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Résumé

Les pneus sont un organe déterminant dans la tenue de route des véhicules. Cette these
porte sur la modélisation du contact entre la bande de roulement d’un pneumatique et une
route seche, afin de comprendre les différents phénomenes physiques mis en jeu ainsi que
leurs roles relatifs dans le frottement.

La rugosité multi échelle des sols routiers les rendent difficiles a modéliser avec une
simulation par élements finis standard. En utilisant I’hypothese que la gomme de la bande
de roulement est tres grande devant la taille des rugosités, elle peut étre considérée comme
un massif semi-infini. Il est alors possible de résoudre efficacement le probleme de contact
en ne discrétisant que la surface du massif de gomme. Cette résolution est faite a 1’aide
d’un algorithme de Gradient Conjugué, au cours duquel les calculs matriciels sont effec-
tués par Transformée de Fourier Rapide (FFT). La viscoélasticité de la gomme est prise
en compte en régime transitoire. Les interactions a 1’interface entre la gomme et le sol
sont modélisé€s par une loi de frottement ainsi que par une énergie d’adhésion.

Les résultats montrent le role primordial de la viscoélasticité qui, couplée a la rugosité
multi-échelle du sol, modifie la surface du contact au cours des différents étapes de mise
en glissement d’un pneumatique, faisant ainsi varier le frottement.

MOTS CLES : Contact, Viscoélasticité, Elements de Frontiere, Frottement, Adhésion
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Abstract

Tires are a key component for the handling and safety of personal vehicles. In this
thesis a model of the contact between the tire tread and a dry road is described. It aims at
understanding the different physical phenomena taking place in such a contact and their
relative role in tire friction.

Modeling the multiple scales of road roughness is difficult using a standard Finite
Element Method. The hypothesis that the rubber of the tire tread is very large compared
to the largest scale of surface roughness is made, so that it can be considered as a semi-
infinite half-space. This way, the contact problem can be solved by discretizing the rubber
surface only. The solver is a specific Conjugate Gradient iterative method, in which the
matrix-vector products are performed with Fast Fourier Transforms. Transient viscoelasti-
city is accounted for with a step-by-step approach. The algorithm is able to model surface
interactions such as Coulomb friction and adhesion.

Results show the crucial role played by viscoelasticity. Coupled with the road roughness,
it changes the contact surface during the different steps of tire sliding, which in turns im-
pacts friction.

KEYWORDS Contact, Viscoelasticity, Boundary Element method, Friction, Adhe-
sion
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Résumé étendu en langue francaise

Introduction

Les pneumatiques sont des composants essentiels des véhicules routiers. Le rdle d’un
pneumatique est double : d’une part, il doit supporter la masse du véhicule, et d’autre
part, il doit transmettre 1I’ensemble des efforts qu’un véhicule exerce sur la route ( freinage,
accélération, virages... ). Ses performances jouent un role majeur dans la tenue de route
d’un véhicule, mais aussi pour le confort des passagers et la consommation de carburant.
Ce qui a amené les pneumatiques a devenir hautement technologiques est la nécessité
d’obtenir un bon niveau de performance sous des conditions extrémement diverses de
températures et d’humidité, tout en restant abordables et d’une longue durée de vie.
Cette these porte sur la modélisation numérique des phénomenes physiques ayant
lieu dans la zone de contact du pneu sur la route, aux échelles inférieures au millimetre.
Lorsqu’un effort est appliqué au véhicule ( un freinage par exemple ), la gomme qui
constitue la bande de roulement se déforme. Quand elle entre dans la zone de contact, elle
s’enfonce d’abord dans les aspérités de la route, puis se cisaille sous 1’effet du freinage.
Lorsque les forces de cisaillement dépassent les forces de frottement, a 1’arriere de la zone
de contact, la gomme se met a glisser sur la route. Ces étapes sont illustrées en Figure [

R Vvehicl e

U
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Slipping Shearing
FIGURE 1 : Cinématique de la bande de roulement lors d’un freinage.
Lorsque la zone de glissement s’étend sur toute la zone de contact, le pneu se met a

glisser de maniere macroscopique, et il y a un risque fort de perte de contrdle, puisque le
pneu perd alors son pouvoir directionnel. C’est pourquoi les manufacturiers pneumatiques

X
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Résumé étendu en langue francaise

tentent de maximiser les forces de frottement et I’énergie dissipée lors du processus de
cisaillement/glissement. L’ expérience montre que des gomme plus tendres permettent en
général d’augmenter les forces de frottement, mais cela se fait au détriment de la longé-
vité et de la résistance au roulement. Pour trouver des compromis acceptables, les essais
expérimentaux sont indispensables. Cependant, ceux-ci sont tres coliteux, ce qui rend né-
cessaire 1’utilisation de modeles analytiques et numériques. Ces derniers sont aussi un
moyen de compréhension de la physique du probleme.

Du contact de Hertz au sol routier

Le contact pneu/route est un probléme de contact entre les aspérités d’un sol routier et
le pain de gomme, tres grand devant ces aspérités. L’idéalisation la plus simple de ce
probléme est le contact d’une sphere sur un massif élastique semi-infini, c’est-a-dire tres
grand dans toutes les directions par rapport a la taille de la zone de contact. Sous 1’hy-
pothese que la zone de contact est également tres petite devant la taille de la sphere, ce
probléme a été résolu analytiquement par Hertz en 1880, ce qui permet de déduire, entre
autres, I’enfoncement en fonction de la force normale ou encore la forme du champ de
pression dans la zone de contact, ainsi que la taille de cette zone de contact.

Pour modéliser un sol routier, une premiere idée est de considérer que chaque aspérité
de la route se comporte comme un contact de Hertz. C’est I’approche initiée par Green-
wood et Williamson [1]. En considérant que la route est une somme de sphere dont la
hauteur suit une distribution donnée, il est possible de résoudre le probleme de contact.
Une modification majeure de ce modele a été faite par Bush, Gibson and Thomas [?] pour
considérer que le rayon des spheres suit lui aussi une distribution donnée, chacune des
distributions pouvant étre déduites de la mesure du sol considéré. Une critique majeure de
ce type de modeles est son incapacité a prendre en compte les interactions des aspérités
les unes avec les autres, ce qui rend les prédictions de ces modeles imprécises lorsque la
surface de contact augmente et que ces interactions ne sont plus négligeables.

Pour pallier a ce défaut, un autre type d’approche a ét€ initié par Persson [3][4]. Elle
se base sur le fait que la route est une surface rugueuse a plusieurs échelles, depuis le
nanometre jusqu’au millimetre. Une mesure précise d’un sol routier permet d’en déduire
sa Densité Spectrale de Puissance, qui représente I’amplitude des différentes échelles de
rugosités. L’idée de cette approche est de considérer que la déformée de la gomme suit la
méme densité spectrale de puissance que le sol - ce qui n’est a priori valable que lorsque
le contact est complet. Son modele a été néanmoins validé dans de nombreux cas, méme
si certains parametres ( notamment la valeur de la plus petite longueur d’onde a prendre
en compte ) restent incertains pour une utilisation sur un cas réel.

L’origine du frottement

Connaitre la surface de contact ou 1’enfoncement est important, mais n’explique pas en
soit les frottement observés lorsque deux surfaces glissent 1’'une sur 1’autre. Ces frotte-
ments sont pourtant un phénomene de notre vie de tous les jours. Léonard de Vinci les a
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Résumé étendu en langue francaise

étudiés en utilisant un dispositif expérimental simple décrit et reproduit dans [5]. Selon
ses observations, la force de frottement était proportionnelle a la force normale avec un
coefficient de frottement u = Force tangentielle /Force normale = 0.25, ce quelque soit
I’€état des surfaces. En utilisant un dispositif similaire montré sur la Figure I, Coulomb
fit une campagne de test de grande échelle, utilisant plusieurs matériaux, plusieurs géo-
métries et plusieurs états de surfaces. Ses conclusions sont que le coefficient u est bien
indépendant de la force normale, de la vitesse et de la surface de contact. Par contre, il
dépend des matériaux et de I’état de surface. Ces conclusions sont la base de ce qui est
connu aujourd’hui sous le nom de loi de frottement d’ Amontons-Coulomb. Cette loi est
encore utilisée dans de nombreuses applications car malgré sa simplicité, elle reste une
bonne approximation de la réalité.

FIGURE 2 : Tribometre de Coulomb. Gravure tirée de [B] disponible a la Bibliotheque
Nationale de France.

Cependant, elle s’applique assez mal au cas du frottement pneu/route, puisque le frot-
tement pneumatique est fortement dépendant de la vitesse de glissement et de la pression,
ainsi que de la température. Il est important de comprendre et de prédire ces dépendances
pour concevoir un pneumatique performant. Cela se révele difficile en raison des nom-
breux phénomenes physiques qui ont lieu a différentes échelles et qui causent ce frotte-
ment.

Aux plus petites échelles ( quelques nanometres ), les molécules constituant la gomme,
qui sont de longues chaines de polymeres, interagissent avec la route par I’intermédiaire
de liaisons faibles ( forces de van der Waals ). Ces forces ont pour effet d’attirer les deux
surfaces 1’'une vers I’autre, ce qui va augmenter la surface de contact. Sur une surface
completement lisse, cela pourrait amener a un contact complet, car plus la surface de
contact est grande, plus la résultante des forces d’adhésion est grande. Ce phénomene
est en pratique limité par la rugosité. Il faut une certaine €nergie élastique pour défor-
mer la gomme, et pour qu’elle épouse completement les rugosités du sol il en faudrait
énormément : bien plus que I’énergie potentielle des forces adhésives. Les liaisons de van
der Waals sont aussi, indirectement, la sources de forces de frottement : les chaines de
polymeres forment des liaisons faibles avec le sol, mais lorsque celui-ci glisse, ces liai-
sons vont finir par se casser, pour se refaire un peu plus loin. Ce phénomene dissipe de
I’énergie, ce qui explique une partie du frottement.

xi
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FIGURE 3 : Balayage fréquentiel de I’amplitude du module de cisaillement G* et du mo-
dule de perte tan(8) pour un matériau pneumatique.

Ce n’est pas la seule explication. Aux échelles plus grandes ( de la centaine de nano-
metres jusqu’au millimetre ), la gomme peut étre considérée comme un matériau continu
et homogene. Elle possede la propriété d’étre viscoélastique, ce qui signifie qu’elle dis-
sipe de I’énergie lorsqu’elle se déforme. Un solide parfaitement élastique, lorsqu’un effort
lui est imposé, se déforme immédiatement. Sa déformation de varie pas dans le temps et
il retrouve sa forme initiale une fois I’effort retiré. Un solide viscoélastique, lui, va se dé-
former assez peu initialement, mais sa déformation va augmenter avec le temps. Lorsque
I’effort est retiré, il ne retrouve sa forme initiale qu’apres un certain temps : dans ce cas
de I’énergie a été perdue au cours du cycle de chargement/déchargement. Ces caractéris-
tiques peuvent étre illustrées par la réponse du matériau a une sollicitation periodique, ce
qui permet de déterminer un module de cisaillement apparent en fonction de la fréquence
ainsi qu’un module de perte tan(d), comme montré en Figure 3.

Lorsque la gomme glisse sur un sol rugueux, elle subit de nombreux cycles de char-
gement/déchargement lorsqu’elle se déforme pour épouser les aspérités de la route, et des
déformations se font sur toutes les échelles de rugosité de la route. Elle dissipe donc de

I’énergie, ce qui crée aussi du frottement. Ces deux phénomenes sont illustrés en Figure
@.

Modéles numériques du contact

La premiere difficulté a surmonter pour la modélisation numérique du frottement pneu/route
est la diversité des phénomenes physiques a considérer.

A premiere vue, cette difficulté peut se surmonter grace a ’utilisation de la méthode
des Eléments Finis. C’est une méthode qui consiste a discrétiser 1’espace en un grand

Xii
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Van der Waals bond “

FIGURE 4 : Illustration des différents phénomenes physiques intervenant dans le frotte-
ment pneu/route.

nombre de mailles, ce qui permet la linéarisation puis la résolution des équations de la
mécanique. Cette méthode est développée depuis des dizaines d’années, elle est fiable et
utilisée régulicrement dans 1’industrie. Certains logiciels commerciaux ( tels que Abaqus
ou COMSOL Multiphysic ) permettent une mise en application simple de cette méthode
en prenant en compte un grand nombre de phénomenes : viscoélasticité, thermique, dy-
namique, adhésion, contact, grandes déformations... Elle a été utilisée pour le contact par
quelques auteurs pour ces raisons ([Z, 8]) mais présente un défaut majeur pour la mo-
délisation d’un contact rugueux. Cette méthode implique en effet de discrétiser tout le
volume modélisé en 3 dimensions. Ce n’est pas problématique pour un contact lisse au vu
des performances de calcul des ordinateurs actuels. Cependant, pour un contact rugueux
sur plusieurs échelles un maillage tres fin est nécessaire, plus fin que la plus petite rugo-
sité prise en compte, ce qui impose un grand nombre de mailles et un temps de calcul
rédhibitoire.

Utilisons plutot I’hypothese de massif semi-infini, ce qui suppose que les rugosités
étudiées sont petites devant la taille de la bande de roulement. Dans ce cas, il existe une
relation analytique entre les forces qui s’exercent a la surface et son déplacement ( si on
reste dans le cadre de 1’élasticité en petites déformations ). Pour discrétiser un tel pro-
bleme, il faut alors uniquement discrétiser la surface du massif de gomme, c’est donc
un maillage a 2 dimensions plutét que 3. Le nombre de mailles est ainsi considérable-
ment réduit ce qui permet des calculs rapides mémes pour un pas tres fin. Cette méthode
est celle des éléments de frontiere, dite aussi méthode semi-analytique, c’est la méthode
choisie dans cette these. Elle s’est développée depuis les années 80, elle est décrite par
exemple dans le livre de Kalker [9]. Ses performances ont grandement été améliorées, no-
tamment par 1’utilisation de transformées de Fourier rapides ( [0, 1] ) et d’algorithmes
de résolution de contact adaptés ([12]).

De nombreuses études ont permis d’intégrer a cette méthode la viscoélasticité ( [173,
14, 15, 16, 17, TR] ) ainsi que les forces de frottement ( [9, 19, D0, 21, 22 ) et d’adhésion
([23]). La présente étude décrit un modele d’éléments de frontiere couplant viscoélasticité
en régime transitoire, adhésion et frottement.

Xiii
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Description du modéele

Résolution d’un contact élastique

Le probleme de contact a des conditions aux limites mixtes : dans la surface de contact
S¢, la distance séparant la gomme et le sol doit étre nulle : U, — H = 0, ou U, est le
déplacement de la gomme et H la hauteur du sol. En dehors de la surface de contact, la
pression P doit €tre nulle. Finalement, soit la force normale totale, soit le déplacement
normal moyen est imposé.

Grace a I’hypothese de massif semi infini, il existe une relation simple entre le champ
de déplacement de la surface de 1a gomme et le champ de pression imposé sur cette surface
(Equation Z2) si le matériau est élastique :

1w P(X") ,
UX) = 516 g x—x X M

G est le module de cisaillement du matériau, v son coefficient de Poisson. Discrétisons
maintenant la surface avec un maillage régulier. On peut, au choix, choisir que le champ
de pression est periodique, ou que la pression est nulle en dehors du domaine discrétisé.
Le calcul des déplacements en fonction de la pression s’écrit alors :

I—v
- 2nG
A, est une matrice qui dépend du maillage et des conditions aux limites ( periodiques ou
non-periodiques ) choisies. Dans les deux cas, c’est une matrice de convolution, ce qui
permet au produit matriciel A,,.P d’étre effectué efficacement dans le domaine de Fourier
via une transformée de Fourier rapide (FFT).

Calculer les déplacements depuis le champ de pression ne suffit pas. Il faut désormais
résoudre le probleme de contact, c’est a dire déterminer le champ de pression et la surface
de contact qui satisfont les conditions aux limites citées plus haut. Cette résolution est
faite par un algorithme de gradient conjugué similaire a ceux présentés dans [172, 24]. 11
s’agit d’un algorithme itératif qui, partant d’un champ de pression initial, donne avec les
itérations des champs de pression qui minimisent de plus en plus I’erreur commise sur la
distance entre les surfaces. Lorsque I’erreur est jugée assez faible, la boucle s’arréte et le
probléme est résolu.

U, Ag.P (2)

Adhésion

L’algorithme est adapté pour pouvoir prendre en compte des forces d’adhésions. Ces
forces sont des forces d’attraction qui dépendent de la distance entre les deux surfaces. Le
potentiel utilisé ici est exponentiel, la force d’adhésion est déterminée pour chaque point
(i,j) par ’Equation

Pun(in ) = —Cexp 3)

<0

(_w@n—H@n>

<0

X1V
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Yo est I’énergie d’adhésion par unité de surface, zg est la portée de ces forces. Plus
I’énergie est grande, plus I’effet des forces d’adhésion sera grande. La portée des forces
d’adhésion modifie, localement, la forme du champ de pression. Pour un contact de Hertz,
I’adhésion provoque des pics de pression négative sur les bords du contact. Avec des
forces de courte portée, ces pics sont de grande amplitude et étroit, alors que des forces
de plus longue portée provoquent des pics de moindre amplitude mais plus larges.

La formulation du probléme de contact est légerement modifiée. Dans la surface du
contact il doit toujours y avoir une distance nulle entre les surfaces, et en dehors de celle-ci
la pression est imposée en fonction de la distance par le potentiel d’adhésion. L’algorithme
de gradient conjugué présenté pour le contact élastique doit donc étre adapté car 1’adhé-
sion ajoute une non-linéarité. La fagon la plus simple d’adapter 1’algorithme est, a chaque
itération, d’ajouter manuellement un champ d’adhésion calculé selon les déplacements
du pas précédent. Cette solution est rapide a mettre en uvre et fonctionne efficacement
lorsque les forces d’adhésion sont faibles et ne sont pas de trop courte portée. Elle ne
converge pas si ce n’est pas le cas, ce qui est problématique.

Un autre type d’approche est de résoudre le probleme dual. Il s’agit de trouver le
champ de déplacement qui satisfait les conditions aux limites du contact, et qui induit
un champ de pression qui respecte le potentiel d’adhésion. L’algorithme correspondant
permet de plus facilement prendre en compte les forces d’adhésion et est beaucoup plus
stable, méme pour des forces d’adhésion de courte portée.

Viscoélasticité

Une formulation différentielle de la viscoélasticité est utilisée ( voir [25] ). Elle permet
de prendre en compte la viscoélasticité en régime transitoire. La gomme est modélisée
comme un solide de Zener, illustré en Figure B.

ni Gi

FIGURE 5 : Représentation d’un solide de Zener. Gy et G sont les rigidité des deux
ressorts et 1 la viscosité de I’amortisseur.

Cette illustration simplifiée permet de comprendre I’équation différentielle qui relie
les efforts aux déplacements pour un tel solide, donnée par I’Equation & pour un matériau
incompressible.
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(1+g—;>s+g—;s‘=2G1€+2T]1é 4
Ici Go et G1 sont des modules de cisaillement, 1M un coefficient d’amortissement, s la
partie déviatorique du tenseur de contraintes et e la partie déviatorique du tenseur de dé-
formations. En utilisant la méthode d’équations fonctionnelles de Radok [26], on peut
transposer cette équation en une équation différentielle sur la pression et les déplace-
ments de la surface. En utilisant la méme discrétisation de I’espace que pour le probleme
élastique, on obtient I’équation différentielle 5.

AP (1+@> + A, P GUAMU )
Go/ Go

Pour résoudre cette équation différentielle, le temps est discrétisé, et I’équation B est
linéarisée entre chaque pas de temps. L’algorithme de contact élastique peut alors étre
directement utilisé pour résoudre le probleme viscoélastique. Pour chaque maille, une
variable interne est nécessaire. Elle rend compte du déplacement résiduel du point en
question causé par la viscoélasticité. Pour avoir une précision correcte, la taille des pas de
temps doit étre faible par rapport au temps caractéristique du matériau.

La Figure B montre I’évolution d’un contact sphere/plan viscoélastique avec une force
normale constante calculée avec le modele numérique : la surface de contact augmente
alors que la sphere s’enfonce dans la gomme. La viscoélasticité provoque aussi de légers
pics de pression sur les bords du contact pendant le régime transitoire, qui disparaissent
pour les temps longs ou les temps tres courts.

Forces de frottement et effet de pente

L’algorithme présenté jusqu’ici ne prend en compte que la direction normale. Il permet
de calculer une partie des pertes viscoélastiques lors du glissement de la gomme sur une
surface rugueuse, mais ne prend pas en compte les forces de frottement a 1’interface.
L’avantage de ’hypothése de massif semi-infini et de matériau incompressible est que
les deux directions sont indépendantes : les déplacements normaux n’engendrent aucun
déplacements tangentiels et vice-versa, ce qui pourrait laisser penser que modéliser le
frottement n’est pas indispensable pour quantifier les pertes viscoélastiques.

