thus compute local sliding velocity fields
and deduce the friction coefficient µD according to a lubrication model like the one given in Eq.
2.27. Alternatively, a simple Coulomb model could be used instead.

This allows us to quantify sliding friction through the modified directions −→mI and −→mJ . Equa-
tions 3.12 – 3.11 are then applied in order to obtain normal loads which satisfy the new equilib-
rium. Spin torques can then also be deduced, as well as the auxiliary forces due to gears and the
planet carrier. Finally, all of these actions cause a certain amount of z torque on the roller and
we have to check that the sum of individual contributions is nil. Most of the time, this will not
be the case, but the sign of the total residue can help us choose a more suitable value for ε and
repeat the process, until we get close enough to zero (dichotomy method). If measurements were
performed and we already know ε precisely, then the algorithm stops after the first iteration,
ignoring the residue. In the end, Eqs. 3.30 – 3.31 allow us to compute the stationary external
torques on the screw and nut and proceed to power dissipation and efficiency calculations.

Note that contact areas are calculated and discretized using static normal loads. All the
geometry remains constant during the dichotomy loop, although normal contact loads change
at every iteration. This choice simplifies the algorithm and improves its performance: the
equilibrium value of ε is obtained almost instantly on a modern desktop computer. It is justified
by the fact that sliding friction is usually much smaller than NI and NJ , such that dynamic
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Figure 3.5: Stationary dynamic model flowchart. Trapezoid = process where user input is allowed or required,
parallelogram = computed data, ⊗ = sum, hexagon = loop preparation.

normal loads only increase slightly in comparison with the static case. For the sake of precision,
it is possible to recalculate the size of contact areas during the loop, using the computed dynamic
loads. However, the effect of this change on the dissipated power is negligible.

Let us now investigate the z moment equilibrium equation on the roller more closely. In the
stationary dynamic case, it can be written as:

NC

(
CI
−→nI + CJ

−→nJ −
−−→
ORI ×NI

−→mI −
−−→
ORJ ×NJ

−→mJ

)
· −→z + CP/R + (2χ− 1)rR

−−−→
FE/R · −→y = 0

(3.38)

We then use Eqs. 3.11 – 3.12 and multiply everything by NR/c|FN | to obtain a non-
dimensional total residue Rz as the sum of individual contributions due to contact forces (dy-
namic normal loads + sliding friction), spin torques, gears and the planet carrier:
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Rc = (
rIR
c
·

−→mI ·

 sin θIR
− cos θIR

0


−→mI · −→z

− rJR
c
·

−→mJ ·

 sin θJR
− cos θJR

0


−→mJ · −→z

) sgn(FN ) (3.39)

Rs = (CI
−→nI · −→z + CJ

−→nJ · −→z )
NRNC

c|FN |
(3.40)

Rp =
NRCP/R

c|FN |
(3.41)

Re = (2χ− 1)
rRNR

−−−→
FE/R · −→y
c|FN |

(3.42)

Rz = 0 (3.43)

This residue quantifies the resulting z torque on the roller and should be nil when stationary
equilibrium is reached. According to the dichotomy (bisection) method, if [ε1, ε2] (where ε1 < ε2)
represents the initial interval where the slip ratio ε is defined, the sign of the total residue Rz
should help us choose better limits at every iteration and narrow down the interval until it
virtually becomes a single point. In practice, we use the interval size to stop the iterative
process when sufficient precision is reached:

initial

{
ε1 = (1− χ)ε∗

ε2 = (1− χ) + χε∗
(3.44)

then ε =
ε1 + ε2

2
⇒

{
ε1 = ε if (2χ− 1) sgn(ωs/n)Rz < 0

ε2 = ε otherwise
until ε2 − ε1 < 1e− 10 (3.45)

The fact that we can use Rz to modify ε like this can be explained by the following example:
on a standard PRS (χ = 1) which turns counterclockwise (ωs/n > 0, like drawn in Fig. 3.1), a
negative z torque residue helps the rollers turn. If this torque became nil, rollers would have
to turn more and the amount of slip would decrease. Therefore, ε should increase to reach
stationary equilibrium, which is why the lower limit of the [ε1, ε2] interval is set to be higher.
We can generalize this reasoning for inverted PRS (χ = 0) through the equations written above.

One could argue that it only works if Rz is a strictly monotonous function of ε which changes
signs over the initial [ε1, ε2] interval, such that the ε solution which corresponds to Rz = 0 is
unique. Figure 3.6 in the next section shows that it is indeed the case, for both standard and
inverted PRS.

3.2.7 Algorithm convergence

In order to illustrate the convergence of the proposed model, we use a typical set of input
parameters, detailed in table 3.2. In view of the hypotheses and equations used in the current
work, this list compiles a minimum number of inputs required to fully define the mechanism
geometry, steady-state kinematics and force balance unknowns. It was chosen to match as
much as possible experiment #6 on the standard roller screw described in Fig. 2.4. This way,
numerical results can be compared to some of the performed measurements.

