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Résumeé

Les Structures atomiques Quasi-périodiques (QP) possedent des propriétés particulieres,
notamment dans le domaine vibrationnel. Il pourrait étre intéressant de pouvoir transférer
ces propriétés a des méta-matériaux macroscopiques. Des réseaux de poutres quasi-périodiques
2D sont étudiés dans cette these dans le cadre du modele élément finis (EF) poutre Euler
Bernoulli. Ces réseaux de poutres peuvent facilement étre produits par fabrication additive
ou par découpe laser. Il est possible de faire varier I’élancement des poutres (le ratio hau-
teur sur longueur) qui est un parametre intéressant pour modifier la réponse mécanique du
réseau. En utilisant la méthode EF, I’influence de 1’élancement des poutres sur la réponse
vibratoire des réseaux de poutres QP est étudiée. La méthode numérique Kernel Polyno-
mial (KPM) est adaptée avec succes de la dynamique moléculaire aux réseaux de poutres
pour étudier leurs modes de vibration sans avoir a diagonaliser completement la matrice
dynamique. Les réseaux de poutres QP présentent des propriétés similaires a leur compere
atomique : en particulier la localisation de modes sur des sous-structures et une relation
de dispersion hiérarchisée.

Le comportement a la fracture est aussi étudié étant donné que les symétries présentes
dans les QP pourraient permettre des réseaux de poutres ne présentant pas de plans faibles
pour la propagation de fissures. Cela a été démontré d’apres des calculs EF statiques avec
un critere de fracture fragile sur 1’énergie de déformation. Les simulations statiques ne
suffisent pas car elles ne peuvent pas capturer les phénomenes dynamiques complexes qui
apparaissent lors de la fissuration fragile. Les propriétés de vibration du QP pourraient
aussi avoir un impact sur la propagation dynamique de fissure. Un modele dynamique
de fissuration est développé afin d’étudier I'impact de I’élancement sur la capacité des
réseaux de poutres QP a dissiper de I’énergie par fissuration .

Finalement une méthode Coarse Graining est développée pour identifier un milieu Cos-
serat continu équivalant au réseau de poutres QP pour différentes échelles. Cette méthode
permet d’identifier la densité, les déformations, les contraintes et donc les modules d’élasticité
du milieu Cosserat équivalent, permettant ainsi une meilleure compréhension du rdle des
sous structures précédemment identifiées.

MOTS CLES: Quasi-periodique, Eléments Finis, Réseaux de Poutres , Vibration ,
Fracture, Coarse Graining.
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Abstract

Quasi periodic (QP) structures have shown peculiar properties in the atomistic do-
main, especially the vibrational one. It could be interesting to be able to transpose these
properties in macroscopic meta-materials. Quasi periodic 2D beam lattices are studied in
this thesis due to the simplicity of the Euler Bernoulli finite element (FE) model. These
beam lattices can easily be produced by additive manufacturing or by laser cutting. It
is possible to vary the beam slenderness (i.e the ratio of height over length) that is a
interesting parameter to modify the mechanical response of the lattice. Using finite ele-
ment method, the influence of the beam slenderness over the vibration behavior of the
QP beam lattices will be studied. The Kernel Polynomial numerical Method (KPM) is
successfully adapted from molecular dynamics simulations in order to study vibrational
modes of FE beam lattices without having to fully diagonalize the dynamical matrix. The
QP lattices show similar properties as their atomic counterpart e.g mode localization over
sub-stuctures and hierarchical dispersion relation.

The fracture behavior is also studied, as the special symmetries allowed by the quasi per-
iodicity could result in beam lattices without weak planes for crack propagation. It was
proved to be true from static FE simulations with a brittle strain energy breaking criterion.
Static simulations were not enough and do not grasp the complex dynamical phenomena
taking place in brittle fracture. A dynamic crack propagation model was thus developed.
The vibrational properties of quasi periodic structures could also have an impact on the
dynamic crack propagation. Several simulations are run in order to study the impact of
the slenderness on the energy dissipated by fracture of QP lattices.

Finally, a coarse graining method (CG) was developed to identify a continuous Cosserat
medium at different scales from the FE beam model. This CG method allows to identify,
density, strain , stress and elastic moduli of an equivalent continuous Cosserat. This allows
a better understanding of the role of previously identified characteristic sub structures.

KEYWORDS: Quasi-periodic,Finite Elements, Beam lattices , Vibration ,Fracture,
Coarse Graining.
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Introduction

Quasi-periodic (QP) structures have been first studied in the mathematical domain.
Although Roger Penrose is not the first to have discovered quasi-periodic tilings, he is the
first who found simpler tilings with fewer different tiles. After the golden triangles and
kite & dart ones, many other quasi periodic tilings have been discovered and new ways
of creating them too, such as projection from higher dimension allowing also to create
periodic approximations ([?] and [?]). Quasi-periodic structures are structures of interest
due to the peculiar properties inherited from their quasi-periodicity. Their organization at
different scales or the symmetries that they support differentiate them from both random
and periodic organizations. The kite & dart tilings for exemple have regained interest
after the discovery of atomistic samples with the same structures [?]. Quasi-periodic
atomic samples are called quasi-crystals.

Quasi-crystals have been widely studied for their atomistic dynamics, phononic,
magnetic and electronic properties [?, ?, ?]. These structures exhibit complex vibrational
behavior, including a set of frequency ranges in which no propagative wave exists [?, ?],
i.e. band gaps. Band gaps can lead to interesting applications in various domains [?, ?].
Such materials can create band gap in their vibrational mechanical response while
being isotropic regarding elasticity or wave propagation for example whereas for having
such interesting properties, their periodic counterpart are anisotropic. This considerably
increases the difficulty for modeling their behaviour and optimizing their design.

Similar properties can also be found in meta-materials, in which an internal
micro-scale architectured structure can create interesting behavior at a larger scale [?].
Meta-materials can be created in various ways, often by assembling simple elements in
a periodic or quasi-periodic pattern (cylindrical rod in a fluid is a common example) in
order to exhibit physical properties resulting from the chosen substructure more than
from their constitutive parts. Meta-materials have been first studied by physicists for
their electromagnetic, optical and thermodynamic properties, therefore it is often called
mechanical meta-material when the mechanical properties are studied. As a particular
case, lattice materials are interesting in many fields of application because of their low
density. Due to this low density, the question regarding their mechanical properties and
their integrity is important.

The recent development of additive manufacturing gives the opportunity to produce
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metamaterials like closed cellular materials efficiently,i.e. with a perfect control of
the cell shape and distribution. Additive manufactured metamaterials can be designed
to exhibit unusual macroscopic behavior due to their internal structure as in ([?] and
[?]). While, their effective elastic properties and energy absorption capabilities under
compression have been widely studied [?, ?], very little has been done on their fracture
behavior. Furthermore, in the case of a periodic lattice, weak orientations exist [?], giving
rise to directionality effects that intrinsically weaken this kind of architectures.

Most of the work that has been done up to now focuses on the identification of
fracture toughness K. used in theory of linear elastic fracture mechanics (LEFM) ([?]
[?]), although the possiblility of such a continuous description is still a matter of debate.
Indeed the local phenomena taking place in the fracture of continuous linear-elastic
materials and in fracture of beam lattices are completely different and it can become
impossible to identify a fracture toughness K.. Moreover, the scale ratio between the
crack size and the micro structure in beam lattices can be problematic to the use of LEFM.
In some works the fracture behavior is identified from crack propagation simulation on
an homogenized continuous material ([?] and [?]) which is once again a questionable
hypothesis. More can be found in this review [?].

Being able to model beam lattices by a continuous elastic material is a needed
step in order to simplify numerical models and to shorten simulation times. Classical
homogenization methods allow identifying homogeneous medium easily only for
periodic structures [?] and without the ability to take into account heterogeneity that
has a dominant role in stress concentration, crack initiation and crack propagation [?]
[?]. It has been shown that classical elasticity is not always able to exhibit the peculiar
mechanical properties of architectured materials, and that generalized continuum is
a better candidate [?] [?]. Such continuum introduces additional degrees of freedom
(Cosserat, micomorphic media [?]...) or higher order gradients of the displacement field
(second gradient materials [?]...). Coarse Graining (CG) methods allow the identification
of an equivalent continuous material while keeping heterogeneity at the desired scale for
any type of discrete structures (periodic, amorphous or quasi-periodic). This method has
already been applied at the atomic scale or for granular materials in order to identify a
classic or Cosserat equivalent continuum [?, ?].

The analysis of lattice materials is usually limited to periodic patterns. But, using
additive manufacturing there is no shape limitation and quasi-periodic arrangements can
be obtained. Considering that quasi-periodic structures have demonstrated unique proper-
ties regarding various physical phenomena (e.g. to store energy in local non-propagative
vibration modes or to resist to the propagation of defects), it should be interesting to
produce additive manufactured quasi-periodic lattices that inherit outstanding properties
from their specific arrangement. Moreover, the macroscopic beam structure offers
additional possibilities in terms of large scale interactions and control parameters for
tuning the vibrational properties.
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The mechanical and vibrational properties of quasi-periodic and of amorphous
structures are related to complex mathematical problems due to the impossibility of
periodic simplifications. Therefore, in order to solve these problems, big size matrix
problems have to be dealt with. Moreover, usual Fourier transform-based computational
tools, or Bloch Wave expansions that are very interesting for periodic structures [?]
would be very unefficient for such systems.

In order to study the vibrational, mechanical and dynamic failure of quasi-periodic
beam lattices, Euler-Bernoulli finite element (FE) beams will be used as a modeling tool
and several numerical methods will be developed in order to overcome the special chal-
lenges due to quasi-periodic organizations.

A first chapter will be dedicated to the reminder of models used in this work i.e. FE
euler beam model, discrete system vibrations and Cosserat medium characteristics. A se-
cond chapter will focus on the vibrational studies. The numerical approaches followed in
this thesis deal with completely resolved calculations on very large matrices, thus avoiding
the required simplifications associated to (even highly and recently elaborated) homoge-
neization tools as in [?]. In the later case, the degree of spatial resolution that depends
on the waves frequency is crucial for an accurate description, as well as the hypotheses
concerning the order of expansion of the constitutive laws in the different order parame-
ters (displacements and rotations of beam nodes for example) [?]. In contrary, our method
allows for direct insights into the dynamical behaviour at any vibrational frequency of
non-periodic systems, including the description of possible localized vibrations that are
difficult to identify and to take into account in homogeneization procedures [?, ?, ?].

A third chapter will be dedicated to crack propagation in FE beam model, using a
strain energy failure criterion. A static and dynamic FE crack propagation model is deve-
loped in order to simulate the fracture of periodic and quasi periodic beam lattices. The
influence of slenderness on the energy dissipation behavior of QP lattices will be studied
to analyze the influence of the elementary properties of the lattice onto its macroscopic
behaviour.

The last chapter focuses on the development of a coherent coarse graining (CG) me-
thod to identify an equivalent continuous Cosserat medium from FE beam lattice simu-
lations. The CG method will be applied firstly on periodic lattice for validation purposes
and then to the QP lattices to better understand the properties emerging for the peculiar
organization of the quasi periodic lattices at different scales.
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1. Models

1.1 Quasi-Periodic Structures

Quasi periodic structures have regained interest after the discovery of quasi crystals
by Dan Shetchman in 1982. He observed an alloy producing diffraction pattern with a
symmetry of order 5. The sample has a large scale organization while having a symmetry
of order 5, that is impossible for classical crystals. The atomic organization thus needs
to be quasi periodic. However, quasi periodic structures have been studied previously by
mathematicians.

1.1.1 Quasi-Periodic Construction

The Fibonacci chain is a classical example of a 1D quasi periodic structure that can
be used to introduce the different ways of constructing such structures. The Fibonacci
chain is alternating long (L) and short (S) segments with the length ratio between L and
S being the golden ratio, an irrational number. A first way of constructing the chain is to
use a substitution or subdivision method : starting from a segment, at each step of the
construction each L is substituted by LS and S becomes L. 3 steps of the subdivision
method are presented in figure.1.1.

FIGURE 1.1 — 3 steps of the subdivision method to create a Fibonacci chain.

An other method to construct the Fibonacci chain is the slicing and projection
method. This method starts from a periodic grid, here a square grid. Then the grid is
sliced by a tilted line. The line is tilted at an irrational angle, here again related to the
golden ratio. The part of the grid bellow the line is removed and the nodes closest to
the line are projected onto it. This produces the Fibonacci chain. As the line is tilted at
an irrational number it is easy to see that the pattern projected onto the line will never
repeat itself. This method also allows to create periodic approximate by using a rational
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Quasi-Periodic Structures

approximation of the golden ratio. The figure.1.2 illustrates the method.

FIGURE 1.2 — Example of the slice and projection method to create a Fibonacci chain.

This last method can also be used to obtain 2D tiling by starting from a higher di-
mension grid sliced by a hyper-plane tilted at an irrational angle. This can produce the
octogonal Penrose tiling. The figure.1.3 shows a fourth approximant of the octogonal
Penrose tiling. This tiling can easily be transformed into a beam lattice by replacing each
edge by a beam.

1.1.2 QP Symmetries

One property of the QP is the uniformity. One can easily identify QP repetitions of
patterns into the QP tiling. Some of these patterns are highlighted in figure.1.4. In fact,
any pattern (as big as wanted) can be found an infinite amount of time into the infinite QP
tiling. The mean distance between these patterns increases with their size. In crystals the
distance of repetition is constant and equals to the period of the grid.

The uniformity properties imply that for any selected pattern the tiling can be transla-
ted so that the pattern is invariant by translation. Moreover several patterns can coincide
and they are separated by regions that do not match. The same can be observed for rota-
tional symmetries. It can be shown that if a two-dimensional tiling contains more than a
single point, about which an n-fold rotation (n > 2) brings it into perfect coincidence with
itself, then the tiling is necessarily periodic. Thus QP tilings having a n-fold symmetry
cannot contain more than a single point of “exact” n-fold symmetry. None the less as for
translation any patch of the rotated mesh can be found in the original mesh and patches
of coincident tiles are separated by regions of non matching tiles. This is illustrated in the
figure.1.5.
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An other way to look at symmetries is that the original and the transformed tilings
contain the same statistical distribution of patterns of arbitrary size. Two crystals whose
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FIGURE 1.5 — Superposition of translated(a) and rotated(b) 4th approximant of Penrose
lattice.

patterns densities are statistically the same in this sense are called indistinguishable, a
term which was coined by Dan Rokhsar, David Wright, and David Mermin. Only when
the crystal is periodic does the notion of indistinguishability reduce back to the traditional
notion of symmetries.

1.2 QP beam lattices

QP beam lattices could exhibit intresting mechanical beahaviour emerging from their
quasi-periodicity. Two sets of quasi periodic lattices will be studied in this thesis :

The octohedric Penrose tiling is later used for its ability to create a periodic approxi-
mant to the quasi-periodic tiling thus allowing the use of periodic boundary conditions
as suggested in [?]. It has been shown in [?] that, for ferromagnetic properties, the ap-
proximant with periodic boundary conditions closely mimics the infinite lattice properties.

And the Kite and Dart (KD) Penrose lattice is studied for it’s 5-fold symmetry but their
is no periodic approximant to this lattice. A section of the KD is shown in figure.1.6. A
5-fold symmetry ensures a isotopic behavior at large scale that can be useful for versatile
mechanical meta-material.

1.3 Beam theory

In this work we only consider 2D beam lattices thus only traction/compression and
flexural loads will be considered.
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FIGURE 1.6 — Kite and Dart beam lattices.

