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Résumé Etendu 

Les matériaux cellulaires macroporeux tels que les mousses polymère (Fig. 1), carbone (Fig. 2), 

céramique (Fig. 3) ou métallique (Fig. 4) représentent une classe large et variée de matériaux 

architecturés. Leurs caractéristiques (forte porosité, grande surface spécifique, …), les rendent très 

intéressantes pour de nombreuses applications dans le domaine de l’ingénierie thermique.  

 
Fig. 1 – Mousse polymère à pores fermés 

 
Fig. 2 – Mousse de carbone à pores ouverts 

 
Fig. 3 – Mousse céramique à pores ouverts 

 
Fig. 4 – Mousse métallique à pores ouverts 

Dans les applications d’isolation thermiques, ces matériaux présentent une capacité à minimiser à la 

fois la convection naturelle, grâce à la petite taille des pores, et la conduction de chaleur à travers le 

solide, grâce à la basse densité relative et à l’arrangement spatial de la matière solide. Par ailleurs, 

ils garantissent des bonnes caractéristiques mécaniques, grâce à la connectivité de la matrice solide. 

Les mousses polyuréthane sont largement utilisés pour l’isolation thermique [1][2][3][4][5][6][7], 

des bâtiments (Fig. 5). Pour les applications à très haute température, les mousses céramiques 

réfractaires sont de plus en plus utilisées, notamment pour les fours. 
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Fig. 5 – Isolation d’un bâtiment avec mousse polymère 

Les mousses à pores ouverts, présentant une grande surface spécifique, une forte porosité ouverte et 

une grande tortuosité, permettent d’obtenir de très hautes valeurs du coefficient de convection 

thermique. Produites avec une phase solide à forte conductivité, telle que le cuivre, l’aluminium ou 

la céramique carbure de silicium,  ces mousses sont des alternatives prometteuses aux techniques 

conventionnelles (ailettes) (Fig. 6) [8]. Elles peuvent également être utilisées pour les bruleurs 

poreux (Fig. 7) [9][10]  et les récepteurs solaires volumiques (Fig. 8) [11].  

Fig

. 6 – Echangeur de chaleur en 

mousse 

Fig. 7 – Bruleur poreux Fig. 8 – Tour solaire Jülich [11] 

Dans beaucoup des applications considérées, l’échange de chaleur par rayonnement peut être 

important: il représente une contribution de 20-30% du transfert thermique à température ambiante, 

il devient un mode de transfert prépondérant à haute température.  

Pour modéliser correctement l’échange de chaleur dans ces milieux, il faut utiliser un approche 

multi-échelle [12][13][14][15][16], qui intègre les informations sur la structure microscopique du 

matériau pour modéliser le comportement macroscopique à une échelle plus grande. Pour cela, des 

modèles précis du rayonnement, ainsi que de la morphologie de la structure de la mousse, sont 
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nécessaires. Des avancées significatives dans la modélisation numérique de ces deux aspects ont été 

obtenues ces dernières années. 

Les premiers modèles morphologiques considéraient la répétition d’une seule cellule élémentaire 

périodique [17][2][18][19][20][21]. Par la suite, l’introduction de la tomographie (CT – Computed 

Tomography) a permis obtenir des reconstructions numériques 3D d’échantillon réelles de 

matériaux poreux [22][23][24][25][26][27][28]. Grace aux ressources de calcul croissantes, des 

modelés numériques de plus en plus réalistes ont été développés, [29][30][31], tels que ceux basés 

sur les partitions de Voronoi [32][33][34][35], prenant en compte notamment le caractère aléatoire 

de la vraie structure des mousses.  

L’étude du rayonnement a avancé à la fois numériquement et théoriquement. Les premières 

approches étaient basées sur la subdivision de la structure en “diffuseurs” et la sommation de la 

contribution des “diffuseurs” individuels [17][2][18][19][20][21], pour obtenir une conductivité 

thermique radiative équivalente basée sur le modelé de Rosseland. Les approches plus récentes, font 

pour la plupart appels à des simulations de Monte Carlo (MCRT - Monte Carlo Ray Tracing) de la 

propagation de l’énergie lumineuse dans des structures réalistes  Ces dernières permettent de 

calculer les propriétés radiative équivalentes (coefficient d’absorption, de diffusion, fonction de 

phase) [36][22][23][24][25][26][27][28], intervenant dans l’Equation du Transfert Radiatif (RTE – 

Radiative Transfer Equation). En outre, plusieurs modifications de la RTE, telles que l’Approche 

Multi Phase (MPA - Multi Phase Approach) [37][38][39][40] et l’Equation du Transfert Radiatif 

Généralisé (GRTE - Generalized Radiative Transfer Equation) [41][42], ont été proposées pour 

améliorer la précision de la modélisation radiative dans ces milieux complexes et hétérogènes. 

Ce travail de thèse est consacré à la fois à la modélisation de la morphologie et à la modélisation du 

rayonnement. 
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Dans la Section 1, un état de l’art sur les méthodes de détermination des propriétés radiatives est 

effectué, avec une attention particulière portée aux méthodes de Monte Carlo.  

(A) 

 
 

(B) 

 

(C) 

 

Fig. 9 – L’approche multi-échelle. De gauche à droite: (A) Le milieu et sa microstructure.  

(B) Le modèle hétérogène du milieu (C) Le modelé homogène équivalent du milieu. 

Les flèches en (B) et (C) représentent les flux locaux des quantités physiques (par ex. l’énergie), qui sont 

fortement discontinus dans le milieu hétérogène mais continus dans le milieu homogène équivalent. 

Trois types de méthodes directes, inverses ou hybrides peuvent être utilisés pour calculer les 

propriétés radiatives équivalentes. Les méthodes directes déduisent les propriétés équivalentes 

directement à partir de la morphologie du milieu, les méthodes inverses sont basées sur la 

formulation d’un problème radiatif inverse, alors que les méthodes hybrides font appel aux deux 

techniques. 

Concernant les méthodes de Monte Carlo, un état de l’art permet de mettre en évidence des 

différences notamment dans le choix de l’origine de rayons, de la technique d’intégration statistique 

ou encore de la condition limite aux bords. Aussi des géométries de test constituées de Sphères 

Opaque Identiques Superposées.  Effet, une solution analytique exacte étant disponible pour cette 

particulière géométrie, elle nous permet d’étudier la convergence de plusieurs techniques et de 

déduire les choix de modélisation les plus appropriés (Fig. 10). 
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Fig. 10 – Résultats numériques pour le transfert radiatif de la section 1. 

Enfin, le cas plus complexe d’une phase solide semi-transparente induisant des interactions 

interphase et un comportement non-Beerian, est discuté. Les modèles de la littérature notamment le 

MPA et le GRTE prenant en compte ces phénomènes sont brièvement décrits. Leurs limites et le 

désaccord entre ces modèles et des simulations directes sont pointés [40][43]. 

 

Dans la section 2, une méthode de génération numerique de la morphologie de mousse est 

présentée. Trois différents types d’architecture de mousses de prosité différentes sont générés (Fig. 

12),. 

 

Fig. 11 – Mousse à pores ouverts à faible 

porosité  

(ε = 70%) 

 

Fig. 12 – Mousse à pores fermés à forte 

porosité  

(ε = 85%) 
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Fig. 13 – Mousse à pores ouverts à forte porosité (ε = 95%) 

Dans cette méthode, suite au choix d’une distribution initiale de la taille des cellules (obtenue à 

partir de l’analyse tomographique d’échantillons réels), on génère pour cette distribution un 

empilement compact de sphères [44], qui constitue la base du procédé de génération. 

Avec cet empilement de sphères en entrée, on peut, à travers une succession de voxelisations, de 

filtrages d’image et finalement de remaillages utilisant iso2mesh [45],  obtenir des maillages de 

structures à pores ouverts à basse porosité. 

Alternativement, l’empilement de sphères est utilisé comme donnée d’entrée pour le logiciel 

voro++ [46] pour créer des diagrammes de Voronoi-Laguerre, qui sont à leur tour raffinés  et 

stabilisés avec le logiciel Surface Evolver [47], pour obtenir enfin un maillage triangulaire des 

cellules. Une dernière étape est dédiée à l’ajout de l’épaisseur aux parois des cellules permettant 

ainsi la génération d’architecture 3D de mousses à pores fermés à haute porosité. 

Alternativement, les faces des cellules sont éliminées et seul le squelette formé par les bâtons 1D 

subsiste. Alors, en suivant ce squelette, on ajoute des bâtons 3D, dont on contrôle paramétriquement 

la forme, et enfin on les soude aux intersections à travers une méthode « shrink-wrapping » [48], 

pour obtenir des modèles réalistes de mousses à pores ouverts à haute porosité. On compare les 

morphologies résultantes avec une base de données issue de l’analyse tomographique de 4 
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échantillons réels, en confrontant la distribution de la taille des cellules (Fig. 14) et la distribution de 

la connectivité des cellules (Fig. 15).  

 
Fig. 14 – Distributions du diamètre équivalent des 

cellules pour les 4 échantillons et pour 4 structures 

générées. L’aire en commun est remplie. 

 
Fig. 15 – Distribution de la connectivité des cellules 

pour les 4 échantillons et pour les 4 structures 

générées. L’aire en commun est remplie. 
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Dans la section 3, on cherche à améliorer les modèles radiatifs dans les mousses contenant une 

phase solide semi-transparente. Dans ce cas la modélisation est considérablement plus complexe, 

compte tenu de la propagation du rayonnement dans la phase solide. Des méthodes de référence 

efficaces et flexibles sont requises pour valider les méthodes de détermination des propriétés 

homogénéisées. Pour cela, nous développons une méthode directe de Monte Carlo (DCMH – Direct 

Monte Carlo Homogenization), cette dernière présente l’avantage d’utiliser un Volume Elémentaire 

Représentatif périodique (VER / REV – Representative Elementary Volume) (Fig. 17).  

 

Fig. 17 – Lancement des rayons dans la méthode d’Homogénéisation Monte Carlo Directe (DMCH) 

Elle permet de calculer les grandeurs radiatives macroscopiques (tels que la transmittance, la 

réflectance, les facteurs de configuration, etc.). 
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Les résultats issus des méthodes HPA et MPA existantes présentant des écarts avec ceux issus de la 

méthode de référence.  Des améliorations des méthodes HPA et MPA sont proposées dans le but 

d’accroitre la précision de calcul toute en gardant le maximum possible de simplicité. Notre 

approche repose sur deux idées principales: 

- L’utilisation de techniques hybrides directes/inverses pour déterminer les coefficients 

radiatifs (Fig. 18) afin de capturer les effets de diffusion multiples.  

- Le traitement des effets liés à l’histoire de la propagation de la radiation, et notamment de 

son origine (phase solide ou fluide).  

-  

Fig. 18 – Example of inverse coefficient fitting. 

Les Méthodes Homogènes Améliorées (HPA+ and MPA+) résultantes sont testées en les comparant 

avec des simulations DMCH et avec des modèles classiques HPA et MPA, sur un ensemble de 

morphologies générées numériquement, incluant des mousses à pores fermées, à pores ouverts, à 

faible et forte porosité. Pour la comparaison, trois problèmes typiques de rayonnement sont 

considérés :  

- Transmittance/Réflectance d’un échantillon (Fig. 20). 

- Calcul de facteurs de forme dans une cavité cubique (Fig. 21). 

- Echange de chaleur par rayonnement entre deux parois à températures différentes (Fig. 22). 
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Les modèles améliores se montrent régulièrement plus précis des modèles homogènes existants. 

 
Fig. 20 – Transmittance/Réflectance d’un 

échantillon. 

 
Fig. 21 – Calcul de facteurs de forme dans une 

cavité cubique. 

 
 Fig. 22 – Echange de chaleur par rayonnement entre deux parois à températures différentes. 
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Abstract 

Cellular media such as plastic, ceramic and metal foams present specific characteristics that make 

them interesting for a number of applications related to thermal engineering. Their ability to minimize 

natural convection makes them ideal candidates for insulation applications, and while plastic foams 

are already widely used in low temperature applications, low conductivity ceramic foams are 

increasingly used in high temperature applications. On the opposite, the high specific surface and 

permeability to fluid of open cell foams makes them interesting heat transfer enhancers, using metal 

or high conductivity ceramics as material. In addition, their permeability to light makes them an ideal 

candidate for thermal radiation based applications, such as porous burners or solar energy collectors. 

In many of these application, thermal radiation heat transfer can have a significant influence on the 

heat transfer process, ranging from a 20-30% effect at room temperature to becoming the predominant 

mode of heat transfer at higher temperatures. To model radiation heat transfer in these media, both 

accurate radiation models and accurate morphological models of the structure of the foam are 

required. This work provides an original contribution on both these accounts. 

An extensive discussion of the literature on numerical methods for radiation heat transfer in cellular 

media is presented, with a special focus on Monte Carlo methods. Homogeneous Phase (HPA) and 

Multi Phase (MPA) methods are discussed. 

Further efforts are required to accurately model and digitally replicate of foam morphologies. Our 

goal is to propose a unified framework that allows, within a single chain of tools, to digitally generate 

three commonly occurring types of foam structures, covering a large range of real materials: high-

porosity open cell foams, high-porosity closed cell foams, low-porosity open-cell structures. For high-

porosity open cell foams, a novel automated parametric digital generation technique was developed 

based on phenomenological investigation of the foam’s morphological parameters, and validated 

against a dataset consisting of raw morphological data obtained by tomographic analysis. The 

generation capabilities were then applied to parametrically investigate the influence of morphological 
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parameters on the radiative properties (namely, the extinction coefficient) of an opaque open-cell 

foam. Highly accurate analytical relationships were subsequently deduced and validated by 

comparison with results obtained from tomography samples. 

Modeling radiation in foams with a semi-transparent solid phase is substantially more complex, due 

to radiation propagating inside the solid. Efficient and flexible reference methods are required to 

validate the results obtained by homogenization models. A new, purely numerical, Direct Monte-

Carlo Homogenization reference technique is proposed, that allows to simulate radiation within 

arbitrary cavities and calculate macroscopic radiative quantities (such as transmittance, reflectance, 

configuration factors etc.) based on a Representative Elementary Volume (REV) of cellular material. 

The technique is validated against full scale Monte Carlo simulations and compared to the existing 

HPA model. The comparison reveals significant inaccuracies of conventional HPA. 

On the basis of numerical and phenomenological observation of the sources of discrepancy between 

homogenized models and underlying discrete physical phenomena, improvements of the existing 

Homogeneous Phase and Multi Phase approach are proposed, their objective being to maximize 

accuracy while introducing as little additional complexity as possible. This is obtained through 

extensive use of inverse methods and the addition of one equation to take into account specific 

phenomena taking place in the semi-transparent solid phase. The resulting Improved Homogenized 

Approaches are extensively tested by comparing them with Direct Monte Carlo Homogenization 

simulations and existing homogenized models, on a varied set of morphologies making full use of the 

previously developed digital generation techniques. The improved models consistently outperform 

existing homogenized models. 
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Nomenclature 

Latin symbols Greek symbols 

B0 Blackbody intensity (W/m∙sr) α Absorption coefficient (m-1) 

C Trapped fraction coefficient, HPA+ β Extinction coefficient 

C1 Trapped fraction coefficient, MPA+ βI 
Extinction coefficient – Least squares fitting 

(m-1) 

C2 
Mean path length adjustment coefficient, 

MPA+ 
βII 

Extinction coefficient – Inverse average length 

(m-1) 

CV Coefficient of variation βc extinction coefficient – Corrected (units-1) 

d Cell / sphere diameter βan Extinction coefficient – Analytical (units -1) 

ds Strut diameter βnum Extinction coefficient – Numerical (units -1) 

f Volume fraction β+ Extinction coefficient - nondimensional 

fc(ε) Extinction coefficient correction function ε Porosity 

g Phase function asymmetry factor εs Solid surface emissivity 

G Area projected by a single scatterer λ Wavelength (m) 

Ge(s) Extinction distribution function μ Scattering angle cosine 

GCV Geometric coefficient of variation μn Scattering angle cosine of the n-th realization 

I Radiation intensity (W/m∙sr) Φ(Ω,Ω’) 

Φ(θ) 

Φ(μ) 

Scattering phase function  

θ = cos-1(Ω∙Ω’) 

μ = Ω∙Ω’ 
I(s)  Intensity at distance s from source (W/m∙sr) 

I(r, Ω)  
Intensity at position r in direction Ω 

(W/m∙sr) 

θ Angle between two directions 

ρs Solid surface reflectivity 

I0 Intensity at source (W/m∙sr) σ Scattering coefficient (m-1) 

Iabs(s) 
Intensity absorbed locally at distance s 

(W/m∙sr) 

χ Size parameter  

ω Scattering albedo 

Iabs(s, θ) 
Intensity absorbed locally at polar location 

{s, θ} (W/m∙sr) 

Ω  Direction vector 

k Normalized curvature of strut cross section Subscripts 
kr Radiative conductivity (W/m∙K) 

L Characteristic length (m) λ Spectral 

n Refractive index 1 Phase 1 of MPA/MPA+ 

𝑛⃗  Normal vector 2 Phase 2 of MPA/MPA+ 

N Total number of rays cast h Homogeneous phase of HPA+ 

Nv Number of scatterers per unit volume (m-3) t Trapped phase of HPA+/MPA+ 

Ns Number of tomography slices ij From phase i ∈ {1, 2} to phase j ∈ {1, 2}, 

MPA/MPA+ 

r Position vector (m) n nth realization 

R2 Coefficient of determination HG Additional scattering effect, HPA+ 

s Path length (m) W Open boundary or wall 

sabs 
Distance from source point to absorption 

point 
Superscripts 

savg Average path length (m) * Direct Monte Carlo simulation 

𝑠𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
Vector from source point to point of end of 

tracing (m) 
HPA Homogeneous Phase Approach 

Sv Specific surface area (m-1) MPA Multi Phase Approach 

t Strut diameter ratio + Inside of the domain 

T  Temperature (K) - Outside of the domain 

Functions  

std(x) Standard deviation of the distribution of x   

var(x) Variance of the distribution of x   

ERR(x) 
Error to be minimized as a function of 

independent variable(s) x 
  

[x] Iverson brackets [x] = {
1
0

𝑖𝑓 𝑥 𝑖𝑠 𝑡𝑟𝑢𝑒;
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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General introduction 

Macroporous cellular materials such as plastic (Fig. 0.1), carbon (Fig. 0.2), ceramic (Fig. 0.3) and 

metal foams (Fig. 0.4) constitute a large and varied class of modern engineering materials. The 

peculiar characteristics they derive from their cellular structure make them interesting for a number 

of applications in the field of thermal engineering.  

 
Fig. 0.1 – Closed cell plastic foam 

 
Fig. 0.2 – Open cell carbon foam 

 
Fig. 0.3 – Open cell ceramic foam 

 
Fig. 0.4 – Open cell metal foam 

In heat insulation applications, these materials present a natural ability to simultaneously minimize 

natural convection, thanks to the small diameter of their pores, and thermal conduction in the solid, 

thanks to their low relative density to the spatial arrangement of the solid matter. At the same time 

they guarantee good mechanical characteristics, thanks to the interconnectedness of the solid matrix. 

Foams made from plastics such as polyurethane are already used in a large number of heat insulation 

applications [1][2][3][4][5][6][7], ranging from relatively conventional building (Fig. 0.5) and tank 

insulation to thermal protection systems for space vehicles. In very high temperature insulation 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



2 
 

applications, such as furnace linings, foams made from refractory ceramics such as alumina are being 

increasingly adopted. 

 

Fig. 0.5 – Plastic foam insulation of buildings. 

In heat exchange enhancement applications, open cell foams present the high specific surface, high 

open porosity and tortuosity of fluid flow channels, which help achieving high value of the coefficient 

of heat transfer. Using high conductivity metals such as copper or aluminum or high conductivity 

ceramics such as silicon carbide, these materials are promising substitutes to more conventional heat 

exchange enhancement techniques such as fins (Fig. 0.6) [8]. In addition, the permeability of open 

cell foams to fluid flow and light makes some unique heat exchange applications possible: some of 

these are porous burners (Fig. 0.7) [9][10] and volumetric solar heat receivers (Fig. . 0.8) [11]. 

Fig. 0.6 – Foam heat exchanger Fig. 0.7 – Porous burner Fig. 0.8 – Jülich solar tower [11] 

In many of the applications considered, thermal radiation heat transfer can have a significant influence 

on the heat transfer process, contributing up to 20-30% of the total heat transfer in insulation 

applications at room temperature and becoming the predominant mode of heat transfer at very high 

temperatures or in specific setups such as volumetric solar receivers.  
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To correctly model radiation heat transfer in these media, it is necessary to use a multi-scale approach 

[12][13][14][15][16], using information about the microscopic structure of the medium to obtain 

useful properties to model the macroscopic behavior of the medium at a larger scale. For this to be 

possible, both accurate radiation models and accurate morphological models of the structure of the 

foam are necessary. In recent years, significant progress has been made in the numerical modeling of 

these media on both these accounts. 

Understanding of the morphology was for a long time tied to simplistic models, usually based on 

regular lattices constituted by the repetition of a single periodic cell [2][17][18][19][20][21]. The 

introduction of computerized tomography (CT) technology has made it possible to obtain full 3D 

reconstructions of the morphology of real samples of porous material [22][23][24][25][26][27][28]. 

Thanks to increasing computational resources, it has been possible to create more realistic numerical 

models of the morphology [29][30][31], such as those based on Voronoi cells [32][33][34][35], which 

can take into account the randomness of the real foam.  

Understanding of the radiation modeling has advanced both computationally and theoretically. The 

first approaches were based on the subdivision of the structure in multiple “scatterers” and the 

summing of the contribution of these “scatterers” [2][17][18][19][20][21] to obtain a modified 

thermal conductivity through Rosseland models of radiation. Current, more advanced approaches are 

largely based upon Monte Carlo Ray Casting (MCRT) simulation of the propagation of rays inside 

realistic structures, which allow to calculate equivalent radiative properties 

[23][22][24][25][26][27][28][36]. In addition many modified version of the Radiative Transfer 

Equation such has the Multi Phase Approach (MPA) [37][38][39][40] or the Generalized Radiative 

Transfer Equation (GRTE) [41][42], have been developed to specifically cope with challenges of 

modeling radiation in these complex, heterogeneous media. 

This work provides original contributions on both the morphological modeling front and the radiation 

modeling front. 
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In section 1, an extensive review of numerical methods for radiation heat transfer in cellular media is 

presented, with a special focus on Monte Carlo methods. The RTE [43][44][45] and general lines of 

multi-scale approach (Fig. 0.9) with respect to radiation heat transfer in cellular media are presented.  

(A) 

 
 

(B) 

 

(C) 

 

Fig. 0.9 – The multi scale approach. From left to right: (A) The real medium and its microstructure.  

(B) The heterogeneous medium model (C) The equivalent homogeneous medium model. 

The arrows in (B) and (C) represent the local flows of physical quantities (e.g. energy), which are highly 

discontinuous in the heterogeneous medium but continuous in the equivalent homogenous medium. 

Over the course of the years, a number of numerical methods to determine effective radiative 

properties have been proposed. A classification is introduced, subdividing existing methods in 

literature among three categories of direct, inverse and hybrid methods, each characterized by 

different principles in integrating the information at the microstructural level. 

Then, a review of existing direct numerical methods for the calculation of radiative properties of 

opaque cellular media is conducted, revealing significant variation in the existing methodologies, 

which have to be clarified to identify methods appropriate to the materials that will be studied in the 

following. Implications of semi-transparent behavior of the solid phase of the foam are briefly 

discussed, relevant models from recent literature are presented, and some limits of current knowledge 

are pointed out, suggesting the opportunity of devoting some effort to the development of more 

accurate radiative models for these materials. 
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The accuracy in the representation of cellular morphologies has increased considerably in recent 

years, evolving from early models based on simple periodic cells to realistic structures captured 

through tomography. Lately, methods for the direct digital generation of cellular structures have been 

gathering considerable interest. In section 2, we propose a framework of digital replication of foam 

morphologies. A single framework is proposed that allows, within a single chain of tools comprising 

voro++ [46] and Surface Evolver [47], to parametrically control the digital generation of three 

commonly occurring types of foam structures, covering a large range of real materials: low-porosity 

open-cell structures (Fig. 0.11), high-porosity closed cell foams (Fig. 0.12), high-porosity open cell 

foams (Fig. 0.13). 

 
Fig. 0.11 – Open cell porous structure (ε=70%) 

 
Fig. 0.12 – High porosity closed cell foam (ε=85%) 

 
Fig. 0.13 – High porosity open cell foam (ε = 95%) 

The generation capabilities are then applied to parametrically investigate the influence of 

morphological parameters on the extinction coefficient of an opaque open-cell high porosity foam.  
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In section 3, improvements to existing homogenized models for foams containing a semi-transparent 

solid phase are discussed. In these foams, modeling is more complex, due to radiation propagating 

inside the solid. Due to these additional difficulties, comparison of homogenized methods with 

reference radiative simulations have been sparse, and the few results indicate that the accuracy of 

conventional homogeneous models can be unsatisfactory in these materials [40][48].  

Efficient and flexible reference methods are required to validate the results obtained by 

homogenization models. A purely numerical, Direct Monte Carlo Homogenization reference 

technique, based on a periodic REV, allows to simulate radiation within arbitrary cavities with 

arbitrary boundary conditions and calculate macroscopic radiative quantities (such as transmittance, 

reflectance, configuration factors etc.) using ray-counting methods typically applied in MCRT for 

participating media. The technique is validated against full scale Monte Carlo simulations and 

compared to the existing HPA model.  

Recent models have been proposed in literature to increase the accuracy of homogenized methods, 

but they come with significant increase in complexity. On the basis of numerical and 

phenomenological observation of the sources of discrepancy between homogenized models and 

underlying discrete physical phenomena, we propose improvements of the existing Homogeneous 

Phase Approach and Multi Phase Approach, specifically targeted at the case of foams with a semi-

transparent solid phase, with the objective to increase accuracy while introducing as little additional 

complexity as possible. The two main ideas driving the modeling effort are the use of hybrid direct-

inverse coefficient determination approaches and the simplified modeling of ray history effects. The 

resulting Improved Homogenized Approaches (HPA+ and MPA+) are extensively tested by 

comparing them with Direct Monte Carlo Homogenization simulations and existing homogenized 

models, on a varied set of morphologies making full use of the previously developed digital 

generation techniques, comprising closed cell foams and low and high porosity open cell foams, in 3 

typical radiation heat transfer configurations.  
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Introduction 

The current baseline state-of-the-art approach to model radiation in porous media such as foams is 

based on the multi-scale approach (Fig. 1.1) and utilization of the Radiative Transfer Equation (RTE). 

General lines on the usage of RTE can be found for example in textbooks [12][43][44][45]. While 

the RTE is generally a spectral equation, in this work monochromatic notation will be used for the 

sake of simplicity. 

(A) 

 
 

(B) 

 

(C) 

 

Fig. 1.1 – The multi scale approach. From left to right: (A) The real medium and its microstructure.  

(B) The heterogeneous medium model (C) The equivalent homogeneous medium model. 

The arrows in (B) and (C) represent the local flows of physical quantities (e.g. energy), which are highly 

discontinuous in the heterogeneous medium but continuous in the equivalent homogenous medium. 

An overview of radiative properties determination for porous media can be found in the monograph 

by Dombrovsky and Baillis [12]. Reviews dealing with radiative properties of highly porous foams 

can be found in [13][14][15][16].  

In the past, significant effort has been devoted to the development of inverse techniques using 

experimental data for hemispherical or directional transmissivity/reflectivity experiments 

[49][50][51][52][53]. 

In recent years, numerical methods based on Monte Carlo techniques for the determination of 

radiative properties are becoming established in order to study either real structures obtained from 

tomographic imaging or computer-generated structures that closely mimic the microstructure of the 
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real foam. Monte Carlo methods are based on direct simulation of the propagation of a large number 

of photons (generally at least 106). The photons are simulated according to the Geometric Optics 

Approximation, which ensures that for wavelengths much smaller than the objects’ size the photon 

propagate in a straight line (i.e. diffraction and other near field effects can be ignored).  

Numerical methods used to predict radiative properties initially were closely related with inverse 

methods, making use of Monte Carlo results rather than experimental results as input data for inverse 

fitting [54][55]. Later, hybrid methods appeared, based on a combination of direct mean free path 

calculation and inverse techniques to determine the radiative properties [56][57][58]. Finally, in 

recent years, full direct methods, which only directly use free path distribution (in the form of 

cumulative distribution [22][36][37][42][41] or mean free path [15][32][40]) and scattering angle 

distribution, have been gaining favor.  

In the following, we firstly present an extract of our published works, featuring an extensive review 

of literature on direct numerical approaches for the calculation of equivalent properties in opaque 

foams and an initial attempt at improvement of existing analytical correlations. Then, we discuss in 

a more general way direct and inverse numerical approaches to calculate radiative properties, and, 

finally, some challenges specifically tied to the case of cellular media with a semi-transparent solid 

phase.  
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Chapter 1 – Radiative properties modeling of open cell opaque 

foam: review and new analytical law 

This chapter is an extract of an article published in the International Journal of Thermal Sciences [15]. 

It deals with direct methods to determine radiative properties of opaque foams. A review of different 

numerical and analytical methods is proposed, explaining the methodologies and evidencing the 

common points, limits and assumptions. Numerical methodologies are firstly applied to sets of 

spherical particles and compared with benchmark exact analytical solution. In a second step 3D 

Voronoi open cell foams are generated, the various methods analyzed are tested and compared. Some 

attention is dedicated to the evaluation of effects due to varying degrees of irregularity in the structure 

and ligament. Finally, a new analytical law is proposed to determine radiative extinction coefficient 

of 3D Voronoi open cell foam without significant additional computational effort. This relation is 

expected to be useful for preliminary optimization/design purposes. 

1.1 Introduction 

Cellular foams are a key material for many energy-engineering applications. Their high porosity (or low 

relative density) and large specific area play an important role from the thermal point of view. For 

example, high porosity closed cell polymer foams are used as efficient insulating materials 

[1][2][3][4][5][6][7]. Open-cell solid foams can be designed to have very low up to high values of 

thermal conductivity, depending on the conductivity of the solid [59][60][61][62]. Thus, they are 

employed in a variety of energy related applications, such as volumetric solar energy receivers for 

CSP plants [11], compact heat exchangers [8], porous radiant burners [9][10] and fire barriers 

[63][64]. Accurate modeling of thermal properties is obviously highly desirable for the optimization 

of the performance in these applications. Considering the high porosity (typically in a range from 

85% up to 98%), radiative heat transfer contribution can be significant, and in some cases even 

prevalent over other heat transfer modes. For this reason, a large number of analytical and numerical 
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models have been dedicated to characterization of radiative heat transfer in open-cell solid foams. 

Most studies focus on determining appropriate equivalent continuous medium properties. 

General lines on the use of the Radiative Transfer Equation (RTE) can be found for example in 

textbooks [12][43][44][45]. Various authors have developed specific adaptations of RTE for 

dispersed media, such as the Multi Phase Approach (MPA) [38][39][40] and the Dependence 

Included Discrete Ordinates Method (DIDOM) [65]. However, RTE is usually considered sufficiently 

accurate for most practical cases, if the relevant coefficients (radiative properties) are correctly 

determined [39][66][67]. 

As such, most of the literature has been focused on finding efficient and reliable ways to determine 

radiative properties. An overview of radiative properties determination for porous media can be found 

in the monograph by Dombrovsky and Baillis [12]. Reviews dealing with radiative properties of 

highly porous foams can be found in [13][14].  

The radiative properties may be theoretically predicted and/or identified from 

directional/hemispherical transmittance/reflectance measurements [17][23][49][68][69], often 

employing the Fourier Transform Infrared (FTIR) method.  

The large number of analytical models available in literature mostly refers to independent scattering 

in randomly dispersed media [70]. High porosity foams are modeled as a random dispersion of 

particles, whose contributions are summed up to obtain the effective radiative properties. This 

approach, originally proposed by Glicksmann et al. [17], who modeled the foam as a set of 

dodecahedral cells, was also followed by Placido et al. [2] for polymer closed foam, and Baillis et al. 

[18][19] for open cell carbon foams. Coquard et al. [20] and Loretz et al. [21] extended these results 

by considering models with different cells and strut shapes.  

Independent scattering approaches remain largely prevalent in literature, probably thanks to their 

comparative simplicity. A typical limitation of these studies is the difficulty to account for shadowing 
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effects. Independent scattering approaches also typically require the knowledge of a number of 

geometrical parameters of the foam, such as the strut diameter or cell size, which are difficult to 

determine univocally, because of the intrinsically random quality of the real foam structures. 

To overcome these limitations, alternative numerical methods have been developed and, thanks to 

increasing computational power, have lately gained large popularity. In particular, numerical methods 

based on Monte-Carlo techniques for the determination of radiative properties are becoming very 

popular in order to study either real structures obtained from tomographic imaging or computer 

generated structures that closely mimic the micro structure of the real foams.  

Tancrez and Taine [36] proposed to use the Radiative Distribution Function Identification (RDFI) 

model and determined radiative properties of spherical packed beds. Zeghondy et al. [22][23] and 

Petrasch et al. [24] applied the RDFI approach to tomographic data. Coquard et al. [25][26][27] 

proposed to use an alternative Monte Carlo approach based on mean free path calculation. 

In addition to Monte Carlo methods, some alternative numerical methods have been presented in 

literature. Most notably, Loretz et al. [28] presented a geometric approach to rapidly calculate 

extinction coefficient from open cell foam tomographic data. 

Techniques based on tomographic data provide satisfactory agreement with experimental data, but 

their dependence on high quality scans of existing foam samples makes them of limited utility for 

design purposes. Some recent studies have sought to overcome these limitations by digitally 

reproducing the foam structures using different approaches, including mathematical morphology 

operations applied on existing tomography data [29][30], simulation of the bubbling process [31], 

regular [32][33] and irregular [34][35] Voronoi partitions. By computer generating a number of 

structures and running numerical simulations [29][30][35] it is possible to obtain useful results for 

the optimization of energy transfer. Irregular 3D Voronoi structures seem to be particularly promising 

for this purpose as they replicate the structures of real foam pretty well [71].  
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In the current paper, a special emphasis is put on the predictive models of radiative properties of 

cellular foams with open cells and high porosities (ε > 85%). In the light of the state of the art, a 

representative selection of numerical and analytical methods is presented in a comparative fashion, 

focusing on their similarities and differences, their strong points, limits and assumptions.  

Subsequently, the methods are numerically compared. First, sets of spherical geometries are 

generated. For such geometries, an exact analytical solution exists [10] that can be used as a 

benchmark to evaluate the numerical methodologies. 3D Voronoi open cell structures are also 

considered, to provide a more realistic representation of the foam. Structures with two different 

degrees of irregularity and two different ligament shapes (circular and triangular) are considered. The 

various methods analyzed are tested and compared. Based on the results obtained, guidelines are 

proposed to allow optimal choice of the numerical method. Additionally, some corrections to 

commonly used analytical relations are proposed, that should improve their accuracy without 

significant additional computational effort. This new relation should provide useful guidance for 

preliminary optimization/design tasks. 

1.2 Radiative properties modeling 

Porous media such as foams are usually considered as equivalent continuum media and the radiative 

transfer equation (RTE) can be used [43][45]: 

Ω ∙ ∇I = 𝛼𝐵0 − 𝛽𝐼 +
𝜎

4𝜋
∫ I(Ω′)Φ(Ω′, Ω)𝑑Ω′

4𝜋

 (1.1) 

 

As explained in the introduction, most of the research focuses on the determination of the relevant 

parameters of the RTE. These coefficients are the extinction coefficient 𝛽, which represent the ability 

of the media to interact in with radiation by means of scattering or absorption, the scattering 

albedo 𝜔 =
𝜎

𝛽
 , which represents the prevalence of scattering events, and the scattering phase 

function Φ(Ω′, Ω), which captures the patterns of scattering itself. 
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It is worthwhile to focus our attention now on the specific assumptions used for the calculation of the 

radiative properties (extinction coefficient, absorption coefficient and phase function) required in the 

RTE. If the size parameter 𝜒 =
𝜋𝐿

𝜆
 is much greater than one, then radiation can be approximately 

treated as straight rays propagating through the medium, i.e. Geometric Optics Approximation 

prevails and diffraction effects can be neglected. This is the case for strut diameter in the 100μm 

range, as the peak radiation intensity at room temperature is at a wavelength of around 10μm, and the 

length of a ligament is typically much larger than its diameter. In addition, the struts are organized in 

quasi-polyhedral cells with quasi-polygonal windows comprising, so that the typical spacing between 

them is comparable to their length. Thus near field effects can be neglected. On the other hand, 

shadowing effects cannot be neglected. 

