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Abstract

The present work aims to present a new tool for modelling textile materials using the
yarn as constitutive element. Since fiber tows length is much higher than their transverse
dimensions, beam elements seem to be the most convenient structural finite element tool.
Unfortunately, classical beam theories assume that the cross section acts as a rigid which
can’t describe the transverse compression and shape change of the yarn. This thesis is
devoted to propose a new 3D beam element with deformable section while breaking from
classical beam hypothesis.

The new beam element is an evolution of a two nodes Timoshenko beam element
with an extra node located at mid-length. That extra node allows the introduction of three
extra strain components: εyy, εzz and 2εyz so that full 3D stress/strain constitutive rela-
tions can be used directly. The proposed element has been introduced in a Matlab finite
element code and a series of linear/small strain cases have been realized and the results
are systematically compared with the corresponding values form ABAQUS/Standard 3D
simulations. Such results show, if needed, that the 8 extra degrees of freedom are suf-
ficient to introduce the coupling between εyy and εzz. After that, the second step is to
introduce the orthotropic behavior and carry out validation for large displacements/small
strains based on Updated Lagrangian Formulation. A series of numerical analyses are
carried out which shows that the enhanced 3D element provides an excellent numerical
performance. Indeed, the final goal is to use the new 3D beam elements to model yarns in
a textile composite preform. For this purpose, the third step is introducing contact behav-
ior and carrying out validation for new 3D beam to beam contact with rectangular cross
section. The contact formulation is derived on the basis of Penalty Formulation and Up-
dated Lagrangian formulation using physical shape functions with shear effect included.
An effective contact search algorithm, which is necessary to determine an active set for
the contact contribution treatment, is elaborated. And a consistent linearization of con-
tact contribution is derived and expressed in suitable matrix form, which is easy to use
in FEM approximation. Finally, some numerical examples are presented which are only
qualitative analysis of contact and checking the correctness and the effectiveness of the
proposed 3D beam element.

KEYWORDS: Enhanced 3D beam element; Rectangular cross-section; Section de-
formation; Full 3D constitutive law; Large displacements/small strains; Updated La-
grangian Formulation; Frictionless contact; Hermite smoothing
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Résumé

Le présent travail a le but de présenter un nouvel outil pour modéliser matériaux tex-
tiles qui considère le fil comme élément constitutif. Étant donné que la longueur des fibres
est plus élevée que leurs dimensions transversales, les poutre éléments finis semblent être
l’outil le plus avantageux. Malheureusement, les théories de poutres classiques supposent
que la section transversale agit comme une rigide qui ne peut pas décrire la compression
transversale et le changement de forme du fil. Cette thèse est consacrée à proposer un
nouvel élément de 3D poutre à section déformable en rompant avec l’hypothèse de poutre
classique.

Le nouvel élément de poutre est une évolution d’un élément de Timoshenko poutre
avec un noeud supplémentaire situé à mi-longueur. Ce noeud supplémentaire permet
l’introduction de trois composantes supplémentaires de contrainte: εyy, εzz and 2εyz afin
que le loi constitutionnelle 3D complète puisse être utilisée directement. L’élément pro-
posé a été introduit dans un code d’éléments finis dans Matlab et une série d’exemples de
linéaires / petites contraintes ont été réalisées et les résultats sont systématiquement com-
parés avec les valeurs correspondantes des simulations ABAQUS / Standard 3D. Ces ré-
sultats montrent, si nécessaire, que les 8 degrés de liberté supplémentaires sont suffisants
pour introduire le couplage entre εyy et εzz. Ensuite, la deuxième étape consiste à intro-
duire le comportement orthotrope et à effectuer la validation de déplacements larges / pe-
tites contraintes basés sur la formulation Lagrangienne mise à jour. Une série d’analyses
numériques est réalisée qui montre que l’élément 3D amélioré fournit une excellente per-
formance numérique. En effet, l’objectif final est d’utiliser les nouveaux éléments de
poutre 3D pour modéliser des fils dans une préforme composite textile. A cet effet, la
troisième étape consiste à introduire un comportement de contact et à effectuer la valida-
tion pour un nouveau contact entre 3D poutres à section rectangulaire. La formulation de
contact est dérivée sur la base de formulation de pénalité et de formulation Lagrangian
mise à jour utilisant des fonctions de forme physique avec l’effet de cisaillement inclus.
Un algorithme de recherche de contact efficace, qui est nécessaire pour déterminer un en-
semble actif pour le traitement de contribution de contact, est élaboré. Et une linéarisation
constante de la contribution de contact est dérivée et exprimée sous forme de matrice ap-
propriée, qui est facile à utiliser dans l’approximation FEM. Enfin, on présente quelques
exemples numériques qui ne sont que des analyses qualitatives du contact et de la vérifi-
cation de l’exactitude et de l’efficacité de l’élément de 3D poutre proposé.

MOTS CLÉS : Élément de 3D poutre amélioré; Section rectangulaire; Déforma-
tion de la section; Loi constitutionnelle 3D complète; Déplacements larges / petites con-
traintes; Mise à jour de la formulation Lagrangienne; Contact sans frottement; Lissage
Hermite
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Chapter 1

Introduction

Textile reinforcements are widely used in composite industry. In order to save time (and
money), it is of primary importance to reduce the time between product idea and its de-
livery. To achieve this goal, it is necessary to have a good comprehension of the fabric be-
havior. Composite materials are certainly the materials for which the interaction between
design and process is the most important because each composite structural component
is made of a unique material if one considers the reinforcement distribution (in terms of
fiber orientation, fiber density · · · ). Consequently, designing a composite structural part
requires the knowledge of mechanical behavior of the dry reinforcement (which can be
woven knitted, braided · · · ).

The need of efficient modelling textile materials at meso-scale increased considerably
in the last decade. Several approaches have been proposed which present different kinds
of drawbacks, the most important being their high computation time. My thesis aims
to present a new tool for modelling textile materials using the yarn as constitutive ele-
ment. Because fiber tows length is much higher than their transverse dimensions, beam
elements seem to be the most convenient structural finite element tool. Unfortunately,
classical beam theories assume that the cross section acts as a rigid which can’t describe
the transverse compression and shape change of the yarn. Therefore, we present a new
3D beam element with the aim to achieve the results with section changes while breaking
from classical beam hypothesis.

The main features of newly proposed 3D beam element are: each element has two
end nodes which are treated by combining Saint-Venant and Timoshenko hypothesis; the
transverse strains of both thickness and width direction are introduced based on the addi-
tional central node. The transverse strain distributions are linear, and the formulations of
displacement are completely quadratic by adding the terms coupling the deformation in
both transverse directions; fully 3D constitutive stress/strain relations can be used directly.

The whole work is composed of three steps, the first step is the proposition of the
new 3D beam and validation for linear small strain conditions, and the following steps
are: carrying out validation for large displacements/ small strains; introducing contact
behavior and carrying out validation for new 3D beam to beam contact.
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1. Introduction

1.1 Introduction to composite materials

1.1.1 Definition of composite materials
A composite material can be defined as a combination of two or more materials, which
when combined give properties superior to the properties of the individual components
[CAM 03]. Thus, a composite material is heterogeneous at a microscopic scale but statis-
tically homogeneous at macroscopic scale. The materials which form the composite are
also called as constituents or constituent materials. The constituent materials of a compos-
ite have significantly different properties. Further, it should be noted that the properties of
the composite formed may not be obtained from these constituents. However, a combina-
tion of two or more materials with significant properties will not be enough to be called
as a composite material. In general, the following conditions must be fulfilled to be called
a composite material:

(1) The combination of materials should result in significant property changes. One can
see significant changes when one of the constituent material is in platelet or fibrous
form.

(2) The content of the constituents is generally more than 10% (by volume).

(3) In general, a given property of one constituent is much greater (5 times) than the
corresponding property of the other constituent.

The main advantages of composite materials are their high strength and stiffness, com-
bined with low density, when compared with bulk materials, allowing for a weight reduc-
tion in the finished part. The reinforcing phase provides the strength and stiffness. In most
cases, the reinforcement is harder, stronger, and stiffer than the matrix [CAM 10]. There
are two categories of constituent materials: reinforcement and matrix. The reinforcement
is used to strengthen the matrix in terms of strength and stiffness. The reinforcement can
be cut, aligned, placed in different ways to tailor the properties of the resulting composite.
The matrix performs several critical functions, including maintaining the reinforcement
in the proper orientation, spacing and protecting it from chemical aggression and the envi-
ronment attack, it also bonds the reinforcement so that it can transmit loads from the ma-
trix to the reinforcement through shear loading at the interface [CAM 03]. The properties
of the composites depend on the properties of the constituents, their relative proportion,
geometry, distribution, and orientation of the reinforcements. The main factors are the
properties and the relative amount of constituents. Hence, it is possible to get the desired
properties in the final composite by selecting the right combination of materials in their
proper proportion.

1.1.2 Classification
Composites can be broadly classified into natural and synthetic composites. Natural com-
posites exist from both animals and plants. Although the constituents are present in fine
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Introduction to composite materials

scale in the natural composites, it is very difficult to tailor the properties of natural com-
posites. It is different for synthetic composites because they are artificial composites.
There is sufficient flexibility of selecting a suitable reinforcement and a matrix from the
wide variety of reinforcements and matrices to get composites with the desired properties.
Figure 1.1 shows several typical examples of composite materials.

(a) (b) (c)

(d) (e)

Figure 1.1 – Examples of composite materials with different forms of constituents and
distributions of the reinforcements: (a) Random fiber (short fiber) reinforced compos-
ites. (b) Continuous fiber reinforced composites. (c) Particulate composites. (d) Flake

composites. (e) Filler composites.

Based on the reinforcement, the composites can be classified as fiber-reinforced com-
posites (FRCs), particulate composites, flake and filler composites, shown in Figure 1.2.

Fiber is an individual filament of the material. A filament with length to diameter ratio
above 1000 is called a fiber. The fibrous form of the reinforcement is widely used. The
fibers can be in the following two forms:

Continuous fibers: the fibers used in a composite are very long and unbroken or cut
to form a continuous fiber composite. Thus, a composite formed using continuous fibers
is called as fibrous composite. The fibrous composite is the most widely used form of
composite for structural applications.

Short/chopped fibers: the fibers are chopped into small pieces when used for fab-
ricating a composite. A composite with short fibers as reinforcements is called as short
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Bidirectional 
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Figure 1.2 – Classification of composites based on reinforcement [ALT 13].

fiber composite.
In the fiber reinforced composites, the fiber is the major load carrying constituent.

Continuous fibers are arranged usually in uni- or bi-directional. In case of mat materials,
the fibers are randomly arranged. The arrangement and the orientation of continuous or
short fibers determines the mechanical properties of composites and the behavior ranges
from a general anisotropy to a quasi-isotropy.

Particulates: the reinforcement is in the form of particles which are of the order of a
few microns in diameter. The particles are generally added to increase the modulus and
decrease the ductility of the matrix materials. In this case, the load is shared by both
particles and matrix materials. However, the load shared by the particles is much larger
than the matrix material. For example, carbon black (as a particulate reinforcement) is
added in rubber (as matrix material) in an automobile application. The composite with
reinforcement in particle form is called a particulate composite. Particulate reinforce-
ments have different shapes. They may be spherical, platelet or of any regular or irregular
geometry. Their arrangement may be random or regular with preferred orientations.

Flake is a small, flat, thin piece or layer (or a chip) that is broken from a larger piece.
Since these are two dimensional in geometry, they impart almost equal strength in all di-
rections of their planes. Thus, these are very effective reinforcement components. The
flakes can be packed more densely when they are laid parallel, even denser than unidirec-
tional fibers and spheres.

In filler composites, composites are filled by a secondary material along with the main
reinforcement. The percentage of filler material is quite less than the main reinforcement.
Particle fillers are the most commonly used filler materials to improve the properties of
matrix materials.

As previously mentioned, in a composite, typically, there are two constituents. One
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Introduction to composite materials

of the constituent acts as a reinforcement and the other acts as a matrix. Sometimes, the
constituents are also referred as phases. Matrices can be polymers, metals or ceramics.
Based on the matrix material, the composites are classified into polymer matrix compos-
ites (PMCs), metal matrix composites (MMCs), and ceramic matrix composites (CMCs).
The classification of composites based on matrix material is shown in Figure 1.3. The
three types of composites differ in the manufacturing method adopted, mechanical behav-
iors, and functional characteristics.

Composites

Polymer matrix 

composites
Ceramic matrix 

composites

Metals and alloys Inter-metallics

Thermoset

polymers
Elastomers

Thermoplastic 

polymers

Metal matrix 

composites

Oxides CarbonNon-oxides

Figure 1.3 – Classification of composites based on matrix materials [ALT 13].

1.1.3 Types of textile architecture

In case of structural applications, continuous fibers are used. Textile reinforced compos-
ites are a subclass of composites where the reinforcement is a textile material comprised
of a network of natural or artificial fibers, typically arranged as tows or yarns. The main
categories of textile architecture relevant to composite materials are woven, braided, weft-
knitted and non-crimp (Figure 1.4).

Woven fabrics consist of usually two orthogonal series of yarns, referred to as warp
and weft yarns, interlaced to form a self-supporting textile structure. There are a number
of possible interlacing patterns, the simplest of which is the plain weave where each warp
yarn interlaces with each weft yarn. More complex interlacing patterns can be categorized
as twill, satin, crowfoot, rib, basket, herringbone, crepe, etc. Multilayer woven fabrics,
also known as interlock weaves, are composed of several layers of warp and weft yarns
woven together. The number of possible interlacing patterns is virtually infinite, however
they are broadly categorized as orthogonal, through-thickness and angle interlock (also
known as layer-to-layer).
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2D woven 3D woven Braided

Weft knit Non-crimp

Figure 1.4 – Classification of composites based on matrix materials [SHE 07].

1.1.4 Advantages and applications
The advantages of composites are many, including lighter weight, the ability to tailor the
layup for optimum strength and stiffness, improved fatigue life, corrosion resistance, and
with good design practice, reduced assembly costs due to fewer detail parts and fasteners
[CAM 10].

The list of advantages of composite is quite long. One can find more on advantages
of composite in reference books and open literature. The following lists some advantages
of composites:

Specific stiffness and strength:
The composite materials have high specific stiffness and strengths. Thus, these mate-

rials offer better properties with less weight compared with conventional materials. Due
to this, one gets improved performance at reduced energy consumption.

Tailorable design:
A large set of design parameters are available to choose, making the design procedure

more versatile. The available design parameters are:

(1) Choice of materials (fiber/matrix), volume fraction of fiber and matrix, fabrication
method, layer orientation, number of layer/laminae in a given direction, thickness of
individual layers, type of layers (fabric/unidirectional) and stacking sequence.

(2) A component can be designed to have desired properties in specific directions.

Fatigue life:
The composites can withstand more number of fatigue cycles than that of aluminum.

The critical structural components in aircraft require high fatigue life. The use of com-
posites in fabrication of such structural components is thus justified.
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Dimensional stability:
Due to temperature, strain can change shape, size, increase friction, wear and thermal

stresses. The dimensional stability is very important in application like space antenna.
For composites, with proper design it is possible to achieve almost zero coefficient of
thermal expansion.

Corrosion resistance:
Polymer and ceramic matrix materials used to fabricate composites have high resis-

tance to corrosion from moisture, chemicals.

Cost effective fabrication:
The components fabricated from composite are cost effective with automated methods

like filament winding, pultrusion and tape laying. There is a lesser wastage of the raw
materials as the product is fabricated to the final product size unlike in metals.

Conductivity:
The conductivity of the composites can be achieved to make it an insulator or a highly

conducting material. For example, glass/polyesters are non-conducting materials. These
materials can be used in space ladders, booms etc. where one needs higher dimensional
stability, whereas copper matrix material gives a high thermal conductivity.

Composite materials have a long history of usage. Their precise beginnings are un-
known, but all recorded history contains references to some form of composite material.
Recently, the use of composite materials is more and more extensive and expanding. Ap-
plications include aerospace, transportation, construction, marine goods, sporting goods,
and more recently infrastructure, with construction and transportation being the largest
(Figure1.5).

The primary reason for that composite materials are chosen for components is because
of weight saving for its relative stiffness and strength. Therefore, the component weight
can be drastically reduced by using composites. For example, carbon-fiber reinforced
composite can be five times stronger than 1020 grade steel while having only one fifth of
the weight. Aluminum (6061 grade) is much nearer in weight to carbon-fiber composite,
though still somewhat heavier, but the composite can have twice the modulus and up to
seven times the strength.

The first modern composite material was fiberglass. It is still widely used today for
boat hulls, sport equipment, building panels and many car bodies. The matrix is a polymer
and the reinforcement is glass that has been made into fine threads and often woven into
a sort of cloth. Individually, the glass is very strong but brittle and it will break if bent
sharply. The polymer matrix holds the glass fibers together and also protects them from
damage by sharing out the forces acting on them.

Some advanced composites are now made using carbon fibers instead of glass. These
materials are lighter and stronger than fiberglass but more expensive to produce. They are
used in aircraft structures and expensive sport equipment such as golf clubs.

Carbon nanotubes have also been used successfully to make new composites. These
are even lighter and stronger than composites made with ordinary carbon fibers but they
are still extremely expensive. They do, however, offer possibilities for making lighter cars
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Figure 1.5 – Applications of composites.

and aircraft (which will use less fuel than the heavier vehicles we have now).
The new Airbus A380, the world’s largest passenger airliner, makes use of modern

composites in its design. More than 20% of the A380 is made of composite materials,
mainly polymer reinforced with carbon fibers. The design is the first large-scale use of
glass-fiber-reinforced aluminum, a new composite that is 25% stronger than conventional
airframe aluminum but 20% lighter.

Development and applications of composite materials and structural elements com-
posed of composite materials have been very rapid in the last decades. The motivations
for this development are the significant progress in material science and technology of
the composite constituents. The requirements for high performance materials is not only
in aircraft and aerospace structures, but also in the development of very powerful experi-
mental equipment and numerical methods and the availability of efficient computers.

There is unabated thirst for new materials with improved desired properties. All the
desired properties are difficult to find in a single material. For example, a material which
needs high fatigue life may not be cost effective. The list of the desired properties, depend-
ing upon the requirement of the application, is given: strength, stiffness, toughness, high
corrosion resistance, high wear resistance, high chemical resistance, high environmental
degradation resistance, reduced weight, high fatigue life, thermal insulation or conduc-
tivity, electrical insulation or conductivity, acoustic insulation, radar transparency, energy
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dissipation, reduced cost, attractiveness, recyclability, etc. The list of desired properties
is not exhaustive. It should be noted that the most important characteristics of composite
materials is that their properties are tailorable, that is, one can design the required prop-
erties. By choosing an appropriate combination of matrix and reinforcement material, a
new material can be made that exactly meets the requirements of a particular application.

1.2 Scales of analysis for composites
In the following a composite material is constituted by a matrix and a fiber reinforcement.
The matrix is a polyester or epoxy resin with fillers. The most advanced composites are
polymer matrix composites, which have become more and more important in a variety
of engineering fields. The rapid growth in the use of composite materials in structures
requires the development of structure mechanics for modelling the mechanical behavior
and the analysis of structural elements made of composite material.

As mentioned previously, since composite materials consist of two or more con-
stituents, the modelling, analysis and design of structures composed of composites are dif-
ferent from conventional materials such as steel. In reality, a textile fabric is an assembly
of yarns, each yarn is an assembly of fibers, and each fiber is a flexible one-dimensional
physical entity. Consequently, the mechanics of woven materials can be addressed at
three different scales: the macroscopic scale relevant to pieces of fabric, the mesoscopic
scale related to yarns, and the microscopic scale concerning fibers inside yarns. Figure
1.6 shows us the three modelling scales of textile composites.

Macroscopic-scale Mesoscopic-scale Microscopic-scale

Figure 1.6 – Three modelling scales of textile composites.

1.2.1 Microscopic scale
The textile materials are made of a very large number of continuous fibers, the diameter
of which is some µm (e.g.7 µm for a carbon fiber). The level of the fiber is called mi-
croscopic scale (Figure 1.6). This is the lowest level of observation, wherein fiber and
matrix phases are modeled separately and the average properties of a single reinforced
layer are determined from individual constituent properties by a suitable homogenization
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technique. In this way, the approaches focuses on the microscopic scale can avoid these
assumptions about the behavior of intermediate components, and predict mechanisms tak-
ing place at the scale of the fibers. By describing the mechanical state of all individual
fibers involved in the sample, such kind of approach is also useful for the prediction of
damage, in particular due to fiber breakage.

Some mechanical analyses have been performed in which each fiber is considered
as a 3D beam interacting with its numerous neighbors (Figure 1.7) [DUR 05, DUR 08,
DUR 09, DUR 10]. This approach considers small samples of woven fabrics as collec-
tions of individual fibers undergoing large deformations, and needs to model not only
the behavior of all individual fibers, but also contact-friction interactions developed be-
tween them. The very large number of fibers within a yarn and consequently within a
reinforcement reduces the conclusions that can be obtained from such an analysis.

Figure 1.7 – Modelling considering each fiber as a 3D beam [DUR 05].

Similar approaches at microscopic scale can be found in the literature. For example,
at the scale of fibers, for the computation of the initial configuration of braided structures
or 3D interlock woven fabric, digital elements have been used by Miao [MIA 08] (Figure
1.8). Since these digital elements have neither bending nor torsional stiffness, fibers must
be tightened to find a solution. Finckh [FIN 04] proposed to simulate the weaving process
and to apply dynamic loading cases using an explicit solver. Other approaches tackle the
problem at the scale of yarns, representing yarns by beams or 3D models and studying
interactions between them can be seen in [BOI 05, LOM 07, BRI 04].

At the most fundamental level, composites are mixtures of fibers (or particles), matrix
and an interface material which connects fibers (or particles) to the matrix material. Mi-
cromechanics helps us to understand interactions between different constituents of com-
posite on a microscopic scale. Such a field of study helps us understand:

• Failure mechanisms in fibers (tensile, buckling, splitting, etc).

• Failure mechanism in matrix (tensile, compressive, shear).

• Interface failure mechanisms.

• Fracture toughness, fatigue life, and strength.
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Layer-to-layer                                   Through-thickness angle interlock

(a)

Layer-to-layer                                   Through-thickness angle interlock

(b)

Figure 1.8 – Relaxation processes of 3-D woven fabrics. (a) Initial fabric geometry. (b)
Relaxed micro-geometry [MIA 08].

• Basis of macro-level elastic properties.

However, micromechanics is an unsuitable tool to understand behavior of large struc-
tures, due to computational limitations. When dealing with woven fabrics at the scale
of fibers, the difficulties lie in the detection and modelling of numerous contact-friction
interactions taking place within the collection of fibers. Within the framework of large
deformations, nonlinear problems require optimized algorithms to be solved efficiently,
especially when high numbers of degrees of freedom and contacts are considered.

1.2.2 Mesoscopic scale
At mesoscopic level, a textile composite can be seen as an assembly of yarns or tows,
coupled with matrix. In a woven fabric, the fibers are grouped in yarns (3000-48,000
fibers per yarn in a standard composite reinforcement). By developing models for yarns
or tows, considered as continuous media, it is possible to build intermediate approaches
to study the behavior of fabrics at mesoscopic scale, considering the fabric as an assembly
of interlacing tows. The working scale corresponds to the yarn dimension, typically one
to several millimeters.

Some approaches are available in the references concerning the modelling of fabrics
at mesoscopic scale, considering the yarns as beams that bend according to the beam
theory [COR 09, CHE 99, VAS 10]. Using beam elements seems a good idea because of
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the geometry of yarn, unfortunately, classical beam theories assume that the cross section
acts as a rigid which can’t describe the transverse deformation of the yarn (i.e. transverse
compression and shape change), which is essential to the yarn behavior.

In [GAT 10], each yarn is modelled by a set of shell elements (Figure 1.9). The
model’s initial geometry accounts for the weaving of the reinforcement and contacts be-
tween yarns are considered.

(a) (b) 

Figure 1.9 – Mesoscopic model of a glass balanced plain weave [GAT 10]. (a) 47214
DoF. (b) 216 DoF.

Nguyen [NGU 13] has proposed an approach to analyze the compressive behavior of
a textile composite reinforcement at mesocopic scale. Each yarn is modelled by a 3D
solid in contact and friction with the other yarns (Figure 1.10).

Figure 1.10 – Geometrical model and mesh for the G986 RUC [NGU 13].

The mesoscopic compression simulations have two main objectives. Firstly, they
can be used as virtual compressive tests to determine the compressive behavior of a
composite textile reinforcement (made of several layers with different directions, pos-
sibly with shear). In addition to the compaction curve, they give the internal geometry
of the yarns after compaction. This is important for a good determination of the me-
chanical properties of the composite and to analyze damage via meso-macro approaches
[WHI 95, VIO 09, PRO 11]. Secondly, they can be used to calculate the permeability
tensor of the deformed reinforcement [WHI 95, VIO 09, PRO 11] while varying some
parameters and thus to avoid permeability measurements that are complex.
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1.2.3 Macroscopic scale

The macroscopic level refers to the whole component level, with dimensions on the order
of ten centimeters to several meters. At this level, a woven fabric can be seen as a contin-
uous material with a specific behavior, the composite material is treated as a homogenous
material. For the actual fibers, their orientation and packing arrangement, the lamination,
and the binding matrix are all indistinguishable. The stiffness and strength of the material
can be characterized by making a number of tests, from which macroscopic properties are
determined. This analysis is known as macro-mechanics. Once these property data are
known, macro-mechanics analysis will supply answers as to the load-carrying capacity
and stiffness of a structure consisting of this material.

Such an approach of study is suitable well for individual composite layers. It helps
us to predict failure and performance of individual laminae, in terms of properties of
the composite. However, such an approach does not refer to local failure mechanisms
because homogenized models are derived to represent the fabric as a shell. Only the
averaged properties of a lamina are considered and the microstructure of the lamina is
ignored. Many approaches are available in the literatures concerning the modellings and
simulations of fabrics at macroscopic scale: continuous approaches, discrete approaches,
demi-discrete approaches.

The continuous approach considers the fibrous reinforcement or prepreg as a contin-
uum [KIN 05, ROG 89, PEN 05, LIA 14, TEN 07, KHA 10, AIM 09]. As seen in the
preceding sections, the reinforcement is not continuous at lower scales, but a continuous
material can be assumed to be superimposed on the fibrous material. This needs the as-
sumption that there is no significant sliding between fibers and yarns during the deforma-
tion. Several experiments have already confirmed this assumption. For instance, Boisse et
al [BOI 93] have done a forming experiment for woven fabric on a hemispherical punch
(Figure 1.11). A set of lines following the warp and weft yarn directions were drawn on
the fabric before forming. These lines became curved after forming but remained con-
tinuous, which implies that, due to the weaving, there was no large sliding between warp
and weft yarns. The advantage of the continuous approach is that it can be implemented
in commercial FE codes.