The PRS geometry is defined using the design method detailed in table 1.3 in order to better
control the axial backlash and make sure that no surface interpenetration occurs. For friction
coefficients, the Jacod [47] model characterized by Eq. 2.26 is preferred, because it provides
a more realistic distribution of friction in the contact areas. Alternatively, a simple Coulomb
model could also be used. Finally, the mechanism is lubricated using SKF LGWA2 with the
shown properties and a chosen value of 12 MPa for the Eyring stress.

The dimensional value of the total residue (Rz · c|FN |/NR) is represented on the top side of
Fig. 3.6 for different slip ratios and we can recognize a strictly monotonous function. A zoom
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Notation Value Meaning

χ 1 PRS type: 1 for standard and 0 for inverted

- design geometry definition method: design or simulation

2rS 30 mm rounded pitch radius for the screw

lS 10 mm lead of the screw (or nut)

nS 5 number of starts on the screw (or nut)

nR 1 number of starts on the roller

αn 45◦ normal profile pressure angle

rBS ∞ screw profile curvature radius (straight)

rBR 6 mm roller profile curvature radius (convex)

Geometry rBN ∞ nut profile curvature radius (straight)

DzS 0 desired roller-screw axial backlash

DzN 0 desired roller-nut axial backlash

NR 9 number of rollers

NC 28 number of roller-screw or roller-nut contacts per roller

Db 6 mm roller head diameter

Lb 6 mm roller head length

eb 0.1 mm maximum allowed eccentricity for P/R bearing

αg 20◦ gear pressure angle

Lr 70 mm total roller length for mass calculation

Loading FN 35 kN external force on the nut

ωs/n 400 rpm steady-state rotation speed of the screw

Materials E′ 230.77 GPa relative modulus of elasticity for threaded contacts

ρr 7810 kg/m3 roller density for mass calculation

N1 = N2 21 number of points for contact area discretization

- Jacod friction coefficient model: Coulomb or Jacod [47]

η0 166.5 mPas lubricant ambient viscosity

Friction α 30 GPa−1 pressure-viscosity coefficient

τ0 12 MPa Eyring stress for the lubricant

CP/N 0 auxiliary P/N friction torque, same sign as ωs/n

CP/S 0 auxiliary P/S friction torque, opposite sign to ωs/n

Table 3.2: Reference example: input parameters

around the ideal ε∗ shows a change in the function sign, as expected. Therefore, the steady-state
solution in terms of the slip ratio is located at the intersection with the Rz = 0 axis. It can be
seen from the figure that this solution is closely below ε∗ and above the measurement performed
through experiment #6. This makes sense because ε∗ cannot be exceeded for a standard PRS and
we would expect slightly more slip in practice than in the numerical model, which represents an
idealized approximation of the real mechanism. The bottom side of the figure shows the results
obtained for an inverted PRS with the same list of input parameters, i.e. table 3.2.

It is possible to perform a more in-depth analysis of the total residue Rz to compare the
relative influence of individual contributions. As shown on the left side of Fig. 3.7, the circum-
ferential gear force is the only active component in terms of the rollers rotation ωr/p around their
axes, while spin torques, the planet carrier bearing and contact forces are all resistive. When
stationary equilibrium is reached, the sum of these contributions becomes nil. This confirms
that gears are an essential component of the PRS mechanism, required to move the rollers to
their correct position as they turn.

The contribution of the journal bearing between roller heads and the planet carrier appears
to be very small, compared to the others. This is because the maximum allowed eccentricity
eb takes a relatively high value in this example, which is based on the real mechanism used to
perform experiments. This leads to a very low value of the Sommerfeld number S, situated
outside the table given in reference [48]. In order to obtain the small friction torque that
corresponds to this bearing model, a linear extrapolation was performed, as shown on the right
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Figure 3.6: Dimensional residue torque Rz · c|FN |/NR for the reference example and an inverted PRS, with zoom
around the stationary solution

side of Fig. 3.7.

Once the algorithm converges and the stationary slip ratio solution is found, the model can
use Eqs. 3.30 – 3.31 and calculate the external steady-state torques CS and CN applied on the
screw and nut. Unless the user imposes a different value for the slip ratio, it is possible to verify
that the two torques are consistently equal in modulus and of opposite signs, within numerical
error:

CN ≈ −CS for the stationary value of ε (3.46)

This dynamic torque is always higher than the one obtained in statics through Eq. 3.18, as
expected. Such results can be used to check the validity of the model proposed in this chapter.