Si cela est vrai en régime établi, ¢a ’est beaucoup moins en régime transitoire. En
effet, le frottement va modifier considérablement la cinématique de glissement. Pour un
contact sphere/plan par exemple, les bords du contact commencent a glisser alors que le
centre reste collé. Le glissement se propage au fur et 2 mesure jusqu’a atteindre le centre.
La gomme est alors en glissement total. Cette cinématique particuliere de mise en glis-
sement peut modifier grandement les pertes viscoélastiques pendant le régime transitoire.
La viscoélasticité cause donc un couplage indirect entre les deux directions.

Prendre en compte ce couplage directement, dans la méme boucle de gradient conju-
gué est relativement compliqué. C’est pourquoi une approche pas a pas est utilisée, comme
pour la viscoélasticité. Pour que 1’algorithme reste précis, il faut que le glissement lors
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FIGURE 6 : Profils de pression et de déplacement pour un contact sphere/plan viscoélas-
tique a différents instants.

d’un pas de temps soit petit comparé a la taille caractéristique du probleme. L’algorithme
normal/tangentiel peut se schématiser de la fagon suivante :

Initialisation
- Calcul des pressions et des déplacements normaux
Début de la boucle temperelle
- Calcul des déplacements tangentiels
- Interpolation de la gomme selon les glissement locaux
- Calcul des pressions et déplacements normaux
Fin de la boucle
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Friction cone

FIGURE 7 : Illustration de I’effet de la pente locale dans un contact sphere/plan. La sphere
glisse vers la gauche dans un matériau viscoélastique. Le cone de frottement est penché a
I’avant du contact, ce qui augmente le frottement local par rapport a I’arriere du contact.

A chaque pas de temps, un incrément de déplacement uniforme est appliqué a la sur-
face routiere, qui est considérée comme rigide. A partir de ce déplacement, la réponse de
la gomme est calculée en fonction du frottement. La surface de contact peut se diviser en
deux. Dans la surface collée S, le déplacement tangentiel (Ux,Uy) de la gomme doit
étre le méme que celui de la route, et 1a norme des efforts tangentiels ||(7, 7y)|| doit étre
inférieure a un certaine valeur 7,,,, qui dépend de la loi de frottement. Pour une loi de
Coulomb avec un coefficient de frottement y, Tyqx = pP. Dans la surface glissante S;),
la norme des efforts tangentiels ||(7y,Ty)|| est égale T,y et la direction des efforts doit
étre la méme que la direction du glissement local.

Pour modéliser précisément les forces de frottement, il faut prendre en compte, en
chaque point, la pente locale de la surface rugueuse. En effet, en projetant la loi de Cou-
lomb dans le repere local de la surface, et en laissant les efforts tangentiels dans le repere
globale, T, dépend alors de la direction de glissement, ce qui va augmenter le frotte-
ment local a I’avant du contact et le réduire a I’arriere, comme illustré en Figure . Si
le contact est symétrique, I’impact de la pente sur la force totale de frottement est né-
gligeable puisque les deux phénomenes se compensent. Mais la viscoélasticité rend le
contact dissymétrique, le barycentre de la zone de contact est située a 1’avant de la sphere
pour un contact/sphere plan. Cela augmente donc le frottement total.

Un algorithme de gradient conjugué permet de résoudre itérativement le probleme de
frottement. Chaque itération de la boucle donne un nouveau champ de contrainte tangen-
tiel (T, Ty). Si, en un point, la norme de la contrainte dépasse la limite 7, elle est rectifié¢
afin de respecter cette limite. En d’autres termes, le champs de contrainte est a chaque ité-
ration projeté dans le champ des contraintes admissibles. L’algorithme est adapté pour
prendre en compte cette modification, et permet, au fur et a mesure des itérations, de
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résoudre le probleme de plus en plus précisément.

La viscoélasticité est implémentée avec une procédure pas a pas similaire a celle uti-
lisée pour la direction normale.

Une fois les déplacements tangentiels calculés, il reste 1’étape d’interpolation dans la
surface glissante puisque la position relative des deux surfaces y a changé. La premicre
facon de faire est Eulérienne, il s’agit d’interpoler la gomme par rapport a la surface rigide
en fonction des glissements locaux. En petite déformation et en élasticité cela ne parait
pas nécessaire puisque le matériau est homogene, mais la viscoélasticité rend cette étape
incontournable. En effet les variables internes viscoélastiques ( les déplacements résiduels
) dépendent de la position. L’approche Eulérienne fonctionne, mais a un cofit de calcul non
négligeable, puisqu’il y a au moins trois variables internes par point ( une par direction ).
L’approche Lagrangienne consiste a laisser la gomme non déformée et a interpoler le sol
par rapport a elle. Cela peut paraitre contre-intuitif puisque le sol est considéré comme
rigide, mais dans le cadre des petites déformations cela n’a théoriquement pas d’impact.
C’est aussi une fagcon de faire plus rapide, puisque le sol n’a par définition qu’une seule
variable par maille. Il faut toutefois garder en mémoire le sol original non interpolé, car
des interpolations successives risqueraient de le lisser.

Résultats sur un sol rugueux

Le modele a été utilisé pour répondre au Contact Mechanics Challenge initié par M. Mii-
ser. Le but de ce challenge était de modéliser un contact rugueux multi-échelles avec
des forces d’adhésion de courte portée, pour un matériau élastique. Une solution de réfé-
rence avait été calculée avec un modele numérique sur un super-cluster mais les résultats
n’avaient pas été divulgués. Notre contribution au challenge a nécessité un calcul sur une
grille de 32768 x 32768 mailles et s’est avérée €tre en total accord avec le résultat de
référence. Les résultats du challenge ont été publiés [277].

Une étude comparative avec le modele analytique de Persson [28] a été menée, pour
une contact entre une matériau viscoélastique et une surface rugueuse ( sans frottement
a I'interface ni adhésion ). La surface est représentée en Figure B. La cinématique est la
suivante : d’abord la gomme glisse a une vitesse faible Vjy constante jusqu’a ¢t = 0, ou la
vitesse dentrainement est augmentée brutalement jusque Vj. Les courbes de frottement
apparent u du modele numérique et du modeles analytique de Persson sont présentés en
Figure B. Le frottement apparent u est calculé comme la force tangentielle totale ( causée
par les pertes viscoélastiques ) divisée par la force normale. Cette courbe montre que
la force tangentielle passe par un maximum juste apres le saut de vitesse pour ensuite
atteindre un nouveau régime stationnaire. Comme la vitesse augmente, la fréquence de
sollicitation augmente et le matériau parait plus dur du fait de sa viscoélasticité ( voir
Figure 3 ), c’est pour cela que I’aire de contact diminue.

Pour comprendre 1’origine du maximum dans la courbe de frottement, il est utile de
tracer le travail des forces normales et tangentielles et les pertes viscoélastique entre
chaque pas de temps ( Figure [ ). Cette figure montre que le maximum est causé en
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FIGURE 8 : Representation de la surface rugueuse utilisée pour la comparaison avec le
modele de Persson.
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FIGURE 9 : Aire de contact et frottement apparent en fonction du temps pour le modele
numérique et le modele de Persson. Vy = 0.01 ms~ L,V =3ms!
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FIGURE 10 : Travail des forces et pertes adimensionnés pendant un saut de vitesse.
Vo=0.0lms™ ',V =3ms!

majeure partie par une augmentation de 1’énergie potentielle de la force normale : lorsque
la vitesse augmente, le matériau devient en apparence plus dur et se souleve au dessus
des aspérités, ce qui augmente I’énergie potentielle de la force normale. Cette énergie
provient nécessairement de la force tangentielle qui doit augmenter en conséquence.

Une série d’essais a été effectuée couplant viscoélasticité et frottement. Le sol utilisé
est un sol idéalisé : c’est un sol ayant seulement deux longueurs d’onde. Il est assez
représentatif d’un sol rugueux et permet de bien comprendre les roles respectifs de chaque
longueur d’onde. Le cinématique utilisée ici est différente : d’abord, la force normale est
appliquée pendant un temps LT ( a vitesse nulle ), ensuite une vitesse d’entralnement
constante est appliquée, en gardant la force normale constante.

La Figure 1 montre I’évolution de 1’aire de contact et de frottement apparent avec le
temps. Pendant la premiere milliseconde, 1’ aire de contact augmente régulierement. Apres
cette premiere milliseconde de chargement, la vitesse est appliquée, et le frottement aug-
mente régulierement car le pain de gomme se cisaille. La surface de contact diminue, le
frottement par un maximum, puis continu d’osciller en raison de la périodicité du sol. Ces
oscillations ont deux longueurs d’ondes, qui correspondent aux deux longueurs d’ondes
du sol. Ce sont les grandes longueurs d’ondes du sol, qui ont aussi une plus grande am-
plitude, qui provoquent un maximum marqué et large dans la courbe de frottement alors
que les petites longueurs d’ondes provoquent des oscillations marquées mais tres fines.
Le frottement apparent est causé d’une part par le frottement Coulombien a I’interface
et d’autre part par les pertes viscoélastiques. Le maximum et les oscillations ne sont pas
trés marqués, ce qui indique que dans le cas présent les pertes viscoélastiques sont faible
devant le frottement Coulombien ( qui est constant une fois que 1’intégralité de la surface
est en glissement, voir la courbe verte ).
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FIGURE 12 : Evolution du frottement avec la vitesse de glissement.

De ces courbes il est possible d’extraire un maximum f,,, €t une valeur de régime
pseudo-permanent ugy,, calculé en moyennant le courbe de frottement apres le passage
du maximum. La Figure T2 montre 1’évolution de ces deux valeurs avec la vitesse dentrai-
nement. Le frottement en régime permanent a une forme de cloche, il augmente d’abord
avec la vitesse avant décroitre. Ce phénomene est dii a la viscoélasticité, puisque le mo-
dule de perte a lui aussi une forme de cloche avec la fréquence. A basse vitesse ( ou basse
fréquence ) la gomme se comporte comme un matériau mou, a haute vitesse comme un
matériau dur, mais la dissipation viscoélastique n’est présente que pour des fréquences
intermédiaires, et donc des vitesses intermédiaires. L.e maximum de frottement i, est
lui une fonction toujours croissante de la vitesse, car il dépend surtout de la variation de
rigidité apparente du matériau, qui est toujours croissante avec la fréquence. En effet, le
maximum de frottement est ici aussi causé par la montée du pain de gomme causée par la
rigidification du matériau lors de la mise en glissement.
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Conclusions

Les résultats montrent que le frottement dépend énormément des fréquences excitées lors
du chargement et du glissement. La route étant rugueuse sur une large plage de longueurs
d’ondes, un large spectre de fréquence est excité lors du glissement, d’ou des pertes vis-
coélastiques qui causent une part non-négligeable du frottement total. Dans de nombreux
cas, 1l apparait un maximum dans la courbe de frottement. Ce maximum s’explique par la
rigidification apparente du matériau lors du glissement, et est causé surtout par les rugosi-
tés de grande amplitude. Le modele permet aussi de caractériser I'influence de 1’adhésion
dans un contact rugueux. Il apparait qu’elles ont un effet non négligeable sur le frottement
pour un contact lisse, mais que les rugosités diminuent grandement son influence.

Pour arriver a ses résultats, un algorithme de contact performant a été développé.
Il est détaillé dans ce manuscrit. C’est un algorithme de type éléments de frontiere qui
utilise des transformées de Fourier rapides pour le calcul des produits matriciels. Des
boucles de gradient conjugué sont utilisées pour la résolution du contact et du frottement.
Elles font I’objet d’une optimisation originale et performante. Le modele permet, via une
discrétisation fine du temps, de prendre en compte a la fois la viscoélasticité, le frottement
et les forces d’adhésion.
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Chapter 1

Introduction and bibliography

This chapter introduces the subject studied in this thesis: tire
friction and how to model it.
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1. Introduction and bibliography

1.1 General introduction

1.1.1 The crucial role of tires

Wheels allow heavy objects to be moved easily by reducing the friction between them and
the ground on which they lie. As it is in contact with the ground, the outer part of a wheel
is subjected to roll wear. That is why it is fitted with a tire, which is usually made of a
more wear-resistant material and can be replaced when worn without changing the entire
wheel. While early tires were simple metal rings, they have evolved to become inflated
rubber doughnuts which now equip all road transportation vehicles. These pneumatic tires
provide wheels with a comfortable air cushion and enhanced traction capabilities because
of their rubber tread. These two characteristics made pneumatic tires essential in the de-
velopment of motor vehicles during the 20" century. They are now highly technical parts
of modern cars that need to ensure comfort, performance and safety in a multitude of situ-
ations: acceleration, braking, cornering, on a dry or wet road, during winter or summer...
Typical car tire performance is based on:

- Dry grip

- Wet grip

- Comfort

- Noise

- Service life

- Low resistance to rolling

- Low cost

- Low environmental impact

To achieve high overall performance tires are made of several layers of different mate-
rials (metal, polymers, rubber...). However improving one performance is often prejudicial
to another -most of the time several others- which is why tire designers have to find the
best compromise for each application.

The tire tread is the only part of a vehicle in contact with the road. When a driver
applies the brakes or takes a curve, it is up to the tire tread to transmit all the subsequent
stress to the road. If the tangential stress is too high, for example if a driver brakes too
hard without ABS, the tire slips, compromising the stability and handling of the vehicle.
Maximizing tire friction allows for higher tangential stress to be applied to the tire before
it slips uncontrollably, which makes harder braking and higher cornering speed possible.
Both of these performances are paramount in racing vehicles such as MotoGP, as shown
in Figure [T,

In practice there is always a small amount of slip as soon as an effort is applied to the
tire. For example during braking, the speed of the tire tread ®R is always smaller than the
speed of the vehicle V,gpic.. This slip is not uniformly distributed in the contact patch:
it only happens at the rear of the contact zone, as shown in Figure [2. At first, before
the rubber actually touches the road, the tire tread is at rest, no stress is applied to it. As
the wheel rolls, the tread enters the contact zone where it bears a normal load (due to the
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General introduction

Figure 1.1: Valentino Rossi during the 2017 Argentina MotoGP race. MotoGP riders reach
lean angles as high as 60°. Photo! MICHELIN

weight of the car) and a tangential load (due to braking). The relative displacement of the
road compared to the tire belt causes the tread to be sheared. At first, it remains stuck
to the road. As shear increases so does the tangential stress until it reaches the friction
limit and starts to slip, at the rear of the contact patch. The harder the driver is braking,
the larger the slipping area gets. It is when the tread slips in the whole contact patch that
a driver starts losing control: in full slip, steering one way or another does not have any
effect on the direction of the vehicle.

®R Viehicie

U

\/V\/\/V-\/

Slipping Shearing

Figure 1.2: Kinematics of the rubber tread during braking.

Tire manufacturers try to maximize the friction limit of the rubber tread compounds
and the total amount of energy dissipated during the shearing-slipping process described
above for increased security and grip. Experiments show that softer compounds have in
general better friction capabilities but shorter service life and higher resistance to rolling.
As experimental friction tests on rubber are expensive, analytical and numerical models
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are necessary. They are also an appropriate tool to understand the physical phenomena at
work.

The subject studied in this thesis is what happens in the contact zone between the tire
tread and the road. The problem studied is that of a flat rubber tread sliding on a rough
pavement.

1.1.2 Friction forces and their origin

Friction forces between two solids have been studied for centuries. Leonardo Da Vinci
studied wood on wood friction using a simple experimental setup (reproduced in [5]),

stating that the friction force depended linearly on the normal load with a coefficient

t tial
_ langenia force = 0.25. His findings were re-discovered by Amontons in the late
normal force

17" century. Using a similar setup shown in Figure I3, Coulomb [6] performed a large
scale testing campaign using different materials, geometries and surface preparations. He
found that the ratio y was independent of the normal load, of the sliding speed and of
the contact area. These observations are the main hypotheses of the Amontons-Coulomb
friction law. Coulomb also found that u depended highly on the materials and on their
surface condition. He noticed that the friction coefficient between two bodies at rest was
higher than between two sliding bodies.

The Amontons-Coulomb friction law is still used in many applications nowadays be-
cause of its simplicity - if this approximation is not good enough, it is easy to modify this
law to make the friction coefficient dependent on the various problem parameters such as
pressure or velocity.

Figure 1.3: Coulomb’s tribometer, picture from [6] made available by the Bibliotheque
Nationale de France.

In the case of rubber tires, friction is highly dependent on pressure, velocity, tempera-
ture and surface roughness. Understanding and predicting this dependence is challenging
because friction is caused by several physical phenomena occurring at different scales.
The macro-scale corresponds to the length scale at which the experimental observation is
made (a few mm).
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At meso-scale, (from 0.1 ym to 1 mm), road roughness deforms the rubber tread at
high frequencies as it slides. As rubber is a viscoelastic material, it dissipates energy
when it is deformed.

At micro scale (below 100nm), van der Waals forces make the two surfaces attract
each other. They cause the adsorption of the long polymer chains of rubber on the road
surface. There might also be some covalent bonds forming between the two materials.
Because rubber is sliding, these bonds are periodically broken. This bonding/debonding
process of weak or covalent bonds also causes energy losses. An illustration of these
phenomena is given in Figure [C4.

Van der Waals bond ~

Figure 1.4: Illustration of the physical phenomena causing energy losses during sliding.

The micro scale phenomena do not depend on the local pressure. Most authors agree
that they cause a constant shear stress in the contact area during sliding, independent from
the local normal pressure. Experimental evidence also supports this hypothesis for very
smooth PDMS/glass contacts [8], even for low sliding speeds, in which case viscoelastic
losses should be zero. However, if the local shear stress does not depend on the local
pressure, the global friction force should be proportional to the contact area, not to the
normal load (neglecting viscoelasticity) - which is the opposite of Coulomb’s findings.
The explanation is that the roughness of real life surfaces make the true contact area
different from the apparent contact area. When the Coulomb law is true, it is likely that
the real contact area is proportional to the normal load. An extensive review of frictional
phenomena can be found in [33].

The present work aims at modeling and understanding tire friction at the meso-scale.
Viscoelasticity and surface roughness are the two most important parameters at this scale.
What happens at the micro-scale can be modeled independently by an appropriate friction
law.

1.1.3 Viscoelasticity and surface roughness

When a shear stress is applied on a perfectly elastic solid, it deforms immediately. Keeping
the stress constant for a certain amount of time does not cause any more deformation and
the solid goes back to its initial state once the stress is removed. No energy is dissipated
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Figure 1.5: Shear modulus amplitude and tan(J) of a typical tire material

in the process. When a shear stress is applied on a perfect fluid, at first it does not move.
Keeping the stress constant, the fluid deforms at constant speed (neglecting the inertial
effects). When the stress is removed the fluid just stops moving, without getting back to
its initial shape. The fluid viscosity causes significant energy losses.

A viscoelastic solid has characteristics from both an elastic solid and a fluid. A con-
stant shear stress causes a deformation that increases with time but is non-zero at t = 0.
When the stress is removed it takes some time before the solid goes back to its initial
state. Contrary to an elastic solid, it dissipates energy when it is deformed.

While crystal-like materials, such as metals, can be modeled as elastic solids in a
first approximation, rubber cannot because it is made of long, entangled polymer chains.
These chains can move relatively to each other as they mostly interact through weak van
der Waals forces (except cross-linking due to vulcanization). The energy barrier between
two equilibrium positions is quite low. The probability to cross it is relatively high and
increases with the temperature and with time. Consequently rubber is apparently soft at
high temperature and long time scales, it is apparently hard at low temperature and short
time scales (temperature and time play the same role).

Viscoelastic materials can be characterized using periodic loading tests. Under pe-
riodic loading, there is a phase difference & between the applied stress and the defor-
mation, which represents the energy losses. Because of this phase difference, the ratio
between shear stress and shear deformation can be represented as a complex modulus
G* =G +iG" = |G*|e®, where i = /—1.

Figure T3 shows the evolution of the apparent shear modulus with the frequency of
a typical tire material. At high frequencies rubber behaves like a stiff elastic solid, at
low frequencies like a soft elastic solid. Energy dissipation only occurs for intermediate
frequencies.
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Figure 1.6: Close-up photography of a road pavement. Phota by Angel Caboodle under
the license CC BY-SA 3.

The pavement of most roads in Europe is made up of a mineral aggregate (crushed
stone, gravel, sand...) bound together by asphalt (Figure [C6). The aggregate size covers
several orders of magnitudes and more importantly the particles are not smooth. As a
consequence road surfaces are rough from the nanometer up to the millimeter scale. All
the length scales a priori have an influence on the viscoelastic losses: tires typically slide
at 1ms~!, so the corresponding frequency of the deformation induced by the surface
roughness ranges from 1000 Hz to 1 MHz.