Figure 1.11 – Validation of no sliding assumption between yarns in the forming [BOI 93].
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The discrete approach considers and models the components of fibrous reinforcement
at lower scale. Analysis is carried out at unit cell level in which each yarn and fabric is
modeled. Nevertheless, because of very large number of yarns or fibers, the computa-
tional effort is significant so that these approaches are limited to small domain analysis.
In the discrete approach, the discrete models of fabrics are based on modelling yarns by
elements such as beam or solid elements. A meso-mechanical modelling of the biax-
ial NCF composed of two separate ply layers has been proposed by Creech and Pickett
[CRE 06]. 3D solid elements were used to discretize the yarns and interconnecting bar
elements were used to approximate the stitching (Figure 1.12). Contact and frictional
sliding between yarns and stitches were treated using an appropriate contact algorithm
and additional stitch-to-yarn connection elements.

Stitching bars

Layer 1 solids

Layer 2 solids

Figure 1.12 – A representative cell of the meso-mechanical model for NCF [CRE 06].

In order to represent fabrics and fabric reinforced membranes with the Discrete Ele-
ment Method (DEM), Ballhause et al [BAL 08] have discretized the microstructure into
concentrated mass points and interactions between these points, which have to represent
the relevant microstructure mechanisms. The process of the model generation is shown in
in Figure 1.13. The fabric’s unit cell is discretized and a great number of model unit cells
are then assembled in order to form a macroscopic patch of material. This geometrical
representation is a common simplification applied by many researchers, e.g. Kawabata et
al [KAW 73a, KAW 73b], who analytically derived equations for the plain weave material
behavior based on the geometry of a unit cell. Although piecewise linear yarns are only a
coarse approximation of the curved yarn path, Kawabata et al. were able to obtain good
agreement with experimental results.

The semi-discrete approach is a compromise between the continuous and discrete ap-
proaches. Specific finite elements are constructed, which are made of a discrete number
of yarns or woven representative unit cells. Hamila and Boisse [HAM 08, HAM 09] pro-
posed a semi-discrete triangular shell finite element which was composed of unit cells.
These unit cells were subjected to tension, in plane shearing and bending. The displace-
ment of any point in the representative unit cell came from element interpolation. A
semi-discrete solid element made of yarn segments for simulating 3D interlock was pro-
posed by De Luycker [DEL 09]. The yarns were only accounting for the tension energy of
fabric, other parts of energy were considered in the solid element. The forming simulation
results with the two types of elements are shown in Figure 1.14.
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Fabric Unit cell Model of unit cell Assembled patch

Figure 1.13 – Discretization of plain weave fabric [BAL 08].

(a)

(b)

Figure 1.14 – Schematic of semi-discrete elements and their forming simulations.(a)
Shell element [HAM 08]. (b) Solid element [DEL 09].
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These macroscopic simulations consider the deformation of a whole preform (in par-
ticular to simulate draping processes), then the internal woven structure of the fabric is
not described. In my thesis, the work will focus at mesoscopic scale.

1.2.4 Research scale of the thesis
As introduced previously, when the reinforcement is observed at the macroscopic level,
the fabric is considered as an anisotropic continuous material exhibiting mechanical prop-
erties inherited from its meso-and microstructures. The fabric is modelled using mem-
branes, or shells if bending is taken into account [SPE 07, DON 01, KIN 05, SHA 07].
The modelling must take into account the behavior specificities of the fabric [CAR 01] ,
especially the necessary property updating due to large strains (especially large in-plane
shear) [PEN 05, YU 02, YU 05, XUE 05]. The main drawback of that approach is the fact
that it does not include crimp and interlacement effects, which are important features of
fabric reinforcement behavior. One way to identify macroscopic properties of fabrics is to
use homogenization of results coming from lower-scale observations. The best approach
would consist in realizing simulations at a scale from which the material is really con-
tinuous, i.e. the scale of the fiber. Some authors [DUR 05, DUR 09, MIA 08, ZHO 04]
adopted this approach with applications to metallic braids [DUR 05, ZHO 04, WAN 01]
and knitted fabrics [DUH 06]. All of those simulations use a reduced number of fibers in
each yarn for computational time reasons. The consistency of those approaches is then
questionable when the number of fibers is greater than 5000.

An intermediate way is to build a model representative of the yarn behavior and able
to capture its main specificities in terms of forces and geometry. This constitutes a good
compromise between realism and complexity. At this scale, the fibrous reinforcement
is modeled by an interlacement of yarns assumed to be homogeneous that have to be
accurately represented. Our research mainly focuses at mesoscopic scale, considering the
fabric as an assembly of interlacing yarns. Consequently, the interaction between yarns
and the geometry of yarns are needed to be explicitly defined and described. Next, we
will introduce the deformation mechanisms at mesoscopic scale.

1.2.5 Deformation mechanisms at mesoscopic scale
As mentioned previously, a mesoscopic modelling of woven reinforcements considers the
material at the yarn level. This means that the meso-structure of the fabric is explicitly
modelled. Consequently, the mechanical behavior of the yarn material needs to be stud-
ied. As the microstructure of the fiber bundle, i.e. the fiber arrangement, is not explicitly
modelled, the constitutive behavior of the yarn material must exhibit specificities linked
to the fact that the material is not really continuous in the same manner as fabric material.
Depending on the application it is built for, the yarn arrangement is not always the same.
Some yarns are built with parallel fibers while others are twisted. In order to guaran-
tee a high tensile stiffness for high-performance composites, the twist angle is generally
weak. Anyway, high-resolution X-ray tomography imaging shows that the yarn material
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is strongly oriented [BAD 09]. The consequence, from a mechanical point of view, is the
strong tensile stiffness in relation to the other rigidities of the material, as mentioned for
fabric materials. The possible relative movement between fibers inside the bundle makes
the bending stiffness of a yarn particularly weaker than the classical beam bending stiff-
ness, even though the slenderness of the yarn is similar to that of a beam. In the same
manner, the transverse behavior of the yarn strongly depends on the actual fiber volume
fraction: the denser the tow, the stiffer it is.

At mesoscopic scale, the main interesting aspects are yarn’s deformation behaviors,
which include: tensile, bending, shear, and transverse compaction. These behaviors not
only depend on single yarn, but also on the interactions between them.

1.2.5.1 Yarn’s tensile deformation

A yarn is made up of thousands of fibers joined together. When subjected to longitudinal
tension, the fibers are reorganized in order to better resist the tensile load. Consequently,
depending on the micro-structure of the yarn (namely the twist angle and fiber density),
the tensile response would present various initial non-linearities [RAO 00]. The tensile
loading induces an untwisting movement. When this straightening movement is achieved,
the tensile behavior of the yarn becomes linear, which can be seen in Figure 1.15. Con-
sequently, the yarn tensile behavior depends mainly on three parameters: the number of
fibers, the nature of the fibers and the twist angle. For the nominal tensile stiffness, only
the first two parameters are relevant. Such a stiffness is generally expressed in N (im-
plying newtons per unit strain for a single yarn) and not via a Young’s modulus as for
classical continuum mechanics analyses. By such a choice, it is not necessary to measure
the yarn section, which is a parameter really difficult to obtain. In the case of a yarn made
of parallel fibers, if it is possible to realize a tensile test ensuring that the applied load is
exactly longitudinal, the relative positions of the fibers would not change. As this is not
possible, boundary conditions cause the cross-section of the yarn to change. Moreover,
for uncoated fiber bundles, the cohesion between fibers is only ensured by the environ-
ment of the tow: if the yarn is extracted from the fabric, it does not maintain its cohesion.
Consequently, it is easier to realize tensile tests on fabrics than on single yarns [BUE 01].
In that case, X-ray tomography shows that the density of the fiber bundle increases when
subjected to tension because of the boundary conditions [BAD 09].

Since yarn is made of fibers, when a yarn is stretched, not all fibers inside would
be stretched simultaneously. The tension test of yarn has been standardized (using the
ASTM D4018-81) [TES 87]. The sample is required be composed of at least 10000 fibers
and impregnated with resin to make all fibers in a yarn as straight as possible. Florimond
[FLO 13] proposed an alternative tensile test device for yarn made of less than 2000 fibers
(Figure 1.16a). Two round metal bars were installed on the top and bottom clamps of
a tensile machine respectively. The yarn twined around these metal bars, when it was
subjected to tension, it equals two yarns under tension. The testing results indicate it can
capture the non-linear tensile phenomenon of yarn (Figure 1.16b).
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Figure 1.15 – Non-linear tensile curve for an initially twisted fiber bundle [BOI 12].
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Figure 1.16 – Yarn’s tensile behavior test device proposed by Florimond [FLO 13]. (a)
Configuration of test device. (b) Yarn’s tensile test result.
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1.2.5.2 Yarn’s bending deformation

Since yarn is made up of thousands of fibers, those fibers can move in relation to their
neighbors and this makes the yarn very soft in response to certain types of loading. In
particular, even though a yarn has the geometry of a beam, its bending stiffness is smaller
because of the relative motion that can occur between the fibers constituting the tow
[LAH 04, DEB 10, LIA 14]. Consequently, it is very easy to bend a yarn as it is quite like
bending each fiber. Nevertheless, it has been shown that it is necessary to take the lower
bending stiffness into account in a mesoscopic analysis of a yarn [GAT 10]. Although the
bending stiffness of each fiber plays a major role in yarn bending behavior, there are few
studies about yarn’s bending behavior, partly because the bending stiffness is very small,
it’s neglected. Another important reason is its complexities. When a yarn is bent, there
could exist relative sliding between fibers. This makes yarn’s bending stiffness not di-
rectly related to its in-plane tensile modulus as the classical continuum materials. Yarn’s
bending stiffness not only depends on the fibers, but also their inter-friction force. Some
mechanical models have been proposed to calculate yarn’s bending stiffness from fibers
[GRO 66, POP 66, GRO 80]. However, these models are based on many assumptions
which can only be applied to some simple cases. On the experimental aspect, Cornelissen
et al [COR 09] conducted a cantilever bending test to identify yarn’s bending stiffness
as the slope of moment-curvature curve. It’s the most direct way to characterize yarn’s
bending stiffness.

1.2.5.3 Yarn’s shearing deformation

There are two modes of shearing for yarn: transverse shearing and longitudinal shearing
(Figure 1.17). Yarn’s transverse shearing is defined as the shape change of transverse
cross-section of yarn, in which fibers are redistributed. The main resistance of yarn’s
transverse shearing comes from fibers’ inter-friction force, which is strongly influenced
by yarn’s compression. This is also true for longitudinal shearing of yarn, in which friction
provides the main rigidity. The coupling between the shearing and compaction makes it
very difficult to directly characterize yarn’s shearing by experiment. An inverse method
is usually used to identify yarn’s shearing behavior [FLO 13].

1.2.5.4 Yarn’s transverse compaction

Yarn’s transverse compaction is defined as the area variation of yarn’s transverse cross
section when compressed. The rigidity in yarn’s transverse cross-section is much smaller
than rigidity in the longitudinal direction, which makes compression one of the main
deformation modes. Yarn’s compression directly affects fiber’s volume fraction and dis-
tribution, which would ultimately influence the permeability of resin. When a yarn is
compressed, the space between fibers would reduce. Initially, there is little or no resis-
tance to the compression. As compression continues, more and more fibers would come
into contact, resulting in a great increase in compression rigidity. The whole process can
be seen in Figure 1.18, where the yarn is subjected to the compression introduced by the
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(a) (b)

Figure 1.17 – Two modes of yarn’s shearing: (a) Transverse shearing. (b) Longitudinal
shearing [FLO 13].

biaxial loading. The experimental characterization of single yarn’s transverse compaction
is very difficult to implement, primarily due to its small dimension. It’s often conduct-
ing the compaction test at the macroscopic scale and using an inverse method to identify
single yarn’s transverse compaction behavior [GAS 00].

(a)

(b)

Figure 1.18 – Fibers distribution in a yarn: (a) Unloaded. (b) Subjected to biaxial tension
[BAD 09].

Transverse compaction of single- and multi-layer [SAU 98, NGU 13] fabrics is
strongly non-linear. That non-linearity is mainly due to the non-linearity of the yarn
compaction itself. The compaction phenomenon is the fact that fibers get closer inside
the bundle. Consequently, when the voids become smaller than the fiber diameter, it be-
comes more difficult to continue the compaction movement. The high stiffness of carbon
or glass fibers makes it difficult to deform the fibers themselves. Generally, it is admitted
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that the transverse compressive stiffness of the fiber bundle is dependent on longitudinal
tension. Direct experimental evidence is rare but this can be illustrated by biaxial tensile
tests [BUE 01, GAS 00]. It can be explained by the fact that fiber bundles are not granular
materials: they have a third dimension and the organization of the fibers in the longitu-
dinal direction is not perfect. When fibers move against one another, their global twist
changes (even if we consider an untwisted yarn) and they can be tightened by those small
movements. As the tensile stiffness is very high, small tension can produce a large effect.

1.3 Motivation and objectives

As mentioned previously, the transverse deformation of the yarn (i.e. transverse compres-
sion and shape change) is very essential to the yarn behavior, solid elements spend high
computation time while classical beam theories can’t meet the requirements. Therefore,
in order to reduce the computation time and obtain the expectation results at the same
time, we present a new tool for modelling textile materials using the yarn as constitutive
element. A new 3D beam element with section changes is proposed which can be used
to model yarn at the mesoscopic scale while breaking from classical beam assumptions.
The whole work can be divided into three steps: proposal of the new 3D beam, carrying
out validation for large displacements and small strains, finally construct contact between
3D beam to beam.

In chapter 2, we start from 2D beam element with thickness change by adding a trans-
verse strain component, which is inspired by previous works on the shell elements. Then,
the formulation is extended to 3D beam elements, two transverse strain components are
added with coupling so that the deformation of cross section can be taken into account.
Then, a series of numerical examples are carried out using a FEM code for the new-
proposed 3D beam element developed in Matlab, and the results are systematically com-
pared with corresponding values of ABAQUS/Standard 3D simulations, which don’t show
any significant discrepancies.

The results presented in chapter 2 are only the first step of a more ambitious work.
After the new 3D beam element is constructed, the second step is to carry out valida-
tion for large displacements/small strains. In essence, the large displacement motion of a
general body can be considered as a function of time, in order to simplify the kinematic
formulation and obtain a more effective numerical solution, a nonlinear theory of defor-
mation based on the updated Lagrangian method is chosen. The work employs small
strain theory on each element like the co-rotational technique, and only the unit vectors of
the cross-sections are employed instead of the complicated three-dimensional rotational
vectors or angles. A series of sample analyses are carried out, and the results are system-
atically compared with the corresponding values of ABAQUS/Standard 3D simulations.
The results obtained are in good agreement which shows that the enhanced 3D element
provides an excellent numerical performance under large displacements/small strains.

Indeed, the final goal is to use those new 3D beam elements to model yarns in a textile
composite preform. For that purpose, the third step aims to introduce contact behavior and
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carry out validation for the new 3D beam to beam simulation. In chapter 4, frictionless
contact between the new 3D beams with rectangular cross-section is considered. In the
analysis, large displacement/small strains are allowed. The contact formulation is derived
on the basis of penalty method and updated Lagrangian method using physical shape
functions with shear effect included. An effective contact search algorithm, which is
necessary to determine an active set for the contact contribution treatment, is elaborated.
And a consistent linearization of contact contribution is derived and expressed in suitable
matrix form, easy to use in FEM approximation. Finally, several numerical examples are
shown using the FEM code developed in Matlab.

Chapter 5 presents the key outcomes of the whole work and major conclusions, and
several recommendations for the future work are made.
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Chapter 2

Development of the new 3D beam
element

In this chapter, we present a new 3D beam element with the aim to achieve the results with
section changes while breaking from classical beam hypothesis. Firstly, we start from 2D
beam element with thickness change by adding a transverse strain component. Secondly,
the formulation is extended to 3D beam elements, two transverse strain components are
added with coupling so that full 3D constitutive law can be used. Finally, some numerical
examples are presented using the new 3D beam elements which show that the results are
exactly the same as those given by 3D element in ABAQUS/Standard.

2.1 Introduction

A large amount of studies have been developed to understand and model the fabric be-
havior at micro- (fiber) or meso- (yarn) scale. Those works have shown that at the mi-
croscopic scale, some mechanical analyses have been performed in which each fiber is
considered as a 3D beam interacting with its numerous neighbors [DUR 05, DUR 08,
DUR 09, DUR 10, XUE 05]. The very large number of fibers within a yarn results in large
computation. For computational reasons, those modellings are generally limited to a small
piece of fabric so that the whole composite part is generally modelled at higher scale con-
sidering the textile preform as a continuum [KIN 05, ROG 89, PEN 05, LIA 14, TEN 07].
These macroscopic simulations consider the deformation of a whole preform (in particular
to simulate draping processes), then the internal woven structure of the fabric is not de-
scribed. An intermediate way consists in developing models for yarns or tows, considered
as continuous media, it is possible to build intermediate approaches to study the behavior
of fabrics at mesoscopic scale, considering the fabric as an assembly of interlacing tows
(or yarns). Some approaches are available in the references concerning the modelling of
fabrics at mesoscopic scale, considering the yarns as beams that bend according to the
beam theory [COR 09, CHE 99, VAS 10] or shell elements [GAT 10].

Using structural elements seems a good idea because of the geometry of the yarn,
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2. Development of the new 3D beam element

unfortunately, classical beam theories assume that the cross section acts as a rigid which
can’t describe the transverse deformation of the yarn. The objective of the present chapter
is to propose a new 3D beam element with section changes which can be used to model
yarn at the mesoscopic scale and describe its transverse behaviors.

2.2 Review of the related work

2.2.1 Evolution of beam models
The simplest beam theory is the classical theory known as Euler-Bernoulli theory, which
assumes that the cross section of the beam is rigid and shear deformations are neglected.
After deformation, the cross sections remain straight, unstretched and normal to the lon-
gitudinal axis, as shown in Figure 2.1(a).

(a) (b) (c)

Figure 2.1 – Evolution of beam models. (a) Bernoulli-Euler beam. (b) Timoshenko beam.
(c) Proposed 3D beam.

Experiments have demonstrated that Euler-Bernoulli assumption is more accurate for
thin beams. For a thick beam, the cross-section is not necessarily perpendicular to the
beam axis, and shear force is a more dominant factor in the damage of material. So
Bernoulli-Euler beam theory is acceptable only for long slender beams. In the case that a
beam is relatively short or thick, shear effects can be significant, and Timoshenko beam
theory will be used. The critical difference in Timoshenko theory is the assumption that
cross-section of the beam is no more normal to longitudinal axis after deformation (Figure
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Review of the related work

2.1b). The cross section still remains plane but rotates by an amount, equal to the rotation
of the longitudinal axis minus the shear strain.

Theoretically, Timoshenko beam theory is more general, and Euler-Bernoulli theory
can be considered as a special case of Timoshenko assumption by enforcing the constraint
condition between deflection and cross-section rotation. But when it concerns the defor-
mation of cross section, the situation is different. All of these theories have limitations
because they are based on the assumption that the cross section is rigid and don’t change.
But actually, it changes. The objective of our work is to propose a new approach to solve
this problem.

Based on the requirements, we propose a new 3D beam with section changes while
breaking from classical beam hypothesis (Figure 2.1c). The new 3D beam is inspired by
previous work on shell enrichment. Firstly, we start from 2D beam element with thickness
change by adding a transverse strain component. Then, the formulation is extended to 3D
beam elements.

2.2.2 Introduction to the beam element
2.2.2.1 Euler-Bernoulli beam element

The Euler-Bernoulli equation for beam bending is:

ρ
∂2v
∂t2 +

∂2

∂x2 (EI
∂2v
∂x2 ) = q(x, t) (2.1)

Where v(x, t) is the transverse displacement of the beam, ρ is the mass density per
volume, EI is the beam rigidity, q(x, t) is the externally applied pressure loading, t and
s indicate the time and spatial coordinate along the beam axis. We apply the Galerkin’s
method to the beam Equation (2.1) to develop the finite element formulation and the
corresponding matrix equations.

The average weighted residual of Equation (2.1) is:

I =
L∫

0

(ρ
∂2v
∂t2 +

∂2

∂x2 (EI
∂2v
∂x2 )−q)wdx = 0 (2.2)

Where L is the length of the beam and w is a test function. The weak formulation
of Equation (2.2) is obtained from integrations by parts twice for the second term of the
equation. In addition, discretization of the beam into a number of finite elements gives:

I =
n

∑
i=1

∫
Ωe

ρ
∂2v
∂t2 wdx+

∫
Ωe

EI
∂2v
∂x2

∂2w
∂x2 dx−

∫
Ωe

qwdx

+[V w−M
∂w
∂x

]L

0
= 0 (2.3)

Where V = EI(∂3v
/

∂3x) is the shear force, M = EI(∂2v
/

∂2x) is the bending moment.
Ωe is an element domain and n is the number of elements for the beam.
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2. Development of the new 3D beam element

We consider shape function for spatial interpolation of the transverse deflection in
terms of nodal variables. To this end, we consider an element with two end nodes, as
shown in Figure 2.2. The deformation of a beam must have continuous slope as well
as continuous deflection at any two neighboring beam elements. To satisfy this conti-
nuity requirement, each node has both deflection vi and slope θi as nodal variables. In
this case, any two neighboring beam elements have common deflection and slope at the
shared nodal point. This satisfies the continuity of both deflection and slope. The Euler-
Bernoulli equation is based on the assumption that the plane normal to the neutral axis
before deformation remains normal to the neutral axis after deformation (Figure 2.3).

1v

y

x

2v

01 x lx 2

1θ
2θ

Figure 2.2 – Two-nodes beam element.

θ
v

x





x

v

Figure 2.3 – Euler-Bernoulli beam.

This assumption denotes θ =
dv
dx

(slope is the first derivative of the deflection in terms
of x. Because there are four nodal variables for the beam element, we assume a cubic
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polynomial function for v(x):

v(x) = c0 + c1x+ c2x2 + c3x3 (2.4)

From the assumption for the Euler-Bernoulli beam, slope is computed from Equation
(2.4):

θ(x) = c1 +2c2x+3c3x2 (2.5)

Evaluation of deflection and slope at both nodes yields:

v(0) = c0

θ(0) = c1 = θ1

v(l) = c0 + c1l + c2l2 + c3l3 = v2

θ(l) = c1 +2c2l +3c3l2 = θ2

(2.6)

Solving Equation (2.6) for ci(i = 0,1,2,3) in terms of the nodal variables v j and
θ j( j = 1,2) and substituting the results into Equation (2.4) give:

v(x) = H1(x)v1 +H2(x)θ1 +H3(x)v2 +H4(x)θ2 (2.7)

Where:

H1(x) = 1− 3x2

l2 +
2x3

l3

H2(x) = x− 2x2

l
+

x3

l2

H3(x) =
3x2

l2 −
2x3

l3

H4(x) =−
x2

l
+

x3

l2

(2.8)

The functions Hi(x) are called Hermitian shape functions. The Hermitian shape func-

tions are C1 type which means that both v and
∂v
∂x

are continuous between two neighboring
elements.

Application of Hermitian shape functions and Galerkin’s method to second term of
Equation (2.3) results in the stiffness matrix of the beam element, that is:

[Ke] =
∫ l

0
[B]T EI [B]dx (2.9)

Where,
[B] =

{
H
′′
1 H

′′
2 H

′′
3 H

′′
4

}
(2.10)

And the corresponding element nodal degrees of freedom is {de} ={
v1 θ1 v2 θ2

}T . In Equation (2.10), double prime denotes the second deriva-
tive of the function.

27

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI026/these.pdf 
© [S. Gao], [2017], INSA Lyon, tous droits réservés



2. Development of the new 3D beam element

2.2.2.2 Timoshenko beam element

The Timoshenko beam element includes the effect of transverse shear deformation. As a
result, the cross section normal to the beam axis before is no more normal to the beam
axis after deformation. Figure 2.4 shows the deformation in contrast to that in Figure 2.3.
While Galerkin’s method was used to derive the finite element matrix equation for the
Euler-Bernoulli beam equation, the energy method is used for the present formulation for
the Timoshenko beam.

v

x





v

x





v

x







,y v

,x u

v

Figure 2.4 – Timoshenko beam.

Let u and v be the axial and transverse displacements of a beam, respectively. Because

of transverse shear deformation, the slope of the beam θ is different from
dv
dx

. Instead, the

slope equals
dv
dx
− γ, where γ is the transverse shear strain. As a result, the displacement

field for the Timoshenko beam can be written as:

u(x,y) =−yθx (2.11)

v(x,y) = v (2.12)

Where x axis is located along the neutral axis of the beam and the beam is not sub-
jected to an axial load such that the neutral axis doesn’t have the strain. According to
Equation (2.11) and (2.12), the axial and shear strains are:

ε(x,y) =−y
dθx

dx
(2.13)

γ =−θ+
dv
dx

(2.14)

28

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI026/these.pdf 
© [S. Gao], [2017], INSA Lyon, tous droits réservés



Review of the related work

As explained in the previous part on the energy method, the element stiffness matrix
can be obtained from the strain energy expression for an element. The strain energy for
an element of length l is:

U =
b
2

∫ l

0

∫ h/2

−h/2
ε

T Eεdydx+
bµ
2

∫ l

0

∫ h/2

−h/2
γ

T Gγdydx (2.15)

In which the first term is the bending strain energy and the second term is shear strain
energy. Moreover, b and h are the width and height of the beam respectively, and µ is the

correction factor for the shear energy whose value is normally
5
6

for a rectangular cross
section.

Substituting Equation (2.13) and (2.14) into Equation (2.15) and taking the integration
with respect to y gives:

U =
b
2

∫ l

0
(
dθ

dx
)T EI(

dθ

dx
)dydx+

µ
2

∫ l

0
(−θ+

dv
dx

)T GA(−θ+
dv
dx

)dydx (2.16)

Where I and A are the moment of inertia and area of the beam cross-section.
In order to derive the element stiffness matrix for Timoshenko beam, the variable v

and θ need to be interpolated within each element. As seen in Equation (2.16), v and θ are
independent variables. That is, we can interpolate them independently using proper shape
functions. This results in satisfaction of inter-element compatibility, continuity of both
the transverse displacement and slope between two neighboring elements. As a result,
any kind of C0 shape function can be used for the present beam. Shape functions of C0

are much easier to construct than the shape functions of C1. It’s especially very difficult
to construct the shape functions of order C1 for two dimensional and three dimensional
analysis such as the classical plate theory. We use simple linear shape functions for both
variables, that is:

v =
[

H1 H2
]{ v1

v2

}
(2.17)

θ =
[

H1 H2
]{ θ1

θ2

}
(2.18)

Where H1 and H2 are linear shape functions. The linear element looks like that in
Figure 2.2, but the shape functions used are totally different from those for the Hermitian
beam element. Using Equation (2.17) and (2.18) along with strain energy expression
Equation (2.16) yields the following element stiffness matrix for the Timoshenko beam:

[Ke] = [Ke
b]+ [Ke

s ] (2.19)

Where:

[Ke
b] =

EI
l


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

 (2.20)
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2. Development of the new 3D beam element

[Ke
s ] =

µGA
4l


4 2l −4 2l
2l l2 −2l l2

−4 −2l 4 −2l
2l l2 −2l l2

 (2.21)

One thing needs to be noted here is that bending stiffness term Equation (2.20) is ob-
tained using the exact integration of the bending energy while the shear stiffness term,
Equation (2.21), is obtained using the reduced integration technique. For the present cal-
culation, the one point Gauss quadrature rule is used. The major reason is if the beam
thickness becomes so small compared to its length, the shear energy dominates over the
bending energy. As seen in Equation (2.20) and (2.21), the bending stiffness is propor-
tional to hl, where h and l are the thickness and length of a beam element, respectively.