3.2.8 Power dissipation

The numerical model presented in the previous sections can compute the total power dissipated
by the PRS mechanism in two ways. The first option consists in summing up all the individual
contributions caused by the five sources of friction presented in Fig. 3.1. If Wt denotes the
complete sum, we have:

Wt = NR

(
NC (WI +WJ) +WP/R

)
+WP/S +WP/N (3.47)

The convention used in this memoir is that dissipation should be negative, while input power
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Figure 3.7: Stationary solution of the reference example. Left: dimensional residue torque contributions. Right:
non-dimensional friction torque Ca, found using a linear extrapolation of table values given in reference [48]

is positive. Therefore, the contributions due to the planet carrier can easily be expressed as:

WP/R = CP/R · ωr/p = CP/R · λ ωs/n (3.48)

WP/S = CP/S · ωs/p = CP/S · (1− ε) ωs/n (3.49)

WP/N = CP/N · ωn/p = −CP/N · ε ωs/n (3.50)

where λ is a kinematic variable related to the slip ratio ε by the perfect gears Eq. 2.4.

For the I and J contact wrenches, purely normal loads should not dissipate any power
because surfaces do not interpenetrate and there is no relative movement in this direction.
Furthermore, spin torques were computed as the sum of local sliding friction moments, so we
must avoid counting this contribution twice. In the end, the power dissipated within the contact
areas should be calculated as:

WM = −
∫
d

−→
TD ·−→vD ≈ −

6NM

πN1N2

∑µD
√

1−
(
t1D
a

)2

−
(
t2D
b

)2

·
√(−→vD · −→t1)2 +

(−→vD · −→t2)2


(3.51)
where M is either I or J and the normal component of the local sliding velocity field was
neglected (−→vD · −→nM ≈ 0) for all the discretization points shown in Fig. 2.7.

It would be interesting to see how WI and WJ vary with the number of discretization points,
to ensure that the value N1 = N2 = 21 specified in table 3.2 is high enough to guarantee accurate
results. As shown in Fig. 3.8, the numerical dissipated power calculated using Eq. 3.51 converges
relatively fast and sufficient precision is reached for N1 = N2 = 21 points. For practical reasons,
the figure displays results for both the Jacod and Coulomb friction models. While the τ0 and µa
values have been set according to our best understanding of the real mechanism, it is important
to remember that the model is not set in stone and depends on the user input.

Figure 3.8 illustrates another important result: for N1 = N2 = 1, the predicted power
dissipation is very bad. In this case, contact areas are not discretized; in other words, single
point contacts are considered. Therefore, spin torques at both I and J are assumed to be nil,
according to Eq. 3.10. Although this simplifying assumption might appear tempting and is used
by the most advanced numerical models currently available in literature [28], Fig. 3.8 clearly
shows that the corresponding results are incorrect. Spin torques cannot be neglected in terms
of power dissipation.
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Figure 3.8: Power dissipated at a single I or J contact for the reference example. Friction model comparison for
increasing N1 = N2 discretization points.

3.2.9 Efficiency

The second method for calculating the total power dissipated by the PRS makes use of the
mechanism efficiency, defined as:

H = −
Wuseful

Winput
=


−
FN żn/s

CSωs/n
=

FN ls
2πCS

if standard PRS

−
FS żs/n

CNωn/s
=

FSls
2πCN

if inverted PRS

(3.52)

where the stable displacement Eq. 2.5 has been used. Also note that the two expressions for
standard and inverted PRS are in fact equivalent for the equilibrium value of the slip ratio, since
the external forces FS and FN on the screw and nut were considered to be equal in modulus
and of opposite sign (Eq. 3.1) and the same was numerically found to be true for CS and CN ,
as mentioned in the previous section.

The total power dissipated by the mechanism can then be expressed as:

Wt = −Winput −Wuseful = (H − 1)Winput =

{
(H − 1)CSωs/n if standard PRS

−(H − 1)CNωs/n if inverted PRS
(3.53)

and again, the formulas for standard and inverted PRS are equivalent when ε takes the stationary
value determined by the numerical model.

Compared to the first method which consists in calculating and summing up all the individual
contributions, the second option only needs to determine the external torque CS or CN on the
screw or nut (Eq. 3.30 – 3.31). The other variables are input parameters, according to the
example given in table 3.2. Therefore, the two methods are fundamentally different, but should
lead to the same result. In practice, we can verify that it is always the case, within numerical
error. The only required condition is that ε takes the calculated equilibrium value and is not
imposed differently by the user. This numerical equivalence of the two options confirms the
reliability of the proposed model.

3.3 Parametric study

In this section, we attempt to identify new ways of improving the mechanism performance by
analyzing the effect of different design parameters on efficiency and dissipated power. We use
the example in table 3.2 as a reference for numerical simulations, in which parameters judged
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important are varied one at a time. As a first approach, we will stick to standard PRS and
always use the design method to define the mechanism geometry.

For the reference example, the numerical model predicts an efficiency value of 78.6% for the
stationary regime. Keeping the other parameters constant, the nominal screw diameter is then
varied and results are plotted according to Fig. 3.9. The five power contributions of individual
friction sources are stacked as percentages with respect to the total value in the reference case.
The figure also plots the measurement performed on the test bench described in Fig. 2.4.