1.2 Bibliography: experimental and theoretical results
for a contact at the meso-scale

1.2.1 Hertzian contact

A simple and common approach to model contact is to consider a sphere in contact with
an elastic half-space. An elastic half-space is an elastic solid that is infinitely large in
all directions. It is a reasonable hypothesis for the present case, as the road roughness is
much smaller than the rubber tread. Boussinesq [34][35] found a solution to relate the
surface pressure to the surface displacement in such a solid. This relation is only the first
step to find the solution of the contact of a sphere with a half-space. A contact problem
is by definition a mixed boundary value problem. In the contact zone, the displacement
is prescribed: the solid must have the shape of the sphere it is in contact with. Outside,
the pressure is prescribed to zero: if there is no contact, the sphere cannot produce a
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pressure on the solid surface. What makes things even more difficult is that the contact
zone is not known beforehand. The half-space approximation makes the problem axi-
symmetrical, which means the contact zone is axi-symmetrical and all that remains to find
is the contact radius and the shape of the pressure field. Hertz found the solution in 1880.
He found the pressure field was a paraboloid and expressed the equations governing the
normal displacement, normal load and contact radius- given in Equation [T, as reported

in [B6].
(3FnR>1/3
a=| —
4E*2 (1.1)
a
o= =
R

a is the contact radius, F, the normal force, R the radius of the sphere and E* the
equivalent Young modulus such that 1/E* = (1—v3)/E; 4+ (1—V3)/E, E; and v;,i = 1,2
being the Young moduli and Poisson ratios of the two solids.

Hertz’ solution as well as Boussinesq’s are for an elastic solid undergoing small strain.
In particular it means that in the contact zone the slope of the sphere (the inclination of the
normal to the sphere compared to the vertical axis) should remain small, which implies
that the contact radius should remain small compared to the radius of the sphere R.

Hertz also made the assumption that there was no friction at the interface, or in ot-
her words that the surface stress was only in the vertical direction. Not until 1949 was
the Hertzian contact with friction problem solved by Mindlin [32]. He used a Coulomb
friction law and found that when a tangential displacement is imposed, the contact zone
divides into a stick disc in the center where there is no slip and a slip annulus at the edge.
The slip is in the same direction as the tangential displacement in all the annulus and its
intensity is an increasing function of the radius. As the tangential displacement increases,
the stick zone becomes smaller and smaller until it disappears and full sliding occurs.

1.2.2 Adhesion

Van der Waals forces are not only responsible for friction -shear stresses in the contact
zone as described in section [CT-2- but they also cause tensile stresses to develop in the
contact zone, which are called adhesive forces. For smooth surfaces that are relatively soft
their effect cannot be neglected. The most noticeable effect is that separating two smooth
surfaces in contact requires energy proportionally to the contact area. For spherical con-
tacts, it causes the contact radius to be sensibly larger than the Hertzian prediction. This
phenomenon was first modeled by Johnson, Kendall and Roberts (JKR) [37] who assu-
med adhesion had no impact outside of the contact area. Shortly afterwards Derjaguin,
Muller and Toporov (DMT) [B8] made a similar model assuming that the displacement
field remained Hertzian and that adhesive forces were also present outside of the contact
zone, leading to different results. Tabor [3Y] defined a dimensionless parameter given in
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Figure 1.7: Evolution of the contact radius with the Tabor coefficient for a Hertzian contact
with adhesion. The ‘Hertz’ solution is the contact radius without adhesion. The radius of
the sphere is 1 m, the normal force is 1 x 1075 N, the adhesive energy 1s 3.2 x 105 Tm2
and the material is incompressible and elastic with a shear modulus of 0.37 Pa.

Equation 2 for a Hertzian contact with adhesion.

B R]/3Y3/3

Hi
R is the radius of the sphere, Yy the work of adhesion, zp the characteristic length of the
interaction and E* the equivalent Young modulus. Maugis [40] proved in 1992, through a
more general analytical model that the JKR theory is valid for high Tabor numbers ( >5 ),
which means short range adhesion and soft surfaces while the DMT theory is valid for low
Tabor number (<0.1), that is for long range adhesion and hard surfaces [41]]. Figure T2
shows Maugis’ solution of the contact radius and its evolution with the Tabor coefficient
compared to the DMT and JKR theories.

One of the reasons why the problem of Hertzian contact with adhesion has received
so much attention is that it is relatively easy to reproduce experimentally. This kind of
experiments are often called ‘JKR tests’ because by measuring the normal force during
the separation of a sphere from a flat surface and using JKR equations (or Maugis/DMT
equations if necessary), one can deduce the adhesion energy of the two surfaces.

However, this technique sometimes leads to an inconvenient result: the adhesion
energy seems to depend on the separation speed, which should not be the case because
time does not appear in the different analytical models (see for example [42]). Of course
it can come from the adhesion phenomenon itself - as the physical explanation of adhe-
sion is not very well defined it is hard to say it cannot. But bonding/debonding processes
and more importantly van der Waals forces have characteristic times that are several or-
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ders of magnitude shorter than the experimental times, so this explanation is not entirely
satisfying. What is more likely, in particular for rubber applications, is that the material
viscoelasticity causes a significant amount of energy dissipation during the peeling pro-
cess.

1.2.3 Viscoelasticity

The stress/strain relation of viscoelastic materials is time dependent. Restricting to the
case of linear viscoelasticity, it can be expressed using an integral formulation (Equation
[3) or a differential formulation (Equation ["4)). Both of them are equivalent [43].

o(r) = y(t ') - &(tar

&(r) :fq_T(t —1') 1 &(t)drt’ (1.3)
n alg n 8’§
;o%:?:,g%7 (1.4)

€ is the strain, o is the stress and a dot denotes a time derivative. ¢(z) is called the

creep compliance function matrix and describes the response to a unit stress increment,
while y(7) is called the relaxation function matrix and describes the response to a unit

strain increment. In the general case these matrices are composed of two time dependent
functions corresponding to the two elastic parameters (one function corresponds to the
Young modulus and one to the Poisson ratio for example). However, rubber can reasona-
bly be considered to be an incompressible material so its temporal response is described
by only one function, so the creep compliance and relaxation functions can be written as

0(r) = 0(r)S and y(r) = y(1)R

S and R are equivalent to compliance and stiffness tensors in elasticity.

With only one time-dependent function, the time response of rubber materials can be
described by simple models such as the Standard Linear Solid model, represented in Fi-
gure 8. Using models allows the relaxation and creep functions to be fully determined
by a finite number of variables (3 for the Standard Linear Solid), which is useful both for
their experimental determination and in particular for the implementation of viscoelasti-
city in analytical or numerical models.

For most problems, finding the viscoelastic solution is not as complicated as it may
seem. Lee [44] was the first to realize that in the Laplace domain the viscoelastic problem
is similar to the elastic one. Consequently, it is possible to get the time-dependent viscoe-
lastic solution of a given problem simply by using the elastic solution and replacing the
elastic constants by the viscoelastic functionals. Unfortunately this technique only works
if the boundary conditions can be easily described in the Laplace space, which is not the
case for the contact problem as the contact area changes over time. In the continuation
of Lee’s work, Radok [26] extended the method to more general boudary conditions, he
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n G

Figure 1.8: Representation of the Standard Linear Solid. Gy and G are the stiffness of the
two springs, M is the viscosity of the dashpot.

called this method the functional equations method. Lee and Radok [BU] showed that the
functional equations method was valid for growing contact surfaces only - for a Hert-
zian contact, it means increasing contact radius only. Only through a much more complex
method was the receding contact problem solved in 1966 by Ting [45].

Accounting for adhesive forces in a viscoelastic media is similar to studying the pro-
pagation or closing of a crack. This has been studied by Schapery, who first derived a
solution for the opening of a crack in a viscoelastic material [246] and later for a closing
crack [47]. In this latter paper, he applies his theory for the adhesion of viscoelastic sp-
heres, assuming the cohesive zone is very small compared to the contact size. This way
the contact problem is the superposition of two problems. On the one hand, the problem
of viscoelastic contact and on the other hand the problem of viscoelastic crack propaga-
tion. Viscoelastic dissipation happens in the bulk due to the deformation induced by the
spherical shape in contact and also the strong and short-range adhesive forces at the edge
of the contact produce viscoelastic dissipation during growing and peeling of the contact.
Barthel [48] shows that viscoelasticity coupled with adhesive forces creates an apparently
higher surface energy, in particular at high crack propagation speeds. The full resolution
of viscoelastic, adhesive spheres in contact was obtained by Haiat [49].

1.2.4 Surface roughness

As introduced in section 173, road surfaces are rough over several length scales. Several
methods exist to measure their surface roughness. A first class of method is ‘stylus based’:
the principle is to drag a very sharp needle across a sample and measure its deflection. It
is probably the oldest method as stylus profilometers have existed at least since 1941 [50].
The resolution of such methods depends on the tip size and its shape can cause measu-
rement artifacts. It measures only a line across a 2D surface, which may not be repre-
sentative if the surface is not isotropic. Two-dimensional measurements can be achieved
by measuring the surface line by line though this technique is quite slow. AFM (Atomic
Force Microscopy) techniques use basically the same principle except that the tip can be
as small as a few nanometers [51] allowing for a very fine resolution. Another category of
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measurement methods is based on light scattering, either of monochromatic or of white
light. Though they produce measurement artifacts if the surface reflexive properties are
not homogeneous, or if the local slope is too high, they are relatively fast methods. The re-
solution can be quite high for monochromatic light and can be improved by using X-rays
instead of visible light. Confocal microscopy is another optical measurement method. It is
more robust than interferometric methods and can achieve 10 nm resolution as well. The
idea is to determine for each point its focal plane, which determines its height.

Of course no analytical model can directly be applied to a measured surface. Instead
some meaningful statistical properties of the given surface are used. The Power Spectral
Density (PSD) is probably one of the most used statistical parameter of a surface, not
only in contact mechanics but also in other fields such as optics [52] etc... The PSD
represents the amplitude of the Fourier Transform of the surface height at each wavevector
k = (ky,ky) - see Equation 3.

(ke Ky ) |2 (1.5)

ks ky) =

A is the total surface area and % is the 2-dimensional Fourier transform of the surface
h. Jacobs et al. [5T] made a precise review of the different definitions of a PSD and how
to calculate it.

A surface PSD is useful to compute more meaningful surface parameters. Road sur-
faces are often considered to be self-affine. It means they are ‘fractal-like’ and have a
similar roughness properties from the nanometer up to the millimeter scale. It causes the
PSD to have a constant slope when plotted with a logarithmic scale. This slope is repre-
sentative of the fractal dimension and Hurst exponent. A PSD of a typical road surface
follows Equation [C6, as shown in Figure 9 [53].

C if iy < |K| <k,
|k| —2(14+H)
D(|k|) = C(k—> if ky < |K| < kg (1.6)
0 otherwise

|k| is the norm of the wavevector k. k; is the lower wavenumber cut-off, k, the roll-off
wavenumber and k; the upper wavenumber cut-off. H is the Hurst exponent.

Other meaningful statistical parameters of a rough surface such as its height RMS
Ryms, its slope RMS Vh and its summit mean curvature 4’ can be derived from the PSD
[54].

Simplifying a rough contact by a simple Hertzian contact is only a crude approxi-
mation. The multi-asperity approach initiated by the pioneering work of Greenwood and
Williamson [[1] generalizes Hertz’” result by using an infinite distribution of spheres of
different height and different radii. The radius and height distributions are derived from
the summit height distribution and the summit curvature distribution of the rough surface
under consideration. For an elastic contact at low normal loads, it predicts a linear relation
between load and real contact area which is compatible with Coulomb’s friction law if the
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log(k)
Figure 1.9: Typical PSD of a road surface.

shear stress is considered to be constant in the true contact zone. It has been studied and
modified by many authors: initially all the spheres had the same radius, until the modifi-
cation by Bush, Gibson and Thomas [?], later simplified in [55]. A review can be found
n [56]. It has also been extended to viscoelastic, adhesive contacts in [57].

The major criticism of multi-asperity approaches is that, as they are more or less a sum
of Hertzian contacts, they do not take into account the influence asperities have on each
other, so should remain valid only at low normal loads. Persson’s model [B3][4] overcomes
this problem by using a completely different approach. His main hypothesis is that the
PSD of the rubber surface is the same as the PSD of the road surface it is in contact with
- which is a priori only valid for full contact, but that he shows is a reasonable hypothesis
in most cases [58]. This approach was from the beginning developed for viscoelastic
materials sliding at constant speed without friction. It allows one to find the roughness
length scales that dissipate the most energy for a given normal load and sliding speed,
as well as the corresponding true contact area. A major result of his approach, which
follows the intuition, is that the true contact area decreases when smaller and smaller
length scales are accounted for - and disappears entirely under some conditions if the
surface is considered to be self-affine down to infinitely small length scales. Such an
extrapolation is wrong though, as the continuum mechanics equations his model is based
on are wrong at the atomic scale. A delicate question arises: what is an appropriate short
wavelength cut-off? Though some guidelines exist [5Y], it remains an open question.

An illustration of the results from Persson’s model is given in Figure TT0. It shows
the evolution of apparent friction coefficient with the sliding velocity for the contact of
a typical tire rubber on a self-affine rough surface (its PSD is similar to the one given
in [59]). The normal pressure is 1 bar. The curve has a typical bell shape caused by the
viscoelastic characteristics of rubber: it only dissipates energy in a transition zone and
behaves like an elastic solid at low and high frequencies. The friction coefficient is rather
low: =~ 0.3 whereas typical friction coefficient of rubber on a dry road is ~ 1.3. The reason
is that Persson’s model only accounts for the viscoelastic part of friction at length scales
between 0.1 um and 1 mm.
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Figure 1.10: Evolution of the friction coefficient with the sliding speed according to Pers-
son’s model.

It should be mentioned that Persson’s model has been extended to tackle transient sli-
ding problems [?&] and to include thermal effects [60]. Thermal effects have an influence
on rubber contacts because viscoelastic losses change the temperature field and the mate-
rial characteristics strongly depend on temperature. However these effects are outside the
scope of the present study.

1.2.5 Numerical methods

Analytical methods for rough contact all rely on hypotheses. Finding out which of them
are reasonable is difficult using only experimental evidence. Numerical simulations are
of great help for this task because all the physical phenomena modeled in the simulations
can be switched on and off at will, making them a powerful tool for understanding what
happens -and what does not- in a rough contact.

The Finite Element Method (FEM) seems, at first sight, to be the appropriate method
for contact simulation. FEM has been developed for decades and commercially available
softwares-such as Abaqus or COMSOL Multiphysic- allow for different physics to be
used in a single simulation, which means one could in principle perform a contact simula-
tion with dynamic effects, adhesion, friction, viscoelasticity, thermal effects, finite defor-
mations... without having to implement anything. Though some authors have used FEM
for contact simulations (for example [[Z]), it is not the most popular method. Its major dra-
wback is that it does not take advantage of the half-space hypothesis described in Section
1. Consequently meshing in the 3 dimensions is necessary. Though it is reasonable to
mesh in 3D a simple Hertzian contact, it gets more complicated for rough surfaces. The
shortest roughness length scale A, considered in a simulation should be discretized with
elements ~ 10 times smaller to achieve meaningful results. Similarly, the total length of
the simulation should be larger than the larger roughness length scale A; (= 4 times larger
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according to Yastrebov [53]). Assuming a regular mesh with the same mesh size in all di-

rections, the total number of elements in the simulation is ~ (40%—1)number of spatial dimensions

A

A
which is ~ 64 billion for a 3-dimensional mesh and a ratio — = 100 (for a road surface

As

A
represented from 100nm up to 1mm, the ratio is i 10000). Running a simulation on

A

such a large mesh would be -despite the high perfoi"mance of recent FEM solvers- extre-
mely expensive, if at all possible. For a dry contact problem, this number can be reduced
because the stress gradient is only high in a thin layer below the surface - its thickness
is approximately the size of the surface asperities. Consequently the mesh can be coar-
sened in the upper layers of the solid, as described in [61], which reduces the number of
elements to ~ (40%)210g(40%) ~ 133 million.

The half-space ﬁypothesis asllows even further reduction. Using Boussinesq’s equati-
ons, Love [62] found the surface displacements induced by a uniform pressure applied
on a rectangular area at the surface of an elastic half-space. The principle of Boundary
Element Methods (BEM, sometimes named semi-analytical methods) is to discretize the
surface and only the surface of the solid and to use Love’s results to solve the contact
problem. In other words, the half space approximation allows the 3-dimensional contact
problem to be solved using only a 2-dimensional mesh. The total number of elements

required for a ratio K_l = 100 is only 16 million, so that the simulation can be run on

a standard desktop corsnputer. BEM for contact problems has been described extensively
in Kalker’s book [U] where he describes the Influence Coefficient matrices (equivalent
to rigidity matrices in FEM) for elastic half-spaces and appropriate solvers for contact
problems with or without friction. He shows the existence and unicity of the solution of
the contact problem even with friction. A few years later Stanley and Kato [[[0] first used
Fast Fourier Transforms to compute the displacements from the pressure field using a
uniform mesh and a periodic problem, reducing the computational cost from O(N?) to
O(Nlog(N)) (N being the number of variables). Liu [I1] showed that this method could
be extended to non-periodic problems using the appropriate zero-padding. Brand and Lu-
brecht [63] developed a multi-level multi-summation technique which allows for the same
speed-up of the computation.

Another approach is to use a mesh smart enough to reduce the number of variables
without impacting precision. This is achieved by refining the mesh at the edges of contact
clusters only and keeping a relatively coarse mesh in the inner part. This ‘Active Sets’
methods are developed in [64].

Contact solvers also evolved. Kalker’s solver is composed of two loops: the inner loop
computes the pressure field giving the appropriate displacement in the contact surface,
while the outer loop updates the contact surface. More recent algorithms [I2][24] use
only one loop where the contact surface is updated on the fly. Comparisons of different
BEM models can be found in [24][65].

Beginning with the GFMD method [b6f], some authors have used molecular dynamics
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Figure 1.11: Top view of the numerically computed contact area between a rough surface
and an elastic half-space with short range adhesion, as described in [?9]. The magnified
contact spot shows the very fine resolution of the mesh.

solvers to solve the contact problem which proved to be efficient. These simulations use
the half-space approximation and Boussinesq’s equations, which are implemented in a
molecular dynamics solver.

Molecular dynamics solvers have the ability to account for normal adhesion in a con-
tact problem, which has been used for example by Miiser [67]. He announced a Contact
mechanics modeling challenge in 2015 [29]. The aim of this challenge was to solve, using
numerical, analytical or experimental methods, a multi-scale rough contact problem with
short range adhesion, which he solved using GFMD with a very fine grid on a super-
computer. Among the 13 answers from 12 different groups, 6 are numerical methods: 2
of them are based on molecular dynamics solvers and 4 of them are BEM methods. All
of them were successful, which shows that adhesion can be implemented in BEM codes
without any major problem. Figure [T1l shows the contact area of the solution.

Solving the contact problem with friction using BEM has been studied by different
authors such as [19, 20, 21, 22] and proves to be quite difficult. In the general case, the
normal and lateral displacements are coupled so both the contact problem and the friction
problem should be solved simultaneously. If the two contacting materials are the same,
or if one is incompressible and the other rigid (as is the case in rubber/road contact), the
coupling disappears, but other nonlinearities remain. The first reason is that in transient
sliding only part of the contact area is actually sliding, while the rest remains stuck. It
gives rise to a strong non-linearity as the boundary conditions are not the same: the dis-
placement is imposed in the stuck area and the norm of the shear stress is imposed in the
sliding area. In addition to this in the sliding zone, the local sliding direction should be the
same as the shear stress direction. This last condition is omitted by some [21] who sup-
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pose that the shear stress is always in the global, imposed sliding direction. In a Hertzian
contact with friction, Johnson [36] shows that displacements in the direction perpendicu-
lar to the global sliding direction are of the order of v/(4 — 2v) & 0.15 compared to the
displacement parallel to the sliding direction. Zhang does take the direction into account
by using polar coordinates for the stress in the sliding zone: the stress norm is given by
Coulomb’s friction law and its direction is an unknown variable.

Viscoelasticity has also received much attention. Implementing viscoelasticity in a
BEM code can be done by using ‘standard’ procedures as described in [25] or [b8]. An
integral formulation of viscoelasticity is used in [[I73, 4, Y, T]. Using the creep or the re-
laxation function and discretizing Equation I3 with respect to time, it is possible to solve
transient viscoelastic problems. As Equation depends on the loading/displacement
history it is necessary to keep in memory the stress (or displacement) of all the time steps,
which may be exceedingly demanding for fine resolution or a large number of time steps.

A differential formulation of viscoelasticity is used in [17] which is based on the
first order discretization of Equation 4. With this formulation a finite number of state
variables in addition to the stress (or displacement) need to be kept in memory, but only
for the previous time step, so the memory requirement does not depend on the number
of steps. Other authors such as [I8] focused on steady-state viscoelasticity. Considering
that the two contacting bodies are sliding without friction at constant speed (and that
the problem is periodic) the problem of steady-state sliding can be solved with only one
iteration.
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Chapter 2

Numerical model for frictionless
contacts and application to Hertzian
contacts

A numerical model for the simulation of contact between a

half-space and a rigid surface is presented. Viscoelasticity

and adhesive forces are accounted for efficiently. Examples
and validation for Hertzian contacts are presented.
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2. Numerical model for frictionless contacts and application to Hertzian contacts

2.1 Numerical model for normal contacts

2.1.1 Discretization and FFT-convolution

As mentioned in section [C271], a contact problem is a mixed boundary value problem.
Solving the problem of a half-space in contact with a rigid surface is finding the surface
pressure field P(X) such that:

P(X) > 0 VX

U.X)—H(X)> 0 o
U.(X) =H(X)XEeS.
PX) = 0 Xe-S,

X is the position, U, the normal displacement, H the height of the rigid surface and S,
is the contact surface. U,(X) — H(X) is the gap between the two surfaces. Boussinesq’s
equation (see Equation 22) describes the relation between pressure and normal displace-
ment for an elastic half-space:

- 50 ﬂ X— X’HdX/ (2:2)

G is the shear modulus of the half-space, v the Poisson ratio, X and X’ are spatial variables
(||IX — X'|| is the distance between them).