Hence, as
h
l

becomes smaller for very thin beam, the bending term becomes negligible
compared to the shear term. This is not correct in the physical sense. As the beam be-
comes thinner, the bending strain energy is more significant than the shear energy. This
phenomenon is called shear locking. In order to avoid the shear locking, the shear strain
energy is under-integrated. Because of the under-integration, the present beam stiffness
matrix is rank deficient. That is, it contains some fictitious rigid body modes (or zero
energy modes).

2.3 The assumption and the inspiration of the new 3D
beam element

2.3.1 Assumption

At mesoscopic scale, we consider the fabric as an assembly of interlacing yarns; some
approaches of modelling fabrics are available in the references, discretizing the yarns
with solid elements or beam elements. Since fiber tows length is much higher than their
transverse dimensions, beam elements seem to be the most convenient finite element tool.
In order to meet the requirements of describing the transverse deformation of the yarn, a
new beam theory is proposed, which starts from the 2D situation. A central node with two
degrees of freedom is added to an initially 2 nodes element. The two degrees of freedom
introduced correspond to the relative displacements of the top and bottom surfaces of
a beam respectively, which are used to describe the deformation of the cross section.
After the validation of the new 2D beam element, the formulation is extended into three-
dimensional.

The proposed 3D beam element is firstly built with 2 end nodes with 6 degrees of
freedom with shear deformation and including Saint-Venant torsional effects. A central
node with 8 degrees of freedom is added to describe the transverse deformation. This
work is inspired by previous works on enriched shell elements [SAN 11, BAS 12], where
an additional node is introduced in the center of three-node and four-node shell elements
with two through-thickness translational degrees of freedom which makes it possible to
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The assumption and the inspiration of the new 3D beam element

extend plane stress state into full 3D elasticity. Using the same idea, a 2D beam element
with thickness change is built by adding a central node with two degrees of freedom to an
initially 2 nodes element.

2.3.2 The review of the related work on shell enrichment elements
Classical shell elements based on the degenerated shell concept or classical shell theories
generally include the assumption of a plane stress state and can handle analyses of shells
satisfactorily. However, problems may arise when they are used to simulate sheet metal
forming because the normal stress in the thickness direction is omitted. In order to solve
this problem, several authors [SAN 11, BAS 12] have proposed a new approach with an
additional node which is introduced with two through-thickness translational degrees of
freedom. The method mainly consists of adding a central node at the center of three-node
and four-node shell elements with two degrees of freedom (Figure 2.5): two translations
normal to the mid-surface for which one corresponds to the top surface ("upper skin" of
the shell) and the other to the bottom surface ("lower skin" of the shell).

4
+

-

1

w

2

3

4

+
5

5

X
Y

Z

_
_

_

-
5w

2

3

1

(a) (b)

Figure 2.5 – Enriched shell elements: (a). Enriched three-node shell element. (b). En-
riched four-node shell element.

We take the enriched four-node shell element for example to show how the extra
degrees of freedom act on shell elements in bending cases while breaking from plane
stress state hypothesis. The basic element is the 4-node quadrilateral Q4γ24 proposed by
Bathe and Dvorkin.

A supplementary node "5" is located at the center of the element (Figure 2.5b). This
central node has two degrees of freedom: two local translations respectively called w+

5 ,
w−5 in the normal direction "z". This feature allows to get a quadratic displacement field
"w" according to the location "z" in the thickness direction which gives rise to a strain
εzz in addition to the five other components εxx, εyy, 2εxy, 2εxz, 2εyz ("x", "y" are in-plane
coordinates). Because of the fact that this sixth component is linear, a full 3D strain-stress
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2. Development of the new 3D beam element

behavior may replace the previous plane stress state hypothesis while giving good results
in bending cases.

In the global frame (X , Y , Z), the nodal translations and rotations are {Ue} and {Θe},
so that:

{Ue}T =
[

UX1 UY 1 UZ1 UX2 UY 2 UZ2 UX3 UY 3 UZ3 UX4 UY 4 UZ4
]

{Θe}T =
[

θX1 θY 1 θZ1 θX2 θY 2 θZ2 θX3 θY 3 θZ3 θX4 θY 4 θZ4
]

(2.22)
As written before, the translations associated to the central node in the local frame (x,

y, z), where "z" is the normal direction at the center of the element are gathered in {We}
so that:

{We}T =
[

w−5 w+
5
]

(2.23)

The gradient matrices Bm, Bb, Bs related to membrane, bending and shear effects
remain those of the element Q4γ24. Thus, with "h" denoting the thickness, the five first
strain components are:

εxx
εyy

2εxy
2εxz
2εyz

=

[
Bm zBb

g(ζ)Bs
u g(ζ)Bs

θ

]{
{Ue}
{Θe}

}
;

∣∣∣∣∣∣
z = ζh/2; −6 ζ 6 1 : out-plane
−6 ξ 6 1; −6 η 6 1 : in-plane
g(ζ) = 5

4

(
1−ζ2) : Reissner’s weight function

(2.24)
From now on, the plane stress assumption is regarded as obsolete. Knowing that

w−5 and w+
5 correspond to the normal displacements of the lower and upper skins facing

the node 5, by imposing w(z =−h/2) = w−5 , w(z = h/2) = w+
5 and w(z = 0) = w5 =

(w1 +w2 +w3 +w4)/4, the final quadratic form for w(z) and linear form for εzz become:

w(z) =
1
4
(1−4

z2

h2 )(w1 +w2 +w3 +w4)+2
z2

h2 (w
+
5 +w−5 )+

z
h
(w+

5 −w−5 ) (2.25)

εzz = (
4z
h
−1)

w−5
h
− 8z

h
w5
h

+(
4z
h
+1)

w+
5

h
; w5 = (w1 +w2 +w3 +w4)/4 (2.26)

The sixth component is added to the previous five ones and related to {Ue} and {We}:

εxx
εyy
2εxy
2εxz
2εyz
εzz


=

 Bm zBb

g(ζ)Bs
u g(ζ)Bs

θ

ζBp
u ζBp

w + B̄p
w


{Ue}
{Θe}
{We}

= [B(ξ,η,ζ)]6×26


{Ue}
{Θe}
{We}


(2.27)

Where:

Bp
u =−1

h

[
zX zY zZ zX zY zZ zX zY zZ zX zY zZ

]
Bp

w =
2
h

[
1 1

]
;Bp

w =
1
h

[
−1 1

] (2.28)
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Modelling of the new 2D beam element with thickness change

Where zX̄ , zȲ , zZ̄ are the projections of the normal "z" onto the axes of the global frame
(X ,Y ,Z). Inevitably, all those strains are expressed in this local frame and, in the case of
an in-plane reduced integration, there is only one local frame to be considered.

According to the order of strain and stress components and in the simplest case of an
isotropic elastic case, the 3D constitutive matrix [D] is:

σxx
σyy
σxy
σxz
σyz
σzz


= [D]



εxx
εyy
2εxy
2εxz
2εyz
εzz


(2.29)

[D] = [Del] =



λ+2µ λ λ

λ λ+2µ
µ

µ
µ

λ λ λ+2µ

 ;
λ =

νE
(1−2ν)(1+ν)

µ =
E

2(1+ν)

(2.30)
The stiffness matrix [Ke] would be computed thanks to the usual relation:

[Ke] =
y

BT [D]Bdv (2.31)

This work shows how the extra degrees of freedom act on shell elements in bending
cases. Those extra degrees of freedom allow them to actualize the shell thickness and take
it into account during deep drawing applications. It is essential to realize that reference
[SAN 11] and [BAS 12] should not be only regarded as a presentation of new shell ele-
ments but rather as a methodology, which not only can be applied to most classical shell
elements but also to other structural elements like beams.

2.4 Modelling of the new 2D beam element with thick-
ness change

Since the normal stresses of classical beam elements are omitted in both thickness and
width directions, when they are used to model fabrics at mesoscopic scale, the transverse
deformation of the yarn (i.e. its compression and shape change) can’t be obtained. The
objective of the present work is to propose a new approach to solve this problem. Based
on the methodology of shell elements described previously, we build a 2D beam element
with thickness change by introducing a central node with two degrees of freedom to an
initially 2 nodes element. The two degrees of freedom correspond to the relative dis-
placements of the top and bottom surfaces of a beam respectively which are dedicated to
the transverse strain and make it into plane stress state so that calculating the thickness
change is possible.
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2. Development of the new 3D beam element

2.4.1 Geometry and kinematics

The geometrical description of the proposed 2D beam element is shown in Figure 2.6.
A single extra node (numbered 2) is added in the center of a standard two nodes Timo-
shenko beam element for which nodes are numbered 1 and 3. This extra node has only
two degrees of freedom: two relative translations normal to the centroidal axis through
thickness respectively called v+2 and v−2 since they correspond to the normal relative dis-
placements of the top surface (’upper skin’ of the beam) and bottom surface ("lower skin"
of the beam) facing node 2. These values are defined latter.

1 2 3

y

x

O

L/2 L/2

X

Y

2v

2v

1v 3v

1 3
1u 3u

Figure 2.6 – Additional of two degrees of freedom on Timoshenko beam element.

Let u and v be the axial and transverse displacements of a beam respectively, and θ

the rotation angle. Working in the local coordinate frame with the original coordinates
O(0,0,0), the displacements field for a point P of coordinates (x, y, z) can be obtained (the
local coordinate frame x, y, z is only a translation of global frame X, Y, Z). As a result,
the displacement field of the enhanced 2D beam element can be written as:

−→uP =

[
u(x)−θ(x) · y

v(x,y)

]
,x ∈ [−L/2,L/2] (2.32)

For that beam element, length is noted as L (x1 = −L
2

, x2 = 0, x3 =
L
2

), thickness

is h. In order to obtain a transverse strain εyy =
∂v
∂y

which is linear in thickness direc-

tion, the function v(x,y) should be quadratic with respect to y, so we assume a quadratic
polynomial for v(x,y):

v(x,y) = v(x,0)+b0y+ c0y2 (2.33)

Where b0, c0 are coefficients, which can be solved in terms of nodal variables corre-
sponding to node 2; v(x,0) is transverse displacement of the centroidal axis, the interpo-
lating function will be introduced latter.
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Modelling of the new 2D beam element with thickness change

Denoting vt
2 and vb

2 the normal displacement of top and bottom surfaces facing node 2
respectively, and by imposing v(0,0) = (v1 + v3)

/
2, vt

2 = v(0,h/2), vb
2 = v(0,−h/2), the

quadratic form for v(x,y) is:

v(x,y) = v(x,0)+
y
h

(
vt

2− vb
2

)
+

2y2

h2

(
vt

2 + vb
2−2v(0,0)

)
(2.34)

For node 2 (x2 = 0), the function v(x,y) becomes:

v(0,y) =
1
2
(1− 4y2

h2 )(v1 + v3)+
2y2

h2 (vt
2 + vb

2)+
y
h
(vt

2− vb
2) (2.35)

The Equation (2.35) has the same form as the enrichment shell element in reference
[SAN 11]. Knowing relative translations normal to the centroidal axis respectively called
v+2 , v−2 , which are defined as: v+2 = vt

2− v(0,0), v−2 = vb
2− v(0,0), the final function for

v(x,y) expressed in terms of nodal variables v+2 and v−2 :

v(x,y) = v(x,0)+V1(y)v+2 +V2(y)v−2 (2.36)

Where V1(y) and V2(y) are shape functions in thickness direction:

V1(y) =
y
h
+

2y2

h2

V2(y) =−
y
h
+

2y2

h2

(2.37)

One thing that should be noticed here is that
2
∑

i=1
Vi =

4y2

h2 6= 1. The fact that the

sum of shape functions V1 and V2 is not constant, but quadratic through the thickness,
means the partition of unity is not satisfied. This is not a drawback because the transverse
displacement is expected to vary quadratically so that εxx and εyy have the same evolution
through the thickness.

2.4.2 Gradient matrix

Nodes 1 and 3 have 3 degrees of freedoms ui, vi and θi as nodal variables. We consider
linear shape functions for spatial interpolation of axial and transverse displacements u,v
and rotation angle θ, in terms of nodal variables. In order to derive the element stiffness
matrix for the 2D beam, the variables u, v and θ need to be interpolated within each
element dealt as Timoshenko beam.

u(x) = H1(x)u1 +H3(x)u3

v(x,0) = H1(x)v1 +H3(x)v3

θ(x) = H1(x)θ1 +H3(x)θ3

(2.38)
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2. Development of the new 3D beam element

Where H1(x) and H3(x) are linear shape functions: H1(x) =
1
2
(1−ξ), H3(x) =

1
2
(1+

ξ), ξ =
2x
L

. For simplicity, notations, V1, V2, H1 and H3 will be used instead of V1(y),

V2(y), H1(x) and H3(x), V
′
1, V

′
2, H

′
1 and H

′
3 as the derivative of V1(y), V2(y), H1(x) and

H3(x) in the following derivation.
Due to the strain-displacement relation, we can get the strain expression:

 εxx
εyy
γxy

=

 H
′
1 0 −yH

′
1 0 0 H

′
3 0 −yH

′
3

0 0 0 V
′
1 V

′
2 0 0 0

0 H
′
1 −H1 0 0 0 H

′
3 −H3





u1
v1
θ1
v+2
v−2
u3
v3
θ3


= [B]{de}

(2.39)

Where [B] is the element gradient matrix, and {de} is the nodal displacement vector.
Compared with Timoshenko beam, the shear strain remains unchanged except that the

usual shear factor (whose value is normally 5/6 for a rectangular cross section while 9/10
for a circular cross section) is not used directly. For the rectangular cross section, we use
Reissner’s weight function instead, and 2εxy becomes:

2εxy = gyγxy, gy =
5
4
(1−4

y2

h2 ) (2.40)

As a result, the element gradient matrix [B] becoming:

[B] =

 H
′
1 0 −yH

′
1 0 0 H

′
3 0 −yH

′
3

0 0 0 V
′
1 V

′
2 0 0 0

0 gyH
′
1 −gyH1 0 0 0 gyH

′
3 −gyH3

 (2.41)

2.4.3 Stiffness matrix and integration strategy
Since the transverse strain component εyy is introduced, the plane stress behavior can be
used. Take isotropic material for example, the 2D constitutive matrix [D] is:

[D] =
E

1−ν2

 1 ν 0
ν 1 0
0 0 (1−ν)

/
2

 (2.42)

As a result, the element stiffness matrix can be expressed as:

[Ke] =
∫

Ωe

[B]T [D] [B]dΩ (2.43)
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Extension to 3D beam element with deformable section

in which Ωe denotes the element domain.
It is well known that the conventional two-node isoparametric Timoshenko beam el-

ement suffers from the so-called shear locking [MUK 01, PRA 82, VEI 12], and reduced
integration is used to alleviate shear locking. For the proposed 2D beam element, the
shear strain energy is under-integrated in order to prevent shear locking. The integral of
the element stiffness matrix [Ke] can most conveniently be solved by splitting the expres-
sion into two parts: one that arises from the membrane-bending energy called bending
stiffness matrix

[
Ke

b

]
and one from the shear energy called shear stiffness matrix [Ke

s ]:

[Ke] = [Ke
b]+ [Ke

s ] (2.44)

Where the subscripts "b" and "s" denote bending and the transverse shear, respectively.
As mentioned in Section 2.2, the bending stiffness term is obtained using the exact

integration of the membrane-bending strain energy while the shear stiffness term is ob-
tained using the reduced integration technique [SHE 07, DUR 10]. As g(y) is a quadratic
polynomial, the order of g2(y) is four. So, its integration over the thickness needs five
integration points along the local "y" direction. In fact, it is not really a drawback be-
cause this kind of element is intended for non-linear material computations which impose
at least five through-thickness integration points [SAN 11]. It should be noticed that the
shear factor 5/6 comes from the integration of g2(y) ) in pure elastic examples (Figure
2.7).

y

z z

y

1

2

3

4

5

1

2

3

4

5

(a) (b)

Figure 2.7 – Five through-thickness integration points [ABA 13]. (a). 2D circular cross
section. (b). 2D rectangular cross section.

2.5 Extension to 3D beam element with deformable sec-
tion

In this section, a behavior which remains elastic and isotropic is used but without the
plane stress assumption and the goal is to extend it into full 3D elasticity. The strain
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2. Development of the new 3D beam element

components for 3D should be εxx, εyy, εzz, 2εxy, 2εxz, 2εyz, which means that we should
add the components εzz, 2εxz, 2εyz based on the 2D beam element described in Section
2.4. Compared with the 2D beam elements, the main novelty consists in the addition of
extra degrees of freedom on the central node, which can represent the thickness and width
changes.

2.5.1 Geometry and kinematics
One could think that going from 2D to 3D only needs to add two more degrees of freedom
through width, which could be named w+

2 and w−2 . Unfortunately, this modification is not
convenient because doing so induces εyy and εzz being independent. Such consequence is
not physically admissible. For that, four other degrees of freedom are introduced to make
sure that we have enough information to build the shape function and make εyy and εzz
coupled together. In this way, the new 3D beam element formulation should include these
main features as follows: each element has two end nodes which are treated by combin-
ing Saint-Venant and Timoshenko hypothesis; the transverse strains of both thickness and
width direction are introduced based on the additional central node. The transverse strain
distributions are linear, and the formulation of displacement is completely quadratic by
adding the terms coupling the deformation in both transverse directions; fully 3D consti-
tutive law can be used directly. Under this theory, the proposed 3D beam element is firstly
built with 2 end nodes with 6 degrees of freedom (uxi,uyi,uzi,αxi,αyi,αzi), with shear de-
formation and including Saint-Venant torsional effects. As described in Figure 2.8, a
central node with 8 degrees of freedom is added to describe the transverse deformation.
Corresponding degrees of freedom are described latter.

Working in the local frame (x, y, z) with the original coordinates O (0, 0, 0), the
displacements field for a point P of coordinates(x, y, z) can be obtained (local coordinate
frame x, y, z is only a translation of global frame X, Y, Z). As a result, the displacement
field of the proposed 3D beam can be written as:

−→uP =

 ux +αy · z−αz · y
v(x,y,z)−αx · z
w(x,y,z)+αx · y

 ;
x ∈ [−L/2,L/2]
y ∈ [−h/2,h/2]
z ∈ [−b/2,b/2]

(2.45)

For the new 3D beam element, length is noted as L (x1 = −L/2, x2 = 0, x3 =
L/2),thickness is h and width is b, an approximation of the shape of the deformed cross-
section with quadratic polynomials with respect to y and z is proposed. So we assume
v(x,y,z) and w(x,y,z) as follows:

v(x,y,z) = v(x,0,0)+a0y+a1y2 +a2yz+a3z2 (2.46)

w(x,y,z) = w(x,0,0)+ c0z+ c1z2 + c2yz+ c3y2 (2.47)

Where a0,a1,a2,a3, c0,c1,c2,c3 are coefficients, which can be solved in terms of
nodal variables.
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Extension to 3D beam element with deformable section
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Figure 2.8 – Additional of a central node based 3D Timoshenko beam.

Thus, the three strain components εxx, εyy and εzz could be of the same order with
respect to y and z, and they are coupled in the term related to the trace using a 3D Hooke’s
constitutive law. Since εxx = u

′
x +α

′
yz−α

′
zy is linear with respect to both y and z, εyy

and εzz should also be linear with respect to both y and z to avoid the so-called "Poisson
locking" phenomenon. With the Equation (2.46) and (2.47) , εyy = a0 + 2a1y+ a2z and
εzz = c0 +2c1z+ c2y have the same polynomial form as εxx.

2.5.2 Shape functions and gradient matrix

In order to solve the coefficients a0,a1,a2,a3,c0,c1,c2,c3, we introduced 8 degrees of
freedom to the central node, four relative translations in thickness direction namely
v+a ,v

+
b ,v

+
c ,v
−
c and four in width direction namely w+

a ,w
+
c ,w

−
c ,w

+
d respectively, which are

shown in Figure 2.9.
Denoting vt

c, vt
a and vt

b the normal displacement of top surface facing node 2, vb
c the

normal displacement of bottom surface facing node 2. The superscript "t" represents the
top surface, and the "b" represents the bottom surface. The subscript "a", "b", "c", "d"
represent the number of the degree of freedom corresponding to the Figure 2.9. Here, we
define the relative displacements as:

v+c = vt
c− v(0,0,0), v−c = vb

c− v(0,0,0)

v+a = vt
a− v(0,0,0), v+b = vt

b− v(0,0,0)
(2.48)
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2. Development of the new 3D beam element
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Figure 2.9 – Presentation of the additional node with 8 degrees of freedom.

By imposing vt
c = v(0,

h
2
,0), vb

c = v(0,−h
2
,0), vt

a = v(0, h
2 ,

b
2), vt

b = v(0, h
2 ,−

b
2) and

v(0,0,0) =
(uy1 +uy3)

2
and submitting these information into Equation (2.46), we can

obtain the deformation function in thickness:

V1 =
y
h
+

2y2

h2 −
4z2

b2 , V2 =−
y
h
+

2y2

h2

V3 =
2yz
bh

+
2z2

b2 , V4 =−
2yz
bh

+
2z2

b2

(2.49)

Similarly, the deformation function in width direction can be expressed as:

w(x,y,z) = w(x,0,0)+W1w+
c +W2w−c +W3w+

a +W4w+
d (2.50)

Where:

W1 =
z
b
+

2z2

b2 −
4y2

h2 , W2 =−
z
b
+

2z2

b2

W3 =
2yz
bh

+
2y2

h2 , W4 =−
2yz
bh

+
2y2

h2

(2.51)

One thing should be noticed here is that
4
∑

i=1
Vi =

4y2

h2 6= 1,
4
∑

i=1
Wi =

4z2

h2 6= 1, which is

the same situation described in Section 2.4.1. The fact that the sum of shape functions
is not constant, but quadratic through the thickness and width respectively, means the
partition of unity is not satisfied. This is not a drawback because the transverse displace-
ment is expected to vary quadratically so that εxx, εyy and εzz have the same evolution
through thickness and they are coupled in the term related to the trace using a 3D Hooke’s
constitutive law.

For node 1 and node 3, we assume the simple linear shape function H1 and H3 (as
described in Section 2.4.2) for the variables ux,uy,uz,αx,αy,αz:

ux = H1ux1 +H3ux3, uy = H1uy1 +H3uy3, uz = H1uz1 +H3uz3

αx = H1αx1 +H3αx3, αy = H1αy1 +H3αy3, αz = H1αz1 +H3αz3
(2.52)

40

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI026/these.pdf 
© [S. Gao], [2017], INSA Lyon, tous droits réservés



Extension to 3D beam element with deformable section

Due to the strain-displacement relation, the strains of the proposed 3D beam element
can be expressed:

[ε] = [B]{de} (2.53)

Where:

[B]6×20 =



H
′
1 0 0 0 zH

′
1 −yH

′
1 0 0 0 0

0 0 0 0 0 0
∂V1

∂y
∂V2

∂y
∂V3

∂y
∂V4

∂y
0 0 0 0 0 0 0 0 0 0
0 H

′
1 0 −zH

′
1 0 −H1 0 0 0 0

0 0 H
′
1 yH

′
1 H1 0 0 0 0 0

0 0 0 0 0 0
∂V1

∂z
∂V2

∂z
∂V3

∂z
∂V4

∂z

0 0 0 0 H
′
3 0 0 0 zH

′
3 −yH

′
3

0 0 0 0 0 0 0 0 0 0
∂W1

∂z
∂W2

∂z
∂W3

∂z
∂W4

∂z
0 0 0 0 0 0

0 0 0 0 0 H
′
3 0 −zH

′
3 0 −H

′
3

0 0 0 0 0 0 H
′
3 yH

′
3 H

′
3 0

∂W1

∂z
∂W2

∂z
∂W3

∂z
∂W4

∂z
0 0 0 0 0 0



(2.54)

[ε] =
[

εxx εyy εzz γyz γxz γxy
]T (2.55)

{de}=
[

ux1 uy1 uz1 αx1 αy1 αz1 v+c v−c v+a v+b
w+

c w−c w+
a w+

d ux3 uy3 uz3 αx3 αy3 αz3
] (2.56)

Same situation as the enhanced 2D beam element described previously, the usual shear
factor is not used directly, and 2εxy,2εxz,2εyz becoming:

2εxy = gyγxy, 2εxz = gzγxz, 2εyz = gzγyz

gy =
5
4
(1−4

y2

h2 ), gz =
5
4
(1−4

z2

b2 )
(2.57)

2.5.3 Stiffness matrix and integration strategy

Since the transverse strain component εyy and εzz are introduced, full 3D constitutive law
can be used. Take isotropic material for example, the 3D constitutive matrix [D]:
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2. Development of the new 3D beam element

[D] =
E

(1+ν)(1−2ν)



1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0

0 0 0
1−2ν

2
0 0

0 0 0 0
1−2ν

2
0

0 0 0 0 0
1−2ν

2


(2.58)

As a result, the element stiffness matrix can be expressed as:

[Ke] =
∫

Ωe

[B]T [D] [B]dΩ (2.59)

in which Ωe denotes the element domain.
In order to avoid the shear locking, we use the same method described previously,

splitting the integral of the element stiffness matrix [Ke] into two parts: one that arises
from the membrane-bending energy called bending stiffness matrix

[
Ke

b

]
and one from

the shear energy called shear stiffness matrix [Ke
s ]:

[Ke] = [Ke
b]+ [Ke

s ] (2.60)
Where the subscripts "b" and "s" indicate bending and the transverse shear, respec-

tively.
For bending stiffness term:[

Ke
b

]
=

∫
Ωe

[Bb]
T [Db] [Bb]dΩ (2.61)

Where:

[Db] =
E

(1+ν)(1−2ν)

 1−ν ν ν

ν 1−ν ν

ν ν 1−ν

 , [Bb] =

 B(1, :)
B(2, :)
B(3, :)

 (2.62)

For shear stiffness term:

[Ke
s ] =

∫
Ωe

[Bs]
T [Ds][Bs]dΩ (2.63)

Where:

[Ds] =

 G 0 0
0 G 0
0 0 G

 ,G =
E

2(1+ν)
, [Bs] =

 gy ·B(4, :)
gz ·B(5, :)
gz ·B(6, :)

 (2.64)

In the matrix [Bb] and [Bs], B(i, :) presents the ith (i=1,2,...,6) row of the matrix [B],
When it comes to the integration, as both g(y), g(z) are quadratic polynomial, the orders
of g2(y) and g2(z) are four. So, that integration over the thickness and the width both
need five integration points along each integration direction. The integration points for
both circular cross-section and rectangular cross section can be seen in Figure 2.10.
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Numerical validation for linear small strain conditions

y

z z

y

(a) (b)

Figure 2.10 – Integration points [ABA 13]. (a). Circular cross section.(b). Rectangular
cross section.