Figure 3.9: Relative power dissipation Wt/W
ref
t and efficiency H (as percentages) for different values of the screw

nominal diameter. Contributions from the 5 friction sources are stacked. Reference example marked with yellow.
Measured values marked with +.

First of all, we notice that more than 90% of the power is dissipated through the roller-screw
contacts. The contribution of spin at the roller-nut interface is much smaller, but cannot be
neglected. Of course, this can only be true for a standard PRS and we would expect things
to work the other way around for the inverted type. Furthermore, due to the relatively large
eccentricity for the P/R journal bearing (eb = 0.1 mm), the corresponding power contribution
is very small, unlike what is mentioned in current literature [28].

Secondly, the dissipated power seems to decrease slightly as the screw diameter increases,
while efficiency is more or less constant. This might be a bit surprising, but makes sense since
larger mechanisms require less torque from the motor to obtain the same axial force FN .

Finally, the experimental value falls relatively close to the predicted numerical result, which
indicates that the chosen Eyring stress τ0 = 12 MPa was not too bad. Of course, it remains
possible for us to perform a finer adjustment of friction coefficients, so that numerical values fall
exactly on the measured ones, but the interest of such a study would be limited. The goal here
is to observe major tendencies and identify possible design solutions.

For the other studied parameters, the corresponding power-efficiency figures are shown in
appendix C to facilitate reading. In terms of geometry, these parameters include the screw lead,
normal pressure angle, screw and roller profile curvatures and the number of rollers. Some of
the friction inputs are then investigated, like the P/R bearing eccentricity eb and the auxiliary
torque CP/N , as well as the ambient viscosity and Eyring stress of the lubricant. Finally, we
analyze the influence of loading conditions in terms of input speed on the screw and external
force on the nut.

Results show that PRS efficiency is relatively constant for most of these parameter variations,
except lubrication variables: the ambient viscosity η0 and the Eyring stress τ0. Increasing these
values means that friction coefficients are higher, which lowers the mechanism efficiency. More
precise variation laws could be deduced by plotting more points, but a first approximation of
the results in the figures allows us to say that:

H ≈ H(τ0, η0) such that

{
∂H/∂τ0 = cst. < 0

∂H/∂ ln η0 = cst. < 0
and

{
τ0 = 0⇒ H = 1 ∀η0
η0 = 0⇒ H = 1 ∀τ0

(3.54)
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which means that efficiency could be approximated by a function of the form:

H ≈ B1 −B2τ0 ln η0 (3.55)

where τ0 is in MPa, η0 in mPa·s and B1,2 are two constants determined from the figures:
B1 = 98.1% and B2 = 0.32%. Of course, Eq. 3.55 is not as accurate as the complete numerical
model, but it provides an easy to use formula which points out the relative influence of important
parameters.

The dissipated power, on the other hand, is affected by more inputs than efficiency. As
shown in appendix C, Wt increases linearly with the screw speed ωs/n and the external force
on the nut FN . Both of these curves pass by the (0, 0) origin, as expected. Since the reference
example used here was chosen to be a match of the real PRS used in the kinematic experiments,
we were able to plot some of the measurement points as well and thus confirm the observed
numerical behavior.

Obviously, lubrication properties influence power dissipation too and we can observe the
proportionality between Wt and the Eyring stress τ0, as well as the logarithm of ambient viscosity
ln η0. Any auxiliary friction torques like CP/N also seem to increase Wt linearly, although their
contribution is questionable in view of the results obtained for the radial play 2eb. This parameter
is used in the journal bearing model to calculate friction between roller heads and the planet
carrier. We can see that precise machining is required to cause an amount of dissipated power
comparable to that of R/N contact spin. Besides, this scenario is unlikely to occur in practice
because the carrier is usually designed with relatively high radial plays, between 0.2 and 0.5
mm.

The stationary equilibrium model developed in the current chapter was mainly put together
in hopes of identifying opportunities for improving the mechanism performance. Geometrical
parameters were our best bet, yet the numerical results shown in appendix C proved somewhat
disappointing. It is shown that profile curvatures and the number of rollers do not decrease power
dissipation significantly enough to make a difference. The customary value of the normal pressure
angle (45◦) also appears to be good enough. The only geometrical parameter to considerably
affect Wt remains the screw (and nut) lead lS . Higher leads increase the useful power output,
but also dissipate more, such that in the end efficiency remains constant.

3.4 Conclusion

In this chapter, we investigate the numerical prediction of PRS efficiency and dissipated power.
A stationary force equilibrium model is developed, which distinguishes five different friction
sources. Results are used to perform a parametric study which identifies the important variables
and their relative influence. The main purpose of this study is to uncover design options which
could boost roller screw performance.

The model is specifically built to work for both standard and inverted PRS, such that the slip
ratio ε can be either imposed by the user or calculated numerically. It is assumed that all rollers
are identical, with parallel axes situated at a fixed distance from the central screw-nut-carrier
axis. Only the actuator mode is considered, where rotation is transformed into translation.