This integral is defined over all the half-space -which is, by definition, infinitely large-
which makes its numerical computation difficult. Fortunately, for a contact problem, the
pressure is zero outside of the contact zone, so integrating over the contact surface only is
sufficient.

Another possibility is to consider that the contact is periodic, so that P is known in
all the half-space. The integral is best computed in the Fourier space, where Boussinesq’s

equation reads:

() = ;t;g@@ﬁ@ @3

where ~ denotes a Fourier transform and a,, : X — ——. As Boussinesq’s equation in

the real space is a convolution product, it turns into a s1mple multiplication in the Fourier
domain.

In the periodic case the problem is defined on a square which size is the period of
the contact. The first step to build the numerical model is to discretize this surface into
N? square elements. All the elements are the same size. Given the pressure P(i, j) at the
center of each element (i, j), deriving the corresponding normal displacement U, (i, j) can
be done efficiently with a Fast Fourier Transform (FFT) using Equation 4.

U, = FFT~! (FFT(A,.)FFT(P)) (2.4)
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Numerical model for normal contacts

A, is the discretized version of a,, it is called the Influence Coefficient matrix.

Similarly, for a non-periodic problem, the first step is to mesh a square of the half-
space surface where the contact is likely to occur: there cannot be any point in contact
outside of this area. Once again the surface is discretized into N° regular square elements.
The pressure field is assumed to be constant over an element, the corresponding displace-
ment is then found in [62]. The relation between pressure and displacement can be written
as U, = A7Y P where A’? is the non-periodic Influence Coefficient matrix. Following the
method described in [1T] the size of the pressure field P is doubled in each direction and
padded with zeros. The corresponding displacement field also has its size doubled, but
now the relation U, = A7/ P has an advantageous property: the matrix AZ is now a con-
volution matrix and the matrix multiplication can be done in the Fourier domain as in
Equation 2-4. Moreover, when the displacement field U, is truncated back to its original
size, the periodicity of the problem induced by the Fourier transform does not have any
impact so the convolution is exact.

For the rest of this work the periodic and non periodic influence coefficient matrices
will both be denoted A,;. The periodic and non-periodic problems are in every way similar
except for the zero-padding technique and slightly different influence coefficient matrices.

2.1.2 Conjugate Gradient algorithm for normal contact without ad-
hesion

The numerical model developed is similar to the one presented in [12] and [?4]. A con-
jugate gradient algorithm is developed to find the pressure field P solution of the contact

problem. Let us introduce the functional ¥ = PT.H — EPT A..P. For a given contact

surface S, and if P = 0 outside of it, % is given in Equation 5.
o0F H—A_.P if(i,j) €S,
—— = el (2.5)
oP 0 if (i,j) € =S,

d
Solving the contact problem is consequently equivalent to finding P such that a—i =0,

in other words it is equivalent to minimizing the functional #. As ¥ is quadratic, it
can be minimized efficiently using a Conjugate Gradient algorithm. This algorithm is a
loop which, starting from an initial guess of the pressure field Py, converges towards the
solution of the problem P..

At the end of iteration n, the pressure field is P,, the residual is r, = H —A_,.P, in S,
(r, = 0 outside of it) and the search direction is d,,.

The first step of iteration n+ 1 is to find Pr’l g =FPt od,. o 1s a scalar chosen to
minimize ¥ . It is given in Equation 6.

T
Iy -dy

= ——— 2.6
“T AT AL, 26)
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2. Numerical model for frictionless contacts and application to Hertzian contacts

At this point, if the mean normal pressure is prescribed by P™, the pressure field P! 41
is corrected in ognder to satisfy P,+; = P". A convenient way to achieve this is to set
P =P x=—.

n+1 n+1 Pr[H_]

The new residual is computed 7,11 = H —A;.Py 1.

The new contact surface is computed. It is defined as the set of points where the
pressure is positive or where the residual is positive. The new residual is set to 0 outside
of the new contact surface.

The last step of the algorithm is to compute the new search direction d,,1; from the
new residual. In order to achieve a fast convergence d,; is computed in order to be
A, —orthogonal to d,, that is to say d,{ 41-Azz-dp = 0. This is achieved by setting dy 1 =
rnt1+ Pd, where B is given by Equation 22

T T
_’”n+1-Azz-dn _ F1-(Tn1 —7n)

p= dT A.d,  adl.A.d,

(2.7)

For a linear problem, the exact solution is found after N conjugate gradient iterations,
as N2 is the number of mesh cells and consequently the number of unknown variables.
But knowing the exact solution is not necessary: what is needed is only an approximation
of the exact solution and each iteration of conjugate gradient gives a better one.

The convergence criterion chosen here is the Root-Mean-Square (RMS) of the residual
normalized by the characteristic length of the problem. When this convergence criterion is
below a given tolerance, the result is considered to be precise enough and the loop stops.

It can be shown that for a perfectly linear problem, d,,+ is A_; — orthogonal to all the
previous search directions: d; 41-Azz-dr = 0,Vk < n—+ 1. Also the residual can be computed
with 7,41 = r, — 0A,;.d,, so only one matrix multiplication (A,,.d,) is necessary at each
step. These two properties make the conjugate gradient algorithm very effective in this
case.

Unfortunately the present contact problem is linear only if the contact surface remains
the same during all the iterations and if the mean normal displacement is imposed, not
the nominal pressure. Consequently this last simplification for the residual computation
cannot be used. However as the algorithm converges towards the solution the problem
becomes more and more linear so a fast convergence is achieved.

The most time-consuming parts of each iteration of the algorithm are the Fast Fourier
Transforms used to perform the matrix multiplications: A,;.P,; for the computation of
the residual and A_;.d,, for the computation of o and . Following Equation 24, a matrix
multiplication requires one FFT and one inverse FFT to be performed, both being equally
time-consuming (computing FFT(A_;) is only required once and not at each iteration). For
the computation of o and B, computing A_,.d,, is in fact not necessary as only d! .A_..d, is
required. This parameter can be computed with only one FFT using Parseval’s theorem,
which leads to Equation I8, where N? is the number of mesh cells. Using this simpli-
fication only 3 FFTs (or inverse FFT) are performed per iteration instead of 4, which
significantly speeds up the computation.

24

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI112/these.pdf
© [R. Bugnicourt], [2017], INSA Lyon, tous droits réservés



Numerical model for normal contacts

1
dl A.d, = ]WFFT(dn)T.FFT(AZZ).FFT(dn) (2.8)

2.1.3 Viscoelasticity

A differential formulation of viscoelasticity [25] is chosen to model the transient viscoe-
lastic behaviour of rubber. The Zener, or Standard Linear Solid viscoelastic model is used
- see Figure [CR.

An incompressible viscoelastic material such as rubber with a Zener law follows the
differential equation 9, where s and e are the deviatoric parts of the stress and strain
tensors, the dot denotes a time derivative.

G
(1+G—;>s+g—(l)S:2G1e+2mé 2.9)

Using Radok’s method of functional equations as described in section for a Ze-
ner material and applying it to the Boussinesq elastic potential yields the viscoelastic
Boussinesq Equation 2ZT0.

o ﬁ (P(&,n) <1 + @) + g—;P(é,n)) d&dn = GiUx(x,y) +MUz(x,y)

Go (2.10)
with p = /(x—&)>+ (y—m)?
Equation 710 is discretized in space and leads to Equation 1T
G1 i . .
AP\ 14— |+=—A_P=GU+MmU (2.11)
Gy Gy

Assuming that pressure and displacements vary linearly between time steps ¢ and ¢ +
At leads to Equation 2121 This assumption is wrong in the general case, but provided the

time step Ar is small compared to the characteristic time T = G T—]}—IG it is reasonable.
0 1
Gi n, AP AU
AgPrins (1+G—O> +G_0AZZE = GlUt+At+nIE (2.12)

AP and AU are the variation of pressure and displacement between ¢t and ¢ 4 Ar. This
equation yields a linear relation between pressure and displacement, which allows the
problem to be solved using the solver described in the previous paragraph - in particular,
the convolution property remains.

A Zener model only has three material constants, one being its characteristic time.
This is not sufficient to accurately model a real-life material such as rubber over a large
range of frequencies. It can be generalized by connecting different Zener models in paral-
lel along with a branch with just one spring G.., as shown in Figure 1. The displacement
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2. Numerical model for frictionless contacts and application to Hertzian contacts

Figure 2.1: Generalized Zener model

in each branch is the same and the pressures in each branch add up. Each branch k follows
Equation ZT2. The generalized version of Equation -T2 is Equation ZZT3.

Gk + n_llc n_]f
A k At
UZ+AI G°°+Z k & :AZZZPt+At+UtZ k k
Cp o ¢ (4G, m
k k k k
Gt GEAr ) GE  GEAr 2.13)
M
Gk At
— %Azzpzk kO nk
1+ -4+ 1
GE GiAr

It is then possible to use the “elastic’ Conjugate Gradient contact solver using P’, U]
and H' instead of P, U, and H according to Equation T4, This yields U, 5; and %Pﬁr As>

which is the total pressure acting on the surface.

/ k
P =Ly

Ul =A.P
Gk + m i
r_ At At
1+ — 4+ —— 1+ =+ ——
GX  GEAr Gk GKAr
k
N
. Gt
+ZAZZPI k k
k 1+ Ly M
k k
GK  Gkar

It should be highlighted that it is necessary to compute and to store the state varia-
bles AZZP," for each branch of the generalized Zener model between each time step using
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Application: viscoelastic Hertzian contact

Equation T2 This makes the viscoelastic solver more memory intensive than the elastic
one.

2.2 Application: viscoelastic Hertzian contact

2.2.1 Convergence analysis

In order to validate the algorithm developed above, the case of a viscoelastic half-space
in contact with a rigid sphere is studied. The material chosen is a one-branch Zener mo-
del. For a single branch Zener model, the relaxation function y(¢) and creep compliance
function ¢(¢) are:

LI N
o) Go ' Gi e (2.15)
T
TG
1 Go -
vt =4 l—l—G—(])e’C
R (2.16)
S
Go+ G

In the following, Gy = 1 MPa, G; = 0.1 MPa and T’ = 1s. The sphere radius is 1 mm.
A normal load F,, = 0.02mN is applied from # = 0.

The analytical solution to this problem can be deduced from Lee and Radok’s results
[30] using the creep compliance function. The evolution of contact radius with time, for
example, is given in Figure 2. As expected the contact radius increases with time, quite
fast at the beginning then slower and slower as the contact radius converges towards its
steady-state value.

Figure 23 shows cross-sections of the displacement and pressure at different times as
calculated with the current model. For ¢t < T or r > 7, the pressure profile is Hertzian,
otherwise during the transient evolution it sometimes shows short pressure spikes at the
edge of the contact with an almost constant pressure in the center. These features are due
to the material viscoelasticity.

The current viscoelastic model allows to reproduce the same response although the
precision of the results is impeded by the time discretization and the spatial discretization.

The time discretization is characterized by the dimensionless time step length Ar* =
At/t" and the spatial discretization by the dimensionless length of a mesh cell I}, =
I/ @max Where I, is the mesh cell length and a4, the contact radius for t — oo as predicted
by the analytical model.

To quantify the influence of these parameters the error in contact radius is studied in
comparison with the analytically exact solution. The contact radius error is defined by
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2. Numerical model for frictionless contacts and application to Hertzian contacts
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Figure 2.2: Evolution of the contact radius with time for a viscoelastic Hertzian contact
with constant normal load. Analytical solution from Lee and Radok [30].

Asimulation — aanalytical/ Qanalytical where Aanalytical is the contact radius given by the analY‘
tical solution and where agjmurarion 1S the contact radius given by the current model. It is
calculated from the contact surface area 4: agimyiarion = \/ A/ T.

Figure 24 shows the evolution of this error with time, for different time increments. If
it is quite evident from paragraph that the longer the time step, the larger the error,
understanding why, for a given time step length, the error is maximum at # =~ 0.7 is not as
easy. One explanation is that both the long-term (¢ >> 1) and the instantaneous response
(t < 7°) of the material do not depend on the time step length, so the error is maximum
during the transient part between the two extrema.

The lowest curve, corresponding to the smallest time step length, does not exhibit this
bell shape and this maximum. The reason is that in this case the error is caused to a great
extent by the insufficient mesh discretization: /;, = 0.006.

A similar study is also performed for different mesh sizes. The results of both time
convergence and mesh convergence studies are shown in Figure 3. The error values are
the average error over the first 3 seconds. The x-axis corresponds to either At* or [, for
the time convergence and mesh convergence curves respectively.

The mesh and time convergence speeds are: error o (1)1 oc (At*)!'1. The lowest
point of the time convergence curve deviates significantly from the rest of the curve which
is another sign of the error being caused by the mesh discretization rather than the time
discretization for this point.

Interestingly, a lower bound of the mesh error can be estimated using the results of
Gauss’s circle problem [69)]. This problem is to find the number of lattice points A laying
inside a circle of a given radius a. The answer is given in Equation 217 for a lattice
spacing of 1.
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Application: viscoelastic Hertzian contact
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Figure 2.3: Pressure and displacement profiles for a viscoelastic hertzian contact at diffe-
rent times.

la]
N(a)=1+4[r]+4) |Va> -] (2.17)
i=1

The || signs stand for the floor function. In the current model, the contact radius is
deduced from the contact area 4 = Z%Mon,act where Alonracr 18 the number of points in
contact in the simulation. For a given contact radius a,. s, Equation [ZT7 can be used to
find an estimation of the number of points laying inside the disc Nggys5, Which is similar
t0 Nontact- AS l,%?\&;a,m =+ Jta%e 7 the difference can be used as an estimation of contact
area error caused by the mesh discretization, which in turns gives an estimation of the
contact radius error. This error is shown in the ‘“Theoretical mesh error’ curve in Figure
3. It is a lower bound of the simulation error as it is purely geometrical and does not
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2. Numerical model for frictionless contacts and application to Hertzian contacts
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Figure 2.4: Temporal evolution of the error in contact radius prediction for different time
increments.

account for the error caused by the poor discretization of the pressure field for example.

2.2.2 Viscoelastic losses in a sliding contact

So far only a normal force has been applied to the viscoelastic half space. In tire appli-
cation however, the rubber block slides upon the road which causes viscoelastic losses.
Predicting these losses is of primary importance as they play a significant role in tire
friction. Using Persson’s analytical model [3] and comparing his results to experimental
data, Lorenz [59] estimated that viscoelastic losses could represent more than half of the
friction losses during sliding, depending on the sliding speed.

To implement sliding in the current model, the rigid surface is translated uniformly by
a quantity Ax between each time step, so that V, = Ax/Ar where Ar is the length of the
time step and V, the required sliding speed. The best choice for At is such that Ax = [,,;:
in this case the coordinates of the rigid surface just need to be translated by one mesh
cell at each time step. Otherwise, it is necessary to interpolate the surface which is time
consuming and may reduce precision: interpolation is likely to smooth the surface. It
may be necessary in some cases to ensure that the time step is small compared to the
characteristic time of the material.

When a sphere slides on a viscoelastic half-space, the contact is not symmetrical any-
more. The pressure becomes higher at the leading edge of the contact, sometimes sho-
wing a sharp pressure spike at the contact entrance. The pressure at the trailing edge of
the contact is lower and the contact surface is shifted to the front of the sphere. These
phenomena were studied in [13] for transient sliding and in [IR] in steady-state sliding
using the same parameters. Their results are reproduced using the current model, showing
good agreement.
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Application: viscoelastic Hertzian contact
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Figure 2.5: Mean error in contact radius. The ‘mesh convergence’ curve is the error as a
function of the dimensionless mesh cell length for the smallest time step length, while the
‘Time convergence’ curve is the error as a function of the dimensionless time step length
for the smallest mesh cell length. The “Theoretical mesh error’ is the minimum mesh error
possible.

The material is a one branch Zener model with Gp = 2.75MPa, Go/G; =9 and v =
N1/G1 = 0.01. The radius of the sphere is 10 mm. The speed and pressure are normalized
using the Hertzian contact parameters with the instantaneous elastic shear modulus Gy.
The contact radius is ¢* and the mean pressure in the contact area pg. The normalized
time and speed are r* =¢/t" and V* = V1 /a*.

The mesh used for the current model is a non-periodic (zero-padded) 1024 x 1024
regular mesh and the domain length is L =10 mm = 21a*. Figure IZf clearly shows the
pressure difference between the leading and trailing edge of the contact: small, sharp
pressure spikes at the leading edge at low speed, which get larger and higher as the speed
increases.

Figure D77 shows the evolution of the steady-state apparent friction coefficient with
velocity as calculated with a 512 x 512 mesh with L =12 mm with a comparison to the
results of Carbone [[IX].

The apparent friction coefficient u is defined as the absolute value of the tangential
force divided by the normal force. The tangential force F; is computed from Equation
DTR where S, is the contact surface and H the height map of the rigid substrate - in the
present case the sphere.

[ U, [ OH
Ft_/SL.P?dS/V_ SchdS (2.18)

The steady state friction coefficient is approximated from the transient computation
by averaging the value of the friction coefficient during the last part of sliding, once it
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2. Numerical model for frictionless contacts and application to Hertzian contacts
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Figure 2.6: Normalized contact pressure profile along the sliding direction, for a dimen-
sionless velocity of 0.4, 0.8 and 1.2 top to bottom. Solid lines are for the current model,
dashed lines are from [I3]. x = O is the center of the sphere.
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Application: viscoelastic Hertzian contact

has reached an almost constant value. Figure "1 shows a friction curve with a bell shape:
friction is maximum at intermediate speeds and tends to zero at infinitely low or high
speeds. This curve is typical of rubber friction: at low speed, rubber behaves like a soft
elastic solid while at high speed it behaves like a hard elastic solid. In both cases, it
does not dissipate energy as it slides. At intermediate speeds (which corresponds to inter-
mediate frequencies), viscoelasticity has a strong effect which causes energy losses and
consequently friction.

1072
) Carbone et al.
4 == Current model |
3 L
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2 L
1,
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1072 107! 10° 10! 10

*

vV

Figure 2.7: Variation of the apparent steady-state friction coefficient with velocity com-
pared to numerical results from Carbone et al. [I8].

Another parameter is of primary importance for transient sliding: the time Ty = T;; v
between the moment when the normal load is applied and the moment when sliding starts.
During this period, the normal displacement increases because of viscoelasticity. If it is
small (7 < 1/V* and Ty < 1), the normal displacement will continue to increase during
sliding causing friction to increase slowly as the amplitude of the deformation increases. If
itis large (7 > 1/V* and T > 1) the normal displacement will reach a higher value than
in steady-state sliding. Consequently, sliding decreases the normal displacement which
causes an increase of the potential energy of the normal force. As sliding is at constant
speed, this extra energy is provided by a temporary increase in tangential force which in
some cases causes the friction curve to have a maximum ,,,, before reaching its steady
state value ugy,, as shown in Figure IIX.

The maximum u,,,, depends also on the sliding speed: the higher the sliding speed,
the higher the u,,,,, because at higher sliding speeds the normal displacement is lower. At
higher speeds the maximum also appears after a shorter loading time, as shown in Figure
9. On this figure the ratio tyqx/tayn is presented as it is more appropriate to compare
the results for different sliding speeds.
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2. Numerical model for frictionless contacts and application to Hertzian contacts
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Figure 2.8: Friction curves for different loading times 7' for V* = 0.8

2.3 Adhesion

2.3.1 Adhesion model

Adhesive forces as described in paragraph 272 are tensile forces developing between
two surfaces. In the general case, one geometric point of a surface attracts all the points
of the other surface with a force depending on the distance between them. For a surface
of a half-space discretized into N2 points, computing the adhesive forces acting on each
point requires O(N*) operations. As these forces depend on the geometry of the rigid
substrate and on the deformation of the half-space, these operations cannot be simplified
with a convolution product. In addition to this, the direction of the adhesive force acting
on one point is not necessarily vertical. As the surfaces are nominally flat and the slopes
are small, the common way to model adhesion in both analytical and numerical studies is
to consider that the magnitude of the force depends only on the local gap and its direction
is always vertical as illustrated in Figure 210 (this hypothesis is used for example in [20]
or [67)).

Using this assumption, the potential adhesive energy between two surfaces is defined
by Equation ZT9, where g(X) = U,(X) — H(X) is the local gap and S is the surface of the
half-space.