In the present paper, solid phase is considered opaque (as in the case of metal and carbon foam). The 

reflection is assumed to be diffuse and, additionally, reflectivity is considered independent of 

incidence angle, as it is assumed in several previous works [22][24][25][26][36][45]. Under this 

assumption, the following relation holds for the determination of the scattering albedo: 

𝜔 = 𝜌𝑠 (1.2) 

Additionally, while Monte Carlo methods allow to numerically calculate the scattering phase 

function, it has been shown [24] that under the assumption of diffuse reflection, the numerically 

calculated scattering phase function for open cell foam structure closely matches the scattering phase 

function for opaque large spheres or randomly oriented convex opaque particles [43][44][45]: 

𝛷(𝜃) =
8

3𝜋
(sin 𝜃 − 𝜃 cos 𝜃) (1.3) 

The extinction coefficient, β, is more difficult to determine: different methodologies to calculate it 

will be the focus of the following discussion. 

1.2.1 Analytical method 

As recalled in the introduction, a large number of analytical relationships have been presented to 

calculate the extinction coefficient directly from the knowledge of the geometrical characteristics of 
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the structure. The foam is assumed as a random dispersion of particles under the hypothesis of 

independent scattering. These relationships are based on a common framework, which can be 

summarized as follows: 

- Create a representation of the structure as a collection of randomly dispersed simple scatterers 

(usually simple particles such as cylinders to model the struts and cubes or spheres to model 

the junctions). 

- Evaluate the number of particles/scatterers per unit volume Nv on the basis of a representation 

of the overall structure in terms of regular polyhedral cells composed by struts and, 

sometimes, junctions. 

- Evaluate the average projected area G of a single scatterer. 

- At this point, in the hypothesis of independent scattering one can sum up the contributions of 

the single scatterers.  

Assuming geometric optics prevails and diffraction effects can be neglected, the extinction coefficient 

is obtained as 𝛽 = G ∙ Nv [45]. 

In fact, for any convex (no negative curvature) randomly oriented scatterer one can obtain the average 

projected area as 𝐺 = 𝑆 4⁄  [72], where S is the particle surface area. It follows: 

𝛽 = 𝐺 ∙ 𝑁𝑣 =
𝑆
4⁄ ∙ 𝑁𝑣 =

𝑆𝑣
4⁄  (1.4) 

Where Sv is the specific surface area i.e. total surface area per unit volume.  

It is worth noting that some works have studied the limits of independent scattering and proposed 

scaling correlations in order to determine the extinction coefficient of spherical beds [65][66][67] or 

fibrous media [57] for relatively large solid volume fractions. In particular, Brewster [66] presented 

a review of pre-existing correlations together with a simple correlation that allows correcting for 

“volume scattering effects” in spherical packed beds: 

𝛽 =
𝑆𝑣
4⁄ ∙ 𝑆𝑟 =

𝑆𝑣
4⁄ ∙ 1 𝜀⁄ =

𝑆𝑣,𝑓
4
⁄  (1.5) 
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Where Sv,f is the specific surface area per unit volume fluid. This relation will be used as analytical 

reference in the following as it was shown in [36] to be rigorously valid for geometries constituted of 

randomly distributed Overlapping Opaque Spheres. A similar corrected relation does not exist in the 

case of cellular materials such as foams: it is among the objectives of this study to propose such a 

relation. 

Scattering albedo and phase function are generally considered to be left unchanged by volume 

scattering and shadowing effects, so that relations (1.2) and (1.3) can be used to determine them. 

1.2.2 Projection method 

Loretz et al. [28] proposed a simple and fast approach to calculate the extinction coefficient. 

Exploiting the typical digital form of open cell foam tomographic data (collections of 2D slices), this 

method is based on incremental “projection” of subsequent slices and direct evaluation of optical 

obstruction by pixel counting. Fig. 1.1 shows a sketch of the projection process taken from the original 

work [28]. 

 

Fig. 1.1 – Projection of tomography slices in [28] 

As the projection proceeds, the surface fraction of white pixels 𝑊𝑛 remaining after Ns slices of 

thickness ∆𝑡 can be equated to the fraction of radiation transmitted, so that according to the Beer Law: 

𝛽(𝑠) = −
Log(𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛)

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
= −

Log(𝑊𝑛)

N𝑠 × ∆𝑡
 (1.6) 
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Low computational effort and direct use of the data structure are the main advantages of this method. 

It also makes it possible to readily evaluate anisotropy in the radiative behavior. 

The method has been originally conceived for volumetric data structures obtained from X-Ray 

tomography. To treat the polygonal mesh geometries used in the current study, a preparatory step 

involving the conversion of the meshes to a voxel structure has been required. Sensitivity to the 

resolution of the voxelization step has been reported in the numerical results section. Additionally, 

isotropic geometries have been considered, so the final value of 𝛽 presented for the algorithm is taken 

in all cases as the average of the x, y and z directions. Dispersion is quite small in any case: typical 

values of average absolute deviation and standard deviation are within 2.5% of the average. 

1.2.3 Monte Carlo method 

Ray casting methods to determine radiative coefficients use a Representative Elementary Volume 

(REV) to extract relevant properties, and the rays casted are considered as representative of typical 

emission/absorption/scattering events happening in the structure.  

Different mathematical methods can be used to treat the resulting data. Other methodological 

variations observed in literature include the distribution of ray origins and the handling of the 

intersection of the rays with the bounding box of the geometries (REVs) undergoing numerical 

analysis. These issues will be discussed in detail in the following. 

1.2.3.1 Variations on ray casting method - Ray origin 

The choice of origin for the “representative” ray distribution is not obvious, and in fact, different 

assumptions have been used in literature. Two intuitive choices can be presented (Fig. 1.2): 

(A) Casting rays starting from random points inside the fluid/void phase [22][24][36] 

(B) Casting rays starting from the solid/fluid interface [26][27] 

These two choices can be linked to two somewhat distinct radiation regimes: 
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(A) To a regime of external radiation flux imposed over a substantially passive (i.e. absorbing and 

scattering, but not emitting) foam. 

(B) To a regime of radiatively active (high temperature) foam, i.e. behaving at the same time as 

emitting and absorbing/scattering fluid interface. 

Additionally, while for (A) the obvious choice of angular distribution of rays is the uniform 

distribution, for case (B) various different distributions can be proposed (uniform, lambertian, etc.). 

In the following, a uniform distribution has been utilized, as proposed in [26]. 

 

Fig. 1.2 – Ray casting methods: (A) Casting from void region. (B) Casting from solid/fluid interface 

The effects of such modeling choices will be analyzed hereafter. 

1.2.3.2 Variations on ray casting method - Boundary handling 

Another potentially relevant issue that has been rarely explicitly addressed in papers is the handling 

of rays that exit the bounding box of the volume under consideration (RVE) without intersecting the 

solid phase. 

Some authors [24] purposefully choose the location of origin of the rays to minimize this fraction of 

rays and do not consider these rays in subsequent calculations. In some cases, when the total optical 

thickness of the data set under consideration is low, such an outcome could be difficult to obtain 
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leading to noticeable errors in the estimation of radiative properties. It must also be considered that 

the size of the ray origination zone should be large enough to be itself a RVE with respect to the entire 

structure. For these reasons, in a number of cases it is highly desirable to be able to originate the rays 

from any point in the structure, and thus a methodology to handle the rays exiting the bounding box 

without intersecting the solid phase is required. 

In the current study we have chosen to compare three examples of possible methodologies. The three 

methodologies are schematically presented in Fig. 1.3 and can be summarized as follows: 

(A) Symmetrically reflecting the ray as it hits the boundaries. [32] 

(B) Wrapping around the ray in a periodic fashion, i.e. restarting the ray with the same direction 

from the boundary opposed to the one that has been intersected. To ensure preservation of 

solid/fluid continuity and improve convergence, this method also requires the starting location 

on the opposite side to be randomized, so that the ray starts on the opposite face on a random 

point of the void domain. [25] 

(C) Randomly casting a new ray with a random direction from a random point inside the void 

domain, treating this completely newly casted ray as a continuation of the previously casted 

ray. [32] 

 

Fig. 1.3 – Boundary handling methods – (A) Symmetrical reflection; (B) Periodic wrapping 

with position randomization (C) Recasting from random point in void region. 

While method (A) preserves both local and direction continuity, method (B) preserves direction and 

some location information (the ray that exits a boundary newly appears at a boundary), while (C) 
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sacrifices all information regarding both direction and position, preserving only local phase 

coherency, thus essentially eliminating ordering phenomena due to the boundary handling.  

1.2.3.3 Calculation of radiative properties 

The calculation of the extinction coefficient does involve some mathematical complexity. 

Two distinct approaches based on Monte Carlo method can be distinguished in literature for the 

calculation of the extinction coefficient. In the RDFI method [36] and other similar methodologies 

(discussed in the introduction), an extinction distribution function is defined as: 

𝐺𝑒(𝑠) =
1

4𝜋𝑉𝑓
∫ ∫ ∫ 𝛿[𝑠 ′ − 𝑠0(𝑟, 𝑢)]𝑑𝛺(𝑢)𝑑𝑟𝑑𝑠′

4𝜋𝑉𝑓

𝑠

0

≅ 1 − 𝑒−𝛽𝐼𝑠 (1.7) 

Which represents the fraction of rays intercepted at lengths lesser or equal then s. 𝛽𝐼is found by fitting 

an exponential distribution to the actual ray distribution using a least squares method. 

On the other hand, in the method presented [25] and other similar methodologies, the value of the 

extinction coefficient is found as the inverse of the average beam length. 

𝛽𝐼𝐼 =
1

∑ 𝑠𝑛𝑁
𝑛

𝑁

=
1

𝑠𝑎𝑣𝑔
 

(1.8) 

It must be noted that, while these two formulations are mathematically different, each one 

corresponds to a typical physical description of the scattering/absorption phenomenon in semi-

transparent media. Namely, the formulation given in [36] corresponds to a description of 𝛽 as ray 

interception probability, while the formulation given in [25] corresponds to a description of 𝛽 as the 

inverse of photon mean free path.  

In fact, it can be shown that, for media that strictly obey a Beer-Lambert distribution of ray population, 

the two formulations are equivalent. For any given extinction distribution Ge(s), we can write: 

𝛽𝐼 𝑖𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡:∫ [𝐺𝑒(𝑠) − (1 − 𝑒
−𝛽𝐼𝑠) ]

2
𝑑𝑠

∞

0

= min
𝛽𝐼
′
{∫ [𝐺𝑒(𝑠) − (1 − 𝑒

−𝛽𝐼
′𝑠) ]

2
𝑑𝑠

∞

0

} (1.9) 
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𝛽𝐼𝐼 =
1

∫ 𝑠
𝑑𝐺𝑒(𝑠)
𝑑𝑠

𝑑𝑠
∞

0

 
(1.10) 

Assuming a Beer – Lambert distribution function, i.e. 𝐺𝑒(𝑠) = 1 − e
−𝛽𝑠, we obtain: 

𝛽𝐼 𝑖𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡:∫ [𝑒−𝛽𝑠 − 𝑒−𝛽𝐼𝑠]
2
𝑑𝑠

∞

0

= min
𝛽𝐼
′
{∫ [𝑒−𝛽𝑠 − 𝑒−𝛽𝐼

′𝑠 ]
2
𝑑𝑠

∞

0

} ; 𝛽𝐼 = 𝛽
 

(1.11) 

𝛽𝐼𝐼 =
1

∫ 𝑠𝛽e−𝛽𝑠
∞

0
𝑑𝑠
=
1

1
𝛽

= 𝛽 
(1.12) 

Therefore, in general, the more closely the real ray distribution approximates a real exponential 

distribution (i.e. the more accurately the radiative behavior of the medium can be predicted using an 

HPA approach), the better the agreement between the two methods. 

In the light of this finding, we chose to use the inverse mean free path calculation as it affords some 

advantages. Notably, not requiring a fitting step, it allows to directly and univocally obtain the value 

of beta, thus resulting simpler to implement and more robust. This is particularly true since the least 

squares minimization to be performed is non-linear. 

1.3 Numerical results and comments 

As announced in the introduction, a set of geometries constituted of randomly distributed identical 

overlapping opaque spheres (IOOS) has been generated, because of its simplicity and because the 

analytical solution is known and could be used as benchmark. 

In a second step, to replicate as closely as possible real foam structures, cellular structures based on 

Voronoi partitions of space have been considered as in recent works [34][35]. 

1.3.1 Spheres 

1.3.1.1 Geometry description 

Six subsets of spherical geometries have been generated. Each set is constituted of 2000 spheres of 

identical radius, whose centers are randomly distributed in a cube of 1000x1000x1000 units3. An 
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example of the resulting geometries is presented in Fig. 1.4. The spheres can overlap (Fig. 1.4 – a). 

Additionally, all the spheres intersecting the 1000x1000x1000 bounding box have been “cut” to the 

bounding box (Fig. 1.4 – b). Each set has a different level of porosity and specific surface, determined 

by the radius of the spheres. Table 1.1 summarizes the relevant geometric data. 

 

Fig. 1.4 – Typical IOOS geometry – (a) Overlapping spheres; (b) Spheres cut to fit bounding box. 
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ε Radius [units] S/V [1 / units] 

99.5% 8.44 0.001784 

99% 10.74 0.002852 

98% 13.80 0.004651 

95% 18.45 0.008365 

90% 23.32 0.01357 

85% 26.47 0.01765 

Table 1.1 – Summary of the geometrical characteristics of the random spheres geometries. 

1.3.1.2 Results and comments 

Computed values of the extinction coefficient are presented in Fig. 1.5 as a function of porosity. The 

analytical results are calculated making use of relation (1.5). The Monte Carlo calculations that led 

to the results shown in this figure were carried out considering 106 rays and periodic wrapping at the 

boundaries of the box, with rays starting from the solid surface. Influence of variations in Monte 

Carlo methods will be discussed in the following. 

 

Fig. 1.5 – Extinction coefficient as a function of porosity: numerical methods and analytical results. 

The expected trend of the extinction coefficient increasing with decreasing porosity is found. It can 

be seen that, for this set of benchmark geometries, all the proposed methodologies converge to very 
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similar values. In fact, the values obtained using numerical methodologies all lie within a ± 1.5% 

interval centered on the analytical benchmark.  

As can be readily noted, the results diverge (though slightly) as porosity decreases. This can be most 

probably attributed to a mix of meshing effects and boundary cutting effects that positively correlate 

with increasing sphere diameter. 

Thanks to the availability of an analytical solution, the spheres were utilized for a series of 

convergence tests of the methodologies proposed. For the tests, an “average error” quantity was 

evaluated as follows: 

𝐴𝑉𝐸𝑅𝐴𝐺𝐸 𝐸𝑅𝑅𝑂𝑅 =

∑ |
𝛽𝑖,𝑛𝑢𝑚
𝛽𝑖,𝑎𝑛

|6
𝑖=1

6
 

(1.13) 

Where indices 1 to 6 correspond to the six distinct spherical geometries.  

First, an assessment of numerical convergence was tried for the different methods. For Monte Carlo 

methods numerical convergence depends on the number of rays cast, while for the projection methods 

it depends on the resolution (in total voxels) of the grid. The results of this test are depicted in Fig. 

1.6. 

 
Fig. 1.6 – Average error of numerical methods as a function of number of rays cast. 
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Various Monte Carlo methodologies showed similar results, so they have been represented as a band 

in the chart. It can be seen that Monte Carlo methods stabilize between 105 and 106 rays cast, while 

projection method stabilizes around 107 and 109 total voxels. It must be however noted that the 

projection method has a higher average error. This may be due to sample size requirements, as will 

be discussed later. 

Focusing specifically on Monte Carlo methods, we performed an assessment of the effects of different 

boundary conditions and different sample sizes on the results. To obtain this, in addition to the base 

geometries, other geometries constituted of a smaller number of spheres (1000, 500 and 250 spheres) 

were generated and then processed. Monte Carlo surface methods using three different boundary 

conditions, as proposed in the relevant section, were considered. 

 

Fig. 1.7 – Average error of Monte Carlo methods as a function of number of scatterers for different 

boundary handling. 

The results can be observed in Fig. 1.7. A number of 106 rays, cast from the solid-fluid interface, was 

used in each simulation. 
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As can be seen in Fig. 1.7, while for all the considered boundary handling methods the average error 

is below 1% for the largest sample size, methods employing some degree of randomization perform 

better than symmetrical mirroring, and more specifically the periodic wrap around with position 

randomization method achieves the best results for all cases considered. For this reason, this was the 

boundary condition used in the rest of the study. 

To show the interest of being able to manage rays exiting the domain, calculations were also carried 

out with rays shoot from the core of the structure, as proposed by various authors [22][24], using the 

largest geometries (2000 spheres in a 10003 cube). A region of 1003 units, centered in the geometry, 

was chosen to cast the rays. Results are reported in Fig. 1.8 and compared with those of the periodic 

randomized wrap around method.  

 

Fig. 1.8 – Error of Monte Carlo methods as a function of porosity with or without boundary handling. 

It must be noted that, due to the size and optical thickness of the geometries generated, it was not 
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condition does indeed enable to obtain correct results while at the same time relaxing requirements 

on the optical thickness of the examined geometry. 

Additionally, Monte Carlo methods with rays starting from the void or from the surface have been 

tested and compared with each other, to check if significant differences exist in convergence speed 

with medium size. The results are summarized in Fig. 1.9. 

 

 

Fig. 1.9 – Average error of Monte Carlo as a function of number of scatterers for different ray origins. 
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Fig. 1.10 – Average error of various numerical methods as a function of number of scatterers. 

This finding can be explained as follows: projection algorithm starts from the boundary surfaces and 

only uses the three coordinate directions for projection, while Monte Carlo methods casts rays in a 

number of directions from many points within the domain. It is to be expected that the former would 

be faster but extract less information than the latter. 

1.3.2 Voronoi structures 
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It has been shown in prior studies that the Voronoi tessellation technique allows a faithful 

representation of the porous morphology not only for polymeric foams closed cell foams [34] but also 

for solid open-cell foams [71]. As previously described in [34][71], the cells are created from a 

distribution of nucleation points (centres). A so called Voronoi paving associates a region of the 

surrounding space to each nucleation point. The cell associated to a given particle corresponds to all 

of the space which is closer to that particle than any other. By positioning the nucleation points along 

a regular centred cubic lattice, the uniform polyhedrons generated are tetrakaedecahedron (the Kelvin 

cells) while a face centred cubic lattice leads to rhomboidal dodecahedron cells. It is also possible to 

generate volumes composed of cells with non-uniform shape and size distributions. The method used 

in the present work starts from a regular distribution of points and consists in allowing a random small 

displacement to each nucleus in a restricted area around their initial positions. The size of this area, 

normalised by the distance between two initial nuclei, defines a perturbation coefficient . By varying 

the value of , one can obtain cellular structures with a non-uniform distribution of the cell’s size and 

of the cell’s shape. Large values of  leads to wide distributions while for  = 0, one obtains the 

regular structures mentioned previously (tetrakaedecahedron or rhomboidal dodecahedron). 

In the present study, we used the free, open source Voro++ software [46] to generate the cells from 

the nucleation points. Voro++ permits to represent the 3D cells as a list of cell vertices, cell ligaments 

and cell walls, each ligament and wall defined by the connection of cell vertices. Voro++ makes 

straightforward to compute cell-based statistics, such as cell volumes, the number of faces per cell or 

even the number of vertices connecting each cell wall. In the current study, we are interested in open-

cell foams and thus only cell edges are used. The thickness of the struts is constant along the length 

and has been varied to adjust the porosity of the material. Two distinct cross-section shapes have been 

considered for the cell ligaments: triangular and circular. As for spherical geometries, after generation 

the structures are “cut” to fit a bounding box. An illustration of the structure obtained is depicted in 

Fig. 1.11 for a circular cross section with  = 1 and ε = 93.73%. 
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Fig. 1.11 –Voronoi geometry. (a) Geometry cut to the bounding box (b) Detail of the junctions. 

 = 0.5  = 1.0 

Shape ε S/V [1/units] Shape ε S/V [1/units] 

 94.04% 0.01137  93.73% 0.01149 

 92.12% 0.01273  91.69% 0.01273 

 90.02% 0.01388  89.45% 0.01398 

 85.08% 0.01607  84.41% 0.01596 

 97.55% 0.01031  97.41% 0.01052 

 94.69% 0.01486  94.36% 0.01495 

 90.83% 0.01860  90.34% 0.01858 

 88.12% 0.02042  87.66% 0.02043 

Table 1.2 – Summary of the characteristics of the Voronoi geometries. 

Table 1.2 reports the range of relevant geometric parameters as follows: the geometries are grouped 

into two columns according to the value of perturbation coefficient. In any single column, 

a 

a 

b 
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corresponding to a value of the perturbation coefficient, each row reports the struts’ cross sections, 

the porosity and Sv ratios for a single geometry. The values  = 0.5 and  = 1 have been chosen for 

the perturbation coefficient since they lead to cell size distributions with standard deviations close to 

real cellular geometries commonly encountered for open cell metal foams [71]. 

1.3.2.2 Results and comments 

In the light of the results obtained for the spherical geometries, additional convergence calculations 

have been carried out to test numerical models for the Voronoi geometries. The testing has been 

specifically focused on evaluating the convergence for the different methods (Projection method and 

Monte Carlo method with rays cast from surface and periodic randomized boundary wrapping). 

Initially, sub-cuts of the base geometries have been generated, with volumes 2, 4 and 8 times smaller 

than the original. Then results obtained for these reduced cuts have been compared to the results 

obtained for the largest geometry, and the evolution of average relative deviations with increasing 

sample has been evaluated. Additionally, to exclude geometry sampling effects, results have been 

normalized using the respective Sv ratios. In Fig. 1.12, the average relative deviations are plotted as a 

function of relative sample volume i.e. the ratio of the sub-cut volume to the original volume. 

  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



32 
 

 

Fig. 1.12 – Convergence of numerical methods as a function of geometry sub sampling. 

As can be seen, while the Monte Carlo methods both exhibit good convergence properties, the 

projection method is still non converging at the geometry sizes considered. It may also be observed 

that results are fully consistent with those recovered for the spherical geometries: the Monte Carlo 

method performs significantly better than the projection method. For this reason the results obtained 

by projection method have been excluded from further analysis. 

In Fig. 1.13 the computed values of the extinction coefficient are presented as a function of porosity 

for different cell size distribution dispersions () and strut shapes, along with values obtained using 

analytical relation (4), commonly used in literature for cellular materials. 

Interestingly, it appears that cell size distribution dispersion has no strong effects on predicted 

extinction coefficients. Structures with triangular struts show significantly higher extinction 

coefficients than structures with circular struts for any given level of porosity. Higher specific surface 

for a given porosity seems to be the most likely justification of this behavior. 
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Fig. 1.13 – Extinction coefficient for Voronoi structures with triangular and circular strut as a 

function of porosity for  = 0.5 and  = 1.0. 

The average value of the numerical results is persistently higher than the analytical result, in range 

from 7% to 30%, averaging 19% across the porosity range. 

1.4 Conclusions 

In the present paper, various numerical methodologies have been compared for different porous 

media. The geometries included random overlapping opaque sphere arrangements and Voronoi 

structures, which make possible to generate realistic foam structures.  

Specific attention has been devoted to Monte Carlo methods. Different Monte Carlo approaches 

proposed in literature to determine β (namely, RDFI method based least squares fitting identification 

and inverse mean free path method) have been shown to have a common basis. This prompts to favour 

the inverse mean free path methodology because of its simplicity. 
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Monte Carlo methods have been found to be nearly insensitive to choice of ray origination, with some 

marginal effects on convergence speed, which favour the choice of rays cast form the surface. The 

effects of boundary handling in Monte Carlo methods have been analysed. The choice of boundary 

handling does not appear to significantly affect final result, but can affect convergence speed. In 

particular, periodic wrap-around of rays with position randomization appears to improve convergence 

speed over all other methods. It has also been shown that such a method is vastly superior to the 

casting of rays from the core and discarding of exiting rays, in cases where sufficiently high optical 

thickness cannot be guaranteed. 

Monte Carlo methods have been additionally compared to projection based methods. The results 

suggest that Monte-Carlo methods converge faster with smaller sized domains, so that Monte-Carlo 

methods are recommended when there is uncertainty about the sufficient size of the sample, while 

the projection methods could be used when there is need for faster computation. 

Concerning Voronoi structures, it has been found that analytical relations such as those used in 

previous literature give results that are consistently lower than the numerical methodologies. 
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Chapter 2 - Indirect identification methods and semi-

transparent cellular media 

2.1 Classification of methods for the identification of radiative properties 

While direct methods for radiative properties identification have become prevalent in most recent 

literature thanks to their simplicity, some features of the inverse methods which were historically 

developed first make them still interesting. In this section we classify the methods presented in 

literature as direct, inverse or hybrid and present their general schemas and some of their strengths 

and weaknesses.  In Figs. 2.1-2.3, the schemes of the three are illustrated. The methods are presented 

as illustrated flow diagrams, for the sake of readability. 

Fig. 2.1 gives a general scheme of a direct methods, such as those seen in [15][22][32][36][37] 

[40][41][42]. In such a method, direct Monte Carlo simulations in the complex medium at the micro-

scale are used to collect data about statistical distribution of specific magnitudes (typically, the 

scattering angle distribution and the free path distribution). The radiative properties are then obtained 

directly from their physical definitions, by processing the collected statistical distributions with a 

range of techniques, such as curve-fitting [22][32][36] or simple algebraic operations [15][40]. The 

properties are then used in a homogeneous model to capture the behavior of the material at macro 

scale. No feedback action between the homogeneous model and the coefficient determination process 

is required. This method has also been applied to Multi Phase Approach description of the medium 

[37][40]. In recent developments known under the moniker of Generalized Radiative Transfer 

Equation [41][42], the statistical distributions can be directly plugged into the homogenous models 

(typically solved by Monte Carlo), to model non-Beerian behavior of the medium. Direct methods 

are attractive thanks to their relative simplicity and the ease of rigorously defining the physical 

quantities in play, however by typically taking into consideration only single-scattering events, 

some information is lost. 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



36 
 

 

Fig. 2.1 – Flow diagram scheme of direct identification methods for radiative properties 

Fig. 2.2 gives a general scheme of pure inverse methods, such as those seen in [54][55]. Similarly to 

direct methods, direct Monte Carlo simulations in the complex medium are used to collect data about 

specific quantities (typically, directional and/or hemispherical transmittance/reflectance through a 

defined thickness of medium). However, in this case the data are not processed directly. Starting with 

an initial guess of the radiative properties, simulations in an equivalent homogenous medium are run, 

and the corresponding quantities (transmittance/reflectance) are calculated. The results from the 

direct Monte Carlo and the equivalent homogenous medium simulations are then compared, and 
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radiative properties in the homogeneous medium are indirectly determined as the values that allow 

the best fit between the two simulations. The fitting methods are related to those used in inverse 

radiation analysis from experimental data [49][50][52][53] and usually involve least-squares fitting, 

often using reduction techniques to minimize the number of direct problem solutions required. 

Inverse methods are interesting because they allow to directly compare the behavior of real and 

equivalent medium directly, however difficulties typically arise due to dependence on boundary 

conditions and high condition number due to parameter sensitivity problems. 

 
Fig. 2.2 – Flow diagram of inverse identification methods for radiative properties 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



38 
 

Finally, Fig. 2.3 gives a general scheme of hybrid direct-inverse methods, such as those seen in 

[56][57][58] and the one that will be presented in the following. Direct Monte Carlo simulations in 

the complex medium are used to collect statistical information about the medium (both ray statistics 

such as free path distribution and physical quantities such as transmittance/reflectance). A part of this 

information is processed directly and allows to establish definite values for a part of the radiative 

properties. Another part of the data is fed as input to an inverse method, to determine the rest of the 

parameters. When judiciously applied, such methods allow to alleviate most parameter 

sensitivity problems typical of pure inverse methods, while preserving some advantages such as 

the capability to take into account multiple scattering and the direct comparison of real and 

equivalent medium.  
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Fig. 2.3 – Flow diagram of hybrid direct-inverse identification method for radiative properties 
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2.2 Modeling radiation in cellular media with a semi-transparent solid phase. 

When the solid material of the cellular medium itself is semi-transparent to radiation, some significant 

additional modeling challenges appear. In this case, the radiation propagates in the solid as well as in 

the fluid part of the structure. For semi-transparent, non-magnetic media, assuming smooth surfaces, 

the scattering of light at the interface is governed by Snell’s law and Fresnel equations [43][44][45]. 

 (2.1) 

 

(2.2) 

 

Fig. 2.4 – Variables in Snell’s law and Fresnel equations. 

Where n1 and n2 are the refraction indices of the two media, θi and θt are the incidence and transmitted 

angle (Fig. 2.4) and R is the reflectivity. An important thing to note with respect to these equations is 

that Snell’s law has no possible solutions for θi > θc = sin−1
𝑛1

𝑛2
. In case of passage from a more dense 

to a less dense medium (n1 > n2), all rays incident above the critical angle θc will be totally internally 

reflected. 

In general, in semi-transparent media, the propagation behavior in the two phases can be expected to 

be quite different, and inter-phase radiation transfer is expected to be significant. It must be 

considered that the underlying model of the Homogeneous Phase Approach (HPA) is that of disperse, 

non-interacting scatterers distributed uniformly in the domain. In foams with a semi-transparent solid 

phase, it is clear that these conditions are not achieved. 
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2.2.1 Notes on the Multi Phase Approach (MPA) 

One recent development partially addressing these concerns is the so called Multi Phase Approach 

(MPA). This approach has been presented independently in Gusarov [38] and Lipinski et al. [37]. In 

this approach the medium is modeled as two coupled homogeneous phases, each one with its own 

Radiative Transfer Equation. The MPA is very useful in the case of Local Thermal Non Equilibrium 

(LTNE) between the two phases, but it is also generally interesting in cases where the solid phase is 

semi-transparent and its volume fraction is not negligible. 

It can be useful recalling the basic equations and setup. In a standard MPA, such as presented in 

Gusarov [38], the solid phase and the fluid phase are homogenized separately, then interfacial 

interactions (and thus the coupling of the phases) are handled through four interfacial scattering 

coefficients  σ00, σ01, σ10, σ11, and their respective phase functions Φ 00, Φ 01, Φ 10, Φ11. The intrinsic 

properties of the phases (e.g. absorption coefficient) are not homogenized, and each phase preserves 

its actual intrinsic properties. 

Ω ∙ ∇I1 = −𝛽1𝐼1 +
𝜎11
4𝜋

∫ 𝐼1(Ω′)Φ11(Ω
′, Ω)𝑑Ω′

4𝜋

+
𝜎21
4𝜋

∫ 𝐼2(Ω′)Φ21(Ω
′, Ω)𝑑Ω′

4𝜋

 (2.3a) 

Ω ∙ ∇I2 = −𝛽2𝐼2 +
𝜎22
4𝜋

∫ 𝐼2(Ω′)Φ22(Ω
′, Ω)𝑑Ω′

4𝜋

+
𝑓1
𝑓2

𝜎12
4𝜋

∫ 𝐼1(Ω′)Φ12(Ω
′, Ω)𝑑Ω′

4𝜋

 (2.3b) 

It is useful to add an emission contribution and change the algebraic form of the third term (the inter-

phase coupling terms) we get: 

Ω ∙ ∇I1 = 𝑛1
2𝛼1𝐵1

0 − 𝛽1𝐼1 +
𝜎11
4𝜋

∫ 𝐼1(Ω′)Φ11(Ω
′, Ω)𝑑Ω′

4𝜋

+
𝑓2
𝑓1

𝜎21
4𝜋

∫ 𝐼2(Ω′)Φ21(Ω
′, Ω)𝑑Ω′

4𝜋

 (2.4a) 

Ω ∙ ∇I2 = 𝑛2
2𝛼2𝐵2

0 − 𝛽2𝐼2 +
𝜎22
4𝜋

∫ 𝐼2(Ω′)Φ22(Ω
′, Ω)𝑑Ω′

4𝜋

+
𝑓1
𝑓2

𝜎12
4𝜋

∫ 𝐼1(Ω′)Φ12(Ω
′, Ω)𝑑Ω′

4𝜋

 (2.4b) 

Where f are volume fractions and B0 are blackbody intensities. We can write: 
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𝛽1 = 𝛼1 + 𝜎11 + 𝜎12 (2.5a) 

𝛽2 = 𝛼2 + 𝜎22 + 𝜎21 (2.5b) 

Where σ11 and σ22 can include the contribution of the intrinsic diffusion of phases 1 and 2 respectively. 

𝜎11 = 𝜎11,𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 + 𝜎1,𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 (2.6a) 

𝜎22 = 𝜎22,𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 + 𝜎2,𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 (2.6b) 

For a general overview of the physical phenomena involved and the corresponding coefficients, it 

can be useful to refer to Fig. 2.5. 

 
Fig. 2.5 – Microscale phenomena in the Multi Phase Approach and corresponding homogenized coefficients. 

It’s easy to verify that the chosen values verify the conservation of energy in the case of non-absorbing 

media (α1 = α2 = 0). Following the integration seen in [38], we get: 

∇ ∙ ∫ Ω(𝑓1𝐼1 + 𝑓2𝐼2)𝑑Ω

4𝜋

= ∫[(−𝛽1 + 𝜎11 + 𝜎12)𝑓1𝐼1 + (−𝛽2 + 𝜎22 + 𝜎21)𝑓2𝐼2]

4𝜋

𝑑Ω = 0 (2.7) 
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The usefulness of the algebraic substitution for the coupling term is seen here, as one can immediately 

see that the energy conservation is automatically satisfied. It’s worthwhile observing that the model 

presented is equivalent to that illustrated in Lipinski et al. [37]. 

It is possible to obtain an additional constraint on σ12 and σ21, by requiring the conservation of energy 

in local thermodynamic equilibrium. In this condition we can posit: 

𝑇1 = 𝑇2 = 𝑇 (2.8) 

𝐵1
0 = 𝐵2

0 = 𝐵0 (2.9) 

4𝜋𝑛1
2𝛼1𝐵

0 = 𝛼1 ∫ 𝐼1(Ω′)𝑑Ω′

4𝜋

 (2.10a) 

4𝜋𝑛2
2𝛼2𝐵

0 = 𝛼1 ∫ 𝐼2(Ω′)𝑑Ω′

4𝜋

 (2.10b) 

In addition, each phase must be in radiative equilibrium: 

𝑓1∇ ∙ ∫ Ω𝐼1𝑑Ω

4𝜋

= 4𝑓1𝜋𝑛1
2𝛼1𝐵

0 − (𝛽1 − 𝜎11)𝑓1 ∫ 𝐼1
4𝜋

 𝑑Ω + 𝜎21𝑓2 ∫ 𝐼2
4𝜋

𝑑Ω = 0 (2.11a) 

𝑓2∇ ∙ ∫ Ω𝐼2𝑑Ω

4𝜋

= 4𝑓2𝜋𝑛2
2𝛼2𝐵

0 − (𝛽2 − 𝜎22)𝑓2 ∫ 𝐼2
4𝜋

 𝑑Ω + 𝜎12𝑓1 ∫ 𝐼1
4𝜋

𝑑Ω = 0 (2.11b) 

From Eq. (2.11a), or identically Eq. (2.11), with Eq. (2.5a-b), (2.8), (2.9) and (2.10a-b), after 

simplification we obtain: 

𝜎10𝑓1 ∫ 𝐼1
4𝜋

𝑑Ω = 𝜎01𝑓0 ∫ 𝐼0
4𝜋

 𝑑Ω (2.12) 

We then apply Eq. (2.10a-b) again and we simplify to obtain: 

𝑓1𝑛1
2𝜎12 = 𝑓2𝑛2

2𝜎21 (2.13) 

While this equation is trivially satisfied if one obtains the values of β and σ using the methods 

proposed in [38][74], if these values are obtained otherwise (e.g. with a Monte Carlo method), this 
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may not be the case. It will reveal itself useful later in this work, when developing an improvement 

of the existing MPA model. It may be noted that Eq. (2.13) is also implied in Dauvois et al. [42], who 

follow a more complex derivation that is valid for non-isotropic media where  𝜎𝑎𝑏 = 𝜎𝑎𝑏(Ω). 