Threaded contact forces are a combination of normal loads, sliding friction and spin torques.
It is shown that sliding friction is usually responsible for more than 90% of the total power dis-
sipated by the mechanism. Since normal loads do not dissipate at all, the remaining percentage
gets split between spin and any auxiliary friction torques caused by the planet carrier.

The force equilibrium model also shows that the combined effects of contact forces push the
rollers towards the nut for a standard PRS and towards the screw for inverted PRS. In the
static case, this action is balanced by the presence of the carrier. Steady-state equilibrium, on
the other hand, additionally requires gears to be taken into account as active components.

The obtained numerical values for the slip ratio are in accordance with the kinematic model
and experiments described in the previous chapter. Two different ways of calculating power
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dissipation are used to reach an identical result and thus ensure the accuracy of the proposed
method.

Parametric study results show that PRS efficiency is high (around 80%), but difficult to
control. Only lubricant properties seem to affect it significantly. Power dissipation is influenced
by a higher number of parameters, including the screw diameter, lead, speed and input force.
Nevertheless, the list remains small and most of these parameters are usually imposed by the
application. More accessible design variables, like profile curvatures, the pressure angle or the
number of rollers have a negligible effect on the dissipated power, which leaves designers with
limited options when trying to improve mechanism performance.
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Main conclusions

Instead of rewriting the detailed conclusions from each chapter using different words, we prefer
providing the reader with a summarizing list of the most important scientific results, as well as
some ideas for future research.

1. It is convenient to use the planet carrier as a reference, because the radial and circumfer-
ential coordinates of the contact points remain constant in this frame when components
move. Furthermore, these coordinates have to be determined numerically, since it is im-
possible to obtain an analytical solution directly, without making approximations.

2. Current literature intuitively assumes that principal directions of curvature for threaded
surfaces are known. In the current work, differential geometry is used to show that the
result should be different.

3. Threaded contacts in a PRS are not necessarily non-conforming. However, conforming
curvatures are usually small such that the classic Hertzian theory can still be applied if
sufficient care is taken to modify some of the equations.

4. During the roller screw design process, at least one of the threaded components needs to be
rectified in order to guarantee backlash. This operation consists in adjusting the nominal
diameter of the screw (for standard PRS) or the nut (for inverted PRS), which results in
slightly different values from the rounded numbers normally found in product catalogs.

5. The minimum and maximum threaded profile radii should vary with pitch, such that the
roller-screw contact points in a standard PRS are found closer to the outer radius when
pitch increases.

6. The stationary regime kinematics in a PRS can be fully defined by only two variables:
the input rotation speed and a non-dimensional ratio which quantifies the amount of cir-
cumferential slip present in the roller screw. Furthermore, this ratio places the mechanism
somewhere between a friction screw and an epicyclic gear train and can be measured
through the rotation speed of the planet carrier.

7. Slip cannot be entirely eliminated in a roller screw, but it is possible to calculate its
minimum amount. The corresponding value of the slip ratio only depends on geometrical
quantities.

8. Experiments show that the amount of slip in real PRS is very close to the minimal value
calculated theoretically, which leaves little room for improvement in terms of steady-state
kinematics. Numerical results exhibit the same tendency.

9. The roller-screw and roller-nut interfaces are very different in terms of local kinematics:
one is characterized by a movement of pure spin, while the other has a spin which gets
dissolved in a much more important field of uniform sliding.

10. The sliding velocity vector at the center of contact areas is usually not aligned with the
principal directions of the ellipse. Depending on profile curvatures, the Hertzian ellipse
can turn anywhere between 0 and 90◦ around the contact point. This makes classic EHL
lubrication theory difficult to apply.
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11. Local friction coefficients can be obtained using numerical, non-linear lubrication models.
However, results show that the field is relatively uniform, which means that a simple
Coulomb friction model could also be used without too much inaccuracy.

12. In the static case, it is impossible to satisfy all the force equilibrium equations considering
only the screw, the rollers and the nut. For the steady-state scenario, other components
such as gears and the planet carrier must also be taken into account.

13. Sliding friction is responsible for more than 90% of the total power dissipated by the
mechanism. Spin has the second largest contribution and should not be neglected. Other
friction sources, mainly related to the planet carrier, only have a small effect.

14. Roller screw efficiency is high (around 80%), but very difficult to control. It is almost
independent of geometrical parameters and loading; only the lubrication conditions seem
to influence it significantly.

Future research

1. In this work, the influence of local deformations on the global geometry and location of the
contact points was neglected. In other words, solids are considered to be infinitely rigid
and the Hertzian theory is only applied as a result. Future studies could include thread
deflection as a secondary effect of normal loads. A more expensive way of considering
deformable solids would be to use finite elements.

