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He who possesses most must be most afraid of loss.
He who thinks little, errs much.

He who walks straight rarely falls.
It is easier to resist at the beginning than at the end.

Simplicity is the ultimate sophistication.

— Leonardo da Vinci [1]
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A B S T R A C T

The lifetime of contacting mechanical parts is strongly a�ected by the presence of het-
erogeneities in their materials, such as reinforcements (�bers, particles), precipitates,
porosities, or cracks. Hard heterogeneities having complex forms can create local over-
stress that initiating fatigue cracks near the contact surface. The presence of hetero-
geneities in�uences the physical and mechanical properties of the material at micro-
scopic and macroscopic scales. A quantitative analysis of the over-stresses generated
by heterogeneities is necessary to the comprehension of the damage mechanisms. The
present study is applied to rolling bearings which are the critical elements of the aero-
engine’s mainshaft. The performance required for these bearings, led SKF Aerospace to
introduce a new technology of hybrid bearing with ceramic rolling elements on high-
strength steels having experienced a double surface treatment (carburizing followed by
nitriding). The study aims to precisely determine the pressure �eld distribution on the
e�ective contact area and to predict the pro�le and the evolution of the stress/strain
�elds at each loading cycle on a representative elementary volume that takes into ac-
count the gradient of hardness, the presence of carbides and the existence of an initial
compressive stress from thermochemical origin.

A major part of this study is devoted to develop a heterogeneous elastic-plastic
rolling contact solver, by semi-analytical methods ensuring an excellent saving of cal-
culation time and resources. Thereafter, a homogenization algorithm was built to an-
alyze the e�ective behavior of a heterogeneous elastic-plastic half-space subjected to
an indentation loading. Finally, an experimental part is dedicated to the microstruc-
ture characterization of the studied steels with intent to determine their properties. A
description of the carbides behavior inside the matrix during micro-tensile tests was
carried out under SEM in-situ observation. In the scheme of all analyses conducted in
the present work, it can be argued that, although the heterogeneities (such as carbides
or nitrides) are responsible for the high resistance of the studied materials, some of
them (those whose length exceeds tens of micrometer or those which form stringers
in a particular direction) become, over fatigue cycles, the main sources of damage, from
their local scale up to the macroscopic failure of the structure.
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Part I

C O N T E X T A N D B A C K G R O U N D

The main objective of this thesis is to develop a fast and versatile tool for
studying damage mechanisms related to plastic strain and residual stresses
induced by rolling contact loading on heterogeneous elastic-plastic body.
The present study interesting feature is the combination of analytical, nu-
merical and experimental results in order to deal with the subject in issue.
Semi-analytical model is created, in one hand to solve the rolling problem,
and in the other hand to integrate the materials micromechanical behavior
resulting from the heterogeneities population data, the presence of initial
compressive stress and the gradient of plastic property. An accurate corre-
lation between analysis from academic and industrial cases, is carefully de-
voted to ensure the applicability of this Ph.D. work. The results presented
hereafter, have been sustained and commented by comparison with other
works.
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1
G E N E R A L I N T R O D U C T I O N

Thorough understanding of the consequence of every designing choice on the
work-piece life in service is essential to meet the need of controlling every
parameter of manufacturing procedures. This is a key point to no longer
leave adjustment variable to empirical rules. Therefore the main motivation
of the present work is to provide a fast and versatile tools that can be used
from academic research to industrial applications for design analysis. This
will aim to explore the aerospace materials from microscopic to mesoscopic,
and towards macroscopic scales by the identi�cation of damage mechanisms
related to plasticity around heterogeneous inclusions under contact loading
in aerospace bearings.