2.2.2 Other recent developments – Generalized Radiative Transfer Equation 

Another significant issue of conventional RTE description of propagation of radiation in cellular 

media is the assumption of Beerian (i.e. exponential) extinction of radiation. Especially in the case of 

the solid phase, this assumption can turn out to be far from reality. A novel approach, called 

Generalized Radiative Transfer Equation (GRTE) [41] has been recently proposed to address this 

problem. In the GRTE approach, rather than using a simple exponential decay function (characterized 

by the extinction coefficient β) and a scattering albedo σ, the entire extinction and scattering 

distribution functions are plugged into the RTE: 

 

(2.14) 

In another very recent development, Dauvois et al. [42], building upon a GRTE model, have also 

addressed the possible effects of dependence of a ray’s propagation behavior from its history. They 

achieved this by classifying their extinction length information according to ray history in micro-

scale MCRT simulation, and then using the full hierarchy of extinction length distributions (organized 

on three tiers) in the homogenized simulation, according to ray history: 
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(2.15a) 

 

(2.15b) 

According to their formulation, a ray is assigned a different extinction/scattering distribution function 

depending on its previous history, with up to 3 phase transitions taken into account.  They’ve also 

shown that the results of their more accurate model differ quite significantly from those of a standard 

MPA [42].  

2.2.3 General observations 

Unfortunately, literature comparing these advanced homogenized models with reference solutions or 

full Monte Carlo simulations is scarce and the evidence is mixed [40][48]. Another limit of these 

models is that they introduce significant complication in the resolution of the homogeneous equations. 

The MPA doubles the number of equations and requires the addition of coupling terms to the problem. 

In the case of the GRTE, on top of the substantial complication of the equations themselves 

(especially when ray histories are accounted for), their form complicates substantially the adoption 

of conventional methods of resolution of the homogenized RTE, such as the Discrete Ordinates (DO) 

method, requiring Monte Carlo solution of the radiation field in the homogenized medium. In all 

cases this has significant impacts on computational costs, which are significantly higher than those 

of the HPA. 

In the light of this state of affairs, we concentrated our efforts in the field of radiative modeling in 

semi-transparent foams on two main paths: 

1) The development of more efficient and general reference methods (Section 3). 

2) The development of new, more accurate, yet simple, homogenized methods (Section 4). 
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SECTION 2 

DIGITAL GENERATION OF REALISTIC 

CELLULAR MORPHOLOGIES 

  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



47 
 

Chapter 3 – A general framework for the generation of 

realistic cellular morphologies. 

3.1. Introduction 

As already discussed in the General Introduction and recalled in Section 1, the current state of the art 

Monte Carlo techniques for the determination of radiative properties of porous media depend on the 

accurate knowledge of the porous morphology at the micro-scale. The object of analysis is the so 

called Representative Volume Element (RVE): a limited amount of porous material fully representing 

the morphological characteristics of the material at a microscopic scale, thus allowing to characterize 

it. 

Techniques fully based on tomographic data provide satisfactory agreement with experimental data, 

but their dependence on high quality scans of existing foam samples makes them of limited utility for 

design purposes. To overcome these limitations, a number of recent studies have sought to digitally 

reproduce the foam structures using different approaches 

[15][29][30][31][32][33][34][35][71][75][76][77][78][79][80].  

In the present work, a methodology is proposed that makes it possible to generate realistic 

Representative Volume Elements (RVE) of porous foam structures. This methodology, which will be 

explained in detail in the following, involves the generation of a pseudo-random periodic packing of 

seeding spheres, the generation of a Voronoi-Laguerre diagram of these spheres using voro++ [46], 

the stabilization of the resulting cell structure using Surface Evolver [47], and the extraction of the 

skeleton from the stabilized cell structure. Three different types of porous morphologies can be 

obtained, covering a large variety of porous foam materials: 
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1. The packed spheres, after a process of further inflation, conversion to voxels and porosity 

fine-tuning and inversion, can finally be used as basis for meshing open cell porous structure 

such as carbon foams using the iso2mesh [81] package (Fig. 3.1). 

2. Alternatively, the packed spheres are fed to in the voro++ [46] software to create a Voronoi-

Laguerre tessellation, that is then refined and stabilized in Surface Evolver [47]. The stabilized 

Voronoi-Laguerre cells, through a process of wall duplication-separation, are transformed into 

realistic 3D models of high porosity closed cell foams such as cellular plastics (Fig. 3.2). 

3. In another variation, cell faces are eliminated and only the skeleton formed by struts is left. 

Then, 3D polygonal struts of controlled shape are added following the skeleton and virtually 

welded at their intersections through a shrink-wrapping [82] process, allowing to obtain 

realistic models of high porosity open cell foams such as metal foams (Fig. 3.3). 
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Fig. 3.1 – Open cell porous structure  

(ε = 70%) 

 

Fig. 3.2 – High porosity closed cell foam  

(ε = 85%) 

 

Fig. 3.3 – High porosity open cell foam (ε = 95%) 
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Fig. 3.4. Flow diagram of the morphology generation method. 

The scheme of the morphology generation method is illustrated in Fig. 3.4, illustrating the sub 

processes involved, the inputs and the final outputs. In the following various parts are explained, 

Start 

Drop spheres in bounding 

box by RSA algorithm 

Packs spheres by inflation, 

contact force calculation and 

random shaking 

Calculate Voronoi-

Laguerre tessellation 

with voro++ [46] 

Weld struts together 

at the junctions 

End 

Drops spheres from largest 

to smallest avoiding 

overlaps. 30% packing 

fraction. 

Packing fraction of at 

least 62% 

Stabilize cellular 

structure with 

Surface Evolver [47] 

Extract skeleton  

Cut to bounding box 

Each sphere is the 

included sphere of its 

Voronoi-Laguerre cell 

Standard evolution + 

Annealing [78] 

Inflate spheres 

allowing 

intersection 

Convert geometry 

to voxels 

Fine-tune porosity 

by Gaussian 

blurring and 

thresholding 

Mesh the voxel 

structure with 

iso2mesh [81] 

Cut to 

bounding box 

End 

Refine structure up 

to desired number 

of triangles 

Cut to 

bounding box 

End 

High porosity open cell foam High porosity closed cell foam 
Open cell porous structure 

Separate cells 

(duplicate walls) 

Displace cells to 

obtain uniform 

wall thickness 

Invert voxels 

Relative 

diameter 

distribution 

Porosity 
Strut shape 

Add 3D struts 

Porosity 

Mesh size 
Mesh size 

Mesh size 

Porosity 

Notes Inputs Processes Endpoints Legend 

Number of 

cells 

3 

2 

4 

5 

6 

Subsections 

2-6 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



51 
 

grouped by number (2-6) according to Fig. 3.4. With respect to the methodology as a whole, it is 

worthwhile to remark that, compared to methods existing in literature, the peculiarity of the 

present approach is that it allows to generate a number of morphologically diverse porous 

cellular structures with high control of the main morphological parameters in the context of a 

unified coherent process. Another significant characteristic common to the entire method is 

that the obtained structures are periodic, that which is often useful for simulation purposes. 

Significant features and innovation relevant to specific parts and specific morphologies will be 

highlighted in the respective sections. 
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3.2 Close random sphere packing generation. 

 

As seen in the introduction, the process always starts with the generation of a random periodic packing 

of spheres in a unit cube. The inputs of the algorithm are the number of spheres and their relative 

diameter distribution. The number of spheres in the initial periodic packing controls the number of 

cells in the final structure and the diameter of the cells in the final structure is proportional to the 

diameter of the corresponding spheres. To achieve the final desired metric cell size distribution, the 

structures are scaled at the end of the generation process. The diameter distributions used are Gaussian 

unimodal distributions and lognormal unimodal distributions, of varying standard deviation, chosen 

on a case-by-case basis according to data collected by tomographic analysis. The dispersion of the 

diameter distribution is controlled through its coefficient of variation 𝐶𝑉 = 𝑠𝑡𝑑(𝑑)/𝑑̅ for the 

Gaussian unimodal distribution and through its geometric coefficient of variation 𝐺𝐶𝑉 =

√𝑒𝑣𝑎𝑟(ln(𝑑)) − 1 for the lognormal unimodal distribution. During the process of packing, the diameter 

of each single sphere is varied multiple times, but the ratio 
𝑑𝑖
𝑑̅
⁄   of the diameter of any given sphere 

di to the average diameter of all cells 𝑑̅ stays constant. Therefore, the coefficients of variation of the 

distribution also stay constant.  

The spheres are initially positioned in space with a Random Sequential Absorption (RSA) algorithm 

[78] that drops the prescribed number of spheres into space according to the prescribed size 

distribution, enforcing non-overlapping condition, with a final packing density of 30%. The values 

of di are randomly picked from a normal or lognormal distribution of mean 1 and prescribed CV or 

GCV (respectively), then scaled to occupy 30% of the volume of a unit cube: ∑
𝜋𝑑𝑖

3

6
= 0.3. 

After reaching a density of 30% by RSA, the spheres are packed through a sequential inflation-

packing algorithm [83], briefly presented in the scheme of Fig. 3.5. The objective of the algorithm is 

to reach the maximum packing density of spheres possible without intersections among spheres. This 

is obtained iteratively. At each step, the spheres are inflated by a small amount (starting at 1%). All 
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sphere pairs are then tested for contact, and for contacting sphere, adjustment vectors that allow to 

resolve the contact (i.e. make the spheres tangent) are also calculated. 

 

Fig. 3.5 – Scheme of the inflation-packing algorithm 
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Even though the coordinates of the spheres are stored only for spheres whose centers sit inside the 

bounding box, all the contact pairs evaluation are conducted considering that the domain and the 

spheres wrap periodically around the 3 coordinate axes, so that the final output is periodic. Fig. 3.6 

shows a simplified 2D representation of the domain. 

 

Fig. 3.6 – (A) Explicitly represented domain (unwrapped spheres). (B) Virtual domain used for contact 

calculation with periodic wrapping. (C) Domain cut to periodic bounding box. Note that both (A) and (C) are 

periodic units that can be used to tessellate space. 

Each sphere is then moved according to the largest adjustment vector associated to it. The contact 

pairs are then recalculated and the adjustment repeated until no contact pairs are left. Every 10 

contact-resolution iterations a small random perturbation is added, to simulate shaking, in order to 

avoid low density jammed configurations. When after 10000 contact-resolution iterations there are 

still contacts, the last inflation step is rolled back and the inflation per iteration is reduced, until 

0.001% inflation per iteration is reached. The algorithm then stops and the resulting structure is 

considered to be jammed/packed. The final output of the algorithm is the list of the centers of all 

spheres and their respective final diameters.  
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Fig. 3.7 presents a graphic overview of the typical course of the algorithm. The algorithm allows to 

reliably obtain packing densities in excess of 62% for equal sized spheres without overlapping, which 

satisfies the close random packing limit. [83]  

   

  (A)              (B)     (C)  

Fig. 3.7 – (A) Start of RSA – (B) End of RSA – (C) End of Packing 
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3.3 Open cell porous structures 

With some additional processing, the packed spheres (see Paragraph 3.2) can be used to obtain open 

cell porous structures such as those encountered for example in carbon foams. Similar techniques 

have already been used in literature [31][75][76][77], with some variation concerning choice of initial 

particle placement and contact laws between particles. A simplified process is used in this work, 

which will be detailed in the following.  

 

Fig. 3.8 – Packed spheres (left) and inflated intersecting spheres (right). 

First, the spheres are further inflated, keeping the relative radius distribution and the centers 

unchanged and allowing intersections (Fig. 3.8). The inflation is calculated as to make the sum of 

volume of all spheres equal to the required porosity (not accounting for intersections): this allow to 

crudely match the required value of porosity. The resulting geometrical structure is then converted 

into (binary) voxel format. The voxel structure allows to evaluate the porosity exactly, and to correct 

the error caused by neglecting the intersections. To fine-tune porosity to the required value, the 

structure is converted to a real-valued format, following which a 5x5x5 3D Gaussian Blur filter [84] 

is applied. A threshold filter is then applied to transpose the structure again in binary voxel format, 

taking care to choose the threshold value in such a way as to obtain the exact required final porosity 
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(Fig. 3.9). Finally the voxel structure is meshed using iso2mesh [81]. Fig. 3.10 illustrates a typical 

example of final output. 

    
  (A)                       (B)     (C) 

Fig. 3.9 – The three steps of porosity fine-tuning process from left to right. (A) Original voxels (B) After 

Gaussian Blur (C) After thresholding. The final structure is more porous, while preserving general topology. 

Blur is exaggerated for clarity. 

 

Fig. 3.10 – Finalized open cell structure (85% porosity) 
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Similar approaches have already been tried with good results in [75][76][77]. Compared to existing 

approaches, ours is most similar to the one seen in [31], in that it allows to generate a structure that 

is periodic in all the three coordinate directions, while only requiring the cell size distribution as 

additional morphological input, and to obtain a defined value of porosity without having to perform 

additional manipulations such as pore deletions. However, we eschew the contact laws based 

approach of [31] in favor of a packing-and-inflation approach that, while less realistic, is considerably 

simpler and still allows to obtain fairly realistic output morphologies. 
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3.4 Voronoi-Laguerre diagram and Surface Evolver processing 

To obtain highly porous closed (Fig. 3.2) and open cell (Fig. 3.3) structures, such as those seen 

respectively in plastic and metal foams, further processing of the packed spheres (see Paragraph 3.2) 

is needed. A periodic 3D Voronoi-Laguerre diagram is generated using Voro++ [46], using the 

packed spheres as seeding spheres of the diagram. The Voronoi - Laguerre diagram partitions the 

space in polyhedral regions, one for each seeding sphere. For every point in a given region, its 

minimum distance to the external surface of that region’s seeding sphere is lower than its minimum 

distance from the external surface of any other seeding sphere. It is important to note that Voronoi-

Laguerre tessellation guarantees that each seeding sphere is fully contained inside its respective cell 

(Fig. 3.11). The final output of Voro++ is a list of cells defined in terms of their vertices (Fig. 3.11). 

A polyhedral cell can be obtained from its vertices by calculating the convex hull of said vertices. 

 

Fig. 3.11 – Voronoi-Laguerre tessellation in 2D (left) and 3D (right) [46]. Included spheres in pink, cell 

vertices in dark blue. For the sake of visibility, no cell faces and only a part of cell vertices has been 

represented in the 3D picture. 

The resulting data structure is adapted into a Surface Evolver [47] input file. The structure is 

processed in Surface Evolver (Fig. 3.12) combining standard evolution and compression/traction 

annealing [78]. Periodicity of the structure is preserved during the Surface Evolver processing. 

Treating the structure with Surface Evolver makes it possible to achieve two results: 

- The resulting structure is an energetically stable structure rather than just a random structure, 

that which should make it more realistic. The Surface Evolver refines the initially simple 
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Voronoi mesh, allowing to obtain curved faces [47][78][79]. The difference in refinement 

between initial mesh and final mesh can be seen in Fig. 3.12. In addition, during the evolution 

process vertices and struts that are unstable with respect to Plateau’s laws are exploded to 

obtain energetically stable configurations. 

- The cell size distribution can be directly specified and enforced in Surface Evolver, rather 

than indirectly. In fact, while the Voronoi-Laguerre tessellation guarantees that the seeding 

spheres are included in the respective cell, it does not guarantee a fixed correspondence 

between sphere volume and cell volume (as can also be seen in Fig. 3.11). Then, to finely 

control the final cell size distribution, an additional step is required in Surface Evolver. Each 

cell is assigned a target volume 𝑉𝑖 = 𝐾𝑑𝑖
3, where di is the diameter of the respective seeding 

Voronoi sphere, and K is chosen so that the sum of cell volumes equals the volume of the 

cubic periodic RVE: ∑ 𝑉𝑖 = 𝑉𝑅𝑉𝐸. 

The final output of Surface Evolver is a list of cells defined in terms of their faces, struts and vertices, 

that can be further processed to obtain realistic high porosity closed and open cell structures. 

 

  

Fig. 3.12 – (Left) Initial cell structure (Voronoi-Laguerre diagram). (Right) Processed cell structure 

(after Surface Evolver). For display purposes, the periodic structure is unwrapped and each cell is displayed 

only one time. 

The use of Voronoi diagrams and Surface Evolver to generate realistic closed cell structures has been 

extensively investigated in the past [78][79]. Recently Cunsolo et al. [85] have shown that such 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



61 
 

processing can be fruitfully used to model open cell structures and hereby predict radiation heat 

transfer, while Baillis et al. [86] applied it to prediction of thermal conductivity of open and closed 

cell structures.  
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3.5 Closed cell plastic foams 

To finalize the closed cell structure, first the level of mesh refinement is chosen and the geometry 

obtained by Surface Evolver (see Paragraph 3.4) is refined to the desired number of elementary 

triangular facets. Following the refinement step, cells are “separated”, that is to say, every face is 

duplicated and each the two copies is grouped with other connected faces, each group constituting 

the boundaries of one of the original cells. Each cell-group can then be assigned with a displacement 

vector: one can see that with an opportunely chosen set of displacement vectors, a wall of chosen 

thickness between cells can be represented (Fig. 3.13).  

  

Fig. 3.13 – Original (left) and exploded (right) cell structure. Colors identify cells. Walls are pattern filled. 

To obtain walls of uniform thickness, an opportune error function is constructed and minimized. The 

relevant magnitudes will be hereby presented with reference to Fig. 3.14. To construct the error 

function, let 𝐹𝑛
(1)

 and  𝐹𝑛
(2)

 be two corresponding duplicated facets, let then  𝐹𝐶𝑛
(1)

and 𝐹𝐶𝑛
(2)

 be the 

centroids of 𝐹𝑛
(1)

 and 𝐹𝑛
(2)

respectively after displacement, let 𝐹𝑁𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐹𝑁𝑛

(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
= 𝐹𝑁𝑛

(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
 be the unit 

normal of the facets 𝐹𝑛
(1)

 and 𝐹𝑛
(2)

, so that |𝐹𝐶𝑛
(1)𝐹𝐶𝑛

(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
∙ 𝐹𝑁𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| is the distance between the facets 

measured along their normal, i.e. the local wall thickness, let finally THICK be the target thickness 

of the walls (chosen according to desired final porosity), the error function is written as: 

𝐸𝑅𝑅 ({𝐹𝐶𝑛
(1)𝐹𝐶𝑛

(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
}
𝑛=1…𝑁𝑓

) =∑(|𝐹𝐶𝑛
(1)𝐹𝐶𝑛

(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
∙ 𝐹𝑁𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| − 𝑇𝐻𝐼𝐶𝐾)

2

𝑁𝑓

 
(3.1) 
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Where Nf is the number of facets .Being defined as the sum of the squared differences between desired 

thickness and effective local wall thickness, this function trivially tends to 0 when all walls have the 

desired thickness, so by minimizing it we can find a set of vectors that allow to best approximate this 

result. However this error function has an extremely high number of independent vectors, equal to 

the number of facets. One can use the fact that facets in the same cell have the same displacement to 

drastically reduce this number. 

 
Fig. 3.14 – Detail of explosion of one pair of cells, with indication of magnitudes involved in 

calculation. 

Letting 𝐹𝐷𝑛
(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

and 𝐹𝐷𝑛
(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

 be the displacement associated to the cell-groups that 𝐹𝑛
(1)

 and 𝐹𝑛
(2)

 are 

respectively grouped into and 𝐹𝐶𝑖 be the original centroid of the facets, making reference again to 

Fig. 3.14 one can also write: 

𝐹𝐶𝑛
(1)
𝐹𝐶𝑛

(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
= 𝐹𝐷𝑛

(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
− 𝐹𝐷𝑛

(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
 (3.2) 

𝑅𝑅 ({𝐹𝐷𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  }
𝑛=1…𝑁𝑐

) =∑(|(𝐹𝐷𝑛
(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
− 𝐹𝐷𝑛

(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
) ∙ 𝐹𝑁𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| − 𝑇𝐻𝐼𝐶𝐾)

2

N𝑓 

 
(3.3) 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



64 
 

Where Nf is the number of facets and Nc is the number of cells. By this substitution, the number of 

independent vectors is reduced to the number of cells, which is about 300 times smaller than the 

number of facets. This error function is minimized using an Interior Point Algorithm, with cell-group 

displacement vectors 𝐹𝐷𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  being the independent variables. The displaced resulting cells are shown 

in Fig. 3.15. 

The displaced cells are then used to carve holes in a cubic bounding box thus resulting in the finalized 

constant thickness closed cell structure (Fig. 3.16). The porosity of the final structure can be 

controlled by varying the target thickness of the walls THICK. The final output is a periodic structure 

of controlled cell distribution, porosity and mesh refinement. Compared with existing literature 

[78][79][80], the main novelty of this method is the full 3D explicit representation of the structure, 

which has been usually eschewed in previous efforts in favor of 2D shell representations. This should 

allow to improve accuracy of results, especially at relatively low (i.e. < 95%) levels of porosity. 

  

 

Fig. 3.15 – Full cell structure (left) and close up (left) showing the space between cells (wall thickness) in 

3D. 
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Fig. 3.16 – Finalized high porosity closed cell structure 
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3.6 Open cell metal foams 

  

Fig. 3.17 – Cell structure after Surface Evolver processing and corresponding skeleton. 

To finalize the open cell structure, edges with three neighboring cells, i.e. struts, are then isolated to 

obtain the structure skeleton, used in further processing (Fig. 3.17). Polygonal struts are added along 

the edges. The strut cross section is represented as an equilateral triangle with curved sides of constant 

curvature. The shape of the curved sides can be varied, giving rise to concave, flat or round shapes. 

The shape of the triangle is described using a single parameter k, labeled normalized curvature, which 

corresponds to the curvature radius of the circle circumscribing of the triangle divided by the local 

signed curvature radius of the sides. For values of -1/√3 < k < 1 the cross-section varies from 

maximally concave triangular, to flat triangular, to circular (Fig. 3.18).  

 

Fig. 3.18 – Cross section of the strut 

 

Fig. 3.19 – Longitudinal profile of the strut 
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Additionally, the longitudinal profile of the struts varies according to a quadratic law, i.e. the diameter 

of the circle circumscribing the cross section varies according to 𝑑𝑠(𝑥) = 𝑑𝑠
𝑚𝑖𝑛 [1 +

(1−𝑡)(2𝑥−𝑙𝑠)
2

𝑡𝑙𝑠
2 ] 

where 0 ≤ x ≤ ls is the local abscissa and ls is the length of the strut. The ratio of minimum to maximum 

diameter, t = 𝑑𝑠
𝑚𝑖𝑛/ 𝑑𝑠

𝑚𝑎𝑥can be controlled (Fig. 3.19). 

The resulting structure constituted by all the struts together is not a continuous mesh, but rather 

presents a number of self-intersections, namely at the junction points of the struts. The application of 

a “virtual welding” (shrink-wrapping) process at the junction makes it possible to obtain a continuous 

mesh, free of self-intersections. This process involves identification of intersecting facets, 

construction of the convex hull of said facets, then iterative refining and projection of said convex 

hull into the original polygonal structure, and smoothing of the resulting mesh [82]. Fig. 3.20 depicts 

a typical junction before and after the process. 

  
Fig. 3.20 – Structure before (a) and after (b) the “virtual welding” process. 

As part of the skeleton edges extend to the borders of the bounding box (Fig. 3.17), the 3D struts that 

have these edges as axes partly extend outside the bounding box. As a final step, these struts are cut 

along the bounding box, to obtain a structure that is fully periodic and fully contained into the cubic 

RVE bounding box, with controlled porosity, cells of controlled size distribution and struts of 

controlled shape (Fig. 3.21). 

This model has been employed for radiative heat transfer simulation and validated against 

tomographical data in recent work by Cunsolo et al. [85] Compared to previous literature 

[34][35][15], the process hereby presented allows to finely control the cell size distribution through 
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Surface Evolver and to control the shape of the strut to a degree that had not been realized before in 

pseudo-random structures. 

 
Fig. 3.21 – Example of finalized structure (CV = 5%; t = 1; ε = 94%; k = 1) 
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Chapter 4 - Radiative Properties of Irregular Open Cell Solid 

Foams  

This chapter is an extract of an article published in the International Journal of Thermal Sciences [85]. 

It presents in deeper detail the method briefly introduced in Paragraph 3.6. The method is based upon 

Voronoi partitions with random seeding points, combined with Surface Evolver to obtain a more 

realistic cell structure. The detailed geometrical characteristics of the struts are taken into account.  

The generated structures can be created to compare well to real tomographic samples. A number of 

characteristics of the resulting structure can be controlled. The application of Monte Carlo simulations 

to the generated structures allows the precise evaluation of each parameter’s influence on the 

extinction coefficient. This in turn makes it possible to propose some simplified analytical 

correlations. The correlations are validated against Monte Carlo simulations on tomographic data and 

compared with existing reference relations from literature. Finally, simplified forms of the relations 

are proposed.  

4.1 Introduction 

Cellular foams are a key material for many technological applications. Their high porosity (or low 

relative density) and large specific surface area play an important role from the thermal point of view. 

For example, high porosity closed cell polymer foams are used as efficient insulating materials 

[1][2][3][4]. Metal or ceramic foams are being employed in a variety of high temperature applications, 

such as volumetric solar energy receivers for CSP plants [11], compact heat exchangers [8], porous 

radiant burners [9][10] and fire barriers [63]. Accurate modeling of thermal properties is obviously 

highly desirable for the optimization of the performance in these applications. Considering the high 

porosity (typically in a range from 85% up to 98%), radiative heat transfer contribution can be 

significant, and in some cases even prevalent over other heat transfer modes [87]. For this reason, a 

large number of analytical and numerical approaches have been dedicated to the characterization of 
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radiative heat transfer in cellular solid foams. Most studies focus on determining appropriate 

equivalent continuous medium properties. 

Specifically focusing on radiation, the current baseline state-of-the-art approach is based on the 

utilization of the Radiative Transfer Equation (RTE). General lines on the usage of RTE for radiative 

transfer can be found for example in textbooks [12][43][44][45]. While alternative approaches exist, 

the RTE approach is usually considered sufficiently accurate for most practical cases, if the relevant 

coefficients (radiative properties) are correctly determined [39][66][67]. 

As such, most of the literature has been focused on finding efficient and reliable ways to determine 

radiative properties [13][70][88]. In recent years, numerical methods based on Monte Carlo 

techniques for the determination of radiative properties are becoming established in order to study 

either real structures obtained from tomographic imaging or computer generated structures that 

closely mimic the microstructure of the real foams. 

Tancrez and Taine [36] proposed to use the Radiative Distribution Function Identification (RDFI) 

model and determined radiative properties of spherical packed beds. Zeghondy et al. [22][23] and 

Petrasch et al. [24] applied the RDFI approach to tomographic data of cellular foam samples. Coquard 

et al. [25][26][27] proposed to use an alternative Monte Carlo approach based on mean free path 

calculation. Cunsolo et al. [15] recently presented a review including an extensive discussion of 

numerical methods, including Monte Carlo techniques. 

Techniques fully based on tomographic data provide satisfactory agreement with experimental data, 

but their dependence on high quality scans of existing foam samples makes them of limited utility for 

design purposes. To overcome these limitations, a number of recent studies have sought to digitally 

reproduce the foam structures using different approaches, including mathematical morphology 

operations applied on existing tomography data [29][30], simulation of the bubbling process [31], 

regular [32][33] and irregular [34][35] Voronoi partitions. By computer generating a number of 

structures and running numerical simulations [29][30][35] it is possible to obtain useful results for 
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the optimization of energy transfer. Irregular 3D Voronoi structures seem to be particularly promising 

for this purpose as they can be described with a limited amount of parameters, are based on well-

known generation methods and approximate the structures of real foam reasonably well [71].  

In the current paper, a novel methodology is presented that allows the generation of polygonal mesh 

to represent high porosity open cell foams with high control of a number of geometrical parameters. 

The methodology is subsequently applied systematically with individually varying parameters to 

generate a number of structures. The generated structures are introduced into a Monte Carlo algorithm 

for the calculation of radiative properties, and especially of the extinction coefficient, β. For each 

structure, the specific surface area Sv and porosity ε are also calculated, and the normalized extinction 

coefficient β+ = 4β∙ε ⁄ Sv [36] is deduced. This procedure makes it possible to determine which 

parameters have a significant effect on the extinction coefficient and which parameters have a 

negligible effect, thus defining the inputs required to calculate the extinction coefficient with a given 

accuracy. Based on this assessment, new analytical relations are given that fit the numerical results 

with a minimum number of parameters and more accurate than those present in the literature. These 

relations are expected to be useful for material design purposes. 

4.2 Methodology 

4.2.1 Digital generation methodology 

4.2.1.1 Digital generation methodology - Presentation 

In the present work, a methodology is proposed that makes it possible to generate realistic foam 

structures. The methodology involves the generation of a pseudo-random lattice of seeding points, 

the generation of a Voronoi diagram of these points, the stabilization of the resulting cell structure in 

Surface Evolver [47], the addition of polygonal struts along the resulting skeleton, and finally the 

virtual welding of the polygonal struts at their intersections through a shrink-wrapping [82] process. 

While similar generation methods based on Voronoi diagrams have already been presented in 
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literature [15][34][35], the current approach does present some distinct features, specifically the use 

of Surface Evolver and the capability to directly generate intersection-free triangular meshes.  

The process requires initially generating a number of seeding points. The corresponding final 

structure will be a periodic structure containing as many cells as initial seeding points. For this study, 

a number of 128 initial seeding points, corresponding to 128 cells final structure has been used. This 

number of cells ensures convergence of Monte Carlo algorithms [15] and allows creating a cubic 

Kelvin foams with a whole number of Kelvin periodic units (made up by 2 cells), making comparison 

with regular structures simpler. The points are generated with a Random Sequential Absorption 

algorithm [89] that drops equal-sized spheres into space, enforcing non-overlapping condition, with 

a final packing density around 30%, the centers of the spheres being used as the seeding point. This 

serves to insure a minimum distance between any two seeding points (Fig. 4.1). 

 
Fig. 4.1 – Progressive dropping of spheres into space at 5% (a), 16% (b) and 30% (c) packing 

density. 

The periodic 3D Voronoi diagram of the seeding points is then generated. The Voronoi diagram 

partitions the space in polyhedral regions, one for each seeding point. Every point of a given region 

is closer to that region’s seed than to any other seed. The resulting data structure is adapted into a 

Surface Evolver input file. Treating the structure with Surface Evolver makes it possible to achieve 

two results: 
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- The resulting structure is an energetically stable structure rather than just a random structure, 

that which should make it more realistic. 

- The cell size distribution can be directly specified and enforced in Surface Evolver, rather 

than indirectly as in approaches using perturbed regular structures [15][35] 

The structure is refined and processed in Surface Evolver until a stabilized final structure is obtained. 

The size distribution of cells used are Gaussian unimodal distributions of varying standard deviation. 

The dispersion of the cell size distribution is controlled through its coefficient of variation 𝐶𝑉 =

𝑠𝑡𝑑(𝑑)/𝑑̅. Edges with three neighboring cells, i.e. Plateau edges, are then isolated to obtain the 

structure’s skeleton, used in further processing (Fig. 4.2). 

  
Fig. 4.2 – (a) Initial cell structure (Voronoi diagram) (b) Processed cell structure (after Surface 

Evolver) 

 (c) Cell structure skeleton. 

In further processing, polygonal struts are added along the edges. The strut cross section is represented 

as an equilateral triangle with curved sides of constant curvature. The shape of the curved sides can 

be varied, giving rise to concave, flat or round shapes. The shape of the triangle is described using a 

single parameter k, labeled normalized curvature, which corresponds to the curvature radius of the 

circle circumscribing of the triangle divided by the local signed curvature radius of the sides. For the 
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cross-section varies from maximally concave triangular, to flat triangular, to circular (Fig. 4.3).  

 

Fig. 4.3 – Cross section of the strut 

 

Fig. 4.4 – Longitudinal profile of the strut 

Additionally, the longitudinal profile of the struts varies according to a quadratic law, i.e. the diameter 

of the circle circumscribing the cross section varies according to a law 

𝑑𝑠(𝑥) = 𝑑𝑠
𝑚𝑖𝑛 [1 +

(1−𝑡)(2𝑥−𝑙𝑠)
2

𝑡𝑙𝑠
2 ] where 0 ≤ x ≤ 𝑙𝑠 is the local abscissa and 𝑙𝑠 is the length of the strut. 

The ratio of minimum to maximum diameter, t = 𝑑𝑠
𝑚𝑖𝑛/ 𝑑𝑠

𝑚𝑎𝑥 can be controlled (Fig. 4.4). 

The resulting structure constituted by all the struts together is not a continuous mesh, but rather 

presents a number of self-intersections, namely at the junction points of the struts. The application of 

a “virtual welding” (shrink-wrapping) process at the junction makes it possible to obtain a continuous 

mesh, free of self-intersections. This process involves identification of intersecting facets, 

construction of the convex hull of said facets, then iterative refining and projection of said convex 

hull into the original polygonal structure, and smoothing of the resulting mesh [82]. Fig. 4.5 depicts 

a typical junction before and after the process. 

  
Fig. 4.5 – Structure before (a) and after (b) the “virtual welding” process. 
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As a final step, the structures are cut along their periodic bounding box to obtain cubic, periodic 

representation (Fig. 4.6). 

 
Fig. 4.6 – Example of finalized structure (CV = 5%; t = 1; ε = 94%; k = 1) 

The present algorithm presents two distinct features: 

1) It makes use of the software Surface Evolver to obtain a more realistic, stabilized cell structure 

with a finely controlled final cell size distribution. 

2) It directly generates the triangular mesh without ever resorting to a voxel representation of the 

structure, that which allows representing very fine details in large structures. 

The second feature of the algorithm is of paramount importance for the feasibility of the next part of 

the study, where to provide a more realistic description of the structure, both sub-pore scale 

geometrical features (e.g. strut cross section) and pore scale geometrical features (e.g. pore size 

distribution dispersion) are considered. 
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4.2.1.2 Digital generation methodology - Validation 

To verify the capabilities of the proposed methodologies, digitally generated structures have been 

compared with data obtained through tomography of real metal foam samples. Tomographic data was 

acquired for four samples by means of micro computed tomography (μCT). General information 

about the samples is presented in Table 4.1. Samples 1 and 2 have been used in previous work of the 

authors, while samples 3 and 4 are new experimental material, introduced to have a better coverage 

of the typical range of porosities of metal foams.  

Sample number Material Nominal porosity Nominal PPI μCT resolution 

1 [32] Al-NiP 90% 60 30 μm 

2 [7] Al 90% 40 44 μm 

3 Al 94% 40 22 μm 

4 Al 97% 40 22 μm 

Table 4.1 – Characteristics of the samples considered. 

The tomographic data has been analyzed using the free software iMorph [90] to extract the equivalent 

cell diameter distribution and the cell connectivity distribution. The cell connectivity represents the 

number of neighbor cells for each cell and can be thought of as akin to the number of faces per cell. 

The equivalent cell diameter distributions show a Gaussian unimodal shape with mean values of 𝑑̅  = 

{1842; 2431; 2892; 2725} µm and coefficients of variations CV = {3.46%; 2.46; 3.39; 4.34%} 

respectively for the four samples (Fig. 4.7). The connectivity distributions show a similarly Gaussian 

shape, with some skew; however, the average value (around 12) appears to be very similar among the 

samples considered (Fig. 4.8).  