2.6 Numerical validation for linear small strain condi-
tions

In this section, a series of examples are used to prove that the results obtained with the
proposed 3D elements are similar to those given by the solid elements from ABAQUS/-
Standard. A FEM code has been developed in Matlab, and a mesh of 10 elements for
cantilever is used for calculations as shown in Figure 2.11(a). Then the results are com-
pared with corresponding values from ABAQUS/Standard 3D simulations which uses
C3D8I element (incompatible mode eight-node brick element) for calculating the same
example. In this case, at least 640 elements are needed so that we can have five nodes
along the "y" and "z" directions respectively, the mesh model is shown in Figure 2.11(b).
The reason is that the solid element adopts bilinear interpolation while the proposed 3D
beam adopts quadratic polynomials interpolation in the cross section and five integration
points are needed both along "y" and "z" direction.

In these examples, we consider a cantilever beam with length l = 10mm and width
b = 1mm and thickness h = 1mm. Material parameters are E = 2.1× 105MPa, ν = 0.3.
The cantilever beam is subjected to the action of axial force P, bending moment M, shear
force F, and transverse compression Q, respectively.

𝑥

y

10 1

1

(a) (b)

Figure 2.11 – Mesh model. (a).In Matlab. (b). In Abaqus.
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2. Development of the new 3D beam element

2.6.1 Tension

In this example, a cantilever beam is subjected to an axial load of 500N at the right
end to demonstrate the ability of the element to simulate the section shape under ten-
sion. The results given by the proposed 3D beam element in Matlab and solid element in
ABAQUS/Standard can be seen in Figure 2.12(a). The largest displacement Ux given by
Matlab for the node at the right end is 0.0238 mm which corresponds to the theoretical
value given by P/El. In Figure 2.12(a), the two results are so close that it is difficult to
distinguish them, so we define the difference between the two results as errors, that is
UxError = UxAbaqus−UxMatlab which are more intuitive to express the results, as shown
in Figure 2.12(b). From Figure 2.12(b), we can see that all the errors have a magnitude
of the order of 10−5 mm and the relative errors are of the order of 0.37% which remain
stable except the values near the boundary. This relative error is very small, it could be
related to the difference in element size along x-axis between the two models.

For the simple case, the stiffness matrix can be calculated, and the symbolic equation
can be solved, we obtain some conclusions such as: v+c = −v−c ,v

+
a = v+b , w+

c = −w−c ,
w+

a = w+
d and the values of v+c ,v

+
a , w+

c ,w
+
a are constant along the positions of x axis, so

we use four series of values corresponding to v+c ,v
+
a , w+

c , w+
a , instead of eight to describe

the deformation of the section, which are listed in Table 2.1. From Table 2.1, it can be
seen that the results are consistent except for the first value near the boundary which is not
listed in the table. That is to say the proposed 3D beam element can be applied in tension
simulation.

Table 2.1 – Cross section deformation comparison of ABAQUS and Matlab under tension

v+c v+a w+
c w+

a

Abaqus(mm) -0.00035714 -0.00035714 0.00035714 0.00035714
Matlab(mm) -0.00035714 -0.00035714 -0.00035714 0.00035714

2.6.2 Pure bending

We consider a cantilever beam subjected to a constant moment M=500 Nmm at the right
end, which demonstrates the ability of the element to simulate the deformation occurring
in the cross section under the action of bending moment (Figure 2.13). Let Uy be the
displacement along y axis, the distributions of Uy for the centroidal axis can be seen in
Figure 2.14(a), there’s a little difference between the results from ABAQUS and Matlab.
The main reason is that since the solid element doesn’t have rotational degree of freedom,
a bending moment can’t be directly applied to it. Instead, we applied a linear variation
distribution force though thickness in the cross section. Due to this reason, the results
from ABAQUS and Matlab can’t be exactly the same since the solid element can’t avoid
the transverse shear locking completely while the proposed 3D beams elements can. The
errors of Uy are defied as UyError = UyAbaqus−UyMatlab, and the biggest value achieves
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Figure 2.12 – Results comparison of ABAQUS and Matlab under tension. (a). Distribu-
tion of displacement Ux. (b). Distribution of displacement errors UxError.
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2. Development of the new 3D beam element

0.021 mm at the end of the cantilever which can be seen in Figure 2.14(b). For the simple
case, by solving the symbolic equation, we can obtain the conclusions such as v+c =
−v−c ,v

+
a = v+b , w+

c =−w−c , w+
a =−w+

d . After deformation, the cross section changes into
trapezoid, with parabolic curve for the top and bottom edges, as shown in Figure 2.15(a).
From the numerical results, there’s v+a = 0, w+

c = 0 in both ABAQUS and Matlab. Thus,
we just need to compare the values of v+c and w+

a , the distribution is shown in Figure
2.15(a). The results show that the relative displacements of v+c and w+

a , in both thickness
and width directions are almost constant except the value near boundary. The results from
ABAQUS and Matlab are very close, and the same definition method of UyError, is used
to define the errors of v+c and w+

a , which are shown in Figure 2.15(b). Except the big
difference near the boundary, all the errors distribution is of the order of 10−5 mm in
magnitude, and the relative error is of the order of 1%.
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Figure 2.13 – A cantilever beam subjected to a constant moment

Furthermore, in order to verify the validation of the new 3D beam element under pure
bending, 3D Timoshenko beam element (B31) is also chosen in ABAQUS/Standard to
simulate the same example, with the same discretization along x axis as shown in Figure
2.11(a). One thing should be noticed here is that B31 beam element can’t describe the
cross section changes, so we just compare the displacement Uy and their errors of the
centroidal axis. The results can be seen in Figure 2.16, the values of Uy are quite the
same (Figure 2.16a), and the errors of Uy are nearly zeros with a little fluctuation (Figure
2.16b). However, all the errors are of the order of 10−7 mm in magnitude which may be
caused by the different solving accuracy in ABAQUS/Standard and Matlab. Compared
with the biggest displacement at the end of the cantilever 1.4286 mm, this fluctuation is
small enough to be neglected, which proves the consistency of both two results.

It shows that the results of the proposed 3D beam element concerning Uy are closer
to B31 elements of Abaqus than to the solid elements (C3D8I). The main reason lies that
the solid element can’t avoid the transverse shear locking completely while the proposed
3D beams elements and B31 elements can avoid.
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Figure 2.14 – Results comparison of ABAQUS and Matlab under pure bending. (a).
Displacement Uy of the centroidal axis. (b). Distribution of displacement errors UyError.
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Figure 2.15 – Results comparison of ABAQUS and Matlab under pure bending. (a).
Displacement distribution of cross section. (b). Displacement errors of cross section.

48

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI026/these.pdf 
© [S. Gao], [2017], INSA Lyon, tous droits réservés



Numerical validation for linear small strain conditions

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 1 2 3 4 5 6 7 8 9 10

D
is

p
la

ce
m

en
ts

U
y

/m
m

Positons along x axis/mm

Uy (ABAQUS)

Uy (Matlab)

(a)

-1.50E-07

-1.20E-07

-9.00E-08

-6.00E-08

-3.00E-08

0.00E+00

3.00E-08

0 1 2 3 4 5 6 7 8 9 10

E
rr

o
r

s 
o
f 

U
y

/m
m

Positons along x axis/mm

(b)

Figure 2.16 – Results comparison of ABAQUS and Matlab under tension. (a). Displace-
ment Uy of the centroidal axis. (b). Errror of UyError for the centroidal axis.
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2. Development of the new 3D beam element

2.6.3 Shear + bending

In this example, we discuss a cantilever beam subjected to a concentrated force F=-100 N
at the right end (Figure 2.17). The concentrated force not only has the effect of bending
but also the effect of shear. The comparisons of results between ABAQUS and Matlab are
shown in Figure 2.18. We can see that the results comparisons are better than that of pure
bending. The errors of Uy ( UyError) for the centroidal axis between the two results can be
seen in Figure 2.18(b). The errors distribution is linear and the biggest value lies at the
end of the cantilever beam, which is 0.0137 mm. Compared with the biggest displacement
at the end of the cantilever 1.915mm, the relative error is 0.7% which is in the accepted
range of error, which may be caused by the different discretization along x axis. Besides
comparison of Uy, we also compare the deformation of the cross section, and the results
are almost the same. Similarly to the Section 2.6.2, the following conclusions can be
drawn: v+c = −v−c ,v

+
a = v+b = 0, w+

c = −w−c = 0, w+
a = −w+

d . Thus, we just need to
compare the value of v+c and w+

a , which can be seen in Figure 2.19(a). The two results
are very close except the values at the boundary. The same definition method of UyError
is used to define the errors of v+c and w+

a , the results are shown in Figure 2.19(b). All the
errors are nearly zeros (at the order of 10−7 mm in magnitude) except for the values near
boundary, which proves the proposed 3D beam element can be used to simulate the beam
deformation under concentrated force and could obtain good results.
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Figure 2.17 – A cantilever beam subjected to a concentrated force.

The absolute value of the relative displacements v+c and w+
a in both thickness and

width directions change with the positions along x axis and become smaller and smaller.
For that reason, we chose the middle plane to observe the deformation law precisely. Due
to a special feature of the proposed element (the values of v+c ,v

+
a , w+

c ,w
+
a are obtained at

midpoint of the element), the plane at the position x=5.5mm is chosen. The isovalues of
Uy on deformed configuration of the cross section can be seen in Figure 2.20, of which
Figure 2.20(a) is the results from ABAQUS/Standard while Figure 2.20(b) is the results
from Matlab. The values for all integration points are almost the same and the shapes
of deformed configurations are close, which means using the proposed 3D elements can
achieve good results as respected.
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Figure 2.18 – Results comparison of ABAQUS and Matlab. (a). Displacement Uy of the
centroidal axis. (b). Distribution of displacement errors UyError.
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Figure 2.19 – Results comparison of ABAQUS and Matlab. (a). Relative displacement
of cross section. (b). Displacement errors of cross section.
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Numerical validation for linear small strain conditions

(a) (b)

Figure 2.20 – Isovalues of Uy on deformed configuration of cross section at x=5.5 mm
given by ABAQUS and MATLAB .

2.6.4 Transverse compression

Here, we consider a cantilever beam subjected to a uniformly distributed load Q=50N/mm
to demonstrate the ability of 3D beam element to simulate the section deformation occur-
ring under the action of compression. The calculation model in Matlab is shown as Figure
2.21. For the proposed 3D beam element, we set the same boundary conditions, actually
only the mid-line is fixed. For simulation in ABAQUS, much more elements in trans-
verse direction are needed with the discretization shown in Figure 2.11(b) to simulate the
same example. In order to set the same boundary conditions to compare the results of
solid element and proposed elements, we take 1/4 of beam model in ABAQUS and set
the symmetric boundary conditions. Under the action of compression, we can obtain the
conclusions: v+c =−v−c ,v

+
a = v+b , w+

c =−w−c , w+
a = w+

d , and the values of v+c ,v
+
a , w+

c ,w
+
a

are constant along the positions of x axis, the results are listed in Table 2.2. From which,
it can be seen that the proposed 3D beam elements can be used to obtain the same results
as those given by solid elements in ABAQUS. Such results show, if needed, that the 8
extra degrees of freedom are sufficient to introduce the coupling between εyy and εzz.
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Figure 2.21 – Cantilever under transverse compression.

Table 2.2 – Cross section deformation comparison of results from ABAQUS and Matlab
under transverse compaction

v+c v+a w+
c w+

a

Abaqus(mm) -0.00011905 -0.00011905 0.00003571 0.00003571
Matlab(mm) -0.00011905 -0.00011905 0.00003571 0.00003571

2.6.5 Torsion
Here, the cantilever beam is subjected by constant torsion moment T=500 Nmm, the
calculation model is shown in Figure 2.22. Boundary conditions are ux1 = uy1 = uz1 =
αx1 = αy1 = αz1 = 0. For the beam elements in Abaqus, we meet the same question as
pure bending that the beam element can’t bear the torsion directly, so we apply a force
couple at the end cross section of the beam instead. When cantilever under action of
torsion, there is εyy = 0, εzz = 0. By solving the calculation model in Matlab, we can
obtain some conclusions such as v+c = v−c = v+a = v+b = 0, w+

c = w−c = w+
a = w+

d = 0.
Compared with the results in Abaqus, it’s true that the cross sections just rotate an

angle around x axis, there’s no relative displacement in thickness and width direction.
The results of displacement in Abaqus will be transferred into rotation angles so that we
can compare the difference. The results from both Abaqus and Matlab are listed in Figure
2.23(a), where, we can see that the two results are very similar, the error of rotation angle
αx can be seen in Figure 2.23(b), which shows no big difference.

2.7 The advantages of the new 3D beam compared with
solid element

All of our examples are compared with the solid element C3D8I in Abaqus. The element
C3D8I has 8 nodes, each node has 3 degrees of freedoms, and the total number of the
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Figure 2.22 – Cantilever under torsion.

degrees of freedoms is 24. It adopts reduced integration with 1 integration point per
element. In order to obtain the accurate results, in each layer, at least four elements
are needed. In this way, the total degrees of freedoms involved in the calculation is:
(4×4×40)×24 = 15360, while using the new 3D beam, the total degrees of freedoms
is: 10× 20 = 200 . By using less elements, less degrees of freedoms, we can obtain the
same accurate results. This is the largest advantages of the new 3D beam. Since using
less degrees of freedoms, the calculation time is assumed to be shorter. But there’s some
difficulty in comparing the CPU time at the moment since it has many other influence
factors. In commercial software Abaqus, it adopts many optimization algorithm, and the
new 3D beam element is developed in Matlab, the calculation speed in Matlab can’t be
the same with Abaqus. Comparison the CPU time is a good idea, maybe after the whole
work, we can improve and optimize algorithm, then compare the CPU time of the two
calculation methods.

2.8 Conclusions and developments
In this chapter, a new 3D beam element with deformable section has been proposed. It
was inspired by the evolution of an enriched shell element that has been firstly introduced
in a 2D beam element in order to validate the interest of such technique. The new beam
element is an evolution of a 2 nodes Timoshenko beam element with an extra node at
mid length. That extra node allows the introduction of 3 extra strain components: εyy,
εzz and 2εyz so that full 3D stress/strain constitutive relations can be used. For that, 8
degrees of freedom are required. The proposed element has been introduced in a Mat-
lab finite element code and a series of validation cases have been treated and compared
with 3D ABAQUS/Standard simulations. The results obtained are in good agreement and
encouraging.

The results presented in this chapter are only the first step of a more ambitious work.
Indeed, the final goal is to use those elements to model yarns in a textile composite pre-
form. For that purpose, the two following steps are: (1) carrying out validation for large
displacements/small strains; (2) introducing contract between 3D beam to beam in the
next chapters.
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Figure 2.23 – Rotation angle comparisons with ABAQUS and MATLAB. (a). Rotation
angle αx. (b). Error of rotation angle αx.
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Chapter 3

Analysis of large displacements/small
strains behavior

Modelling fabric process at the mesoscopic (i.e. the yarn) scale can be able to give re-
alistic and physically fabric shape predictions. For that, we proposed a new 3D beam
element with section changes while breaking out from classical beam hypothesis, which
can describe the compression and shape change of the yarn. The proposed element has
been developed into a finite element code using Matlab which is extensively described in
the previous chapter. A series of validation cases for linear small strain conditions have
been realized and compared with 3D ABAQUS/Standard simulations. However, the re-
sults presented before are only the first step of a more ambitious work. The final aim we
want to achieve is using these elements to model yarns in a textile composite preform.
For this purpose, the present chapter aims to carry out validation for large displacements
(which also refer to large rotations) and small strains. As previously, we start from 2D
beam element, after the validation, then extend it into 3D case.

3.1 Introduction and review of literature

If the rotations are large while the mechanical strains (those that cause stresses) are small,
then a large rotation procedure must be used. The development of new and efficient for-
mulations for the nonlinear analysis of beam structures has attracted the study of many
researchers in recent years, and different alternative formulation strategies and procedures
have been presented to accommodate large rotation capability during the large deforma-
tion process [CHU 72, BEL 73, BEL 77, REM 79, BAT 79, PAP 81, WEN 83, MEE 84,
HSI 87] .These formulations can be divided into three categories: Total Lagrangian (TL)
formulation, Updated Lagrangian (UL) formulation and Corotational (CR) formulation. It
should be noted that within the corotating system either a TL or a UL formulation, or even
a formulation based on a small deflection theory may be employed. The large number of
publications on the nonlinear analysis of beam structures is, at least partially, due to the
fact that various kinematic nonlinear formulations can be employed. It seems that large
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3. Analysis of large displacements/small strains behavior

rotations in plane frames present no major problem. Hsiao and Hou [HSI 87] introduced a
simple and effective corotational formulation of beam element and numerical procedure,
which can remove the restriction of small rotations between two successive increments
for the large displacement analysis of plane frames using incremental-iterative methods.
Unfortunately, the method presented in [HSI 87] cannot be applied to three dimensional
frames. The difficulty of obtaining effective solutions is particularly pronounced in the
analysis of spatial beam structures; a general three dimensional nonlinear formulation is
not a simple extension of a two dimensional formulation, because large rotations in three
dimensional analysis are not true vector quantities; that is, they do not comply with the
rules of vector operations and the result will in general depend on the order in which the
rotations are taken. This point has been thoroughly discussed by Argyris [ARG 75] and
Wempner [WEM 69].

The problem of large rotations on space structures has received wide attention in the
literature. Many different strategies based on the TL, the UL, or the CR formulations
have been reported, those of [BEL 73, BEL 77, ARG 75, WEM 69, RAM 77, HOR 78,
BAT 80, HUG 81, ARG 79, SUR 83, HSI 87] being only a small fraction of the total.
Hughes and Liu [HUG 81] developed a specialized shell element which can handle arbi-
trarily large rotations. Argyris has covered the subject of corotational coordinates exten-
sively including a lengthy discourse on the subject of large rotations [ARG 79, ARG 82].
Belytschko et al [BEL 77, BEL 79] have applied corotational formulation to the dynamic
analysis of space frames where arbitrarily large rotations can be expected. Horrigmoe
and Bergan [HOR 78] have successfully applied a corotational approach to their shell el-
ements. Rankin and Brogan [RAN 86] have introduced a corotational procedure which
may enable existing shell element formulations to be used in problems that contain arbi-
trarily large rotations. Recently, Hsiao [HSI 87] has proposed a motion process for trian-
gular shell elements to remove the restriction of small rotations between two successive
increments for nonlinear shell analysis using incremental-iterative methods. The wide
range of numerical examples studied in [BEL 73, BEL 77, ARG 75, WEM 69, RAM 77,
HOR 78, BAT 80, HUG 81, ARG 79, SUR 83, HSI 87] indicate that the corotation ap-
proach, first described by Argyris et al [ARG 64], may be very useful in the analysis of
spatial structures containing arbitrarily large rotations. However, most strategies based
on the corotational formulation suffer from one inherent drawback: they are restricted to
small rotations between two successive load increments during the deformation process.
This limitation arises because the incremental nodal rotations are considered to be vector
quantities. Although the method introduced in [HSI 87] may remove this restriction for
triangular shell elements, unfortunately, this method cannot be applied to the space beam
elements, because, unlike the shell elements, the element coordinate of the space beam
elements cannot be determined using only nodal coordinates.

In this chapter, we first present the large displacement formulation of the new 3D
beam element with section changes. Starting from the basic continuum mechanics virtual
work theorem, an updated Lagrangian (U.L.) and a total Lagrangian (T.L.) formulation are
presented, which allow very large displacements and rotations, and materially nonlinear
conditions. Based on the two methods, an effective numerical method is chosen. Next,
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Incremental T.L. and U.L. continuum mechanics formulations

we describe some important aspects pertaining to the formulation, implementation and
usage of the element. Finally, we present in this chapter the results of a number of sample
analyses that demonstrate the versatility and effectiveness of the element.

3.2 Incremental T.L. and U.L. continuum mechanics for-
mulations

Consider the motion of a body in a fixed Cartesian coordinate frame, as shown in Figure
3.1, in which all kinematic and static variables are defined. The coordinates describing
the configuration of the body at time 0 are 0x1, 0x2, 0x3, at time t are tx1, tx2, tx3 and at
time t +∆t are t+∆tx1, t+∆tx2, t+∆tx3, where the left superscripts refer to the configuration
of the body and the subscripts to the coordinate axes. The notation for the displacements
of the body is similar to the notation for the coordinates. At time t, the displacements are
tui, i = 1,2,3, and at time t +∆t, the displacements are t+∆tui, i = 1,2,3. During motion
of the body, its volume, surface area, mass density, stresses and strains are changing
continuously. The specific mass, area and volume of the body at times 0, t and t +∆t are
denoted by 0ρ, tρ and t+∆tρ, 0A, tA and t+∆tA and 0V , tV and t+∆tV respectively.
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Figure 3.1 – Motion of body in Cartesian coordinate frame [BAT 75].

Consider the large displacement motion of a general body as a function of time and
assume that the solutions for the static and kinematic variables are known for the discrete
time points, 0, ∆t, 2∆t,..., t. The basic aim of the analysis is to establish an equation of
virtual work from which the unknown static and kinematic variables in the configuration
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3. Analysis of large displacements/small strains behavior

at time t +∆t be solved. Since the displacement-based finite element procedure shall be
employed for numerical solution, we use the principle of virtual displacements to express
the equilibrium of the body. In this chapter, we present the large displacement formulation
of the new 3D beam element. In essence, the large displacement motion of a general body
can be considered as a function of time. For example, at time t +∆t, the equation of the
principle of virtual displacements can be expressed as [BAT 75]:∫

t+∆tV

t+∆t
τi j δt+∆t ei j

t+∆tdv = t+∆tR (3.1)

Where t+∆tR is the external virtual work expression:

t+∆tR =
∫

t+∆tA

t+∆t
t+∆ttk δuk

t+∆tdA+
∫

t+∆tV

t+∆t
ρ

t+∆t
t+∆t fk δuk

t+∆tdV (3.2)

In Equation (3.1) and (3.2), δuk is a (virtual) displacement variation measured in the
configuration at t +∆t, δt+∆t ei j are the corresponding (virtual) strain variations measured
in the configuration at t +∆t, t+∆t

t+∆ttk and t+∆t
t+∆t fk (k = 1,2,3) are the surface and body force

components per unit mass at time t +∆t measured in configuration at time t +∆t, t+∆tτi j
are the Cartesian stresses components of the Cauchy stress tensor at time t +∆t.

It shows that the Equation (3.1) is a highly non-linear equation in terms of the displace-
ments, which can’t be solved directly since the configuration at time t+∆t is unknown. A
solution can be obtained by referring all variables to a known previously calculated equi-
librium configuration. To linearize the equation of the principle of virtual displacements
and solve the static and kinematic variables of the body at time t +∆t, two different for-
mulations can be employed: total Lagrangian (T.L.) formulation and updated Lagrangian
(U.L.) formulation [BAT 75, BAT 80], which are presented in the following sections.

3.2.1 Total Lagrangian (T.L.) formulation

For total Lagrangian (T.L.) formulation, all static and kinematic variables are referred to
the initial configuration at time t = 0, Considering the equilibrium of the body at time
t +∆t, the principle of virtual displacements is expressed as:∫

0V

t+∆t
0 Si jδ

t+∆t
0 εi j

0dv = t+∆tR (3.3)

Where, t+∆t
0 S and t+∆t

0 εi j are the components of the 2nd Piola-Kirchhoff stress tensor
and Green-Lagrange strain tensor in the configuration at time t +∆t referred to the initial
configuration, which are defined as Equation (3.4) and (3.5), 0V is the initial volume of
the body, t+∆tR is the external virtual work due to surface tractions and body forces, as
defined in Equation (3.6):

t+∆t
0 Si j =

0ρ

t+∆tρ
0

t+∆txi,k
t+∆t

τkl
0

t+∆tx j,l (3.4)
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Incremental T.L. and U.L. continuum mechanics formulations

t+∆t
0 εi j =

1
2

(
t+∆t

0 ui, j +
t+∆t

0 u j,i +
3

∑
k=1

t+∆t
0 uk,i

t+∆t
0 uk, j

)
(3.5)

t+∆tR =
∫

0A

t+∆t
0 tkδuk

0dA+
∫

0V

0
ρ

t+∆t
0 fkδuk

0dV (3.6)

Where 0
t+∆txi, j = ∂0xi/∂t+∆tx j and t+∆tτkl are the components of the Cauchy stress

tensor at time t +∆t.
Since the stresses and strains t+∆t

0 Si j and t+∆t
0 εi j are unknown, for solution, the follow-

ing incremental are used:

t+∆t
0 Si j =

t
0Si j + 0Si j (3.7)

t+∆t
0 εi j =

t
0εi j + 0εi j (3.8)

Where t
0Si j and t

0εi j are the known 2nd Piola-Kirchhoff stresses and Green-Lagrange
strains in the configuration at time t, 0Si j and 0εi j are the 2nd Piola-Kirchhoff stresses and
Green-Lagrange strains incremental measured in the initial configuration. It follows from
Equation (3.8) that δ

t+∆t
0 εi j = δ0εi j. The strain components can be separated into linear

and nonlinear parts:

0εi j = 0ei j + 0ηi j (3.9)

Where 0ei j and 0ηi j are the Cartesian components of the linear and nonlinear strain
increments in the initial configuration, respectively.

The constitutive relations 0Si j = 0Ci jrs 0εrs, the approximations 0Si j = 0Ci jrs 0ers and
δ0εi j = δ0ei j are used to transform and linearize Equation (3.3). Finally, Equation (3.3)
can be rearranged as:

∫
0V

0Ci jrs 0ersδ0ei j
0dV +

∫
0V

t
0Si jδ0ηi j

0dV = t+∆tR−
∫

0V

t
0Si jδ0ei j

0dV (3.10)

Where 0Ci jrs is the component of tangent constitutive tensor at time t = 0.

3.2.2 Updated Lagrangian (U.L.) formulation
The updated Lagrangian (U.L.) formulation is based on the same procedures that are used
in the T. L. formulation, but in the solution all static and kinematic variables are referred
to the last calculated configuration at time t, And, in the U.L. formulation, at time t +∆t,
the equation of the principle of virtual displacements is expressed as:∫

tV

t+∆t
t S δ

t+∆t
t εi j

tdV = t+∆tR (3.11)
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3. Analysis of large displacements/small strains behavior

Where tV is the current volume of the body at time t, t+∆t
t S and t+∆t

t εi j are the compo-
nents of the 2nd Piola-Kirchhoff stress tensor and Green-Lagrange strain tensor referred
to the initial configuration at time t, which are defined by Equations (3.7) and (3.8) re-
spectively, if the superscript and subscript "0" is replaced by "t" and displacements are
measured in the configuration at time t. In the U.L. formulation, the same incremental
stress and strain decompositions as in the T.L. formulation are employed, but all variables
are referred to the configuration at time t. Thus, corresponding to Equation (3.11), the
linearized equilibrium equation is in the U.L. formulation:

∫
tV

tCi jrs tersδtei j
tdV +

∫
tV

t
τi jδtηi j

tdV = t+∆tR−
∫

tV

t
τi jδtei j

tdV (3.12)

Where tτi j is the Cartesian components of the Cauchy stress tensor at time t, tei j and
tηi j are the Cartesian components of the linear and nonlinear strain increments, respec-
tively. tCi jrs is the components of tangent constitutive tensor at time t relating small strain
increments to the corresponding stress increments.