Contents
1.1 Problematic and motivations . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Bearings in aircraft engines . . . . . . . . . . . . . . . . . 4
1.1.2 Rolling fatigue mechanism . . . . . . . . . . . . . . . . . . 5

1.2 Industrial and academic solutions . . . . . . . . . . . . . . . . . . . 7

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Experimental study . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Synthetic study . . . . . . . . . . . . . . . . . . . . . . . . 10
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4 general introduction

1.1 PROBLEMATIC AND MOTIVATIONS
A major objective of the engine manufacturers is to decrease weight, fuel consumption,
pollution and noise of turbo-machines, while ensuring their performance, reliability
and economic competitiveness. Thus, steady progress has been made on the perfor-
mance of turbo shaft engines. Typically, Fig. 1.1 obtained from SAFRAN Helicopter
Enginesa communication journal, shows that, in 30 years, from Artouste 2C to Ar-a

the new label name of
Turbomeca

rius 2F turbo engines, the fuel consumption decreased by −30%, while the engine
power was increased up to +30%.

Figure 1.1: Overview of the consumption reduction of speci�c engines

Innovations realized in aircraft engines bearings framework constitute a major part
of participation for achieving the aforementioned performance. Since bearings are ex-
cellent friction reducers, their enhancement enable a considerable decrease of energy
expenditure thus an increase of the engine power. It is worth noting that bearings
also play the greatest role in the load carrying as well as the moving machine parts
positioning.

1.1.1 BEARINGS IN AIRCRAFT ENGINES

In the next few years the predicted rise of fuel prices will play an important role in
aerospace industry. To decrease oil consumption and respect anti-pollution policy, the
major subject became weight reducing with the constrain of performance conservation
or enhancement. Advanced high-strength steels are in constant development for struc-
tural components and body parts. This demand also reaches speci�c elements such as
bearings. The foremost output of this study is directly applied in aeronautical envi-
ronment, especially on the new technology of hybrid (ceramic/steel) bearings under
extreme conditions. The global knowledge of those components behavior is needed.
It worth remembering that line shaft bearings are critical components of aeronautical
engines. The reliability requirements, space constraints and weight inspired SKFb tob

SKF-Aerospace more
precisely

advocate the use of hybrid bearings with ceramic rolling elements (Si3N4) and high
yield strength steel rings keeping good mechanical properties up to high temperatures
of about 250◦C. The desired performance, including very long lifetime in the order ofc

through-hardening for
M50 because it has

su�cient carbon
amount and

case-hardening for
M50NiL with carbon

intake

several tens of thousand hours that correspond to tens of billions of fatigue cycles and
the consideration of rolling elements in droves with their speeds, led SKF to introduce
new materials which are the M50 and M50NiL (with potential double thermochemi-
cal treatments). These steels undergo a double surface treatment: hardeningc and ni-
triding. However, the fatigue resistance of these steels is not well known and poorly
understood, especially for very large numbers of cycles. The behavior of the matrix
in the vicinity of such carbides inclusions in droves for these types of steels, and the
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1.1 problematic and motivations 5

strong gradient of properties in the vicinity of the surface, was not thoroughly studied,
especially in contact loading involving ceramic rolling elements.

Figure 1.2: Bearings in aircraft engines

Fig. 1.2 presents the future position, on the engine mainshaft, of the hybridd rolling d

Si3N4 ceramic balls on
M50NiL steel raceways

bearing designed for aeronautical environment. The greatest claimed bene�ts for this
new technology against all-steel bearings, consists in their:

• High hardness
• Greater sti�ness
• Lower density

• High fatigue resistance
• Greater corrosion resistance
• Lower thermal dilatation

• No chemical a�nity with steel

However in front of these advantages stands two major issues:
• Global knowledge under extreme conditions
• Distinguish mechanisms that strengthen the bearing versus those that accent its

damage risk.
The present study examined the principal factors relating plasticity around heterogene-
ity to damage mechanisms, when typical aerospace bearing experiencing high contact
pressure over rolling cycles. It is recognized that rapid spall growth can lead to catas-
trophic bearing failure. Hence, understanding the spall growth phase and factors that
may accelerate growth rates, is a key to achieving a reliable and robust bearing design.
[2]

1.1.2 ROLLING FATIGUE MECHANISM

The Rolling Contact Fatigue (RCF) should be rigorously di�erentiated from the stan-
dard fatigue when mechanical parts are submitted to recurrente loading over the time e

meaning a repetition
that could be cyclic
and/or periodic

[3]. The RCF is a complex combination of the role of surface/subsurface defects (rough-
ness/porosity, inclusion) and the tribological operating conditions [4]. It can be stated
that:

• RCF is a multi-axial fatigue. The stress state is issued from non-conforming con-
tact with respect to Hertzian theory assumptions.