Ean = [ eann(8(X)) (2.19)
S
eqan 18 the local adhesive potential. The local adhesive pressure deriving from this po-
d
tential is P,g, = —eag—h@. In most cases the precise shape of this potential is unknown.
8

What can be measured on the other hand is the adhesive energy Yo which is required
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Figure 2.9: Evolution of the maximum friction ratio tiq/ Mayn With the loading time at
different sliding speeds.

to separate two surfaces in contact. Another important parameter is an estimation of the
range of the interactions zg. A number of different potentials can be built from these two
parameters. A few are given in Equation ZZ20.

;

exp(—i) Exponential [67]
20
e
€adh = —0  exp(—"5) Gauss [67] (2.20)
20
(1— E)@(z() — g) Maugis-Dugdale [40]
<0

\

where O is the Heaviside step function.

In the present case the exponential potential is chosen because it is shown in [67]
that it gives similar results to Maugis-Dugdale’s model, but with the advantage of being
continuous. The adhesive pressure is given by Equation ZZZ1. The minimum adhesive

. . . 0
pressure is reached when the gap is zero and 1s ——.
<0

Poan = —ﬁexp(—ﬁ) 2.2D)
20 20

The contact problem is not the same: Equation 21l turns into Equation 222
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2. Numerical model for frictionless contacts and application to Hertzian contacts

Figure 2.10: The adhesive force acting on one point (O) is supposed to be the sum of
the interactions between O and all the points of the counter surface (left figure). The
simplifying assumption used here is to consider that this force is vertical and only depends
on the local gap (right figure).

P(X) > -0 VX
20
g(X) = 0
2(X) = 0 X €5, (2.22)
P(X) —Eexp <—ﬁ) X €S,
20 20

2.3.2 Implementation

Implementing adhesion in the algorithm described in can be done in a rather simple
way. The first step is to change the definition of the contact surface by allowing negative

pressures in it (as long as P(i,j) > —’ﬁ, the point (i, ) can remain in the contact sur-
20

face). Despite adhesion, the search direction remains O outside of the contact surface: the
adhesive pressure outside of the contact surface is computed from the local gap at each
iteration, after the computation of the residual. A problem arises: to compute the residual,
the adhesive pressure is required, but this adhesive pressure depends on the residual! A
first solution is to make an inner loop: compute the residual, the corresponding adhesive
pressure, compute the residual again with this new pressure... This proves quite slow.
Another solution is to consider that as the algorithm converges, the gap difference from
one iteration to another is small compared to the characteristic length zg.

In both cases, the algorithm proves to be quite unstable, especially for short range
adhesion on rough surfaces.

A more suitable approach to solve the adhesive contact problem is to try to find the
displacement U, solution to the problem instead of trying to find the pressure. This way,
the computation of the residual is exact. This is the solution chosen in [?3] in which an
algorithm very similar to the one presented here is developed. It should be mentioned that
both were developed independently. The algorithm is also similar to the one explained in
paragraph -T2 it is a Conjugate Gradient loop, starting from an initial guess of gap go
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and converging towards the right solution.
The first difference is the functional to be minimized. Here it is given by Equation
273

1
F = —Euan/ly,— Eetas/1y; =70 Y exp (—fo) — §(H+g) A (H+g) (223)
(i,7)

12 is the mesh cell length and g is the local gap which is always 0 in the contact surface,
so that:

== 0 0

(2.24)

In theory the mean term of Z;ZI is infinite for a periodic contact: a non-zero mean displa-
cement yields an infinite mean pressure. That is why the mean displacements and pressure
are treated separately and the mean term is set to O to avoid computational problems. In

all cases, the mean displacement needs to be zero, which implies Az;! (H+g)=0.If the
mean pressure P is imposed as boundary condition, the real pressure field is simply de-
duced from the displacement field as P = P™ +A_!(H + g), which makes the pressure
correction scheme used in paragraph unnecessary. Accordingly, Equation is
replaced by Equation 735,

oF D exp <‘£) — A (H+g)—P™ if (i,j) € S (2.25)

5 == 20 20
J8 0 if (i, j) € S.

At the end of iteration n, the gap field is g,, the residual is r;, in =S, (r, = 0 in the
contact zone) and the search direction is d,,.

The first step of iteration n+ 1 is to find g,11 = g, + 0d,. o is a scalar chosen to
minimize ¥ along the search direction. The simplest way to find o is to use Equation 26,
replacing A,; by A 1 . But this o only minimizes ¥ if the adhesive forces do not change
between two 1terat10ns, which is only approximately true when the algorithm is close
to convergence - in other words this equation only works in linear conjugate gradient.
Instead, finding o such that 0 F /do. = 0 after linearizing P, 4, yields:

dT
o — r'é > (2.26)
dh
dr Azl d, —dr. Efg (gn)-dn
The matrix 0P,,;,/dg is diagonal and with an exponential adhesion potential:
7 OFadn aPadh Z (i, Paan(i, J) 2.27)
- ag - .
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2. Numerical model for frictionless contacts and application to Hertzian contacts

As the adhesive pressure P, is already in memory (it was computed during the com-
putation of the residual), the extra computational time and memory required to compute
o compared to the linear version is small.

gn+1 1s computed and all the points where the new gap is negative are added to the
contact surface and their gap is set to 0. The new residual r,, 11 is computed using Equation
73, The points of the contact surface with a pressure inferior to —Yy/zo are removed from
the contact surface.

The new search direction dj,41 is computed from the new residual. In linear con-
jugate gradient d,, 1 is computed in order to be A;ZI — orthogonal to d,, but a slightly
better solution can be found. After a first order expansion, the residual is r(g+¢€) ~
r(g) — (AZ' — OPuun/9g(g)) -€ instead of r(g+€) = r(g) —Az'(g).e. The linearized lo-
cal matrix B = A_;' — 0P,4,/9g(g) plays a more important role than A, locally, that is
why it is chosen to set the new search direction to be B — orthogonal to the previous one.
Consequently, the new search direction is d, | = ry, 11 + Bd, where:

_ 0Paan
r;_H "AZZ] dn — FZ+1 de
p=— — P (2.28)
dT AZ'.d, —d! .?.a’n

This non linear algorithm converges in theory faster than the linear one. It needs ~
10% less iterations to achieve convergence, depending on the problem. However, the extra
computational cost caused by the more complex formulas for o and B counter-balance the
gain, so that the total time required to perform a computation remains approximately the
same. The values of o are necessarily larger than with the linear algorithm which makes
the algorithm a bit less stable, in particular the determination of the contact area may take
more iterations. A convergence study of the different algorithms is performed in [Z0].

2.3.3 Validation: viscoelastic Hertzian contact with adhesion

As mentioned in paragraph and the case of a rigid sphere in contact with a vis-
coelastic half-space with adhesive forces is of practical importance and its full resolution
was obtained by Haiat [49]. A simplified solution is given in [BT]. In this last publication
an example is given for a loading/unloading cycle with prescribed normal displacement.
This example is reproduced here using the current model.

In the adhesive algorithm previously described the normal load is prescribed. It can
be adapted for a prescribed normal displacement Az instead using the same scheme as
the algorithm without adhesion, the roles of normal displacement and normal load being
reversed: in the latter the normal load is corrected at each iteration to match the prescribed
normal load, here the gap is corrected at each iteration to match the prescribed mean
normal displacement - details of this implementation can be found in [[Z0].

The comparison between the analytical result [B1] and the current model shows a
good agreement, which validates the coupling between the contact solver with adhesion
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and the transient viscoelastic scheme. On the load/displacement curve -1 a small dis-
crepancy can be seen at the end of the unloading. It can be explained by the fact that
Barthel, following the work of Greenwood [[71], uses a double-Hertz adhesive potential
which cannot be easily implemented numerically. The current model uses an exponential
adhesive potential with a matching adhesion energy and interaction length.

This curves also highlight the fact that, despite being conservative forces, adhesive
forces cause energy losses as they couple with viscoelasticity. The adhesion-less curve
shows a much smaller hysteresis than the curve with adhesion. It should also be kept
in mind that after the unloading, at Az = 0, the contact surface is still non-zero in the
adhesive case, which means adhesion is not yet fully released and the losses are higher
than the area inside the curve suggests.

— Analytical solution
=== Current model - no adhesion
=== Current model

Dimensionless normal force

_20 | | | | | | | J
0O 10 20 30 40 50 60 70 80

Dimensionless normal displacement

Figure 2.11: Load/displacement curves for a viscoelastic Hertzian contact with and wit-
hout adhesion. The normal displacement is imposed with a constant speed during loading
and a two times slower speed during unloading. The analytical solution is from Barthel
[31], where the precise parameters of this experiment can also be found.
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2. Numerical model for frictionless contacts and application to Hertzian contacts
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Chapter 3

Contacts with friction

The numerical model is extended to handle sliding contacts
with friction. First different friction laws are discussed. The
implementation of friction in the code is then detailed. A
number of numerical problems arising from viscoelastic
contacts with friction are treated. Examples are given for
Hertzian contacts.
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3. Contacts with friction

3.1 Friction laws

3.1.1 Friction forces in a contact problem

The algorithm presented in Chapter 2 only solves the contact problem in the normal di-
rection, as if there were no friction at all. This simplification makes it difficult to accu-
rately model real-life contacts where several phenomena cause friction. As detailed in
paragraph LT, at macro scale experimental data suggests that when a solid is sliding, it
opposes a tangential force proportional to the normal force: this is the Coulomb friction
law. The phenomena occurring at micro scales (van der Waals bonds, physisorption...) on
the other hand are more likely to cause a friction force proportional to the contact surface
- a fact that is supported by experimental data for smooth contacts. This is the ‘constant
shear stress’ friction law. At last, viscoelastic losses in the bulk of a rubber material also
result in a friction force.

The necessity to take friction into account in the computation is arguable: for an in-
compressible half-space sliding on a rigid surface (which is a good representation of rub-
ber sliding on a road at meso-scale), there is no coupling between the normal displace-
ments and the tangential displacements. Consequently the simplest way to account for
friction would be to use the previous algorithm to quantify the viscoelastic losses and the
contact surface of the sliding contact and then to apply the appropriate friction law to
compute the total friction force.

Though this approach works well for a steady-state elastic contact, as long as the
precise knowledge of the tangential displacement field is not required, it is not sufficient
for a transient viscoelastic contact. During the transient part of sliding, the contact area is
divided in a slipping part and a sticking part. This separation plays an important role in
the evolution of the tangential force as a function of the lateral displacement. As sliding
does not occur at the same time at every point, it also influences the viscoelastic response
of the material. In other words, there is an indirect coupling between the tangential and
normal displacements in the present case caused by the transient aspect of sliding and the
material viscoelasticity.

Handling this coupling directly, that is to say solving the normal contact and tangential
sliding in the same conjugate gradient loop is quite tricky. Instead it is chosen to separate
the normal and tangential contact problems and to follow a step by step approach in the
same way as for the implementation of the transient viscoelasticity (see paragraph Z173).

The overview of the algorithm is as follows:

Initialization

- Computation of normal pressure and displacement
Beginning of the time step loop

- Computation of the tangential displacement

- Interpolation of the half space according to the local slip

- Computation of the normal pressure and displacement
End of the loop
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Friction laws

Using this scheme, the normal and tangential problems are solved separately, which
makes the algorithm much simpler but may induce an error if the time steps are too big.
This separation of the two problems remains a valid hypothesis as long as the difference of
the normal pressure field between two steps remains small. It is true if the two following
conditions are met:

- The length of the time step is small compared to the characteristic time of the vis-

coelastic material.

- The tangential slip during a step is small compared to the characteristic size of the

problem.

The first condition is the same as the condition described in paragraph for a
contact without friction.

3.1.2 Coulomb friction and “constant shear stress’’ friction

In the following section, P denotes the normal pressure and (7, 7;) the shear stress at the
surface of the half-space in the x and y directions. As the tangential and normal directions
are decoupled, it is supposed that the contact surface S, is already known. This contact
surface is then separated into two zones: the ‘sticking’ contact surface Sg;x where no
relative displacement between the half-space occurs and the substrate and the ‘slipping’
contact surface Sy;, where there is. These two should be calculated by the tangential

contact algorithm: if the norm of the shear stress ||T|| = /T2 + Ty2 is strictly below a

limit 7,4y, the point is in the stick zone, otherwise the point is in the slip zone and the
norm of the shear stress is prescribed by 7, and the direction of the shear stress should
be the same as the direction of slip. These conditions are summed-up by Equation B,
where the relative displacement between the two surfaces is r = (ry,ry) and (i, j) is the
point under consideration.

T||<T, ..
ﬂ:”()_ e (l,]) 6Sslick

17| G
T :Tmax ..

i,7) € Sgi
=Ty ) € Ssip

Tnax depends on the friction law considered. For a Coulomb friction law, it depends
linearly on the normal pressure through a coefficient u which is close to 1 in rubber/ road
applications: T, = uP. Otherwise for a ‘Constant shear stress’ friction law it is simply
a constant independent from the pressure 7,5 = Oyqx. For this last law, the shear stress
is not continuous at the edge of a contact patch. To avoid this discontinuity, a ‘mixed’
friction law can be used. At low pressure, it is a Coulomb friction law and at high pressure
the shear stress is constant: T}, = min(uP, Gyay ). This law is also known as Coulomb-
Orawan friction.

The condition that the direction of the shear stress should be the same as the direction
of slip (r/||r|| = T/||T||) is equivalent to T minimizing the friction losses, by minimizing
the sliding distance. That is because r is an affine function of T: r = A + BT where B is
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3. Contacts with friction

Friction cone

Figure 3.1: Illustration of the slope effect in a Hertzian contact. The sphere is sliding to
the left over a viscoelastic half space. The friction cone is tilted at the leading edge of the
contact, leading to an increase in friction compared to the trailing edge.

positive and A is the displacement caused by the traction field in the other points than the
one under consideration.

3.1.3 Effect of the local slope

In the previous paragraph the friction laws are written in terms of P and 7" which are the
surface stresses in the vertical and horizontal directions. They are consequently strictly
valid only for a flat contact: in the general case, they should be expressed in terms of
normal stress and tangential stress, using the local normal to the surface instead of the
general vertical and horizontal axes. This effect is illustrated in Figure B-1:: for a Coulomb
friction law, the admissible stresses lie inside a cone. This cone is tilted depending on its
position on the sphere, which means that there is slightly more friction at the leading edge
of a sliding contact than at the trailing edge.

Though the current model makes use of the “small slope approximation’, this effect
cannot be overlooked altogether, as it is a first order effect. If at a given position the normal
to the surface makes an angle 6 with the vertical axis in the x direction and considering
that 7 is still in the horizontal direction, its maximum value is then given by Equation
B2.

Tslope _ “+tan(e)

N 2
slope _ Tan(e)NP(,u-i-tan(G)-l-,u tan(0)) (3.2)

For a friction coefficient of u = 1.5 and a local slope of only 6°, which corresponds to
a shear strain of 10 %, the error made by not considering this slope is close to 20 %.

Taking the slope into account is equivalent to saying that, locally, ||c,|| = uc,, where
O, 1s the stress in the direction of the normal to the surface and o, the stress perpendicular
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Friction laws

‘ ‘ - Slope = 10°
=== Slope = 0°

Figure 3.2: Traction boundary with or without slope, with P =1 and u = 1. The slope is
in the x direction.

to this normal. If the surface is H then we define (N, Ny, N;) so that:

Ne||VH ||
VH={ N,|VH| (3.3)
N||VH]||

The vector (Ny, Ny, N;) is a unitary vector which is normal to the surface and which is
expressed in the global coordinates, that is to say z is in the vertical direction and (x,y) in
the horizontal directions. Stating that ||c;|| = uc, and using the variables (7, 7;, P) in the
global coordinates leads to Equation B-4

T2 (1 =N (142)) + T (1 = Ny (1 +47))
+P2(1 = N2(1+p?)) — 2T, TyNeNy (1 + 122) (3.4)
—2TPN,N,(1 + 1) — 2T,PNyN,(1+u?) =0

This is the equation of an ellipse, which is expected as it corresponds to the inter-
section between a tilted cone and a plane. An illustration of the difference of traction
boundary with or without slope is found in Figure B72. It highlights the fact that the
traction boundary is no longer independent of the sliding direction.

In the same way that the traction boundary 7,,,, is modified in Equation B, the con-
dition on the sliding direction r/||r|| = T /||T || is also changed, but remains equivalent to
T being in the direction that minimizes the sliding losses and consequently the sliding
distance.

Equations for friction laws with slope for a “Constant shear stress” friction law and
for a Coulomb friction law with adhesive forces are found in Appendix B.
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3. Contacts with friction

3.2 BEM with friction

3.2.1 Tangential problem functional

In order to implement friction in a Boundary Element code, the problem is discretized
in the same way as in Chapter 1. Rubber is considered to be incompressible and the
substrate to be rigid, so the problem is ‘quasi-identical’ and the tangential and normal
displacements are decoupled. The relation between displacement and traction/pressure is
given in Equation B3

U = Ayl +AxyTy
U, = AgTi+A,T, (3.5)
U, = AzP

The A Influence Coefficient matrices are all convolution matrices, so that all the ma-
trix multiplications can be done efficiently in Fourier space. They are described in Kal-
ker’s book [9] for the non-periodic case. For the periodic case they can be deduced using
integral transforms, as described in unpublished work by P.Sainsot given here in Appen-
dix [l Special attention is required concerning the mean displacement. For a semi-infinite
half-space, the mean displacement should be zero, which is equivalent to A = Zyy =0.
In most real-life situations, the half-space is considered to be semi-infinite because it is
thick and large compared to the size of the contact problem, but it has a finite thickness.
As the thickness increases, for a given mean tangential force, the mean displacement ac-
tually increases. Accounting for this effect can be done by changing the mean term of
the influence coefficient matrices into A, = Zyy = h/G, where h is the thickness of the
half-space and G the shear modulus of the material.

The best way to compute the displacement in Fourier space is to use Equation B,
which is equivalent to performing two matrix multiplications instead of four by using
in an advantageous way the complex nature of the Fourier transform. 1 is the imaginary
number.

U, = real (FFT ! (FFT(Ay + 1Ay )FFT(T; —iTy)))

Uy, = real (FFT"! (FFT(A,y+ 1A, )FFT(T, —1T}))) (3.6)

A conjugate gradient iterative method was chosen to solve the problem, as in chapter
D. The algorithm iterates on the tangential traction fields 7 = (7%, Ty) to find the lateral

displacements satisfying the friction law (Equation BTI).
The functional to minimize is given in Equation B~2:

1
Fran = ETT.AT.T —px'rT (3.7)

where:

U T Aw A
=g ) =7 ) A= (4 %) (8)
Uy Ty Axy Ayy
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BEM with friction

DX is the imposed lateral displacement. Kalker [U] proved that minimizing this functi-
onal under the assumption ||7'|| < T,,,,x(P) gives the solution to the tangential contact pro-
blem: in particular, once this functional is minimized the direction of slip is the same as
the direction of the tangential traction, so this boundary condition does not need to be
explicitly enforced in the conjugate gradient loop. This theorem is valid for a Coulomb
friction law, for a constant shear stress friction law and for a ‘mixed’ friction law.

This theorem unfortunately does not apply to the friction law with slope, as one of
the hypothesis is that 7;,,, does not depend on the slip or the direction of the traction. In
this case, the existence and unicity of the solution is therefore not guaranteed, nor is the
direction of sliding. For reasonable slopes, it should nonetheless not be a problem.

3.2.2 Enforcement of the friction law

The conjugate gradient loop described below gives at each iteration a new guess for the
tangential traction fields, until the functional is minimized. But the conjugate gradient
procedure by itself does not guarantee that the traction field satisfies the condition on
the traction boundary ||T'|| < Tuax(P,T/||T]|). (The notation T, (P, T /||T||) means the
traction boundary can depend on the direction and on the pressure in order to be repre-
sentative of all the friction laws described above, with or without slope.) Consequently at
each iteration the traction field should be adapted in order to respect this condition. This
is achieved using Equation B9.

T lf T e Sstick

kxT if T€Sup (3:9)

T — Tree = {

k is chosen so as to satisfy the traction boundary. Sy is the area where the traction is
already within the limit and where there should be no slip, so the traction does not need
to be changed.

An alternative way to ensure this would be to change the variables in the slip area: as
the traction norm is prescribed, only the angle is unknown. This is the approach chosen in
[T9], but it was not tested here.

The current way of changing the traction may fail at low friction coefficients when
slope is accounted for: indeed T = 0 does not necessarily lie within the ellipse of admis-
sible traction in this case, so sometimes there is no solution for k. This problem can be
avoided by using the following equation instead:

T if T € Sstick
Ny
T— Trec = Tx+k(7} _P]\_IZ) if Te Sslip (310)

N,
k(T — PR
Z
T, — PN,/N,

This equation always works as the point ( T, — PN, /N,

) is always inside the ellipse.
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3. Contacts with friction
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Figure 3.3: Traction boundary with or without slope, with P =1 and u = 0.1. The slope
is in the x direction. Using Equation B-I0, a traction 7 is rectified into 7. in order to
comply with the friction law.

Figure B3 shows how the traction is modified according to Equation 3710 for a contact
with a low coefficient of friction g = 0.1. In this case, using Equation B9 would not have
allowed any admissible solution.