3.3 Calculation formulation chosen

3.3.1 U.L. and T.L. formulations of general 3D beam element
The general three dimensional straight beam element is formulated based on the contin-
uum mechanics theory summarized above. The element has two nodes with 6 degrees
of freedom per node, and can transmit axial force, shear forces, bending moments and
torque. In Equations (3.10) and (3.12), the incremental equilibrium equations of a body
in motion are given corresponding to the global coordinate frame τXi(τ = 0, t). Consider-
ing a typical beam element, it is more effective to first evaluate the finite element matrices
corresponding to the local principal axes τxi, as shown in Figure 3.2, and then trans-
form the resulting matrices to correspond to the global Cartesian coordinate axes prior
to the element assemblage process [BAT 76]. The finite element matrices corresponding
to the axes τxi are simply obtained by measuring all static and kinematic quantities in
this coordinate system. Thus, using Equations (3.10), we can obtain the T.L. formulation
considering a single beam element for static analysis:

(t
0KL +

t
0KNL)U = t+∆tR− t

0F (3.13)

Where t
0KL is linear strain stiffness matrices, t

0KNL is nonlinear strain stiffness ma-
trices; t+∆tR is the vector of externally applied element nodal loads at time t +∆t, t

0F
is vectors of nodal point forces equivalent to the element stresses at time t and U is the
vector of incremental nodal displacements.

In Equation (3.13), t
0KLU, t

0KNLU and t
0F are obtained from the finite element eval-

uation of
∫

0V 0Ci jrs 0ersδ0ei j
0dV ,

∫
0V

t
0Si jδ0ηi j

0dV and
∫

0V
t
0Si jδ0ei j

0dv respectively. The
vector t+∆tR is obtained from the finite element evaluation of Equation (3.6 ) in the usual
way.
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Configuration at time 0

Configuration at time t

Configuration at time 
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0

2 2 2, ,t t tX X X

0

1, x

0

2, x

0

3, x

2, t x2, t t x 

t t

0

3 3 3, ,t t tX X X

0

1 1 1, ,t t tX X X

Figure 3.2 – Motion of the 3D beam element and its local coordinate axes shown in global
coordinate frame [BAT 76].

t
0KL =

∫
0V

t
0BT

L 0C t
0BL

0dV (3.14)

t
0KNL =

∫
0V

t
0BT

NL
t
0S t

0BNL
0dV (3.15)

t
0F =

∫
0V

t
0BT

L
t
0Ŝ 0dV (3.16)

In the above equations, t
0BL and t

0BNL are linear and non-linear strain displacement
transformation matrices, 0C tangent constitutive matrix, t

0S is a matrix of 2nd Piola-
Kirchhoff stresses, and t

0Ŝ is a vector of these stresses. All matrix elements correspond to
the configuration at time t and are defined with respect to the configuration at time 0.

Similarly, the finite element solution of Equation (2.12), which was obtained using the
U.L. formulation, results into:

(t
tKL +

t
tKNL)U = t+∆tR− t

tF (3.17)

Where:
t
tKL =

∫
tV

t
tB

T
L tC t

tBL
tdV (3.18)
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3. Analysis of large displacements/small strains behavior

t
tKNL =

∫
tV

t
tB

T
NL

t
tτ

t
tBNL

tdV (3.19)

t
tF =

∫
tV

t
tB

T
L

t
t τ̂

tdV (3.20)

In Equations (3.18) to (3.20), t
tBT

L and t
tBT

NL are the linear and non-linear strain-
displacement transformation respectively, tC is the material property matrix defined with
respect to the configuration at time t. t

tτ is is a Cauchy stress matrix and t
t τ̂ is a vector of

Cauchy stresses in the configuration at time t measured in the configuration at time t. It
should be noted that the element matrices in Equations (3.13 ) to (3.20) are functions of
the natural element coordinates and that the volume integrations are performed using a
coordinate change from Cartesian to natural coordinates [ZIE 71].

3.3.2 The calculation method chosen
Although the total and updated Lagrangian formulations are superficially quite different,
it will be shown that the underlying mechanics of the two formulations are identical; fur-
thermore, expressions in the total Lagrangian formulation can be transformed to updated
Lagrangian expressions and vice versa. The major difference between the two formula-
tions is in the point of view: in the total Lagrangian formulation variables are described
in the original configuration, in the updated Lagrangian formulation they are described in
the current configuration. Different stress and deformation measures are typically used in
these two formulations. For example, the total Lagrangian formulation customarily uses
a total measure of strain, whereas the updated Lagrangian formulation often uses a rate
measure of strain.

An advantage of the T.L. formulation is that the derivatives of the interpolation func-
tions are with respect to the initial configuration, and therefore only need be formed once,
if they are stored on back-up storage for use in all load steps. However, in practice, the
use of tape or disc to store and retrieve the required derivatives in each step may be more
costly than simply to recalculate them. It could be stated in general that, the strain dis-
placement matrix (i.e. the matrix containing the derivatives of the interpolation functions)
is more complicated in the Total Lagrangian formulation because the effect of the term
involves the initial strain effect.

Various applications of both formulations in the analysis of continuum problems are
presented in [BAT 75, CHA 88, FEL 73, SHA 71, STA 06], it shows that both the T.L. and
U.L. formulations include all nonlinear effects due to large displacements, large strains
and material non-linearities. And the two formulations can give the same numerical re-
sults while the constitutive tensors are defined appropriately. Indeed, the choice for a total
Lagrangian or an updated Lagrangian formulation should be decided only by the relative
numerical effectiveness of the formulations.

In this chapter, in order to simplify the kinematic formulation and obtain a more ef-
fective numerical solution, a nonlinear theory of deformation based on the updated La-
grangian method is chosen. The work employs small strain theory on each element like
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Properties of isotropic and orthotropic materials

the corotational technique, and only the unit vectors of the cross sections are employed in-
stead of the complicated three dimensional rotational vectors or angles. The enhanced 3D
beam element has been implemented in the Matlab program, and a series of sample anal-
yses are carried out, and the results are systematically compared with the corresponding
values of ABAQUS/Standard 3D simulations.

3.4 Properties of isotropic and orthotropic materials
The materials are classified based on the behavior for a particular loading condition, which
include: anisotropic materials, isotropic materials, transversely isotropic materials, or-
thotropic materials and monoclinic materials. In this chapter, we mainly use the isotropic
materials and orthotropic materials. In an anisotropic material, there are no planes of
material property symmetry. So, there are 21 independent elastic constants in the stress-
strain relationship as given in Equation (3.21), and material properties are directionally
dependent. 

σx
σy
σz
τyz
τzx
τxy


=


C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66





εx
εy
εz
γyz
γzx
γxy


(3.21)

Isotropic material:
In an isotropic material, properties are the same in all directions (axial, lateral, and in

between). Thus, the material contains an infinite number of planes of material property
symmetry passing through a point, i.e., material properties are directionally independent.
So, there are two independent elastic constants.



σx
σy
σz
τyz
τzx
τxy


=



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0

0 0 0
C11−C12

2
0 0

0 0 0 0
C11−C12

2
0

0 0 0 0 0
C11−C12

2





εx
εy
εz
γyz
γzx
γxy


(3.22)

Tensile normal stresses applied in any direction on an isotropic material cause only
elongation in the direction of the applied stresses and contractions in the two transverse
directions. It will not produce any shear strain in any form in the material. Similarly,
shear stresses produce only corresponding shear strains not normal strains.

Orthotropic materials:
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3. Analysis of large displacements/small strains behavior

There are three mutually orthogonal planes of material property symmetry in an or-
thotropic material. Fiber-reinforced composites, in general, contain the three orthogonal
planes of material property symmetry and are classified as orthotropic materials. The in-
tersections of these three planes of symmetry are called the principal material directions.

The material behavior is called as special orthotropic, when the normal stresses are
applied in the principal material directions. Otherwise, it is called as general orthotropic
which behaves almost equivalent to anisotropic material. There are nine independent
elastic constants in the stiffness matrix as given below for a special orthotropic material.

σx
σy
σz
τyz
τzx
τxy


=


c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66





εx
εy
εz
γyz
γzx
γxy


(3.23)

From the stress-strain relationship it is clear that normal stresses applied in one of the
principal material directions on an orthotropic material cause elongation in the direction
of the applied stresses and contractions in the other two transverse directions. However,
normal stresses applied in any directions other than the principal material directions create
both extensional and shear deformations.

3.5 Formulation for large rotations/small strains behav-
ior

3.5.1 Small rotation theory
If the rotations are large but the mechanical strains (those that cause stresses) are small,
then a large rotation procedure should be used. In order to simplify the kinematic formu-
lation and obtain a more effective numerical solution, a nonlinear theory of deformation
based on the updated Lagrangian method is chosen. Here, we employ small rotation the-
ory at each increment, and then update the rotation vector at the end of each increment.
The small rotation theory is shown in Figure 3.3, a vector ~Vn is rotated though ∆~θ to
become a vector ~Vn+1, we could therefore write:

~Vn+1 =~Vn +∆~V =~Vn +(∆~θ∧~Vn) (3.24)

3.5.2 Motion decomposition of rotation vector
The plane motion of a rigid body can be divided into the translation along with the original
point and the rotation around the original point. Under this theory, the movement of vector
−→
AB can be divided into the translational motion from

−→
AB to

−−→
A′B′ and the rotation from

−−→
A′B′

to
−−−→
A′′B′′ as shown in Figure 3.4.
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Formulation for large rotations/small strains behavior

−−→
B′B′ = ∆~θ∧

−−→
A′B′

−−→
BB′′ =

−→
BB′+

−−→
B′B′′ =

−→
AA′+

−−→
B′B′′ =~uA +(∆~θ∧

−−→
A′B′)

(3.25)


1nV

V

1n 

n

t
nZ

X

Y

Figure 3.3 – Description of small rotation theory.
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Figure 3.4 – Motion decomposition of rotational vector.
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3. Analysis of large displacements/small strains behavior

3.5.3 Updated Lagrangian formulation for rotation vector of 2D
beam element

Figure 3.5 shows the motion of the rotation vector of 2D beam element and its local
coordinate shown in global coordinate frame (τX , τY ), τ = 0, t, Considering a 2D beam
element, it is more effective to first evaluate the rotation vector corresponding to the local
principal axes (τx, τy) of the element, and then transform the results to correspond to the
global coordinate frame. According to the theories presented previously, we can obtain
the Updated Lagrangian formulation for the rotation vector, which can be expressed as:

k

t nV

0 k

nV

, t y

0 , ,t t tX X X

( )t k

nV

t t k

nV

0, x

0 , ,t t tY Y Y

t t 
, t t y 

0, y

, t t x 

t k

nV , t x

Configuration at time 0

Configuration at time t

Configuration at time 

Figure 3.5 – Motion decomposition of rotational vector.

t+∆t
t
−→
V n =

t
t
−→
V n + t

−→
V n

t
−→
V n = t~θ∧t

t
−→
V n

t~θ =t+∆t
t
−→
θn−t

t
−→
θ n

(3.26)

Where
t+∆t

t
−→
V n is the rotation vector

−→
V n in the configuration at time t +∆t measured
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Formulation for large rotations/small strains behavior

in the configuration at time t, while t
t
−→
V k

n is the rotation vector in configuration at time t
referred to the configuration at time t, in fact t

t
−→
V k

n =
t−→V k

n. The same notation definitions
are used for rotation angle ~θ. In analogy to the notation used for coordinates and dis-
placements, a left superscript indicates in which configuration the quantity (body force,
surface traction, stress, ...) occurs while a left subscript indicates with respect to which
configuration the quantity is measured.

3.5.4 Incremental displacement field of classical 2D beam
In this way, the incremental displacement field for classical 2D beam can be written by:

t~uB = t~uA +
ty · (t~θ∧ t

t
~Vn) (3.27)

Where B denotes the point located off the centroidal axis of beam and A is the corre-
sponding point on the centroidal axis. After deformation, due to the effect of shear and
torsion, the unit vector t~Vn will not be vertical, which can be divided into two components
t~Vnx, t~Vny in direction of axis tx and ty separately. This is same for t~uA and t~uB. The
incremental displacement field can be rewritten as:

t~uB =

{
tuAx− tθ · ty · tVny

tuAy + tθ · ty · tVnx
(3.28)

For classical 2D beam element with two nodes numbered 1 and 2, length is denoted as
L. Here, the deformation functions are related to the local coordinate frame (tx, ty). The
interpolation functions can be expressed as:

tuAx = H1(ξ) · tu1x +H2(ξ) · tu2x

tuAy = H1(ξ) · tu1y +H2(ξ) · tu2y

tθ = H1(ξ) · tθ1 +H2(ξ) · tθ2

t~Vn = H1(ξ) · t~V 1
n +H2(ξ) · t~V 2

n
tVnx = H1(ξ) · tV 1

nx +H2(ξ) · tV 2
nx

tVny = H1(ξ) · tV 1
ny +H2(ξ) · tV 2

ny

(3.29)

Where tuix, tuiy, tθ
i and t~V i

n denote the quantities at node i (i = 1,2), H2(ξ) and H2(ξ)
are interpolation functions, and H1(ξ) = 1

/
2(1−ξ), H2(ξ) = 1

/
2(1+ξ).

At the end of each increment, the unit vector t~V i
n will be updated by: t+∆t

t ~V i
n =

t
t
~V i

n +

(t~θ∧ t
t
~V i

n).

3.5.5 Incremental displacement field of classical 3D beam
What makes the 3D beam element different from 2D beam element is the number of the
unit vectors chosen. For example, a 3D beam element with 2 nodes numbered 1 and 2,
two unit vectors~Vs and~Vt located in the middle cross section of the element are employed
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3. Analysis of large displacements/small strains behavior

which can be interpolated by the unit vectors ~V 1
s ,~V

2
s ,~V

1
t ,~V

2
t located at node 1 and node 2

respectively, as shown in Figure 3.6. It presents a 3D Timoshenko beam element with 2
nodes, each node has 6 degrees of freedoms, 3 translations and 3 rotations.

O
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Figure 3.6 – Presentation of the 3D Timoshenko beam element in initial configuration.

~Vs = H1(ξ) ·~V 1
s +H2(ξ) ·~V 2

s

~Vt = H1(ξ) ·~V 1
t +H2(ξ) ·~V 2

t
(3.30)

Where, H1(ξ) = 1
/

2(1−ξ), H2(ξ) = 1
/

2(1+ξ).
Denoting point B located off the centroidal axis while point A is the corresponding

point located on the centroidal axis. The incremental displacement field of classical 3D
beam element can be written as:

t~uB = t~uA +
ty · t~θ∧ t~Vs +

tz · t~θ∧ t~Vt (3.31)

One thing needs to be noticed is that there are different coordinates in the process
of derivation, (X ,Y,Z) is the global coordinates, (x,y,z) is the local coordinates while
(ξ,η,ζ) is the dimensionless local coordinates. After deformation, due to the effect of
shear and torsion, the rotation vectors t~Vs and t~Vt are not vertical, which can be divided into
three components: t~Vtx,

t~Vty,
t~Vtz, along tx, ty, tz direction respectively. The interpolation

functions are in the same form as Equation (3.29).
The incremental displacement field of 3D beam element for large displacement/small

strain at each increment can be rearranged as:
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Formulation for large rotations/small strains behavior

t~uB =



tuAx +
2
∑

i=1

{
Hi · ty ·

(
tθ

i
y · tV i

sz− tθ
i
z · tV i

sy
)
+Hi · tz ·

(
tθ

i
y · tV i

tz− tθ
i
z · tV i

ty
)}

tuAy +
2
∑

i=1

{
Hi · ty ·

(
tθ

i
z · tV i

sx− tθ
i
x · tV i

sz
)
+Hi · tz ·

(
tθ

i
z · tV i

tx− tθ
i
x · tV i

tz
)}

tuAz +
2
∑

i=1

{
Hi · ty ·

(
tθ

i
x · tV i

sy− tθ
i
y · tV i

sx
)
+Hi · tz ·

(
tθ

i
x · tV i

ty− tθ
i
y · tV i

tx
)}

(3.32)
Where tV i

sx, tV i
sy, tV i

sz,
tV i

tx, tV i
ty, tV i

tz are the components of t~V i
s and t~V i

t (located at node
i) in tx, ty, tz axis separately, and tθ

i
x, tθ

i
y, tθ

i
z are the components of angle t~θ

i rotated by
tx, ty, tz axis separately. tuAx,

tuAy,
tuAz are three components of tuA along axis tx, ty, tz. At

the end of each increment, the unit vectors t~V i
s and t~V i

t will be updated by:

t+∆t
t
~V i

s =
t
t
~V i

s +(t~θ
i∧ t

t
~V i

s )
t+∆t

t
~V i

t =
t
t
~V i

t +(t~θ
i∧ t

t
~V i

t )
(3.33)

3.5.6 Incremental displacement field for enhanced 2D beam elements
In chapter 2, the enhanced 2D beam element has been built by introducing a central node
to an initially two nodes element, as shown in Figure 2.6, nodes 1 and 3 have 3 degrees of
freedoms ui,vi,θ

i,(i= 1,3), as nodal variables. For large rotations/ small strains behavior,
a unit vector ~Vn, located at node 2 is introduced based on the enhanced 2D beam element,
as shown in Figure 3.7 , and ~Vn can be interpolated by the unit vectors located at node 1
and node 3 in the form: ~Vn = H1(ξ) ·~V 1

n +H3(ξ) ·~V 3
n .

1

y, 𝑣2
+

𝑣2
−

2 3

v1 v3

u3
u1

x
Y

X

O

L/2 L/2

1θ 3θ

1

nV nV
3

nV

Figure 3.7 – Presentation of the enhanced 2D beam element with large rotation in initial
configuration.

After addition of the unit vector ~Vn, the quadratic polynomial v(x,y) in thickness di-
rection will be different from the Equation (2.30), which can be expressed in the following
form:

v(x,y) = v(x,0)+∆θ · y ·Vnx +b0y+ c0y2 (3.34)
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3. Analysis of large displacements/small strains behavior

Where, b0 and c0 are coefficients, which can be solved in terms of nodal variables
corresponding to node 2, and v(x,0) is transverse displacement of the mean axis.

The method to solve the coefficients b0 and c0 is the same as described in Section
2.4.1. The final function for v(x,y) can be expressed in terms of nodal variables v+2 ,v

−
2 :

v(x,y) = v(x,0)+V1(y)v+2 +V2(y)v−2 (3.35)

Where, V1(y) and V2(y) are shape functions in thickness direction, which can be ex-
pressed as:

V1(y) =
y
h
+

2y2

h2

V2(y) =−
y
h
+

2y2

h2

(3.36)

For convenience of calculations, V1(y) and V2(y) should be mapped from the physical
coordinate system to the natural coordinate system. So we have the shape function like
this:

V1 (η) =
1
2
(
η+η

2)
V2 (η) =−

1
2
(
η−η

2) (3.37)

The derivation of shape function V1 (η) and V2 (η) can be expressed as:

V ′1 (η) =
1
2
(1+2η)

V ′2 (η) =−
1
2
(1−2η)

(3.38)

Then, the incremental displacement field for the enhanced 2D beam with large rota-
tion/ small strain at each increment can be written as:

t~uB =

 tux− tθ ·
th
2

η · tVny

tuy +V1 · tv+2 +V2 · tv−2
(3.39)

Defining tuBx and tuBy are two components of the displacement t~uB along axis tx and
axis ty in configuration at time t respectively. Due to the strain-displacement relation, we
can get the incremental strain expression:

t ε̄xx =
∂tuBx

∂tx
, t ε̄yy =

∂tuBy

∂ty
,2t ε̄xy =

∂tuBx

∂ty
+

∂tuBy

∂tx
(3.40)

To obtain the displacement derivatives corresponding to the axis tx and ty, we need
to translate the formulation from dimensionless local coordinates (ξ,η). We now employ
the chain rule and Jacobian transformation, there is:
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Formulation for large rotations/small strains behavior

 ∂tuBx

∂tx
∂tuBy

∂tx
∂tuBx

∂ty
∂tuBy

∂ty

=

 ∂ξ

∂tx
∂η

∂tx
∂ξ

∂ty
∂η

∂ty




∂tuBx

∂ξ

∂tuBy

∂ξ

∂tuBx

∂η

∂tuBy

∂η

= tJ−1


∂tuBx

∂ξ

∂tuBy

∂ξ

∂tuBx

∂η

∂tuBy

∂η


(3.41)

Where Jacobian matrix tJ contains the derivatives of the current coordinates (tx, ty)
with respect to the dimensionless local coordinates (ξ,η), tJ−1

i j is the element (i, j) of the
matrix tJ−1:

Substituting Equation (3.41) into (3.40), finally we obtain the incremental stain ex-
pression as the following:

t ε̄xx =
tJ−1

11 ·
∂tuBx

∂ξ
+ tJ−1

12 ·
∂tuBx

∂η

t ε̄yy =
tJ−1

21 ·
∂tuBy

∂ξ
+ tJ−1

22 ·
∂tuBy

∂η

2t ε̄xy =
tJ−1

21 ·
∂tuBx

∂ξ
+ tJ−1

22 ·
∂tuBx

∂η
+ tJ−1

11 ·
∂tuBy

∂ξ
+ tJ−1

12 ·
∂tuBy

∂η

(3.42)

Which can be rearranged as:

t ε̄ =

 t ε̄xx

t ε̄yy

t γ̄xy



=

 tJ−1
11 ·H

′
1 0 tA1 0 0 tJ−1

11 ·H
′
3 0 tA3

0 tJ−1
21 ·H

′
1 0 tJ−1

22 ·V
′
1

tJ−1
22 ·V

′
2 0 tJ−1

21 ·H
′
3 0

tJ−1
21 ·H

′
1

tJ−1
11 ·H

′
1

tB1
tJ−1

12 ·V
′
1

tJ−1
12 ·V

′
2

tJ−1
21 ·H

′
3

tJ−1
11 ·H

′
3

tB3





tu1

tv1

tθ1

tv+2
tv−2
tu3

tv3

tθ3


= t

tB̄ tu
(3.43)

The bar (•) denotes the qualities (•) measured in the (tx, ty) coordinate frame. In this
way, t ε̄ is the vector of incremental strain, t

t B̄ is the strain-displacement transformation
matrix, and tu is the vector of incremental nodal displacements, all of which are measured
in the (tx, ty) coordinate frame.

tAi =−(tJ−1
11 ·H

′
i ·

h
2

η · tV i
ny +

tJ−1
12 ·Hi ·

h
2
· tV i

ny); i = 1,3

tBi =−tJ−1
21 ·H

′
i ·

h
2

η · tV i
ny− tJ−1

22 ·Hi ·
h
2
· tV i

ny; i = 1,3
(3.44)
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3. Analysis of large displacements/small strains behavior

As mentioned previously, the shear strain remains unchanged except that the usual
shear factor is not used directly, so 2t ε̄xy becoming:

2t ε̄xy =
tgyt γ̄xy,

tgy =
5
4
(1−4

ty2

h2 ) (3.45)

In the U.L. formulations, a transformation matrix tT that relates displacements mea-
sured in the current configuration to displacements measured in the original configuration
is needed.

U = tTT
tu (3.46)

Where U is the vector of incremental nodal displacements in the global coordinate
frame, and the transformation matrix tT is evaluated using Euler angles which define the
rotations of the beam, which will be introduced later.

3.6 Extend to enhanced 3D beam elements with large ro-
tation/ small strain behavior

We have built the enhanced 3D beam element in Chapter 2, a central node with 8 degrees
of freedom is introduced to the classical 3D beam element with two end nodes, each
node has 6 degrees of freedom (uxi,uyi,uzi,θxi,θyi,θzi), as shown in Figure 2.8. For large
rotations/ small strains behavior, the difference is that two unit vectors ~Vs and ~Vt of the
cross-sections are employed at the position of node 2, which can be interpolated by the
unit vectors ~V 1

s ,~V
3
s ,~V

1
t ,~V

3
t located node 1 and node 3.