AR

1.3.1 Euler-Bernoulli Continuous Beam Definition

1. Models

Let us consider a beam of length L and cross section S. Any point of the beam can be

defined with [ the curvilinear abscissa along the mean path and ¢ the position of the point
in the cross section. The cross sections are assumed to stay planar. In small displacement

can be calculated as :

)

(,

the displacement vector d

hypothesis,

(1.1

( u(l)vzlt)e(l) )

Where u(l) is the longitudinal displacement of the center of S, v(/) the transverse
displacement and 6(/) the rotation of S. From this definition the strains can be expressed

as :

d(l,1)

(1.2)

eu(lt) =

0(1). It can be shown that the hypothesis of negligible shear is valid if the length

In the Euler-Bernoulli model, the shear strain energy is neglected which leads to

av(l)

dl
L of the beam is ten times bigger than the maximum transverse position t. Thus the deri-

E€;; one can obtain

vative of the transversal displacement along the mean path is equal to the rotation of the

cross section. Then by using a simple Hooke’s linear Elastic law oy,

the following relation :

10
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Beam theory

du(l) 0%v(I)
Gll(l,t):E 3 —FE 32 t (1.3)
by defining the Flexural momentum of S as :
0*v(l) , 0?v(1)
ME(1) = —/Scl,(l,t)tds — /SE S ds=ESS (1.4)

with I, = [ t2ds, We can identify the state at any point of the beam from the following
equations :

N Mfe),
A 2
ou(l)
al

Gll(l,t) = (1.5)

N(l)=EA (1.6)

and (1.4),
where A stand for the area of the section S. This constitutive law can be written in a

matrix form :

du(l)
o(l) = { z\yf(j()z) } = { EOA E(L } 3231(1) = Ce(l) (1.7)
PIE
L T(1+ di)
Mf.(1) Mf.(1+dl)
N() ) N(i + di)
()
]
l l+dl

FIGURE 1.7 — Infinitesimal section of a beam

From the dynamic equilibrium of a infinitesimal section of width d!, and in the ab-
sence of distributed force or momentum, one can obtain the flowing equations :

ON() _

IT() _ 4o

— =Api(l) (1.9)
11
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1. Models

oM f(1 .
%()JrT(l) — 1,pB(1) (1.10)
When the rotational inertia I, of the section is neglected, the equations can be reduced to :
N _ ppi(r) (1L11)
dl
O*Mf.(1) ;
aMaf;(Z) =-T(I) (1.13)

1.3.2 Euler-Bernoulli Finite Elements Beam Definition

With Finite Elements beam modelization, the displacements, strains and stresses at
any point of the beam can be deduced from the quantities at the extremities of the beam.
Each node i has 3 degrees of freedom, u; the longitudinal displacement, v; the transverse
displacement and ©; the rotation. The external forces applied on each node 1 are : Fu; the
longitudinal force, F'v; the transversal force and Mz; the momentum. Those quantities are
graphically defined in Fig.1.8. From those quantities one can create q., the degrees of
freedom (dof) array and F, the force array for each element linking two nodes.

t

F’U2
]\/122
) :
A =
FUl F’ULQ
M'zl v
01 2
m T Fuy
> —>
U1 U2 [
F1GURE 1.8 — FE definition of the beam element
qQe={ur vi 61 up v 6} (1.14)
Fe:{ Fu1 Fv1 MZl Fu2 FV2 MZ2 }t (1.15)

12
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Beam theory

The displacement at any point of the mean path of the beams is obtained by polyno-
mial interpolation.

— u(l) _ urp1(l) +uzp2(l) B
a0 _{ v(l) }_{ vipa(l) +vapa(l) +01ps(l) +82ps(l) }—P(l)qe (1.16)

rt 0 0 pp O 0}
P— 1.17
{0 p3 ps 0 psa pe (117

These functions p; to pe are called shape functions and must satisfy the boundary
conditions i.e :
av(I)

u(0)=wuy ,u(L) =uy ,v(0)=v;,v(L) =v,, a—(l =0(l),06(0) =061 and 6(L) = 6,.

One valid choice for the shape functions is :

P = Pl =

p0=1-3(D+2()"  pw=3(4) —2(L)’ (L13)
i =2(12() (1)) mio=2(~(1)+ ()

The previously defined strains can then be calculated in the beam from the nodal
quantities by :

du(l)
e)=1 35 (=B0a (1.19)
0l2
% 0 0 % 0 0
PR, Bm e Fm P (20
a2 02 a2 02

1.3.3 Weak Formulation

Starting from the dynamic equilibrium equations one can apply the virtual power prin-
ciple to obtain the following equations :

2
L%u*(l)dz—/L—a Ag{;(l)v*(l)dl:/LpAii(l)u*(l)dH/LPA'V'(Z)V*(Z)‘” (1.21)

Using divergence flux theorem :

e - [ w2 PAED g, [MEDW),,

o al
. / oAi(1)u* (1)l + / pAT(IWV (1)dl (1.22)
L L

13

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI062/these.pdf
© [A. Glacet], [2018], INSA Lyon, tous droits réservés



1. Models

u * ZV*
v - [0 2 PP a0 gy D
_ / pAGi(1)u* (1)dl + / PAV(IWV (1)dl (1.23)
L L

using (1.13) one get,

o

and using the eq.(1.6) and (1.4).

/ M(1) a 12 IV gy / pAii(l)u* (1)dl + /L A1)V (1)dl
= IN(Du* (D12 + [TV (D] + M£(D)8" ()] (1.24)

2 2 >s<
IV g 9V 4 / pAi(1)u* (1) + / ATV (1)dl
0[2 L

= IN(u" (]2 + [T (1) (D]L"’[Mfz(l)e*(l)]g (1.25)

Regrouping terms in vector notation using the definitions (1.7) and (1.16).

t | PA O *
/Le (l)Ce(l)ler/Ld { 0 o }d (1)di
= [N (D)2 + [TV (D] + IML(D)O*(1)]7 (1.26)

And using the FE definitions eq.(1.16) and (1.19) :

ou(l)  u (1)
Lo At e

/ o.B'CBqdl + / iQ,'P' { pA 0O } Pqidl = Fl.q. (1.27)
L L 0 pA
The matrix formulation of the dynamic problem for one element is thus :

Keqe ‘l’Meqe =F, (128)
with :

Ke — fLBt.C.Bdl

_qp | PAD

Me—fLP[ 0 pA}.Pdl

Once the integration is done, the elementary stiffness matrix and the elementary mass
matrix are :

(1.29)

EA 0 o £ 0 0
0 12E0 eEL o _12E 6L
0 6é f’ 0 —6ﬁ 2ﬁ
— L? L? L
K. ES ES (1.30)
£ 9 0 ES 0 0
0 —12/‘?’ —65—2’ 0 12E _¢ E‘;—{
o o 201 0 —6H 4f
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Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI062/these.pdf
© [A. Glacet], [2018], INSA Lyon, tous droits réservés



Vibrational Properties of Discrete Systems

and
- 1 -
3LpA 0 0 sLpA 0 0
0 13LpA 11L%pA 0 9LpA _ 13L%pA
3 10 7 20
0 Uipr Lt o Lip L
M, = 1.31
‘7| tLpA 0 0 ILpA 0 0 (131
0 9LpA 13L%pA 0 13LpA 11L%pA
70 420 35 210
0 _13L%pA  L’pA 0 _ 11L%pA L3pA
L 420 140 210 105
These matrices depend on three parameters :
EI .
K, = 12—3 the flexural stiffness.
(1.32)

K, = A the traction/compression stiffness.

m = pSL the mass of a beam element.

. Ky .
Note that the ratio 0 depends here only on the geometry of the beam cross section and
u

on its length.

1.3.4 Dynamic FE problem

Once the elementary stiffness and mass matrix are obtained the matrix formulation for
the full problem can be obtained by assembling these matrices using the mesh connecti-
vity. In order to assemble the global matrices, the elementary matrices have to be rotated
to accommodate the orientation of the real element in the global lattice. The full matrix
problem is written :

Kq+ Mg =F (133)

1.4 Vibrational Properties of Discrete Systems

Once the Beam lattice has been modelized using FE, it can be seen as an assembly
of interacting nodes, that is a discrete system. In this section the classical problem of 1D
discrete system will be used to introduce to the vibrational Properties of discrete systems.
It will be shown how a band gap can be created by changing parameters of the problem.

1.4.1 1D mono-mass spring chain

The problem is an infinite periodic chain with springs of stiffness k and mass m as can
be seen in figurel.9. The dynamic equilibrium can be written on the mass n :

15
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1. Models

k k k k
n—1 n n+1

FIGURE 1.9 — infinite spring and mono-mass chain.

k("™ —u") — k(W —u" ) = mun (1.34)

With " being the displacement of the mass n along the chain direction and u" its
acceleration. Studying the vibrational response of this infinite system one can assume a
solution of the form :

u" = Aexp(i(Kx" — t) (1.35)

With x" the initial position of the mass n, @ is the angular frequency and K the wave vector.
This form can only be used in case of periodic systems. By substituting the solution (1.35)
in the dynamic equilibrium (1.34) one obtains :

k(exp(i(Kx"~! — o) —2exp(i(Kx" — ot )) +exp(i(Kx" ! — o)) = —mo*exp(i(Kx" — ot)

Lets note d the initial distance between masses, then after simplification : (136
k(exp(i(—Kd) — 2+ exp(i(Kd)) = —mw* (1.37)

2k(cos(Kd) — 1) = —m? (1.38)

4k(sin2(%Kd)) = mo? (1.39)

This equation can be solved for ® > 0 giving the dispersion relation

k.. 1
0= 2\/;|s1n(§Kd)| (1.40)

This dispersion curve has been plotted with example values of k = INm~!,m =
1Kg,d = 1m in figure.1.10.

1.4.2 1D by-mass spring chain

Now the infinite chain is modified by changing the mass of one over two masses as
shown in figurel.11.

Writing the dynamic equilibrium on a mass m; and a mass m,, the following equations
are obtained :

16
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Vibrational Properties of Discrete Systems
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FIGURE 1.11 — infinite spring and by-mass chain.

k(g™ — 1) — k() =y}

| 1.41
K 1) — k(a —~w*T) = (4D

Two equations can be written, yielding to two dispersion curves. Using a vibrational so-
lution of type :
uf = Arexp(i(Kx} — t)

uh = Arexp(i(Kxs — wt) (1.42)

Dynamical equilibria become :

k(Azexp(i(Kxi") — 24 exp(i(Kx?)) + Azexp(i(Kx3))) = —@?mAyexp(i(Kx})
k(Arexp(i(Kx}) — 2A2exp(i(Kxk)) + Azexp(i(Kx 1)) = —?maAsexp(i(Kxb)

(1.43)
Thus
k(Asexp(i(—Kd) —2A1 +Azexp(i(Kd))) = —0’miA, (1.44)
k(Arexp(i(—Kd) —2A; + Asexp(i(Kd))) = —0*mpAs '
17
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1. Models

that is
2k(A2COS(Kd) —A1) = —(1)2m1A1

2k(Ajcos(Kd) —Ay) = —0°mpA, (1.45)

The existence of non zero solution, (A1,A2) # (0,0) implies the determinant equation :

2
o m; —2k  2kcos(Kd)|
‘chos(Kd) o’my —2k| 0 (1.46)
Whose solutions are :
1 1 1 1 4sin®*(1Kd
wi:k<—+—>ik\/<—+—>2—# (1.47)
mp  nmp mp  mp mijm;

These dispersion curves have been plotted with example values of k = INm~!, m; = 1Kg,
my = 2Kg, d = 1m in the figure.1.12 Contrary to the previous dispersion curve for the

l_ﬁ\

-mo _3m mm il 3z =
4 2 4 4

EISIE

FIGURE 1.12 — dispersion curve for by-mass chain.

mono-mass chain one can observe the existence of two curves. The lower curve is called
the acoustic branch while the upper curve is called the optical branch.

Whereas in the acoustic branch masses moves in phase, they vibrate against one ano-
ther in opposite directions in optical branch. In ionic crystals (i.e. where there are opposite
charges connected to the two species), these modes can therefore couple to electromagne-
tic radiation and are responsible for much of the characteristic optical behavior of such
crystals. This is why, even in non-ionic crystals, these modes are called optical modes,
and their dispersion curve is called the optical branch.

18
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Cosserat 2D medium

The band of non existing modes between the acoustic and optical branch is known as
a band gap. As no modes exists in this ® region, an excitation having a angular frequency
in this band gap would not propagate in the medium and give rise to an evanescent wave.

This method can be applied to obtain analytical result for periodic structures by impo-
sing the periodicity of the wave response. It will latter be used to calculate the dispersion
curves for a 2D square beam lattice but it can not be applied easily if the system studied
is not periodic.

1.5 Cosserat 2D medium

In this section we present the Cosserat medium. It will be seen that the elementary
elements of the Cosserat have the same dofs and interactions than the FE beam model
thus making the Cosserat medium a good candidate to approximate beam lattices by a
continuous medium.

1.5.1 Degrees of freedom

The three dofs for the elementary element of the 2D Cosserat are : u, and u, the two
displacements along x and y axis and 0 the rotation along the out of plan axis. One can
indicate the displacement vector as :

u = (uy,uy) (1.48)

1.5.2 Forces and torques

Cohesive forces and torques are drawn in figurel.13 for a continous 2d system. Each
edge of normal i transmit tangent forces F;;j and normal forces Fj;i as well as a torque
M,'Z.

The definition of the stresses and distributed torques are :

Fop = FopP = oopdof
M., = medpz (1.49)
do being the length of the sides, i.e dx or dy. Stresses and distributed torques tensors are

defined as :
b (1.50)
Oyx  Oyy
— mx

m = (my> (1.51)
19
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FIGURE 1.13 — Forces and torques definition.

1.5.3 Dynamical equilibrium equations

In this section the 2D Cosserat equilibrium equations will be obtained from the equili-
brium of an elementary square, using the previously defined cohesive forces and torques.
-projected forces equilibrium :

X: Fe(x+dx) — Fo(x) + Fu(y+dy)

y: Fy(y+dy) — Ful(x) + F(x+dx)

— K
— Fyx(x) = pdxdyi,
-projected torques equilibrium in {x+dx,y+dy} :
Z: My (x+dx) — My (x) + My (y+dy) — Moy (y) + Frydx — Fudy = Ldxdy®  (1.53)
The equilibrium equations can be transformed to :
div(oc) = pii (1.54)
div(m) — (Oyy — Oyy) = 1,0 (1.55)

1.5.4 Weak formulation

By writing the virtual power principle over a domain  as defined in figurel.14 we
obtain :
{vu* e C,ve* € C'} :

/div(()‘).u*ds—i—/div(m)@*ds—/(ny—cyx)e*ds:/ pii.u*ds+/lzée*ds
Q Q Q Q Q (1.56)
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Cosserat 2D medium

0Qp

FIGURE 1.14 — Domain Q definition.

*

0
_ / 6 Vu'ds — / o: -6 0]ds— / m.VO*ds + / onutdl / m.n0*dl
Q Q O 0 Q Q o0Q

= / pil.u*ds + / 1.00*ds (1.57)
Q Q

/ G: e*ds+/ m.k*ds+/ pﬁ.u*ds+/ 1,60*ds = / c.n.u*dl —|—/ m.n6"d/
Q Q Q Q Q oQ

(1.58)
Where the strain tensor and curvature tensor are identified as :

e:( rx ”W*e) (1.59)

Uy —6 Uyy

kY _ (8a
=)= (@) i

We define F =6.nand M = m.n

/6:e*ds+/m.k*ds+/ pﬁ.u*ds—l—/lzée*ds
Q Q Q Q

— [ Fuidi+ | Fudi+ / M8dl+ / Mol (1.61)
0Qy 0QF Qy Qp

By choosing u* and 0* as statically admissible we obtain :

/G:e*ds-l—/m.k*ds-l—/ pﬁ.u*ds-i—/ L00*ds = Fiu*dl-i—/ M;0%dl (1.62)
Q Q Q Q 0QFr 0Qr
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1. Models

1.5.5 Cosserat Constitutive law

In a Cosserat medium 6 is the material rotation. We can also define Q = %(um —llyy)
the non symmetric part of displacement gradient, the classic symmetric strain tensor
€ = ;(grad(u) + grad(u)’), and ® = 6 — Q the relative rotation. It can be noticed that
Uyy+60 =€y +Pand uy,+06 =gy, — P. the two notations are used in literature.