For both equations, k is such that 7, is on the traction boundary, that is to say T
satisfies Equation B4. It leads to a second order equation for k; which can be found in
Appendix B.

3.2.3 Conjugate Gradient algorithm

Minimization of the functional defined in Equation B2 is done by a conjugate gradient
algorithm, similar to the one described in Chapter 2 for the normal contact, that is to say
the algorithm iterates on the tangential stress fields (7%, 7y) until the displacement field
satisfies the boundary conditions.

The residual can be deduced from the functional and is:

i :{DX—AT.Tlf(i,j)GSC Gl

T 0 if (i, j) € S,

S, is the contact surface and —S, is the surface that is not in contact. Interestingly, the
residual corresponds to the local slip: it should converge towards zero in the stick zone.

The algorithm starts with an initial traction guess 7p. This traction is modified into
Trec0 so that it follows the friction law. The residual is computed using Equation BTTI.
The initial search direction dj is set to be equal to the initial residual ry.

Suppose it is the end of iteration n.
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BEM with friction

Line search

The new traction field is 7,1 = T, + 0d,,. o is such that —d F,,, /0ot = r,{H 0T ec/doL = 0.
Its computation is quite complicated because of the traction rectification process descri-
bed in the previous paragraph. To compute it, the first step is to input 7,41 instead of T
into equation B-10 and then into Equation B-4. This allows the computation of an approx-
imation of k and dk/da., using the hypothesis ||ad|| < ||T||.

After a first order expansion, o is given by Equation BI12. K ; and Ky > are defined
in Appendix B and are equal to zero in the stick zone. If there is no slip at all, Equation
B12 is simply the standard formula for o in the linear conjugate gradient method.

o= (e +Ka)" 1 (3.12)
(dn —I—Ka71)T.AT.(dn—|—Ka71)T—KT72.rn '

o

New residual

The sliding surface Sg;;), is defined as the set of points where the traction is out of bounds.
The new traction field 7,11 is modified in Sy, into Tec 441 SO as to satisty the friction law,
using Equation B-T0 with the appropriate value of k. A second order equation is solved
in order to get the right value at each point of the mesh in Sg;,, which impacts the total
computational time.

Using this traction field the new residual is computed from Equation BTTl.

The points sliding in the opposite direction of the friction force are removed from Sg;),,

in other words they are removed if (Tyec nt1 — PN IN)T .11 <0, where N = ( %x )
y

New search direction

The new search direction is computed from the new residual and the previous search

direction dy, | = 11 + Pdy,. As the problem is strongly non-linear due to the friction law,

a formula for B adapted to non-linear problems is used. Several choices are possible and

here we use the value given by Hager and Zhang [77] and given by Equation B3, with
1

GRS [4_1 : 4oo] being a free parameter. The original Hager-Zhang model uses 6 = 2, but

some authors [[73] argue that 6 = 1 may be a better choice.

B=P1+6B

yr{—i—] *Fn+1
P ==
n " Yn+l (3.13)
yrarl “Yn+1

By = dT 1y v L
mon (d;{'yn+1)2

Yn+r1 =Tnr1 —Tn
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3. Contacts with friction

B is very similar to the value of [ in the linear conjugate gradient method, as y; is an
approximation of atAr.d,. So B is the classical value which gives the best results in the
linear conjugate gradient method. Consequently, small values of 0 are likely to give better
results for low slip ratios, while for high slip ratios 6 € [1 : 4] is likely to have a better
convergence rate.

Using the formula as is, the algorithm has a poor convergence rate and often fails to
converge at all. Equation which describes o suggests that d, + Ky 1 plays the role of
d, in the present case. Using this in Equation leads to Equation B-T4.

B=p1+6pB

(dn +K0L,]>T'yn+] (314)

T
Vi1 " Yn+1
» = (dy+ Ko 1)y *
B ( n o, ) n+ ((dn_"KO{,,l)T'yl’H—l)z

Ynt+t1 ="Fn+1 —¥n
Using this last equation along with d, | = r,,+1 + PBd, for the computation of the new
search direction, the algorithm converges.

Convergence criterion

The loop stops if the convergence criterion is below a given tolerance. The convergence
criterion is given in Equation B3, it is the same as the one used in [19]. ||...||grps stands
for the RMS norm.

_ ||Tn—|—1 - Tn”RMS

[Tl o)

This convergence criterion might not be suitable if the convergence is slow. In this
case a second convergence criterion can be used using the RMS of the residual in the
sticking area, which should converge towards zero (the residual in the slipping area does
not). In this latter case the loop stops if both the criteria are below the tolerance.

This algorithm works well as long as the required precision is not too high. Its main
problem is that the residual does not tend to zero in the slip zone because the residual
actually measures the slip.

3.2.4 Conjugate gradient with perpendicular residual

One way to avoid this problem is to modify the value of the residual in the slip zone for
the computation of both o and . The modified residual r,,,; is computed in order to be
perpendicular to the traction at each point. It can be approximated by ensuring that for
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Validation and performance

e N,
each point (i, j), r;()d’(l.7j). (7"(,~7j) —P(i7]~)N(,-7j)/NZ) =0, where N; j) = ( Ni”ix ) The
0,]):y
term P; yN; j) /N is added to account for the slope effect.
This is achieved by using Equation B-T6 for each point in the slip area. The residual

for the points in the stick area is not modified.

Ti.jy = Py Mo
Najyy ™7 "7 N,
rmod,u,j):r(i,j)—rﬁ,jy(Ta,j)—P i)y ) N (3.16)
T Py
Z

Using 7,04 Instead of r in Equations and B-T4 leads to a more precise and more
stable algorithm.

3.3 Validation and performance

The algorithm is validated against the analytical result for a Hertzian contact with friction
derived by Mindlin [32] and described in paragraph I271l. Figure B-4 shows the evolution
of the tangential force with the slip ratio, showing very good agreement- the simulation
is run without accounting for the slope. The tangential force is represented as an apparent
friction coefficient u, which is simply the tangential force divided by the normal force.
The lateral displacement is dimensionless: its unit is the contact radius. It should be men-
tioned that the agreement is not perfect, independently of the mesh size or the convergence
criterion of the algorithm: that is because Mindlin’s solution assumes there is no traction
acting in the direction perpendicular to the sliding direction. This assumption is known to
be wrong as it leads to displacements that are not strictly parallel to the sliding direction
(which should not be possible as one of the condition of the friction law is that stress and
slip are in the same direction). However, it appears to be a very reasonable assumption, as
the relative error in global tangential force between Mindlin’s result and the simulation is
~ 1073.

To assess the performance of the algorithm, it is compared to the one described in
[T9]. As they both use a conjugate gradient algorithm, they are compared in terms of
number of iterations before convergence, using the same convergence criterion (Equation
BI3 with a tolerance of 107>). All the other parameters are the same: shear modulus G =
200 MPa, Poisson coefficient v = 0.42, radius of the sphere R, = 50 mm, normal force
F, =9.196 N. Once again the slope is not accounted for.

Figure B3 shows that the algorithm described in this section is competitive compared
to Zhao’s algorithm in terms of number of iterations. A comparison in terms of compu-
tational time was not made as it depends strongly on the detailed optimization of each
algorithm and may have consequently been biased. This figure also shows that the num-
ber of iterations increases with the number of unknowns, it is approximately 0(57\[70'4),
where A7 is the number of traction unknowns. There is an exception for the full slip case
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3. Contacts with friction
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Figure 3.4: Ratio between tangential force and normal force as a function of the slip ratio
for a Hertzian contact with a Coulomb friction law. The friction coefficient is 0.4. The
simulation is in good agreement with the analytical result from [B2].

where the number of iterations seems relatively independent of the number of unknowns.
A possible explanation is that in this case, using 7y(i, j) = uP(i, j) and Ty(i, j) = O for
each point (i, j) already yields a quite good solution, as it is the traction field of the ana-
lytical solution from Mindlin. This traction field is also the one that the current algorithm
is likely to try at the first iteration of the conjugate gradient, which means that after only
one iteration the algorithm already yields a good solution independently of the number of
unknowns.

3.4 Viscoelasticity

Viscoelasticity can be implemented in the tangential direction exactly in the same way
as in the normal direction (paragraph .13), by discretizing time into small time steps
and considering that the traction field and displacements vary linearly between the time
steps. It leads to a tangential version of Equation 213, where A7 should be used instead
of A;; and Ur instead of U. The algorithm described above for an elastic material can be
used to solve the viscoelastic problem by using 7/, Uy and DX’ instead of 7, Uy and DX
according to Equation B12. This yields Ur,a, and %Tt’i Ar» Which is the total traction

acting on the surface.
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Interpolation
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It should be pointed out that it is necessary to compute and to store the state varia-

bles A7 T for each branch
Equation 712,

of the generalized Zener model between each time step using

3.5 Interpolation

The naive way to model a contact with a prescribed lateral displacement of AX would be

simply to use DX = AX in

the current model and solve it in one step. Doing this would
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3. Contacts with friction

however give a slightly wrong answer because a frictional contact is history dependent,
that is to say the result would not be the same if the problem is solved in one step or if it is
solved after a number of small steps. The latter solution is of course closer to the reality,
as long as the displacement during one step is small compared to the characteristic size of
the problem.

Suppose it is the end of step n. The total lateral displacement is AX,, the tangential
displacement of the half-space is Ur ,. During the next step, an extra lateral displacement
of d is prescribed, so that the total lateral displacement is AX, | = AX, + 8. The proper
way to solve the problem for step n+ 1 is to use DX = Ur , + 8 in the algorithm.

During each step, the half-space and the surface it is in contact with move relatively
to each other as they slip. These movements have to be accounted for with an interpola-
tion procedure. Even if they are small (because of the hypothesis of small strain), these
movements can influence the transient contact if the material is viscoelastic: the local slip
is likely to cause energy dissipation even if the surface is only partly sliding.

The interpolation needs to be done at each step according to the extra slip during
the step. It can be done in two ways. The ‘Eulerian’ way is to interpolate the material
characteristics depending on the slip at each point of the rigid substrate, while the ‘La-
grangian’ way is to interpolate the rigid substrate depending on the slip of each point of
the half-space. Both approaches should lead to the same results as long as the small strain
hypothesis remains valid. The ‘Eulerian’ way may seem more appropriate: as the sub-
strate is rigid, it seems counter-intuitive to distort it through an interpolation procedure.
But it means all the variable fields related to the material have to be interpolated: the dis-
placement fields (3 fields: one in each direction) and the internal viscoelastic variables (3
fields multiplied by the number of viscoelastic branches of the material), so this solution
is quite expensive in terms of computing time. The ‘Lagrangian’ way is much more ef-
ficient: only the height map H of the substrate needs to be interpolated (1 field) and the
slopes have to be re-computed. In this case, it might be useful to keep the original, not
interpolated height map Hp in memory at all times instead of storing the new, interpolated
height map at each time step as the repeated interpolations may modify it: they are very
likely to gradually smoothen the summits.

A linear interpolation was chosen in all cases, but higher order interpolation procedu-
res can also be used.

The edges of the simulation area should be treated with care. In the case of perio-
dic boundary conditions, the interpolation procedure should take this particularity into
account. In the case of non-periodic boundary conditions, it is more difficult: at each
step, some points leave the zone under consideration while other points enter. For a ‘La-
grangian’ interpolation, the height of the points entering the contact zone should be low
enough so as to never touch the elastic half-space, otherwise they may interfere with the
simulation.

For a non periodic contact, it is tempting to use a ‘Eulerian’ interpolation, as it would
allow to discretize only a small square around the contact surface (the smallest square
possible so as to get the best precision). During sliding, the points entering the simulated
zone and then the contact zone will have a physical meaning and thus provide a precise
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result.

Unfortunately, this approach only works for elastic materials because in the case of
a viscoelastic material, the internal variables of the points entering the simulation zone
are unknown and are not zero. It means that in this case, all the points that are likely
to enter the contact area at some point in time have to be included in the simulation
from the beginning. If the sliding distance is large compared to the length of the contact
area, it leads to either slower computations due to a higher number of points, or a loss of
precision due to the poor discretization of the contact zone. This effect, in addition to the
zero-padding procedure described in paragraph T makes the non-periodic algorithm
inefficient compared to the periodic one.

3.5.1 Comparison with Finite Element simulation

In order to validate the model and to illustrate the slope effect a comparison with a Finite
Element (FE) analysis is performed, using the commercial software Abaqus 6.14. The
case studied is a 2-D plane strain analysis of a cylinder on a viscoelastic half space.
In Abaqus, the half space is approximated by a rectangle 5 mm high and 15 mm long,
which makes it large compared to the size of the contact. The cylinder radius is 10 mm. A
normal force of 100N is first applied during 0.1 ms, then sliding starts at constant speed
(110 mms ") until a “pseudo” steady-state is reached. The material characteristics are the
same as the one used in [74] (where an analytical solution of a similar problem in steady-
state is derived): a Zener branch (Gyp =3 MPa, T = 1.11 ms) in parallel with an elastic
branch (G.. = 0.333 MPa).

First the contact is modeled without friction. Both the FE simulation and the current
model predict a tangential force of 4.5N caused by the viscoelastic losses (see Figure
BA). There is a 3.5 % difference between the two solutions.

With a Coulomb friction law (u = 1.5), the current model yields different predictions if
the slope is accounted for or not. Without slope effect, the tangential force at = 0.025 s is
F} no slope = 154 N, while with slope F; sjope = 165 N and the FE simulation predicts F; pg =
168 N. Consequently, the current model gives far better predictions when the local slope
is taken into account as the relative difference of tangential force goes from 8 % without
slope to only 2 % with slope, taking the FE result as a reference. Figure 377 shows the mesh
and the shear stress in the bulk predicted by the FE simulation. It should be mentioned that
the ‘slope effect’ is accounted for in the FE simulation, as the cylinder is not considered
to be flat.

Interestingly, the tangential force without slope is almost exactly equal to the sum of
the tangential forces caused by the viscoelastic losses without friction and the tangential
force caused by the friction law uF;. As discussed in paragraph B-T-Tl it is not a surprising
result as there is no coupling between normal and tangential directions in the present case.
In order to model a contact in full sliding and with very low slopes, modeling friction is
not really necessary: the total tangential force can be easily deduced from the viscoelastic
losses and the friction law. However, as soon as slopes are not negligible they cause an
extra tangential force which has to be accounted for. This extra tangential force is not
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Figure 3.6: Evolution of the tangential force with time during the sliding of a rigid cylinder
on a viscoelastic half-space without friction.

only related to the geometry and the friction law, but also to the viscoelasticity: if the
viscoelastic losses are low (at very low or very high velocity for example), the contact
area is symmetric. The extra friction caused by the slope at the leading edge of the contact
is therefore balanced by the friction deficit at the trailing edge of the contact, so that the
total tangential force is almost unaffected. On the other hand if viscoelastic losses are
high the contact area is not symmetric anymore and is located mainly at the front of the
cylinder (or of the sphere in the case of Hertzian contact) so the extra friction force at the
leading edge remains but is not balanced anymore by a friction deficit at the trailing edge.

Figure B8 shows the tangential stress along a cross-section of the cylinder at different
times. It shows that the current model slightly overestimates the contact area but otherwise
the results remain very close to the FE simulation. At # = 0.14 ms, a small area is not yet
sliding in the FE simulation, which causes a ‘hole’ in the shear stress distribution - this
area is already sliding in the prediction made by the current model, so the hole does not
appear.

3.6 Inertia

3.6.1 Numerical instability

The algorithm works well in a lot of cases but proves to be unstable under certain con-
ditions. This problem can be caused by a number of reasons and is characterized by os-
cillations in the tangential force, sliding speed or local shear stress during the time steps.
These oscillations are dependent on the length of the time steps but in a number of cases
reducing the time step length tends to amplify the problem. Because of friction, these os-
cillations turn into stick/slip motions when their amplitude is too high but do not have any
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Figure 3.7: FE result at the end of the simulation of the sliding of a rigid cylinder on a
viscoelastic half-space. The shear stress in the bulk is plotted.
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Figure 3.8: Shear stress along the x axis during the transient sliding of a rigid cylinder on
a viscoelastic half-space at different times. The dashed lines are for the model, the solid
lines for the FE simulations. x = 0 is the center of the cylinder.
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Pressure (Pa)

0.5

Figure 3.9: Top view of the pressure field in a viscoelastic Hertzian contact for two con-
secutive time steps. The sphere is moving from the bottom to the top of the picture. Nu-
merical instability is responsible for the wavy pressure pattern at the leading edge of the
contact.

physical meaning as their period is only 1 time step.

There are two kinds of oscillations: they can be either local (typically, stick/slip of
certain points at the leading edge of a contact) or global (stick slip occuring for the full
half-space). Local stick slip can be caused by excessive strain, for example if two points
overlap. It can also be caused by a coupling between the Coulomb friction law and viscoe-
lasticity. Suppose sliding is occuring at constant speed and steady state has been reached.
At one point, if there is a small ‘overpressure’, the friction force will also be slightly
higher, which in turns reduces the local sliding hence the local sliding speed. For a vis-
coelastic material, a lower speed means a softer material, so at the next step the pressure
at this point will be slightly lower than the normal steady-state value. This lower pressure
means less friction, higher sliding speed... and this phenomenon in certain cases beco-
mes unstable. These two phenomena causing local stick/slip cannot be helped, except by
using the algorithm in easier conditions, that is to say keeping the strains small (not to
mention that high strain also degrades the precision of the results). An example of this
behaviour is given in Figure B9, which represents the pressure field of at the leading edge
of a viscoelastic Hertzian contact for two consecutive time steps. In the dashed rectangle,
the pressure oscillates between a very high and a very low value. The total normal force
is constant because the high pressure zones are balanced by low pressure zones, which
forms a wavy pattern.
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The ‘global’ stick/slip phenomenon is quite similar and happens mostly when slope is
accounted for. It can be understood as follows. Suppose the global sliding speed is a bit
too high. In some conditions, it causes the contact area to be less symmetric and located a
bit more at the front side of the cylinder or sphere. At the next step, it causes more friction
because of the slope effect and consequently a sliding speed slightly too low compared
to its steady-state value. Once again in some cases this motion can amplify and become
unstable, usually when the material is soft and thick.

3.6.2 Implementation

This latter phenomenon can be overcome by adding inertia effects to the model. A com-
plete dynamic analysis is not possible, as it would require a 3-dimensional mesh to ac-
count for the wave propagation inside the bulk. Moreover, the problem under considera-
tion only concerns the mean speed of the interface. The oscillations of the mean speed
can be damped by adding a ‘mean mass’ to the problem, that is to say the inertial effects
only have to impact the mean displacement of the interface in the tangential direction.

A simple first order backwards scheme is used to include inertial effects. Though a first
order scheme may impede precision (by artificially damping the oscillations due to inertia
if the time steps are too large), it has the advantage of being easy to implement along with
viscoelasticity and proves to be efficient for the purpose of damping the non-physical, nu-
merical oscillations. It is also supposed that the lateral displacement is imposed uniformly
at the top of the rubber block by U"°P.

Adding a mass to the system is then done by using Equation instead of Equation

k
T’ :thJrAz
Uy =ArT’
k k
G’1<+m > M
DX = Goo—f—z % At % +FATM DX—UTJZ kAt %
Cppomo A Cpp Gy
Gf  GEA Gf  GEAr
k
M
GK At 2 2 2. .
+§ATT/‘ Gko ; +ATM(A—IQUT¢—A—tz(Ufiiz—Utmp)JrA—tUT,mLUT,t)
+ 3+
GX  GEAr

(3.18)

Acceleration U, ;4 and speed U, 4 are given by Equation BI9. U'°P appears in the
definition of the speed because the displacement field Ur is relative to the movement of
the top of the rubber block: if the relative displacement is zero, the sliding speed (the
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Figure 3.10: Mean sliding speed as a function of time for a Hertzian viscoelastic contact.
A constant velocity prescribed on the top of the block from time # = 0 onward.

mean speed at the bottom of the block) is equal to the speed of the top of the block.

U Tt+At — U T+ Uttiit B Urt o’
At (3.19)
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Uy
system, which should be chosen to prevent the numerical instabilities without impacting
the result otherwise.

Figure B10 shows the evolution of the mean sliding speed with time for a Hertzian
viscoelastic contact, with a constant velocity prescribed on the top of the block from
time ¢ = 0 onward. The parameters chosen in this simulation lead to numerical stick-slip
if no inertia is accounted for (dotted line). The plain line shows the result with a small
mass added, which effectively damps the oscillations. The mean sliding speed remains
close to zero at first: although a constant, non-zero velocity is applied at the top of the
rubber block, the friction forces refrain the contact surface from sliding, which causes the
rubber block to be sheared, up to a certain point (here t = 0.05) where the shearing force
exceeds the friction force and sliding starts. The sliding speed is not constant because of
viscoelasticity, which causes a delayed shearing of the block.

Though it is implemented primarily for damping purposes, the mass matrix can be
given a physical meaning as it can be used to model the first mode oscillations of a half-
space of finite thickness. For a periodic half space of thickness % and of constant density p,
considering the shear strain is constant at all heights z, the equivalent mass is m = p xh/2.