~Vs = H1(ξ) ·~V 1
s +H3(ξ) ·~V 3

s

~Vt = H1(ξ) ·~V 1
t +H3(ξ) ·~V 3

t
(3.47)

Figure 3.8 presents the enhanced 3D beam element with large rotation by introducing
two unit vectors ~Vs and ~Vt . As defined previously, (X ,Y,Z) is the global coordinates,
(x,y,z) is the local coordinates, while ξ,η,ζ is the dimensionless local coordinates. After
deformation, the unit vectors ~Vs and ~Vt can be divided into three components ~Vsx,~Vsy,~Vsz

and ~Vtx,~Vty,~Vtz. The interpolation functions are in the same form as Equation (3.29).
Since the unit vectors are introduced, the deformation functions v(x,y,z) and w(x,y,z)

is different form Equation (2.46) and (2.47), which are assumed as follows:

v(x,y,z) = v(x,0,0)+ y · (θz ·Vsx−{θx ·Vsz)

+z · (θz ·Vtx−θx ·Vtz)+a0y+a1y2 +a2yz+a3z2 (3.48)

w(x,y,z) = w(x,0,0)+ y · (θx ·Vsy−θy ·Vsx)

+z · (θx ·Vty−θy ·Vtx)+ c0z+ c1z2 + c2yz+ c3y2 (3.49)

Where, a0,a1,a2,a3, c0,c1,c2,c3 are coefficients, which can be solved in terms of
nodal variables. The solving methods are the same as described in Section 2.5.2. Finally,
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Extend to enhanced 3D beam elements with large rotation/ small strain behavior

O

O
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2

3
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𝑦, 𝑣
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𝑥, 𝑢

X

Y
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sV

3
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Figure 3.8 – Presentation of the enhanced 3D beam element with large rotation at initial
configuration.

we obtain the deformation function in thickness in the dimensionless local coordinates
(ξ,η,ζ):

v(x,y,z) = v(x,0,0)+
b
2

ζ · (1−η) · (∆θz ·Vtx−∆θx ·Vtz)+V1v+c +V2v−c +V3v+a +V4v+b
(3.50)

Where:

V1 =
1
2
(
η+η

2)−ζ
2,V2 =−

1
2
(
η−η

2)
V3 =

1
2
(
ηζ+ζ

2) ,V4 =−
1
2
(
ηζ−ζ

2) (3.51)

Similarly, the deformation function in width direction can be expressed as:

w(x,y,z) = w(x,0,0)+
h
2

η · (1−ζ) · (θx ·Vsy−θy ·Vsx)+W1w+
c +W2w−c +W3w+

a +W4w+
d

(3.52)
Where:

W1 =
1
2
(
ζ+ζ

2)−η
2,W2 =−

1
2
(
ζ−ζ

2)
W3 =

1
2
(
ηζ+η

2) ,W4 =−
1
2
(
ηζ−η

2) (3.53)

In the end, the kinematic formulation of the enhanced 3D beam element at each incre-
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3. Analysis of large displacements/small strains behavior

ment can be written as follows:

t~uB =



tux +
3
∑

i=1

{
Hi ·

h
2

η ·
(

tθ
i
y · tV i

sz− tθ
i
z · tV i

sy
)
+Hi ·

b
2

ζ ·
(

tθ
i
y · tV i

tz− tθ
i
z · tV i

ty
)}

tuy +
3
∑

i=1

{
Hi ·

b
2

ζ · (1−η) ·
(

tθ
i
z · tV i

tx− tθ
i
x · tV i

tz
)}

+V1tv+c +V2tv−c +V3tv+a +V4tv+b

tuz +
3
∑

i=1

{
Hi ·

h
2

η · (1−ζ) ·
(

tθ
i
x · tV i

sy− tθ
i
y · tV i

sx
)}

+W1tw+
c +W2tw−c +W3tw+

a +W4tw+
d

(3.54)
To obtain the displacement derivatives corresponding to the axis tx, ty, tz, we need

to translate the formulation from dimensionless local coordinates (ξ,η,ζ) to the local
coordinates (tx, ty, tz). Defining tuBx, tuBy, tuBz are three components of the incremental
displacement t~uB along axis tx, ty, tz respectively. Employing the chain rule and Jacobian
transformation, there is :

∂tuBx

∂tx
∂tuBy

∂tx
∂tuBz

∂tx
∂tuBx

∂ty
∂tuBy

∂ty
∂tuBz

∂ty
∂tuBx

∂tz
∂tuBy

∂tz
∂tuBz

∂tz

= tJ−1


∂tuBx

∂ξ

∂tuBy

∂ξ

∂tuBz

∂ξ

∂tuBx

∂η

∂tuBy

∂η

∂tuBz

∂η

∂tuBx

∂ζ

∂tuBy

∂ζ

∂tuBz

∂ζ

 (3.55)

Due to the strain-displacement relation, we can get the incremental strain expression
in local coordinate:

t ε̄xx =
∂tuBx

∂tx
= tJ−1

11 ·
∂tuBx

∂ξ
+ tJ−1

12 ·
∂tuBx

∂η
+ tJ−1

13 ·
∂tuBx

∂ζ

t ε̄yy =
∂tuBy

∂ty
= tJ−1

21 ·
∂tuBy

∂ξ
+ tJ−1

22 ·
∂tuBy

∂η
+ tJ−1

23 ·
∂tuBy

∂ζ

t ε̄zz =
∂tuBz

∂tz
= tJ−1

31 ·
∂tuBz

∂ξ
+ tJ−1

32 ·
∂tuBz

∂η
+ tJ−1

33 ·
∂tuBz

∂ζ

2t ε̄xy =
∂tuBx

∂ty
+

∂tuBy

∂tx

= tJ−1
21 ·

∂tuBx

∂ξ
+ tJ−1

22 ·
∂tuBx

∂η
+ tJ−1

23 ·
∂tuBx

∂ζ
+ tJ−1

11 ·
∂tuBy

∂ξ
+ tJ−1

12 ·
∂tuBy

∂η
+ tJ−1

13 ·
∂tuBy

∂ζ

2t ε̄xz =
∂tuBx

∂tz
+

∂tuBx

∂tx

= tJ−1
31 ·

∂tuBx

∂ξ
+ tJ−1

32 ·
∂tuBx

∂η
+ tJ−1

33 ·
∂tuBx

∂ζ
+ tJ−1

11 ·
∂tuBz

∂ξ
+ tJ−1

12 ·
∂tuBz

∂η
+ tJ−1

13 ·
∂tuBz

∂ζ

2t ε̄yz =
∂tuBy

∂tz
+

∂tuBz

∂ty

= tJ−1
31 ·

∂tuBy

∂ξ
+ tJ−1

32 ·
∂tuBy

∂η
+ tJ−1

33 ·
∂tuBy

∂ζ
+ tJ−1

21 ·
∂tuBz

∂ξ
+ tJ−1

22 ·
∂tuBz

∂η
+ tJ−1

23 ·
∂tuBz

∂ζ

(3.56)
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Extend to enhanced 3D beam elements with large rotation/ small strain behavior

The incremental strains of the proposed 3D beam element can be expressed in a simple
way:

t ε̄ =
t
tB̄ tu (3.57)

Where,
t ε̄ =

[
t ε̄xx t ε̄yy t ε̄zz t γ̄yz t γ̄xz t γ̄xy

]T (3.58)

tu =
{

tu1x tu1y tu1z tθ
1
x tθ

1
y tθ

1
z tv+c tv−c tv+a tv+b

tw+
c tw−c tw+

a tw+
d tu3x tu3y tu3z tθ

3
x tθ

3
y tθ

3
z
}T (3.59)

Where t ε̄ is the incremental strain vector, t
tB̄ is the strain-displacement transformation

matrix, and tu is the vector of incremental nodal displacements, all of these quantities
are measured in the (tx, ty, tz) coordinate frame. Since the explicit form of the expression
of matrix gradient t

tB̄ is very long and it is not presented here, which can be seen in the
Appendix A.

As described previously, the usual shear factor is not used directly, and
2tεxy,2tεxz,2tεyz become:

2t ε̄xy =
tgyt γ̄xy,2t ε̄xz =

tgzt γ̄xz,2t ε̄yz =
tgzt γ̄yz

tgy =
5
4
(1−η

2), tgz =
5
4
(1−ζ

2)
(3.60)

Since the transverse strain components t ε̄yy, t ε̄zz and 2t ε̄yz are introduced, the full 3D
stress/strain constitutive relations can be used.

The reference coordinate system used in the U.L. formulation is defined by the prin-
cipal axes of the beam element in the position at time t (tx, ty, tz)

Therefore, the local stiffness matrix and the nodal point force vector are referred to
this coordinate frame. These matrices are transformed to the global coordinate frame
using:

t
tK = tTT t

tK̄
tT

t
tF = tTT t

t F̄
U = tTT

tu
tT = tT̄ 0T

(3.61)

In Equation (3.61), the bar (•) denotes the qualities (•) measured in the (tx, ty, tz)
coordinate frame. t

tK and t
tK̄ are linear strain incremental stiffness matrices measured

in global frame and local frame at time t respectively; t
tF and t

t F̄ are vectors of nodal
point forces referred to global frame and local frame at time t, U and tu are the vector of
incremental nodal displacements measured in global and local frame respectively. tT̄ is
the transformation matrix relating the coordinate frames (tx, ty, tz) and (0x,0y,0z), 0T is
the transformation matrix that expresses the nodal point displacements measured in the
beam local coordinate frame (0x,0y,0z) in terms of the global nodal point displacements.
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3. Analysis of large displacements/small strains behavior

t
tK̄L =

∫
tV

t
tB̄

T
tC̄ t

tB̄
tdV (3.62)

t
t F̄ =

∫
tV

t
tB̄

T t
t τ̂

tdV (3.63)

In Equations (3.62) and (3.63), t
tB̄T is the linear strain-displacement transformation,

tC is the material property matrix defined with respect to the configuration at time t, t
t τ̂

is a vector of Cauchy stresses in the configuration at time t, all of these quantities are
referred to the coordinate frame (tx, ty, tz).

For the enhanced 3D beam, transformation matrix tT̄ is evaluated using Euler angles
which define the rotations of the beam. The components of the matrix tT̄ are then con-
structed from the direction cosines of the axes tx, ty, tz with respect to the axes 0x,0y,0z.
We have:

tT̄ =


tT̄α 0 0 0 0

0 tT̄α 0 0 0
0 0 tT̄β 0 0
0 0 0 tT̄α 0
0 0 0 0 tT̄α

 (3.64)

Where, tT̄β is an identity matrix of order 8×8 while tT̄α is a matrix of order 3×3.
The orthogonal matrix, tT̄α may be composed in various ways. Here, we shall adopt

the usage of three Euler’s angles φ,θ,ψ, that represent rotations about the x,y,z axes,
respectively. For any single rotation about the x,y,z, one may assign as tT̄α the following
tTx

α (φ),
tTy

α (θ) or tTz
α (ψ) matrices, respectively:

tTx
α (φ) =

 1 0 0
0 cosφ sinφ

0 −sinφ cosφ


tTy

α (θ) =

 cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ


tTz

α (ψ) =

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1


(3.65)

However, a generic orthogonal transformation will be composed as a rotation by the
angle ψ about the z-axis, followed by a rotation by the angle θ about the y-axis (in its
new position x′,y′,z′), followed by a rotation by the angle φ about the x-axis (in its new
position x′′,y′′,z′′), see Figure 3.9. Thus, the final resulting system is x,y,z. In this case,
the orthogonal matrix tT̄α takes the form:

tT̄α = tTx
α (φ) · tT

y
α (θ)

t ·Tz
α (ψ) (3.66)
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Numerical studies

tT̄α =

 cosθcosψ cosθsinψ −sinθ

sinφsinθcosψ− cosφsinψ sinφsinθsinψ+ cosφcosψ sinφcosθ

cosφsinθcosψ+ sinφsinψ cosφsinθsinψ− sinφcosψ cosφcosθ


(3.67)

𝑧, 𝑧′
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𝜙

Figure 3.9 – Definition of Euler’s angles.

3.7 Numerical studies

The updated Lagrangian-based new 3D beam element was implemented in the computer
program MATLAB and a number of numerical examples analyses were carried out, and
the results are systematically compared with corresponding values of ABAQUS/Standard
3D simulations. We report here the results of some of the analyses. Since large dis-
placement/ large rotation has nothing to do with the uniaxial tension and pure transverse
compression behavior, such as the examples described in section 2.6.1 and section 2.6.4,
which won’t be listed here. In this chapter, some typical examples are chosen to show
the bending, shear and torsion performance with large displacements/ small strains. Two
problems were analyzed: first, a moderate displacement analysis of a clamped cantilever
with one transverse concentrated end load and two transverse concentrated end loads were
carried out respectively; second, a large displacement analysis of a clamped cantilever
subjected to two concentrated end forces. In order to verify the general applicability of
the new beam element, two materials are used for simulations: isotropic and orthotropic
materials.

In these examples, we consider a cantilever beam with length l = 10mm, width
b = 1mm and thickness h = 1mm. The cantilever was modelled using 10 beam elements
for calculations as shown in Figure 2.11(a). Then the results are compared with cor-
responding values from ABAQUS/Standard 3D simulations (using C3D8I element) for
calculating the same example. Since for large displacement analysis, the mesh model
shown in Figure 2.11(b) can’t achieve the calculation accuracy, much more elements are
needed, which has 10×10×100 = 10000 elements.
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3. Analysis of large displacements/small strains behavior

3.7.1 Large displacement/rotation analysis of a cantilever with
isotropic material

In this section, the material was assumed to be linear elastic, material parameters are
E = 1×105MPa, ν = 0.3. A series of examples are carried out to test the new 3D beam
element, some of them are reported here.

3.7.1.1 Cantilever bending analysis 1

In this example, we consider a cantilever beam subjected to the action of a concentrated
force Fy = −50N at the right end. Since the concentrated force is in y direction, the
displacement in z direction is 0, but there is small displacement in x direction. Figure
3.10 gives the results comparisons of the displacements of centroidal axis, all the unit of
the results are expressed in the order of mm (In this thesis, unless specifically mentioned,
all the displacements are measured in mm). It can be seen that the two results are almost
the same. The biggest displacement in y direction is -1.930 mm using the new 3D beam
element while the value is -1.925 mm in ABAQUS. Since the solid element C3D8I doesn’t
have the rotational degree of freedom, the rotation angle of the centroidal axis around z
axis are measured using the FEM code developed in Matlab, which can be seen in Figure
3.11, the maximum rotation angle is about 16.60◦. We also compare the displacement
distribution of cross section obtained from ABAQUS and Matlab, as shown in Figure
3.12. All the results are in good agreement, Figure 3.12(a) shows the distribution of v+c
and v−c , there’s no big difference between the two results. For v+a and v+b , we observed
from the results of both ABAQUS and Matlab, there always exists v+a = v+b , so only the
distribution of is compared, which is shown in Figure 3.12(b), we can see that the two
results are consistent. Figure 3.13(a) shows the distribution of w+

c and w−c , the values are
in order of 10−5 mm in magnitude, which are small enough to neglect the errors between
ABAQUS and Matlab. Finally, the distribution of w+

a and w+
d is shown in Figure 3.13(b),

which also shows good consistent.

3.7.1.2 Cantilever bending analysis 2

The moderate displacement analysis of a clamped cantilever with one transverse concen-
trated end load doesn’t show any big problem. Here, we continue the bending analysis in
section 3.7.1.1, the difference is that two transverse concentrated end loads in y direction
and z direction respectively are employed at the same time, Fy = Fz =−50N.

Since the concentrated forces are applied in both two transverse directions, from the
results obtained from both ABAQUS and Matlab, there’s Uy =Uz for the centroidal axis.
Figure 3.14 just shows the comparisons of the displacements in x and y directions of
centroidal axis, the results are almost the same. The biggest displacement in y direction
is -1.866 mm using the new 3D beam element while the value is -1.844 mm in ABAQUS.
We also compare the distribution of v+c and v−c , v+a and v+b , w+

c and w−c , w+
a and w+

d ,
which can be seen in Figure 3.15 and 3.16. All the results from ABAQUS and Matlab are
consistent, which show no big difference.
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Figure 3.10 – Displacements of the centroidal axis in x and y direction.
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Figure 3.11 – Rotations angles of the centroidal axis around z axis.
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3. Analysis of large displacements/small strains behavior

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0 1 2 3 4 5 6 7 8 9 10

D
is

p
la

ce
m

en
ts

o
f 

  
  
  

an
d
  
  
  

  
/ 

m
m

Positions along x axis/mm 

       (Abaqus)        (Abaqus)

       (Matlab)        (Matlab)

𝑣 𝑐
+

𝑣 𝑐
−

𝑣𝑐
+ 𝑣𝑐

−

𝑣𝑐
+ 𝑣𝑐

−

(a)

0.000

0.005

0.010

0.015

0.020

0.025

0 1 2 3 4 5 6 7 8 9 10

D
is

p
la

ce
m

en
ts

 o
f 

  
  
  

 /
 m

m

Positions along x axis/mm 

       (Abaqus)

       (Matlab)

𝑣𝑎
+

𝑣𝑎
+

𝑣 𝑎
+

(b)

Figure 3.12 – Comparisons of the displacement distribution of cross section. (a). Distri-
bution of v+c and v−c . (b). Distribution of v+a .
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Figure 3.13 – Comparisons of the displacement distribution of cross section. (a). Distri-
bution of w+

c and w−c . (b). Distribution of w+
a and w+

d .
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3. Analysis of large displacements/small strains behavior

-2.00

-1.60

-1.20

-0.80

-0.40

0.00

0.40

0 1 2 3 4 5 6 7 8 9 10

Positions along x axis/mm 

Ux (Abaqus) Uy (Abaqus)

Ux (Matlab) Uy (Matlab)

D
is

p
la

ce
m

en
ts

/
m

m

Figure 3.14 – Displacements of the centroidal axis in x and y direction.

3.7.1.3 Cantilever bending analysis 3

The moderate displacement analysis of a clamped cantilever with two transverse concen-
trated end loads is also in good consistent with the results from ABAQUS. In this example,
we continue the bending analysis in section 3.7.1.2, and apply Fy = Fz = −200N simul-
taneously. Since there exists Uy = Uz for the centroidal axis, it just needs to compare
the displacements in x and y directions, which can be seen in Figure 3.17. The biggest
displacement in y direction is -4.530 mm using the new 3D beam element while the value
is -4.513 mm in ABAQUS. The relative error is of order of 0.38%, which is very small.
Figure 3.18 shows the the rotation angle of the centroidal axis around zaxis measured us-
ing the FEM code developed in Matlab, the maximum rotation angle is about 43◦. Figure
3.19 and 3.20 give the comparisons of the distribution of v+c and v−c , v+a = v+b , w+

c and
w−c , w+

a and w+
d . For the large displacement analysis, the values are close and the change

trend are similar. We use 10000 elements in 3D ABAQUS/Standard simulations while 10
elements are used to solve the same problem. The calculations efficiency has improved
greatly. The assumptions of the new 3D beam element is quite different from the solid el-
ement C3D8I, it certainly will cause some errors during the calculations, and the relative
errors are controlled under 20% .

3.7.2 Large displacement/rotation analysis of a cantilever with or-
thotropic material

In this section, the material was assumed to be orthotropic, the engineering constants
are: E1 = 2× 105MPa, E2 = E3 = 1× 105MPa, ν12 = ν13 = 0.25, G12 = G13 = 5×
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Figure 3.15 – Comparisons of the displacement distribution of cross section. (a). Distri-
bution of v+c and v−c . (b). Distribution of v+a and v+b .
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Figure 3.16 – Comparisons of the displacement distribution of cross section. (a). Distri-
bution of w+

c and w−c . (b). Distribution of w+
a and w+

d .
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Figure 3.17 – Displacements of the centroidal axis in x and y direction.
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Figure 3.18 – Rotations angles of the centroidal axis around z axis.
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Figure 3.19 – Comparisons of the displacement distribution of cross section. (a). Distri-
bution of v+c and v−c . (b). Distribution of v+a and v+b .
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Figure 3.20 – Comparisons of the displacement distribution of cross section. (a). Distri-
bution of w+

c and w−c . (b). Distribution of w+
a and w+

d .
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3. Analysis of large displacements/small strains behavior

104MPa, G23 = E2/2(1+ ν23), . A series of examples are carried out to test the new
3D beam element used for orthotropic material with large displacement behavior, one
typical example is chosen to report here. Two transverse concentrated end loads in y
and z direction are applied at the meantime: Fy = Fz = −300N. Figure 3.21 shows the
comparisons of the displacements in x and y directions of centroidal axis, the results are
almost the same. The biggest displacement in y direction is -4.024mm using the new 3D
beam element while the value is -4.060 mm in ABAQUS. The distributions of v+c and v−c ,
v+a and v+b , w+

c and w−c , w+
a and w+

d can be seen in Figure 3.22 and 3.23, from which we
can see that all the results from ABAQUS and Matlab are consistent while existing some
errors, and all of the relative errors are controlled under 20%.
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Figure 3.21 – Displacements of the centroidal axis in x and y direction.

3.8 Conclusions and future developments
In this chapter, the large displacements/ small strains formulation of the enhanced 3D
beam element with section changes has been developed. And the formulation has been in-
troduced in a Matlab finite element code and a series of validation cases have been treated
and compared with 3D ABAQUS/Standard simulations. The results obtained are in good
agreement and encouraging, which are the follow-up work of the reference [GAO 16]. In-
deed, the final goal is to use those elements to model yarns in a textile composite preform.
The results presented in this chapter are only the second step, and the following steps are:
introducing contact behavior to the enhanced 3D beam to beam contact.
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Figure 3.22 – Comparisons of the displacement distribution of cross section. (a). Distri-
bution of v+c and v−c . (b). Distribution of v+a and v+b .
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Figure 3.23 – Comparisons of the displacement distribution of cross section. (a). Distri-
bution of w+

c and w−c . (b). Distribution of w+
a and w+

d .
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Chapter 4

Enhanced 3D beam to beam contact

4.1 Introduction and review of the related work
Contact and related phenomena occurring at the interface of two bodies are encountered at
every step of everyday life, in nature and in engineering. They are so common that usually
one does not think about them, despite the fact one takes advantage of their effects.

The numerical treatment of contact problems between deformable bodies has a long
history. Solution of this type of problem requires the scheme for solving variational in-
equalities, which result from inequality contact constraints. This end can be achieved in
several ways. Lagrange multiplier and penalty parameter methods known from optimiza-
tion theory [LUE 84] gained the most extensive use, mathematical background can be
also seen in [KIK 88]. The solution in the frame of mathematical programming can be
obtained as well [KLA 86].

First papers dealing with application of the finite element method in the contact anal-
ysis with large strains involved can be found in [CUR 88, SIM 92, WRI 92]. Among
many other known publications it is worth to mention two, almost simultaneously pub-
lished, monographs by Laursen [LAU 02] and by Wriggers [WRI 06]. They include
a thorough presentation of mathematical background of numerical contact formulation,
physical models of phenomena at the contact interfaces and the theoretical considerations
are illustrated by numerical results concerning many practical cases of contacting bodies.

The rapid development of computer technology enabled the analysis of variety of
more and more complicated contact cases involving e.g. large deformations or thermo-
mechanical coupling. Numerous papers dealing with contact problems between general
2D or 3D bodies, with or without friction can be named [CUR 88, PAR 89, WRI 90,
WRI 94, LAU 93]. Maker and Laursen [MAK 94] analyzed contact between a rod-like
object and a continuous medium.

The beam to beam contact is a special case of a 3D bodies contact. One might think of
contact between moving elements of machines, woven fabrics and textiles, sport racquet
stringing or, finally, a multi-degree twists of strands in steel cables or electric conduc-
tors. Especially the last case of beam-to-beam contact poses a great challenge because
it requires an advanced numerical model including effects of coupling of displacements,

93

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI026/these.pdf 
© [S. Gao], [2017], INSA Lyon, tous droits réservés



4. Enhanced 3D beam to beam contact

temperature, electric current and magnetic field. Beam contact is characterized by some
features, which demand a different approach than in the case of typical solids. That’s the
reason why the scarcity of this research is a much smaller number of practical applications
than in the case of typical solids, where application of simpler analysis including beam
contact finite elements can be profitable.

This research on beam contact was started by Wriggers and Zavarise [WRI 97,
ZAV 00], analyzing the contact between beams having a simple circular cross sec-
tion without and with Coulomb friction, respectively. And the research continued in
[LIT 02b, LIT 02a], where beam to beam contact has been investigated in the case of
frictionless and frictional contact for beams of rectangular cross section. The further de-
velopment concerned inclusion of thermal and electric coupling [BOS 05]. Some subse-
quent research was also devoted to smoothing procedures for 3D curves representing axes
of beams in contact [LIT 07a, LIT 07b]. A rigorous approach to the question of point-
wise contact was also suggested by Konyukhov and Schweizerhof in [KON 10]. There
the authors focused their interest on the closest-point projection procedure, which for the
beam-to-beam contact leads to the orthogonality conditions [WRI 97]. The same authors
used their approach to analyze the problem of rope wound around a cylinder and the ques-
tion of knot-tightening [KON 11b]. The latter issue was also considered and solved by
Durville in [DUR 05, DUR 12]. Litewka [LIT 13, LIT 15] has investigated point-wise
beam-to-beam contact finite elements used in cases when beams get in contact at very
acute angles.

However, the literature concerning contact between beam to beam with deformable
cross section is not so broad. The problems of this type can be found frequently in prac-
tice, such as woven fabrics, and racquet stringing. To the authors’knowledge, there exist
only few contributions [KAW 14, KAW 15], in which contact between 3D beams with
deformable circular cross sections is analyzed, dealing with the question of cross section
deformations at the contact zone. However, there are still many issues that might be ad-
dressed. For the contact between 3D beams with deformable rectangular cross section,
there’s no related literature yet. In this thesis, the challenge is that a more complicated
case of a contact finite element for 3D beams with rectangular cross-section is consid-
ered. The element is reported previously in chapter 2 and chapter 3, beam deformations
are taken into account, and the appropriate kinematic variables for normal contact to-
gether with their finite element approximation are derived in this chapter. Basing on the
weak form for normal contact and its linearization, the tangent stiffness matrix and the
residual vector are derived. The new element is tested using author’s computer programs
implanted in Matlab, a couple of examples are carried out and the results are compared
with that of the solid element C3D8I in ABAQUS/Standard simulations.

4.2 Frictionless Contact between Solids

Let us consider two bodies, B1 and B2, shown in Figure 4.1 [LIT 10], which undergo
deformation f, such that any arbitrary points on their surfaces, described in the initial
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Frictionless Contact between Solids

configuration with position vectors X0
1 and X0

2 undergo displacements U1 and U2. In the
current configuration they are defined by the position vectors X1 and X2, which can be
expressed by the formula:

f :

{
X1 = X0

1 +U1

X2 = X0
2 +U2

(4.1)

𝐵1

𝐵2

X1
0

X2
0

(a)

(b)

Deformation f:

𝑓(𝐵1)

𝑓(𝐵2)

𝑓(𝐵2)

𝑓(𝐵1)

X2C

X2C(𝜉𝐶)

X2(𝜉)

𝐧

𝐧

X1

X1

X

Y

Z

0X X Ui i i 

Figure 4.1 – Deformation of two bodies and penetration function:(a) separate bodies. (b)
penetration [LIT 10].

Contact only has the relationship with the points on surface of the bodies and its
formulation is practically independent with a physical model of the body material. That
is why the phenomena occurring inside the bodies are not dealt with here. It is only
assumed that the deformation f leads to large displacements in both bodies. Solution of a
problem in the theory of elasticity concerning the two bodies involves finding a minimum
of the potential energy functional Π.

minΠ = min(Π1 +Π2) (4.2)

Theoretically, in the deformation process f, a situation presented in Figure 4.1(b) may
occur, when the bodies intersect mutually. Obviously, in reality such a state is not allowed.
To exclude such a possibility, unilateral constraints are introduced. They are formulated
using a penetration function (or a gap function) gN . To this end, one of the bodies B1 is
distinguished as a slave body. Then the points X1 and X2C are obtained, as in Figure 4.1.
The location of the point X2C is expressed in terms of local surface coordinates ξ = ξC.
Then the penetration function is defined as:

gN = n◦ (X1−X2C) (4.3)
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4. Enhanced 3D beam to beam contact

Where the unit outward normal vector n on the surface of body B2 is introduced (Fig-
ure 4.1) and "◦" denotes the scalar product of vectors. The value of function gN provides
the distance between the points in the case of penetration.

Preserving the condition of non-penetrability requires that the penetration function
remains non-negative

gN > 0 (4.4)

The condition expressed by Equation (4.4) constitutes an inequality constraint, which
must be included in the minimization of the Equation (4.2). It should be emphasized, that
the inequality Equation (4.4) concerns all possible point pairs X1 and X2C.

If the condition of Equation (4.4) is accompanied by the constraint of contact normal
force, which can only be compressive:

FN 6 0 (4.5)

Then the complete set of the classical Hertz-Signorini-Moreau conditions for the fric-
tionless contact is obtained, together with the equality:

FNgN = 0 (4.6)

According to Equation (4.5), in the case of contact the penetration is zero and the con-
tact force is negative, while in the case of separation the gap is positive and the contact
force is zero [MOR 11]. These are the conditions of unilateral contact [JOH 74, KIK 88],
called also the Kuhn-Tucker conditions in the theory of optimization. The relations yield-
ing from contact, presented above, introduce only geometric constraints, which may be
called a low precision contact. In some cases it is necessary to consider high precision
contact, which requires introduction of physical law for the microscale phenomena at
rough contacting surfaces. In the present work, considerations are limited to the low
precision contact.