The stresses and torques tensors can be rewritten using the Voigt notation :

~ t
6= (Cx Oy Oy Oy mc my) (1.63)
as well as the strains and curvatures tensors :

€= (e ey ey e ke k) (1.64)

The constitutive law for a isotropic elastic Cosserat medium is :

6=Dze (1.65)
A+2u A 0 0 0 0]
A A+2u O 0 0 0
0 0  ptpe p—pe 0 0
D= 1.
0 0 p—pe ptpe 0 0 (1.66)
0 0 0 0 w3 O
0 0 0 0 0 ]

1.6 Conclusion

The models, methods, equations and definitions detailed in this chapter will be used
in the chapters to follow in order to study several aspects of the QP beam lattices.
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Harmonic study
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2. Harmonic study

2.1 Introduction :

The octohedric Penrose tilling is chosen in this chapter for its ability to create a
periodic approximant to the quasi-periodic tilling thus allowing the use of periodic
boundary conditions as suggested in [?].It has been shown in [?] that, for ferromagnetic
properties, the approximant with periodic boundary conditions closely mimics the infinite
lattice properties. The numerical methods used here for the vibrational study of big
systems were inspired from atomic vibration analyses and adapted to finite element
modeling of large scale complex beam structures. First, the vibrational eigenmodes are
computed by exact diagonalization of the dynamical matrix restricted to the beam nodes.
Then, Kernel Polynomial Method (KPM) is used to calculate the complete Vibrational
Density Of States (VDOS) and the Dynamical Structure Factor (DSF), giving rise to the
complete dispersion relation without the need of exact diagonalization of the dynamical
matrix. The KPM method is detailed by [?] and was adapted recently to the study of the
vibrational properties of large-size atomic systems by [?]. We apply it here to large scale
beam structures. This method allows accurate description of the vibrational properties
of large scale systems, and thus a better understanding of the vibrational response of
quasi-periodic structures. Thanks to this work, it will now be easy to transfer this method
to the detailed vibrational study of any beam structure.

This chapter is organized as follows : first the modeling and numerical methods are
explained in Section 2.2 and 2.3. These methods are firstly applied on a simple perio-
dic beam structure in Section 2.4, in order to be validated, and to show the influence of
the bending stiffness on the vibrational response. Then in Section 2.5 the methods are
applied to the complete analysis of the vibrational response of a quasi-periodic Penrose
approximant, including the detailed analysis of its eigenmodes.

2.2 Model
Using the FE model reminded in section 1.3 the dynamical matrix problem is :
K.d+M.d =F. (2.1)
Where d is now the dof vector whereas it was q in the Chapter]1 as g will be used for the
wave vector later on. When studying the vibrational response, the external forces on each

node are zero because the system would be at equilibrium at rest, and the displacement is
assumed to be a wave solution, that is :

d=—-0d, (2.2)

where  is the angular frequency of the wave. Thus the dynamical problem can be written

K.d= o’M.d (2.3)
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Numerical Methods

The periodic boundary conditions are imposed by modifying the previous equation
thus equating the DFs of the homologous nodes. By denoting M = LL! 2.3 becomes a
classical eigenmodes problem :

Hd =\, (2.4)

with
H=L'KL;A=0’;d=L'd, (2.5)

where H is a symmetric positive definite square matrix. As shown in section 1.3 this
dynamical matrix depends on three parameters :

El
K, = 12—3 the flexural stiffness.

E
K, = A the traction/compression stiffness. (2.6)

m = pSL the mass of a beam element.

K
Note that the ratio K_v depends here only on the geometry of the beam cross section and

on its length. The inbéuence of this ratio on the vibrational properties will be discussed
latter.

Moreover, the discretization of the system on the nodes at the extremities of the beams
does not allow getting insight on vibrations at a scale smaller than half of the smallest
beam length, thus limiting the highest frequency reached. The highest vibrational fre-
quency M, 1s of the order of the highest possible frequency supported by the smallest
element, that is given by solving the equation det(K, — ®*M,) = 0 and depends on the
aspect ratio of the beams. Due to the very large number of nodes, we will solve Eq. 2.3
with numerical methods that are adapted to very large system sizes. We will compare the
exact diagonalization of the matrix H (allowing exact identification of the modes but only
for N < 10000) to the recursive calculation of the frequency density (VDOS) and of the
dispersion relation (DSF) that will be presented later and that is not size limited.

2.3 Numerical Methods

2.3.1 Exact diagonalization

The exact diagonalization of the dynamical matrix H allows getting directly d’ from
Eq. (2.3), and thus the DF vector d = L~".d’. The diagonalization is performed using the
build in function eigsn in Matlab software. The calculation is limited by the system size.
For sufficienlty small systems (N < 10000), it allows visualizing the 3 x N eigenvectors
that are the resonant modes of the system (see Section 2.5). It allows also for computing
the participation ratio (PR) of each mode. For a given eigenmode j, the PR gives informa-
tion on the ratio of particles participating in each vibration mode. It was used for example
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2. Harmonic study

to identify possible localized vibrations in disordered systems [?, ?, 2, ?]. It is defined as :

L (% fuif*(w)))?
N Zl|ul| (0‘)])

where uj is the displacement vector w; = {u,,, “y;} for the ith node and ®; the pulsation of
the jth eigenmode. It means that PR = 1 /N when only one isolated node over N supports
the vibration, while PR = N/N = 1 = 100% in case of uniform translation.

The determination of the eigenfrequencies and eigenmodes from the resolution of
Equation 2.5 is highly computationaly demanding, especially for non-periodic systems.
For this reason, approximate methods that do not require exact resolution of the eigen-
value problem have been developed [?, ?]. The computation of several quantities like the
vibrational density of states and the dynamical structure factor (spectral densiy of states)
is useful for analyzing the vibrational properties of a material. They are obtained without
solving the eigenvalue problem as detailed below.

PR(w) = Q2.7)

2.3.2 Vibrational Density of States

The VDOS corresponds to the modal distribution. It is defined as :
VDOS(® Z (00— ;) (2.8)

where 0 is the Dirac function. Using the Kernel Polynomial Method (KPM), the VDOS
can be obtained without the exact resolution of the eigenvalue problem (2.4). The KPM
thus allows to compute the VDOS even for very large systems [?, ?]. It is based on the
approximation of the d-function in Eq. 2.8 by a series of Tchebychev polynomials, yiel-
ding to an exact expression of the distribution of the eigenvalues without calculating the
eigenvalues itself. The method is detailed in [?, ?]. The starting point is the expansion of
the d-function as

de—¢)) = \/ 1 —¢2 Z Tp(€) Ty (€;)- (2.9)

where €; = 2(0 — 1. @y 1s the maximum frequency supported by the indivi-

max
dual beams : it is given by the resolution of the equation det(K, — @*M,) = 0, thus
—1 < g&; < 1, T), are Tchebychev polynomials that can be obtained either by the re-
currence relation

To(e) =1, (2.10)
Ti(e) = 2e, 2.11)
Tb(S) =2eUp_1 (8) —Up_» (8) (2.12)

or by a trigonometric definition :

sin((b+ 1) arccos(€))
e

Ty(e) = (2.13)
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Numerical Methods

The VDOS can thus be rewritten as

IN B
VDOS(® T €; T 2.14
(o) 3N7T’0)r2nax]2:1[; Yo Tb(€;)Th (€ (2.14)

where 7, are Jackson’s damping coefficients [?] introduced to avoid Gibbs oscillations

(B—i—l—b)cosB+1 —i—smBTffl cot z2—

Bil
] 2.1
Yo = Bl (2.15)

and B is a maximum number controlled by the desired accuracy of the calculations, the
approximate solution converging to the continuous solution VDOS(®) when B goes to
infinity [?]. Here we chose B = 300. The Tchebychev momenta are defined as

1 3N 1 3N
i =3y L) = 3y L (w7 (H)lu) (2.16)

with H;

—I. The b’” momenta can be approximated as

up ~ (dg|dy) (2.17)

where |dj;) is a 3N Gaussian random vector with unit norm, the upper bar is the average
over R random realizations of this random vector, and |d} ) follows the recurrence relations

|dy) = 2H;|dp),
|d;) = 2Hi|d}, ) — |d},_5) = T,(H,)|dp) (2.18)

When R is large enough, the variability due to the random generation of the {d} can be
neglected [?]. We used R = 30. Using Eqs.2.132.14, the VDOS can thus be computed as

B
ING? Z'Yb,ubsin(Z(b-l-l)arcsin(o)/mmax)) (2.19)

maxb 0

VDOS(0) =

that is a function of the angular frequency ® only, without the need of ®; neither of u;.

2.3.3 Dynamical Structure Factor

The DSF is also called Spectral Density of Energy [?]. It corresponds schematically
to the combined spatial and temporal Fourier transforms of the displacements inside the
system, thus giving the amplitude of the harmonic waves as a function of g the wave
vector and w the angular frequency. In atomistic samples, it is related to the cross-section
of photons that are scattered by atomic vibrations in non-elastic x-ray or neutron scattering
experiments [?]. For longitudinal modes for example, it is related to the spatial correlation
function of density fluctuations. As an indicator of the connection between wave-vectors
and frequency during the dynamical response of the system, the DSF can be used to obtain
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2. Harmonic study

the dispersion law. The DSF is calculated separately for transverse (T) and longitudinal
(L) displacements. For longitudinal modes, it is defined by :

3N N

DSF(0,q) = ¥ (Y q.ui(0)etN)*3(0 — o)) (2.20)
j=1 i=1

where (, is the normalized wave vector and N; the position vector for the ith node. As
mentioned before, this expression results from the calculation of the fluctuations in the
density of nodes :

DSF(@.q) > [ exp(~ian) ((p(a,1) ~py) . (P(~0ut) ~ pq)
~ /exp(—iwt)Z(q.ui)(q.uj)exp (iq. (N; —N;))dt

due to

p(q,t) —pq = /p )exp(iq.r dr—/p (R,0)exp(iq.R)dR
N

= Z exp (iq. (N; +u;(r))) —exp (iq.N;) = Z iq.u;(t)exp (iq.N(2.21)
i=1 i=1

where u;(¢) is the displacement supported by the node i in a random excitation, that is next
decomposed on the eigenmodes with frequencies ®; [?]. DSF.(®,q) thus corresponds to
the Fourier transform of the longitudinal components of the waves with frequency . Its
transverse counterpart is

3N N
DSFr(0,9) = Y (Y qu x ui(0;)e*N)28(0 — ;) (2.22)
j=1 i=1

The KPM is used once again to calculate the DSFs without exact diagonalization. With
this method, DSFs can directly be computed as :

DSF.(w,q)) Z 105 (q (2.23)

DSFr(w,q) = Zybvb (2.24)

with ¥, and € as previously defined, and :

1 N N

05(a) = (1 @n-u0etN)2(Y gyuibeai)? (2.25)
i=1 i=1

vy (q) = an x udeaNi)2 Zq X ubeaNi)2, (2.26)

=1 i=1
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Role of bending in periodic beam lattices

2.3.4 Voronoi Decomposition

The decomposition of the displacement on longitudinal and transverse components
compared to the wavevector is ill-defined for non-crystalline samples such as the Penrose
tilling [?]. The displacement decomposition used herein is based on the Voronoi cells vo-
lume variation and was already applied to amorphous glassy samples in [?]. The Voronoi
cell built around a node is the area containing the points closer to this node than every
others. The Transverse displacements will be the displacements not modifying the Voro-
noi cells’ volume and the Longitudinal are the displacements doing so. As in [?], we use
the A matrix describing the relative volume variation of the voronoi cell centered on node
i, due to the displacement d; of node j (translation uy, u, and rotation 0) :

1 9V,
Vi od,;
This matrix can be easily obtained from the mesh of beam elements, the detailed me-

thod being described in [?]. With this definition we obtain the longitudinal and transverse
components by :

Aij= (2.27)

P, = A'(AA)'A (2.28)
Pr =1-A'(AA")"'A

This new decomposition is then injected in the VDOS and the DSF calculation. The
contribution to the VDOS of the Tchebychev moment (Eq. 2.17) for example, becomes :

) = (d}[Py[dy) (2.29)

with 1 = L or = T for its respective longitudinal and transverse contributions to the
VDOS.

2.4 Role of bending in periodic beam lattices

As a first example, the vibration of a periodic beam lattice is analyzed. The effect of
the bending stiffness that is the only design parameter to be adjusted once the geometry of
the lattice is fixed, is investigated. The ratio between the tensile stiffness and the bending
stiffness is varied in order to observe the influence of the latter on the vibrational response.
The idea behind such a study is that increasing local bending stiffness should enhance the
energy separation between local rotational and compressional modes, and thus enlarges
possible band gaps (see e.g. [?]).

2.4.1 Analytical solution for a periodic lattice

A infinite periodic lattice with a simple squared elementary pattern is considered (see
Figure 2.1). As for wave propagation [?], the periodic structure of this lattice allows the
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2. Harmonic study

FIGURE 2.1 — 50 by 50 square beam lattice.

use of periodic boundary conditions to reduce the analysis to one elementary cell. Using
those conditions and choosing the solutions of Equation (2.3) as :

d =agexp(i(wt+q.r)), (2.30)

equation 2.3 is solved analytically. This calculation is detailled in A. The values [®,q] that
verify det (([K] — ®*[M])) = 0 are calculated using the MAPLE software.

Figures 2.2-a-b-c show the resulting analytical solution of the dispersion law (DSF)
for three ratios %, namely 0.01, 0.5 and 2. For graphical representation, the dimensionless

pulsation @™ defined as ®*/" = . , 1s used.

For the three cases analyzed hereln, three surfaces (@™ as a function of ¢, qy) are
plotted : two acoustic solutions (in phase vibrations of the nodes blue and red) and one
optical (out of phase vibrations of the nodes : green) For ‘ = 0.01 and K‘ = 0.5, the

green and red surfaces merge at (7, L) whereas for & X =2 the two surfaces are discon-
nected. This creates a frequency range in which no mode exists. This is called a band gap.
It can be shown that the analytical solution used above degenerates for (gy,qy) reaching
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FIGURE 2.2 — Analytical dispersion relation ®ygin(qx,¢y) for an infinite Square lattice for
(2) g = 0.01 (b) g = 0.5 (c) g =2.

(7. T) giving a double solution and a single one :

210K, +K,) [10K,
{\/ (43,: ),\/ } (2.31)

m

. . . . . Ky« .
Using the expression of those solutions, the size of the band gap depending on K is:

+
. 10K 210(K, + K
Agfdim — [T \/ v_\/ (Ky + Ku) (2.32)
Ku m 43m

It is obtained that below a given ratio %, no band gap is obtained whereas above a critical

value of 0.9545, the size of the band gap increases as / f—; as illustrated in Figure 2.3.
As shown in Figures 2.2-b and 2.2-c, the high-frequency modes in the periodic beam
lattice are mainly transverse. Increasing K, independently of K, thus raises mainly the

frequency of optical transverse modes (upper band in the dispersion relation), creating a

K
band gap. Note that K_v ratio higher than 0.05 (slenderness approximately lower than 5)

can’t be geometrically Lébtained for square section beams while respecting the slenderness
requirements for the Euler-Bernoulli beam model, thus making impossible to obtain band
gaps for these specific stiffness values. It may however be possible to create a band gap
by adjusting the mass distribution of the beams or just with a different periodic structure.
The goal of this article is indeed to show evidence of tendencies that could be even am-
plified with a more accurate description of the interactions beyond the Euler-Bernouilli
approximation, and to adapt new tools to the study of the vibrations in non-periodic beam
structures. The three typical ratios of K,,/K,, = 0.01,0.5 and 2 will thus be kept all-along
the article for comparison purposes.