Corresponding digital structures have been generated for each real sample, trying to match mean 

value and coefficient of variation of the equivalent cell diameter distribution. It is worth noting that 

the matching has not been obtained by means of an iterative process, but rather by directly inputting 

the desired quantities in the algorithm. Results appear to be satisfying and are shown in Fig. 4.9. 

Quantitatively, the original distributions and their matched distributions show a shared area fraction 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



77 
 

(Fig. 4.9) of fs = Ashared / Atot = {92%; 87%; 96%; 95%} respectively for the four samples. Chi-squared 

goodness-of-fit tests between real and matched distributions result in values of p = {0.92; 0.77; 0.998; 

0.98} respectively for the four samples. 

Additionally, the connectivity distributions of generated and real structures have been compared: 

considering that this distribution does not appear to vary very much between samples, an averaged 

distribution has been considered. The results appear satisfying (Fig. 4.10). Quantitatively, the two 

distributions present a shared area fraction of f s = 91%. Chi-squared test goodness-of-fit tests between 

the real and the matched distribution result in p = 0.25. 

 
Fig. 4.7 – Equivalent cell diameter distributions of the 4 samples, as calculated by iMorph. 
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Fig. 4.8 – Cell connectivity distribution of the 4 samples, as calculated by iMorph. 

 
Fig. 4.9 – Equivalent cell diameter distributions of the 4 samples and respective cell size 

distribution for matched generated structures, as calculated by iMorph. Shared areas are filled.  
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Fig. 4.10 – Average cell connectivity distribution of the 4 samples and average cell connectivity 

distribution for matched generated structures, as calculated by iMorph. Shared area is filled. 

 

4.2.2 Radiative properties calculation methodology 

Monte Carlo algorithms for calculation of radiative properties transfer have been extensively 

investigated in literature. The basic premise of the method is casting a large number of rays inside a 

digitally represented structure, and applying statistical treatment to the histories of the rays to 

characterize the radiative properties of the structure. Namely, for a given structure Monte Carlo 

radiation methods allow to calculate the extinction coefficient β, the scattering coefficient σ and 

scattering albedo ω = σ / β, the scattering phase function Φ(θ). A comprehensive review of Monte 

Carlo methods for calculation of radiative properties in cellular media can be found in [15].  

In the present paper, radiation propagation is assumed to obey the laws of Geometric Optics. This 

approximation is considered acceptable for metal and ceramic foams, where the strut diameter is 

typically in excess of 100µm. The solid phase is considered opaque. The rays are launched from 

random points in the fluid phase, and are considered extinct (by absorption or scattering) when they 

intercept the solid surface. Rays that traverse the bounding box without intersection with the solid are 

launched again from the opposite side of the bounding box, after randomization of position [15]. 
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The extinction coefficient is calculated as the inverse of the mean free path length of the rays: 

𝛽 =
1

∑ 𝑠𝑛𝑁
𝑛

𝑁

=
1

𝑠𝑎𝑣𝑔
 (4.1) 

It is worthwhile noting that such a characterization of the radiative properties of the medium is only 

valid if extinction in the medium follows a quasi-Beer-Lambert law. For all the geometries processed 

in this work, coherency of numerically calculated extinction with a Beer-Lambert law has been 

verified with an error of less than 1% across the entire range of values. In Fig. 4.11, a cloud of points 

representing computed values of the extinction probability distribution function for the four 

tomographically acquired samples and a selection of six generated samples is plotted along with an 

exponential fit. 

 
Fig. 4.11 – Computed extinction PDFs and exponential fit. 

With respect to scattering, the reflection is assumed to be diffuse and, additionally, reflectivity is 

considered independent of incidence angle, as it is assumed in several previous works 

[15][22][23][24][25][26][27][29]. Under this assumption, the following relation holds for the 

determination of the scattering albedo: 

𝜔 = 𝜌𝑠 (4.2) 

Where ρs is the surface reflectivity of the solid. Additionally, while Monte Carlo methods allow to 

numerically calculate the scattering phase function, it has been shown [40] that under the assumption 

of diffuse reflection, the numerically calculated scattering phase function for open cell foam structure 
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closely matches the scattering phase function for opaque large spheres or randomly oriented convex 

opaque particles [43][44][45]: 

𝛷(𝜃) =
8

3𝜋
(sin 𝜃 − 𝜃 cos 𝜃) (4.3) 

This has been found to be true with respect to the geometries processed in this work. The computed 

value differ no more than 10% from the analytical function (4.3). In addition, the computed phase 

function asymmetry factor, g, ranges in an interval -0.451 ≤ g  ≤ -0.469, within 6% from the value g 

= -0.444 that can be determined from (4.3). In Fig. 4.12, a cloud of points representing computed 

values of the scattering phase function for the four tomographically acquired samples and a selection 

of eight generated samples is plotted along with function (4.3).  

 

Fig. 4.12 – Computed scattering phase functions and analytical relation (4.3). 

For these reasons, the following analysis focuses on the extinction coefficient, β. 

Furthermore, the foams have been considered isotropic in the following analysis. Indeed, anisotropy 

effects have usually been found to be small in metal foams, with directional values within 10% of 

average values [25][28]. Furthermore, recent studies on aluminum foams have found anisotropy to 

be decreasing with increasing PPIs and practically undetectable in foams over 30 PPI [91] such as 

our samples. 
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The computations in the following have been executed on grids comprising a number of triangular 

mesh elements between 6x105 and 106, with a memory occupation of 25-50MB per grid. Each 

computation involved the tracing of 106 rays, with an average running time of around 22 minutes on 

2.70 Ghz dual core processor.  

4.3 Results and discussion 

Four parameters and their influence have been analyzed in this study: dispersion of cell size 

distribution (CV = {0%; 2.5%; 5%; 7.5%; 10%; 15%}), variation of strut diameter along the length (t 

= {0.33; 0.5; 0.66; 0.84; 1.0}), porosity (ε = {98%; 96%, 94%; 92%; 90%; 88%}) and normalized 

curvature of strut cross section (k = {-0.29; 0; 0.5; 1.0}). A base case (CV = 5%; t = 1.0; ε = 94%; k 

= 1.0) is generated and then parameters are varied individually to evaluate the effects. The values of 

parameters have been chosen to span the range of typical values observed in real foams. All the results 

are computed for an average cell size of 1 mm. It is worth noting that, operating under geometric 

optics approximation, the average mean free path is directly proportional to the average cell diameter, 

i.e. β = 1 ⁄ savg ∝ 1 ⁄ dc.  

Our results show that not all parameters considered have comparable influence on radiation. 

Fig. 4.13 – Effects of the variations of CV on β and β+ 

  

Fig. 4.14 – Kelvin foam 
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Dispersion of cell size does not appear to affect the extinction coefficient and the normalized 

extinction coefficient greatly. In fact, all structures considered appear to predict a small interval 

spanning ±1.5% around the average value (Fig. 4.13).  

The small influence of cell size dispersion prompts further investigation. Considering that a number 

of models in literature, both analytical [17] and numerical [32][33] have used fully regular structures 

as models to compute the properties of real structures, it is deemed worth of interest comparing a 

structure of this type to the irregular ones. Thus, an additional structure has been generated using a 

regular Voronoi partition based on a BCC lattice (Kelvin foam) (Fig. 4.14). 

While this single data point is further away from the average, the differences remain small in absolute 

value: the regular structures show higher normalized extinction coefficient (+2%) and a lower 

extinction coefficient (-6%) than random structures. This can be justified considering that struts of 

the regular structure meet at tetrahedral angles, thus minimizing self-shadowing and increasing the 

former, while on the other hand the regular structure allows the surface to be minimized, thus reducing 

the latter. It must be noted that long-range ordering effects in regular structures, namely the existence 

of preferential directions that never meet extinction, are ignored due to the nature of the Monte Carlo 

algorithms used, due to the choice of randomization of rays exiting the bounding box. This result 

partially supports the practice of using fully regular structures to estimate radiative properties in 

cellular media while minimizing required computational power, if some caution is used to correct the 

small errors incurred. However, the difference is such that the Kelvin structure has been excluded 

from the following analysis. 
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Fig. 4.15 – Effects of the variations of t on β and β+ 

Variation of strut diameter along the length has moderate effects on the extinction coefficient. All 

values considered lie in a ±5% interval. In addition, effects on the normalized extinction coefficient 

are minimal (Fig. 4.15). This indicates that this parameter can be ignored if the specific surface area 

is already known through other measures. 

In agreement with previous studies, porosity is found to have large effects on both the extinction 

coefficient and the normalized extinction coefficient. It is in fact by far the single parameter with the 

greatest influence among those considered (Fig. 4.16). 

  
Fig. 4.16 – Effects of the variations of ε on β and β+ 
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Strut cross section shape is also found to have large effects on the extinction coefficient and smaller, 

but not negligible effects on the normalized extinction coefficient. Overall, it is the second most 

influent parameter among those considered (Fig. 4.17). 

  
Fig. 4.17 – Effects of the variations of k on β and β+ 
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4.4 Simplified analytical relations 

4.4.1 Analytical relations - Presentation 

Based on the above findings, some simplified relations can be devised to calculate the extinction 

coefficient using a reduced set of parameters.  

It can be noted that the normalized extinction coefficient, i.e. the ratio of extinction coefficient and 

specific surface area, varies in a quite restricted range and is sensitive only to porosity and strut cross 

section shape. Thus, one can devise a very precise estimation of the extinction coefficient using 

porosity (ε) (Fig. 4.16) and strut cross section shape (k) (Fig. 4.17) to estimate the normalized 

extinction coefficient with a small error, then multiplying it by the specific surface area to obtain the 

value of β. Using our data, the following equation was estimated: 

𝛽 =
𝑆𝑣

4𝜀1.76[1+0.4(1−𝑘)]
 (4.4) 

 

The relation is proposed in a form similar to that of Brewster’s relations for spherical beds [56]. The 

analytical solution for the independent scattering β = Sv  ⁄ 4 is empirically adjusted with a factor 

depending from porosity and strut cross section shape  

Physical consistency is assured, as lim
𝜀→1

𝛽 = 𝑆𝑣/4 .  The strut cross section shape appears as a (1 – k) 

factor that can be thought of as “deviation from circular shape”. The proposed relation fits all the data 

with a maximum error under 3% and a root mean square error under 1% (Fig. 4.18). 
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Fig. 4.18 – Comparison of analytical law (4.4) and Monte Carlo results on generated structures 

Precise estimation of the specific surface area can be difficult to acquire. A relation that makes use 

of a more readily measured parameter may be of interest. The average equivalent diameter dc of the 

cell can be readily measured using simple imaging techniques. As seen previously (Fig. 4.15), 

variation of strut diameter along its length (t) also affects the value of the extinction coefficient, when 

the specific surface area is unknown. Using the average equivalent diameter dc, porosity ε, diameter 

ratio t and normalized curvature k as independent variables, the following equation was estimated: 

𝛽 =
2.62√1 − 𝜀[1 + 0.22(1 − 𝑘)2][1 − 0.22(1 − 𝑡)2]

𝑑𝑐
 (4.5) 

 

The form of the relation has been chosen to generalize that typically seen in literature [9], adding 

dependence from strut cross section shape and variation of strut diameter along its length. Allowing 

the exponent associated with (1 – ε) to freely vary results in values very close to 0.5, so the square 

root form has been retained and the exponent imposed in the regression. Strut cross section shape and 

variation of strut diameter along its length appear as (1 – k) and (1 – t) factors that can be thought of 

as “deviation from circular shape” and “deviation from constant diameter” respectively.  The 

exponent of two associated with (1 – k) and (1 – t) is chosen a priori, following from the shape of the 

curve on Figs. 4.13 and 4.15. The proposed relation fits all the data with a maximum error under 2.5% 

and a root mean square error under 1%. [Fig. 19] 
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 Fig. 4.19 – Comparison of analytical law (4.5) and Monte Carlo results on generated structures. 

Dimensionless parameters k and t, necessary for the computation of (4.4) and (4.5), can be easily 

determined by stereological techniques. In this work, iMorph was used as a stereological tool to 

devise relations between k [Appendix A] and t [Appendix B] and measurable stereological quantities. 

4.4.2 Analytical relations - Validation 

To validate the analytical relations (4.4) and (4.5), tomographic data from the same four samples 

presented in Section 2 have been used in direct Monte Carlo simulations, and the results have been 

compared with those obtained applying the analytical relations to morphological data from the same 

samples. The morphological data required as input have been obtained using iMorph and are listed in 

Table 4.2.  For further reference, Fig. 4.20 also shows a typical tomography slice for each of the four 

samples.  

Sample 

number 
ε dc [um] Sv [m

-1] 
k 

(Appendix A) 

t 

(Appendix B) 

1 87.2% 1842 1596 0.42 0.52 

2 89.3% 2431 1066 0.57 0.4 

3 93.6% 2892 742 0.36 0.34 

4 96.3% 2725 756 0.16 0.53 

Table 4.2 – Measured morphological characteristics of the four samples. 
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Fig. 4.20 – Typical tomography slice for each of the four samples. 

The results of the validation can be seen in Table 4.3. 

Sample 

number 

β [m-1] 

(MC) 

β [m-1] 

(4.4) 

Relative error 

(4.4) 

β [m-1] 

(4.5) 

Relative error 

(4.5) 

1 524.6 533.8 1.76% 510.9 -2.61% 

2 335.5 336.5 0.31% 336.9 0.43% 

3 217.8 214.6 -1.45% 224.6 3.16% 

4 205 206.6 0.77% 203.1 -0.95% 

Table 4.3 – Comparison of direct Monte Carlo computations on the four samples, and relations (4.4) 

and (4.5). Morphological data from Tab. 2. 

 

As expected, relation (4.4) affords the best accuracy, with a maximum error below 2% and a root 

mean square error of 1.21%. Relation (4.5), on the other hand, affords a maximum error under 3.5% 

and a root mean square error of 2.11%. In the light of the wide variability of geometrical 

characteristics of the four samples considered, the agreement between analytical results and Monte 

Carlo simulations on tomographic data is considered very satisfying for both relations. 

In addition, the accuracy of relations (1) and (2) has been compared with two reference relations from 

literature. The first is the one given by Brewster [66] for spherical beds and uses Sv as a variable: 

𝛽 =
𝑆𝑣
4𝜀

 (4.6) 

The second is the one given by Glicksman et al. [17] and uses the cell diameter as a variable: 

𝛽 = 4.09
√1 − 𝜀

𝑑𝐺
 (4.7a) 

Considering that the cell representation used in [17] is that of an equivalent dodecahedron and that 

the mean diameter of the dodecahedron dG is used, an equal volume rescaling from equivalent sphere 
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to dodecahedron has been adopted for the equivalent cell diameter (dG = 1.08d [92]). Additionally, 

the calculations in [17] use a correction factor of √2/3  to account for the concavity of the strut cross 

section typically observed in plastic foams [93].  

As the samples used in this study do present convex cross sections, this correction factor has been 

reversed. This ultimately yields: 

𝛽 = 3.09
√1 − 𝜀

𝑑
 (4.7b) 

 The results of the comparison can be seen in Table 4.4. 

 Sv dc 

Sample 

number 

Relative error 

(4.4) 

Relative error 

(4.6) [66] 

Relative error 

(4.5) 

Relative error 

(4.7b) [17] 

1 1.76% -12.82% -2.61% 5.75% 

2 0.31% -11.06% 0.43% 14.79% 

3 -1.45% -9.00% 3.16% 14.66% 

4 0.77% -4.25% -0.95% -1.37% 

 

Max error 1.76% -12.82% 3.16% 14.79% 

RMS error 1.21% 9.82% 2.11% 10.82% 

Tab. 4.4 – Comparison of relative error of relations (4.4), (4.5) to reference relations in the literature 

(4.6) and (4.7b). Morphological data from Tab. 2. 

As can be seen in the table, all the proposed relations afford a significant accuracy improvement over 

the respective reference relations. It can also be noted that, while reference relations (4.6) and (4.7b) 

tend to under predict and over predict (respectively) the real value of the extinction coefficient, errors 

for the proposed relations (4.4) and (4.5) appear to be randomly distributed. 

Finally, it is interesting to propose simplified forms for Eqs. (4.4) and (4.5), i.e. forms that include 

less dimensionless parameters. Optimal values for normalized curvature k and diameter ratio t are 

determined by averaging the values measured for the four samples. Setting k = 0.4, from Eq. (4.4) we 

obtain: 

𝛽 =
𝑆𝑣

4𝜀2.18
 (4.8) 

Setting t = 0.45, from Eq. (4.5) we obtain: 
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𝛽 =
2.45√1 − 𝜀[1 + 0.22(1 − 𝑘)2]

𝑑
 (4.9) 

Then setting k = 0.4 we obtain:  

𝛽 =
2.64√1 − 𝜀

𝑑
 (4.10) 

In Table 4.5, the accuracy of relations (4.8-10) is reported, once again in comparison with original 

relations (4.4-5) and reference relations (4.6-7b). 

 Sv dc 

Sample 

number 

Relative 

error 

(4.4) 

Relative 

error 

(4.8) 

Relative 

error (4.6) 

[66] 

Relative 

error 

(4.5) 

Relative 

error 

(4.9) 

Relative 

error 

(4.10) 

Relative 

error (4.7b) 

[17] 

1 1.76% 2.42% -12.82% -2.61% -3.85% -2.42% 5.75% 

2 0.31% 1.65% -11.06% 0.43% 2.29% 5.92% 14.79% 

3 -1.45% -1.65% -9.00% 3.16% 7.03% 5.80% 14.66% 

4 0.77% 0.12% -4.25% -0.95% -2.43% -8.99% -1.37% 

 

Max error 1.76% 2.42% -12.82% 3.16% 7.03% -8.99% 14.79% 

RMS error 1.21% 1.68% 9.82% 2.11% 4.34% 6.23% 10.82% 

Table 4.5 – Comparison of relative error of relations (4.8-10) in comparison with original relations 

(4.4) and (4.5) and reference relations (4.6) and (4.7b). Morphological data from Tab. 2. 

As expected, decreasing the number of dimensionless parameters decreases the accuracy. Therefore, 

RMS error for relation (4.8) is 50% larger than RMS error for relation (4.4), and RMS error for 

relations (4.9) and (4.10) is respectively 100% and 200% larger than RMS error for relation (5). 

However, relations (4.8) and (4.9-10) still offer a significant accuracy improvement over relations 

(4.6) and (4.7b) respectively. As previously, it can also be noted that errors for proposed relations 

(4.8)-(4.10) appear to be randomly distributed, as opposed to asymmetrical errors from relations (4.6) 

and (4.7b). 

4.5 Conclusions 

In this study, a novel methodology to generate open cell structures along with Monte Carlo numerical 

methods have used to predict radiative properties of open cell solid foams. Triangular meshes were 

used to replicate real foams, with finely controlled cell size distribution and strut shape, and smooth, 

realistic strut intersections free of self-intersecting elements. To demonstrate the capabilities of the 
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algorithm, the geometrical characteristics of the resulting structures have been compared to those of 

four real foam samples, with satisfying results. 

The methodology was subsequently applied, individually varying four parameters (porosity, strut 

cross section, strut minimum to maximum diameter ratio, dispersion of cell size distribution) in the 

typical experimentally observed range, to produce a number of structures. 

The application of Monte Carlo ray tracing algorithms to the resulting structures made it possible to 

reduce the number of parameters and to devise and propose two analytical relations to determine the 

value of the extinction coefficient, fitting all the computed data with small error.  

The relations have been validated by comparison with results from direct Monte Carlo computations 

on four real foam samples with satisfying results, and then compared to existing reference relations 

from literature. Good absolute accuracy and significant accuracy improvement over existing relations 

is achieved.  

Additionally, simplified forms of the proposed relations have been obtained and their accuracy 

compared with full form relations and with reference relations. The simplified relations are less 

accurate than the original ones, but they still represent a significant improvement over reference 

relations. These relations should be useful for the design of materials e.g. for energy efficiency. 
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Appendix 4A – Evaluating the normalized curvature (k) 

To evaluate the normalized curvature k, it is necessary to establish a relation between k and some 

stereological measures. In this work, iMorph [90] was used as stereological tool, so in the following 

a relation is proposed to derive the normalized curvature from measures provided by the software.  

The cross-section measurement function available in iMorph has been used. The function 

automatically identifies struts and then provides geometrical measures for the identified 2D cross 

sections, namely surface Ss, perimeter Ps, diameter of circumscribed circle do. 

A relation between the normalized curvature and a dimensionless ratio of the measures obtained by 

the software has been established.  

To this end, three generated geometries at set values of k = {-0.29, 0.35, 1} have been treated.  

 
 Fig. 4A.1 – Variation of 4Ss/do

2 with k. 

 

The dimensionless ratio 4Ss/do
2 shows a linear relation with k (Fig. A.1), which can be written as: 

4𝑆𝑠
𝑑𝑜2
⁄ = 1.11𝑘 + 1.52 (4A.1) 

In addition, this ratio can be easily related to the ratio of the area of the cross section to the area of a 

simple planar shape enclosing the cross section. With reference to the area of the circumscribed circle 

of the cross section: 

𝜋
𝑆𝑠
𝐴𝑐𝑖𝑟𝑐𝑙𝑒
⁄ = 1.11𝑘 + 1.52 (4A.2) 

With reference to the area of an equilateral triangle having the same vertices as the cross section [65]:
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3√3

4
𝑆𝑠
𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒
⁄ = 1.11𝑘 + 1.52 (4.A.3) 

It must be stressed that, while relations (4A.1)-(4A.3) have been obtained using iMorph, they can be 

in principle applied to the same geometrical parameters measured using any stereological technique. 

Finally, relation (4A.1) was used as reference to attribute values of normalized curvature to the 

tomographic samples (Fig. 4A.2). 

 
Fig. 4A.2 – Determination of k for the four samples. 
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Appendix 4B – Evaluating the diameter ratio (t) 

To evaluate the diameter ratio t, it is necessary to establish a relation between t and some stereological 

measures. It is worth noting that the diameter ratio can also be readily measured from SEM scans of 

the foam [70], but in this work, iMorph [90] was used as stereological tool, so in the following a 

relation is proposed to derive the diameter ratio from measures provided by the software.  

The cross-section measurement function available in iMorph has been used, together with a 

granulometry and segmentation of the solid phase, which allowed identification and measurement of 

strut junctions. The relevant geometrical measures provided are: 

- For the strut cross sections, the diameter of inscribed circle di and the diameter of 

circumscribed circle do. 

- For the strut junctions, the maximum diameter dj,max.  

A relation between the diameter ratio and a dimensionless ratio of the measures obtained by the 

software has been established. The main concern is stability of the measure with respect to variation 

of other geometrical parameters, namely porosity and strut cross section shape. Four geometries, with 

porosity and cross section shapes corresponding to those measured for the four samples, have been 

generated with a constant t = 0.5. Ideally, one would be able to find a ratio that stays constant over 

the four geometries.  

Reference 

sample number 
ε k t 

𝑑𝑜 + 𝑑𝑖
2𝑑𝑗,𝑚𝑎𝑥

 

1 87.2% 0.42 0.5 0.633 

2 89.3% 0.57 0.5 0.633 

3 93.6% 0.36 0.5 0.645 

4 96.3% 0.16 0.5 0.642 

Tab. 4B.1 – Sensitivity of (do+di)/(2dj,max) to variations of ε and k for a constant t = 0.5. 

The dimensionless ratio (do+di)/(2dj,max) has been picked. It shows very low sensitivity to variations 

of porosity and strut cross section shape, with all values falling in a ±1% interval (Tab. 4B.1). To 
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relate this ratio to the value of the diameter ratio, three geometries at set values of t = {0.2, 0.5, 1} 

have been treated, and the dimensionless ratio has been plotted as a function of t (Fig. 4B.1).  

 
 Fig. 4B.1 –Variation of  (do+di)/(2dj,max) with  t. 

The relationship is not linear, but a simple power law (plotted in the figure) fits the data points very 

well: 

𝑑𝑜 + 𝑑𝑖
2𝑑𝑗,𝑚𝑎𝑥

= 𝑡
2
3 (4B.1) 

It must be stressed that, while relation (4B.1) has been obtained using iMorph, it can be in principle 

applied to the same geometrical parameters measured using any stereological technique. 

Finally, relation (4B.1) is used as reference to determine the value of the diameter ratio for the four 

samples (Fig. 4B.2). 

 
 Fig. 4B.2 – Determination of t for the four samples. 
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SECTION 3 

IMPROVED HOMOGENIZED METHODS  
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Introduction 

In literature, the few attempts at comparing results of direct homogenized approaches with results 

from Direct Monte Carlo simulations [40][48], in cellular media with a semi-transparent solid phase, 

have revealed substantial discrepancies. In this section, we present the results of our efforts to improve 

over the current state of the art. The efforts are organized along two main lines: on one hand 

establishing flexible and efficient reference methods, on the other hand, improving existing 

homogenized approaches. 

In chapter 5, a purely numerical, Direct Monte Carlo Homogenization reference technique is 

proposed, based on a periodic REV, allowing to simulate radiation within arbitrary cavities with 

arbitrary boundary conditions and calculate macroscopic radiative quantities (such as transmittance, 

reflectance, configuration factors etc.) using ray-counting methods typically applied in MCRT for 

participating media. The main ideas driving the approach are spatial-directional decoupling of the 

morphological domain from the physical domain and simultaneous ray casting in the superposed 

domains. The technique is validated against full scale Monte Carlo simulations and compared to the 

existing HPA model. 

In chapters 6 and 7, more accurate and robust versions of the existing Homogeneous Phase Approach 

and Multi Phase Approach are proposed, in a highly systematic and easily reproducible fashion. In 

the present work, a new two-pronged strategy is presented to improve the accuracy of conventional 

homogenized approaches, while retaining much of their simplicity: 

1) On one hand, hybrid direct-inverse methods are used to identify radiative parameters. In the 

particular implementation hereby discussed, the extinction coefficient and scattering albedo 

are determined directly from free path distribution and relative occurrence of scattering 

events, while the scattering phase function is characterized as an Henyey-Greenstein and its 

asymmetry parameter gh is determined through an inverse method. These methods make it 
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possible to determine parameters straightforwardly, while allowing to capture multiple-

scattering effects that are typically lost on direct methods. In addition, the methods that will 

be presented in this work use unbounded domains for all calculations, thus moderating the 

problems tied to the choice of spherical [56][57][58] or slab-like [54][55] boundaries (e.g. 

dependence on boundary geometry). 

2) On the other hand, the RTE is modified, with additional equations to take into account the 

history of the rays, namely their origin, a feature absent in previous models [37][66][67] with 

the exception of the recent GRTE-MPA [41][42] models, which however impose significant 

computational complexity and require ad hoc Monte Carlo codes to be solved. In contrast, our 

modified RTE equations retain a certain simplicity and can be solved by Discrete Ordinates 

or similar resolution schemes. 
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Chapter 5 – A Direct Monte Carlo Homogenization method 

for simulation in arbitrary enclosures. 

5.1 Introduction 

Most literature on radiative transfer in porous media is concerned with determination of appropriate 

homogeneous models and their relative properties [15][22][36][37][41][42]. However, the 

hypotheses underlying these models are often not fully achieved in the media, and the results of the 

models are often in disagreement. In addition the few comparisons in literature with direct simulations 

have given mixed results [40][48]. With the increasing computational power available today, the 

directly simulating the propagation of radiation at the microscopic scale becomes feasible even for 

macroscopic systems. Geometrically modeling a large volume of porous material at the micro-scale 

is prohibitive in most cases, however by using Representative Volume Element (RVE) theory the size 

of the radiation cavity can be dissociated from the size of the underlying geometrical model, i.e. it is 

possible to model a large volume of material using only an internal geometrical representation the 

size of a RVE. While some authors have presented attempts at direct Monte Carlo simulation of 

radiation propagation [40] that dissociate physical domain from computational domain for some 

specific configuration, these efforts have been punctual and not systematic nor general.  In the 

following, we present a general Direct Monte Carlo Homogenization (DMCH) methodology that 

allows to directly simulate radiation heat transfer in an enclosure of any shape, filled with a porous 

medium, using as inputs only a RVE of the porous medium, the shape of the cavity and the relative 

boundary conditions. 

5.2 Morphological domain and physical domain 

The RVE can be naturally periodic (such is the case of computer-generated domains such as those of 

Section 2), or it can be made periodic through simple symmetry operations, as shown in Fig. 5.1 
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Fig. 5.1. Creation of a periodic computational domain from non-periodic input data. 

Fig. 5.2 schematizes an example on input data required, showing a RVE (which is used as the actual 

computational domain), and a physical domain rectangular domain with black walls with a 

Lambertian point source on a surface. Importantly, the physical domain is described in terms of its 

axes x and y (for this 2D case, in a 3D case an additional z axis is required). In this case, the quantity 

of interest to evaluate can be the configuration factor from the point source to the walls, or the fraction 

of radiation absorbed in the medium, etc. It must be stressed that, while for the sake of clarity this 

particular configuration has been chosen, the method lends itself equally well to enclosures of any 

shape, with boundary conditions of any kind and to any directional distribution of radiative intensity. 

In addition, it must be remarked that surface and volume sources can be simply modeled as 

distribution of source points. In these respects, further reference can be made to existing techniques 

for Monte Carlo Ray Tracing in participating media [43][44][94][95]. 

 

 

(A) 

 

(B) 

 
Fig. 5.2 Input data of the algorithm. (A) Computational domain (REV). (B) Physical domain.  

The REV is also shown in the physical domain to give an idea of the difference in absolute size. 
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5.3 Ray casting process 

 

Fig. 5.3 The ray casting process for three rays from three different source points in the computational 

domain. Periodic transition events are indicated with crosses. The origin points in the computational domain 

are randomized and the physical reference system is randomized. 

Fig. 5.3 schematizes the actual ray casting process for four rays (in black, red, blue and green). In 

the ray casting process, a large number (typically ≥ 106) of points are chosen randomly inside the 

RVE (computational domain). In addition, for each point a random Cartesian reference system is 

defined: ignoring symmetry, this requires choosing a random vector in 2D space (the second being 

its perpendicular), or two random perpendicular vectors in 3D space (the third being their cross 

product). Additionally, for problems that present local azimuthal symmetry in 3D space (e.g. 
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azimuthally symmetrical emission distribution, which turns out to be the case for many real 

problems), it is possible to choose just one random vector. The random reference system is the 

physical reference system for that ray, and thus all the calculations relative to the physical domain 

are performed within that system (Fig. 5.3), while the reference system of the computational domain 

stays fixed and unchanged at all times. Finally, the direction of the ray is chosen according to the 

prescribed directional distribution, while taking into account the individual reference system of each 

ray: this can be seen in Fig. 5.3, as the relative orientation of the Lambertian directional distribution 

with respect to the random physical reference system stays constant, while it changes with respect to 

the reference system of the computational domain. 

At each iteration, all rays are cast inside the RVE (computational domain), augmented with a 

parallelepiped bounding box and with the physical domain, rotated and translated according to its 

random reference system. It’s important to stress that the coordinates of the source points of the rays 

with respect to the physical reference system are completely independent of their coordinates with 

respect to the computational domain. Treatment of interaction with the material is detailed in a 

number of works [15][22][36][40]. At each iteration, the propagation of a ray can be terminated by 

different kinds of events: 

- Absorption by the material. In this case, after additional calculations (e.g. energy exchange) 

are executed, the ray is removed. 

- Scattering by the material. The new direction of the ray is determined, after which, if 

necessary, additional calculations (e.g. path length logging) are executed, then finally the ray 

is enqueued for the next iteration. 

- Crossing of the bounding box. The ray is periodically transported on the other side of the RVE 

and enqueued for the next iteration (Fig. 5.4). It’s important to note that the position of the 

ray is reset with respect to the computational domain, but not with respect to the physical 

reference system. 
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- Interaction with the physical domain: the events prescribed by the boundary conditions 

(reflection, absorption, etc.) are simulated, and if necessary additional calculations (e.g. 

energy propagation, path length logging, ray counting) are performed, then according to the 

physics the ray is removed (absorption) or enqueued for the next iteration (reflection). 

The process is iterated until all rays have been removed. Then, according to the specific problem, the 

logged quantities and distributions can be used to calculate the desired variables according to standard 

MCRT techniques, e.g. ray counting can be used to calculate configuration factors. Fig. 5.5 

synthesizes the evolution of a single ray from inception to extinction. It is important to note that this 

method makes it possible to execute the entire ray casting process while keeping a single copy of the 

computational domain in memory. Like other Monte Carlo methods, it also lends itself very well to 

parallelization. 

 (A) 

 

 

(B) 

 

 

Fig. 5.4. Ray trajectory in (A) physical reference system VS (B) computational domain. 
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Fig. 5.5. Flow diagram of the full history of a ray. 
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5.4 Validation and comparison with Homogeneous Phase Approach 

The proposed Direct Monte Carlo Homogenization (DMCH) methodology is validated by cross-

comparing it to full MCRT simulation in a fully represented volume of porous medium and with a 

conventional HPA method calibrated on the RVE. 

The hemispherical transmittance Trans, hemispherical reflectance Refl and total absorption Abs 

through a slab are evaluated (Fig. 5.6).  

 
Fig. 5.6. Schematization of physical configuration 1 and relevant magnitudes. 

The quantities are directly evaluated by counting the rays [44][94][95], i.e.: 

𝑇𝑟𝑎𝑛𝑠 =
𝑁𝑇
𝑁
; 𝑅𝑒𝑓𝑙 =

𝑁𝑅
𝑁
; 𝐴𝑏𝑠 =

𝑁𝐴
𝑁

 (5.1a-c) 

Where N = 106 is the total number of incident rays cast and NT, NR and NA are the number of rays that 

traverse the slab, are reflected towards the incoming direction or are absorbed in the slab respectively. 

It is worth noting that NT + NR + NA = N.  
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Due to its simplicity in terms of representation, a medium constituted by Semi-Transparent Identical 

Non Overlapping Spheres immersed in a transparent medium is chosen as reference. Two distinct 

levels of porosity ε, 98% (Fig. 5.7) and 75% (Fig. 5.8), are employed. For each level of porosity, two 

volumes are generated, a 3x3x3 periodic RVE containing 100 spheres and a 30x30x12 non-periodic 

RVE containing 40000 spheres. In both cases the spheres are added to the volume by Random 

Sequential Absorption (RSA). The relatively small size of the RVE is necessary to make the size of 

the mesh for the full domain Monte Carlo simulation manageable. 

To minimize differences due to sampling, 10 slabs of 30x30x6 slabs are cut out of the 30x30x12 

volume. For each slab, a radiation flux is imposed on a 6x6 center region on the bottom (Fig. 5.9). 

Picking this center region allows to minimize the number of rays escaping the domain from the sides, 

which is contained below 0.5% of the total for all the simulations. For each domain, 105 rays, for a 

grand total of 106 rays are cast from this region and reflectance, transmittance and absorbance are 

calculated by simple ray counting (Eq. 5.1a-c). The results are averaged across the 10 slabs. 

 

Fig. 5.7 – The 98% porosity RVE 

 

Fig. 5.8 – The 75% porosity RVE 
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Fig. 5.9 – The complete 30x30x12 domain and multiple 30x30x6 slab domains. The dashed lines represent 

the limits of the domain, the continuous line on the bottom is the zone where the incoming intensity is 

prescribed. 

For the new DMCH method, a simulation is run using the 100-sphere RVE as RVE and a 30x30x6 

parallelepiped as reference physical domain, with casting and counting of 106 rays according to the 

same criteria seen above (Eq. 5.1a-c). 

For the Homogenous Monte Carlo method, first the homogeneous parameters are determined using 

a conventional approach outlined in [40], with 106 rays used in the parameter identification process 

and using the 100-sphere RVE as input. Then a 30x30x6 parallelepiped domain is considered, with 

casting and counting of 106 rays according to the same criteria seen above (Eq. 5.1a-c). 

In all the simulations, possible scattering effects due to the phase transition at the bottom or top 

boundary are not considered, i.e. phase continuity at the top and bottom boundaries is assumed. 

Finally, the error of the homogenized methods is defined as: 

ERROR = |TRANS – trans| + |REFL – refl| + |ABS – abs| (5.2) 

Where the uppercase represents quantities obtained with the full domain Monte Carlo and the 

lowercase represents quantities obtained with the homogenization methods. 