4.3 Finite element method in contact analysis
The constraints in the Equation (4.4) are in general related to each point lying on the
surface of the slave body and its projection on the surface of the master body. Various
types of contact finite elements can be used depending on the character of deformation
and the spatial dimension. The simplest possible element is the node-to-node element,
which can be used in 2D and 3D analysis, as shown in Figure 4.2(a). The restriction is
that it only can be applied in the cases with small displacements and small strains. No
distinction between master and slave bodies is necessary in this case. When it comes
to large displacements, especially large relative displacements between the bodies, node-
to-segment and node-to-surface should be used, which are presented in Figure 4.2(b)
and 4.2(c). The case of contacting beams is different from the elements mentioned, the
contact points do not coincide with slave nodes but lie between the nodes on both beams,
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Finite element method in contact analysis

see in Figure 4.2(d). In this case, the distinction between the slave and the master is not
introduced, either.

(a) (b)
slave

master

slave

master

(c) (d)

Figure 4.2 – Contact finite elements: (a) node-to-node. (b) node-to-segment. (c) node-
to-surface. (d) beam-to-beam [LIT 10].

Incremental-iterative solution of the functional minimization by the finite element
method at each iteration (for a pair of separated bodies A and B) takes the following
matrix form, shown in Equation (4.7), which actually represents two uncoupled sets of
equation. [

KA 0
0 KB

][
∆UA
∆UB

]
+

[
RA
RB

]
=

[
0
0

]
(4.7)

The situation is different, if additional terms, resulting from the constraint fulfillment
using the penalty method or the Lagrange multiplier method are introduced to ∏c. For the
case of penalty method, the related tangent stiffness matrix and the residual vector can be
written as:

KN =

[
KNAA KNAB
KNBA KNBB

]
,RN =

[
RNA
RNB

]
(4.8)

and for the Lagrange multiplier method as:

KN =

 KNAA KNAB KNAλ

KNBA KNBB KNBλ

KNAλ KNBλ 0

 ,RN =

 RNA
RNB
RNλ

 (4.9)
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4. Enhanced 3D beam to beam contact

If the matrices and vectors above are introduced to the finite element formulation, the
coupled set of equation for penalty method can be expressed as:[

(KA +KNAA) KNAB
KNBA KB +KNBB

][
∆UA
∆UB

]
+

[
RA +RNA
RB +RNB

]
=

[
0
0

]
(4.10)

and for the Lagrange multiplier method, one gets: (KA +KNAA) KNAB KNAλ

KNBA (KB +KNBB) KNBλ

KNAλ KNBλ 0

 ∆UA
∆UB
∆λ

+
 RA +RNA

RB +RNB
RNλ

=

 0
0
0

 (4.11)

Taking contact into account in the finite element analysis leads in a natural way to a
connection of the contacting bodies into one entity. For this new body, one tangent stiff-
ness matrix and one residual vector can be calculated, since the resulting sets of Equations
(4.10) or (4.11) are coupled, contrary to Equation (4.7).

4.4 Weak formulation and kinematic variables of contact
contribution

The basis to define the penetration function for two beams in the point-wise contact is
finding a pair of two closest points lying on two curves, as shown in Figure 4.3. In the case
of beams with circular cross sections the points are to belong to curves representing beam
axes, while for beams with rectangular cross sections the points lie on edges. Location
of an arbitrary point on the curve is defined by a local curvilinear coordinate, ξm or ξs,
respectively. The subscripts "m" and "s" does not mean the distinction between master
and slave beam. As mentioned previously, in the case of the beam to beam contact such a
distinction is not necessary since both beams are treated equivalently.

X

Y

Z

𝜉𝑚

𝜉𝑠

𝐶𝑚𝑛

𝐗𝑠𝑛

𝐗𝑚𝑛

𝐶𝑠𝑛

𝑑𝑛

Figure 4.3 – The closest points on two curves.

We consider a pair of beam edges with initial position vectors X0
m and X0

s undergoing
displacements Um and Us to give the current position vectors.

Xi = X0
i +Ui, i = m,s (4.12)
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Weak formulation and kinematic variables of contact contribution

The vital problem is to find the closest points Cmn and Csn on the beam edges, which
are represented by their coordinates ξm and ξs. A thorough discussion of the closest
points’ projection can be found in the papers by Konyuhov and Schweizerhof [KON 08,
KON 11a]. The position vectors Xmn,Xsn of the closest points Cmn and Csn on the curves
must fulfil the orthogonality conditions [LIT 10]:

(Xmn−Xsn) ·Xmn,n = 0
(Xmn−Xsn) ·Xsn,s = 0

(4.13)

Where the common notation for the partial derivatives with respect to the local coor-
dinates ξm and ξs was introduced: ( ),i = ∂( )

/
∂ξi, i = m,s.

Linearization of the orthogonality conditions gives the local coordinates increments
∆ξm,∆ξs:[

Xm,m ·Xm,m +(Xm−Xs) ·Xm,mm −Xm,m ·Xs,s
Xm,m ·Xs,s −Xs,s ·Xs,s +(Xm−Xs) ·Xs,ss

][
∆ξm
∆ξs

]
=

[
−(Xm−Xs) ·Xm,m
−(Xm−Xs) ·Xs,s

] (4.14)

For a pair of beams in contact, the strain energy can be split into three parts, which
correspond to the energy of each beam Πm, Πs, and the energy of contact contribution
Πc:

Π = Πm +Πs +Πc (4.15)

The contact contribution used penalty method is expressed as:

Π
ε
N =

1
2

εNg2
N (4.16)

And in Lagrange multiplier method:

Π
λ
N = λNgN (4.17)

Where, the superscript ε relates to the penalty method, and λ relates to the Lagrange
multiplier method. εN is the penalty parameter, λN is the Lagrange multiplier, and gN is
the penetration function defined as:

gN = ‖Xmn−Xsn‖ (4.18)

Where Xmn and Xsn are position vectors of the contacting points.
For a single active pair, the additional component of the functional variation can be

expressed as:

δΠ
ε
N = δ(

1
2

εNg2
N) = εNgNδgN (4.19)

δΠ
λ
N = δ(λNgN) = λNδgN +δλNgN (4.20)

99

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI026/these.pdf 
© [S. Gao], [2017], INSA Lyon, tous droits réservés



4. Enhanced 3D beam to beam contact

If contact occurs and the contact contribution terms must be taken into account, the
solution is an extremal value of Π, which leads to the requirement which leads to the
requirement δΠ = 0. Hence we have to compute for the penalty method and for the
Lagrange multiplier method:

δΠ
ε = δΠm +δΠs + εNgNδgN = 0 (4.21)

δΠ
λ = δΠm +δΠs +δλNgN +λNδgN = 0 (4.22)

The Newton iteration scheme for the solution of non-linear equation requires lin-
earization:

∆δΠ
ε = ∆δΠm +∆δΠs + εN∆gNδgN + εNgN∆δgN (4.23)

∆δΠ
λ = ∆δΠm +∆δΠs +δλN∆gN +∆λNδgN +λN∆δgN (4.24)

Since we are only interested here in the contact contribution, the following terms, as-
sociated with Πc, have to be computed and expressed in a suitable way as functions of the
displacement field: gN ,δgN ,∆gN ,∆δgN [WRI 97, LIT 02b, LIT 10]. From the penetration
function gN , we can obtain:

δgN = (δXmn−δXsn)
T ·n (4.25)

Here, the normal vector n has been introduced:

n =
Xmn−Xsn

‖Xmn−Xsn‖
(4.26)

After some algebra calculations,

δgN = (δUmn−δUsn)
T ·n (4.27)

Note that the linearization of the gap function ∆gN has the same structure as δgN :

∆gN = (∆Umn−∆Usn)
T ·n (4.28)

The linearization of ∆gN yields:

∆δgN = (∆δXmn−∆δXsn)
T ·n+(δXmn−δXsn)

T ·∆n (4.29)

and ∆n =
1

gN
[1−n⊗n][∆Xmn−∆Xsn].

Thus by taking into account normality conditions, we can rewrite ∆δgN :

∆δgN = (δUmn,m∆ξmn−δUsn,n∆ξsn) ·n +(∆Umn,mδξmn−∆Usn,nδξsn) ·n
+(Xmn,mm∆ξmnδξsn−Xsn,ss∆ξsnδξsn) ·n

+
1

gN
(δUmn +Xmn,mδξmn−δUsn−Xsn,sδξsn)

· (1−n⊗n)(∆Umn +Xmn,m∆ξmn−∆Usn−Xsn,s∆ξsn)

(4.30)
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Contact search

For the explicit expression of kinematic variables, the variation and the linearization
of the local coordinates δξmn,δξsn,∆ξmn,∆ξsn, must be derived, too. They can be obtained
from the linearization and the variation of the orthogonality conditions of Equation (4.13)
at ξmn and ξsn and obtain:

[∆Umn +Xmn,m∆ξmn−∆Usn−Xsn,s∆ξsn] ·Xmn,m +(Xmn−Xsn) · [∆Umn,m +Xmn,mm∆ξmn] = 0
[∆Umn +Xmn,m∆ξmn−∆Usn−Xsn,s∆ξsn] ·Xsn,s +(Xmn−Xsn) · [∆Usn,s +Xsn,ss∆ξsn] = 0

(4.31)
This equation can be rearranged in matrix form as:[

∆ξmn
∆ξsn

]
= A−1

(
B
[

∆Umn
∆Usn

]
+C

[
∆Umn,m
∆Usn,s

])
(4.32)

Where

A =

[
Xmn,m ·Xmn,m +Xms ·Xmn,mm −Xmn,m ·Xsn,s

Xmn,m ·Xsn,s −Xsn,s ·Xsn,s +Xms ·Xsn,ss

]
B =

[
−X T

mn,m X T
mn,m

−X T
sn,s X T

sn,s

]
,C =

[
−Xms

T 0
0 −Xms

T

]
,Xms = Xmn−Xsn

(4.33)

Similarly, the variations of the local coordinates follow from:[
δξmn
δξsn

]
= A−1

(
B
[

δUmn
δUsn

]
+C

[
δUmn,m
δUsn,s

])
(4.34)

4.5 Contact search
In the contact search both beams are treated equivalently, no distinction between slave
and master is introduced and the contact points must be located simultaneously on both
beams. In the case of the rectangular cross section the problem is more complicated. The
contact may occur between the curves representing the longitudinal edges of real beams
[LIT 02b, LIT 10], several different configurations are possible, as shown in Figure 4.4.
The contact-search strategy used in the present analysis is based on several assumptions:

(1) Contact between beams is pointwise, i.e. the case of parallel beams getting into
contact is not covered;

(2) Cross sections of contacting beams undergo some deformations, they still remain
plane but not necessarily perpendicular to the respective beam axes;

(3) Contact occurs between edges of beams, for each pair of beams no more than two
edges of one beam can contact with no more than two edges of the second beam. This
means that the configuration shown in Figure 4.4(d) is not considered since very large
deformation leads to winding of one beam around another.

With the pair of the closest points Cmn and Csn found (Figure 4.3), one can calculate
the distance dN between them:

dN = ‖Xmn−Xsn‖ (4.35)

101

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI026/these.pdf 
© [S. Gao], [2017], INSA Lyon, tous droits réservés



4. Enhanced 3D beam to beam contact

(a) (b)

(c) (d)

Figure 4.4 – Contact between edges of beams with rectangular cross-sections. (a) One
pair. (b) Two pairs. (c) Four pairs. (d) More than four pairs [LIT 02b].

For the beams with rectangular cross-section, where dN represents the distance be-
tween the beam edges, this value is simultaneously equal to the penetration function:

gN = dN (4.36)

In the case of beams with rectangular cross sections, Equation (4.36) is always posi-
tive. In order to define a special criterion for this case, two beams named m and s sepa-
rately, as shown in Figure 4.5.

beam s

edge m
beam m

edge sedge s

edge m1

1 2

2

Figure 4.5 – Search of the closest edges [LIT 10].

102

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI026/these.pdf 
© [S. Gao], [2017], INSA Lyon, tous droits réservés



Contact search

The linearization of the orthogonality conditions and the Newton method are used to
perform the search for the closest points between edges.

1) The search for the closest points is carried out between four edges of beam m and
the axis of beam s, and two closest edges from beam m (m1 and m2) are selected.

2) The roles of the beams are exchanged and two edges, s1 and s2, which are the
closest edges of beam s with respect to the axis of beam m, are found.

3) The closest points are found for four pairs of the edges m1− s1, m1− s2, m2− s1
and m2− s2. For all these pairs, the contact criterion is checked.

The contact criterion takes the form as follows, the following vectors shown in Figure
4.6 are introduced [LIT 02b, LIT 10]:

sn

VCA 

m

A

VCC
Csn

Cmn

Amn

VCA

s

s

m

(a)

Cmn 

VCA 
m

VCC

Csn

Amn

m

(b)

Figure 4.6 – Contact criterion for beams with rectangular cross sections. (a) Separation.
(b) Penetration. [LIT 02b, LIT 10]
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4. Enhanced 3D beam to beam contact

1) The vector between the closest points Cmn and Csn on the beam edges:

VCC = Xsn−Xmn (4.37)

2) The vector between Cmn and the corresponding point Amn located on beam axis m:

VCA
m = XmA−Xmn (4.38)

3) The vector between Csn and the corresponding point Asn located on beam axis s:

VCA
s = XsA−Xsn (4.39)

The angles αm and αs between these vectors can be defined as:

αm = ∠(VCC,VCA
m )

αs = ∠(−VCC,VCA
s )

(4.40)

It can be noticed in Figure 4.6, the angles αm and αs are obtuse when the two beams
are separate while acute in the case of penetration. Hence, the contact criterion for the
beams with rectangular cross sections can be defined as:

cosαm < 0 and cosαs < 0 ⇒ Separate bodies
cosαm > 0 and cosαs > 0 ⇒ Penetration

(4.41)

4.6 Finite element formulation of contact contribution
In the case of beams with rectangular cross sections, the further stages must involve find-
ing the possible contact candidates among beam edges. To this end, the coordinates of
points lying on these edges (edges 1, 2, 3, 4) must be expressed by means of nodal dis-
placements of the beam element, shown in Figure 4.7. Here, the shape functions for the
beam finite element based on Updated Lagrangian formulation presented in chapter 3 is
used. To determine displacements of a point C on the beam edge using Equation (3.54),
one must substitute for the coordinates η and ζ the appropriate values:

Edge 1 :~uB1 =~uB(η = 1,ζ = 1)
Edge 2 :~uB2 =~uB(η = 1,ζ =−1)
Edge 3 :~uB3 =~uB(η =−1,ζ =−1)
Edge 4 :~uB4 =~uB(η =−1,ζ = 1)

(4.42)

Substitution of η = 0,ζ = 0 allows for calculation of the displacements of a point
located on the beam axis.

All the kinematic variables derived in Section 4.4 can now be expressed in terms of
nodal displacements of two beam elements, within which the current contact points are
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Finite element formulation of contact contribution
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Figure 4.7 – Illustration of the beam finite element with rectangular cross section.

located. The nodal displacements in respective element local coordinates (see Figure 4.7)
can be grouped into the following vectors:

uM =
{

ux1m uy1m uz1m θx1m θy1m θz1m v+cm v−cm v+am v+bm

w+
cm w−cm w+

am w+
dm ux3m uy3m uz3m θx3m θy3m θz3m

}T

uS =
{

ux1s uy1s uz1s θx1s θy1s θz1s v+cs v−cs v+as v+bs

w+
cs w−cs w+

as w+
ds ux3s uy3s uz3s θx3s θy3s θz3s

}T

(4.43)

In Section 4.4, the contact contributions from Equation (4.21) to (4.30) are expressed
in terms of nodal displacements. It is done by using the representation of edge functions
evaluated at the closest points. This yields the additional terms to be incorporated into
the tangent stiffness matrix and residual vector within the Newton iterations scheme. To
this end, the variation and linearization of the displacement vectors Umn and Usn as well
as their derivatives with respect to the local coordinates ξm and ξs need to be determined.
For the values in local coordinate system (ξ,η,ζ), one can write down:

∆umn =
∂umn

∂uM
∆uM = Dmn ·∆uM

∆usn =
∂usn

∂uS
∆uS = Dsn ·∆uS

(4.44)

δumn =
∂umn

∂uM
δuM = Dmn ·δuM

δusn =
∂usn

∂uS
δuS = Dsn ·δuS

(4.45)
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4. Enhanced 3D beam to beam contact

∆umn,m =
∂umn,m

∂uM
∆uM = Emn ·∆uM

∆usn,s =
∂usn,s

∂uS
∆uS = Esn ·∆uS

(4.46)

δumn,m =
∂umn,m

∂uM
δuM = Emn ·δuM

δusn,s =
∂usn,s

∂uS
δuS = Esn ·δuS

(4.47)

The matrices Dmn, Dsn, Emn, Esn can be derived by tedious differentiation of the dis-
placement approximation with respect to the local coordinates. Results of these calcula-
tions are presented in Appendix B.

Transformation of the Equation (4.44) to (4.47) from local coordinate system to the
global coordinates yields the following relations:

∆Umn = (TT
m Dmn T12m) ∆UM = Gmn ∆UM

∆Usn = (TT
s Dsn T12s) ∆US = Gsn ∆US

(4.48)

δUmn = Gmn δUM

δUsn = Gsn δUS
(4.49)

∆Umn,m = (TT
m Emn T12m) ∆UM = Hmn ∆UM

∆Usn,s = (TT
s Esn T12s) ∆US = Hsn ∆US

(4.50)

δUmn,m = Hmn δUM

δUsn,s = Hsn δUS
(4.51)

Where the transformation matrix T12m,T12s are defined by Equation (3.64), in which
Tm,Ts are defined as Tα(α = m or s).

The linearization of the local coordinates of the contact points can be expressed by
means of the nodal displacements as:

[
∆ξmn
∆ξsn

]
= A−1

(
B
[

Gmn 0
0 Gsn

]
+C

[
Hmn 0

0 Hsn

])[
∆UM
∆US

]
= F

[
∆UM
∆US

]
(4.52)

Where,

F=A−1
[
(−Xmn,m

T ·Gmn−Xms
T ·Hmn) Xmn,m

T ·Gsn
−Xsn,s

T ·Gmn (Xsn,s
T ·Gsn−Xms

T ·Hsn)

]
,Xms =Xmn−Xsn

(4.53)
Similarly, the variations of the local coordinates are given by:
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Finite element formulation of contact contribution

[
δξmn
δξsn

]
= F

[
δUM
δUS

]
(4.54)

Furthermore, to simplify the notation the following matrix is introduced

L =
[

Gmn −Gsn
]
+
[

Xmn,m −Xsn,s
]

F (4.55)

Having discretized the kinematic variables, finally the residual vector and the tan-
gent stiffness matrix for the contact element can be calculated for both formulations: the
penalty method and the Lagrange multipliers method. The contact contributions within
penalty and Lagrange multiplier methods, resulting from Equation (4.21) to (4.24) can
now be expressed as:

∆δΠ
ε
N = (δUT

M,δUT
S ) [K

ε
N ] (∆UM,∆US)

T (4.56)

∆δΠ
λ
N = (δUT

M,δUT
S ,δλN)

[
Kλ

N

]
(∆UM,∆US,δλN)

T (4.57)

δΠ
ε
N = (δUT

M,δUT
S ) [R

ε
N ] (4.58)

δΠ
λ
N = (δUT

M,δUT
S ,δλN)

[
Rλ

N

]
(4.59)

Finally, with matrices G,H,F,L and the normal vector n defined previously, the resid-
ual vector and symmetric tangent stiffness matrix for the penalty method has the following
form:

Kε
N = εNK1 + εNgNK2 (4.60)

Rε
N = εNgNR1 (4.61)

where:

R1 =

[
GT

mnn
−GT

snn

]
(4.62)

K1 = R1⊗R1 (4.63)

K2 =

[
HT

mnn 0
0 −HT

snn

]
F+FT

[
nT Hmn 0

0 −nT Hsn

]
+FT

[
nT Xmn,mm 0

0 −nT Xsn,ss

]
F+

1
gN

LT (1−n ·nT )L
(4.64)

while for the Lagrange multipliers method one gets

Kλ
N =

[
λNK2 R1

RT
1 0

]
(4.65)

Rλ
N =

[
λNR1

gN

]
(4.66)
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4. Enhanced 3D beam to beam contact

4.7 Smooth contact between enhanced 3D beam contact

4.7.1 3D curve smoothing using Hermite polynomial

A proper representation of surface geometry for bodies undergoing contact and sliding
is a very important aspect of modeling in the finite element method. The fundamental
issue is to ensure continuity and smoothness. In the case when a contact point moves
from one element to another, the quadratic convergence of the Newton-Raphson method is
affected. Hence, in the analysis of contact between beams with rectangular cross-sections,
shape functions in the form of the third-order polynomials are used to provide the C1

continuity of curves representing edges of beams. These functions are taken directly from
the formulation of the beam finite elements. There are several methods of construction
of a smooth curve. They involve two types of polynomial representation of a 3D curve,
the Hermite’s polynomials and the Bezier’s curves, as well as two types of curve layout
related to the beam nodes, the inscribed curve method and the node-preserving method
[LIT 07a, LIT 07b, LIT 10]. Here, we adopt the inscribed curve method.

The suggested procedure of smoothing a curve in 3D is based only on current position
vectors of nodes of beam elements discretizing a pair of contacting beams. Firstly, a
contact search routine, presented in Section 4.5, preselects contact candidates, i.e. the
closest beam elements. In this approach the smooth contact segments are constructed on
two pairs of the adjacent closest beam elements. So, in fact, for each beam a pair of the
closest elements has to be found. Then each of these pairs undergoes the smoothing. In
the case of inscribed curve method, a segment of C1 continuous curve is constructed using
three adjacent nodes, as shown in Figure 4.8. This curve is formulated parametrically with
the local coordinate ξm or ξs ranging from −1 to 1. In the following, the subscript "m" or
"s" will be skipped for the sake of notation brevity. Any point on the curve can be defined
by its position vector:

A = (X ,Y,Z)T (4.67)

23l

23C

3

2

1

12C

12l

123l

2A
A

3A
X

Y

Z

Figure 4.8 – Construction of inscribed curve segment.
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Smooth contact between enhanced 3D beam contact

Hermite’s polynomials are used to define the curve mathematically, for an arbitrary
point on the curve, it can be expressed by:

X = a1ξ
3 +b1ξ

2 + c1ξ+d1

Y = a2ξ
3 +b2ξ

2 + c2ξ+d2

Z = a3ξ
3 +b3ξ

2 + c3ξ+d3

(4.68)

In the vector form, Equation (4.68) can be written down as:

X =
[

a1 b1 c1 d1
][

ξ3 ξ2 ξ 1
]T

= α1 ·ξ

Y =
[

a2 b2 c2 d2
][

ξ3 ξ2 ξ 1
]T

= α2 ·ξ

Z =
[

a3 b3 c3 d3
][

ξ3 ξ2 ξ 1
]T

= α3 ·ξ

(4.69)

The position vectors for three nodes of two adjacent beam elements involved in the
smoothing procedure are written in the form:

A1 = (X1,Y1,Z1)
T

A2 = (X2,Y2,Z2)
T

A3 = (X3,Y3,Z3)
T

(4.70)

The boundary conditions required to determine the coefficients of Hermite’s polyno-
mial in Equation (4.69), which ensure that the curve passes through the mid points C12
and C23, and forcing it to be tangent to the straight line segments, there is:

ξ =−1 ⇒ X = X12 =
X1 +X2

2
, Y = Y12 =

Y1 +Y2

2
, Z = Z12 =

Z1 +Z2

2

ξ = 1 ⇒ X = X23 =
X2 +X3

2
, Y = Y23 =

Y2 +Y3

2
, Z = Z23 =

Z2 +Z3

2

ξ =−1 ⇒ ∂X
∂ξ

= ϕ12X =
X2−X1

2l12
l123,

∂Y
∂ξ

= ϕ12Y =
Y2−Y1

2l12
l123,

∂Z
∂ξ

= ϕ12Z =
Z2−Z1

2l12
l123

ξ = 1 ⇒ ∂X
∂ξ

= ϕ23X =
X3−X2

2l23
l123,

∂Y
∂ξ

= ϕ23Y =
Y3−Y2

2l23
l123,

∂Z
∂ξ

= ϕ23Z =
Z3−Z2

2l23
l123

(4.71)
The straight line distances 1−2, 2−3 and C12−C23 are present. They are denoted by

l12, l23 and l123 respectively, and can be calculated as:

l12 = ‖A2−A1‖
l23 = ‖A3−A2‖

l123 =

∥∥∥∥A2 +A3

2
− A1 +A2

2

∥∥∥∥ (4.72)

Expressing the polynomial coefficients in the vector α1 in terms of the coordinates
and the slopes of the center points:
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4. Enhanced 3D beam to beam contact

α1 =
1
4


1 −1 1 1
0 0 −1 1
−3 3 −1 −1
2 2 1 −1




Xc12
Xc23

ϕc12X
ϕc23X

= B1


Xc12
Xc23

ϕc12X
ϕc23X

 (4.73)

Finally, the polynomial coefficients in the vector α1 can be expressed in terms of
components of the position vectors:

α1 = B1
1
2


1 1 0
0 1 1

− l123

l12

l123

l12
0

0 − l123

l23

l123

l23


 X1

X2
X3

= B1B2

 X1
X2
X3

 (4.74)

Similarly, for vector α2,α3, there is:

α2 = B1B2

 Y1
Y2
Y3

 ,α3 = B1B2

 Z1
Z2
Z3

 (4.75)

It is possible to express the position vector of any point on the smooth curve in terms
of the nodal coordinates:

X = ξ ·
[
B1B2(X1,X2,X3)

T
]

Y = ξ ·
[
B1B2(Y1,Y2,Y3)

T
]

Z = ξ ·
[
B1B2(Z1,Z2,Z3)

T
] (4.76)

4.7.2 Finite element discretization of smooth contact
Application of Equation (4.76) for the position vectors of the points on smooth curve, pre-
sented in Section 4.7.1, in the modeling of axes of two contacting beams with rectangular
cross-sections leads to the formulation of smooth beam contact finite elements. Each
of these elements involves nodes of two pairs of adjacent beam finite elements. Since
the proposed curve approximations do not depend on nodal rotations but only linear dis-
placements. Hence, the involved degrees of freedom of the contact element will be 18
displacements of 6 end nodes involved (3 per contacting beam), which can be assembled
in the following way:

q =
{

ux1m uy1m uz1m ux3m uy3m uz3m ux5m uy5m uz5m

ux1s uy1s uz1s ux3s uy3s uz3s ux5s uy5s uz5s
}T

=
{

uT
M,uT

S
}T (4.77)

Discretization of the kinematic variables presented in Sections 4.6 is carried out in the
same way for the presented smooth elements. The same notation for the matrices can be
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Numerical examples

applied and all the relations remain unchanged. The differences are how to determine the
matrices Gmn and Gsn in Equation (4.48) and (4.49), Hmn and Hsn in (4.50) and (4.51).
Their components should be calculated as partial derivatives with respect to the nodal
displacements and their derivatives. These calculations are carried out using the symbolic
algebra program Matlab. Due to the very complex character of the Equation (4.76), the
explicit representation of these matrices is too long to be presented here. Hence, instead
of presenting the matrices themselves, we present the commands of Matlab worksheet
in Appendix C, which allow for calculation of these matrices and creation of an output
ready-to-use Matlab computer code.