The mass matrix M is such that MUy = mU7r =m . m is the mean mass of the
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Figure 3.11: Illustration of the algorithm with inertia m: a viscoelastic material (here a
simple Zener material) with a prescribed displacement at one end and a mass sliding on a
rough surface on the other hand.

The problem under consideration is illustrated by Figure BTTl.

61

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI112/these.pdf
© [R. Bugnicourt], [2017], INSA Lyon, tous droits réservés
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Chapter 4

Rough contact

A description of rough surfaces such as road pavement is
made. Several results are presented using the current
Boundary Element Method. Firstly, an elastic contact with
adhesion with an extremely fine mesh is modeled for the
‘Contact Mechanics Challenge’. Secondly, a comparison to
Persson’s analytical model is performed for a transient
viscoelastic contact. Finally, simulations on a 2-scale model
surface are run to investigate the roles of the different scales
on a transient, viscoelastic contact, with friction and
adhesion.
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4. Rough contact

4.1 Numerical generation of rough surfaces

As mentioned in paragraph ["X4, road surfaces are self-affine rough surfaces which can
be characterized by their Power Spectral Density ®. A first approximation of the PSD of
road surfaces is given in Equation [CH, which reduces the surface description to several
meaningful statistical parameters. These parameters are useful for the development of
analytical theories such as Persson’s [3][4], but cannot be used directly as an input in a
numerical simulation. This input should be the height map of the surface itself, or at least
a good representation. The best way to get this height map would be to measure a surface,
filter the result in order to get rid of the measurement defects and format it properly. A first
drawback of this method is the difficulty and cost to measure the surface, in particular if
different surfaces are to be tested. A second drawback is that, despite having results close
to what happens in real life, using this method makes it difficult to understand the role of
the different parameters of the surface as they cannot be easily modified.

That is why a simpler method is commonly used in simulation. Using the hypothesis
that road surfaces are random, self-affine and fully characterized by their PSD, methods
have been developed to numerically generate random surfaces having the same charac-
teristics. The algorithm described in [[75] starts by generating a sequence of independent
random numbers (in the present case, having a Gaussian distribution). By applying a li-
near filter to this sequence, it is possible to generate a random Gaussian surface. In [[75]
the parameters of the filter necessary to obtain a surface with a given PSD are described.
Applying the filter to the random sequence can be performed efficiently in Fourier space
as it is a convolution product. This method is quite complex but very general as it can
be used to generate anisotropic, non-Gaussian surfaces. A simpler method is described in
[64], where the amplitude of each component of the Fourier Transform of the surface are
derived from the PSD and where the phase of each component is randomly generated. An
inverse Fourier Transform is then performed to have a surface in real space.

When generating random surfaces, particular attention is required concerning the wa-
venumber cut-offs k; and k. Yastrebov et al. [53] highlighted that the largest wavelength
should remain small compared to the size of the simulation (k; > 27t/L) in order to achieve
meaningful results. Otherwise, the generated surfaces are non Gaussian and possibly non
isotropic. The smallest wavelength should also be larger than the size of a cell to achieve
a reasonable precision: kg < 2N /L.

4.2 The “Contact Mechanics Challenge”

The algorithm for elastic contact with adhesive forces presented in Section 223 was used to
participate to M. Miiser’s Contact Mechanics Challenge. The results of this challenge can
be found in [277]. It consists of a self-affine rough substrate in normal contact with a linear
elastic half-space and a short-range adhesion force. Prediction of numerous unknowns
including contact area and mean gap as a function of the normal pressure were expected.

Answering this challenge required several simulations to be run on a very fine mesh
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Transient viscoelastic contact without friction
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Figure 4.1: Representation of the rough surface used in the comparison against Persson’s
model

(16384 x 16384 up to 32768 x 32768). On the finer mesh, the computing time was 3 weeks
using a single-core computer with extra RAM memory (=~ 100 Go were necessary). A
detailed study of the performance of different adhesive contact solvers can be found in
[70]. In the end our simulations agreed perfectly with M.Miiser’s although the results
were disclosed only after our work was submitted. This fact validates the precision of the
model as well as its performance for very demanding simulations.

4.3 Transient viscoelastic contact without friction

Persson’s analytical model for a transient viscoelastic contact on a rough surface [2¥]
described in paragraph 24, uses slightly stronger hypotheses than the ones made to
develop the current algorithm. In addition to the linear viscoelasticity and small strain
hypotheses, his model also supposes that the deformation of the half-space follows the
same PSD as the rough surface, which is strictly true only for full contact. Although it
does not account for friction, it provides a good comparison for rough contacts.

His model was thus implemented with a small modification to include the correction
factor introduced in [#] which gives good results at low contact area ratios [[76]. This
correction factor aims at reducing the predicted friction in the case of partial contact. It
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Figure 4.2: Validation against Persson’s model for a speed step experiment. Vy =
0.0lms~ 1,V =3ms!

depends on a parameter y € [0,1]. When y = 1 the correction factor has no influence.
Friction decreases as 7y decreases. In the following section, the parameter Y = 0.45 is
chosen as in [[76].

In the examples given in [Z8], rubber is first sliding at constant velocity Vj in steady-
state. At ¢ = 0 the prescribed speed is changed to V. When V| > V) friction increases
until it reaches a maximum g, and then decreases to its steady-state value (which can
be either higher or lower than the previous steady-state value). The steady state friction
coefficient is named pgy,. The existence of a friction maximum can be understood as
follows: when sliding at low speed, the contact area is high and the mean gap between the
two surfaces is low. When sliding at a higher speed, the steady state value of the contact
area is lower while the mean gap is higher. This means the potential energy of the normal
force increases. This extra energy is provided by a temporary increase of the tangential
force, which is responsible for the maximum.

Simulations are run comparing the current model to Persson’s. The simulations are
run on a L = 1mm large square with a N X N = 2048 x 2048 mesh and periodic boundary
conditions. The random surface H has the following properties: k; = k, = 2n x4 /L, ks =
2n* 128 /L, \/< (VH)? > = 0.02 and a Hurst exponent H = 0.9. The random surface is
represented in Figure B1l. The normal pressure is P, = 0.1 MPa. The initial velocity is
Vo =10.01 ms~! and V; is between 0.1 and 100 ms~!. The material chosen is a typical tire
material, modeled using a generalized Zener model.

Figure B2 shows that both models give the same evolution of the contact area ratio and
of the friction coefficient u with time, which validates the transient aspect of the current
model. Both models give very similar contact area ratios, for a large range of velocities
and pressures (see Figures B3) - Persson’s model under estimating the contact area by
less than 15%.

Concerning the friction coefficient, results are not as good. The difference between
the models is around 30% for the steady state friction coefficient gy, and up to 50% for
the maximum friction coefficient u,,,, at high velocities. The steady state friction coeffi-
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Computation of the potential energy and loss

cient is approximated by averaging the friction during the last ~ 75% of the total sliding
distance, which is 0.5 mm. It is an approximation: as the size of the simulation is 1 mm,
sliding for several millimeters would be necessary to reach steady state. Persson’s model
gives an exact solution for full contact. That is why at high pressures, when the contact
area ratio is close to 1, the two models agree perfectly. From these results it seems that
the reduction factor of 0.45 in Persson’s model (which only applies for partial contacts) is
slightly too low for the problem considered, although a 30% difference is still acceptable
considering the differences between the hypotheses (and the computing time) of the two
models.

Steady state friction is maximum at V,,,, = 0.3ms~!. Contrary to the conclusions
in [28], we find that a maximum of friction y,,, can appear even if V and V| are both
lower than V. It is coherent with the explanation for u,,,, given above, as it is caused
by a change in apparent stiffness of the material, independently of the viscoelastic losses.
This is also confirmed by the fact that contrary to the steady state friction tgy,, tmax 18
constantly increasing with speed, in the same way as the storage modulus is an increasing
function of the frequency.

Interestingly, both ugy, and uy,qx are only slightly dependent on pressure at low pres-
sures. At high pressures there is almost complete contact. In this case the viscoelastic
losses do not depend on pressure, leading to decreasing values of the apparent friction
coefficient.

4.4 Computation of the potential energy and loss

In order to better understand the origin of the maximum in the friction curves, it is useful
to compute the evolution of both the elastic energy and the viscoelastic loss during sliding.
Considering a generalized standard linear solid as represented in Figure 1], the elastic
energy stored in branch i is:

btas = Wo + Wi (4.1)
where:
W, = 1.P,-TAZZP,-T (4.2)
2G})
i Gli T 4—1 Gil T G T
Wi = 7U AZ'U - G_BU R+2—G(2)P,- AP, (4.3)

These quantities can be easily computed from APé which is stored for each branch at
each time step.

The energy dissipated during one time step (from ¢ to ¢ + &) can be computed in two
ways. The first way is to deduce the elastic energy from the total energy:
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Figure 4.3: Validation against Persson’s model for a speed step experiment for different
velocities (with P,, =0.1 MPa) and different normal loads (with V5> =0.3 ms™!). The left
figures show the evolution of iy, and pyay. The right figures show the error between the
two models, the current model being chosen as reference.
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Figure 4.4: Dimensionless energy variation during a velocity step experiment.
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The second way is to compute it directly from the viscosity parameter:

AV
AWyisco = nlAVTAz_Zl v

amp A (4.5)

AV =AU — —
Go

This last formula does not seem to give very accurate results though. Computing the
work of the normal and tangential forces is trivial using the mean normal and lateral
displacements and the corresponding normal force and tangential force.

Figure B4 shows the variations of the potential energy of the normal force, of the
tangential force, the potential elastic energy and the viscoelastic loss during the same ex-
periment as the one in Figure &7, with a speed step at t = 0. Plotted is the variation of
these energies between each time step made dimensionless by dividing them by AxP,,L>.
This way, the dimensionless variation of potential energy of the tangential force is equal
to the friction coefficient plotted in Figure B2. This figure confirms the fact that the maxi-
mum in the friction force is caused by an increase of potential energy of the normal force,
as the rubber moves upward when the sliding speed increases. It also shows that the velo-
city step first causes an increase of elastic energy and a decrease of the viscoelastic losses,
which increase again afterwards to reach its steady-state value, necessarily equal to the
work of the tangential force.
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Figure 4.5: Top view of a periodic surface with two length scales.

4.5 Role of the different scales in a frictional contact

This section shows results for the sliding of a rubber material on a simplified, periodic,
2-scale rough surface. The effects of friction, sliding speed, normal load and adhesion are
investigated. A simple model of a rough surface is chosen with only two length scales
represented by sinusoidal waves. The height map of the surface is given in Equation &6,
where A is the wavelength. For each length scale, the height is a product of three sine
waves in three directions.

H = Hyin (A1, M) + Hyin(A2,\2)

4.6)
Hiin(A,A) = Asin (2% (%x—l— ?y)) sin (2% (—%x+ ?y)) sin (%x)

A top view of the surface used in the following is represented in Figure &3. Using this
very simple surface allows one to easily understand the relative role of each length scale
using a coarse mesh (512 x 296).

The loading history used is as follows: first a normal load with a mean pressure P, is
imposed during a certain loading time L7'. Then, a constant driving speed V' is prescribed
at the top of the rubber block. It causes the rubber block first to shear, then to slide and
eventually to reach a steady-state. Despite a large number of time steps (> 800), it should
be highlighted that a true steady-state is not reached. This large number of time steps
makes the computation time important in spite of the coarse mesh, typically taking 10
to 24 hours depending on the conditions. More than 300 cases were run to analyze the
effects of the different parameters, for each of them the evolution of friction, contact
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Role of the different scales in a frictional contact

Larger length scale M 500 um
Larger length scale amplitude Ay A1/100
Smaller length scale Ao A1/16
Smaller length scale amplitude A A2/100
Mesh size Ny x Ny | 512 x296
Loading time LT 1 ms
Sliding speed Vv Ims™!
Mean normal pressure Py 0.4 MPa
Coulomb friction coefficient uc 1
Temperature T 25°C
Thickness h 4 mm
Density p 20kgm™3

Table 4.1: Default parameters for the simulations

area and mean gap were monitored. Friction is computed in terms of apparent friction
coefficient uy = T,,/P,, where T,, is the mean tangential stress in the x direction, which is
the direction of sliding. For each case, the maximum friction y,,,, and the pseudo steady-
state friction pgy, are computed. ugy, is computed by averaging friction during sliding
after the maximum has been reached. Unless otherwise specified, the default parameters
used in the simulations are given in Table BT,

The density is used for damping purposes only, hence its very low value compared to
real rubber.

Figure B shows a frequency sweep of the shear moduli and damping factor of the
material. The three vertical black lines correspond to the characteristic frequencies of
the problem for the default parameters. The first line is the characteristic frequency of
the loading time 1/LT, the second line corresponds to the characteristic frequency of
the larger wavelength during steady state sliding V /A; and the last line to the smaller
wavelength V /1,.

The evolution of contact area, apparent friction coefficient and sliding speed with time
is shown in Figure B72. During the first millisecond, the contact area increases exponenti-
ally because of the viscoelastic relaxation. Then a driving speed of 1 ms~! is prescribed on
the top of the rubber block, but the sliding speed of the bottom of the rubber block where
contact occurs does not change instantaneously: first shearing occurs, during which the
part of the contact area that is sliding increases almost linearly. As soon as the whole con-
tact area is sliding (¢ ~ 1.25 ms, when the green and the black curves meet), the ‘bottom’
sliding speed increases sharply. Friction reaches a maximum, then continues to oscillate
because of the periodicity of the surface. The ‘bottom’ sliding speed follows approxima-
tely the same oscillations and interestingly does not reach exactly the prescribed sliding
speed, because the rubber block continues to shear while it is sliding. t,qx ~ 1.06 and
Mayn =~ 1.05: those values are only slightly above the Coulomb friction coefficient uc =1,
which indicates that the viscoelastic dissipation is low compared to the energy lost in the
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Figure 4.6: Frequency sweep of the shear moduli and damping factor of the material. The
vertical bars show the frequencies that are excited during a simulation with the default
parameters.

contact area because of Coulomb friction. The maximum friction is caused not only by
the work of the normal force when rubber has to leave its footprint (cf. paragraph B3), but
also by an increase in friction caused by the slope effect. When rubber leaves its footprint,
the pressure field and contact area are highly non-symmetrical, so the mean slope in the
contact area is opposite to the direction of sliding, which increases the friction forces. It
was checked that inertia did not significantly impact the results.

A careful look at the oscillations of the friction curve allows one to see two wave-
lengths, which are reminiscent of the two wavelengths of the surface. By increasing the
sliding speed to 30ms~! and looking closely, it becomes even more evident, as shown
in Figure B8. The longer wavelength of the oscillations shown in this figure is ~ 500 um
and the smaller wavelength ~ 32 um, which indeed correspond to the wavelengths of the
wavy surface. (They are actually a bit longer than those values due to the fact that the
sliding speed of the bottom of the rubber block is lower than the driving speed).

This figure also shows the dramatic increase in shear stiffness at higher speeds, as well
as a global increase in both maximum and steady-state friction. This can be explained by
looking at the material characteristics in Figure B9, where the vertical bars show the
frequencies that are excited during the simulation at V = 30ms~!. The difference of
material stiffness between the loading time and sliding is much more important than for
the default parameters, which explains an increase in maximum friction and the material
is more dissipative during sliding: both frequencies are around the peak of the damping
factor tan(d). This explains the higher value of steady-state friction. Following the same
reasoning, the steady-state friction should reach its maximum value at V ~ 30ms~! and
decrease at higher velocities.
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Figure 4.7: Evolution of apparent friction, contact area and sliding speed with time for the
default parameters. The figures on the right are magnifications of the ones on the left in
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Figure 4.8: Evolution of apparent friction with the lateral displacement for a sliding speed

of 30ms~! compared to the default speed 1 ms~".
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Figure 4.9: Frequency sweep of the shear moduli and damping factor of the material. The
vertical bars show the frequencies that are excited during the simulation at V = 30 ms™!

Plotting the evolution of ., and ugy, with driving velocity validates this hypothe-
sis (Figure B10). Similarly, .. keeps increasing with speed just as G’ does with the
frequency- we would expect a plateau at some point but simulations were not run for
high enough velocities, not to mention that unrealistically high driving velocities cause
significant inertial effects even with a low density of 20 kgm .

The evolution of friction with the normal load as shown in Figure BTl is not as easy to
understand. Steady-state friction first increases along with the normal load. There are two
explanations: the first is an increase in the slope effect, as the mean slope increases with
the contact surface. The second explanation is that viscoelastic losses increase faster than
linearly with the normal load. It is not a surprising result: at low normal loads, the wavy

1.2 [ = 4= Umax
=4= Udyn
1.15 ot
-l-""'*
= 1.1 +*‘:
' +f.|-'l"" ""l'-|..+..

oy *
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Figure 4.10: Evolution of friction with the driving speed, for the default parameters.
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Role of the different scales in a frictional contact

surface under consideration behaves like a sum of Hertzian contacts. It was shown in [[74]]
that the friction forces caused by the viscoelastic losses for such a contact increased with

the load with an exponent of 1+ 1/3, in other words tt;5co = P,}/ 3. In the present case the
exponent is much lower because the contact area is quite large compared to the Hertzian
hypotheses.

As the normal load increases, steady state friction goes through a maximum before
decreasing. This is because of the saturation of the surface. As the load increases rubber
completely fills the wavy surface, so the deformations of rubber during sliding become
independent of the normal load. As the viscoelastic losses depend on the deformation, they
stop to increase as well and the apparent friction coefficient decreases. This explanation
is confirmed by the evolution of mean gap with load which tends to zero at high normal
load, shown also in Figure E_T1I.

Computations with and without the slope effect show that both the increase of viscoe-
lastic loss and the increase in slope effect play an equally important part in the increase
of steady state friction with normal load.

The evolution of maximum friction y,, and in particular the difference between
steady-state and maximum friction Ay = tnax — Ugyn 18 more surprising. This latter pa-
rameter is high at low normal loads and decreases steadily. When simulations are run
using a surface with only the longer wavelength it does not show the same behaviour, as
Ap remains constant up to 0.4 MPa. Looking closely at the friction curve for the lowest
load (Figure BE172), there is a high but very narrow peak in the friction curve caused by the
smaller wavelength, which disappears with the surface only having the longer wavelength.

Loading time also plays a significant role for the maximum friction coefficient ti,y-
Figure shows that for very low loading times, upqx = Uay,: the loading time is so
low that the contact area increases and mean gap decreases during sliding. As it leng-
thens, 4 increases until the surface is saturated, that is to say until complete contact
occurs during loading. It is another indication showing the strong correlation between the
evolution of mean gap and the difference between maximum and steady-state friction.

To ensure the previous results were significant for rough surfaces, a comparison is
made between the “wavy” results and the results for a random rough surface having ap-
proximately the same characteristics: its higher wavelength and roll-off wavelength are
both 500 um, so that k; = k, = 2nt/A;, its shorter wavelength is A, so that ks = 21/A;.
The amplitude of the higher wavelength is the same for both surfaces and a Hurst ex-
ponent of 0.8 is used, which means the shorter wavelength has a smaller amplitude for
the rough surface than for the wavy surface. The friction curves for the rough surface
are much smoother because there is no short-length periodicity and the overall friction is
lower (Figure E14). However, the evolution of maximum and steady-state friction with
driving speed and normal load are very similar, including the sharp friction peaks at low
load. The steady-state friction evolution with driving speed is slightly shifted towards
higher speeds as the shorter wavelength has a smaller amplitude.

The effect of other parameters are also investigated. Using a surface ten times smaller
in each direction proves to be almost equivalent to sliding at a ten times higher speed
- friction is just a bit higher. The effect of temperature is investigated using a time-
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Figure 4.11: Evolution of friction and mean gap with the load, for the default parameters
and for a smooth surface with only the larger wavelength.
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Figure 4.12: Friction curve with a low normal pressure of P, = 4 X 103 MPa, for the
default surface (A; +A,) and the surface without the smaller wavelength (A}).
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they should be constant.
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Figure 4.14: Friction curves for a rough and a wavy surface with the default parameters.
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temperature equivalence, as described in the famous paper by Williams, Landel and Ferry
[77]. The parameters used are those described in [[Z8] for a cross-linked synthetic rubber.
According to the time-temperature equivalence, increasing temperature is equivalent to
loading during a longer time (which is expected to increase Au) and to sliding at a lower
speed (which is expected to decrease friction and decrease Au). The results are coherent
with the expectations: increasing temperature decreases steady-state friction but keeps Au
constant. Changing the rubber thickness between 2 and 8 mm did not have any significant
impact on friction. During shearing, while the driving speed is applied but the bottom
of the block is not sliding yet, the mean gap decreases as rubber continues to relax, so
increasing thickness (which increases the shearing time) is expected to increase ., a
bit. But this expected phenomenon is counter-balanced by the fact that the sliding speed
at the bottom of the block is also lower. A broader thickness range would have probably
impacted the results but the simulations could not be run: a too small thickness induces a
coupling between the tangential and normal directions, which is not accounted for in the
current model and on the other hand a higher thickness means many more time steps are
necessary during shearing, so the computations are longer. Avoiding this problem may
have been possible by using longer time steps during the shearing process and ensuring
afterwards the local slip remained reasonable between each step, but it was not done.