Finally, various values of the refractive index n2 and the absorption coefficient α2 of the semi-

transparent phase are considered. The results are summed up in Table 5.1. 
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ε α2 n2 ERROR (HPA) ERROR (DMCH) 

98% 0.6 1.4 1.82% 1.42% 

1.7 0.62% 1.44% 

2.0 1.83% 1.42% 

0.3 1.4 1.03% 1.25% 

1.7 1.25% 0.82% 

2.0 0.57% 1.32% 

75% 0.06 1.4 15.62% 1.84% 

1.7 28.41% 0.94% 

2.0 38.53% 1.49% 

0.03 1.4 8.03% 1.22% 

1.7 18.83% 1.32% 

2.0 29.60% 1.48% 

Table 5.1 – Error of Direct Monte Carlo Homogenization and Homogeneous Phase approach with respect to 

Full Domain Monte Carlo simulations. 

 

Two main observation can be made in the light of the results shown in the table: 

1) The Direct Monte Carlo homogenization method makes it possible to obtain deviations 

consistently below 2% with respect to the full domain MCRT. Residual errors can be 

attributed to sampling and to the small size of the RVE. 

2) At very high porosities, the hypotheses of the HPA are satisfied (namely, that the medium can 

be represented as dispersed, point-like scatterers far from each other), so both homogenization 

approaches turn out to be satisfying. However, at low porosities, HPA hypotheses fail and its 

errors can be very large, while the errors of the Direct Method stay consistently low. 

5.5 Computational aspects 

The final mesh used for the 3x3x3 RVE containing 100 spheres is composed of 10000 triangular 

elements. The mesh used for the 30x30x12 full volume is composed of 4000000 triangular elements, 

with an average of 2000000 triangular elements in each 30x30x6 slab. The simulations are run on a 

single i7 4790K CPU with 8GB of RAM.  

The computation times for the various configurations are reported in Table 5.2: 
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ε α2 n2 Computation time 

(Full Domain – 

Monte Carlo) [s] 

Computation time 

(RVE – DMCH)[s] 

Computation time 

(RVE – HPA – 

Radiative 

properties 

identification) [s] 

Computation time 

(RVE  – HPA – 

Simulation) [s] 

98% 0.6 1.4 36 29 32 0.6 

1.7 46 31 31 0.8 

2.0 27 26 29 0.4 

0.3 1.4 50 40 34 0.6 

1.7 49 31 33 0.7 

2.0 57 38 33 0.8 

75% 0.06 1.4 650 139 41 4.2 

1.7 790 158 49 2.3 

2.0 880 164 56 1.9 

0.03 1.4 680 143 43 3.6 

1.7 970 169 50 3.3 

2.0 1090 189 57 2.7 

Table 5.2 – Computation time of different methods in various configurations. 

A few observations can be made. The proposed method produces a significant decrease of 

computational time, up to about 5-fold, compared to a Full Domain Monte Carlo. This can be 

attributed to the sensible reduction of the size of the mesh and the consequent increase in efficiency 

of the ray casting process. Additionally, the memory footprint is reduced 200-fold. In fact, the Direct 

Monte Carlo runs in fixed memory irrespective of domain size: this makes it very interesting for 

larger domains that cannot be represented directly in memory and also makes massive parallelization 

of the algorithm very simple. 

Compared the Direct Monte Carlo Homogenization to the Homogeneous Phase approach using 

effective radiative properties, we observe that the latter is about 50 to 100 times faster in execution, 

but if the time for parameter identification is included, the difference in speed is reduced to a factor 

of 3 to 4. Considering additionally that the absolute values of the computation times are quite small, 

this makes the Direct Monte Carlo homogenization a viable alternative to the Homogeneous Phase 

Approach in a number of applications. 
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Chapter 6 – Improved Homogeneous Phase Approach (HPA+) 

6.1 Introduction 

 In the following, we’ll be explaining the bases of an Improved Homogeneous Phase approach. First, 

we’ll discuss and example elucidating why the origin of the ray can be of significance with respect to 

its scattering extinction “history”, then we’ll propose a modification of the classic HPA approach to 

take into account such effects, allowing to increase accuracy while retaining simplicity, finally we 

will flesh out our model in detail, explaining the process of determination of its parameters and testing 

it.  

6.2 Ray history effects and general setup 

Let’s consider for our example an element of phase 2 immersed in phase 1, with n2 > n1. Let this 

element be a shell of fixed thickness (Fig. 6.1): for some materials, such as closed cell plastic foams 

this is actually a representative element of the structure.  

 

Fig. 6.1 – Example geometry to illustrate the effect of ray origin on ray propagation. 
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With reference to Fig. 6.1, for rays coming from phase 1 (in dark red), 
𝑛2

𝑛1
sin 𝛼′1 = sin 𝛼1 ≤ 1, so all 

rays coming from phase 1 and traversing phase 2, also traverse the 2->1 interface. 

On the contrary, for rays emitted inside phase 2 (or incident therein, due to boundary conditions), 

we’ll have: 

• A fraction where 
𝑛2

𝑛1
sin 𝛼3 ≤ 1 (in green), that pass the 2->1 boundary with a deviation due 

to refraction. 

•  A fraction where 
𝑛2

𝑛1
sin 𝛼2 > 1 (in blue), that will be reflected multiple times until they’re 

eventually absorbed. This fraction can be calculated as 𝐹 = √1 −
𝑛1
2

𝑛2
2⁄  of the locally 

incident radiation [43], so it can be deduced that it can be significant (over 50% of the 

radiation) for values of the refraction index typically found in semi-transparent plastics and 

ceramics. 

Similar observations can be made observing a sphere, or other simple geometrical forms. It is also 

worth noting that the effects described will be less pronounced in domains with highly irregular 

boundaries: as incidence angles are less correlated and more random, the difference between rays 

coming from inside and rays coming from outside is reduced. 

For HPA radiation homogenization models, this can have important consequences if porosity is below 

95%. In a standard HPA model all rays are mixed together, losing specificity tied to their origin. 

However, as seen in the example just shown, the interaction of rays originating in phase 2 can be 

dramatically different than for the rays originating in phase 1.  

We hereby propose an extension of the basic HPA model that allows to take into account a large part 

of these effects, decomposing them in two sub-effects that enrich the basic HPA model: 
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a) A trapping and absorption effect for a fraction of the energy emitted in the dense phase 

or entering it from outside (blue fraction in figure). This effect will be captured by 

defining a trapped fraction C and its relative absorption coefficient αt. 

b) A scattering effect for all the energy emitted in the dense phase or entering it from 

outside (blue and green fractions in figure). This effect will be captured by defining an 

additional scattering coefficient gHG. 

The aforementioned coefficients intervene to modify the structure of the standard HPA model. The 

modification only pertains to the fraction of radiation that is emitted in the solid phase or thereby 

enters the domain from outside, while the rest of the radiation is treated as usual. 

Indeed, in addition to the standard homogenized phase, the enriched model has an additional phase, 

labeled trapped phase, with a separate RTE, that takes into account the trapping and absorption effects 

(a). The RTE of the trapped phase is fully characterized by its absorption coefficient αt, i.e. the trapped 

phase is characterized as a purely absorbing phase, for reasons we’ll see in the next. A fraction C of 

the radiation entering the domain in the solid phase will be assigned to the trapped phase and 

propagate according to its separate RTE. The rest is assigned to the standard homogenized phase. It 

is important to note the standard homogenized phase and the trapped phase are not coupled, that 

which makes the model significantly simpler than other two equations models such as the MPA. 
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Fig. 6.2 – Synthetic figure depicting the effects on the discrete scale and the corresponding approximations at 

the homogenized scale. In blue and green, the trapped and non-trapped rays respectively, represented on the 

left at the discrete scale and on the right as the approximated homogenized scale equivalent. In red the 

preserved distributions, s and θ. At the right side, the Heyney-Greenstein distribution of θ. 

To take into account the additional scattering effects in (b), all the radiation entering the domain from 

outside in the solid phase undergoes a transformation of its directional distribution, according to a 

Henyey-Greenstein phase function ΦHG(θ) that is fully characterized by its asymmetry coefficient 

gHG. To model this effect, it is necessary to modify the form of the boundary conditions. This method 

allows to approximate the multiple scattering events that can take place before absorption in the solid 

or scattering in the fluid as a single scattering event (see Fig. 6.2). This is a useful approximation for 

high porosity media because the mean free path associated with propagation in the solid phase is 

much smaller than the homogenized mean free path. It is also important to note that the volumetric 

emission term for radiation is isotropic, so that modifying it by applying the directional distribution 

transformation has no net effect: for this reason the terms associated to the transformation will only 

appear in boundary conditions, such as imposed directional intensity or emitting/reflecting walls. As 

part of the radiation entering the domain in the solid phase is assigned to the standard non-trapped 
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homogenized phase, this contribution too (characterized by coefficient 1 – C) will have modified 

boundary conditions. 

Fig. 6.2 synthetically displays the effects on the discrete scale and the corresponding approximations 

at the homogenized scale. Radiation either passes into the fluid (green) or is absorbed in the solid 

(blue). At the homogenized scale, the parameter C controls the relative fraction of absorbed radiation. 

Exiting radiation (green) is approximated as entering the homogeneous phase directly with a 

distribution of angles modified using a Henyey-Greenstein function, with asymmetry factor gHG 

chosen so that the distribution of angles θ from the discrete scale is preserved. Absorbed radiation 

(blue) is approximated as entering the trapped phase with a distribution of directions modified in the 

same fashion, while the absorption coefficient of the trapped phase αt is chosen to preserve the 

distribution of the distance from entry to absorption s, so that the possibly tortuous path of the rays is 

approximated as a linear path from point of entry to point of absorption. It must be noted that while 

the distributions of θ for the two radiation fractions may differ in principle, they’re treated as one and 

the same for the sake of simplicity. The modification of direction distribution of radiation in the 

boundary conditions justifies our choice of treating the trapped phase itself as purely absorbing.  

 The approximation should be satisfying for mid-high levels of porosity (85-95%), and afford a 

significant improvement over conventional HPA models, while preserving much of their simplicity. 
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6.3 Full presentation of the HPA+ 

Fig. 6.3 – Parameter identification flow chart for Improved Homogeneous Phase Approach 
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The novel proposed method can be articulated in three parts, which are labeled (6.3.1-3) (Fig. 6.3) 

and can be summarized as follows: 

6.3.1) Determination of HPA coefficients βh, ωh, gh, with rays cast from the fluid phase. 

6.3.2) Determination of adjustment coefficient gHG for scattering effect in solid phase 

6.3.3) Modification of equations and calculation of adjustment coefficients C and αt for trapping 

effect in solid phase. 

It is worth underlining that, during the determination of the coefficients of the homogenoues phase, 

rays are originated only from points in the fluid phase, as in [40]. 

In the course of the process, heavy use of Monte Carlo Ray Tracing simulations is made. Further 

details and discussion on MCRT for radiation heat transfer can be found in [15], some adaptations 

relevant to semi-transparent media are discussed in [40] and in Chapter 3. With respect to design 

choices discussed in [15], periodic wrapping at the boundaries, which was shown to have the best 

convergence, is used for the simulation, without necessity of randomizing the positon upon wrapping, 

because the domains are periodic themselves, thus ensuring phase continuity. 

The three phases (6.3.1-3) just summarized and schematized in Fig. 6.3 are detailed in the following. 
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6.3.1. Ray tracing from the fluid phase – hybrid determination of coefficients 

 
Fig. 6.4 – Illustration of ray casting from fluid phase for hybrid determination of radiative properties and 

logged quantities. 

The process of determining suitable equivalent properties of the homogeneous medium starts with a 

Monte Carlo Ray Tracing simulation. As implied before, all rays for this initial simulation are cast 

from the fluid phase. Similarly to what discussed in [40], with reference to Fig. 6.4, absorption and 

scattering events are stored, namely the path length associated with each event is added to an 

accumulator Lext, while the number of events are counted in counter Nabs and Nscatt. This allows to 

calculate βh and ωh simply as: 

𝛽ℎ =
𝑁𝑎𝑏𝑠 + 𝑁𝑠𝑐𝑎𝑡𝑡

𝐿𝑒𝑥𝑡
 (6.1) 

ωℎ =
𝑁𝑠𝑐𝑎𝑡𝑡

𝑁𝑎𝑏𝑠 + 𝑁𝑠𝑐𝑎𝑡𝑡
 (6.2) 
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A specific adaptation of our algorithm compared to those already presented in literature is that each 

ray is tracked until it is finally absorbed by the medium: this means that each ray can give rise to 

multiple scattering logging events.  

Additionally, for each absorption event (once for each ray), the distance from the source point to the 

point of final absorption is also logged in the distribution sabs. This is necessary for the inverse 

analysis.  

Another specific feature is that all path lengths in the case of non-absorption inside the solid phase 

(scattering events) are logged at the points of exit of the ray from the solid phase.  

A further adaptation is that, in case a scattering event results in a scattering angle lower than 2°, the 

scattering path length is not logged: this allows to implicitly take into account scattering with strong 

forward peaks (e.g. in case of parallel walls), without having to resort to using ad hoc phase functions 

such as the Delta-Eddington phase function. The scattering and extinction coefficient obtained in this 

way are the same that one would obtain applying the transport approximation of the scattering phase 

function [96]. A total of N = 106 rays are launched and tracked. 

Having determined βh and ωh using the direct approach just outlined, an alternative inverse approach 

is hereby proposed for the determination of the scattering phase function. In our approach, a simple 

Henyey-Greenstein, characterized by a single asymmetry coefficient gh phase function is postulated 

to be sufficient to correctly capture the scattering. To determine the asymmetry coefficient of said 

phase function, an inverse fitting approach is used. A number of Monte Carlo HPA simulations are 

run with βh and ωh already obtained and different values of gh. As in the case of Monte Carlo micro 

structural simulations, each ray is tracked up to its absorption, and the distance from the source point 

to the point of absorption sabs is logged. 

The distribution of sabs is used to calculate the locally absorbed fraction of intensity at a certain 

distance s from the source point: 
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𝐼𝑎𝑏𝑠(𝑠)

𝐼0
=
∑ [𝑠 −

∆𝑠
2 ≤ 𝑠𝑎𝑏𝑠𝑛 ≤ 𝑠 +

∆𝑠
2 ]

𝑁
𝑖=1

𝑁∆𝑠
 (6.3) 

Where N is the total number of rays cast, Δs is a discretization interval opportunely chosen to 

guarantee acceptable smoothness and [] are Iverson brackets: 

[x] = {
1
0

𝑖𝑓 𝑥 𝑖𝑠 𝑡𝑟𝑢𝑒;
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (6.4) 

This magnitude is compared between the MC micro structural simulation and the HPA, then a particle 

swarm algorithm [97] is used to minimize squared differences (i.e. to obtain best curve fit), with gh 

as independent variable (Fig. 6.5). 

The error function to minimize can be written:  

𝐸𝑅𝑅(𝑔ℎ) = ∫ (
𝐼𝑎𝑏𝑠
∗ (𝑠)

𝐼0
−
𝐼𝑎𝑏𝑠
𝐻𝑃𝐴𝑔ℎ(𝑠)

𝐼0
)

2

𝑑𝑠
∞

0

  
(6.5) 

Where 𝐼𝑎𝑏𝑠
𝐻𝑃𝐴𝑔ℎ(𝑠) indicates the locally absorbed fraction calculated using the particular determination 

of the HPA model that is given by a certain value of gh and 𝐼𝑎𝑏𝑠
∗ (𝑠) indicates the locally absorbed 

fraction calculated by direct Monte Carlo analysis. 

 
Fig. 6.5 – Illustration of the inverse fitting process (95% porosity open cell foam). 
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6.3.2. Ray tracing from the solid phase – evaluation of coefficient ghg 

 

Fig. 6.6 – Illustration of ray casting from solid phase for evaluation of αt and ghg 

Starting from the HPA model presented in the previous section, we develop our approximation. As 

already noted in the standard HPA, the rays used to calculate βh, ωh, gh, originate from the fluid phase. 

As such, the resulting HPA model will satisfactorily capture the behavior of rays emitted in the fluid 

phase, but not of rays emitted in the dense phase. These differences in behavior are captured in our 

model through an additional trapping effect and an additional scattering effect. To evaluate the 

coefficients associated to these effects, we use Direct MC simulations at the micro scale. 

Another MC micro structural simulation is executed with N = 106 rays starting exclusively from the 

solid phase.  

With respect to Monte Carlo assumptions, they are the same used before, but all rays start from the 

solid phase. The rays are followed up to their final absorption or their exit from the solid domain, 

whichever comes first (Fig. 6.6). This makes it possible to obtain information about ray directions at 
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scales comparable to the scattering scale of the solid phase. With reference to Fig. 6.6, for each ray, 

an angle θ is logged. For rays passing into the fluid, θ is the angle between its final direction vector 

and the initial direction vector 𝑖⃗ . For absorbed rays, θ is the angle between the final direction vector 

and the vector 𝑠  that goes from the source point to the point of absorption.  

We underline once again that, under our approximation, the complex path taken by the ray at the 

microscale is approximated as a straight line between its source point and its final absorption point 

(Fig. 6.2). 

The scattering effects for both trapped and non-trapped rays are taken into account into gHG, which is 

also calculated using the information collected in the simulation. Using the collected values of θ a 

scattering distribution P*(θ) can be simply calculated as: 

𝑃∗(𝜃) =
∑ [𝜃 −

∆𝜃
2 ≤ 𝜃 𝑛 ≤ 𝜃 +

∆𝜃
2 ]

𝑁
𝑛=1

𝑁∆𝜃
 (6.6) 

Where N is the total number of rays cast, [] are Iverson brackets and Δθ is a discretization interval 

opportunely chosen to guarantee acceptable smoothness. We observe that ∫ 𝑃∗(𝜃)𝑑𝜃 ≅ 1
2π

. 
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Fig. 6.7 – Comparison of scattering from Direct Monte Carlo simulation (top), HPA-MC simulation (bottom 

left) and HPA-MC simulation  (bottom right) augmented with Heyney-Greenstein scattering at the moment 

of entry of the rays into the domain.. The short range effects associated to the passage from solid to fluid 

give raise to a stronger diffusion in the Direct Monte Carlo. The differences are especially remarkable at 

short distances. The directional distribution transformation approximates well the short range effects. 

We note once again that, as the emission term is isotropic, its directional distribution is invariant with 

respect to scattering, so the scattering effect will only be applied to boundary conditions. It is 

worthwhile remembering that the mean free path associated with the additional scattering effect in 

the solid is much smaller than the scattering mean free path associated with the standard HPA (Fig. 

6.7), so we can consider it to be negligible. The additional scattering effect can then be completely 
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decoupled from the usual scattering in the standard homogeneous phase and approximated as a 

scattering event taking place when radiation enters the domain (Fig. 6.7).  

We approximate the measured scattering distribution through a Henyey-Greenstein phase function. 

𝛷𝐻𝐺(𝜃) ≅ 2π𝑃
∗(𝜃) (6.7) 

By choosing an asymmetry factor gHG equal to that of the directly simulated scattering distribution: 

𝑔𝐻𝐺 =
1

2
∫ 𝑃∗(cos 𝜃) cos 𝜃
1

−1

𝑑(cos 𝜃) 
(6.8) 

Fig. 6.8 shows the computed distribution and the corresponding Heyney-Greenstein phase function. 

 

Fig. 6.8 – Comparison of numerically calculated distribution P* and respective Heyney-Greenstein function 

ΦHG for a high-porosity open cell foam (ε= 0.89) 

One may observe that would be possible to straightforwardly determine C and αt from their 

phenomenological definitions by counting the proportion of absorbed rays (i.e. 𝐶 =
𝑁𝑠 

𝑁⁄ ) and their 

mean length (i.e. 𝛼𝑡 =
1
‖𝑠 ‖̅̅ ̅̅ ̅ 
⁄ ). In the next section, it will be shown that it is possible to obtain more 

rigorous values of C and αt by imposing energy conservation conditions on the equations. In our tests, 

the value of C and αt calculated directly at the micro-scale never differed more than 10% from the 

values obtained through the energy conservation condition, which comforts us about the consistency 

of our definitions. 
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6.3.3. Modified equations and calculation of C and αt. 

Finally the HPA equations can be rewritten to take into account these observations. First, the 

constitutive equations for both the standard homogenized phase and the trapped phase will be 

presented. Then, the necessary modifications to the boundary conditions will be defined. 

As for the constitutive equations, without losing generality, on can postulate n2 > n1 and write: 

Ω ∙ ∇Iℎ =

[
 
 
 
 

𝑓1𝑛1
2𝛼1

⏞    

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 
𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 1

+ 𝑓2(1 − 𝐶)𝑛2
2𝛼2

⏞        

𝑁𝑜𝑛−𝑡𝑟𝑎𝑝𝑝𝑒𝑑
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 2

]
 
 
 
 

𝐵0

⏞                    
𝑇𝑜𝑡𝑎𝑙 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑛 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑝ℎ𝑎𝑠𝑒

− 𝛽ℎ𝐼ℎ +
𝜎ℎ
4𝜋

∫ Iℎ(Ω′)Φℎ(Ω
′, Ω)𝑑Ω′

4𝜋

 
(6.9a) 

Ω ∙ ∇I𝑡 = 𝑓2𝐶𝑛2
2𝛼2𝐵

𝑣⏞      

𝑇𝑟𝑎𝑝𝑝𝑒𝑑 
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 2

− 𝛼𝑡𝐼𝑡 

(6.9b) 

I = Iℎ + I𝑡 (6.9c) 

Here, the subscripts 1 and 2 respectively indicate properties of the two phases, f1 (fluid) and f2 (solid) 

indicating the volumetric fractions, α1 and α2 indicating the absorption coefficients. βh, ωh, Φh are the 

properties of the homogeneous medium, calculated according to section 6.3.1. C and αt are the 

adjustment coefficients for the trapping effect, which as anticipated will be calculated in the next. 

To more easily make sense of the equations, it is useful to refer to synthetic Fig. 6.9. As one can see 

from Eq. (6.9c), the total local intensity is given as the sum of homogenized intensity Ih, with 

contributions for both the solid dense phase f1 and the fluid phase f2, and trapped intensity It, only in 

the solid phase f2. The homogenized intensity equation (Eq. 6.9a) is written in a form very similar to 

standard HPA (Eq. 1.1), the only difference being the emission term, which is directly calculated by 

summing the emission contributions of the fluid phase in its entirety and of the non-trapped fraction 

of the solid phase.  

As anticipated, the trapped intensity equation (Eq. 6.9b) is simpler than standard HPA: the phase itself 

is modeled as purely absorbing (without scattering), and actual scattering effects taking place are 

taken into account by modifying the boundary conditions with the additional scattering effect 

modeled through the coefficient gHG, as explained in subsection 6.3.1. Its emission term is 
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proportional to the total emission in the solid phase 𝑓
2
𝑛
2

2𝛼2𝐵
𝑣 and to the trapping factor C. An important 

point is that in most cases αt >> αh, so It can be ignored at long distance, considerably simplifying the 

equations. It is interesting to observe that the sum of emission of the two equations equals exactly the 

effective emission taking place in the medium. 

 

Fig. 6.9 – Synthetic figure depicting the effects on the discrete scale and the corresponding approximations at 

the homogenized scale. In black, the radiation entering the domain in the fluid phase, assigned to the 

homogenized phase. In blue and green, the trapped and non-trapped fractions of the radiation entering the 

domain in the solid phase.  

As already discussed, the additional scattering effect and its associated phase function ΦHG do not 

appear explicitly in any of the constitutive equations, because the volumetric emission terms are 

directionally isotropic they are thus not affected by the transformation of the directional distribution. 
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The additional scattering effect will appear only in boundary conditions when the radiation source 

term has a directional component. 

To be able to apply the new equations to real problems, one must be able to write boundary conditions 

accordingly. In the following, the two most commonly used boundary conditions (namely, incident 

directional intensity on an open boundary and diffusely emitting and reflecting wall) will be rewritten 

for the new equations. 

 

Fig. 6.10 – Illustration of the prescribed intensity open boundary condition. Note that the treatment of 

radiation entering the solid phase differs from radiation entering the fluid phase, but treatment for radiation 

exiting the domain is the same in all cases. 

The first boundary condition discussed is a prescribed incident directional intensity Iw [43][44][45]in 

direction Ωw at an open boundary at position rw with local normal nw.  

Neglecting possible reflection effects due to solid-fluid interfaces at the boundary, it is written: 

𝐼(𝑟𝑤
+, Ω𝑤)

⏞      

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦,
𝑖𝑛𝑠𝑖𝑑𝑒

= 𝐼(𝑟𝑤
−, Ω𝑤)⏞      

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦,
𝑜𝑢𝑡𝑠𝑖𝑑𝑒

= 𝐼𝑤 (6.10) 
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In our formulation it becomes:  

𝐼(𝑟𝑤
+, Ω)⏞    

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠
𝑝ℎ𝑎𝑠𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦,

𝑖𝑛𝑠𝑖𝑑𝑒

= 𝐼𝑤𝑓1[Ω = Ω𝑤]⏞        

𝑃ℎ𝑎𝑠𝑒 1 
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

+ 𝐼𝑤𝑓2(1 − 𝐶)⏞        

𝑃ℎ𝑎𝑠𝑒 2 
𝑛𝑜𝑛−𝑡𝑟𝑎𝑝𝑝𝑒𝑑
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

Φ𝐻𝐺(Ω𝑤 , Ω)

4𝜋

⏞        

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔
(𝑖𝑛𝑠𝑖𝑑𝑒)

            {𝑛𝑤 ∙ Ω > 0} (6.11a) 

𝐼(𝑟𝑤
+, Ω)⏞    

𝑇𝑟𝑎𝑝𝑝𝑒𝑑 𝑝ℎ𝑎𝑠𝑒
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦,𝑖𝑛𝑠𝑖𝑑𝑒

= 𝐼𝑤𝑓2𝐶⏞  

𝑃ℎ𝑎𝑠𝑒 2 
𝑡𝑟𝑎𝑝𝑝𝑒𝑑
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

Φ𝐻𝐺(Ω𝑤 , Ω)

4𝜋

⏞        

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔
(𝑖𝑛𝑠𝑖𝑑𝑒)

          {𝑛𝑤 ∙ Ω > 0} (6.11b) 

𝐼(𝑟𝑤
−, Ω)⏞    

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦,
𝑜𝑢𝑡𝑠𝑖𝑑𝑒

= 𝐼(𝑟𝑤
+, Ω)⏞    

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦,
𝑖𝑛𝑠𝑖𝑑𝑒

+ 𝑓2𝐼𝑤⏞

𝑇𝑜𝑡𝑎𝑙
𝑝ℎ𝑎𝑠𝑒 2
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

Φ𝐻𝐺(Ω𝑤 , Ω)

4𝜋

⏞        

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔
(𝑜𝑢𝑡𝑠𝑖𝑑𝑒)

          {𝑛𝑤 ∙ Ω < 0} (6.12) 

Where [] are Iverson brackets, while I(rw
-, Ω) and I(rw

+ , Ω) represent the left and right (external and 

internal) limit values of total intensity (Eq. 6.9) at the boundary. 

In this case, as the radiation is directional, so additional scattering effects are significant (Fig. 6.10) 

and are modeled by the diffusion term ΦHG. The entirety of radiation incident on the solid phase 

(proportional to the volumetric fraction f2) undergoes the additional scattering effect (Fig. 6.10, blue 

arrows). In the homogenized phase (Eq. 6.11a), only a part of the radiation undergoes the additional 

scattering effect, proportional to the non-trapped fraction of the solid phase, while the rest, 

proportional to the volumetric fraction of the fluid phase, is not scattered (Fig. 6.10, red arrows). In 

the trapped phase (Eq. 6.11b) the entirety of radiation undergoes the additional scattering effect. One 

can easily observe that for gHG < 1 the scattering implies a reduction of the energy injected in the 

domain. As Eq. (6.12) shows, the scattering creates a discontinuity in the values of the intensity 

around the open boundary, with different values for 𝐼(𝑟𝑤
−, Ω) and 𝐼(𝑟𝑤

+, Ω), due to partial reflection of 

the incoming radiation outside the domain (Fig. 6.11, green arrows) summing itself with the radiation 

coming out of the domain (Fig. 6.10, pink arrows). It is worth noting that this phenomenon is not due 

to reflection of radiation at the boundary, but rather to reflections inside the domain at very short 

distance, and approximated in our treatment as if they were at the boundary. 
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The second boundary condition discussed is a diffusely emitting and reflecting surface [43][44][45] 

of emissivity εs and reflectivity ρs at position rw and with local normal nw, which is usually written: 

𝐼(𝑟𝑤
+, Ω) = 𝜀𝑠𝐵

0⏞

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 
𝑓𝑟𝑜𝑚 𝑤𝑎𝑙𝑙

+
𝜌𝑠
𝜋

∫ 𝐼(𝑟𝑤
+, Ω′)|𝑛𝑤 ∙ Ω

′|𝑑Ω′

𝑛𝑤∙Ω
′<0

⏞                    
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑤𝑎𝑙𝑙

         {𝑛𝑤 ∙ Ω > 0} 
(6.13) 

 
Fig. 6.11 – Illustration of the diffusely emitting and reflecting wall boundary condition. The treatment of 

radiation entering the solid phase differs from radiation entering the fluid phase.  

In our formulation it becomes:  

Iℎ(𝑟𝑤
+, Ω) = 𝑓1 (𝜀𝑠𝑛1

2𝐵0 +
𝜌𝑠
𝜋

∫ 𝐼(𝑟𝑤 , Ω
′)|𝑛𝑤 ∙ Ω

′|𝑑Ω′

𝑛𝑤∙Ω
′<0

)

⏞                              
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑤𝑎𝑙𝑙 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 1

+ 𝑓2(1 − 𝐶)
⏞      

𝑁𝑜𝑛−𝑡𝑟𝑎𝑝𝑝𝑒𝑑
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝐼𝑠(𝑟𝑤 , Ω)      {𝑛𝑤 ∙ Ω > 0} 

(6.14a) 

I𝑡(𝑟𝑤
+, Ω) = 𝑓2𝐶⏞𝐼𝑠(𝑟𝑤 , Ω) 

𝑇𝑟𝑎𝑝𝑝𝑒𝑑                          
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛                          

     {𝑛𝑤 ∙ Ω > 0} (6.14b) 

Where, for the sake of compactness: 

𝐼𝑠(𝑟𝑤
+, Ω)⏞      

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑡𝑒𝑟𝑚
𝑓𝑜𝑟 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑛𝑑

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛
𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 2

= (𝜀𝑠𝑛2
2𝐵0 +

𝜌𝑠
𝜋

∫ 𝐼(𝑟𝑤 , Ω
′)|𝑛𝑤 ∙ Ω

′|𝑑Ω′

𝑛𝑤∙Ω
′<0

)

⏞                            
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑤𝑎𝑙𝑙 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 2

×

1
4𝜋 ∫

Φ𝐻𝐺(Ω
′, Ω)𝑑Ω′

𝑛𝑤∙Ω
′>0

1 −
𝜌𝑠
4𝜋2

∫ ∫ Φ𝐻𝐺(Ω
′, Ω′′)|𝑛𝑤 ∙ Ω

′′|𝑑Ω′𝑑Ω′′
𝑛𝑤∙Ω

′>0𝑛𝑤∙Ω
′′<0⏟                                    
𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑤𝑎𝑙𝑙

⏞                                    
𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

                   {𝑛𝑤 ∙ Ω > 0} 

 

(6.15) 

In this case too, as the radiation is directional (being uniform only on the positive hemisphere with 

respect to the surface), additional scattering effects are significant (Fig. 6.11) and are modeled by the 

scattering term ΦHG and I is the total incident intensity (Eq. 6.9). 
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The support term Is (Eq. 6.15), allows to model the additional scattering effect associated with the 

interface between the wall and the solid phase. As in the case of a diffusely emitting and reflecting 

surface the intensity is uniform for all the positive hemisphere, the factor that transforms the 

directional distribution through the scattering term ΦHG can be taken out of the integral. Just as in the 

case of open boundary, the scattering transformation through ΦHG implies a reduction of the energy 

injected in the domain, with a part of the radiation (proportional to 
1

4𝜋
∫ Φ𝐻𝐺(Ω′, Ω′′)dΩ′𝑛𝑤∙Ω

′>0
 for any 

direction Ω′′ where 𝑛𝑤 ∙ Ω
′′ <  0) being scattered towards the wall. However, as the wall can be 

reflective, in this case a part (proportional to 
𝜌𝑠

𝜋
∫ 𝐼(𝑟𝑤 , Ω

′′)|𝑛𝑓 ∙ Ω
′′|𝑑Ω′′

𝑛𝑤∙Ω
′′<0

) of the energy 

backscattered towards it goes back into the domain again. This gives rise to a geometric series of ratio 

𝜌𝑠

4𝜋2
∫ ∫ Φ𝐻𝐺(Ω

′, Ω′′)|𝑛𝑤 ∙ Ω
′′|𝑑Ω′𝑑Ω′′

𝑛𝑤∙Ω
′>0𝑛𝑤∙Ω

′′<0
, the sum of which gives the adjustment factor to account 

for multiple reflections.  

 
Fig. 6.12 – Illustration of scattering at the boundary for a diffusely emitting and reflecting wall at the discrete 

(left) and homogeneous scale (right), up to the second reflection. Coloring is coherent between the two sides 

to help understand discrete-continuum correspondence. On the homogenous scale, the directional distribution 

transformation sequence is also reported. 

As the boundary backscattering phenomenon has been referenced to in the description of both 

boundary conditions and its justification may appear unclear, a more detailed explanation is in order. 

Fig. 6.12 illustrates the correspondence between discrete and continuum scale for scattering at the 
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boundary for the specific case of a diffusely emitting and reflecting wall, but the general principle is 

valid for any boundary condition. Refraction and reflection at the short range can give rise to rays (in 

blue in the figure) which are oriented towards the boundary itself. As this short range scattering is 

approximated as a point-wise scattering in the continuum model, it corresponds to the presence of 

negative lobes in the scattering phase function ΦHG. In the particularly complex case of a partially 

reflecting wall, this gives rise to multiple reflections (Eq. 6.15). In the case of an open boundary, seen 

previously, it gives rise to the discontinuity of the values of intensity at the border (Eq. 6.12). 

The term Is is used to calculate the homogenized (6.14a) and trapped (6.14b) intensity: for the former, 

it is weighed by the non-trapped fraction of the solid phase and summed with a standard intensity for 

the fluid phase, while for the latter it represents the entirety of the radiation, proportional to the 

trapped fraction of the solid phase.  

To further clarify how the “homogenized phase”, “trapped phase” and “additional scattering” 

treatments are applied to different fractions of radiations, it is useful to refer to Table 6.1: 

 Homogenized phase Trapped phase Additional 

scattering 

Fluid phase [f1] 

 

X   

Solid phase [f2] 
Trapped  [f2 * C]  X X 

Non trapped [f2 * (1 – C)] X  X 

Table 6.1 – Different treatments applied to different fractions of radiation. 

As was already mentioned, it is very useful to introduce some constraints on the values of the 

coefficients and on the form of the equations. This can be done by applying Kirchhoff’s law of 

radiation [43][44][45].  Applying Kirchhoff’s law to Eq. (6.9a-b) gives: 

𝑓1𝑛1
2𝛼1 + 𝑓2(1 − 𝐶)𝑛2

2𝛼2 ≅ 𝛼ℎ[𝑓1𝑛1
2 + 𝑓2(1 − 𝐶)𝑛2

2] (6.16a) 

𝛼2 ≅ 𝛼𝑡 (6.16b) 

Where the ≅ sign takes into account the fact that boundary conditions for the reformulated problem 

are not exactly the same as a conventional model of radiation in participating media. These equations 

can be developed more rigorously using the exact boundary conditions on the wall to obtain 
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compatibility conditions on the additional terms C, αt and gHG, ultimately allowing to calculate values 

of C and αt as anticipated. 