• The phenomena related to RCF occurs in very localized volume. The involving
contact areas are generally around a tenth of a millimeter.
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6 general introduction

• The stress �eld components evolve independently of each other by regarding
the loading path on a �xed material point below the surface; even more in pres-
ence of plasticity and heterogeneity. As a consequence, the axes of the principal
stresses are in constantly changing over cycles. Therefore it becomes complex
to predict the plans most sensitive to fatigue by tracking maximum shear plans.

• The hydrostatic stress level is signi�cantly high with a negative sign in reference
to the applied compression. When, in certain locations, the hydrostatic stress
gets a positive sign meaning pure tensile, a crack may be initiated and/or propa-
gated.

The RCF could be distinguished and interpreted at two scales [5, 6]: (i) Pitting, micro-
pitting or micro spalling, at the microscopic scale when the damage risk is attributed
to the surface; (ii) �aking, spalling or macro-spalling, at the macroscopic scale when
the damage risk is attributed to the subsurface.

1.1.2.1 Bearing races surface risk
Fig. 1.3 described the di�erent stages of the RCF damage mechanism initiated from
the surface and ending to a chunk of material removal called pitting. Surface defects
are mostly caused by surface asperities left after the �nishing process or created by
debris denting [7, 8] or even more by wear. Then cracks are progressing towards the
subsurface. The stress concentration at the crack front promotes its propagation by
engaging slip-bands and plasticity [9] over cycles. The crack trajectory is governed by
the range of shear stress acting on favorably oriented grains and depending the sti�-
ness of each grain boundary [10]. The weakest grains could be cracked by cleavage or
by cavitation. The intra-granular crack is due to a slipping of crystallographic planes
or an alignment of dislocation cells, when the two opposite edges of the grain bound-
ary are subjected to high shear stress. This microscopic rupture stress limit for the
initiation of slip bands is very detailed as well by C. Zener’s theoretical criterion [11].
Some thirty years later, K. Tanaka and T. Mura expose their slip-band crack theory in
case of fatigue loading [12]. Thereafter, the network of inter and intra-granular cracks
evolves in function of the statistical variation in the material microstructural charac-
teristics [13]. At this stage, the crack evolution can be signi�cantly delayed when the
microstructure contains small grains with high disorientation. The micro-spalling or
pitting occurred when some branches of the connected cracks emerged to the surface.

f

even more when the
contacting materials

have a signi�cant
di�erence between their

coe�cient of heat
transmission and/or
their speci�c heat (in

the present case of
ceramic on steel

contact) Figure 1.3: RCF damage mechanism initiated from surface [14] and ending to surface pitting
[15]

Notwithstanding the pitting due to surface defects, abrasion and thermal fatigue can
cause the emergence of cracks at the surface [16]. Since the thermal equilibrium is not
spontaneously established (i) between the contacting surfacesf and (ii) between each
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1.2 industrial and academic solutions 7

surface and its material core, then the cyclical di�erential of temperature that occurred
over the load passage, will create thermal fatigue micro cracks. Indeed, in RCF situa-
tion a spot elevation of the temperature can reach or exceed very locally, the order of
910◦C leading to austenitizationg at grains scale. This is prone by a combination of g

Transformation from
alpha-iron called ferrite
to gamma-iron called
austenite

various sources of thermal dissipation such as friction and plasticity. The phenomenon
is emphasized in boundary lubrication regime if the contact stress has been increased
accidentally. Moreover, if some microcracks existed at �rst, it is postulated that the
friction at edges of microcracks can heat locally to temperatures between 750◦ and
1250◦C [17, 18, 19]. Afterwards, a quenching occurred by the intense heat conduction
into the material core or through the new arrival lubricant wave. This formed an ex-
tremely brittle martensiteh at the surface. The martensite polycrystal will be snatched h

Unbalance phase that
forms when steel is
quenched

at the next rolling pass leading to micro-pitting.