2.4.2 Numerical calculations

To further analyze the vibrational behaviour of the square lattice, the PR and VDOS
have been computed from a numerical solution obtained for a 5x5 to 50x50 cells lattice
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FIGURE 2.3 — Analytical band gap for an infinite square lattice in function of I’g—;

as presented in Figure 2.1. For the 50x50 lattice, the system has N = 2601 nodes for
3N(=7803) DFs, including the boundary. Periodic boundary conditions are applied along
the boundary of the analyzed domain. For these simulations, the parameters used were
L=0.0l m, K, =3.5x10° kgs™2, p=1000 kgm—3, E = 1.4 x 10° Pa, K, = 2K,,,
K, =0.5K, and K, = 0.01K,,.

For the three values of *_the VDOS and PR are computed following the methodology
detailed above. The results are plotted in Figure 2.4 to check the influence of finite size
effects and in Figures 2.5, 2.6 and 2.7 for different values of K, /K, . In the latter, i.e.
for = 2, the creation of the band gap is clearly observed in the VDOS and in the PR.

Indeed, for around @™ ~ 4 that corresponds to our analytical value of ®*/" in the band
gap, the VDOS vanishes and there is no defined Value for the PR as no vibration mode
exists for 0™ within the band gap. Conversely, for X x =0.5and 2 B —0.01, the VDOS
does not vanish and there is no zone with undefined PR. However, for all three cases, the
fluctuations of the VDOS are in close relation with the analytically obtained shape of the
surfaces giving the three different roots ®“?™ as plotted in Figures 2.2-a-b-c. Concerning
the PR, most of the modes have a PR around 0.6 due to the fact that it is the PR of a
spatial cosine to which all the nodes participate. This example shows how the VDOS
and the PR can be used to interpret the vibrational behavior of the material and to detect
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FIGURE 2.4 — VDOS for the 5x5, 10x 10 and 20 x 20 square lattice with % =0.5.

band gaps. As expected, it shows as well, that the additional flexural stiffness in the beam
lattice model induces a new kind of high frequency optical modes, with mainly transverse
character and with the related aperture of a band gap increasing with K, in the vibrational
response.

2.5 Quasi-periodic beam lattice

The methodology is now applied to analyze the behaviour of a quasi-periodic beam
lattice. The complexity of quasi-periodic structures does not allow the calculation of ana-
lytical solutions as was done previously. Only numerical results are obtained. All the
calculations are run on the 4 approximant of a Penrose lattice shown on Figure.1.3.
The system has N = 8257 nodes and 3N (= 24771) DFs. As previously, periodic boun-
dary conditions are prescribed. The parameters of the model are the same as previously :
L=0.01 m, K, =3.5x10kg.s™%, p=1000 kg.m3, E = 1.4 x 10° Pa. To understand
the influence of the flexural component of the beam stiffness, the same three values of %
are still considered : 0.01, 0 5 and 2.

For the three values of , the VDOS and PR are shown in Figures 2.8, 2.9 and 2.10.
The VDOS of the quasi- perlodlc tilling considered in this section, share some similarities
with the ones computed for the periodic square lattice : for the three values of # By there is
first a bump in the low frequency range related to the accoustic branches. After a decrease
the VDOS increases again which gives an indication concerning the existence of optical
branches (high frequency out-of-phase vibrations of the nodes with low group velocity).
Concerning the PR, whereas for the square lattice there is no clear trend in the evolution
of the PR, the quasi-periodic tilling analyzed herein behaves differently. It is observed
that the PR follows fluctuations that seem (quite surprisingly) opposite to those of the
VDOS for ‘ = 0.5 and II? = 2, but similar for g = 0.01 except around ®,g;, = 0.6.
In these cases a drop of the PR relates to a peak in the VDOS. Consequently, in the
frequency ranges with a high density of modes, the latters have the tendency to show

33

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI062/these.pdf
© [A. Glacet], [2018], INSA Lyon, tous droits réservés



2. Harmonic study

YDos

Dt

0 0.5 1 1.5 2 24

(b)

FIGURE 2.5 — (a) Complete, longitudinal and transverse VDOS and (b) PR for the 50 x50
square lattice with % =0.01.

localized patterns. Conversely, in the frequency ranges with a low density of modes, the
latters show diffuse patterns : especially in the high frequency regime, quasi-crystalline
structures do not give rise to localized modes, but more surprisingly to a PR ~ 0.6 close
to that of extended plane waves. It can finally be noticed a higher concentration of modes
around certain frequencies, notably in the high frequency range, which results in waviness
of the VDOS. In order to apprehend how the Penrose lattice vibrates, it can be interesting
to look at several modes on specific domain of the frequency range. Several modes are
plotted for g—; = 0.01 (see Supplementary Material for all the modes).

Figures 2.11 and 2.12 show highly structured modes where the vibration is localized
on a star shaped structure as in Figure 2.15. These modes, localized on stars, are involved
repeatedly in the two regions where the PR decreases. These modes are localized on
specific patterns of the lattice. Figure 2.14 shows that, in the second decaying region of
the PR, another kind of localized modes appears as well : they involve a thin but extended
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(b)

FIGURE 2.6 — (a) Complete, longitudinal and transverse VDOS and (b) PR for the 50 x50
square lattice with % =0.5.

crowned of vibrations. This kind of localization is very surprising and specific of quasi-
crystals : it shows large scale vibrations in the high frequency regime. Finally, a complete
set of structures with various sizes is excited along the modes and disordered patterns can
also be found as in Figure 2.13 in a frenquency range where the PR is higher.

In order to test the hypothesis of isolated vibrations of specific patterns in the low fre-
quency regime, that would be decorrelated from the overall environment, the star structure
has been isolated and its own vibrational modes have been studied with fixed boundary
conditions. In Figure 2.16 and 2 17 the VDOS of the star is superposed to the PR of the
4" approximant for two ratlos . In both cases, the frequency range of the peak of the
VDOS for the isolated star seems to correspond to the frequency for which this structure
plays a predominant role. This might be the cause of the waviness of the VDOS : the vi-
brational modes concentrate around the frequencies that excite particular sub-structures.
This response again is specific of quasi-crystals, since it shows evidences of the resonant
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FIGURE 2.7 — (a) Complete, longitudinal and transverse VDOS and (b) PR for the 50 x50
square lattice with % =2.

vibrations of isolated structures, even in the low-frequency regime (isolated soft resona-
tors). In this low-frequency range, extended vibrations are expected in crystals. These
specific resonant vibrations however do not correlate with a band gap.

For % = 2, an additional gap is observed in the VDOS Figure 2.10 meaning that
increasiné the bending stiffness strongly impacts the vibrational behavior of the quasi-
periodic lattice, namely by creating additional band gaps. The evolution of those gaps is
also observed thanks to the DSF shown in Figures 2.18 and 2.19. The maxima of DSF
intensity allow a quick visualization of the dispersion law, but in the case of a quasi-
crystal, a given frequency w does not correspond to a single wave-vector ¢g. Those figures
exhibit classical dispersion relations for quasi-periodic structure as it can be found in [?,
?, ?] for 1D or 2D quasi-periodic lattices. We can observe for example pseudo Bernoulli
zones overlapping and repeating at quasi-periodic periods. But an additional gap is visible
in Fig. 2.19 for K, /K, = 2, as can be seen from the extinction of the DSF close to ® ~
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FIGURE 2.8 — (a) Complete, longitudinal and transverse VDOS and (b) PR
for the 4th approximant of Penrose lattice with [[g—; =0.01.

4. This large gap is visible in the dispersion law shown in Figure 2.19 especially for
longitudinal modes.

2.6 Conclusion

The vibrational properties of periodic and quasi-periodic beam lattices were studied
in this paper, as a function of the ratio between bending and tensile stiffness of the beams.
The Vibrational Density of States, Participation Ratio and Dynamical Structure Factors
for longitudinal as well as for transverse waves have been investigated for different ratios
of bending over tensile stiffness. This ratio appears to be a driving parameter for large
band gaps to occur and is related to an enhanced separation between in-phase tensile
modes and out-of-phase bending vibrations. It is interesting to note that, contrary to the
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FIGURE 2.9 — (a) Complete, Ingitudinal and transverse VDOS and (b) PR
for the 4th approximant of Penrose lattice with % =0.5.

u

periodic lattice which has anisotropic effective behavior for elasticity and for wave pro-
pagation, the Penrose beam structure, that has a higher level of material symmetry, is an
apparent isotropic metamaterial. The creation of band gaps in the numerical simulations
is the manifestation of a structural intrinsic property scaling with K, /K. Then even if the
band gaps are only reached here with unrealistic geometries in terms of beam slender-
ness assuming square cross section, it might be possible to obtain band gaps by adjusting
other parameters of the structure (mass distribution, viscosity, etc ) chosen with the same
goal of frequency separation between in-phase tensile and out-of-phase bending modes.
Finally, the position of the gap scales with \/ K,/m= \/ E /pL? that depends on the size
as well as on the material properties of the elementary beams.

Some low-frequency modes of the quasi-periodic lattice seems to be controlled by
sub-structures of the lattice : indeed, the frequencies of these modes in the quasi-crystal
correspond exactly to the frequency of the isolated local structure that appears repeatedly
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FIGURE 2.10 — (a) Complete, longitudinal and transverse VDOS and (b) PR
for the 4th approximant of Penrose lattice with % =2.

in the vibration modes. Conversely, high-frequency localized modes in the quasi-crystal
involve large scale linear structures, suggesting the possibility to isolate large-scale and
highly symmetric connected paths in the quasy-cristal. These resonant isolated structures
are not sufficient to induce additional band gaps. A way to select the vibration modes
by the type of structure they excite, eventually by reinfocing locally specific structures
with additional masses, could allow revealing new patterns in PR, VDOS or DSF. For
instance, it could be interesting to study more accurately and systematically the non-trivial
hierarchy of sizes of the excited structures depending on the frequency of the modes they
appear in, since it could have additional consequences as well on the transportation of
wave packets with different wavelengths, and thus on acoustic signal processing.
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FIGURE 2.11 — (a) Deformed lattice and (b) PR (full PR in blue, corresponding mode in
red) of the 1387"" mode for the 4"

approximant of Penrose lattice with % =0.01.
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FIGURE 2.12 — (a) Deformed lattice and (b) PR (full PR in blue, corresponding mode in
red) of the 3836 mode for the 4"
approximant of Penrose lattice with Ilg—u =0.01.
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FIGURE 2.13 — (a) Deformed lattice and (b) PR (full PR in blue, corresponding mode in
red) of the 693" mode for the 4"

approximant of Penrose lattice with % =0.01.
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FIGURE 2.14 — (a) Deformed lattice and (b) PR (full PR in blue, corresponding mode in
red) of the 3801 mode for the 4"

approximant of Penrose lattice with Ilg—u =0.01.
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FIGURE 2.15 — Star structure.
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FIGURE 2.16 — (a) PR and (b) complete, longitudinal and transverse VDOS of the star for
the 4

approximant of Penrose lattice with % =0.01.
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FIGURE 2.17 — (a) PR and (b) complete, longitudinal and transverse VDOS of the star for
the 4"

approximant of Penrose lattice with % =2.
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FIGURE 2.18 — (a) Log of longitudinal DSF and (b) Log of transverse DSF for the 4"
approximant of Penrose lattice with % =0.5.
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FIGURE 2.19 — (a) Log of longitudinal DSF and (b) Log of transverse DSF for the 4th
approximant of Penrose lattice with % =2.
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3. Fracture

3.1 Introduction

In this chapter the fracture behavior of quasi-periodic beam lattices will be studied.
Due to their peculiar symmetries allowed by their quasi-periodicity some quasi-periodic
beam lattices might have a better resilience to crack propagation than periodic lattices due
to the absence of weak plane. In order to test this assumption, numerical simulations will
be performed. First in the quasi-static (QS) regime, the QS simulation will be validated on
experiment performed on additive manufactured polymeric beam lattice. Then the ability
of quasi-periodic lattices to dissipate energy by crack propagation will be compared to
periodic lattice. Then the same system properties will be studied in the dynamical regime
for crack propagation. Fpr that, new numerical simulation will be done. It will be shown
that the slenderness of the beam plays a dominant role in the dissipation behavior of beam
lattices.

3.2 Quasi-static Fracture

First a Quasi static model for crack propagation in beam lattices is used in order to
study the failure behavior of periodic and quasi-periodic latices.

3.2.1 Model

The model used for Quasi static (QS) fracture simulation is the previously discussed
FE Euler Bernoulli beam with the addition of a criterion on the brittle fracture of the
beam. The criterion for beam failure is based on the element-average strain energy. It
allows for weighting the contribution of tension force and bending moment with their
actual energy contribution.The energy density of each beam can easily be calculated by :

1
P = quKeqe (3-1)

Where L is the beam’s length, A its cross section area, qe the vector of DOFs and K, the
previously defined elementary stiffness matrix. The maximum value that can be sustained
by a beam before it fails is a material parameter, namely ®,. Quasi-static simulations are
performed and failure is accounted for using the following steps :

1. Elastic simulation of the lattice under a unit prescribed external load (load factor
A=1)
2. detection of the beam i,,,, having the higher averaged strain energy @,
P,
q)max
4. the amplitudes of the displacement and external loads computed in step 1 are sca-
led by A

5. the results are saved and beam i,,,, is removed from the lattice

3. the load factor is adjusted so that ®,,,, equals @, : A =
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Quasi-static Fracture

6. go to step 1 while the lattice can handle external loading (P4 > 0)

This simple step by step model allows quick calculation of quasi-static fracture pro-
pagation through the lattice meta-material. It is assumed that the behavior of the beams is
purely brittle and the global response is adjusted through the load factor in terms of ap-
plied displacement and force. In the case when the mechanical response of the specimen
is not stable under monotonic loading, snap back (decreasing displacement and force) can
be obtained. This is the main difference between the numerical simulations and the expe-
riments in which this instability results in a dynamical response of the specimen (because
the displacement can only increases, the specimen “jumps”, with no control on the applied
loading, from a stable configuration to the one having the closest but higher prescribed
displacement). However, as there is no initial kinetic energy in the system, it is expected
that dynamical effects have a very limited influence on the results. The algorithm propo-
sed above to drive the simulation is thus a reliable approximation of the actual loading
conditions applied to the specimen.

3.2.2 Quasi-static Fracture Simulation

In order to see the influence of the different parameters on the fracture propagation in
the QP meta-material several simulations can be performed. The behavior of 2D lattice
materials is investigated. Three types of lattices are selected :

1. quasi-periodic Kite & Dart Penrose tilling [?]
2. periodic approximate of the octogonal lattice [?]
3. periodic hexagonal lattice

Once the absolute size of a specimen is fixed, the remaining parameters to design
such materials are : the unit cell size or beam length, the beam height and the constitutive
material.

With the stiffness matrix previously defined one can noticed that the young modulus
E can be factorize thus modifying the young modulus will linearly modify the problem, it
will not lead to fundamentally different behavior. That is why the Young modulus will
not be changed in the simulations. An important parameter as shown in the previous
chapters is the slenderness of the beams. In the following simulation the influence of
the slenderness on the energy dissipation by fracture propagation will be exhibited. All
implementations are done under Matlab, and resulting meshes are viewed with Paraview.