2. The test bench presented in Fig. 2.4 could be improved by using a motor which allows
a wider range of rotation speeds to be studied. Unfortunately, the hydraulic system used
to load the nut axially cannot impose low forces at high speeds, which is why the corre-
sponding experimental points in Fig. 2.5 are missing. A different measurement strategy
could avoid this problem.

3. The HFRR device used in friction coefficient measurements was not well adapted for the
high pressures (2.5 GPa) commonly encountered in roller screws. In order to simulate
these threaded contacts better, a specific apparatus should be developed.

4. The lubricant remains the most influential parameter in terms of efficiency and power
dissipation, yet experimental data was only obtained for two greases in the current work.
A wider range of samples could be studied in the future.

5. The amount of power dissipated by the mechanism could be directly used as an input for
a thermal model of the roller screw. This study could uncover solutions for reducing the
fast rise in temperature when the PRS is heavily loaded.
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Appendix A

Contact points location algorithm

This section explains how Eq. 1.27 for the external unit normal vector at any point can be used to
deduce the location of the contact points between two threaded surfaces. We consider infinitely
rigid solids and a curved profile (convex or concave) for at least one of the surfaces. This ensures
that the contact is a collection of single points; curves would be obtained if both surfaces were
straight [13]. Some exotic curvature combinations can even lead to contacts situated beyond or
on the edges of the threads, but the model signals these cases out with an error.

Since the resulting non-linear equations have to be solved numerically, explanations are
given for a very efficient Newton-Raphson algorithm which computes the unique solution when
it exists. The case of two external threads is used for presenting the algorithm, but the model
works and has been verified for internal threads as well if the user specifies the shape of the air
volume contained within (complementary volume). The algorithm only yields the contact points
location in the xy (radial-circumferential) plane. The axial z coordinates depend on backlash
and are deduced separately.

Figure A.1: Location of the I2 contact point in the xy plane in the general case

Figure A.1 shows the axial zx cut of the two external, right-handed threads in contact. As
shown by Jones and Velinsky [33], the contact points do not necessarily exist in this plane. If the
two thread axes remain parallel, the points are generally on a line which passes through I and is
also parallel to the axes. This is due to the difference in helix angles and/or profile curvatures.
In the general case, it is possible to build the triangle AIB with the shown dimensions.

Although reference [33] presents a method for calculating the coordinates of point I, it uses
one geometrical assumption that we found inaccurate. In particular, it assumes that the two
normal surface vectors are contained in the same predefined plane, perpendicular to the helix
of surface 1. The current work does not make this assumption and uses the general Eq. 1.27
deduced previously.

Some authors have tried to find the coordinates of point I (called ”meshing point” [34]) using
purely analytical formulas, but they had to use small approximations to neglect some terms in
the expression. Others have proposed numerical methods employing a grid [36]. A comparison
with both the results obtained in reference [34] and [36] is provided in the examples of the first
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chapter in the current work.

Here, the analysis focuses on finding the coordinates of point I in the xy plane, i.e. unknowns
rC1, rC2, θC1, θC2. The distance c between the two axes is taken as a parameter, as well as both
surface geometries. By default, all vectors are expressed in Cartesian (−→x ,−→y ,−→z ) coordinates. A
basic analysis of triangle AIB yields the following:rC1 0

0 rC1

 ·
cos θC1

sin θC1

−
rC2 0

0 rC2

 ·
cos θC2

sin θC2

 =

c
0

 (A.1)

This expression, however, only contains two equations and in order to solve for the four
unknowns we need at least two more. They can be obtained by writing that the corresponding
surface normals are opposite vectors at the point of contact, yielding:

1√√√√( h′1
cosβ1

)2
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l1

2πrC1

)2

+ 1
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2πrC1
sin θC1

h′1
cosβ1

sin θC1 +
γ1l1

2πrC1
cos θC1

−γ1


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=
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and since contact takes place between the top face of one thread and the bottom of the other:

γ1 = −γ2 (A.3)

These considerations are true for the contact between two externally threaded shafts. If one
of the threads is internal, we would impose normals and γ’s to be equal instead of opposite.
However, it can be shown that this does not change the three resulting equations, which can be
written in all cases under the form:

(
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
(A.4)

Only two of these equations are independent, but if we add equation A.1 we obtain a total of
four independent equations to solve for the location of the contact points. As the 4x4 system is
non-linear, however, it requires a numerical algorithm to approximate the solution when it exists.
Computation time can be highly improved by eliminating the angles θC1 and θC2 analytically
in order to obtain a 2x2 system. This can be done by expressing the θC1 vector in equation A.4
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as a function of the θC2 vector and then replacing the result in equation A.1. We obtain:[
−rC2 − v1 u1
−u1 −rC2 − v1