In the case of inscribed curve representation, each of these matrices has dimensions
3× 9, which influences the dimensions of all further matrices included in the residual
vectors and the tangent stiffness matrices of the contact beam finite elements. The matrix
F in Equation (4.52) used to calculate the linearization and variation of the local co-
ordinates has the dimensions 2× 18. The auxiliary matrix L given in Equation (4.55) is
a 3× 18 matrix. Finally, the 18× 18 tangent stiffness matrices and the 18 component
residual vectors for contact elements can be determined.

4.8 Numerical examples
Since the final goal of the present work is to use the new 3D beam element to model and
simulate the behavior of the yarn in a unit cell (shown in Figure 4.9), which includes three
kinds of contact, as introduced in Section 4.5: (1) one pairs of points (Figure 4.4a), (2)
edge to edge (Figure 4.4b), (3) surface to surface (Figure 4.4c).

X Y

Z

Figure 4.9 – Illustration of unit cell with rectangular cross-section.

In this section, three numerical examples of the frictionless contact between new 3D
beams with rectangular cross sections are presented. All of the three examples are solved
using penalty method. It is well known, that the Penalty method requires a proper value
of the penalty parameter to avoid the ill-conditioning of tangent stiffness matrix and fulfill
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4. Enhanced 3D beam to beam contact

the constraint conditions. The purpose of the presented examples is a qualitative analysis
of contact and checking the correctness and the effectiveness of the proposed 3D beam
finite element, the contact numerical algorithm is modified base that of [LIT 10], hence,
the physical solution of the problems is of a smaller importance.

For the model in Matlab, each beam has 10 elements while for the beam model in
Abaqus, the mesh model is the same as Figure 2.11 (b), at least 640 elements for each
beam are used for the same calculation. And the results using the enhanced 3D beam
element from Matlab program and those from Abaqus using C3D8I element are compared
systematically. The following data are used in the calculations: E = 1×105MPa, ν = 0.3,
cross section dimensions b = h = 1mm, length 10mm.

4.8.1 Example 1: point to point contact
In this example, contact between two cantilever beams shown in Figure 4.10 is analyzed.
There is only one pair of contact points. For beam m, the free end is subjected to a
concentrated force F = −70N in y direction, applied in 70 increments. And penalty
parameter is εN = 3000.

F

m

s

m
s

m

s

m

s

(a) 

(c) (d)

(b)

X
Y

Z

X
Y

Z
X

Z
Y

Figure 4.10 – Initial configuration of contact between one pair of points. (a). 3D view.
(b). Plane XY. (c). Plane XZ. (d). Plane YZ.
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Figure 4.11 – Displacements of the centroidal axis in three directions. (a) Beam m. (b)
Beam s.
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Figure 4.12 – Displacement distribution comparisons of cross section of beam m. (a).
Distribution of v+c and v−c . (b). Distribution of v+a and v+b . (c). Distribution of w+

c and w−c .
(d). Distribution of w+

a and w+
d .

Figure 4.11 gives the results of the comparisons of the displacements of centroidal
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4. Enhanced 3D beam to beam contact

axis of beam m and beam s separately. For beam m, the displacements in x,y,z directions
from both Matlab and Abaqus are quite the same. While for beam s, the displacements in
x and y direction from the two results are almost the same, but there’s a little difference
for the values in z direction.

We also compare the displacement distributions of cross section obtained from Abaqus
and Matlab, as shown in Figure 4.12 (beam m) and Figure 4.13 (beam s). From Figure
4.12, we can see that the distributions of v+c and v−c , w+

c and w−c of beam m from both
Abaqus and Matlab are quite the same, shown in Figure 4.12(a) and 4.12(c). For distri-
butions of v+a and v+b , w+

a and w+
d , the values are close and the change trend are similar

(see Figure 4.12b and 4.12d), which don’t show big difference. From Figure 4.13, we can
see the distributions of v+c and v−c , w+

c and w−c of beam s from both Abaqus and Matlab
are close (Figure 4.13a and 4.13c), and the values of v+a and v+b , w+

a and w+
d of both two

results have similar change trend though exist some errors (see Figure 4.13b and 4.13d).
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Figure 4.13 – Displacement distribution comparisons of cross section of beam s. (a).
Distribution of v+c and v−c . (b). Distribution of v+a and v+b . (c). Distribution of w+

c and w−c .
(d). Distribution of w+

a and w+
d .

From the observation, we can see that all the results for beam m are very good while
existing some errors for beam s, the problem isn’t the beam element itself, but the contact
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Numerical examples

algorithm calculation method and how to transfer the contact force to the transverse cross
section. The contact algorithm is just an approximation, which may be different from that
in commercial software Abaqus. Another reason may be that the shape function (v(x,y,z)
and w(x,y,z) in Equation (2.46) and (2.47) of the enhanced 3D beam element aren’t totally
complete quadratic since we don’t have enough information for building the completely
quadratic polynomial. Therefore, while subjected contact force in the point on the edge
of beam s, the cross section doesn’t deform symmetrically.

4.8.2 Example 2: edge to edge contact

In this example, we consider a pair of beam with edge to edge contact, shown in Fig-
ure 4.14. The free end of beam m is subjected to a concentrated force F = −70N in y
direction, applied in 70 increments, and the penalty parameter εN = 3000.

F
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s

m
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m
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(a) 

(c) (d)

(b)

X
Y

Z

X
Y

Z
X

Z
Y

Figure 4.14 – Initial configuration of contact between edge to edge. (a). 3D view. (b).
Plane XY. (c). Plane XZ. (d). Plane YZ.
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4. Enhanced 3D beam to beam contact
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Figure 4.15 – Displacements of the centroidal axis in three directions. (a) Beam m. (b)
Beam s.
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Figure 4.16 – Displacement distribution comparisons of cross section of beam m. (a).
Distribution of v+c and v−c . (b). Distribution of v+a and v+b . (c). Distribution of w+

c and w−c .
(d). Distribution of w+

a and w+
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Numerical examples

The results of the comparisons of the displacements of centroidal axis of beam m and
beam s can be seen in Figure 4.15. From Figure 4.15(a), we can see that the displacements
of beam m obtained using the enhanced 3D beam element are quite the same as the results
from Abaqus 3D simulations. However, there exists some errors for the displacements of
beam s in z direction while the values in x and y directions are almost the same, see in
Figure 4.15(b). Figure 4.16 and Figure 4.17 show the displacement distributions of cross
section of beam m and beam s obtained from Abaqus and Matlab, respectively. All the
comparisons for beam m is better than those of beam s, the possible reason is explained
in Section 4.8.1.
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Figure 4.17 – Displacement distribution comparisons of cross section of beam s. (a).
Distribution of v+c and v−c . (b). Distribution of v+a and v+b . (c). Distribution of w+

c and w−c .
(d). Distribution of w+

a and w+
d .

4.8.3 Example 3: surface to surface contact

Here, a pair of beams with surface to surface contact is considered, as shown in Fig-
ure 4.18. The free end of beam m is subjected to a concentrated force F = −70N in y
direction, applied in 70 increments, and the penalty parameter εN = 500.
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4. Enhanced 3D beam to beam contact
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Figure 4.18 – Initial configuration of contact between surface to surface. (a). 3D view.
(b). Plane XY. (c). Plane XZ. (d). Plane YZ.
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Figure 4.19 – Displacements of the centroidal axis in three directions. (a) Beam m. (b)
Beam s.
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Conclusions and future developments

Figure 4.19 shows the results of the comparisons of the displacements of centroidal
axis of beam m and beam s respectively, from which we can see that the displacements
of beam m and s obtained using the enhanced 3D beam element are quite the same as
the results from Abaqus 3D simulations. The displacement distributions of cross section
of beam m and beam s obtained from Abaqus and Matlab are shown in Figure 4.20 and
Figure 4.21 respectively. The results are not good except the distributions of v+c and v−c
for both beam m and s. The possible reason may be the same as explained in Section
4.8.1. Another reason may be the number of the elements, since there are at least 640
elements for each beam in Abaqus while just 10 elements used in Matlab.

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0 1 2 3 4 5 6 7 8 9 10

D
is

p
la

ce
m

en
ts

 o
f 

  
  

  
an

d
  

  
  

  
/ 

m
m

Positions along x axis/mm 

       (Abaqus)        (Abaqus)

       (Matlab)        (Matlab)

𝑣𝑐
+ 𝑣𝑐

−

𝑣𝑐
+ 𝑣𝑐

−

𝑣 𝑐
+

𝑣 𝑐
−

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4 5 6 7 8 9 10

D
is

p
la

ce
m

en
ts

 o
f 

  
  

  
 a

n
d

  
  
  

 /
 m

m

Positions along x axis/mm 

       (Abaqus)        (Abaqus)

       (Matlab)        (Matlab)

𝑣 𝑎
+

𝑣
𝑏+

𝑣𝑎
+ 𝑣𝑏

+

𝑣𝑎
+ 𝑣𝑏

+

-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

0.0000

0.0002

0.0004

0.0006

0 1 2 3 4 5 6 7 8 9 10

D
is

p
la

ce
m

en
ts

 o
f 

  
  

  
  
an

d
  

  
  

  
 /

 m
m

Positions along x axis/mm 

       (Abaqus)        (Abaqus)

       (Matlab)        (Matlab)

𝑤
𝑐+

𝑤
𝑐−

𝑤𝑐
+ 𝑤𝑐

−

𝑤𝑐
+ 𝑤𝑐

−

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0 1 2 3 4 5 6 7 8 9 10

D
is

p
la

ce
m

en
ts

 o
f 

  
  

  
  
an

d
  

  
  

  
 /

 m
m

Positions along x axis/mm 

       (Abaqus)        (Abaqus)

       (Matlab)        (Matlab)

𝑤
𝑎+

𝑤
𝑑+

𝑤𝑎
+ 𝑤𝑑

+

𝑤𝑎
+ 𝑤𝑑

+

(a) (b)

(c) (d)

Figure 4.20 – Displacement distribution comparisons of cross section of beam m. (a).
Distribution of v+c and v−c . (b). Distribution of v+a and v+b . (c). Distribution of w+

c and w−c .
(d). Distribution of w+

a and w+
d .

4.9 Conclusions and future developments
In this chapter, the contact behavior is introduced and validation for new 3D beam to beam
contact with rectangular cross section is carried out. The contact formulation is derived
on the basis of Penalty formulation and Updated Lagrangian formulation using physical
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4. Enhanced 3D beam to beam contact

shape functions with shear effect included. An effective contact search algorithm, which
is necessary to determine an active set for the contact contribution treatment, is elabo-
rated. And a consistent linearization of contact contribution is derived and expressed in
suitable matrix form, which is easy to use in FEM approximation. Finally, some numer-
ical examples are presented which are only qualitative analysis of contact and checking
the correctness and the effectiveness of the proposed 3D beam element. Hence, the results
from the program implanted in Matlab is not totally the same as those from ABAQUS,
which will be improved in the future work. In the next step, we should further improve
the enhanced 3D beam element and the contact formulation. And the simulations base
on Updated Lagrangian formulation should be carried out and compared with the results
from those based on Penalty formulation.
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Figure 4.21 – Displacement distribution comparisons of cross section of beam s. (a).
Distribution of v+c and v−c . (b). Distribution of v+a and v+b . (c). Distribution of w+

c and w−c .
(d). Distribution of w+

a and w+
d .
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Conclusions and perspectives

This thesis is devoted to propose a new 3D beam element with deformable section while
breaking from classical beam hypothesis. The idea is inspired by the evolution of an
enriched shell element which has been firstly introduced in a 2D beam element in order
to validate the interest of such technique.

The new beam element is an evolution of a two nodes Timoshenko beam element
with an extra node located at mid-length. In this way, the new 3D beam element formu-
lation should include these main features as follows: each element has two end nodes
which are treated by combining Saint-Venant and Timoshenko hypothesis; the transverse
strains of both thickness and width direction are introduced based on the additional central
node. The transverse strain distributions are linear, and the formulation of displacement
is completely quadratic by adding the terms coupling the deformation in both transverse
directions; fully 3D constitutive law can be used directly since three extra strain compo-
nents εyy, εzz and 2εyz are introduced. The proposed element has been introduced in a
Matlab finite element code and a series of linear/small strain cases have been realized and
the results are systematically compared with the corresponding values form ABAQUS/S-
tandard 3D simulations. Both results obtained are in good agreement and quite the same.
Such results show, if needed, that the 8 extra degrees of freedom are sufficient to introduce
the coupling between εyy and εzz.

The second step is to introduce the orthotropic behavior and carry out validation for
large displacements/small strains based on Updated Lagrangian Formulation. A series of
numerical analyses are carried out, the results from Matlab using the enhanced 3D beam
element are quite the same with those from ABAQUS/Standard 3D simulations, which
shows that the enhanced 3D element can provide an excellent numerical performance
under large displacement condition (large rotation).

Contact behavior is introduced based on the basis of Penalty Formulation and Updated
Lagrangian formulation using physical shape functions with shear effect included. An
effective contact search algorithm is elaborated. And a consistent linearization of contact
contribution is derived and expressed in suitable matrix form, which is easy to use in
FEM approximation. Finally, some numerical examples are presented: point to point
contact, edge to edge contact and surface to surface contact. The results obtained from
Matlab and ABAQUS/Standard 3D simulations are similar though some errors exit, which
don’t show big difference. However, the results of contact shown in the present work are
only qualitative analysis of contact and checking the correctness and the effectiveness
of the proposed 3D beam element, the physical solution of the problems is of a smaller
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Conclusions and perspectives

importance. Hence, the results from the program implanted in Matlab is not totally the
same as those from ABAQUS, which will be improved in the future work.

Perspectives
The final goal of the present work is to use the new 3D beam elements to model yarns
in a textile composite preform. Therefore, besides the major conclusions obtained in this
thesis, additional investigations can be done in the future works. A summary of these is
presented below:

• Improve the contact algorithm so that the contact force can be transferred effec-
tively.

• The simulations of contact behavior base on Updated Lagrangian formulation
should be carried out and compared with the results from that based on Penalty
formulation.

• Introduce the contract behavior into a unit cell simulation. The model can be built
in Abaqus or TexGen, and then imported into Matlab for calculations using the new
3D beam element.

• Introduce the friction behavior into the contact model which is much closer to the
realistic.

• Improve and optimize algorithm used so that we can compare the CPU time with
that of ommercial software Abaqus.

• Realize the visualizations, which can show the results intuitively.
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Appendix A

Strain-displacement transformation
matrix B

The explicit form of the expression of strain-displacement transformation matrix t
tB̄ in

Equation (3.57) in Section 3.7 is very long. In order to simplify the notation, bar over the
symbols, superscript "t" and subscript "t" used previously are dropped here. Symbol B is
used for short, which can be expressed as follows:

[B]6×20 =



R11H
′
1 0 0 0 Ay1 Az1 0 0 0 0

0 R21H
′
1 0 Bx1 0 Bz1 Bv1 Bv2 Bv3 Bv4

0 0 R31H
′
1 Cx1 Cy1 0 0 0 0 0

R21H
′
1 R11H

′
1 0 Dx1 Dy1 Dz1 Dv1 Dv2 Dv3 Dv4

R31H
′
1 0 R11H

′
1 Ex1 Ey1 Ez1 0 0 0 0

0 R31H
′
1 R21H

′
1 Fx1 Fy1 Fz1 Fv1 Fv2 Fv3 Fv4

0 0 0 0 R11H
′
3 0 0 0 Ay3 Az3

0 0 0 0 0 R21H
′
3 0 Bx3 0 Bz3

Cw1 Cw2 Cw3 Cw4 0 0 R31H
′
3 Cx3 Cy1 Cz3

0 0 0 0 R21H
′
3 R11H

′
3 0 Dx3 Dy1 Dz3

Ew1 Ew2 Ew3 Ew4 R31H
′
3 0 R11H

′
3 Ex3 Ey1 Ez3

Fw1 Fw2 Fw3 Fw4 0 R31H
′
3 R21H

′
3 Fx3 Fy1 Fz3



(A.1)

Other simplifying notations used in Equation (A.1) are:

Ayi = R11 · (H
′
i ·

h
2

η ·V i
sz +H

′
i ·

b
2

ζ ·V i
tz)+R12 ·Hi ·

h
2
·V i

sz +R13 ·Hi ·
b
2
·V i

tz ; i = 1,3

Azi =−R11 · (H
′
i ·

h
2

η ·V i
sy +H

′
i ·

b
2

ζ ·V i
ty)−R12 ·Hi ·

h
2
·V i

sy−R13 ·Hi ·
b
2
·V i

ty ; i = 1,3
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A. Strain-displacement transformation matrix B

Bxi =−R21 ·H
′
i ·

b
2

ζ · (1−η) ·V i
tz +R22 ·Hi ·

b
2
·ζ ·V i

tz−R23 ·Hi ·
b
2
· (1−η) ·V i

tz ; i = 1,3

Bzi = R21 ·H
′
i ·

b
2

ζ · (1−η) ·V i
tx−R22 ·Hi ·

b
2

ζ ·V i
tx +R23 ·Hi ·

b
2
· (1−η) ·V i

tx ; i = 1,3

Bv j = R22
∂Vj

∂η
+R23

∂Vj

∂ζ
; j = 1,2,3,4
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2
· (1−ζ) ·V i
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Dzi =−R21 · (H
′
i ·

h
2

η ·V i
sy +H

′
i ·

b
2

ζ ·V i
ty)−R22 ·Hi ·

h
2
·V i

sy−R23 ·Hi ·
b
2
·V i

ty + ...

R11 ·H
′
i ·

b
2

ζ · (1−η) ·V i
tx−R12 ·Hi ·

b
2

ζ ·V i
tx +R13 ·Hi ·

b
2
· (1−η) ·V i

tx ; i = 1,3

Dv j = R12
∂Vj

∂η
+R13

∂Vj

∂ζ
; j = 1,2,3,4

Exi = R11 ·H
′
i ·

h
2

η · (1−ζ) ·V i
sy +R12 ·Hi ·

h
2
· (1−ζ) ·V i

sy−R13 ·Hi ·
h
2

η ·V i
sy ; i = 1,3

Eyi = R31 · (H
′
i ·

h
2

η ·V i
sz +H

′
i ·

b
2

ζ ·V i
tz)+R32 ·Hi ·

h
2
·V i

sz +R33 ·Hi ·
b
2
·V i

tz...

R11 ·H
′
i ·

h
2

η · (1−ζ) ·V i
sx−R12 ·Hi ·

h
2
· (1−ζ) ·V i

sx +R13 ·Hi ·
h
2

η ·V i
sx; i = 1,3
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Ezi =−R31 · (H
′
i ·

h
2

η ·V i
sy +H

′
i ·

b
2

ζ ·V i
ty)−R32 ·Hi ·

h
2
·V i

sy−R33 ·Hi ·
b
2
·V i

ty ; i = 1,3

Ew j = R12
∂Wj

∂η
+R13

∂Wj

∂ζ
; j = 1,2,3,4

Fxi =−R31 ·H
′
i ·

b
2

ζ · (1−η) ·V i
tz +R32 ·Hi ·

b
2
·ζ ·V i

tz−R33 ·Hi ·
b
2
· (1−η) ·V i

tz + ...

R21 ·H
′
i ·

h
2

η · (1−ζ) ·V i
sy +R22 ·Hi ·

h
2
· (1−ζ) ·V i

sy−R23 ·Hi ·
h
2

η ·V i
sy; i = 1,3

Fyi =−R21 ·H
′
i ·

h
2

η · (1−ζ) ·V i
sx−R22 ·Hi ·

h
2
· (1−ζ) ·V i

sx +R23 ·Hi ·
h
2

η ·V i
sx ; i = 1,3

Fzi = R31 ·H
′
i ·

b
2

ζ · (1−η) ·V i
tx−R32 ·Hi ·

b
2

ζ ·V i
tx +R33 ·Hi ·

b
2
· (1−η) ·V i

tx ; i = 1,3

Fv j = R32
∂Vj

∂η
+R33

∂Vj

∂ζ
; j = 1,2,3,4

Fw j = R22
∂Wj

∂η
+R23

∂Wj

∂ζ
; j = 1,2,3,4
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Appendix B

Calculations of matrix D and E

B.1 Calculation of matrix D
The matrices Dmn and Dsn in Equation (4.44) and Equation (4.45), all of dimensions
(3×20), can be derived by tedious differentiation of the displacement approximation with
respect to the local coordinates. In the case of the beam-to-beam contact, since both two
beams are treated equivalently, the subscripts "m" and "s" does not mean the distinction
between master and slave beam. The matrices Dmn and Dsn have the same form, in order
to simplify the notation, subscript "mn" and "sn" used previously are dropped here. So,
matrix D can be expressed as follows:

[D]3×20 =

H1 0 0 0 Ay1 Az1 0 0 0 0
0 H1 0 Bx1 0 Bz1 V1 V2 V2 V4
0 0 H1 Cx1 Cy1 0 0 0 0 0

0 0 0 0 H3 0 0 0 Ay3 Az3
0 0 0 0 0 H3 0 Bx3 0 Bz3

W1 W2 W3 W4 0 0 H3 Cx3 Cy3 0

 (B.1)

Other simplifying notations used in Equation (B.1) are:

Ayi = Hi ·
h
2

η ·V i
sz +Hi ·

b
2

ζ ·V i
tz; i = 1,3

Azi =−Hi ·
h
2

η ·V i
sy−Hi ·

b
2

ζ ·V i
ty ; i = 1,3

Bxi =−Hi ·
b
2

ζ · (1−η) ·V i
tz; i = 1,3

Bzi = Hi ·
b
2

ζ · (1−η) ·V i
tx ; i = 1,3

129

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI026/these.pdf 
© [S. Gao], [2017], INSA Lyon, tous droits réservés



B. Calculations of matrix D and E

Cxi = Hi ·
h
2

η · (1−ζ) ·V i
sy ; i = 1,3

Cyi =−Hi ·
h
2

η · (1−ζ) ·V i
sx; i = 1,3

B.2 Calculation of matrix E
Similarly, for the matrices Emn and Esn in Equation (4.46) and Equation (4.47), dropping
the subscript "mn" and "sn" used previously, which can be expressed as:

[E]3×20 =

H
′
1 0 0 0 Ay1,ξ Az1,ξ 0 0 0 0

0 H
′
1 0 Bx1,ξ 0 Bz1,ξ 0 0 0 0

0 0 H
′
1 Cx1,ξ Cy1,ξ 0 0 0 0 0

0 0 0 0 H
′
3 0 0 0 Ay3,ξ Az3,ξ

0 0 0 0 0 H
′
3 0 Bx3,ξ 0 Bz3,ξ

0 0 0 0 0 0 H
′
3 Cx3,ξ Cy3,ξ 0


(B.2)

Where ( ),ξ = ∂( )/∂ ξ, and other simplifying notations used in Equation (B.2) are:

Ayi,m = H
′
i ·

h
2

η ·V i
sz +H

′
i ·

b
2

ζ ·V i
tz; i = 1,3

Azi,m =−H
′
i ·

h
2

η ·V i
sy−H

′
i ·

b
2

ζ ·V i
ty ; i = 1,3

Bxi,m =−H
′
i ·

b
2

ζ · (1−η) ·V i
tz; i = 1,3

Bzi,m = H
′
i ·

b
2

ζ · (1−η) ·V i
tx ; i = 1,3

Cxi,m = H
′
i ·

h
2

η · (1−ζ) ·V i
sy ; i = 1,3

Cyi,m =−H
′
i ·

h
2

η · (1−ζ) ·V i
sx; i = 1,3
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Appendix C

Matrices G and H in Smoothing
Procedures

The symbolic algebra computer program Matlab is used to calculate the components of
the matrix G and H present in the formulation of the contact between the beams modelled
by smooth 3D curves in Equation (4.48) to (4.51), with a description in Section 4.7.2.
Here, the commands of Matlab worksheet are given which allow for calculation and cre-
ation of an output ready-to-use Matlab computer code for computing the matrix G and
H. The results themselves are quite long and complicated which are not given here. Note
that the presented worksheet commands are only valid for the inscribed curve Hermite
smooth contact finite element.

syms X1 Y1 Z1 X2 Y2 Z2 X3 Y3 Z3 xsi L123 L12 L23

% the position vectors for three nodes of two adjacent beam elements
A1=[X1;Y1;Z1];
A2=[X2;Y2;Z2];
A3=[X3;Y3;Z3];

% the straight line distances in Equation (4.72)
L12=sqrt((X2-X1)^2+(Y2-Y1)^2+(Z2- Z1)^2);
L23=sqrt((X3-X2)^2+(Y3-Y2)^2+(Z3-Z2)^2);
L123=0.5*sqrt((X3-X1)^2+(Y3-Y1)^2+(Z3- Z1)^2);

% matrix B1 and B2 used in Equation (4.73) and Equation (4.74)
B1=1/4*[1 -1 1 1;0 0 -1 1;-3 3 -1 -1;2 2 1 -1];
B2=1/2*[1 1 0; 0 1 1; -L123/L12 L123/L12 0; 0 -L123/L23 L123/L23];

% polynomial coefficients vector in Equation (4.74) and Equation (4.75)
a1=B1*B2*[X1;X2;X3];
a2=B1*B2*[Y1;Y2;Y3];
a3=B1*B2*[Z1;Z2;Z3];

%the vector of nodal position
q=[A1;A2;A3];
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C. Matrices G and H in Smoothing Procedures

% calculation of matrix G
for i=1:9

g1(1,i)=xsi^3*diff(a1(1),q(i))+xsi^2*diff(a1(2),q(i))+...
+xsi*diff(a1(3),q(i))+diff(a1(4),q(i));

g2(1,i)=xsi^3*diff(a2(1),q(i))+xsi^2*diff(a2(2),q(i))+...
+xsi*diff(a2(3),q(i))+diff(a2(4),q(i));

g3(1,i)=xsi^3*diff(a3(1),q(i))+xsi^2*diff(a3(2),q(i))+...
+xsi*diff(a3(3),q(i))+diff(a3(4),q(i));

end
G=[g1;g2;g3]

% calculation of matrix H
for i=1:9

h1(1,i)=3*xsi^2*diff(a1(1),q(i))+2*xsi*diff(a1(2),q(i))+...
+diff(a1(3),q(i));

h2(1,i)=3*xsi^2*diff(a2(1),q(i))+2*xsi*diff(a2(2),q(i))+...
+diff(a2(3),q(i));

h3(1,i)=3*xsi^2*diff(a3(1),q(i))+2*xsi*diff(a3(2),q(i))+...
+diff(a3(3),q(i));

end
H=[h1;h2;h3]
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