3.2.2.1 Results

First the result of the QS simulation can be compared to experimental fracture profile.
Experiments have been performed on samples obtained by additive manufacturing. They
are made from photo-sensitive ABS-type polymer powder. The bulk material obtained
from this process is isotropic. Its elastic behavior is defined by a Young’s modulus of
1.4 GPa and a Poisson’s ratio of 0.4. The sample design is the same as in [?] with a cen-
tered pre-crack oriented at 30° with respect to the direction perpendicular to the loading

51

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI062/these.pdf
© [A. Glacet], [2018], INSA Lyon, tous droits réservés



3. Fracture

axis. The lattice structure is embedded by zones completely filled with the material. These
zones are caught by the grips of the loading device to apply the remote displacement. The
speed of the grips is 0.1 mm/min. This design allows for loading a central square part of
90 mm size with a classical tensile device under macroscopic uniaxial tension. Due to the
crack angle of 30° with respect to the loading axis, the crack tips are submitted to a mixed
mode solicitation. The slenderness of beams is 6.7.

The samples are loaded until failure. Due to the high amount of elastic energy stored
in the specimen, failure is unstable, meaning that once the first beam breaks the crack
propagates dynamically and the sample completely fails.

To simulate the experiments, the two components of the displacement are fixed for all
the nodes within a narrow band ( its width being the average beam length) along the left
edge. For the nodes within a narrow band along the right edge, the vertical displacement
is fixed while the horizontal displacement is assigned a unit value that is adjusted in step
4. The rotation degrees of freedom are left free. The figure 3.1 shows the comparison
between experimental result (on the left) with the QS simulation (on the right), the figure
clearly shows a great agreement between experimental and QS simulation. Although this
experiment is used to validate the QS fracture model the crack propagation is unstable
which would require a dynamic simulation.

FIGURE 3.1 — Experimental and quasi-static simulation comparison

In the figure.3.2 the fracture profile for several slenderness is shown. It can be shown
that the slender the beam, the wavier the crack path thus the more energy dissipation. One
clearly observes interactions between the crack and the structure of the material. It seems
that specific structures the lattice induce a deviation of the crack. This can be clearly seen
in Fig. 3.2(b) where such structures have been circled in red.
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They could be named extra-tough structure as this effect is obtained systematically.
Moreover these substructures closely look like the ones identified in the vibrational res-
ponse of the meta material. The deviation of the crack path induced by these specific fea-
tures of the lattice makes the actual crack length longer than if the cracks were straight,
resulting in a higher effective failure energy.

(a) (b)
FIGURE 3.2 — QS Fracture profil for a slenderness of 2.5(a) and 10(b)

From the simulations, not only the crack path is obtained but also the macroscopic
response (force (F) v.s displacement (U) ) that gives an insight in the effective behavior
of the lattice. Using numerical simulations, it is also easy to perform a parametric study
as function of the lattice parameters. The analysis is restricted herein to the beam slen-
derness. The influence of slenderness is analyzed in terms of crack path but also in terms
of dissipated energy using the macroscopic force v.s. displacement response. The macro-
scopic response of specimens are normalized by the force and displacement at the onset
of failure (F, and U(F,)). The results for the Kite & Dart Penrose lattice are illustrated in
Fig. 3.3.

The response of the lattices is also compared to that obtained for a continuum material
in the configuration tested above. It is clearly obtained that the response of the lattice de-
viates from that of a continuum showing the intrinsic ability of the quasi-periodic Penrose
tilling to resist to defects. Further, it seems that increasing slenderness the lattice has the
ability to dissipate more and more energy. For a quantitative analysis, twice the area cove-
red by the normalized forcev.s. displacement curves is computed. That corresponds to the
ratio R between the dissipated energy and the stored energy before failure occurs. If the
macroscopic response is purely brittle then R = 1. If R < 1 then the initial energy in the
system is higher than what the material is able to dissipate, the macroscopic response is
unstable and the remaining energy returns to the loading device. If R > 1 then the failure
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FIGURE 3.3 — Scaled load (F/F,) v.s. displacement (U/U(F,)) response of the Penrose
tilling for different beam slenderness //e.

process needs more energy than what was initially available in the system. The macrosco-
pic response is thus stable and more energy is required to achieved complete failure. R is
an indicator of the ability of the lattice to dissipate energy during failure.

The results are summarized in Figure.3.4 . It is confirmed that decreasing e increases
the ability of the lattice to dissipate energy. Concerning the Kite & Dart Penrose tilling,
for e=0.2 mm (l/e~6.7), R is lower than 1 what confirms that the macroscopic response
is unstable as in the corresponding experiment (shown in Fig.3.1). For this lattice, a com-
parison of the crack path for two values of e is given in Fig.3.2. When e is smaller the
flexural stiffness of the beam is much lower than the tensile stiffness, thus allowing the
beams to curve. This higher activation of the flexural deformation modes induces a rou-
gher crack path, the crack being modified by locally tough patterns (highlighted in red
in Figure.3.4) : instead of following the orientation prescribed by the macroscopic loa-
ding (as it 1s the case for e=0.5 mm, the crack follows the orientation having the lower
failure energy in the vicinity of the crack tip. Due to these deviations of the crack, the
effective crack length is higher and the energy intrinsically dissipated by the lattice is hi-
gher. For a comprehensive analysis, small insets are included in Figure.3.4 to show the
repartition of the element average of the strain energy density for different lattices and
slenderness. These results are obtained by loading the lattice under uniaxial tension wi-
thout initial crack. For the hexagonal lattice, it is clear how increasing the slenderness
leads to a transition between a tension dominated deformation mode to a bending domi-
nated mode. For low slenderness, promoting tension modes, the beams aligned with the
loading hold most of the strain energy density. Conversely, for higher slenderness, pro-
moting flexural modes, most of the strain energy density is hold by beams not aligned
with the loading. This transition is also evidenced for the octogonal lattice with well orga-
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FIGURE 3.4 — Evolution of the dissipated energy normalized with the elastic energy stored
at failure initiation for different lattices with varying beam slenderness. The distribution
of the element average of the strain energy density for a uniaxial tensile test along the
horizontal axis is illustrated from different lattices and slenderness. Green beams hold
high energy density whereas purple beams have low energy density.

nized deforming structures whereas the Kite & Dart Penrose lattice produces disordered
arrangements of the strain energy density. A remarkable dependence of R with respect
to the average slenderness of the lattice is obtained in Fig. 3.4. In this Figure, the distri-
bution of the element average of the strain energy density for uniaxial tension along the
horizontal axis is plotted for different lattices and slenderness. Green beams hold high
energy density whereas purple beams have low energy density. For example, it is clearly
observed that for low slenderness, promoting tension modes, in the hexagonal lattice, the
beams aligned with the loading hold most of the strain energy density. Conversely, for
higher slenderness, promoting flexural modes, most of the strain energy density is hold
by beam not aligned with the loading. It is obtained that hexagonal and octogonal lattices
have well organized energy distribution patterns but that the Kite & Dart Penrose lattice
produce disordered arrangement of the strain energy. Concerning the evolution of R as a
function of the beams’ slenderness, a linear trend is easily fitted on the curves plotted in
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3. Fracture

Fig. 3.4 for the three materials. It is obtained that the slope is 4 times higher for the Kite
& Dart lattice than for the two others. One could argue that the structured deformation
patterns (see Fig.3.4) obtained for the hexagonal and octogonal lattices are one reason for
the lower increase of the energy dissipation capability of these lattices. Conversely, defor-
mation patterns for the Kite & Dart Penrose lattice are disordered what is less favorable
for the propagation of defects. The order of material symmetry is certainly at the origin
of this difference between the Kite & Dart Penrose that has a 5-fold symmetry whereas
the hexagonal and octogonal lattice have a 6-fold respectively 8-fold symmetry. Further,
in the case of a periodic lattice, weak orientations exist [?], giving rise to directionality
effects what intrinsically weaken this kind of architecture. As the octogonal lattice used
herein is a periodic approximate of the quasi-periodic lattice, it may also be affected by
the existence of weak orientations.

3.2.2.2 Conclusion and Discussion

It is concluded, from the previously seen results, that periodicity and high order sym-
metry affects the ability of a lattice to dissipate energy during the propagation of a crack.
The higher performances of the Kite & Dart lattice, could be a consequence of disordered
deformation patterns and of the activation of bending deformation modes when slender-
ness is increasing.

However, the study of unstable crack propagation with a quasi-static simulation does
not ensure correct results. It is why a dynamic simulation is needed and will be presented
in the following section.

3.3 Dynamical Problem

As previously discussed most of the cracks in the previous section are unstable propa-
gation thus to better simulate the failure a dynamical simulation is required. The previous
solution is not viable to calculate the dynamic propagation of fracture because it is not
time dependent. A temporal scheme needs to be selected in order to solve temporal dis-
cretization of the FE dynamical problem.

3.3.1 Beam Breaking

At each time step the strain energy density of each beam is calculated. The beam is
broken if, while having positive strain, the strain energy density of a beam exceeds the
limit value (e,) but still remain under e,.(1 +€,), with €, a chosen maximum error to the
breaking limit. In order to have the maximum energy density in the right range at the end
of a time step a variable time step length is required and the way to achieve it will be
explain in the next section. The broken beam is not fully removed from the calculation
as it would lead to mass loss in the model. When the beam needs to be broken the node
having the higher positive stress is selected and the links to other elements at this node
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Dynamical Problem

is removed. In practice this leads to the duplication of the node. All kinematic quantities
from the previous node are transferred to the new one.

3.3.2 Temporal scheme

As the mesh is updated at the end of a step where a breaking occurs only one time
step scheme can be used, thus a Newmark temporal scheme is used. In order to shorten
the simulation time and to better capture the instant of the breaking a implicit variable
time step scheme has been used.

. 2 .. 3 7 1 — I
qn+1 =‘1n+df-qn+‘%.qn+dé (63%) .
. . .. 2 e 1 _ o .
Gnt1 = Gn+dt.Gn+ ‘%.(mu)

dt

n being the index of the time step. In order to have a implicit temporal scheme, y = %
and = Al,- It have been shown that such a scheme is unconditionally stable and induces
no numerical dissipation [?].

At the end of each time step the next time step size df required to reach the maximum
energy density is estimated assuming a linear evolution of the energy, then the new time
step is calculated. If the maximum strain energy density is bellow e, the procedure is re-
peated. If the maximum strain energy density exceeds e,.(1 + €, ), the time step is rejected
and recalculated with a smaller d¢, a linear evolution is once again assumed to estimate
the new d¢. If the maximum strain energy density is between e, and e,.(1 +¢€,) then the
time step is valid and the element is broken. A upper limit d#,, is added when the strain
energy is higher than a threshold e;,s5014 in Order to avoid too big time step. Indeed when
the breaking limit is close to be reached a too big time step might lead to miss a break.
The upper limit is not imposed before the energy threshold in order to limit simulation
time especially for quasi static loadings. A lower time step limit d1,,,, is added to in order
to avoid infinite decrease of the dt when overshooting the ¢,(1 +€,). When the estimated
new dt is smaller than the limit the time step is assumed valid even if the strain energy
density exceed the allowed error.

In order to better comparatively visualize results of several simulations, the results
meshes and quantities are exported as vtk format to be viewed in ParaView. The time step
are not all exported in order to save disk space. The dt is sometimes adapted to allow
exporting results at a fixed time step for better visualization of crack propagation.

The algorithm of the dynamic fracture simulation is summarized in the figure.3.5.

3.3.3 Dynamic Fracture Simulation

For the simulation the different parameters are :
dt1p = 107105, e/preshora = 0.95 , €, = 0.05. dtyyp 1s set to a factor of dr., with dt. being
the critical value for an explicit temporal scheme :
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FIGURE 3.5 — Dynamic simulation algorithm
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dt, = L with o the solutions of det(K, — @’M,) =0
max(®)

As previously all implementations are done with Matlab and resulting meshes are

viewed with ParaView. Two sets of simulations will be discussed in the following.
First dynamical simulation on the same sample as the one used in the previous quasi-
static simulation where the boundary conditions are the same with an imposed speed
V =0.1lmm.min"",
In order to study the cracking behavior of QP beam lattices under dynamic loading a set
of dynamic crack opening simulations are performed. The sample is a square of side D
with a pre-crack at the bottom of length /, (as can be seen in figure.3.6). The boundary
conditions are only applied on a narrow band at the lower right part to the sample (of
width one beam length). A constant speed of 2.2m.s~! is applied to the displacement dofs
normal to the pre-crack in order to open it, while the other dofs are left free. This simula-
tion should approximate an low-speed impact experiment where a bulk of material at the
bottom right of the sample is hit by an impactor.

la

FIGURE 3.6 — Dynamic crack opening sample exampled.

3.3.3.1 Results

The first aim of the dynamic fracture simulation is to be able to reproduce the crack
path of the unstable crack propagation. In figure.3.7 the dynamic simulation is compared
to the same experimental results as in figure.3.1 with the experimental result on the left
and the simulation on the right, where the broken beams have been removed for an easier
visualization. The simulation shows a great agreement to the experimental result.
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FIGURE 3.7 — Experimental and dynamic simulation comparison

A second aim is to see if the previous fracture behavior is conserved under dynamic
simulations. In figure3.8 are presented two crack path resulting of dynamic simulation of
the quasi-static test for two different slenderness. The previously disscused behaviour of
sub structures is still visible and increasing the slenderness gives more wavier crack path,
thus more dissipation.

In figure.3.9 the ratio R between energy needed to fully break the sample over the
energy needed to break a fully brittle sample is plotted with the slenderness in abscissa.
In practice R is the energy prensent in the sample after full failure divided by the energy
when the crack initiates which would lead to a complete failure of a fully brittle material. It
can be seen that the global increase of R with the increase of the slenderness is preserved.
Once can observed a dip at L/e = 6.25 thus the linear evolution previously observed for
quasi static simulations is not preserved for these simulations.

In figure.3.10 the results of dynamic crack opening for different slenderness at
constant cross section area are shown. It seems that the substructure previously identi-
fied still plays a role for dynamic crack propagation by inducing deviations but the impact
of the slenderness on the waviness of the crack path is less clear.

In order to better validate the dissipation behavior of the dynamic crack propagation
the same calculation has been done with several parameters. Four different dz,, have been
used (4dt.,2dt. , 1dt, and 0.5dt.) in order to compare the R ratio. The crack paths are
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Dynamical Problem

FIGURE 3.8 — Crack path for dynamic simulation of quasi static loading for a slenderness
of 5 (left) and 10(right).

1.35 T T T T
—Penrose KD, dtup—l

1.3

g 1.25

1.2

1.15 ' : : :
5 6 7 S 9 10

Average /e

FIGURE 3.9 — evolution of R against slenderness of dynamic simulation of quasi static
loading over slenderness.

shown in figure.3.11 for a slenderness of 5 with several dz,,. It can be seen that the crack
path depend of dr,, but it is hard to conclude on the evolution of R from the crack path. In
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FIGURE 3.12 — evolution of R against slenderness for several dr,, for dynamic crack
opening simulations.

the same simulation of different samples. A sample too flexible (for example hexagonal
lattice) will not break and a too stiff one will break at the point of imposed dofs. It
would be needed a configuration where the dynamic loading would open the initial
crack regardless of the macroscopic stiffness of the sample. Due to the slenderness used
compression waves can not be used as it would experimentally lead to crushing of the
sample, thus test like Kaltoff or compression wave reflection can not be performed.

In order to have smoother results it could be interesting to add a small visco-elastic
property to the FE model or a cohesive behavior on beam rupture , this would lead to
filtering of the high frequency due to the brittle fracture.