Starting from the trapped phase, we consider a black wall boundary and Eq. (6.15b), obtaining: 

I𝑡(𝑟𝑤 , Ω) =
1

4𝜋
𝑓2𝑛2

2𝐵0𝐶 ∫ Φ𝐻𝐺(Ω
′, Ω)𝑑Ω′

𝑛𝑤∙Ω
′>0

     {𝑛𝑤 ∙ Ω > 0} (6.17) 

And then the total emitted energy: 

𝑄𝑡
𝑒𝑚𝑖𝑡𝑡𝑒𝑑 = 𝑓2𝑛2

2𝐵0𝐶
1

4𝜋
∫ ∫ Φ𝐻𝐺(Ω

′, Ω)|𝑛𝑤 ∙ Ω|𝑑Ω
′

𝑛𝑤∙Ω
′>0𝑛𝑤∙Ω>0

𝑑Ω   = 𝜋𝑓2𝑛2
2𝐵𝑣𝐶

𝑔𝐻𝐺 + 1

2
 

(6.18) 

Where 
1

4𝜋
∫ ∫ Φ𝐻𝐺(Ω

′, Ω)|𝑛𝑤 ∙ Ω|𝑑Ω
′

𝑛𝑤∙Ω
′>0𝑛𝑤∙Ω>0

𝑑Ω = 𝜋
𝑔𝐻𝐺+1

2
 is a numerical solution, that can be 

easily verified for g = {-1, 0, 1}. 

And considering Eq. (6.9b) for a surface delimiting a semi-infinite plate of isothermal non-scattering 

medium, the incident radiation is 

𝑄𝑡
𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 = ∫ ∫ 𝑓2𝑛2

2𝛼2𝐵
0𝐶𝑒−𝛼𝑡𝑠

∞

0

|𝑛𝑤 ∙ Ω|𝑑𝑠𝑑Ω 

𝑛𝑤∙Ω<0

= 𝜋
𝛼2
𝛼𝑡
𝑓2𝑛2

2𝐵𝑣𝐶 
(6.19) 

From which one can see that: 

𝛼2 = 𝛼𝑡
𝑔𝐻𝐺 + 1

2
 (6.20) 

For the homogenized phase, considering a black wall boundary and Eq (6.15a), we obtain: 

Iℎ(𝑟𝑤, Ω) = 𝑓1𝑛1
2𝐵0 +

1

4𝜋
𝑓2𝑛2

2𝐵0(1 − 𝐶) ∫ Φ𝐻𝐺(Ω
′, Ω)𝑑Ω′

𝑛𝑤∙Ω′>0

        {𝑛𝑓 ∙ Ω > 0} (6.21) 

From which the total emitted energy can be derived: 

𝑄𝑡
𝑒𝑚𝑖𝑡𝑡𝑒𝑑 = 𝜋𝑓1𝑛1

2𝐵0 + 𝜋𝑓2𝑛2
2𝐵0(1 − 𝐶)

𝑔𝐻𝐺 + 1

2
 (6.22) 

And considering Eq. (6.9a) for a surface delimiting a semi-infinite plate of isothermal non-scattering 

medium, the incident radiation is: 
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𝑄𝑡
𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 = 𝜋

[𝑓1𝑛1
2𝛼1 + 𝑓2𝑛2

2𝛼2(1 − 𝐶)]

𝛼ℎ
𝐵0 

(6.23) 

Equating incident (Eq. 6.22) and emitted (Eq. 2.21) energy we finally obtain: 

𝑓1𝑛1
2𝛼1 + 𝑓2𝑛2

2𝛼2(1 − 𝐶) = 𝛼ℎ [𝑓1𝑛1
2 + 𝑓2𝑛2

2(1 − 𝐶)
𝑔𝐻𝐺 + 1

2
] 

(6.24) 

While it would be possible to determine all coefficients numerically, numerical incertitude can bring 

about values that do not fully respect Eqs. (6.20) and (6.24). We prefer to use a numerically calculated 

value of gHG and use Eqs. (6.20) and (6.24) to obtain C and αt.  

There are multiple reasons for this. On one hand, gHG is the only additional term that appears in both 

compatibility conditions. On the other hand, one can see that performing the adjustment this way, it 

is unlikely to obtain physically meaningless values of C and αt, while the reverse is not true.  

From Eq. (6.20) one can see that the only case where the value of αt cannot be determined from gHG 

is when the latter is exactly equal to -1. On the contrary, any value of αt smaller than α2 gives rise to 

a physically meaningless gHG > 1.  

From Eq. (6.24), differentiating with respect to C and gHG and rearranging we obtain:  

𝑑𝐶

𝑑𝑔𝐻𝐺
=

𝛼ℎ(1 − 𝐶)

2(𝛼ℎ
𝑔𝐻𝐺 + 1
2 − 𝛼2)

 (6.25) 

Considering that αh is typically a fraction of α2, one can surmise that the sensitivity dC/dgHG is 

significantly smaller than the reciprocal dgHG/dC for admissible values of the coefficients. Both 

values are subject to numerical incertitude due to the nature of MC simulation and the calculation 

method itself, which results in small deviations from Eq. (6.23). However, the difference in sensivity 

implies that, if gHG is adjusted to restore the exact equivalence, large adjustment may be necessary, 

possibly causing gHG to fall outside of the physically meaningful interval [-1;1]. 

We set C and αt to fully enforce Eqs. (6.20) and (6.24):  

𝐶 = 1 −
(𝛼ℎ − 𝛼1)𝑓1𝑛1

2

𝑓2𝑛2
2(𝛼2 − 𝛼ℎ

𝑔𝐻𝐺 + 1
2 )

 (6..26) 

𝛼𝑡 =
2𝛼2

𝑔𝐻𝐺 + 1
 (6.27) 
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Summing up, we have: 

- Constitutive equations: 

Ω ∙ ∇Iℎ = [𝑓1𝑛1
2𝛼1 + 𝑓2𝑛2

2𝛼2(1 − 𝐶)]𝐵
0 − 𝛽ℎ𝐼ℎ +

𝜎ℎ
4𝜋

∫ Iℎ(Ω′)Φℎ(Ω
′, Ω)𝑑Ω′

4𝜋

 (6.9a) 

Ω ∙ ∇I𝑡 = 𝑓2𝑛2
2𝛼2𝐵

𝑣𝐶 − 𝛼𝑡𝐼𝑡 (6.9b) 

I = Iℎ + I𝑡 (6.9c) 

- Prescribed directional intensity at boundary: 

𝐼(𝑟𝑤
+, Ω) = 𝐼𝑤𝑓1[Ω = Ω𝑤] + 𝐼𝑤𝑓2(1 − 𝐶)

Φ𝐻𝐺(Ω𝑤, Ω)

4𝜋
{𝑛𝑤 ∙ Ω > 0} (6.11a) 

𝐼(𝑟𝑤
+, Ω) = 𝐼𝑤𝑓2𝐶

Φ𝐻𝐺(Ω𝑤 , Ω)

4𝜋
         {𝑛𝑤 ∙ Ω > 0} (6.11b) 

𝐼(𝑟𝑤
−, Ω)⏞    = 𝐼(𝑟𝑤

+, Ω)⏞    + 𝑓2𝐼𝑤⏞
Φ𝐻𝐺(Ω𝑤, Ω)

4𝜋
          {𝑛𝑤 ∙ Ω < 0} (6.12) 

 

- Diffusely emitting/reflecting wall boundary: 

Iℎ(𝑟𝑤
+, Ω) = 𝑓1 (𝜀𝑠𝑛1

2𝐵0 +
𝜌𝑠
𝜋

∫ 𝐼(𝑟𝑤 , Ω
′)|𝑛𝑤 ∙ Ω

′|𝑑Ω′

𝑛𝑤∙Ω
′<0

) + 𝑓2(1 − 𝐶)𝐼
𝑠(𝑟𝑤 , Ω)    {𝑛𝑤 ∙ Ω > 0} (6.14a) 

I𝑡(𝑟𝑤
+, Ω) = 𝑓2𝐶𝐼

𝑠(𝑟𝑤 , Ω) {𝑛𝑤 ∙ Ω > 0} (6.14b) 

𝐼𝑠(𝑟𝑤
+, Ω) = (𝜀𝑠𝑛2

2𝐵0 +
𝜌𝑠
𝜋

∫ 𝐼(𝑟𝑤 , Ω
′)|𝑛𝑓 ∙ Ω

′|𝑑Ω′

𝑛𝑤∙Ω
′<0

)

×

1
4𝜋 ∫

Φ𝐻𝐺(Ω
′, Ω)𝑑Ω′

𝑛𝑤∙Ω
′>0

1 −
𝜌𝑠
4𝜋2

∫ ∫ Φ𝐻𝐺(Ω
′, Ω′′)|𝑛𝑤 ∙ Ω

′′|𝑑Ω′𝑑Ω′′
𝑛𝑤∙Ω

′>0𝑛𝑤∙Ω
′′<0

 

(6.15) 

 

- Compatibility conditions: 

𝛼2
𝛼𝑡
=
𝑔𝐻𝐺 + 1

2
 

(6.20) 

𝑓1𝑛1
2𝛼1 + 𝑓2𝑛2

2𝛼2(1 − 𝐶) = 𝛼ℎ(𝑓1𝑛1
2 + 𝑓2𝑛2

2(1 − 𝐶)
𝑔𝐻𝐺 + 1

2
) 

(6.24) 
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6.4 Numerical results 

Testing is conducted on for 3 different physical configuration and 5 different porous morphologies, 

which will be presented in detail in the following. The geometries are characterized by a single 

geometrical parameter, a length L, which is a characteristic length from which all geometrical 

measurements of the virtual sample can be deduced (see Figs. 6.13-15). The structure is considered 

to be constituted by a non-interacting fluid phase and a semi-transparent solid phase. The solid 

material is characterized in terms of its index of refraction n2, and its coefficient of absorption α2: 

these are chosen to represent typical values of semi-transparent materials used in porous structures in 

the visible to the intermediate infrared region, such as semi-transparent plastics and ceramics 

[98][99][100][101][102][103]. The region of values where the behavior of the solid is more markedly 

semi-transparent is chosen for analysis (as opposed to “almost transparent” or “almost opaque” 

behavior). Nine different triplets of (α2, L, n2) are considered for each physical configuration / 

morphology combination (for a total of 135 tests for each resolution method).  

As a benchmark, the radiation problems are solved using the Direct Monte Carlo Homogenization 

method illustrated in Chapter 5. Using this benchmark as a base, three different homogenized models 

are compared: 

1) HPA: a standard HPA model [22][40], using Eq. (1.1) with standard BCs for open boundaries 

and opaque walls (Eqs. 6.10, 6.13), and determination of properties according to the method 

shown in [40], i.e. determination of extinction coefficient β and scattering albedo ω with Eqs. 

(6.1-2) and direct calculation of scattering phase function by counting [40]: 

 

(6.28) 

In the determination of properties, we chose to cast rays from both the solid and the fluid 

phase according to their volumetric fraction, because this marginally improves the results 

compared to the benchmark. 
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2) HPA-INV: a standard HPA model, using Eq. (1.1) with standard BCs (Eqs. 6.10, 6.13) and 

determination of properties through the hybrid inverse-direct coefficient fitting discussed in 

section 2.4A. 

3) HPA+: an extended model (HPA+), using Eqs. (6.9a-c) and modified BCs for open 

boundaries (Eqs. 6.11a-b, 6.12) and opaque walls (Eqs. 6.14, 6.11a-c), with properties 

determined following the entire process discussed in Paragraph 6.3 

For each of the 5 morphologies, the three models are compared in terms of maximum and average 

error compared to the benchmark, with averages taken separately for each physical configuration over 

the 9 triplets characterizing the solid material optical properties. Each physical configuration has a 

specific definition of error, depending on the boundary conditions and the main quantities of interest, 

which will be illustrated in the following (Eqs. 6.30, 6.32, 6.38). This error is also used to check for 

numerical convergence of each method with respect to the number of rays launched, for both the 

Direct Monte Carlo method and the homogenized methods. Numerical convergence is considered 

achieved when, using the defined errors to compare the results of two distinct runs of the same 

methodology, they’re repeatably within 1% from each other. 
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The three different physical configurations are hereby described: 

1) Simulation of collimated radiation on an unbounded slab of thickness L and evaluation of 

hemispherical transmittance Trans, hemispherical reflectance Refl and total absorption Abs (Fig. 

6.13). 

 
Fig. 6.13 – Schematization of physical configuration 1 and relevant magnitudes. 

The quantities are directly evaluated by counting the rays [43][44][104], i.e.: 

𝑇𝑟𝑎𝑛𝑠 =
𝑁𝑇
𝑁
; 𝑅𝑒𝑓𝑙 =

𝑁𝑅
𝑁
; 𝐴𝑏𝑠 =

𝑁𝐴
𝑁

 (6.29a-c) 

Where N = 106 is the total number of incident rays cast and NT, NR and NA are the number of rays that 

traverse the slab, are reflected towards the incoming direction or are absorbed in the slab respectively. 

It is worth noting that NT + NR + NA = N. The error is quantified as: 

ERROR = |TRANS – trans| + |REFL – refl| + |ABS – abs|, (6..30) 

Where uppercase identifies Full Direct Monte Carlo and lowercase identifies homogenized methods.  
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2) Simulation of Lambertian emission for an eccentric surface element in a cubical domain of side L 

and calculation of view factors Cfi (i = 1…6) with respect to the domain’s walls and total absorption 

Abs (Fig. 6.14).  

 
Fig. 6.14 – Schematization of physical configuration 2 and relevant magnitudes. Note the eccentric 

position of the source point. 

The quantities are directly evaluated by counting the rays [43][44][104], i.e.: 

𝐶𝑓𝑛 =
𝑁𝑛
𝑁
; 𝐴𝑏𝑠 =

𝑁𝐴
𝑁

 (6.31a-b) 

Where N = 106 is the total number of rays cast, Nn is the number of rays impacting on the nth wall 

(Fig. 6.14) and NA is the number of rays absorbed in the domain. It is worth noting that ∑ 𝑁𝑖
6
𝑖=1 +

𝑁𝐴 = 𝑁. The error is quantified as: 

𝑬𝑹𝑹𝑶𝑹 = ∑|𝑪𝑭𝒏 − 𝒄𝒇𝒏|

𝟔

𝒏=𝟏

+ |𝑨𝑩𝑺 − 𝒂𝒃𝒔| (6.32) 

Where uppercase identifies Full Direct Monte Carlo and lowercase identifies homogenized methods.  
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3) Simulation of radiative heat exchange between two black walls at fixed temperatures TA = 300K 

and TB = 600K and evaluation of heat flux Q (Fig. 6.15).  

 

Fig. 6.15 – Schematization of physical configuration 3 and relevant magnitudes. Note that the temperature 

only depends on linear position. 

The hypothesis that the temperature is a function of linear position T = T(x) is made. The domain is 

divided in 50 equal-thickness layers, and temperature is assumed to be uniform in each layer. 

Additionally, to accelerate convergence, rather than using a direct energy packet exchange calculation 

of temperature [43][44][95][105], the zonal method is used, in which radiative models are used to 

calculate configuration factors Cfn,m among layers, which are then used to obtain the temperatures by 

inversion of the heat transfer equilibrium equation matrix [43][44][95][105]. The configuration 

factors are evaluated directly by counting rays [43][44][104], i.e.: 

𝐶𝑓𝑛,𝑚 =
𝑁𝑛,𝑚
𝑁𝑛

; 𝐶𝑓𝑛,𝐴 =
𝑁𝑛,𝐴
𝑁𝑛

; 𝐶𝑓𝑛,𝐵 =
𝑁𝑛,𝐵
𝑁𝑛

; (6.33a-c) 

𝐶𝑓𝐴,𝑚 =
𝑁𝐴,𝑚
𝑁𝐴

; 𝐶𝑓𝐴,𝐴 =
𝑁𝐴,𝐴
𝑁𝐴

; 𝐶𝑓𝐴,𝐵 =
𝑁𝐴,𝐵
𝑁𝐴

; (6.33d-f) 

With reference to (6.33a-c), Nn = 105 is the total number of rays cast from random points in the nth 

layer (for a grand total of 5∙106 rays) and Nn,m, Nn,A and Nn,B are the number of rays cast from the nth 

layer that are absorbed respectively in the mth slice, at boundary A or at boundary B. It is worth noting 

that ∑ 𝑁𝑛,𝑚
50
𝑚=1 + 𝑁𝑛,𝐴 +𝑁𝑛,𝐵 = 𝑁𝑛.  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



140 
 

With reference to (6.33d-f), NA = 106 is the total number of rays cast from boundary A and NA,m, NA,A 

and NA,B are the number of rays cast from boundary A that are absorbed respectively in the mth layer, 

at boundary A or at boundary B. It is worth noting that ∑ 𝑁𝐴,𝑚
50
𝑚=1 + 𝑁𝐴,𝐴 + 𝑁𝐴,𝐵 = 𝑁𝐴.  

One can then calculate power factors Pw and Pv for the walls and slices respectively, such that: 

𝑄𝑛 = 𝑃𝑣𝑇𝑛
4;  𝑄𝐴 = 𝑃𝑤𝑇𝐴

4; 𝑄𝐵 = 𝑃𝑤𝑇𝐵
4 (6.34a-c) 

Where Qn, QA and QB represent the total irradiated power of the nth layer, wall A and wall B 

respectively. By symmetry and reciprocity we also have: 

𝐶𝑓𝐵,𝐵 = 𝐶𝑓𝐴,𝐴;  𝐶𝑓𝐵,𝐴 = 𝐶𝑓𝐴,𝐵;  𝐶𝑓𝑛,𝑚 = 𝐶𝑓𝑚,𝑛 (6.35a-c) 

𝐶𝑓𝐴,𝑚𝑃𝑤 = 𝐶𝑓𝑚,𝐴𝑃𝑣; 𝐶𝑓𝐵,𝑚𝑃𝑤 = 𝐶𝑓𝑚,𝐵𝑃𝑣 (6.35d-e) 

𝐶𝑓𝐴,𝑚 = 𝐶𝑓𝐵,50−𝑚;  𝐶𝑓𝑚,𝐴 = 𝐶𝑓𝑚−50,𝐵 (6.35f-g) 

Then, considering purely radiative heat transfer, the energy balance for each of the 2 walls and for 

each of the 50 discretized layers can be written: 

{
 
 

 
 𝑃𝑤𝑇𝐴

4𝐶𝑓𝐴,1 + 𝑃𝑣𝑇1
4(𝐶𝑓1,1 − 1) + 𝑃𝑣𝑇2

4𝐶𝑓2,1 +⋯+ 𝑃𝑣𝑇50
4 𝐶𝑓50,1 + 𝑃𝑤𝑇𝐵

4𝐶𝑓𝐵,1 = 0

𝑃𝑤𝑇𝐴
4𝐶𝑓𝐴,2 + 𝑃𝑣𝑇1

4𝐶𝑓1,2 + 𝑃𝑣𝑇2
4(𝐶𝑓2,2 − 1) +⋯+ 𝑃𝑣𝑇50

4 𝐶𝑓50,2 + 𝑃𝑤𝑇𝐵
4𝐶𝑓𝐵,2 = 0

…
𝑃𝑤𝑇𝐴

4𝐶𝑓𝐴,50 + 𝑃𝑣𝑇1
4𝐶𝑓1,50 + 𝑃𝑣𝑇2

4𝐶𝑓2,50 +⋯+ 𝑃𝑣𝑇50
4 (𝐶𝑓50,50 − 1) + 𝑃𝑤𝑇𝐵

4𝐶𝑓𝐵,50 = 0

 (6.36) 

Solving this system, temperatures T1…50 can be determined. The highly automatized optimized linear 

system solver in MATLAB [106] is used to solve the system, with no further adaptations necessary 

due to the small size of the input matrices. 

Finally, the total heat flux Q can be calculated as: 

𝑄 = 𝑃𝑤𝑇𝐴
4(𝐶𝑓𝐴,𝐴 − 1) + 𝑃𝑣𝑇1

4𝐶𝑓1,𝐴 +⋯+ 𝑃𝑣𝑇50
4 𝐶𝑓50,𝐴 + 𝑃𝑤𝑇𝐵

4𝐶𝑓𝐵,𝐴 (6.37) 

The error is quantified as: 

ERROR = |Q/q – 1| (6.38) 

Where Q is the flux calculated in Full Direct Monte Carlo and q is the flux calculated with 

homogenized methods.  
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The 5 morphologies considered cover a relatively vast variety of porous material, and have been 

digitally generated making use of the techniques illustrated in Section 2. All the morphologies are 

periodic in the three coordinate directions and are made up of 128 spheres/cells. This number of cells 

has been considered to satisfactorily represent the random structure while not imposing very high 

computational loads [15][85]. A general presentation of all the seven morphologies is given in Table 

6.2. The generation parameters relative to each morphology are also given. 

# Type Porosity Diameter distribution Other parameters Picture 

1 

High porosity 

open cell (Ref. 

Paragraphs 3.2, 

3.4, 3.6) 

0.89 

Normal distribution, 

CVd = 0.10 

t = 0.4 

k = 0.6 

 
2 

0.96 

t = 0.5 

k = 0.16 

 
3 

Open cell (Ref. 

Paragraphs 3.2, 

3.3) 

0.85 

Lognormal 

distribution, GCVd = 

0.3 

None 

 
4 

Closed cell (Ref. 

Paragraphs 3.2, 

3.4, 3.5) 

0.85 

Lognormal 

distribution, GCVd = 

0.3 

None 

 
5 

0.98 None 

 
Table 6.2 – General presentation of the 5 porous morphologies considered. 
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Test summary 

α2 n2 L 

0.69 1.40 5 

0.69 1.70 5 

0.69 2.00 5 

1.37 1.40 3 

1.37 1.70 3 

1.37 2.00 3 

2.74 1.40 2 

2.74 1.70 2 

2.74 2.00 2 

 

ε = 0.89 

Normal diameter distribution 

CVd = 0.10 

t = 0.5 

k = 0.16 

 

Result synthesis 

 

AVERAGE ERROR 

 HPA INV HPA HPA+ 

Test 1 8.52% 5.18% 3.85% 

Test 2 17.95% 13.00% 6.93% 

Test 3 20.46% 12.26% 2.99% 

 

MAXIMUM ERROR 

 HPA INV HPA HPA+ 

Test 1 14.32% 11.84% 6.67% 

Test 2 35.83% 31.93% 10.49% 

Test 3 37.63% 30.07% 9.24% 
 

Table 6.3 – Data and results for Morphology #1 

 (High porosity open cell foam – Ref. Paragraphs 3.2, 3.4, 3.6) 
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Test summary 

α2 n2 L 

2.01 1.40 5 

2.01 1.70 5 

2.01 2.00 5 

4.02 1.40 3 

4.02 1.70 3 

4.02 2.00 3 

8.05 1.40 2 

8.05 1.70 2 

8.05 2.00 2 

 

ε = 0.96 

Normal diameter distribution 

CVd = 0.10 

t = 0.4 

k = 0.6 

Result synthesis 

 

AVERAGE ERROR 

 HPA INV HPA HPA+ 

Test 1 4.12% 1.84% 2.01% 

Test 2 6.84% 4.50% 3.12% 

Test 3 8.42% 4.90% 1.86% 

 

MAXIMUM ERROR 

 HPA INV HPA HPA+ 

Test 1 6.19% 3.71% 3.20% 

Test 2 12.91% 10.33% 4.76% 

Test 3 14.28% 10.35% 2.91% 
 

Table 6.4 – Data and results for Morphology #2 

 (High porosity open cell foam – Ref. Paragraphs 3.2, 3.4, 3.6) 
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Test summary 

α2 n2 L 

0.48 1.40 5 

0.48 1.70 5 

0.48 2.00 5 

0.95 1.40 3 

0.95 1.70 3 

0.95 2.00 3 

1.90 1.40 2 

1.90 1.70 2 

1.90 2.00 2 

 

ε = 0.85 

Lognormal diameter distribution 

GCVd = 0.3 

Result synthesis 

 

AVERAGE ERROR 

 HPA INV HPA HPA+ 

Test 1 8.68% 5.04% 3.67% 

Test 2 20.27% 14.66% 5.92% 

Test 3 22.01% 13.16% 2.59% 

 

MAXIMUM ERROR 

 HPA INV HPA HPA+ 

Test 1 16.02% 9.82% 7.22% 

Test 2 41.32% 30.50% 11.87% 

Test 3 41.01% 27.94% 6.95% 
 

Table 6.5 – Data and results for Morphology #3 

 (Open cell foam – Ref. Paragraphs 3.2, 3.3) 
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Test summary 

α2 n2 L 

0.34 1.40 5 

0.34 1.70 5 

0.34 2.00 5 

0.68 1.40 3 

0.68 1.70 3 

0.68 2.00 3 

1.36 1.40 2 

1.36 1.70 2 

1.36 2.00 2 

 

ε = 0.85 

Lognormal diameter distribution 

GCVd = 0.3 

Result synthesis 

 

AVERAGE ERROR 

 HPA INV HPA HPA+ 

Test 1 10.25% 9.45% 9.80% 

Test 2 23.47% 15.68% 10.12% 

Test 3 24.88% 10.25% 3.92% 

 

MAXIMUM ERROR 

 HPA INV HPA HPA+ 

Test 1 18.16% 12.69% 11.56% 

Test 2 41.47% 29.54% 16.25% 

Test 3 42.58% 18.57% 8.50% 
 

Table 6.6 – Data and results for Morphology #4 

 (Closed cell foam – Ref. Paragraphs 3.2, 3.4, 3.5) 
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Test summary 

α2 n2 L 

4.00 1.40 5 

4.00 1.70 5 

4.00 2.00 5 

8.00 1.40 3 

8.00 1.70 3 

8.00 2.00 3 

16.00 1.40 2 

16.00 1.70 2 

16.00 2.00 2 

 

ε = 0.98 

Lognormal diameter distribution 

GCVd = 0.3 

Result synthesis 

 

AVERAGE ERROR 

 HPA INV HPA HPA+ 

Test 1 7.33% 3.50% 3.50% 

Test 2 9.25% 5.28% 2.10% 

Test 3 11.33% 2.16% 2.61% 

 

MAXIMUM ERROR 

 HPA INV HPA HPA+ 

Test 1 10.92% 4.83% 5.02% 

Test 2 15.76% 7.74% 4.35% 

Test 3 21.68% 4.62% 6.76% 
 

Table 6.7 – Data and results for Morphology #5 

 (Closed cell foam – Ref. Paragraphs 3.2, 3.4, 3.6) 
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6.5. Comments 

The results show a trend, fairly consistent for all the porous morphologies and physical configurations 

considered, where the Inverse HPA method improves over the Classic HPA method, and the HPA+ 

method improves over the Inverse HPA method.  

The adoption of the Inverse fitting of the scattering phase function appears justified in the results: in 

all cases the Inverse Method outperforms the Classic Method in terms of error, and the dramatic 

improvement seen in pretty much all morphologies (and more markedly morphology #5) appears 

sufficient to justify the adoption of such a method over the standard one in most cases, also 

considering that no modification of the equations is needed to do so. 

Results also show that, if further accuracy is required, modification of the equations according to 

what has been presented as HPA+ can provide a further dramatic improvement of accuracy. The 

HPA+ method makes it possible to reduce errors up to 8 times, compared to the Classic HPA. 

The error reduction is especially marked, both in absolute and relative terms, when the porosity is 

lower, which is consistent with the idea that the traditional HPA methods neglect some effects tied to 

the presence of rays incident on the solid phase and that the HPA+ correction considers these effects. 

Importantly, the HPA+ method appears to be able to consistently guarantee errors below 10% 

for all the considered morphologies and set of properties on Test #3, which considers a very 

directly engineering-relevant metric, i.e. the heat flux through a wall filled with the porous 

medium, while the other proposed methods give errors up to 30%. 

Given these results, it would appear advisable to use Inverse fitting of HPA scattering phase function 

in all cases, considering that minimal additional calculations are required, compared to the direct 

method. In addition, when lower (<90%) levels of porosity are involved, and high accuracy is 

required, the proposed HPA+ method can provide a very significant improvement over existing 

methods, at the price of a small complication in the equations. 
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Chapter 7 – Improved Multi Phase Approach (MPA+) 

7.1 Introduction 

 In the following, we’ll be explaining the bases of an Improved Multi Phase Approach (for 

information on MPA, see Subparagraph 2.2.1). Following the scheme established with the HPA+, 

we’ll first discuss the significance of ray histories, with reference to specific problems that arise in 

the context of MPA. Then we’ll propose a modification of the classic MPA to take into account such 

effects, allowing to increase accuracy while retaining simplicity, finally we will flesh out our model 

in detail, explaining the process of determination of its parameters and testing it.  

7.2 Ray history effects and general setup of MPA+ 

Recalling Fig. 6.1 from Chapter 6, most of the same considerations apply. Indeed, even if in a MPA 

model each phase is characterized separately, the same core problem illustrated before present 

themselves more or less in the same fashion, namely, rays in the solid phase behave very differently 

according to their origin (in the solid phase itself, or from the fluid phase). However, the fact that the 

solid phase is treated explicitly has some impact.  

 
Fig. 7.1 – Example geometry to illustrate the effect of ray origin on ray propagation. 
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The phenomenon of “trapping” identified previously is still relevant, and must be considered along 

with the presence of a corresponding “trapped phase. In Fig. 7.1 above, an extreme case is depicted, 

where a large fraction of rays originating in the solid phase are “trapped”, while most rays coming 

from outside pass through. This can be modeled by assigning to the “trapped phase” a part of radiation 

usually assigned to the solid phase. The trapped phase is modeled with an additional constitutive 

equation, in the same fashion as was done for the Improved HPA, but in this case it is a scattering 

and absorbing phase. The trapped phase is then fully characterized by the trapped fraction C1 and the 

radiative coefficients αt, σt and asymmetry factor gt.  

Concerning the scattering effect, on the other hand, it is already taken into account explicitly in the 

standard MPA. Indeed, the MPA model already includes a scattering phase function Φ21(Ω
′, Ω), and 

such phase function can be expected to not depend significantly on the origin of the ray. Looking at 

Fig. 7.1 it is clear that the distribution of angles (α3⇒α3’) associated with the non-trapped fraction 

must be similar to the distribution (α1’⇒α1) associated with the fraction coming from the fluid phase, 

while rays intersecting the interface at angles beyond the critical angle will be totally internally 

reflected in both cases, thus having no effect on the scattering phase function Φ21(Ω
′, Ω). Not having 

to explicitly model the additional scattering in the two main phases, it is convenient to model the 

trapped phase as a scattering-absorbing phase: this simplifies considerably the writing of the boundary 

conditions for the modified equations. 

Finally, looking at Fig. 7.1 it is easy to highlight another effect that is specific of the MPA context. 

In MPA, a unique scattering path length characteristic of the solid phase must be calculated. 

Comparing the intensity coming from the fluid dense phase (red) with the non-trapped intensity 

originating in the solid phase (green), one can easily see that some geometries (such as the one in 

figure) can cause a systematic difference between the average path lengths associated with these 

intensities (in this case, the latter’s path length is on average half the former’s) in the solid phase. As 

only one set of coefficients (and a corresponding path length) can be associated to the solid phase, it 
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is necessary to find a way to model this difference without altering the coefficients. We choose to add 

an additional coefficient C2. The non-trapped fraction (1-C1) of radiation originating in the solid phase 

is distributed between the two homogenized phases according to C2, in such a way that the mean 

transmission path length in the solid is preserved in the transition from discrete to homogenous scale, 

according to the following principle:  

• Radiation assigned to the homogenized solid phase will have a mean transmission path length  

𝑠2 =
1

𝛼2+𝜎21
 in that phase, with 𝜎21 determined using rays coming from the fluid, possibly 

longer than the actual path length for rays originating in the solid. 

• Radiation assigned to the homogenized fluid phase will have a mean transmission path length 

in the solid s2 = 0. 

• The actual path length 𝑠2
∗ can then be approximated as a weighted average of the standard 

homogenized path length 𝑠2 =
1

𝛼2+𝜎2
 and the zero path length s2 = 0, according to a 

conveniently chosen weighing coefficient C2, so that: 

𝑠2
∗ = 𝑠2(1 − 𝐶2) (7.1) 

It is worth noting that this effect does not depend on directionality, so it will intervene to modify both 

the emission terms of the constitutive equations and the boundary conditions. Fig. 7.3 further 

illustrates the idea, with an example at the discrete scale 

 

Fig. 7.2 – Two different path length distributions with the same average path length. The distribution on the 

right approximates the same path length as the distribution on the left but only use borders of the solid 

domain as starting point. 
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Fig. 7.3 synthetically displays the effects at the discrete scale and the corresponding approximations 

at the homogenized scale. Radiation either passes into the fluid (green) or is absorbed (blue). At the 

homogenized scale, the parameter C1 controls the relative fraction of absorbed radiation. Absorbed 

radiation (blue) is approximated as entering the trapped phase with radiative properties chosen to 

fully match the propagation at the discrete scale, both scattering and absorption.  The non-trapped 

fraction (1-C1) of radiation originating in the solid phase is distributed between the two homogenized 

phases according to C2.  

A fraction C1 of the radiation entering the domain in the solid phase will be assigned to the 

trapped phase and propagate according to its separate RTE. The rest is distributed between 

the two standard homogenized phases.  It is important to note the standard homogenized phases 

and the trapped phase are not coupled, that which simplifies the model significantly. 

The RTE of the trapped phase is characterized by its absorption coefficient αt, its scattering 

coefficient σt and the asymmetry factor of the phase function gt., i.e. the trapped phase is 

characterized as a scattering and absorbing phase.  

To take into account the variability in mean path length in the solid according to the origin, the 

non-trapped fraction of radiation is not entirely assigned to the solid phase, but it is distributed 

between the two standard homogenized phases according to the coefficient C2, as explained 

above.  

As was the case for the HPA, the aforementioned coefficients intervene to modify the structure of the 

standard MPA model. The modification only pertains to the fraction of radiation originating in the 

solid phase, while the fraction of radiation originating in the fluid phase is treated according to 

standard MPA convention. 

The approximation should be satisfying for a large interval of porosities, and afford a significant 

improvement over conventional MPA models, while preserving much of their simplicity. 
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Fig. 7.3 – Synthetic figure depicting the effects on the discrete scale and the corresponding approximations at 

the homogenized scale. In blue and green, the trapped and non-trapped rays respectively, represented on the 

left at the discrete scale and on the right as the approximated homogenized scale equivalent. In black the rays 

in the fluid phase. The homogenized trapped phase scatters and absorbs. For the non-trapped rays, the mean 

path length is preserved. 
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7.3 Full presentation of theMPA+ 

Fig. 7.4 – Parameter identification flow chart for Improved Multi Phase Approach 
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The novel proposed method can be articulated in four parts, which are labeled (7.3.1-4) (Fig. 7.4) and 

can be summarized as follows: 

7.3.1) Determination of MPA coefficients σ11, σ12, σ21, σ22, g11, g12, g21, g22 (collectively σij, and 

gij) with rays starting from the fluid phase. 

7.3.2) Determination of adjustment coefficients C2 for systematic difference in transmission 

mean free path in solid phase. 

7.3.3) Determination of coefficients αt, σt and gt for the trapped phase. 

7.3.4) Modification of equations and boundary conditions and calculation of adjustment 

coefficient C1 for trapping effect. 

It is worth underlining that, during the determination of the coefficients of the homogenoues phases, 

rays are originated only from points in the fluid phase, similarly to [40]. 

In the course of the process, heavy use of Monte Carlo Ray Tracing simulations is made. Further 

details and discussion on MCRT for radiation heat transfer can be found in [15], some adaptations 

relevant to semi-transparent media are discussed in [40] and Chapter 2. With respect to design choices 

discussed in [15], periodic wrapping at the boundaries is used for the simulation, without 

randomization of position. 

The four phases (7.3.1-4) just summarized and schematized in Fig. 7.4 are detailed in the following. 
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7.3.1. Ray tracing from the fluid phase – hybrid determination of coefficients. 

 
Fig. 7.5 – Illustration of ray casting from fluid phase for hybrid determination of radiative properties and 

logged quantities. 