Overall, all these results tend to validate Persson’s approach of viscoelastic contact.
All the characteristics of such a contact depend on the different frequencies excited du-
ring the loading time or during sliding, the latter being determined with a reasonable
precision by the sliding speed multiplied by the wavelength of the surface. The difference
of apparent rigidity of rubber between the loading time and sliding is the main reason
for the maximum in the friction curve. The study shows that a broad, high maximum in
the friction curve can only be caused by large wavelength, large amplitude roughness. In
this case, friction at the smaller scales (those which are not discretized in the simulation)
can be approximated by a Coulomb friction law and accounting for the local slopes in
the contact zone is necessary to avoid underestimating friction. Real life road surfaces, as
they are made of aggregates, show very high slopes even at the millimeter scale, which
are likely to be in the contact zone should a tire roll on it. These slopes are likely to incre-
ase friction in large proportions though these real surfaces cannot be simulated using the
present model.

4.5.1 Effect of adhesion on rubber sliding

The effect of adhesion in rough contacts has already been studied analytically by Persson
in [[79] and numerically by a number of authors [K0] [[76] [23]. Recently Miiser’s "Contact
Mechanics Challenge" [2’1] had several submissions derived from simulations.

Some authors also worked on viscoelastic, adhesive contacts such as [4Y9] or [KT].
There is a strong coupling between adhesion and friction on smooth surfaces, as studied
for example in [41]: in the context of continuum mechanics, both phenomena can be mo-
deled as a single crack opening in mode I and II/III respectively. The current model does
not take this coupling into account, as normal and tangential directions are decoupled.
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Adhesive and friction forces are consequently supposed to be two completely indepen-
dent phenomena, which surely is a crude approximation for smooth contacts, but might
be sufficient for rough contacts at a sufficiently large scale. Even though it may not be
true, using the current model still allows to draw some conclusions as to when adhesive
forces can be neglected in rough contacts as the coupling makes adhesion less effective
when sliding occurs.

Even without a direct coupling, using a Coulomb friction law with adhesive forces is
not straightforward, because at the contact edge the pressure is negative so the relation
||T|| = uP cannot hold. It is necessary to adapt this friction law by separating pressure
into two: the adhesive pressure P, caused by adhesion defined in Equation X1, which
is always negative and the remaining pressure Py, which is always positive. It can be
interpreted as the pressure that the "hard wall" interaction causes on rubber. Using this
pressure for the friction law makes sense, so the friction law turns into ||T'|| = uPy,s. The
equations governing friction with the slope effect in this case are given in Appendix B.

Two criteria can be used a priori to determine the effect of adhesion on a rough contact.
The first is appropriate for low contact ratios and is based on Greenwood and Williamson’s
approach of a rough contact. We assume rubber lies on the summits of the rough surface
which have a certain radius of curvature. Each of these contact patches can be compared
to a Hertzian contact with adhesion. According to the JKR theory, adhesion forces can
be neglected if the adhesive energy is low enough compared to the normal force - see
Equation B77 (for lower Tabor numbers, using the DMT theory would yield the same
equation with a slightly different prefactor).

F, > 3myoR, 4.7

F,, is the normal force, Yy the adhesive energy per unit area and R, the radius of curvature.

The second criterion is based on the elastic energy: if the elastic energy required to
deform rubber for a full contact is low compared to the adhesive energy, adhesion will
cause a full contact even without any normal load. Inversely, if the adhesive energy is low
it will not have a significant impact - see Equation E-R.

Eelas > Yo 4.8)

E,.s 1s the elastic energy per unit area for a full contact.

These criteria can be easily computed for the wavy model surface used in the current
paragraph. Considering there is only one wavelength A; with an amplitude A; and the
material is incompressible and elastic with a shear modulus G, the radius of curvature of
each summit is R, = A3/(6m%A), the elastic energy per unit area is E,,s = 3TGAT/(8)1)
and the area per summit is 4; = A2/(2+/3).

Using these expressions and a mean pressure of P, on the periodic surface yields the
criteria given in Equation B9: if they are small compared to 1, adhesion may be neglected.
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Figure 4.15: Evolution of friction coefficient, contact area and sliding area with time for
the default parameters with adhesion.

TC
Ci(hAL) =0/ (PmAl—)
\/§ 4.9)

InG
_ 2
Co(A1,A1) =0/ (Al_gkl )

The wavy surface under consideration has 2 scales and adhesion should be negligible
for both of them in order to be completely neglected. Both these criteria are more con-
straining for the smaller wavelength as it has a smaller amplitude, so the true criterion
indicating if adhesion can be neglected is C = min (Cj(A,A2),C2(A2,A2)).

In the following, simulations are run with an adhesive energy of Yo = 20 mJm~2 and
a range of zop = 63.5 nm. The adhesion criterion is calculated using the storage modulus
at the frequency of 1/LT for the loading time and V /A, for sliding.

The friction curve for the default parameters is given in Figure ET3. Under these
conditions, the criterion is Crr = 0.9 for the loading time and Cy = 0.5 for sliding. As
expected, adhesion has a strong effect: during the loading time, the contact ratio reaches
1 and the extra normal load provided by the adhesive forces increases tremendously both
maximum and steady-state friction. Viscoelastic losses are small compared to the effect
of adhesion on friction, but viscoelasticity plays nonetheless a significant role as it causes
the contact area to shrink during sliding, which reduces the amount of adhesive forces and
consequently friction. The variation of contact area is the key factor explaining the max-
imum in the friction curve. Altogether, this kind of friction curve is in good accordance
with what is observed experimentally for a soft, smooth contact, with a sharp transition
from ‘static’ to ‘kinetic’ friction (see for example [33]).

In order to decrease the effect of adhesion, the following results are made using a
wavy surface with a twice higher amplitude for both length scales (A} = A;/50, Ay =
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Figure 4.16: Steady state and maximum friction with and without adhesion as a function
of the driving velocity for a contact with a high amplitude wavy surface. The dotted green
line is the adhesion indicator C.

A2/50). Figure BT6A shows the evolution of maximum and steady-state friction with the
driving speed for such a contact with and without adhesion. It also shows the evolution
of the adhesive criterion Cy with speed (the criterion during the loading time is constant,
Crr = 0.22). As the driving speed increases, adhesion has less and less impact on the
steady-state friction. Above 10ms~! it has almost no impact. Its effect remains the same
during the loading time which explains the high values of i, at all driving speeds.

This paragraph shows that adhesion plays a significant role in the contact of soft mate-
rial on smooth surfaces. Both the numerical results and the simple adhesion criteria show
that surface roughness, apparent material rigidity and high loads can nullify the effect
of adhesion on friction, either by reducing the contact surface (which reduces the global
adhesive energy) or by making the adhesive forces small compared to the contact forces.
These results suggest that for rubber contacts, adhesion is promoted by slow loading and
low sliding speeds.
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Conclusion

The contact between a tire and a road pavement is of crucial importance in modern trans-
portation. The work presented in this thesis aims at simulating this contact from the milli-
meter scale down to the micrometer scale. Chapter one shows the different aspects of this
kind of contact which proves to be difficult to model due to the different physical pheno-
mena that take place. Firstly, the contact problem itself is not trivial. The first analytical
solution for the contact of a sphere on an elastic solid was found by Hertz in the late
nineteenth century, but a sphere is only a crude approximation of the multi-scale nature
of road pavements. Secondly, rubber materials are viscoelastic, which is the main reason
why they provide sufficient grip, so this aspect cannot be overlooked. Thirdly, the phy-
sical phenomena at the nanometer scale such as van der Waals interactions result, at the
micrometer scale, in attractive forces and in friction.

To build an efficient model, the assumption that the rubber tread is very large compa-
red to the roughness size is made. Rubber can consequently be considered as a half-space.
After discretizing the surface of this half-space, using Boussinesq’s equation allows to
compute the normal displacement of this surface as a function of the normal pressure
field. This method known as Boundary Element Method. Fast Fourier Transforms allow
a fast computation of the displacement. The contact problem is solved using a modified
Conjugate gradient iterative procedure, which proves to be robust and fast. Transient vis-
coelasticity is accounted for with an efficient step-by-step method. The contact solver
is adapted to handle adhesive forces and prevents convergence problems. The algorithm
with adhesion is robust but considerably slower than without it.

Rubber can be considered as an incompressible material. Along with the half-space
hypothesis, it makes the tangential and normal displacements totally decoupled. In spite
of this useful property, solving the tangential contact problem remains difficult. The tan-
gential displacements can be computed from the tangential stress with a Fast Fourier
Transform in a similar manner as in the normal direction. The friction laws are highly
non-linear: at each point either the norm of the tangential stress is small and the point is
stuck to the surface, either the point is sliding and in this case the norm of the tangen-
tial stress is deduced from the friction law and the normal pressure. Using a Coulomb
friction law, taking the local slope into account is necessary to get precise results. A non-
linear conjugate gradient procedure able to solve this problem is described. Convergence
is steady and as fast as similar algorithms described in the literature.

The last chapter of this thesis shows results for a rough contact. The current model
was used to answer to Miiser’s Contact Mechanics Challenge, which involved computing
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Conclusion

a rough elastic contact with short-range adhesive forces on a very fine grid. The results
were in perfect agreement with the reference solution. The current model is also compared
to Persson’s theory of rough viscoelastic contact without friction. Both models give very
similar results in terms of friction force and contact area. When a viscoelastic solid is
sliding in steady state on a rough surface, increasing abruptly the driving speed causes the
friction force to increase as well: it goes through a maximum before reaching a new steady
state value. When a normal load is first imposed with no sliding and then a driving speed is
prescribed at the top of a rubber block, a similar friction curve is obtained. Simulations are
run with friction and adhesion under these conditions for a model, 2-scales wavy surface.
Results show that large scale roughness is responsible for the maximum in the friction
curve. In steady-state sliding, the wavy pattern causes viscoelastic losses that depend on
the damping factor tan(J) of the excited frequency. These losses add to the friction losses
to increase the global friction force. Adhesion plays a significant role in soft, smooth
contact. For high roughness or high sliding speed (which reduces the contact area) its
effect is negligible.

On the overall, the present model is a great tool to understand the relative impact of
the different phenomena likely to take place in rubber friction. It is, to the knowledge of
the author, the first numerical model able to solve a transient contact problem with 2 or 3
length scales of surface roughness and a viscoelastic material, with adhesion and friction
at the interface. A quantitative comparison to experimental data still remains out of its
reach because of the added complexity of real life contacts. Among the phenomena that
are not accounted for in the current model, at least three are known play a significant role.
The first is that rubber undergoes large strain. The second is that it heats up during sliding
and the temperature is not uniform, so its characteristics are not uniform either. Thirdly the
small scale interactions are modeled simply with a friction coefficient, an adhesive energy
and a range of interaction, but these parameters are hard to measure experimentally and
may not be representative of the reality.
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Appendix A

Influence Coefficient matrices in the
Fourier space

The goal of this appendix is to find the equations governing the displacements of the sur-
face of a half-space in the Fourier domain. In the following, u, v, w are the displacements in
the real space in the x,y and z directions respectively. U, V, W are their Fourier Transforms

relatively to the (x,y) plane. ®,, @y are the variables of the Fourier space, ® = , /@ + co§

is their norm. A, u denote the Lamé coefficients (in Equation ATl they are expressed as a
function of the Young modulus and Poisson coefficient).

Ev
(I4+v)(1—-2v)

(A.1)

M3

The Fourier Transforms of components of the stress tensor are
(Gxx; Oyy, Ozz, Oy, Oxz, Oy ). Equation B shows how they are related to the displa-
cements. I is the imaginary number.
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A. Influence Coefficient matrices in the Fourier space

- . . ow .
O = A | i0U +i0,V + = | +2uioU

0z

0z

G, = A

. , _ ow -
Oy = A | i0U +io,V + = | 4+ 2uio,V
( dz

. . ow

iU + l(DyV +—= |+ 2,Lla—
< (A.2)

Cyy = (iU +iw,V)

~ oUu
Oxz = U (a_z + iwxW>

- av

The equilibrium equations are described in Equation [A73:

2/
I(ioU) o’ (ioU) — H—kmﬁ ioU + io,V + W =0
072 u 0z
*(imyV) p+A oW
vy ; s r ; ; ) = (A.3)
372 o (im,V) ” o) (zme—i—zwa-i- 3% ) 0
A+ 2u *W JTR d . . _
P W _M—uw W+a_z<"”xU+’°°yV) =0

Simplifying this equation leads to fourth order differential equations on the displace-
ments given in Equation [A~4:

9*U *U
+U =

w*oz4 02072

'V 9’V

_ V=0 (A4)

(O Fa N () (e Ve +

ot 02

W 2 i +W =0

Solutions to these equations have the following form:
U = (Ay(®) +zBy(®)) e + (Cy(®) +zDy () ) e~

V = (Av(®) +zBy (®)) e + (Cy (®) + zDy () ) e~ ** (A.5)

W = (Aw(®) +zBw (0)) €™ + (Cw (@) +zDw (®)) e~
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A,B,C,D are functions of ® which have to be deduced using the boundary conditions.
In the present case, we will make the hypothesis of semi-infinite, incompressible half-
space and solve for a given stress 6° in z = 0. We are only interested in the displacements
in z = 0, which are the displacements of the surface of the half-space, so knowing D is
not necessary.

Because of the semi-infinite hypothesis, A = B = 0. The other functions are given in
Equation [A76.

~ ~ ~0
oCy = %% 4 O (OO, Or 0y
v 2u O \2uo 2uo
D 2
= ——
U oW
~0 ~ ~0
_ yz | @y ng 0y Oy
oCy = —2—=— + —=—
D gy
= —]—
1% oW
~0
o
oCy = —==
w 2
~0 ~0 =0
o o, ® 0,. ®
D, = - Y - e Y N St d

2u : 2u ® 2u ®
It should be highlighted that the incompressible hypothesis simplifies these equations

and make the tangential and normal directions independent. These equations allow the
direct calculation of the Influence coefficient matrices in Fourier space.
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A. Influence Coefficient matrices in the Fourier space
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Appendix B

Conjugate Gradient modifications to
account for the effect of the local slope.

Slope effect with Coulomb friction law

Local normal and tangential forces

Using the notation of Equation B3, the local normal and tangential forces can be written
as:

Ny
Fn:(Ech‘FYSINy‘i'PNZ) Ny
N;
T — (TeNZ + T,N,Ny + PN;N;)
F = | T, — (TyNj + T:NeNy + PN N,)
+P — (TuNyN; + TyNyN, + PN?)

Elliptic traction bound

Equation B4 represents an ellipse in most cases. A rotation of axes using Equation Bl
yields Equation B2.

N, N,
T, = =X — ~Y
w/1N—NZ lN—NZ B.1)
T, X + =

Y

ar X’ Y2 42di X +26Y +f=0

where
A2 A
C1 =1
dy = —PN;(1+p*)\/1—N2
f=P(1—NX(1+42)
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B. Conjugate Gradient modifications to account for the effect of the local slope.

d
In these local axes, using the translation X = X’ — —1, Y =Y’ yields Equation

aj
alX?+cY?+f1=0
where
P2 (B.3)
fi

12— (1+1)N?

Details of Equation

The variables Ko, 1 and Kq > are equal to zero in the stick zone. In the slip zone they are
equal to:

C N
Koi= —22(T,—Px—
’ Co N. B4
Cop *C? N '
Koo = (—2@*d,-+<2clzzcl—2 Sl 12—2@)*<T—P*—>)
’ Co Cs G Co WA

N is the vector N = ( Ny )
Ny

oT
,~T+1-£ = 0. Substituting

Equation B10 into Equation B4, using 7,11 = T; + ad;, yields Equation B3

This equation is the result of a first order expansion of r

Cok—l—ClOLk—FCozkz+C120€—|—C220(2 =0 (B.5)

Differentiating against o yields :

kN_a@
Co
dk  Cin (2C12*C1_2C02*C12 C22>
da G C3 c3 Co
Then
oT Ci2
— =di——= (T —Px—
aa, Co I*NZ
C12 C12*C1 C()z*C%z C22> ( N))
4o | —2—xd;+ |2 -2 2= )% |T—Px—
( Co ( C3 C} Co N,
and

C N
ri+1=ri—aA(d—C—lj<Ti—B*ﬁz))

In all these equations, the C constants are defined at each point in the slip zone as
follow, with M, = 1 — N2 * (1 +u?). They are equal to zero in the adhesive zone.
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Ci2(d,T)

Cl(d,T)

Coz(d,T)

sz(d,T)

Ciz
—Cj.
Co 1.)

2M T2 +2My T2 — 4T, TyNeNy (1 + %) — 2PN (1 + 1) (TuNy + TNy )
P
_21vz (MM T+ NyMy Ty — (14 2 )NeNy (Ny T+ N Ty ) )
| +2P2(1442)(1 = N?)

2d T, My +2dy, TyMy, — 2N Ny(1 + 1) (dy T, + d, Ty,
—2PN,(1 + 1) (dyNy + dyNy)

4d, T M+ 4dy T,My — 4NNy (1 + 1) (di Ty + d, Ty,
—2PN,(1 + 1) (dxNy + dyNy)

N.
—2PM,—d,
N;

N
—2PMyﬁya’y

Z

N,N.
+2(1 + 2P ;, > (Nydy + Nydy)

Z

MxT3+Mny—2<}v + 10NN T,
—2PMxﬁx7}

4
N,
—2PM, 2T,

N,

P2 2 2
+]7Z2(NXMX+N))MY)

NN, NN,

+2(141%)P ;}y (NyTx—FNxTy—P ;}y>

Z Z

M d? + Myd? — 2NNy (1 + p*)dyd

(B.6)
C
(In the code the constants are Do = Cy, D1 = Cj2, D1 =C) — 2C—12C02, Dy =2Cy —
0

Slope effect for a constant shear stress friction law

The equations are slightly changed when a constant shear stress law is used instead of a
Coulomb friction law. Equation B4 becomes :

T2(1 =N+ TP (1= N;)

+P*(1 —N2) — 2T, T,N:N, =i (B.7)

—2T,PN,N, — 2T,PN, N,
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B. Conjugate Gradient modifications to account for the effect of the local slope.

The traction bound is corrected the same way as before (Equation B10), leading to the
following equation, which is the same as Equation but with different constants.

In the following equation, M} = 1 —Nf,M; =1- Ny2 and M. =1—NZ.

Do(T) = 2MT? : 2MYT] — ATTNeNy — 2PN (TN + TNy)
2y (T MTy = NNy (N T+ NiTy)
+2P?(1—-N?)

Dp(d,T) = 2d, TuM), + 2d, TyM}, — 2NN, (d, Ty, + dy Ty.)
—2PN,(dyNy + dyNy)
D((d,T) = 4d, ToM), + 4dy T,M}, — ANcNy (di T, + d, Ty,
i —2PN, (dNy + dyNy)
12
—2D—O(M;T,C2 +M|T? —2N,N,T.Ty)
N. Dy
—2PM' 2 (d, —2—=T,
XNZ( X DO X)
N, Di»
—2PM! 2 (d, —2—=T.
P2 Dy,
23D (NFM,+ N;M,)
Z
NxN D12 NxN
2P 2 Nyd, + Nydy —2—= [ N,T, + N, T, + P—=2
20  (Wes <252 (Wit PR ) )
Dy(d,T) = i 2Md? +2M}d} — AN Nyd,d,
12
~ Dy ETM+AdTM; — ANNy (AT, +dy Ty))
D
+2D—12PNZ(dex +d,N,)
0
D>
+2PDoNz (NeM'd, + NyMjdy — NyNy(Nyd, + Nydy))
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Coulomb friction and adhesion

Adopting a Coulomb friction law when there are adhesive forces between the surface
might seem irrational. Indeed, in such a contact, at the edge of the contact spots the pres-
sure is always negative, which makes the Coulomb law ||F;|| = u||F,|| inoperative.

But the pressure in case of adhesion is the sum of two terms: the adhesion pressure
and the surface reaction F,, = F 4, + F;. It seems appropriate to use the surface reaction
alone to compute the friction. The Coulomb law then reads || F; || = u||F, —Yo/z0/, as the
adhesive force when the two surfaces are in contact is Yy /zo. Equation B then becomes:

T2(1 =N (1+42)) + T3 (1= N (1+4%))

+P2(1 —N2(1+12)) — 2TTNN(1+y) =0
—2TPNN,(1+ 1?) — 2T,PN,N, (1 + %)
2
—ZyZYOTNN 221NN, 22 XpN2 - ,uﬂ%NZZ
20 20 %y

The constants C defined in Appendix B should be changed into C’ as follows:

N.
Cy(T) = Co—2u @N N, (Tx—Pﬁx)
Z
YO Ny
212 EN,N, (T, — P2
H 20 y z( y Nz)
CLdT) =  Cp—22X NNd
"y 2y0N N.d,
(B.8)
cld,T) =  C- 2“YON N.dy
YONNd
Cppd,T) = Co2
C52<d7 T) = Ca
If the friction law is a “Constant shear” traction law, no modification is necessary.
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B. Conjugate Gradient modifications to account for the effect of the local slope.
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