Dynamic experiments have to be done in order to better validate the simulations and
to statute over the calculus parameters. The need to add visco-elasticity to the model or a
cohesive model would also be validated or not by the analysis of experimental results.
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FIGURE 3.13 — evolution of R against slenderness for dynamic crack opening simulations
of Octogonal and kite & Dart Penrose lattices.
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4. Homogenization

4.1 Introduction

The interest in beam lattice materials has greatly increased since the development of
additive manufacturing. Such manufacturing process allows the creation of materials ha-
ving complex macroscopic properties due to their internal structure [?] [?]. In order to
better understand, control and easily simulate the behaviour of beam lattices, it is often
useful to create a continuous equivalent model. Classical homogenization methods allow
to identify homogeneous medium easily for periodic structures [?] but without the abilities
to take into account heterogeneities that have a preponderant role in stress concentrations,
crack initiation and crack propagation [?] [?]. It has been shown that classical elasticity
is not always able to exhibit the peculiar mechanical properties of architectured materials
and that generalized continua are better candidates [?] [?]. Such continua introduce addi-
tional degrees of freedom (Cosserat, micomorphic media [?]...) or higher order gradient
of the displacement field (second gradient materials ...). Coarse Graining methods allow
the creation of an equivalent continuous material while keeping heterogeneity at the desi-
red scale for any type of discrete structures (periodic, amorphous or quasi-periodic). This
method has been applied at the atomic scale or for granular materials in order to identify
a classical or Cosserat equivalent continuum [?, ?].

The aim of this work is to transpose the coarse gaining method to finite element mo-
delization in order to identify an equivalent Cosserat continuum for a 2D beam lattice at
different scales. First the coarse graining principle is recalled and then applied to FE beam
model. The CG strains, curvatures , stresses and torques are defined. These definitions are
then used to identify a Cosserat equivalent media for a 2D square beam lattice and to
obtain heterogeneous property fields for quasi-periodic lattices.

4.2 Principles of the Coarse Graining Method
We first focus on a discrete medium to summarize the main ideas of the Coarse Grai-
ning (CG) method. The CG method allows the definition of continuous quantities for a

discrete medium while respecting mass and momentum conservation.
The microscopic mass density p”# is defined as

p"(r) =Y m'd(r—r) (4.1)
i
where d(r) is the Dirac delta function. The CG density can be defined as :
Peg(r) = Zmiq>"(r) (4.2)
1
Where ®(r) is the CG function that needs to be positive semi-definite and normalized

(its integral over space is unity) to respect that the integral of the mass density over any
volume equals the mass contained in this volume.
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Finite Element Formulation and Nodal Quantities

The CG momentum and CG density must verify the mass conservation equation
div(p®®) = —peg 4.3)

with a the time derivative of a and d its double time derivative. The CG momentum at
position r is the average momentum of nearby nodes weighted by the CG function. Thus
the CG momentum can be expressed as :

N . .
pol (r) =} po®'(r) 4.4)

where p!, is the momentum of the node i along the axis o.
In the case of internal rotation, one propose to define the CG angular momentum as :

Jif (1) = Y (Jo + Y &ge(r — ro) pk ) (r) (4.5)

i 0

where Ji, is the angular momentum of the node i along the axis o. This equation
corresponds to the transport of the kinematic torsor from the node to the coarse gaining
point. In the following, a will often be omitted since the rotations are in-plane in the 2D
beam lattice.

In the case of FE beam the nodal mass m, nodal momentum pi , angular momentum
J' and CG function @'(r) needs to be redefined.

4.3 Finite Element Formulation and Nodal Quantities

For a mesh with N nodes, the vector of the degrees of freedom (dof) can be created :
{q9} =1{4',4%,...,q°} where Q = (n+m)N,N the number of nodes times, n the number
of displacement degrees of freedom per nodes and m he number of rotation degrees of
freedom per nodes. For example in a 2d beam model with nodal rotationn =2 and m = 1

The Finite Element elastic problem is written with the following formulation (as pre-
viously defined in 1.3) :

Kq+Mij=F (4.6)

In case of a free of load medium the previous equation(4.6) is equivalent for each node i
to :

] N n+m N n+m |
i ij ..
fa= Y, ¥ Kiyiy=—), ¥ My (4.7)
j=17=1 j=1y=1

where we have introduced f!, the opposite of the restauring force induced by the beams
on the node i in the direction . It can be noted that working with the assembled FE
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4. Homogenization

matrices the interaction forces f&j of node j on i, are no longer accessible. In order to
obtain those forces, one needs to work with the elementary matrices K, and M,, :

fo = —K.qe 4.8)
With f, = {f/ £/}’ and q. = {q’,q’/}'. It can however be noted that :
o=} fd fora={1,n} 4.9)
=1

The momentum vector for each node i is defined as :

N n+m
=) ZMayqy_wa fora={1,n} (4.10)
j=ly=1
Where wy, is a notation introduced to be used latter, wg, = Y7, Y0 Mg, The rotation
momentum for each node is defined as :
N n+m )
=) Z oy = & for o= {n+1,n+m} (4.11)
Jj=ly=1
@, is again a notion to be used, @, =YY, Y5 Mgyq) .

From the equilibrium equation Written for the particular case of {¢} corresponding to
2D rigid body displacements, one has the following relations :

Koy =— ZK fory={1,n} (4.12)
J#
.o N
K&Y:_Z( +Z%é a”q’)foryz{”“vm} (4.13)
i

With r(p = r(]p — r . The stiffness matrix has a big symmetry Kow = KW, the small sym-
metries and anti-s ymmetrles are summed up in the following table :

i —{1 n} Y—{n+1n+m}

TABLE 4.1 — Table of stiffness matrix symmetries

These relations can be identified on the stiffness matrix of a reference element and
are not impacted by the rotations. It is important to notice that these relations established
in equation 4.13 and table 4.1 are only true in the case of a 2D problem with one out of
plane rotation. A 3D problem with 3 rotations could however be treated with the same
methodology to obtain the correct CG formulation.
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Finite Element Formulation and Nodal Quantities

4.3.1 Coarse Grained Momentum

The coarse grained impulsion and coarse grained density must verify the mass conser-

vation equation : div(p®®) = —pc,. A solution is to choose the following definitions :
Ir— 7]
D) = (e —F) = —— o i (4.14)
ry,
with :
N i
7= Z“nf‘nM"‘Y(ﬂ!r 7 (4.15)
o= L i 1Ty :
Jov=1
) 1 N n n ij
= ;Z Z Z Mgy (4.16)
J oa=1p=1
(4.17)

and /¢ the coarse graining length. Varying this length allows to have a CG function more
or less wide an to define an continuum material at different scales. The main requirement

ZN n+m M

of this

of mass (4.3) with the deﬁmtlon 4. 2) for the mass density.
With these definitions, the integral of the coarse graining function over space is one
as needed [?] and the conservation of mass is verified since :

Wy _ LmPi(r) o 9P O(ra—Th) _ l-N”“"Mow jae’
B R e ML __gm;

using (4.2), (4.14) and (4.10).

4.3.2 Coarse Grained Rotation Momentum

In order to maintain the coherence with the previous definition, the CG rotation mo-
mentum for a 2D FE problem with 1 rotation is defined as :

JeE Z +qu,§ 6 —To)Pe)® (r) for o= {n+1,n+m} (4.19)

and
1 N n+m n+m

=Y (F —rP+ 0t F=—% } ) Mgy (4.20)

i J o=n+1B=n+1
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4. Homogenization

To get the equation in a 3D case one would need to redefine the arm lever of the impulsion
in 3D. The definition of the previous CG density and rotation momentum for a FE mesh
is also equivalent to the Goldhish formulation [?] if the mesh has concentrated mass and
rotational inertia at the nodes, the mass matrix being diagonal in this case. For example,
for a mesh where each node i has 2 displacements and one rotation as dofs, the mass
matrix would be :

M= m' 4.21)

4.4 Coarse Grained Displacements and Strains

From the CG momentum and density definitions the CG velocity can be defined and
then the CG displacement can be obtained by time integration.

4.4.1 CG Displacements

As the CG medium satisfies mass conservation (4.3), the coarse grained velocity can
be defined as :

cg
Vg — Po (4.22)
ng
The displacement can then be calculated by time integration :
t t 8 ‘N P
ugt (r,1) :/ v (e, Yt = | L% = Y g —dt’
0 0 Pcg 0% Peg

N CI)l t N i )
; ch / Z Yoo ( )dt
wi, [ od! Pcg .
:ufx_/ Z Oc(at/ Peg — at/gq)>dt/

pcg
(4.23)
Where the integrated term is of second order, thus :
N i N N n+m G q)i
=Y wie—=YY Y} Mg — (4.24)
7 Peg TSy Peg

In Appendix.B.1 a more detailed description of this term is given. This formulation de-
pending only on nodal information (Mass matrix and displacements) can be easily imple-
mented in order to calculate the CG displacements at any point of the domain.
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Coarse Grained Displacements and Strains

4.4.2 CG Strains

By a simple derivation over space the CG strains can be defined :

Juge . YN wi B jad>’ 0P/
——a—rﬁ(—) -5 Z(wam B —wam —(I))

arB ZNmJCI)J Pce i arﬁ
acbl . > U 1 X Lol
J i) gl J J J
gg ,Z]' (wam arB wo arB P ) p%g ,ZJ' (Wam W ) 81”[3 ®/

(4.25)

4.4.3 CG Rotations

With the absence of mass conservation equivalent for angular momentum the CG
angle is can be choosen as :

(4.26)
It can be tempting to have used the same method as before : from the definition of the

CG angular momentum and rotation inertia, the definition of the CG angular velocity can
be obtained and then the rotation by time integration.

Jof =1%.Q¢ =Y (Jo+ ) ege(rp—re)pt) - @'(r)
i S

. ; L Di(r
Qi =Y (o +Z€<pé o~ T9)Pe) Ic(g)
i S
4.27)
C, 1 q)l
/Qg /X,"J —|—Z€(pg —”cp)Pg) Ic(g)dt/

f @i(r) /
/O Y +qu,§ b= rg)W)
N

" P o [ (ri—ry)®
Z OL+ZS(p§ —I’(p Icg / ( o at/< >+Z€(P§W§ a / (_(p i b ))dt/

i cg

(4.28)

73

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI062/these.pdf
© [A. Glacet], [2018], INSA Lyon, tous droits réservés



4. Homogenization

As before, the integrated term is of second order and the details can be found in Ap-
pendix.B.2. Thus,

C, CI)l' r
05 = 8, = ) (0 +Zeq,§ o~ To)WE) Ic(g) (4.29)

i

This method gives however non consistent results. Indeed if the curvatures are calculated
by taking the spacial derivatives, one obtains :

K =7 Z[Z epewh. ([ —r|> 1) +2.( (0 +Y egerh —r)wk).m (] —rp)). 1.

cg ij g
i i i [ 1[ae) ' R j j i i 0P,
+((ma‘i‘zswi(r@_rtp)Wg)-(mJ-Hrj—l'||2+lj)—(03&+Z€<p§(r<jp_r<p)wé)-(m e —r|P 41 )) ar CI)J'}
9%

(4.30)

Due to the term including a lever arm in the unproper angle definition (4.29) a
term directly proportional to the displacement arise in the curvature expression (i.e
—eﬁgwé.(mj Jlr/ —x||> + I7)). Simulations thus give curvatures proportional to the dis-
placement in the case of purely tensile loading on a square lattice, this is non consistent
with what is expected of such lattice.

4.4.4 CG Curvature

A simple space derivative of 8¢ allows to calculate the curvatures from (4.26) :

008 Y, 0. ® oD ; a j
cg — (X 1 _ J ¢_] ¢
ap arg. a"B( I ) % ,ZJ: (mm Jrp arB )
;0D ) 1 ¥ ( ) odb! .
0] mf —o/m — o'm! —o'm oY
Igg;( 8rB IczngJ’ arﬁ

(4.31)

4.5 Coarse Grained Stresses and Torques

4.5.1 CG Stresses

The CG Stresses can be identified from the dynamic equilibrium of a Cosserat me-
dium. The dynamic equilibrium is written as :

opes 0 con
Pa _ %% (oaﬁ - pcgvugvﬁg> 4.32)

ot
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Coarse Grained Stresses and Torques

ang B ZN (Dz

G = (5 ) = (5

l mi arB
N N
i xi BBCID
_<;faq) +; Z lal’[3>
Ag, Ba g

(4.33)

The calculus can be done using the FE matrix or the interactions forces. Both methods
will be detailed in this section and the formulas using each are given. Depending on the
easiest quantities available, one can choose to work with one or the other.

The details of the calculations for Ay and By, are presented in appendix.B.3. The dy-
namical stress can finally be identified as :

N n+m 1 N n+m
l ~Ji ~
D MW I W

ij£i =1 ij y=nt1

(4.34)
~lrp 72
Where gi = L TS e 2 and /' =T —7/. The method to obtain g/, is detai-
B lrg—75 1> 27 ) B
led in section B.3.
P
17’5 = B Eg is the fluctuation of nodal velocities to the CG velocities therefore

— Zﬁv mi\?&ﬁéd)i 1s the fluctuating kinetic part of the stress. The formula is very similar to
the equation obtained by Goldirsch[?] in the case of granular materials.

Using the interaction forces the following formula is obtained :
1 N n+m

Cup = ——Z Y f”/\ﬂ/ O(r—71 +sv/) ds—Zm vavBCIDi (4.35)

ij y=1
Using this formulation one can calculate the expression of the anti-symmetric part of
the stress :

1 N n+m 1 e .
Zeaﬁcaﬁ =L L / O(r —F + st ds (4.36)
ij y=1

Thus in the case of tangential forces between nodes i and j the stress will be non
symmetric. This further implies the use of a Cosserat medium to approximate the beam
lattices.
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4. Homogenization

4.5.2 CG Torques

The coarse grained torques are identified from the momentum dynamic equilibrium.
In the following the o indicating the axis will be omitted due to the fact that there is only
one rotation in 2D. In the planar Cosserat formalism, the rotational momentum dynamic
equilibrium is written as :

oI _ 3 9 red) ¥
ot :%:Tm(mﬁ_vsgf g)‘%lﬁﬁv% (4.37)
Y

LA g(i(i%& Pa”’)‘p)
:%aﬁ(zs@g( proree )0 S e hror )y

N n n+m ) l N n+m z
——(zzzw:p L e )

ij @& v=1 KAS )
) C, Ce
—iii (e 0T )Pt +J’)pﬁaq)l
o (PE.~ ¢/rE i arﬁ
D

(4.38)

Here Ké]\.( indicate K&]Y for o0 = n+ m, corresponding to the rotation axis.
The details of the calculations for Cy, , Cg and D are presented in appendix.B.4. Then
one can identify the torques as :

N n nt+m . o | N B
e i;ié v; (%g(rép —ro)Keyay + Ké]v‘h]() é / ®(r—1 +s1/')ds
o N n
R ZZ Y eox(rb—ro)Kejaish ~ L) (eqs(ry—ro)pk +7') 1haf
ij @§y=n+1 s

(4.39)
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Cosserat Equivalent Continuum

With — Zév ?p& (%g(rfp —rg) pé —I—Ji> ﬁéd)i being the kinetic part of the torque. Here

again the formula is close to the one in [?].
Using the interactions forces the following formula is obtained :

1Nnn+m

_ZZ(%é

i@

Aﬂ/ O(r -7 + 57/ ds

ro)p +')

(4.40)

4.6 Cosserat Equivalent Continuum

Knowing strains and stresses for each point of the CG medium the elastic moduli of
the Cosserat medium can be identified at each point. It is assumed that the elasticity tensor
is of cubic symmetry (as defined in 4.41). This hypothesis is first taken for the study of
the square lattice, and the octogonal Penrose lattice as they present a 4-fold symmetry.
The kyte & dart pernrose lattice with it’s 5-fold symmetry should lead to isotropic CG
medium that is a particular case of cubic symmetry. We note :

D1 D2 0 0 0 O]
DI 0 O 0 O
D3 D4 0 O
b= Sym D3 0 O (4.41)
D5 O
- D5_
At each CG point, the following equation must be verified :
6 =De (4.42)

where 6 =

t > —
(Gxxacyy; nya Gymmxamy) and e =

(€xx,eyy, €xy, €yx, kx, ky)' In order to activate

all moduli five simulations are performed. The simulations used are 1 imposed traction in
each direction (ey, and eyy), 2 imposed shears (ey, and eyy) and 2 imposed curvatures (k.
and ky). The previous equation can be rewritten as :

6 =De (4.43)

Where D = [D1 D2 D3 D4 D5]" and 2is a 6x6 (6 equations for each of the 6 simulations)
by 5 tensor. Finally D is obtained at each point using the build in Matlab function :

~

D=

pinv(e)C

(4.44)

As the @ matrix is not square, pinv() calculates its Moore—Penrose pseudo-inverse that
gives the least square solution of the linear system.
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4. Homogenization

4.6.1 Application to a square beam lattice

In order to illustrate the use of the previously defined CG method, it will be applied
to a periodic beam lattice of square cells as presented in figure.4.1. All calculus are made
in Matlab using an home made FE code for the simulations and an implementation of
the previously defined CG formulas. To model the beam lattice all beams are of length
L and are discretized by one Euler-Bernoulli beam element with two nodes. Each nodes
have 3 dof, two translations (ui,u;) and one rotation (0). The FE model of a 1000x1000
cells square lattice is created and the displacement of the nodes are calculated for several
loading scenarios. Then the different CG quantities can be calculated on one fifth of the
mesh to be able to calculate the CG quantities at the border.