The process of determining suitable equivalent properties of the MPA homogeneous phases starts 

with a Monte Carlo Ray Tracing simulation. As implied before, all rays (for a total of N = 106) for 

this initial simulation are cast from the fluid phase. Similarly to what discussed in [40], with reference 

to Fig. 7.5, scattering events are stored, namely the path length associated with each event is added 

to the accumulators an L1 and L2 for the two phases respectively, while the number of events are 

counted in counters N11, N12, N21 and N22. This allows to calculate σ11, σ12, σ21 and σ22 (collectively 

σij) simply as: 

𝜎11 =
𝑁11
𝐿1
; 𝜎12 =

𝑁12
𝐿1
; (7.2a-b) 

𝜎21 =
𝑁21
𝐿2
; 𝜎22 =

𝑁22
𝐿2
; (7.3a-b) 
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A specific adaptation of our algorithm compared to those already presented in literature is that each 

ray is tracked until it is finally absorbed by the medium: this means that each ray can give rise to 

multiple scattering logging events.  

Additionally, for each absorption event (once for each ray), the distance sabs from the source point to 

the point of final absorption and the angle θabs between its original direction vector and the vector 

going from the source point to the point of absorption are stored (Fig. 7.5). This is necessary for the 

inverse analysis. 

Having determined σij using the direct approach just outlined, an alternative inverse approach is 

hereby proposed for the determination of the scattering phase functions. In our approach, the 

scattering phase function are defined as Henyey-Greenstein phase function, each one , characterized 

by a single asymmetry coefficient, for a total of 4 coefficients g11, g12, g21, g22 (collectively gij). It can 

also be noted that, by optical reversibility, g12 = g21 [38], which reduces to 3 the number of coefficients 

to be found. 

A number of Monte Carlo MPA simulations by numerically solving by means of Monte Carlo 

simulations Eqs. (2.4a-b) using the σij already obtained and different values of gij. As in the case of 

Monte Carlo micro structural simulations, each ray is originated in the fluid phase, and each ray is 

tracked up to its final absorption, logging the distance from the source point to the point of final 

absorption sabs and the angle θabs between its original direction vector and the vector going from the 

source point to the absorption point. 

The distribution of sabs can be reshaped to represent the polar distribution of absorbed radiation. This 

is simply obtained by counting all the rays falling in a given interval: 

𝐼𝑎𝑏𝑠(𝑠, 𝜃)

𝐼0
=
∑ [𝑠 −

∆𝑠
2 ≤ 𝑠𝑎𝑏𝑠𝑛 ≤ 𝑠 +

∆𝑠
2 ∧ 𝜃 −

∆𝜃
2 ≤ 𝜃𝒆𝒙𝒕𝑛 ≤ 𝜃 +

∆𝜃
2 ]

𝑁
𝑛=1

𝑁∆𝑠∆𝜃
 (7.4) 

Where N is the total number of rays cast, [] are Iverson brackets and Δs and Δθ are discretization 

intervals opportunely chosen to guarantee acceptable smoothness. 
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The resulting values of  
𝐼𝑎𝑏𝑠(𝑠,𝜃)

𝐼0
  are compared between the MC micro structural simulation and the 

MPA-MC simulation, then a particle swarm algorithm [97] is used to minimize squared differences 

(i.e. to obtain best curve fit), with gij as independent variables (see Fig. 7.6). 

The error function to minimize can be written:  

𝐸𝑅𝑅(𝑔𝑖𝑗) = ∫ ∫ (
𝐼𝑎𝑏𝑠
∗ (𝑠, 𝜃)

𝐼0
−
𝐼𝑎𝑏𝑠
𝑀𝑃𝐴𝑔𝑖𝑗(𝑠, 𝜃)

𝐼0
)

2

𝑑𝑠
∞

0

2𝜋

0

𝑑𝜃  
(7.5) 

Where 𝐼𝑎𝑏𝑠
𝑀𝑃𝐴𝑔𝑖𝑗(𝑠) indicates the locally absorbed fraction calculated using the MPA with scattering 

certain set of asymmetry factors gij and 𝐼𝑎𝑏𝑠
∗ (𝑠) indicates the locally absorbed fraction calculated for 

the micro scale direct Monte Carlo. 

 
Fig. 7.6 – Illustration of the fitting process. In blue, the direct numerical polar distribution of absorbed 

radiation. In red, yellow and green, the error surfaces (
𝐼𝑎𝑏𝑠
∗ (𝑠,𝜃)

𝐼0
−
𝐼𝑎𝑏𝑠

𝑀𝑃𝐴𝑔𝑖𝑗
(𝑠,𝜃)

𝐼0
) for 3 different sets of gij.  
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7.3.2. Ray tracing from the solid phase – evaluation of coefficient C2 

 

Fig. 7.7 – Illustration of ray casting from solid phase for evaluation of C2 

Using Monte Carlo simulations at the micro-scale to directly simulate the propagation of rays emitted 

in the solid phase and relating the results to the phenomenological definitions of the coefficients, we 

can obtain values for the coefficients (Fig. 7.7). 

With respect to Monte Carlo assumptions, they are the same used before, but all rays start from the 

solid phase. A total of N = 106 rays are launched and tracked. The rays are tracked up to their 

absorption or to the passage in the fluid phase. Only quantities relative to rays that pass in the fluid 

phase are logged (the absorbed rays correspond to the trapped phase). For each scattering event, an 

accumulator Lscatt is incremented by associated the path length. For each ray passing in the fluid, a 

counter Nout is increased. 

The average path of a ray in the solid up to passage in the fluid s* can be then calculated as: 

𝑠∗ =
𝐿𝑠𝑐𝑎𝑡𝑡
𝑁𝑜𝑢𝑡

 (7.6) 
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In this case, the calculation of the coefficients is made significantly less straightforward due to the 

presence of the explicit treatment of the dense phase in the standard MPA equations. However, it is 

still possible to obtain the coefficient in a fairly simple manner. 

Writing C2 as the weighing coefficient that preserves the transmission mean path of non-trapped rays: 

𝑠∗ = (1 − 𝐶2)𝑠2 (7.7) 

Where s2 is the path length in the solid associated with homogeneous phase 2: 

𝑠2 =
1

𝛼2 + 𝜎21
 (7.8) 

Then C2 can be obtained as: 

𝐶2 = 1 −
𝑠∗

𝛼2 + 𝜎21
 (7.9) 

It would be possible to obtain C1 from its phenomenological definition by observing its relation with 

the fraction of rays that ever reach the fluid phase: 

𝑁𝑜𝑢𝑡
𝑁

= (1 − 𝐶1) [𝐶2 + (1 − 𝐶2)
𝜎21

𝛼2 + 𝜎21
] (7.10) 

Where first factor reflects the fact that none of the trapped radiation ever reaches the fluid phase and 

the second factor reflects the fact that a fraction C2 of the radiation immediately reaches the fluid 

phase and a fraction (1 – C2) propagates through the solid phase. 

However, in subsection 7.3.4, it will be shown that it is possible to obtain a more rigorous value of 

C1 by imposing an energy conservation condition on the equations. In our tests, the value of C1 

calculated by using Eq. (7.10) never differed more than 5% from the value obtained through the 

energy conservation condition, which comforts us about the consistency of our definitions. 
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7.3.3. Ray tracing from solid phase – hybrid determination of trapped phase 

coefficients. 

 

Fig. 7.8 – Illustration of ray casting from solid phase for evaluation of trapped phase coefficients. 

Rather than considering the trapped phase a purely absorbing one as in the HPA+, in this case we 

characterize it as an absorbing and scattering phase. The absorption coefficient, on the base of purely 

physical reasoning, can be set equal to that of the solid phase, αt = α2. To determine the other 

properties, once again a hybrid inverse approach is applied, quite similar to the one used to determine 

the properties of the homogeneous phase in the HPA+. A MC micro structural simulation is executed 

with N = 106 rays starting exclusively from the solid phase. In this case, the rays are followed up to 

their final absorption in solid phase, while rays exiting the solid phase are not considered. Internal 

scattering events are stored, namely the path length associated with each event is added to an 

accumulator Lscatt while the number of events is counted in a counter Nscattt. This allows to calculate 

σt simply as: 
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𝜎𝑡 =
𝑁𝑠𝑐𝑎𝑡𝑡
𝐿𝑠𝑐𝑎𝑡𝑡

 (7.11) 

Additionally, for each absorption event (once for each ray), the distance from the source point to the 

point of final absorption is also logged in the distribution sabs. The scattering phase function of the 

trapped phase is then characterized as a Heyney-Greenstein phase function and its asymmetry 

coefficient gt is calculated according to the method already illustrated in Subparagraph 6.3.1, i.e. by 

inverse fitting between the micro-structural simulation and a number of HPA-MC simulations. 

The distribution of sabs is used to calculate 

𝐼𝑎𝑏𝑠(𝑠)

𝐼0
=
∑ [𝑠 −

∆𝑠
2 ≤ 𝑠𝑎𝑏𝑠𝑛 ≤ 𝑠 +

∆𝑠
2 ]

𝑁
𝑖=1

𝑁∆𝑠
 (7.12) 

Where N is the total number of rays cast, [] are Iverson brackets and Δs is a discretization interval 

opportunely chosen to guarantee acceptable smoothness. 

This magnitude is compared between the MC micro structural simulation and the HPA, then a particle 

swarm algorithm [97] is used to minimize squared differences (i.e. to obtain best curve fit), with gt as 

independent variable. 

The error function to minimize can be written:  

𝐸𝑅𝑅(𝑔ℎ) = ∫ (
𝐼𝑎𝑏𝑠
∗ (𝑠)

𝐼0
−
𝐼𝑎𝑏𝑠
𝐻𝑃𝐴𝑔𝑡(𝑠)

𝐼0
)

2

𝑑𝑠
∞

0

  (7.13) 

Where 𝐼𝑎𝑏𝑠
𝐻𝑃𝐴𝑔𝑡(𝑠) indicates the locally absorbed fraction calculated using the particular determination 

of the HPA model that is given by a certain value of gt and 𝐼𝑎𝑏𝑠
∗ (𝑠) indicates the locally absorbed 

fraction calculated directly using the Monte Carlo simulation at the discrete scale. 
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7.3.4. Modified equations and calculation of C1 

Similarly to what has been done for the HPA+, we’ll now present the modified equations. First, the 

constitutive equations for both the standard homogenized phases and the trapped phase will be 

presented. Then, the necessary modifications to the boundary conditions will be defined. 

As for the constitutive equations, without losing generality, on can postulate n2 > n1 and write: 

Ω ∙ ∇I1 = 𝑛1
2𝛼1𝐵1

0 +
𝑓2(1 − 𝐶1)

𝑓1
𝐶2𝑛2

2𝛼2𝐵2
0

⏞            

𝑁𝑜𝑛−𝑡𝑟𝑎𝑝𝑝𝑒𝑑 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 2 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 

𝑝ℎ𝑎𝑠𝑒 1

− 𝛽1𝐼1 +
𝜎11
4𝜋

∫ 𝐼1(Ω
′)Φ11(Ω

′, Ω)𝑑Ω′

4𝜋

+
𝑓2(1 − 𝐶1)
⏞      

𝑁𝑜𝑛−𝑡𝑟𝑎𝑝𝑝𝑒𝑑
𝑝ℎ𝑎𝑠𝑒 2 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑓1

𝜎21
4𝜋

∫ 𝐼2(Ω′)Φ21(Ω
′, Ω)𝑑Ω′

4𝜋

 

 

(7.14a) 

Ω ∙ ∇I2 = 𝑛2
2𝛼2𝐵2

0(1 − 𝐶2)
⏞          

𝑁𝑜𝑛−𝑡𝑟𝑎𝑝𝑝𝑒𝑑 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 2 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 

𝑝ℎ𝑎𝑠𝑒 2

− 𝛽2𝐼2 +
𝜎22
4𝜋

∫ 𝐼2(Ω′)Φ22(Ω
′, Ω)𝑑Ω′

4𝜋

+
𝑓1

𝑓2(1 − 𝐶1)⏟      
𝑁𝑜𝑛−𝑡𝑟𝑎𝑝𝑝𝑒𝑑
𝑝ℎ𝑎𝑠𝑒 2 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝜎12
4𝜋

∫ 𝐼1(Ω′)Φ12(Ω
′, Ω)𝑑Ω′

4𝜋

 

 

(7.14b) 

Ω ∙ ∇I𝑡 = 𝛼2𝐵2
0 − (𝛼2 + 𝜎𝑡)I𝑡 +

𝜎𝑡
4𝜋

∫ I𝑡(Ω′)Φ𝑡(Ω
′, Ω)𝑑Ω′

4𝜋

 (7.14c) 

I = I1𝑓1 + I2𝑓2(1 − 𝐶1) + I𝑡𝑓2𝐶1 (7.14d) 

It is useful to explain the equations starting from the bottom.  

In Eq. (7.14d) we can clearly see the total intensity being given by the weighted sum of the three 

phases, and the trapped phase being weighed against the solid phase through the coefficient C1.  

Indeed, the non-trapped solid phase is reduced to a virtual volume fraction of f2(1-C1). 

Eq. (7.14c) is in this case a conventional HPA equation. It is interesting to observe that the sum of 

emission of the three equations equals exactly the effective emission taking place in the medium.  

The first two terms represent the modified forms of the conventional MPA terms. There are two 

distinct modification with respect to the conventional form (see also Paragraph 7.2): 
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1) The terms that account for the partial assignment of radiation in phase 1 rather than phase 2. 

2) The terms that account for the presence of the trapped phase. 

Fig. 7.2 can be useful for guidance when interpreting the equations. 

By applying the treatment seen in Subparagraph 2.2.2 to Eq. (7.14a) or, identically, to Eq. (7.14b), 

we can obtain a compatibility condition that, as previously mentioned, can be used to calculated the 

value of C1. Recalling the definitions: 

𝛽1 = 𝛼1 + 𝜎11 + 𝜎12 (7.15a) 

𝛽2 = 𝛼2 + 𝜎22 + 𝜎21 
(7.15b) 

And assuming the thermodynamic equilibrium conditions: 

𝑇1 = 𝑇2 = 𝑇 (7.16) 

𝐵1
0 = 𝐵2

0 = 𝐵0 (7.17) 

4𝜋𝑛1
2𝛼1𝐵

0 = 𝛼1 ∫ 𝐼1(Ω′)𝑑Ω′

4𝜋

 (7.18a) 

4𝜋𝑛2
2𝛼2𝐵

0 = 𝛼2 ∫ 𝐼2(Ω′)𝑑Ω′

4𝜋

 (7.18b) 

And writing the radiative equilibrium condition, for Eq. (7.14a): 

𝑓1∇ ∙ ∫ Ω𝐼1𝑑Ω

4𝜋

= 4𝜋𝑓1𝑛1
2𝛼1𝐵

0 + 4𝜋𝑓2(1 − 𝐶1)𝐶2𝑛2
2𝛼2𝐵2

0 − (𝛽1 − 𝜎11)𝑓1 ∫ 𝐼1
4𝜋

 𝑑Ω + 𝜎21𝑓2(1 − 𝐶1) ∫ 𝐼2
4𝜋

𝑑Ω = 0 (7.19) 

Applying Eqs. (7.15-18) and simplifying, we obtain: 

𝑓2(1 − 𝐶1)𝐶2𝑛2
2𝛼2 − 𝜎12𝑛1

2 + 𝜎21𝑓2(1 − 𝐶1)𝑛2
2 = 0 (7.20) 

And rearranging, we finally get: 

𝑓2(1 − 𝐶1)𝑛2
2(𝛼2𝐶2 + 𝜎21) = 𝜎12𝑓1𝑛1

2 (7.21) 

From which we can directly obtain C1 as: 

𝐶1 = 1 −
𝜎12𝑓1𝑛1

2

𝑓2𝑛2
2(𝛼2𝐶2 + 𝜎21)

 (7.22) 

The choice of obtaining C1 from C2 and not the contrary can be justified by observing that to calculate 

C1 directly (Eq. 7.10) C2 is required, while the contrary is not true (Eq. 7.9). Additionally, 

differentiating (Eq. 7.21) and rearranging we obtain: 
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𝑑𝐶2
𝑑𝐶1

=
(𝛼2𝐶2 + 𝜎21)

(1 − 𝐶1)𝛼2
 (7.23) 

And, given the typical values of the variables on the right side, we can expect  
𝑑𝐶1

𝑑𝐶2
 to be smaller than 

its reciprocal 
𝑑𝐶2

𝑑𝐶1
, so that adjusting C1 we run less risks of falling outside the physically meaningful 

range. 

Having chosen to model the trapped phase as an absorbing and scattering phase, there’s no additional 

scattering effects to be modeled as modified boundary conditions, therefore the writing of equations 

is relatively straightforward. In the following, the two most commonly used boundary conditions 

(namely, incident directional intensity on an open boundary and diffusely emitting and reflecting 

wall) will be rewritten for the new equations. These boundary conditions are useful to compute the 

numerical results in the following. 

 

Fig. 7.10 – Illustration of the physical phenomena involved in the prescribed intensity open boundary 

condition. Note that the treatment of rays incident on the solid differs from rays incident on the fluid phase. 

With reference to Fig. 7.10, the first boundary condition discussed is a prescribed incident directional 

intensity Iw [43][44][45]in direction Ωw at an open boundary at position rw with local normal nw, 

which, neglecting reflections at the boundary due to solid/fluid interface, is usually written: 
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𝐼1(𝑟𝑤
+, Ω𝑤) = 𝐼2(𝑟𝑤, Ω𝑤) = 𝐼𝑤 (7.24) 

Becomes:  

I1(𝑟𝑤
+, Ω𝑤) = 𝐼𝑤 + 𝐶2

𝑓2(1 − 𝐶1)

𝑓1
𝐼𝑤

⏞          

𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔
𝑝ℎ𝑎𝑠𝑒 2 𝑎𝑛𝑑 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑

𝑡𝑜 𝑝ℎ𝑎𝑠𝑒 1

 
(7.25a) 

I2(𝑟𝑤
+, Ω𝑤) = 𝐼𝑤 (1 − 𝐶2)

⏞      

𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔
𝑝ℎ𝑎𝑠𝑒 2 𝑎𝑛𝑑 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑

𝑡𝑜 𝑝ℎ𝑎𝑠𝑒 2

 (7.25b) 

I𝑡(𝑟𝑤
+, Ω) = 𝐼𝑤 (7.25c) 

Note that the factor C1 for the trapped phase does not appear explicitly in (7.24b-c), because it is 

already present in Eq. (7.14d).  

 
Fig. 7.11 – Illustration of the physical phenomena involved in the diffusely emitting and reflecting boundary 

condition. The treatment of rays incident on the solid phase differs from rays incident on the fluid phase. 

Note: the angular distribution of intensity is the same for the three phases for the radiation emitted and 

reflected in phase 2, the differently colored arrows represent the partitioning of intensity across the 3 phases. 

With reference to Fig. 7.11, the second boundary condition discussed is a diffusely emitting and 

reflecting surface [43][44][45] of emissivity εs and reflectivity ρs at position rw and with local normal 

nw, which is usually written: 

𝐼𝑖(𝑟𝑤
+, Ω) = 𝜀𝑠𝑛𝑖

2𝐵0 +
𝜌
𝑠

𝜋
∫ 𝐼𝑖(𝑟𝑤

+, Ω′)|𝑛𝑤 ∙ Ω
′|𝑑Ω′

𝑛𝑤∙Ω
′<0

         {𝑛𝑤 ∙ Ω > 0, 𝑖 = 1, 2} (7.26) 
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Becomes:  

I1(𝑟𝑤
+, Ω) = (𝜀𝑠𝑛1

2𝐵0 +
𝜌𝑠
𝜋

∫ I1(𝑟𝑤 , Ω
′)|𝑛𝑤 ∙ Ω

′|𝑑Ω′

𝑛𝑤∙Ω
′<0

)

⏞                            
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑤𝑎𝑙𝑙 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 1

+
(1 − 𝐶1)𝑓2𝐶2

𝑓1
𝐼2+t
𝑤 (𝑟𝑤

+, Ω) 
⏞                

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚
𝑡ℎ𝑒 𝑤𝑎𝑙𝑙 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 2 
𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑝ℎ𝑎𝑠𝑒 1

   {𝑛𝑤 ∙ Ω > 0} 
(7.27a) 

I2(𝑟𝑤
+, Ω) = (1 − 𝐶2)𝐼2+t

𝑤 (𝑟𝑤
+, Ω)⏞            

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚
𝑡ℎ𝑒 𝑤𝑎𝑙𝑙 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 2 
𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑝ℎ𝑎𝑠𝑒 2

       {𝑛𝑤 ∙ Ω > 0} (7.27b) 

I𝑡(𝑟𝑤
+, Ω) = 𝐼2+t

𝑤 (𝑟𝑤
+, Ω)       {𝑛𝑤 ∙ Ω > 0} (7.27c) 

Where for the sake of compactness I2+t is defined as emitted and reflected radiation associated with 

phase 2 and the trapped phase, already taking into account the weighted sum of their intensities, as 

follows: 

𝐼2+t
𝑤 (𝑟𝑤

+, Ω)⏞      

𝑇𝑜𝑡𝑎𝑙 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 
𝑒𝑚𝑖𝑡𝑡𝑒𝑑 𝑎𝑛𝑑 
𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑
 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 2

= 𝜀𝑠𝑛2
2𝐵0 +

𝜌𝑠
𝜋

∫ [(1 − 𝐶1)𝐼2(𝑟𝑤
+, Ω′)⏞            

𝑁𝑜𝑛−𝑡𝑟𝑎𝑝𝑝𝑒𝑑 𝑝ℎ𝑎𝑠𝑒 2

+ 𝐶1𝐼𝑡(𝑟𝑤
+, Ω′)⏞      

𝑇𝑟𝑎𝑝𝑝𝑒𝑑 𝑝ℎ𝑎𝑠𝑒

] |𝑛𝑤 ∙ Ω
′|𝑑Ω′

𝑛𝑤∙Ω
′<0

  {𝑛𝑤 ∙ Ω > 0} 
(7.28) 

When reflected at the boundary, radiation either in the trapped phase or in phase 2 is considered to be 

re-emitted randomly in the solid phase, and thus undergoes the subdivision in trapped phase, phase 2 

and in phase 1 already discussed, hence why the support term I2+t appears in all of the equation.  

To further clarify how the “homogenized phase”, “trapped phase” and “assignment to phase 1” 

treatments are applied to different fractions of radiations, it is useful to refer to Table 7.1: 

 Homogenized phase 1 Homogenized phase 2 Trapped phase 

Fluid phase [f1] 

 

X 

 

 

Solid phase [f2] 

Trapped  [f2 * C1]   X 

Non trapped  

assigned to phase 2 

[f2 * (1 – C1) * (1 – C2)] 

 

X 

 

Non trapped  

assigned to phase 1 

[f2 * (1 – C1) * C2] 

X 

 

 

Table 7.1. Different treatments applied to different fractions of radiation. 
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Summing up, we have: 

- Constitutive equations: 

Ω ∙ ∇I1 = 𝑛1
2𝛼1𝐵1

0 +
𝑓2(1 − 𝐶1)

𝑓1
𝐶2𝑛2

2𝛼2𝐵2
0 − 𝛽1𝐼1 +

𝜎11
4𝜋

∫ 𝐼1(Ω
′)Φ11(Ω

′, Ω)𝑑Ω′

4𝜋

+
𝑓2(1 − 𝐶1)

𝑓1

𝜎21
4𝜋

∫ 𝐼2(Ω′)Φ21(Ω
′, Ω)𝑑Ω′

4𝜋

 

 

(7.14a) 

Ω ∙ ∇I2 = 𝑛2
2𝛼2𝐵2

0(1 − 𝐶2) − 𝛽2𝐼2 +
𝜎22
4𝜋

∫ 𝐼2(Ω′)Φ22(Ω
′, Ω)𝑑Ω′

4𝜋

+
𝑓1

𝑓2(1 − 𝐶1)

𝜎12
4𝜋

∫ 𝐼1(Ω′)Φ12(Ω
′, Ω)𝑑Ω′

4𝜋

 

(7.14b) 

Ω ∙ ∇I𝑡 = 𝛼2𝐵2
0 − (𝛼2 + 𝜎𝑡)I𝑡 +

𝜎𝑡
4𝜋

∫ I𝑡(Ω′)Φ𝑡(Ω
′, Ω)𝑑Ω′

4𝜋

 

(7.14c) 

I = I1𝑓1 + I2𝑓2(1 − 𝐶1) + I𝑡𝑓2𝐶1 (7.14d) 

- Prescribed directional intensity at boundary: 

I1(𝑟𝑤
+, Ω𝑤) = 𝐼𝑤  [1 + 𝐶2

𝑓2(1 − 𝐶1)

𝑓1
 ] (7.25a) 

I2(𝑟𝑤
+, Ω𝑤) = 𝐼𝑤 (1 − 𝐶2) (7.25b) 

I𝑡(𝑟𝑤
+, Ω) = 𝐼𝑤 (7.25c) 

- Diffusely emitting/reflecting wall boundary: 

I1(𝑟𝑤
+, Ω) = (𝜀𝑠𝑛1

2𝐵𝑣 +
𝜌𝑠
𝜋

∫ I1(𝑟𝑤 , Ω
′)|𝑛𝑤 ∙ Ω

′|𝑑Ω′

𝑛𝑤∙Ω
′<0

) +
(1 − 𝐶1)𝑓2𝐶2

𝑓1
𝐼2+t
𝑤 (𝑟𝑤

+, Ω)      {𝑛𝑤 ∙ Ω > 0} (7.27a) 

I2(𝑟𝑤
+, Ω) = (1 − 𝐶2)𝐼2+t

𝑤 (𝑟𝑤
+, Ω)       {𝑛𝑤 ∙ Ω > 0} (7.27b) 

I𝑡(𝑟𝑤
+, Ω) = 𝐼2+t

𝑤 (𝑟𝑤
+, Ω)       {𝑛𝑤 ∙ Ω > 0} (7.27c) 

𝐼2+t
𝑤 (𝑟𝑤

+, Ω) = 𝜀𝑠𝑛2
2𝐵𝑣 +

𝜌𝑠
𝜋

∫ [(1 − 𝐶1)𝐼2(𝑟𝑤
+, Ω′) + 𝐶1𝐼𝑡(𝑟𝑤

+, Ω′)]|𝑛𝑤 ∙ Ω
′|𝑑Ω′

𝑛𝑤∙Ω
′<0

          {𝑛𝑤 ∙ Ω > 0} (7.28) 

 

- Compatibility condition: 

𝑓2(1 − 𝐶1)𝑛2
2(𝛼2𝐶2 + 𝜎21) = 𝜎12𝑓1𝑛1

2 (7.21) 
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7.4. Numerical results 

Testing is conducted on with conditions identical to those proposed in Paragaph 6.4, the only 

difference being the addition of a sixth morphology, characterized by open cell structure and low 

porosity (ε = 0.7) 

As a benchmark, the radiation problems are solved using the Direct Monte Carlo method illustrated 

in Chapter 5. Using this benchmark as a base, five different homogenized models are compared: 

1) HPA: a standard HPA model [22][40], using Eq. (1.1) with standard BCs for open boundaries 

and opaque walls (Eqs. 6.10, 6.13), and determination of properties according to the method 

shown in [40], i.e. determination of extinction coefficient β and scattering albedo ω with Eqs. 

(6.1-2) and direct calculation of scattering phase function [40]. It must underlined that, in the 

property determination, we chose to cast rays from both the solid and the fluid phase according 

to their volumetric fraction, because this appears to marginally improve the results. 

2) HPA+: an extended homogeneous phase model, using Eqs. (6.9a-c) and modified BCs for 

open boundaries (Eqs. 6.11a-b, 6.12) and opaque walls (Eqs. 6.14, 6.11a-c), with properties 

determined following the entire process discussed in Paragraph 6.3. 

3) MPA: a standard MPA model [37][38], using Eqs. (2.4a-b) with standard BCs for open 

boundaries and opaque walls (Eqs. 7.23, 7.25) and determination of properties according to 

the methods shown in [22][40]. It must be noted that the two references cited share the 

characteristic of considering a single scattering event for each ray, but differ significantly in 

terms of choice of initial points and directions: in some cases the results are quite different. 

When this has been found to be the case, the most favorable result has been chosen. 

4) MPA-GRTE: a Multi-Phase Approach based on Generalized Radiative Transfer Equation 

(Eqs. 2.15a-b) and tracking of ray histories up to 3 levels of depth, based on the methods 

shown in [42]. 
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5) MPA+: an extended multi-phase model, using Eqs. (7.14a-d) and modified BCs for open 

boundaries (Eqs. 7.24a-c) and opaque walls (Eqs. 7.26a-c, 7.27), with properties determined 

following the entire process discussed in Paragraph 7.3. 

Evaluation of deviation with respect to the Direct Monte Carlo simulation is conducted according to 

the methods described in Paragraph 6.4. 

# Type Porosity Diameter distribution Other parameters Picture 
1 

High porosity 

open cell (Ref. 

Paragraphs 3.2, 

3.4, 3.6) 

0.89 

Normal distribution, 

CVd = 0.10 

t = 0.4 

k = 0.6 

 
2 

0.96 

t = 0.5 

k = 0.16 

 
3 

Open cell (Ref. 

Paragraphs 3.2, 

3.3) 

0.85 

Lognormal 

distribution, GCVd = 

0.3 

None 

 
4 

0.7 

Lognormal 

distribution, GCVd = 

0.3 

None 

 
5 

Closed cell (Ref. 

Paragraphs 3.2, 

3.3) 

0.85 

Lognormal 

distribution, GCVd = 

0.3 

None 

 
6 

0.98 None 

 
Table 7.2. General presentation of the 6 porous morphologies considered. 
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Test summary 

α2 n2 L 

0.69 1.40 5 

0.69 1.70 5 

0.69 2.00 5 

1.37 1.40 3 

1.37 1.70 3 

1.37 2.00 3 

2.74 1.40 2 

2.74 1.70 2 

2.74 2.00 2 

 

ε = 0.89 

Normal diameter distribution 

CVd = 0.10 

t = 0.5 

k = 0.16 

 

Result synthesis 

 

AVERAGE ERROR 

 HPA HPA+ MPA MPA GRTE  MPA+ 

Test 1 8.63% 3.85% 11.18% 5.57% 2.23% 

Test 2 17.86% 6.93% 13.35% 5.62% 2.06% 

Test 3 20.55% 2.99% 10.54% 7.30% 1.50% 

 

MAXIMUM ERROR 

 HPA HPA+ MPA MPA GRTE  MPA+ 

Test 1 14.12% 6.67% 14.72% 7.31% 5.43% 

Test 2 35.37% 10.49% 15.41% 8.13% 3.79% 

Test 3 34.10% 9.24% 12.94% 10.92% 2.96% 
 

Table 7.3 – Data and results for Morphology #1 

 (High porosity open cell foam – Ref. Paragraphs 3.2, 3.4, 3.6) 
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Test summary 

α2 n2 L 

2.01 1.40 5 

2.01 1.70 5 

2.01 2.00 5 

4.02 1.40 3 

4.02 1.70 3 

4.02 2.00 3 

8.05 1.40 2 

8.05 1.70 2 

8.05 2.00 2 

 

ε = 0.96 

Normal diameter distribution 

CVd = 0.10 

t = 0.4 

k = 0.6 

Result synthesis 

 

AVERAGE ERROR 

 HPA HPA+ MPA MPA GRTE  MPA+ 

Test 1 3.91% 2.01% 9.55% 2.30% 2.17% 

Test 2 6.56% 3.12% 7.04% 1.51% 1.73% 

Test 3 8.97% 1.86% 7.35% 2.20% 1.68% 

 

MAXIMUM ERROR 

 HPA HPA+ MPA MPA GRTE  MPA+ 

Test 1 5.39% 3.20% 14.07% 3.44% 4.10% 

Test 2 12.54% 4.76% 9.32% 2.19% 2.83% 

Test 3 15.37% 2.91% 9.91% 3.68% 2.67% 
 

Table 7.4 – Data and results for Morphology #2 

 (High porosity open cell foam – Ref. Paragraphs 3.2, 3.4, 3.6) 

 

 

  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



172 
 

 

 

Test summary 

α2 n2 L 

0.48 1.40 5 

0.48 1.70 5 

0.48 2.00 5 

0.95 1.40 3 

0.95 1.70 3 

0.95 2.00 3 

1.90 1.40 2 

1.90 1.70 2 

1.90 2.00 2 

 

ε = 0.85 

Lognormal diameter distribution 

GCVd = 0.3 

Result synthesis 

 

AVERAGE ERROR 

 HPA HPA+ MPA MPA GRTE  MPA+ 

Test 1 10.83% 3.67% 4.03% 1.89% 2.95% 

Test 2 21.91% 5.92% 5.87% 2.42% 2.52% 

Test 3 25.81% 2.59% 3.47% 2.13% 2.38% 

 

MAXIMUM ERROR 

 HPA HPA+ MPA MPA GRTE  MPA+ 

Test 1 18.85% 7.22% 5.92% 2.42% 3.60% 

Test 2 45.35% 11.87% 7.05% 3.79% 4.35% 

Test 3 50.75% 6.95% 5.13% 2.56% 3.16% 
 

Table 7.5 – Data and results for Morphology #3 

 (Open cell foam – Ref. Paragraphs 3.2, 3.3) 
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Test summary 

α2 n2 L 

0.48 1.40 5 

0.48 1.70 5 

0.48 2.00 5 

0.95 1.40 3 

0.95 1.70 3 

0.95 2.00 3 

1.90 1.40 2 

1.90 1.70 2 

1.90 2.00 2 

 

ε = 0.70 

Lognormal diameter distribution 

GCVd = 0.3 

Result synthesis 

 

AVERAGE ERROR 

 HPA HPA+ MPA MPA GRTE  MPA+ 

Test 1 20.37% 4.74% 6.32% 0.88% 3.45% 

Test 2 39.56% 15.07% 14.33% 0.89% 3.38% 

Test 3 40.23% 7.63% 11.13% 0.80% 2.27% 

 

MAXIMUM ERROR 

 HPA HPA+ MPA MPA GRTE  MPA+ 

Test 1 32.90% 12.58% 10.81% 1.53% 4.38% 

Test 2 77.55% 22.96% 17.34% 1.37% 4.63% 

Test 3 73.85% 18.70% 13.84% 1.32% 3.75% 
 

Table 7.6 – Data and results for Morphology #4 

 (Open cell foam – Ref. Paragraphs 3.2, 3.3) 
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Test summary 

α2 n2 L 

0.34 1.40 5 

0.34 1.70 5 

0.34 2.00 5 

0.68 1.40 3 

0.68 1.70 3 

0.68 2.00 3 

1.36 1.40 2 

1.36 1.70 2 

1.36 2.00 2 

 

ε = 0.85 

Lognormal diameter distribution 

GCVd = 0.3 

Result synthesis 

 

AVERAGE ERROR 

 HPA HPA+ MPA MPA GRTE MPA+ 

Test 1 10.22% 9.80% 48.88% 18.63% 3.31% 

Test 2 23.53% 10.12% 73.97% 22.74% 2.69% 

Test 3 24.84% 3.92% 61.90% 24.11% 2.90% 

 

MAXIMUM ERROR 

 HPA HPA+ MPA MPA GRTE  MPA+ 

Test 1 18.15% 11.56% 71.17% 25.91% 6.85% 

Test 2 41.29% 16.25% 78.40% 36.84% 4.92% 

Test 3 41.28% 8.50% 68.88% 34.37% 8.09% 
 

Table 7.7 – Data and results for Morphology #5 

 (Closed cell foam – Ref. Paragraphs 3.2, 3.3) 

  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



175 
 

 

 
 

 

Test summary 

α2 n2 L 

4.00 1.40 5 

4.00 1.70 5 

4.00 2.00 5 

8.00 1.40 3 

8.00 1.70 3 

8.00 2.00 3 

16.00 1.40 2 

16.00 1.70 2 

16.00 2.00 2 

 

ε = 0.98 

Lognormal diameter distribution 

GCVd = 0.3 

Result synthesis 

 

AVERAGE ERROR 

 HPA HPA+ MPA MPA GRTE  MPA+ 

Test 1 7.23% 3.50% 88.44% 25.88% 2.97% 

Test 2 9.05% 2.10% 103.65% 15.86% 1.80% 

Test 3 11.06% 2.61% 67.38% 25.15% 1.05% 

 

MAXIMUM ERROR 

 HPA HPA+ MPA MPA GRTE  MPA+ 

Test 1 11.67% 5.02% 101.14% 35.41% 6.64% 

Test 2 15.56% 4.35% 112.76% 24.35% 2.69% 

Test 3 23.34% 6.76% 74.62% 35.46% 2.58% 
 

Table 7.7 – Data and results for Morphology #6 

 (Closed cell foam – Ref. Paragraphs 3.2, 3.4, 3.6) 
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7.5. Comments 

The results show a trend, fairly consistent for all the porous morphologies and physical configurations 

considered, where the standard HPA and MPA method are outperformed by the more advanced 

alternatives.  