]
·
[
cos θC2

sin θC2

]
=

[
c
0

]
where (A.5)
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which means that angle θC2 is such that:
cos θC2
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Using the fact that sin2 θC2 + cos2 θC2 = 1, an interesting relationship is obtained:

u21 + (rC2 + v1)
2 = c2 (A.8)

which can be developed by replacing the u1 and v1 notations to get:
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Furthermore, Eq. A.4 can be used to write:
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The functions f1 and f2 are dimensionless and must be nil at the location of the contact point.
Together, they constitute the 2x2 system we have to solve numerically. For the purposes of this
work, we chose to employ a Newton-Raphson algorithm and to calculate the necessary Jacobian
matrix analytically by differentiating f1 and f2:
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The algorithm was tested for the whole range of PRS geometries available on the market [1]
and in all cases it was found that ten iterations are largely enough to achieve convergence with a
machine precision relative error (< 1e−13) on f1 and f2. Calculations were performed such that
one of the two surfaces always had a straight profile. For more complex curvature combinations,
the program may require a few hundred iterations to converge, but computing time remains
negligible on a modern desktop computer.
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The solution does not always exist: imagine the case of two external, concave threads, for
example. We also tested a few special cases when the algorithm converges, but the solution is
not physical. Fake solutions can be avoided by verifying for both radii of contact that:

rmin < rC < rmax (A.15)

where rmin and rmax are the minimum and maximum profile radii for the corresponding surface.
The angles θC1, θC2 ∈ [−π, π] can be easily deduced once rC1 and rC2 are known. From the

above calculations, it can be shown that:
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where u1 and v1 are functions of the two contact radii and basic geometrical parameters, as
detailed before. A graphical interpretation of these quantities is shown in Fig. A.1: distance
AH1 is equivalent to u1 in absolute value and the difference BH1−rC2 is equivalent to v1. Using
the properties of triangles AH1I and BH2I which are similar, we can rediscover the relationships
presented throughout this section.

It is worth it to note that if both γ1 and γ2 are switched, v1 does not change sign while
u1 does. Furthermore, the contact radii stay the same, while contact angles become opposite.
An important symmetry is thus deduced: the 1-top/2-bottom1 contact location can be deduced
from the 1-bottom/2-top configuration simply by changing the sign of the contact angles, while
keeping the radii constant.

11 and 2 refer to surfaces 1 and 2 in Fig. A.1
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Appendix B

Principal curvatures and directions

The current section explains how principal curvatures and directions of curvature can be calcu-
lated at any point on a threaded surface. These results are important because they represent
inputs to the Hertzian elliptical model, which proposes a way of determining the shape, size
and orientation of the contact areas. In the current work, differential geometry equations are
applied to convex, straight or concave threaded surfaces which can be modeled by Eq. 2.2.
The curvature results we obtain are found to be in agreement with current literature. However,
directions of curvature are different and possibly less intuitive. While our results come from the
direct application of classical theory, literature usually uses pre-made assumptions.

Let us first consider an externally threaded shaft centered on the z axis, like the one in
Fig. 1.1. When the surface equation zm = f(rm, θm) is known, it is possible to define a
parametrization such that the position of point M can be expressed as a vector-valued function:

−→ω : R2 → R3 (B.1)

(rm, θm)→

rm0
zm


cyl

=

rm cos θm
rm sin θm
f(rm, θm)


xyz

The partial derivatives of −→ω with respect to rm and θm are denoted −→ωr and −→ωθ, respectively.
Both of them are surface tangent vectors at M and thus constitute a basis for the tangent
plane [49]. Depending on the equation, they are not always perpendicular, but can be used to
write the surface fundamental coefficients:

E = −→ωr · −→ωr L = −→ωrr · −→n

F = −→ωr · −→ωθ M = −→ωrθ · −→n

G = −→ωθ · −→ωθ N = −→ωθθ · −→n

(B.2)

where −→n denotes a surface unit normal vector at point M such that:

−→n =
−→ωr ×−→ωθ
||−→ωr ×−→ωθ||

(B.3)

The fundamental coefficients are used to define the first and second fundamental forms of
the surface, as well as the shape operator (or Weingarten map [49]) S such that:

I =

[
E F
F G

]
II =

[
L M
M N

]
S = I−1 · II (B.4)

It can be proven that the Weingarten map is self-adjoint on the tangent space [49], which
means that its corresponding matrix S is Hermitian in an orthonormal basis. We can thus diago-
nalize S, its eigenvalues are always real and the corresponding eigenvectors always perpendicular.
They are denoted principal curvatures and principal directions of curvature, respectively. As
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sketched in Fig. 1.11, these quantities represent the widest and thinnest section view curves we
would obtain by cutting the surface with a plane containing the normal vector at M .

By definition, a curvature is the signed inverse of a radius. In order to avoid sign problems
caused by surface orientation, we use the following formula to calculate principal curvatures for
an externally threaded surface:

ρ1,2 = γλ1,2 (B.5)

where λ1,2 are the computed eigenvalues of matrix S. The symbol γ is a function equal to
−1 for the top face of the thread and 1 for the bottom face. Adding γ provides significant
advantage, because it makes the principal curvatures independent of the side chosen on the
thread. This way, bumped/convex threads will always have positive principal curvatures, while
hollow/concave threads will have at least one curvature which is negative. For straight profiles
like the one used in Fig. 1.1, we expect one curvature to be close to 0 (due to the shape of the
profile) and the other close to the positive inverse of the pitch radius (due to the cylindrical
shape of the shaft).