Deplacemant X Diplacemsant X
00 0.0

é
:

:
:

5
B

-0.004

&
&

-0.008

gmlllllllImolllllll-llllllllm
mllllllllm‘jllllIllllllllllm—‘

-0.0

FIGURE 4.1 — Displacement X CG(left) at /., = L and the corresponding 20x20 square
lattice under imposed traction along X

The elastic properties can be calculated for several coarse graining lengths. In fi-
gures4.2, 4.4 and 4.5 is presented the evolution of the mean of the elastic moduli as a
function of the coarse graining length [.,, their standard deviation is also plotted in the
graphs .

In figure.4.2 one can notice the convergence of D1 as a function of /., In figure.4.4
% corresponds to u in eq.1.66 and @ to u.. The elastic moduli closely correspond
to what can be found in the literature for A+ 2u and u. u. on the other hand seems to differ
from homogenization methods [?].

In figure.4.5 the bending modulus increases with the CG size while the curvature
converges to the imposed one. Thus the strain energy calculated by CG is increasing with
the CG size. This is questioning for the CG torques calculations. One explanation could be
the presence of a divergence free torque field deriving from a curl. In fact this filed could
be added or subtracted from the torques without impacting the volumic torques balance
equation as it only depends on div(m). An other problem identified with this expression
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Cosserat Equivalent Continuum
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FIGURE 4.2 — Evolution of the mean of D1 depending on the coarse graining length for
the square lattice and standard deviation.
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FIGURE 4.3 — Evolution of the mean of D2 depending on the coarse graining length for
the square lattice and standard deviation.

of the CG torques is the non compatibility between CG and FE loads at the border of the
CG area.
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FIGURE 4.4 — Evolution of the mean of D3 and D4 depending on the coarse graining
length for the square lattice and standard deviation.
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FIGURE 4.5 — Evolution of the mean of D5 depending on the coarse graining length for
the square lattice and standard deviation.
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Cosserat Equivalent Continuum

4.6.2 Cosserat Coarse Grained Strain Energy :

As the CG strain energy increases with the CG length while it should converge,
the divergent term will be identified form the CG strain energy expression. The energy
should be conserved between the micro and the GC, The micro strain energy can be
identified to isolate the problematic term.

2 2
2Erain = /Q Z (ZGaBeaB+maka) (4.45)
00
= / Z ans +8(x[39)+mocar) (4.46)
o
2 Jdo
= / Z anﬁua“‘mae /Z Z( ua—saBGaBG)
%n:ae) (4.47)
o
2 acoc g,
- /Z g arB _SOLBGOLBG)‘FWG) (4.48)

if we take the case of zero external work.
And from the previous identification of CG stresses and torques we have :

00
“B -y Z Kif gl (4.49)
ij y=1
dmg,
Fr Z Z €t (g — 4‘1’1 + Z Z Keﬂv ) + &40z (4.50)
ij ’Y— ij 'Y_
And thus :
B 2 2 ama
2Estrain = Y ( Z ~€4p0op0) + - —6) (4.51)
ro 1 p=1 To
2 3 .
= / LY Y (Kha®lua +ege (ry — ro) Kyay®'0 + Kggy®'0) (4.52)
Q ij a=1y=1
It can be chosen :
uazqgﬁg coa={1,2} (4.53)
0=06"+0 (4.54)

with @ and @ the fluctuations of the nodal dofs relatively to the CG dofs.
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4. Homogenization

2Estrain = /Q Y Y Y (Kegi@lua +eg(r — ro) Kgy @' + Kyl @'6) (4.55)
3 i~ s . . . . .. . . .
l if i ~[ i 1 i/ni ol
= /Q Y Y Y (Kehgy®' (g + i) + gz (1 — ro) Kpygy®' (6 +6')
+Kgya7 P (6 +6")) (4.56)

3 3 17 / o . b s . . ~
= / Y Y Y (qoKeha® + e (rh — ro)Keay®' (6 +8)
Q5T a=17=1

=
Q
I
I
T
[N

+35 K@) (4.57)

The CG of the microscopic energy can be identified as :};; Z?x:l 2321 q&Ké{&q({.. A
term corresponding to heat creation due to the fluctuation of the nodal dofs relatively to the
coarse grained dofs ¥;; Y3 23(:1 go Keygy®'. A last term that was suspected to produce
the iggrgase of the energy with the increase of the CG lengthis : [5 ) ] ch:] 2«3{:1 sq,&(ré, -
r¢)Ké§q§CI>’ (0'+8')

It can be showed that this term is null :

3 3 o
/ Y)Y eoe(ry —ro)Kegy® (6" +8)dr (4.58)
Q57 a=1v=1

_ /Q &4e Y Go(r — 1) He(r')dr (4.59)

With Gy (r —1) = (rg—74 +7 —ry)®(r —1) = (ry —7)P(r —1') if 1 — ' is neglected
J [

and H (r) = ¥;; 8(r —?")Ké%q({(e' +

67). Noting * the convolution product one can obtain :

/£2£¢§ZG¢(I‘ —/f")Hé(/r\i)dl’ = /£28¢§G¢(1‘) * He (r)dr = /QF(I‘)C[I’ (4.60)
1
If we note I'(k) as being the Fourier transform of I'(r), then :
(k) = / I(r)e*™*dr 4.61)
k

Thus :

/Q I(r)dr ='(k = 0) (4.62)
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Cosserat Equivalent Continuum

It can also be written that :
F(k) = 8¢§G¢ (k)Hg (k) (4.63)

With Gy (k) and He (k) the respective Fourier transform of Gy(r) and H (r) More over :

— [ Golx)e?™*ar (4.64)
Q
-~ / ro®(r)e2™ X ar (4.65)
Q
_ ! / 9 (@(r)e2 ™) g (4.66)
2im Jo Ok '
_ =19 ) (4.67)
~ 2im kq '
And because :
) 2| k|
— e TR
B(k) — / . 215, it 2 (4.68)
Q
Then :
2
Go(k) = i;g ko® (k) (4.69)
And finally :
—1
T(k) = gz 5-—ko® (k) He (k) (4.70)
I'k=0)=0 4.71)

We conclude that the diverging term is indeed a boundary condition term.

4.6.3 Modifying the CG Torques

The term at the origin of the increase of the torques as been identified in the torque
expression as ZZ’ £iLgE ZT{" et (ro—ro)K; l{yq{fé’ fo ®(r — T +st/%)ds, it can be tempting
to suppress it but as it is not dlvergence free, it would unbalance the volumic torque
balance equation. Removing it would lead to the inability to identify the anti-symmetric
part of the stress in the torque balance expression. However removing the problematic
term in the torque expression leads to converging torques with the CG size, modulus
corresponding to the literature and equilibrium between the CG and FE border loads. The
figure.4.6 shows the evolution of the bending modulus with the CG length.

An other solution to modify the torques in order to have a converging solution with the
CG length is to identify the difference between the CG border Torques and the correspon-
ding FE torques. The CG torque is then fitted to suppress the difference. The difference
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4. Homogenization
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FIGURE 4.6 — Evolution of the mean of D5 and standard deviation obtained with the
modified torque with subtracted lever arm depending on the coarse graining length for the
square lattice.

can be simply subtracted in the volume as it’s divergence remain null. In the case of the
square lattice it can be done easily in the case where each CG point correspond to a FE
node. The difference can be calculated a each point and subtracted in the volume. For
example in the case of Mx the difference can be calculated at each point of the right
border of the CG area then subtracted at each point of the corresponding line. The re-
sulting evolution of D5 elastic modulus for fitted torques on a square lattice is shown in
figure.4.7a. This method gives converging elastic modulus with the CG length but gives
results 2 order of magnitude higher than the ones found in literature.

It has also been tried to identify a field resulting form a curl using a finite difference
method to respect the volumic torques balance equation and respecting the transmitted
forces and torques in resultants at the boundary of the observed domain. If the correction
of torques is searched as a curl of a field of scalar ¢ then the volumic balance of torques
is preserved :

div(m+curl()) = €,304p (4.72)
a’iv(m) = €upOap (4.73)

The system of equations is :

6 =De (4.74)
d
Y omt 5o = ¥ MoD (4.75)
bcY T y beX+
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Cosserat Equivalent Continuum
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(a) Evolution of D5 elastic modulus for fitted torques on a square lattice.
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(b) Field of fitted torques m, for a simulation where k, is imposed at the
border.

FIGURE 4.7 — Results of the fitting method to modify the CG torques.

)
Y me+ 22 = Y M, D (4.76)
bey ary bey
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4. Homogenization

0
Y my— a_‘P — Y M,D* (4.77)
beXt Tx  pex+
A
bz my =5 = Zﬁ M. ;D (4.78)
cX bcX
. . -~ o0} oL}
with the modified stress vector :6 = {Gxy, Oyy, Oxy, Oyx, My + 5,0~ g} Here Y p.y+
y X

is used to denote the sum over all the nodes sitting on the border ¥ of the CG domain
and D¢ is the length of the side of the CG domain.
The system can be written as :

AG+B.¢=C.D+My (4.79)

with @ a vector containing the values of ¢ for each CG point and Mg containing the
resulting Finite element momentum on the borders. The spatial derivatives are calculated
using centered finite difference method in the bulk and forward and backward difference
on the borders. A field of modified m, for a simulation where k, = 1 is imposed on the
border is shown in figure.4.8b.This method gives elastic moduli close to the one found in
literature but the resulting torques field are non uniform when it is expected to be.

4.6.4 Application to QP beam lattice

In order to demonstrate the real advantage of this CG method to obtain continuous
medium properties of FE model it will be applied to quasi-periodic beam lattices. The two
beam lattices presented here are the same as in the previous chapter i.e a penrose kite&
dart and a octhohedric. The spatial dispersion of elastic moduli is shown in figure.4.9
for the octhohedric lattice. The evolution of the CG elastic muduli are presented in the
figure.4.10.

The spatial dispersion elastic moduli is shown in figure.4.11 for the Kyte & Dart. The
evolution of the CG elastic muduli are presented in the figure.4.12.

The CG method thus allows to obtain a continuous non homogeneous material. The
influence of sub structures is preserved. It can be seen in figure.4.13 the evolution of D1
elastic modulus for different CG length in the Cosserat continuous of the kyte & dart
Penrose lattice.
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(a) Field of modified torques m, with curl field for a simulation where k,
is imposed at the border.
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(b) Field of modified m, with curl field for a simulation where k, is impo-
sed at the border.

FIGURE 4.8 — Results of the fitting method to modify the CG torques.
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FIGURE 4.10 — Evolution of the mean of elastic moduli depending on the coarse graining
length for the Octogonal Penrose lattice.

4.7 Discussion and Conclusion

In this chapter an new CG strategy allowing for the identification of an equivalent
heterogeneous continuous medium form FE beam lattice has been developed and applied
to periodic and quasi periodic beam lattice. It has been shown to give consistent results
in comparison to the literature for periodic beam lattices where classical homogenization
has been applied. This method is especially useful for quasi periodic structures as most
of classical homogenization method can only be applied on periodic configuration.
This method also allows to look at the meta-material at different scales thus creating
different continuous approximation depending of the description scale needed. It seems
from the previous chapters that sub structures play a preponderant role in vibration
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and crack propagation for such lattices, therefore a scale where these structures remain
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FE (instead of discrete point wise models)

upscale.
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FIGURE 4.12 — Evolution of the mean of elastic moduli depending on the coarse graining
length for the KD lattice.
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Summary and perspectives

Summary

Quasi periodic Euler Bernoulli beam lattices have been studied, their vibration and
fracture propagation properties have been analyzed using numerical methods to deal with
the specific problems that arise from their quasi periodic structure.

The KPM method has been applied to finite element model with success in order to
reduce the calculation time needed to obtain VDOS and DSF of large QP beam lattices.
The use of Voronoi decomposition allow to decompose the vibrationnal response along
transverse and longitudinal waves. This method can be applied to any lattices but still
require the use of periodic boundary conditions. This limits the range of application for
the QP lattices to the ones that have periodic approximation. Quasi periodic beam lattices
exhibit the peculiar vibration properties already seen in quasi crystals (i.e band gaps and
mode localization on sub structures) while having more parameters that can be adjusted
in order to obtain the desired properties and should be considered to create interesting
new meta-materials at macroscopic scale.

A Static FE beam model has been developed and implemented in order to study the

crack propagation in beam lattices. The simulations results seems in agreement with
the experiments even if the experiments are unstable. From an analysis of the energy
dissipation of the crack propagation in beam lattices it seems that Kyte & Dart QP lattices
are good candidate to create new meta-materials that are able to dissipate more energy
during crack propagation than their periodic counterparts.
A dynamic FE beam model with varying time step has been developed and implemented
in order to study the crack propagation behavior of QP beam lattices. Dynamic crack
opening simulations are performed to study the crack propagation under dynamic loading.
the simulations allow the comparison of the crack behavior of several lattice and show
that slender Kite & Dart have a good ability to resist to crack propagation. The model
still needs to be better validated with dynamic experiments correctly instrumented to
grasp the failure in action. With the increase use of cellular materials in many mechanical
domain, Kite & Dart QP lattices could be needed in case where periodic lattices fails to
resist to mechanical loads.

A coarse graining method has been developed to create equivalent continuous

93

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI062/these.pdf
© [A. Glacet], [2018], INSA Lyon, tous droits réservés



Summary and perspectives

medium while preserving the non homogeneity needed to correctly describe the complex
behavior of QP lattices. Displacement, strains and stresses are identified for a Cosserat
medium from the assembled stiffness and mass matrix of the FE beam lattices.This
allows to identify the elastic moduli of the Cosserat approximation for several CG length.
Rotation , curvatures and torques are also defined. The torques rose question as it seems
impossible to respect energy conservation between scales and torques equilibrium with
the same torque expression. All CG quantities depend on the CG length and converges to
a finite values when this length increases. In order to get this result the torque expression
had to be modified and no longer satisfies balance equations. More work is still required
in order to fully solved the problem.

Perspectives

The methods presented in this thesis can be applied to study a wide range of beam
lattices in different domains of interest. The codes developed can be modified to improve
the models especially for the dynamic crack propagation.

The Coarse graining method can be adapted to be used on any FE model, even areal
and volumic continuous or discrete models in order to perform scaling. It’s main point of
interest is the analysis of heterogeneous non periodic samples.