With respect to the classical methods, it is noted that the HPA results are really acceptable only for a 

handful of morphologies, namely very low density morphologies (#2, #6), while the MPA fails very 

badly in morphologies with strong multiple scattering effects, namely “Closed cell foam” type 

morphologies (#5, #6). In these structures, , due to the fact that the solid walls are almost everywhere 

parallel, the scattering angle of a given solid⇒fluid transmission event is very strongly correlated to 

the scattering angle of the previous fluid⇒solid transmission event for the same ray, an effect that 

the MPA model fails to capture. The MPA also produces somewhat inaccurate results for the other 

morphologies. 

The MPA-GRTE consistently outperforms the MPA method, is quite accurate overall in most cases 

and appears to be the most accurate method overall for low-porosity morphologies of the type “Open 

cell foam” (#3, #4). However, it inherits the weakness of the standard MPA with respect to 

morphologies where multiple scattering effects are very strong, namely “Closed cell foam” type 

morphologies (#4, #5). This effect is so strong that even the standard HPA outperforms the MPA-

GRTE for these morphologies. 

Carrying from the previous results, HPA+ consistently improves over HPA. Comparing it to MPA or 

MPA-GRTE, one notes that the accuracy of HPA+ is comparable or better than MPA in all 

morphologies considered, barring the “Open cell foam” (#3, #4) type, but worse than MPA-GRTE, 

barring the Closed cell foam” type morphologies (#5, #6). More generally, there appears to a 

correlation between porosity and accuracy of the HPA+ method, with less porous morphologies 
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yielding less and less accurate results: as such, this method should be mainly used for high 

porosity morphologies. 

Finally, MPA+, as can be seen by the results, consistently improves over both MPA and HPA+, 

showing the highest accuracy in all morphologies considered, barring the “Open cell foam” (#3, #4) 

type. Even for the latter, the accuracy is deemed satisfying and a significant improvement over the 

standard MPA. Importantly, the MPA+ is the only one of the methods considered that appears 

to produce fully satisfying results (maximum error below 10%) for all the morphologies 

proposed, regardless of porosity or multiple scattering phenomena. In addition, while the 

coefficient calculation process is relatively less straightforward than the one necessary for the 

standard MPA, requiring the use of hybrid inverse methods, the final result is a relatively compact 

collection of coefficients and the equations are comparable in complexity to those of the standard 

MPA, and lend themselves to solution by standard techniques thus making the MPA+ a promising 

alternative to standard MPA.  
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General conclusion and future prospects 

To correctly model radiation heat transfer in porous cellular foam, both accurate radiation models and 

accurate morphological models of the structure are necessary. In this work, we tried to advance 

knowledge on both these fronts. 

We presented a framework for the parametric digital generation of realistic 3D foam morphologies, 

based on a novel combination of tools such as sphere packings, Voronoi-Laguerre diagrams and 

Surface Evolver. Overall our framework allows finer control of the morphological parameters than 

others previously seen in the literature, and the generation of more realistic structures. For open cell 

high porosity structures, we validated our results by comparing cell size distribution and cell 

connectivity distribution with experimental tomographic data. In the future, it will be interesting to 

extend the experimental validation to all the morphologies that the method can produce. Additionally, 

the generation capabilities can be made useful in other fields, distinct from radiation heat transfer, 

where a good representation of microscopic morphology is necessary. Applications to thermal 

conduction and solid mechanics are already underway, and we hope to further enlarge the scope of 

application.  

Concerning radiation heat transfer, we’ve been mainly focused on presenting analyses and methods 

that maximize simplicity while not sacrificing effectiveness.  

For cellular media with an opaque solid phase, significant effort was devoted to determination of the 

most appropriate methodologies among those available in literature and to the development of 

simplified analytical relations. Using increasingly accurate morphological models, we’ve been able 

to propose more accurate relations that make it possible to calculate the extinction coefficient directly 

from the knowledge of easily measurable morphological parameters, with average deviation below 

2.5% when compared to direct tomographic analysis.  
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For cellular media with a semi-transparent solid phase, the sparsity and inconsistency of literature 

comparing homogenized methods with reference solutions pushed us to propose a new generalized 

Direct Monte Carlo Homogenization (DMCH) reference method with vastly improved characteristics 

in terms of memory occupation and parallelizability, applicable to any kind of reference 

problem/geometry. It is of particular interest that the computational costs of our direct method are 

somewhat comparable to those of the Homogeneous Phase method, with computational times of the 

order of minutes. With the increasing availability computational power and massive CPU/GPU 

parallelization, we can imagine such direct methods becoming more and more useful not just as 

reference methods but also as standalone tools. 

Subsequent analysis using the newly developed reference method has revealed significant problems 

with existing standard Homogeneous Phase (HPA) and Multi Phase (MPA) methods in semi-

transparent media, with errors in excess of 30% for very simple problems, and pushed us to develop 

our own Improved Homogeneous Phase (HPA+) and Improved Multi-Phase (MPA+) methods. Once 

again, with maximum simplicity as one of our targets, the improved methods are based on the 

systematic use of hybrid direct-inverse parameter identification techniques and on minor alterations 

of the existing homogenized equations, by the addition of a “trapped” non-interacting phase and 

boundary condition adjustment. The form of the homogenized equations stays fairly recognizable, 

and they can be solved with the entire array of techniques already known and used for the standard 

HPA/MPA. In spite of their simplicity, we have shown that the Improved methods allow to realize a 

very significant reduction of error and to consistently achieve acceptable errors (<10%) over a vast 

range of cellular morphologies and physical configurations, being very competitive even when 

compared with significantly more complex homogenized methods from the most recent literature. 

This work also opens up some possibilities for future evolutions and applications: 

- The morphology generation algorithms and the radiative models could be modified to make 

it possible to take into account anisotropy. 
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- The digitally generated morphologies could be used to model other phenomena, such as fluid 

flow, convection or chemical reactions. 

- The development of the DMCH as a general purpose radiation simulation tool and its 

integration with existing radiation/heat transfer simulation toolchains could be pursued. 

- The HPA+ and MPA+ models could be applied and validated on non-cellular porous media 

with a semi-transparent phase, e.g. fibrous media. 

  

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



181 
 

References 

[1] Collishaw, P. G., & Evans, J. R. G. (1994). An assessment of expressions for the apparent 

thermal conductivity of cellular materials. Journal of materials science, 29(9), 2261-2273. 

[2] Placido, E., Arduini-Schuster, M. C., & Kuhn, J. (2005). Thermal properties predictive model 

for insulating foams. Infrared physics & technology, 46(3), 219-231. 

[3] Coquard, R., & Baillis, D. (2006). Modeling of heat transfer in low-density EPS foams. 

Journal of heat transfer, 128(6), 538-549. 

[4] Kaemmerlen, A., Vo, C., Asllanaj, F., Jeandel, G., & Baillis, D. (2010). Radiative properties 

of extruded polystyrene foams: Predictive model and experimental results. Journal of 

Quantitative Spectroscopy and Radiative Transfer, 111(6), 865-877. 

[5] Coquard, R., Baillis, D., & Quenard, D. (2008). Experimental and theoretical study of the hot-

ring method applied to low-density thermal insulators. International Journal of Thermal 

Sciences, 47(3), 324-338. 

[6] Arduini-Schuster, M., Manara, J., & Vo, C. (2015). Experimental characterization and 

theoretical modeling of the infrared-optical properties and the thermal conductivity of foams. 

International Journal of Thermal Sciences, 98, 156-164. 

[7] Coquard, R., Coment, E., Flasquin, G., & Baillis, D. (2013). Analysis of the hot-disk technique 

applied to low-density insulating materials. International Journal of Thermal Sciences, 65, 

242-253. 

[8] Lu, T. J., Stone, H. A., & Ashby, M. F. (1998). Heat transfer in open-cell metal foams. Acta 

Materialia, 46(10), 3619-3635. 

[9] Gauthier, S., Lebas, E., & Baillis, D. (2007). SFGP 2007-natural gas/hydrogen mixture 

combustion in a porous radiant burner. International Journal of Chemical Reactor 

Engineering, 5(1). 

[10] Gauthier, S., Nicolle, A., & Baillis, D. (2008). Investigation of the flame structure and nitrogen 

oxides formation in lean porous premixed combustion of natural gas/hydrogen blends. 

International journal of hydrogen energy, 33(18), 4893-4905. 

[11] Fend, T., Reutter, O., Bauer, J., & Hoffschmidt, B. (2004). Two novel high-porosity materials 

as volumetric receivers for concentrated solar radiation. Solar energy materials and solar 

cells, 84(1), 291-304. 

[12] Dombrovsky, L. A., & Baillis, D. (2010). Thermal radiation in disperse systems: An 

engineering approach. New York: Begell House. 

[13] Baillis, D., Coquard, R., Randrianalisoa, J. H., Dombrovsky, L. A., & Viskanta, R. (2013). 

Thermal radiation properties of highly porous cellular foams. Special Topics & Reviews in 

Porous Media: An International Journal, 4(2). 

[14] Öchsner, A., Murch, G. E., & de Lemos, M. J. (Eds.). (2008). Cellular and porous materials: 

thermal properties simulation and prediction. John Wiley & Sons. 

[15] Cunsolo, S., Coquard, R., Baillis, D., & Bianco, N. (2016). Radiative properties modeling of 

open cell solid foam: Review and new analytical law. International Journal of Thermal 

Sciences, 104, 122-134. 

[16] Randrianalisoa, J., & Baillis, D. (2014). Thermal conductive and radiative properties of solid 

foams: Traditional and recent advanced modelling approaches. Comptes Rendus Physique, 

15(8), 683-695. 

[17] Glicksman, L., Schuetz, M., & Sinofsky, M. (1987). Radiation heat transfer in foam insulation. 

International journal of heat and mass transfer, 30(1), 187-197. 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



182 
 

[18] Baillis, D., Raynaud, M., & Sacadura, J. F. (2000). Determination of spectral radiative 

properties of open cell foam: model validation. Journal of thermophysics and heat transfer, 

14(2), 137-143. 

[19] Baillis, D., Raynaud, M., & Sacadura, J. F. (1999). Spectral radiative properties of open-cell 

foam insulation. Journal of thermophysics and heat transfer, 13(3), 292-298. 

[20] Rémi, C., Dominique, B., & Daniel, Q. (2009). Radiative properties of expanded polystyrene 

foams. Journal of Heat Transfer, 131(1), 012702. 

[21] Loretz, M., Coquard, R., Baillis, D., & Maire, E. (2008). Metallic foams: Radiative 

properties/comparison between different models. Journal of Quantitative Spectroscopy and 

Radiative Transfer, 109(1), 16-27. 

[22] Zeghondy, B., Iacona, E., & Taine, J. (2006). Determination of the anisotropic radiative 

properties of a porous material by radiative distribution function identification (RDFI). 

International Journal of Heat and Mass Transfer, 49(17), 2810-2819. 

[23] Zeghondy, B., Iacona, E., & Taine, J. (2006). Experimental and RDFI calculated radiative 

properties of a mullite foam. International Journal of Heat and Mass Transfer, 49(19), 3702-

3707. 

[24] Petrasch, J., Wyss, P., & Steinfeld, A. (2007). Tomography-based Monte Carlo determination 

of radiative properties of reticulate porous ceramics. Journal of Quantitative Spectroscopy and 

Radiative Transfer, 105(2), 180-197. 

[25] Coquard, R., Rousseau, B., Echegut, P., Baillis, D., Gomart, H., & Iacona, E. (2012). 

Investigations of the radiative properties of Al–NiP foams using tomographic images and 

stereoscopic micrographs. International journal of heat and mass transfer, 55(5), 1606-1619. 

[26] Coquard, R., Rochais, D., & Baillis, D. (2011). Modeling of the Coupled Conductive and 

Radiative Heat Transfer in Nicral from Photothermal Measurements and X-Ray Tomography. 

Special Topics & Reviews in Porous Media, 2(4), 249-265. 

[27] Coquard, R., Baillis, D., & Maire, E. (2010). Numerical investigation of the radiative 

properties of polymeric foams from tomographic images. Journal of Thermophysics and Heat 

Transfer, 24(3), 647-658. 

[28] Loretz, M., Maire, E., & Baillis, D. (2008). Analytical Modelling of the Radiative Properties 

of Metallic Foams: Contribution of X‐Ray Tomography. Advanced Engineering Materials, 

10(4), 352-360. 

[29] Akolkar, A., & Petrasch, J. (2011). Tomography based pore-level optimization of radiative 

transfer in porous media. International Journal of Heat and Mass Transfer, 54(23), 4775-

4783. 

[30] Suter, S., Steinfeld, A., & Haussener, S. (2014). Pore-level engineering of macroporous media 

for increased performance of solar-driven thermochemical fuel processing. International 

Journal of Heat and Mass Transfer, 78, 688-698. 

[31] Dyck, N. J., & Straatman, A. G. (2015). A new approach to digital generation of spherical 

void phase porous media microstructures. International Journal of Heat and Mass Transfer, 

81, 470-477. 

[32] Cunsolo, S., Oliviero, M., Harris, W. M., Andreozzi, A., Bianco, N., Chiu, W. K., & Naso, 

V. (2015). Monte Carlo determination of radiative properties of metal foams: Comparison 

between idealized and real cell structures. International Journal of Thermal Sciences, 87, 

94-102. 

[33] Kumar, P., Topin, F., & Vicente, J. (2014). Determination of effective thermal conductivity 

from geometrical properties: Application to open cell foams. International Journal of Thermal 

Sciences, 81, 13-28. 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



183 
 

[34] Coquard, R., Randrianalisoa, J. H., & Baillis, D. (2013). Computational prediction of radiative 

properties of polymer closed-cell foams with random structure. Journal of Porous Media, 

16(2). 

[35] Rousseau, B., Guevelou, S., Domingues, G., Vicente, J., Caliot, C., & Flamant, G. (2013). 

Prediction of the radiative properties of reconstructed alpha-SiC foams used for concentrated 

solar applications. MRS Online Proceedings Library, 1545, mrss13-1545. 

[36] Tancrez, M., & Taine, J. (2004). Direct identification of absorption and scattering 

coefficients and phase function of a porous medium by a Monte Carlo technique. 

International Journal of Heat and Mass Transfer, 47(2), 373-383. 

[37] Lipiński, W., Petrasch, J., & Haussener, S. (2010). Application of the spatial averaging 

theorem to radiative heat transfer in two-phase media. Journal of Quantitative Spectroscopy 

and Radiative Transfer, 111(1), 253-258. 

[38] Gusarov, A. V. (2008). Homogenization of radiation transfer in two-phase media with 

irregular phase boundaries. Physical Review B, 77(14), 144201. 

[39] Randrianalisoa, J., & Baillis, D. (2010). Radiative properties of densely packed spheres in 

semitransparent media: A new geometric optics approach. Journal of Quantitative 

Spectroscopy and Radiative Transfer, 111(10), 1372-1388. 

[40] Coquard, R., Baillis, D., & Randrianalisoa, J. (2011). Homogeneous phase and multi-phase 

approaches for modeling radiative transfer in foams. International Journal of Thermal 

Sciences, 50(9), 1648-1663. 

[41] Taine, J., Bellet, F., Leroy, V., & Iacona, E. (2010). Generalized radiative transfer equation 

for porous medium upscaling: Application to the radiative Fourier law. International Journal 

of Heat and Mass Transfer, 53(19), 4071-4081. 

[42] Dauvois, Y., Rochais, D., Enguehard, F., & Taine, J. (2017). Statistical radiative modeling 

of a porous medium with semi transparent and transparent phases: Application to a felt of 

overlapping fibres. International Journal of Heat and Mass Transfer, 106, 601-618. 

[43] Siegel, R., & Howell, J. R. (1992). Thermal radiation heat transfer. National Aeronautics and 

Space Administration, Cleveland, OH (United States). Lewis Research Center. 

[44] Modest, M. F. (2013). Radiative heat transfer. Academic press. 

[45] Brewster, M. Q. (1992). Thermal radiative transfer and properties. John Wiley & Sons. 

[46] Rycroft, C. (2009). Voro++: A three-dimensional Voronoi cell library in C++. Lawrence 

Berkeley National Laboratory. 

[47] Brakke, K. A. (1992). The surface evolver. Experimental mathematics, 1(2), 141-165. 

[48] Randrianalisoa, J., Haussener, S., Baillis, D., & Lipiński, W. (2017). Radiative 

characterization of random fibrous media with long cylindrical fibers: Comparison of single-

and multi-RTE approaches. Journal of Quantitative Spectroscopy and Radiative Transfer, 

202, 220-232. 

[49] Sacadura, J. F., & Baillis, D. (2002). Experimental characterization of thermal radiation 

properties of dispersed media. International journal of thermal sciences, 41(7), 699-707. 

[50] Baillis, D., Pilon, L., Randrianalisoa, H., Gomez, R., & Viskanta, R. (2004). Measurements 

of radiation characteristics of fused quartz containing bubbles. Journal of the Optical Society 

of America A, 21(1), 149-159. 

[51] Randrianalisoa, J. H., Baillis, D., & Pilon, L. (2006). Improved inverse method for radiative 

characteristics of closed-cell absorbing porous media. Journal of thermophysics and heat 

transfer, 20(4), 871-883 

[52] Dombrovsky, L., Randrianalisoa, J., & Baillis, D. (2006). Modified two-flux approximation 

for identification of radiative properties of absorbing and scattering media from directional-

hemispherical measurements. JOSA A, 23(1), 91-98. 

[53] Baillis, D., Arduini-Schuster, M., & Sacadura, J. F. (2002). Identification of spectral 

radiative properties of polyurethane foam from hemispherical and bi-directional 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



184 
 

transmittance and reflectance measurements. Journal of Quantitative Spectroscopy and 

Radiative Transfer, 73(2), 297-306. 

[54] Subramaniam, S., & Mengüç, M. P. (1991). Solution of the inverse radiation problem for 

inhomogeneous and anisotropically scattering media using a Monte Carlo technique. 

International Journal of Heat and Mass Transfer, 34(1), 253-266. 

[55] Argento, C., & Bouvard, D. (1996). A ray tracing method for evaluating the radiative heat 

transfer in porous media. International journal of heat and mass transfer, 39(15), 3175-

3180. 

[56] Coquard, R., & Baillis, D. (2004). Radiative characteristics of opaque spherical particles 

beds: a new method of prediction. Journal of Thermophysics and Heat Transfer, 18(2), 178-

186. 

[57] Coquard, R., & Baillis, D. (2006). Radiative properties of dense fibrous medium containing 

fibers in the geometric limit. Journal of heat transfer, 128(10), 1022-1030. 

[58] Coquard, R., & Baillis, D. (2005). Radiative Characteristics of Beds of Spheres Containing 

an Absorbing and Scattering Medium. Journal of Thermophysics and Heat Transfer, 19(2), 

226-234. 

[59] Ashby, M. F. (2000). Metal foams: a design guide. Butterworth-Heinemann. 

[60] Rochais, D., Coquard, R., & Baillis, D. (2015). Microscopic thermal diffusivity measurements 

of ceramic and metallic foams lumps in temperature. International Journal of Thermal 

Sciences, 92, 179-187. 

[61] Yao, Y., Wu, H., & Liu, Z. (2015). A new prediction model for the effective thermal 

conductivity of high porosity open-cell metal foams. International Journal of Thermal 

Sciences, 97, 56-67. 

[62] Wulf, R., Mendes, M. A., Skibina, V., Al-Zoubi, A., Trimis, D., Ray, S., & Gross, U. (2014). 

Experimental and numerical determination of effective thermal conductivity of open cell 

FeCrAl-alloy metal foams. International Journal of Thermal Sciences, 86, 95-103. 

[63] Lu, T. J., & Chen, C. (1999). Thermal transport and fire retardance properties of cellular 

aluminium alloys. Acta Materialia, 47(5), 1469-1485. 

[64] Koch, U., Thompson, M. S., & Nardone, V. C. (1994). Structure and properties of industrial 

aluminum foams. In Proc., 4th Int. Conf. on Aluminum Alloys (pp. 387-394). Georgia Inst. of 

Technology, Atlanta. 

[65] Singh, B. P., & Kaviany, M. (1992). Modelling radiative heat transfer in packed beds. 

International Journal of Heat and Mass Transfer, 35(6), 1397-1405. 

[66] Brewster, Q. (2004). Volume scattering of radiation in packed beds of large, opaque spheres. 

Journal of heat transfer, 126(6), 1048-1050. 

[67] Kamiuto, K. (1990). Correlated radiative transfer in packed-sphere systems. Journal of 

Quantitative Spectroscopy and Radiative Transfer, 43(1), 39-43. 

[68] Kamiuto, K. (1988). A constrained least-squares method for limited inverse scattering 

problems. Journal of Quantitative Spectroscopy and Radiative Transfer, 40(1), 47-50. 

[69] Hendricks, T. J., & Howell, J. R. (1994). Inverse radiative analysis to determine spectral 

radiative properties using Discrete Ordinates techniques. In INSTITUTION OF CHEMICAL 

ENGINEERS SYMPOSIUM SERIES (Vol. 135, pp. 75-75). HEMSPHERE PUBLISHING 

CORPORATION. 

[70] Baillis, D., & Sacadura, J. F. (2000). Thermal radiation properties of dispersed media: 

theoretical prediction and experimental characterization. Journal of Quantitative 

Spectroscopy and Radiative Transfer, 67(5), 327-363. 

[71]  

 

Randrianalisoa, J., Coquard, R., & Baillis, D. (2013). Microscale direct calculation of solid 

phase conductivity of voronoi s foams. Journal of Porous Media, 16, 411-426. 

[72] Hottel, H. C., & Sarofim, A. F. (1967). Radiative transfer. McGraw-Hill. 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



185 
 

[73] Coquard, R., Rochais, D., & Baillis, D. (2012). Conductive and radiative heat transfer in 

ceramic and metal foams at fire temperatures. Fire technology, 48(3), 699-732. 

[74] Gusarov, A. V. (2010). Model of radiative heat transfer in heterogeneous multiphase media. 

Physical Review B, 81(6), 064202. 

[75] Kırca, M., Gül, A., Ekinci, E., Yardım, F., & Mugan, A. (2007). Computational modeling of 

micro-cellular carbon foams. Finite Elements in Analysis and Design, 44(1), 45-52. 

[76] James, L., Austin, S., Moore, C. A., Stephens, D., Walsh, K. K., & Wesson, G. D. (2010). 

Modeling the principle physical parameters of graphite carbon foam. Carbon, 48(9), 2418-

2424. 

[77] C.C. Chueh, A. Bertei, J.G. Pharoah, C. Nicolella (2014) Effective conductivity in random 

porous media with convex and non-convex porosity, International Journal of Heat and Mass 

Transfer    71  (0) 183–188 

[78] Kraynik, A. M., Reinelt, D. A., & van Swol, F. (2004). Structure of random foam. Physical 

Review Letters, 93(20), 208301. 

[79] Kraynik, A. M. (2006). The structure of random foam. Advanced Engineering Materials, 

8(9), 900-906. 

[80] Baillis, D., Coquard, R., & Cunsolo, S. (2017). Effective conductivity of Voronoi’s closed-

and open-cell foams: analytical laws and numerical results. Journal of Materials 

Science, 52(19), 11146-11167. 

[81] Fang, Q., & Boas, D. A. (2009, June). Tetrahedral mesh generation from volumetric binary 

and grayscale images. In Biomedical Imaging: From Nano to Macro, 2009. ISBI'09. IEEE 

International Symposium on (pp. 1142-1145). IEEE. 

[82] Kobbelt, L., Vorsatz, J., Labsik, U. and Seidel, H.P., 1999, September. A shrink wrapping 

approach to remeshing polygonal surfaces. In Computer Graphics Forum (Vol. 18, No. 3, 

pp. 119-130). 

[83] Zhang, H. P., & Makse, H. A. (2005). Jamming transition in emulsions and granular 

materials. Physical Review E, 72(1), 011301. 

[84] Nixon, M. S., & Aguado, A. S. (2012). Feature extraction & image processing for computer 

vision. Academic Press.  

[85] Cunsolo, S., Coquard, R., Baillis, D., Chiu, W. K., & Bianco, N. (2017). Radiative properties 

of irregular open cell solid foams. International Journal of Thermal Sciences, 117, 77-89. 

[86] Baillis, D., Coquard, R., Cunsolo, S., Effective Conductivity of Voronoi’s closed and open 

cell Foams - Analytical laws and numerical results, Journal of Materials Science 

[87] Mendes, M.A., Goetze, P., Talukdar, P., Werzner, E., Demuth, C., Rössger, P., Wulf, R., 

Gross, U., Trimis, D. and Ray, S. (2016). Measurement and simplified numerical prediction 

of effective thermal conductivity of open-cell ceramic foams at high 

temperature. International Journal of Heat and Mass Transfer, 102, pp.396-406. 

[88] Patel, V. M., & Talukdar, P. (2016). Evaluation of radiative properties of a representative 

foam structure using blocked-off region approach integrated with finite volume 

method. International Journal of Thermal Sciences, 108, 89-99. 

[89] Feder, J. (1980). Random sequential adsorption. Journal of Theoretical Biology, 87(2), 237-

254. 

[90] Brun, E., Vicente, J., Topin, F. and Occelli, R., 2008. IMorph: A 3D morphological tool to 

fully analyse all kind of cellular materials. Cellular Metals for Structural and Functional 

Applications. 

[91] Ranut, P., Nobile, E., & Mancini, L. (2014). High resolution microtomography-based CFD 

simulation of flow and heat transfer in aluminum metal foams. Applied Thermal Engineering, 

69(1), 230-240. 

[92] Russ, J. C., & Dehoff, R. T. (2012). Practical stereology. Springer Science & Business 

Media. 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



186 
 

[93] Glicksman, Leon R., and M. R. Torpey (1988). A study of radiative heat transfer through foam 

insulation. No. ORNL/Sub-86-09099/3. Oak Ridge National Lab., TN (USA); Massachusetts 

Inst. of Tech., Cambridge (USA) 

[94] Vujičić, M. R., Lavery, N. P., & Brown, S. G. R. (2006). View factor calculation using the 

Monte Carlo method and numerical sensitivity. International Journal for Numerical 

Methods in Biomedical Engineering, 22(3), 197-203. 

[95] Wang, L., Jacques, S. L., & Zheng, L. (1995). MCML—Monte Carlo modeling of light 

transport in multi-layered tissues. Computer methods and programs in biomedicine, 47(2), 

131-146. 

[96] Dombrovsky, L. A. (1996). Radiation heat transfer in disperse systems. New York: Begell 

House. 

[97] Qi, H., Ruan, L. M., Zhang, H. C., Wang, Y. M., & Tan, H. P. (2007). Inverse radiation 

analysis of a one-dimensional participating slab by stochastic particle swarm optimizer 

algorithm. International journal of thermal sciences, 46(7), 649-661 

[98] Painter, L. R., Arakawa, E. T., Williams, M. W., & Ashley, J. C. (1980). Optical properties 

of polyethylene: Measurement and applications. Radiation Research, 83(1), 1-18. 

[99] Meeten, G. H. (1986). Optical properties of polymers. Elsevier Applied Science Publishers 

Ltd, Crown House, Linton Road, Barking, Essex IG 11 8 JU, UK, 1986 

[100] Palik, E. D. (Ed.). (1998). Handbook of optical constants of solids. Academic press. 

[101] Coquard, R., & Baillis, D. (2006). Modeling of heat transfer in low-density EPS foams. 

Journal of heat transfer, 128(6), 538-549. 

[102] Kitamura, R., Pilon, L., & Jonasz, M. (2007). Optical constants of silica glass from extreme 

ultraviolet to far infrared at near room temperature. Applied optics, 46(33), 8118-8133. 

[103] Kischkat, J., Peters, S., Gruska, B., Semtsiv, M., Chashnikova, M., Klinkmüller, M., ... & 

Flores, Y. (2012). Mid-infrared optical properties of thin films of aluminum oxide, titanium 

dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Applied optics, 51(28), 6789-

6798. 

[104] Vujičić, M. R., Lavery, N. P., & Brown, S. G. R. (2006). View factor calculation using the 

Monte Carlo method and numerical sensitivity. International Journal for Numerical 

Methods in Biomedical Engineering, 22(3), 197-203. 

[105] Cengel, Y. A. (2003). Heat transfer a practical approach. McGraw-Hill. 

[106] MATLAB and Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick, 

Massachusetts, United States. 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés



FOLIO ADMINISTRATIF 

THESE DE L’UNIVERSITE DE LYON OPEREE AU SEIN DE L’INSA LYON 

NOM : CUNSOLO DATE de SOUTENANCE : 23/01/2018 

(avec précision du nom de jeune fille, le cas échéant) 

Prénoms : Salvatore 

TITRE : RADIATIVE PROPERTIES COMPUTATIONAL MODELING OF POROUS CELLULAR MATERIALS 

NATURE : Doctorat Numéro d'ordre :  2018LYSEI005 

Ecole doctorale : ED 162 - MEGA 

Spécialité : Thermique et Energétique 

RESUME : Les transferts thermiques par rayonnement dans des mousses sont modélisés à partir de la morphologie du 
matériau et des propriétés de sa phase solide. Dans ce travail de thèse, une attention particulière est portée sur les modèles 
radiatifs de Monte Carlo. Les différentes approches d’homogénéisation telles que « Homogeneous Phase » (HPA) and « Multi 
Phase » (MPA) sont discutées et comparées. Des développements novateurs sont proposés pour améliorer la précision des 
résultats. 
Nos avancées permettent de générer numériquement trois types de mousses périodiques couvrant un large domaine de 
matériaux cellulaires: mousse à pores fermés à haute porosité, mousse à cellules ouvertes à basse et haute porosité. Pour ces 
dernières, des comparaisons morphologiques avec des données expérimentales tomographiques, montrent des résultats 
satisfaisants et tendent à valider nos modèles de génération. Des mousses dont la phase solide est opaque ont tout d’abord été 
étudiées. Nos simulations ont permis de trouver de nouvelles lois analytiques précises permettant d’estimer les propriétés 
radiatives de ces matériaux à partir de données morphologiques. Ensuite, nous avons considéré des mousses, dont la phase 
solide est semi transparente.  La modélisation du transfert radiatif au sein de ces milieux cellulaires est plus complexe. Les 
méthodes de modélisation des propriétés radiatives de la littérature, HPA et MPA, sont testées. Des simulations de Monte 
Carlo directes dans les matériaux ont permis de mettre en exergue les limites de ces modèles. Des modèles novateurs ont été 
proposés afin d’améliorer la précision des simulations. Ils sont basés sur une méthode hybride directe-inverse et une 
modification de l’équation de transfert radiatif classique. Ces nouveaux modèles (HPA+ et MPA+)  ont été testés sur un 
ensemble varié de morphologies générées numériquement. Les modèles améliorés sont systématiquement plus précis que les 
modèles existants 

MOTS-CLÉS : Rayonnement, Tomographie, Monte Carlo, Morphologie, Numérique, Multi-Phase Approach 

Laboratoire (s) de recherche: LaMCoS 

Directeur de thèse: Dominique Baillis 

Président de jury : 

Composition du jury : 

Dombrovsky, Leonid Chief Researcher JIHT Rapporteur 
Minea, Alina Adriana Prof. TUIASI  Rapporteuse 
Enguehard, Franck Prof. CentraleSupélec  Examinateur 
Rosato, Antonio  Prof. UNICAMPANIA  Examinateur 

Baillis, Dominique Prof. INSA-Lyon  Directrice de thèse 
Bianco, Nicola Prof. UNINA   Co-directeur de thèse 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI005/these.pdf 
© [S. Cunsolo], [2018], INSA Lyon, tous droits réservés


	Notice XML
	Page de titre
	Résumé Etendu
	Acknowledgments
	Abstract
	Table of contents
	Nomenclature
	General introduction
	Section 1 Radiative heat transfer incellular media: state of the art
	Introduction
	Chapter 1 – Radiative properties modeling of open cell opaque foam: review and new analytical law
	1.1 Introduction
	1.2 Radiative properties modeling
	1.2.1 Analytical method
	1.2.2 Projection method
	1.2.3 Monte Carlo method
	1.2.3.1 Variations on ray casting method - Ray origin
	1.2.3.2 Variations on ray casting method - Boundary handling
	1.2.3.3 Calculation of radiative properties


	1.3 Numerical results and comments
	1.3.1 Spheres
	1.3.1.1 Geometry description
	1.3.1.2 Results and comments

	1.3.2 Voronoi structures
	1.3.2.1 Geometry description
	1.3.2.2 Results and comments


	1.4 Conclusions

	Chapter 2 - Indirect identification methods and semi-transparent cellular media
	2.1 Classification of methods for the identification of radiative properties
	2.2 Modeling radiation in cellular media with a semi-transparent solid phase.
	2.2.1 Notes on the Multi Phase Approach (MPA)
	2.2.2 Other recent developments – Generalized Radiative Transfer Equation
	2.2.3 General observations



	Section 2 Digital generation of realistic cellular morphologies
	Chapter 3 – A general framework for the generation of realistic cellular morphologies.
	3.1. Introduction
	3.2 Close random sphere packing generation.
	3.3 Open cell porous structures
	3.4 Voronoi-Laguerre diagram and Surface Evolver processing
	3.5 Closed cell plastic foams
	3.6 Open cell metal foams

	Chapter 4 - Radiative Properties of Irregular Open Cell Solid Foams
	4.1 Introduction
	4.2 Methodology
	4.2.1 Digital generation methodology
	4.2.1.1 Digital generation methodology - Presentation
	4.2.1.2 Digital generation methodology - Validation

	4.2.2 Radiative properties calculation methodology

	4.3 Results and discussion
	4.4 Simplified analytical relations
	4.4.1 Analytical relations - Presentation
	4.4.2 Analytical relations - Validation

	4.5 Conclusions

	Appendix 4A – Evaluating the normalized curvature (k)
	Appendix 4B – Evaluating the diameter ratio (t)

	Section 3 Improved homogenized methods
	Introduction
	Chapter 5 – A Direct Monte Carlo Homogenization method for simulation in arbitrary enclosures.
	5.1 Introduction
	5.2 Morphological domain and physical domain
	5.3 Ray casting process
	5.4 Validation and comparison with Homogeneous Phase Approach
	5.5 Computational aspects

	Chapter 6 – Improved Homogeneous Phase Approach (HPA+)
	6.1 Introduction
	6.2 Ray history effects and general setup
	6.3 Full presentation of the HPA+
	6.3.1. Ray tracing from the fluid phase – hybrid determination of coefficients
	6.3.2. Ray tracing from the solid phase – evaluation of coefficient ghg
	6.3.3. Modified equations and calculation of C and αt.

	6.4 Numerical results
	6.5. Comments

	Chapter 7 – Improved Multi Phase Approach (MPA+)
	7.1 Introduction
	7.2 Ray history effects and general setup of MPA+
	7.3 Full presentation of theMPA+
	7.3.1. Ray tracing from the fluid phase – hybrid determination of coefficients.
	7.3.2. Ray tracing from the solid phase – evaluation of coefficient C2
	7.3.3. Ray tracing from solid phase – hybrid determination of trapped phase coefficients.
	7.3.4. Modified equations and calculation of C1

	7.4. Numerical results
	7.5. Comments


	General conclusion and future prospects
	References
	Folio administratif