1.1.2.2 Bearing races subsurface risk
Surface coating techniques are ones of the best alternatives to e�ectively prevent from
surface risk [20]. However, depending on the coating deposition process, material and
thickness, considerable near-surface heterogeneity constitute a favorable source of
stress concentration. From the �rst crack initiations to spalling failure, the rolling bear-
ing life is conditioned by multiple heterogeneity interactions [21, 22]. Fig. 1.4 presents
the surface spalling as consequence of the growth of cracks that emanate from local-
ized heterogeneity. It could be seen that the mechanism following a crack initiated in
the subsurface is similar to that from surface defects as explained previously, with the
exception that the crack network generated is conductive to a spalling instead of a
micro-pitting according to size of the chunk of material removed. The surface spalling
stage is succinctly described by Jin and Kang’s [23].

Figure 1.4: RCF damage mechanism initiated from subsurface [14] and ending to surface
spalling [5, 6]

1.2 INDUSTRIAL AND ACADEMIC SOLUTIONS
The life-time of functional mechanical parts is strongly a�ected by the presence of inho-
mogeneity in the material, as reinforcements (�bers, particles), precipitates, porosities,
or cracks. Soft and hard heterogeneity, whatever their shapes, act as stress concen-
trators that may lead to fatigue cracks. For contact problems this type of failure is
classi�ed as inclusion or porosity initiated contact fatigue [24, 25]. The presence of
such heterogeneity greatly in�uences the physical and mechanical properties of the
material both locally and globally [26]. A quantitative analysis of the over-stress cre-
ated by heterogeneity is necessary to understand the damage mechanisms correctly.
Heterogeneity can, also, alter the material behavior at the macroscopic scale and also
the stress �eld in its vicinity. This is due to the incompatibility of deformation between
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI154/these.pdf 
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8 general introduction

the heterogeneity and the surrounding matrix. Eshelby [27, 28] studied the stress varia-
tions caused by a single ellipsoidal heterogeneity within an in�nite solid. He proposed
a method known as the Equivalent Inclusion Method (EIM) in which the heterogeneity
is assimilated to an inclusiona containing incompatible strains and having the samea

in the sense of Mura
[29]

material properties as those of the matrix. These incompatibility strains, also called
eigenstrains, can be present in the form of inelastic strains in the heterogeneity such
as plastic or thermal strains. N

Strong stress gradients are encountered for contact problems. When the volume
taken by the heterogeneity becomes large compared to the contact size, two numer-
ical techniques can be employed. The �rst one uses the analytical developments of
Moschovidis and Mura [30] expressing each elastic �eld in polynomial form. The sec-
ond method is to discretize a heterogeneity of arbitrary shape into multiple elementary
cuboids whose size corresponds to the mesh. Then, the eigenstrain within each cuboid
is considered uniform. Usually, an initial inelastic deformation or an external load is
considered as an input strain but few studies dealt with the combination of both eigen-
strain sources. For contact problems, eigenstrain formulation corresponds to the sum
of both sources [31]. This formulation will be used here to treat heterogeneity and
plasticity as eigenstrains. In most cases, contact problems with the presence of het-
erogeneity beneath the surface are not explicitly solved and a semi-elliptical Hertzian
contact pressure distribution is considered instead [32, 33]. In addition the contact
pressure can be greatly a�ected by the presence of heterogeneity located in the vicin-
ity of the surface [34, 35, 36]. Moreover, plasticity plays also a key role since it modi�es
the contact pressure distribution, often limiting the maximum contact pressure while
increasing the contact area to keep the integral of the pressure (i.e. the applied load)
constant. The resolution of the contact problem when the material is elastic-plastic [37,
38, 39] or when it contains heterogeneity [36, 40] is treated by updating the contact
geometry by adding the contribution of eigenstrains to surface displacements [41].