A direct continuation of the work done in this thesis could be the use of the coarse
graining method over crack propagation simulations in QP lattices to follow the change
of CG stresses and deformations in order to investigate a way to create a damage law
that could be use in a continuum model. This model could be used to simulate crack
propagation in the continuous medium equivalent to the quasi periodic beam lattice.

Dynamic experiments are to be performed at Ecole Centrale de Nantes with the use
of high speed cameras and appropriate dynamic loading equipment in order to have better
experimental results to validate the dynamic FE model.

94

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI062/these.pdf
© [A. Glacet], [2018], INSA Lyon, tous droits réservés



Appendices

95

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI062/these.pdf
© [A. Glacet], [2018], INSA Lyon, tous droits réservés



Appendices

96

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI062/these.pdf
© [A. Glacet], [2018], INSA Lyon, tous droits réservés



"me] UOISIdASIp 9y) SUIAIS sny) ‘paA[os A[[eonA[eue Aq ued wa[qod sy} Jo uonnjos Ay J,

Zmiwwsws - 2%%@?8 - wmwww (7xb)us§ I, 776 (74P) urs g 077 gE —
{0} = {r}( (1xb) uts§ I T ief — rostsas T asaez T (140)500+7)75d ¢/ 0 .
(74P) us § d, T3¢ 0 Sé:wmd& + dwm@m +(7¥P)s02+7) 15 d¢€/1
(TR EOr=ras T T T
CEryET 553 ¢ o1 0 )
G 0 por 7 Vet [GmmerTsa ¢

: SI pOWINSSe SI UOTIN[OS dABM U} 90UO 01)Je[ 1enbs ay) J0J 9pou 2uo U0 UdNLIM WNLIQIInba orureup ayJ,

uonnN[os [BINA[BUE 3INJINI)S IIPOLIdJ

V dxduuy

97

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI062/these.pdf

© [A. Glacet], [2018], INSA Lyon, tous droits réservés



A. Periodic structure analytical solution

98

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI062/these.pdf
© [A. Glacet], [2018], INSA Lyon, tous droits réservés



Annexe B

Coarse Graining

B.1 CG Displacement

In order to Calculate the CG displacements from the CG velocities one must integrate
the velocities versus the time.

WS (r, 1) = /0 8 (r 1)t = pcg / Zwa—dt
N
:Zi: pcg /Z aatl( )dt

1y 0P 0
_ & el Pcg 4
— il /();pgg<aﬂ Pes — o c1>>dz

(B.1)
The temporal derivative of the CG function ®' in Lagrangian coordinate is detailed :
Preliminary calculus :
In Lagrangian :
0 _y W) My _y 07 ) Py
o & odg d 5 arg o(rg—1,p) or’
e O LG ek Y LN
5 org d(rg — rinﬁ) ot 5 org B mi
aI"B
(B.2)
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B. Coarse Graining

Using this result the following can be obtained :

ST ) =ul — / %XZ )5;@’ e —m. (v — mj)%cf[: q))dt/
(B.3)
with ul, =
=ua—/0tpigg§(;wa«vﬁ—vw%"ipcg—zpcg-ua. g1y G )
:ug_/o’p_ig%@wmgr ~Loh ,'nﬁg‘f L vﬁfgiuam/ fB%‘fB)d;
e [l 2 (e ;Muqa.v;ﬁgq;" - %‘i;g Hf";;ff)
L oo B ) B e B el

t
_ L v I i i !
= U, /0 ch%’arﬁ <VBng'u(x ;wa.vmﬁ¢>dt
t1 8 B ;
_/Op_cg%’arﬁ chgua me cp)

(B.4)

If we defined \7’['3 as the fluctuation of the nodal velocities relatively to the CG velocities,
and IZIB as the fluctuation of the nodal displacements relatively to the CG displacements :

. Wi wi
\7’13:;%— gg,uB:—B—ug (B.5)
It can be obtained :
i W
cg Wo 7B & !
_,,_,cp
o / Peg 5 Z ar B Peg- ua m' mt >dt

— i+ / pcgzarﬁ va% ar
(B.6)

ﬁ%ﬁfx being of second order, the integral can be neglected. Thus ug = ul,
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CG Rotation

B.2 CG Rotation
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(B.7)
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(B.8)
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CG Stresses

B.3 CG Stresses

In order to identified the CG stresses form the dynamical equilibrium, the temporal

derivative of the CG momentum is calculated :

85?8 _ aZ%;&,cpi :’Zj:(p aaCD’ +pa‘1>’) i(p&cpi_p&z;z_%gjz)
(ivl CI)’—|—]ZV: ol L PSBCID )

l arB
H/—’
A(x BOL

ij v=1

(B.11)

N ~ Nntm n+m N n+m
Aw=) fa® =), Z Koy ®' Z <Z Kindy @'+ Z Ketyqj® ) (B.12)
i

J#iv=1

Using the symmetry properties of the tensor K table 4.1 we get :

N n+m
ii i i
Kowqycb +§ ZKYqYCD
ij#i y=1

t-2 ¥

T M+

Y=n+1

n+m

%
ij#£i
i
ijAi

$

Y=n+1

n n+m

Zl( oy-q7- D' — Kity.q, )+ )y ( a7 ' — Ky @' Z%&
Y=

- (K

lj ré[{q'lyq)l>)

-7 D' — Ky-a7- CDJ) + ) < a4} — Kiry-q. Z%i ,»(P_,»fp)q;qﬂ))

(B.13)
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N . n+m )
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(B.14)

In order to introduce the space divergence in the time derivative of the CG momentum
one can notice that :

(@ — /) =7} O(F — Fids 7Ids (B.15)
0
and it can be defined :
_>
=div(g') (B.16)
_>

Within a cylindrical coordinate system centered on the node i, and with a function g
chosen to be radial, it can be written for a 2D system :

- ;

L s R X[ (;

g :gﬁu? A.H?dW(g)Z; af() (B.17)
_rl
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CG Stresses

With 7 = || 7 — Al||
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2
org'(r) . 1 212
7 amzt
T,
2
L Y7
Fg’(~):/ s e~ cgds
0 27T,lczg
—s2
I B L B 7
! [ e~egd
& f/osz.nlgge ’
2
. -1 1 252
i - ) cg
g(r) F2m ¢
(B.18)
Finally : .
. N
n 0gp . T 1 202
D' =Y — with ¢ _ c8 B.19
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Note that gg is not uniquely defined and that there are mutiple possible different choices
of g since only div(c) has a physical measurable meaning.
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(B.20)

(B.21)
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B. Coarse Graining

If we defined ¥, as

B .
~ p_lB _.c8
B™ i B
It is to be noted that :
Zm’ Zm P — Cg(b’ = Zpﬁ(b’ Cme’CID’) :p
l 1

The term B thus becomes :

N n o ¢
:Xi:zﬁ:arﬁ (m .- vBCI)’—l—ngvg Bg>

o e b=
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B p ij#iy ij y=n+1

(B.22)

pcgvcg 0 (B.23)

(B.24)

e}~ B+ o)

zi:m

(B.25)

Thus the CG stress can be identified form the dynamic equilibrium :

L

(B.26)
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CG Torques

B.4 CG Torques

In order to identified the CG torques form the dynamical equilibrium, the temporal
derivative of the CG angular momentum is calculated :
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o ot
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LR
D
(B.27)
The calculation of the terms are detailed in the following
b N n n( ( i_|_Jz p_lB E
_;ZB:% € (7o r(p)pé )m"'arﬁ
& d i lpf-)’ i ARRAR. ipi)’ i
i Bogg TP i B oog
Y& a 1 1 IB l
=220 5| Epelro—ro)pe+J) @
i B oeg B
(B.28)
Using the previously introduced definition of ¥ h— % vgg:
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B. Coarse Graining

N n n p) ) .
:ZZZaTQeq,g( ro)pk+ )0 BCI)’+JCngg>
7B o
(B.29)

If the displacement and rotational components of 'y are separated it can be written

N n n+m

Cr=Y 1 X eqelrp—ro)Kgay-®'

ij @& =1
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ij ¢ Y=n+1
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el e y=ntl }

(B.30)

Using the relations and symmetries of the stiffness matrix these terms can be re-

written :

ZZ Z €z (7o ‘17 Sy

ij e&v=1

ij7i & v=1
(B.31)
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CG Torques

n n+m
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B. Coarse Graining

By regrouping the components of ¥ :

n n+m
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(B.35)
For a later simplification we can rewrite for m = 1
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(B.36)
Thus :
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CG Torques

n n+m n—+m
Z (Z( quY cp/) ZK” qy¢:>>+z Z Klj (I)j +Z Z Kl] quI)z
v=1 ijAiy=n+1 ij y=n+l
N n+m ) N n n+m
_ZZK” CI)J)—ZZZKquYCID’—f—Z ) K”qYCIJ’
ij#iv=1 ij#iy=1 ij y=n+1
N n+m n+m
SPIDWCRUCERIRS ) MU AR o W
ij#i =1 ij#iv=1 ij y=n+1
N n+m ij j N n+m ij j
_Z):K <I>)+ZZK 4D
ijFiv=1 ij v=1
(B.39)
N n+m n n+m ) ]
CitCo=) ZKU — /) +ZZZ%& équ (@' — /)
ij#i =1 ij7i @8 v=1
N n n+m i B Kij i q)j
+ZZ Y. ege(rp—ro) ey v
ij @ y=n+1
(B.40)

Using the same methods for introducing the spatial derivatives as in B.3 :
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B. Coarse Graining

To recapitulate :
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At last the torques can be identified from :

ach n

=5 = 31 (mﬁ vg Cg) ZEBYGBY

112

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI062/these.pdf
© [A. Glacet], [2018], INSA Lyon, tous droits réservés



UNIVERSITE
= I N SA

FOLIO ADMINISTRATIF

ElA

THESE SOUTENUE DEVANT L’ INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON

NOM : Glacet DATE de SOUTENANCE : 16/07/2018
Prénoms : Arthur

TITRE : Study of Quasi-Periodic Architectured materials : Vibrations, Dynamic Fracture and Homogenization

NATURE : Doctorat Numéro d’ordre :
Ecole doctorale : MEGA
Spécialité : Mécanique - Génie Mécanique - Génie Civil

Cote B.I.U. - Lyon : / et bis CLASSE :

RESUME :

Les Structures Quasi-périodiques (QP) on montrées des propriétés particulieres dans de domaine atomique, notamment dans le
domaine vibrationnel. Il pourrais étre intéressant de pouvoir transférer ces propriétés a des méta-matériaux macroscopiques. Des
réseaux de poutres quasi-périodique 2D sont étudiés dans cette these du fait de la simplicité du modele élément finis (EF) poutre
Euler Bernoulli usuellement utilisé pour la modélisation des réseaux de poutres. Ces réseaux de poutres peuvent facilement étre
produit par fabrication additive ou par découpe laser. Il est possible de faire varier 1I’élancement des poutre (le ratio hauteur sur
longueur) qui est un parametre intéressant pour modifier la réponse mécanique du réseau. En utilisant la méthode EF 1’influence
de I’élancement des poutres sur la réponse vibrationnel des réseaux de poutres QP vas étre étudiée. La méthode numérique Kernel
Polynomial est adapté avec sucés de la dynamique moléculaire aux réseaux de poutres pour étudier leurs modes vibratoires sans
avoir a diagonaliser completement la matrice dynamique. Les réseaux de poutres QP pressentent des propriétés similaire a leur
compere atomique : localisation de mode sur des sous-structures et relation de dispersion hiérarchisée. Le comportement a la
fracture est aussi étudié étant donné que les symétrie présentent dans les QP pourrais permettre des réseaux de poutres QP ne
présentant pas de plan faibles pour la propagation de fissures. Cela a été prouvé vrai d’apres des calcul EF statique avec un
critere de fracture fragile sur 1’énergie de déformation. Les simulation statique ne suffisent pas car elles ne peuvent capturer les
phénomene dynamique complexe qui apparaissent lors de la fissuration fragile. Les propriétés de vibration du QP pourrais aussi
avoir un impact sur la propagation dynamique de fissure. Un modeéle dynamique de fissuration est développée afin d’étudier
I’impact de 1’élancement sur la capacité des réseaux de poutres QP a dissiper de 1’énergie par fissuration . Finalement une
méthode Coarse Graining est développée pour identifier un milieux cosserat continue équivalant au réseau de poutres QP pour
différentes échelles. Cette méthode permet d’identifier la densité, les déformations, les contraintes et donc le modules d’élasticité
du milieu cosserat équivalant. Cela permet une meilleur compréhension du role des sous structures précédemment identifiées.

MOTS-CLES : Quasi-periodique, Eléments Finis, Réseaux de Poutres , Vibration , Fracture, Coarse Graining.

Laboratoire(s) de recherche : Laboratoire de Mécanique des Contacts et des Structures
UMR CNRS 5259 - INSA de Lyon
18-20 rue des Sciences
69621 Villeurbanne Cedex FRANCE

Directeur de these : TANGUY Anne
Co-directeur de these : RETHORE Julien

Président du jury : le président
Composition du jury :

KONDO DJIMEDO Professeur, Université Pierre-et-Marie-Curie Rapporteur
LAZARUS VERONIQUE Directrice de Recheche, ENSTA ParisTech Rapporteur
MORESTIN FABRICE  Professeur, INSA-Lyon Examinateur
MOSSERI REMY Directeur de Recheche, Université Pierre-et-Marie-Curie Examinateur
RETHORE JULIEN Directeur de recherche CNRS, Centrale Nantes Co-Directeur de these
TANGUY ANNE Professeur , INSA-Lyon, Directrice de these

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2018LY SEI062/these.pdf
© [A. Glacet], [2018], INSA Lyon, tous droits réservés




	Notice XML
	Page de titre
	Table des matières
	Table des figures
	Liste des tableaux
	Introduction
	Models
	Quasi-Periodic Structures
	Quasi-Periodic Construction
	QP Symmetries

	QP beam lattices
	Beam theory
	Euler-Bernoulli Continuous Beam Definition
	Euler-Bernoulli Finite Elements Beam Definition
	Weak Formulation
	Dynamic FE problem

	Vibrational Properties of Discrete Systems 
	1D mono-mass spring chain 
	1D by-mass spring chain 

	Cosserat 2D medium
	Degrees of freedom
	Forces and torques
	Dynamical equilibrium equations
	Weak formulation
	Cosserat Constitutive law

	Conclusion

	Harmonic study
	Introduction:
	Model
	Numerical Methods
	Exact diagonalization
	Vibrational Density of States
	Dynamical Structure Factor
	Voronoi Decomposition

	Role of bending in periodic beam lattices
	Analytical solution for a periodic lattice
	Numerical calculations

	Quasi-periodic beam lattice
	Conclusion

	Fracture
	Introduction
	Quasi-static Fracture
	Model
	Quasi-static Fracture Simulation

	Dynamical Problem
	Beam Breaking
	Temporal scheme
	Dynamic Fracture Simulation

	Discussion and conclusion

	Homogenization
	Introduction
	Principles of the Coarse Graining Method
	Finite Element Formulation and Nodal Quantities
	Coarse Grained Momentum
	Coarse Grained Rotation Momentum

	Coarse Grained Displacements and Strains
	 CG Displacements
	CG Strains
	CG Rotations
	CG Curvature

	 Coarse Grained Stresses and Torques
	CG Stresses
	CG Torques

	Cosserat Equivalent Continuum
	Application to a square beam lattice
	Cosserat Coarse Grained Strain Energy:
	Modifying the CG Torques
	Application to QP beam lattice

	Discussion and Conclusion

	Summary and perspectives
	Appendices
	Periodic structure analytical solution
	Coarse Graining
	CG Displacement
	CG Rotation
	CG Stresses
	CG Torques

	Folio administratif