As for the corresponding principal directions of curvature, they are calculated using:

−→
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v11
−→ωr + v12

−→ωθ
||v11−→ωr + v12

−→ωθ||
−→
t2 =

v21
−→ωr + v22

−→ωθ
||v21−→ωr + v22

−→ωθ||
(B.6)

where v1 and v2 are the computed right eigenvectors of matrix S and the second subscript
denotes their first or second component. Under matrix form, this can be expressed as:

V =

[
v11 v21
v12 v22

]
D =

[
λ1 0
0 λ2

]
D = V −1 · S · V (B.7)

Note that the above equations do not impose a specific order for ρ1 and ρ2 and the corre-
sponding directions. In practice, however, it is useful to establish a rule for verifying results and
separating different cases. For example, we can decide that the first curvature should always be
the minimum of the two in absolute value, i.e.

|ρ1| ≤ |ρ2| (B.8)

and interchange the two curvatures/directions whenever this condition is not satisfied. This
way, we ensure that the first curvature is always the closest to the curvature of a plane, which
has an absolute minimal value of 0.

For the particular case of surfaces which can be modeled by Eq. 1.22, the derivatives of the
vector-valued function −→ω are expressed as:
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with all vectors in cylindrical coordinates. This leads to the following fundamental coefficients:
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which can be calculated at any point M(rm, θm, zm) on the surface. However, we can see that
only the radius rm appears as a variable. This is due to the axisymmetry of the threaded surface,
which makes the fundamental coefficients independent of the θm coordinate.

Throughout this section, we only discussed the case of an external thread. For internal
threads (the nut in a roller screw, for example), it is possible to consider the geometry of the
space contained within (complementary volume). The theory presented above allows to calculate
its principal directions and curvatures, denoted

−→
t1,2 and ρ1,2, respectively. And since it only takes

a change in orientation to obtain the corresponding internally threaded surface, we can state
that:

ρ1,2 internal = −ρ1,2 (B.11)
−→
t1,2 internal =

−→
t1,2 (B.12)

This makes the method detailed in this thesis applicable to both internal and external threads.

B.1 Numerical application

In order to verify the equations proposed earlier, we implemented them in a Matlab program
which draws the surface geometry, as shown in Fig. B.1. The figure was obtained by simulating
a threaded shaft with a profile based on Eq. 1.22 and the parameters presented in table B.1.

r l n αn rB γ rm θm zm

5mm 2mm 1 45◦
r

sinαn
= 7.07mm 1 5.0178mm −172.7935◦ −1.4778 mm

Table B.1: Surface parameters and chosen point coordinates used for drawing Fig. B.1

As it can be seen from the figure, the principal directions of curvature
−→
t1 and

−→
t2 are per-

pendicular at the randomly chosen point on the surface. However, they point in directions
which cannot be easily guessed without performing the calculation. This is contradictory to the
ideas proposed by other authors who studied principal curvatures in the context of roller screws.
Jones and Velinsky [33], for example, assume that

−→
t2 is along the thread’s helix, while

−→
t1 is

contained in the normal plane, where we defined the profile shape. Ma et al. [12] do not give
specific details for the principal directions, but calculate curvatures using a different approach.
A comparison with both the results obtained in [33] and [12] is given in table B.2. In all cases,
the same geometry was used, i.e. the one described in table B.1.

The Gaussian curvature K and mean curvature H used in reference [33] are defined using
the fundamental coefficients as:

K =
LN −M2

EG− F 2
; H =

2FM − (EN +GL)

2(EG− F 2)
(B.13)
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Figure B.1: Principal directions of curvature at a chosen point on the threaded surface

As pointed out by the results in table B.2, we obtain identical values in terms of principal
curvatures with reference [33] when the same fundamental coefficients are used. This validates
both methods. In terms of principal directions, however, our solution is different. Even though
it is less intuitive, we believe it to be more systematic and general, since it was calculated using
fundamental properties of differential geometry, instead of assuming it from the start.

The fact that we obtain different principal directions has a direct impact on the orientation of
the contact ellipse with respect to the relative surface velocity vector. This might be important
if lubrication calculations are to be performed on these elliptical contacts, as the principal axes
of the ellipse will generally not be aligned with the sliding velocity direction.

ρ1 ρ2

formula value (mm−1) formula value (mm−1)

current work Eq. B.5 0.1289 Eq. B.5 0.1542

Jones & Velinsky [33] H−
√
H2 −K 0.1289 H+

√
H2 −K 0.1542

Ma et al. [12] 1/rB 0.1414 1/rB 0.1414

Table B.2: Principal curvature results - Comparison with literature
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Appendix C

Parametric study figures
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