Several bearing manufacturers concluded that the determination of the bearing fa-
tigue life based on criteria from an elastic analysis is not accurately predictive. It has
been demonstrated that, as soon as the Von Mises stress exceeds the yield strength of
the material, the contact pressure distribution and contact area start to deviate from
the Hertzian (elastic) solution. One also has to keep in mind the fact that, if the mate-
rial is often assumed (macroscopically) homogeneous and isotropic, a look at a smaller
scale reveals that the micro-structure contains oriented grains and inhomogeneity also
called heterogeneous inclusions. The Weibull distribution of the fatigue life is often at-
tributed to the stochastic distribution of defects within the material. The concept of
endurance limit has been introduced so far [25, 42] based on a purely elastic analysis
considering the worst types of inhomogeneity and their locations below the surface,
however, assuming that the contact pressure distribution is Hertzian i.e. not perturbed
by the presence of inhomogeneity.

Contact mechanics is based on unilateral inequalities concerning the gap (positive or
nil) and the pressure (positive or nil) between contacting surfaces, whatever the body
geometry, material internal structure and loading conditions are [43]. Even if these
unilateral inequalities are found to be a key point common to any existing methods
of contact problems resolution, the physical phenomena that occur at/in the vicinity
of contacting half-spaces, result in inexhaustible industrial and scienti�c frameworks.
Therefore, solutions are nowadays developed at the interface of applied mathematics,
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mechanics, numerical analysis, computer science, surface physics, subsurface chem-
istry and experimental methods.

1.3 OUTLINE
The general problem consists to study the rolling contact between a ceramic ball and a
heterogeneous elastic-plastic body containing multiple carbide inclusions of arbitrary
shapes, positions and sizes. The elastic-plastic behavior is taken into account by the
gradient of properties evolving as a function of the depth. The present work combines
numerical and experimental studies. The simulation part concerns the development
of a semi-analytical model to investigate the e�ect of multiple carbides, their mutual
in�uence and the coupled interaction with their surroundings plastic zone when the
medium is subjected to contact load. Experimental part is devoted to determine mate-
rial properties and related damage mechanisms. Note that in reality both studies are
conducted in parallel during this research. By doing so, experimental results are used
to supply the numerical model when at its turn provides the requisite evidence for
supporting the analysis and the explanation of facts observed during the experimental
tests.

1.3.1 NUMERICAL STUDY

A heterogeneous elastic-plastic contact (HEPC) solver is developed. First, an indenta-
tion model is created to examine carefully, on the one hand, the contribution of het-
erogeneity concentration stress by taking into account its interaction with the sur-
rounding plastic zone, and in the other hand the contribution of the residual stress due
to plastic strain by taking into account its interaction with the inclusion. Parametric
study is conducted by varying the heterogeneity shape, position and size. The essential
aspects studied are listed below.

• The contact pressure distribution and the contact area size
• Eigen-stress �eld generated by the heterogeneity
• Residual stress �eld generated by the plasticity
• Total subsurface stress �eld
• Accumulated plastic strain distribution

Secondly, the HEPC solver is extended to the resolution of rolling contact problem by
moving the applied load. The HEPC is solved at each time-step, in quasi-static sense.
Motion velocity e�ect is not considered. However inertial forces due to accelerations
could be directly taken into account in the balance of applied forces. Note that the con-
tact solver enables an application of normal and tangential loads (forces or displace-
ments). During loading cycles, a heterogeneity acts as stress intensi�er and becomes
the site of subsurface crack initiation and propagation. Therefore, Dang Van crack ini-
tiation criterion is involved in relationship with the shear and the hydrostatic stresses,
in other to seek the potential risky zones for crack departure around the heterogeneity

Finally the HEPC solver is coupled with the Levenberg-Marquardt minimization al-
gorithm to identify the overall non-linear inelastic behavior of a heterogeneous elastic
plastic body under indentation. The e�ective elastic modulus and e�ective yield stress
are obtained by �tting the load-displacement curves of the heterogeneous body with
that of the homogenized body. Special care is devoted to build an objective and consis-
tent representative elementary volume (REV) ensuring an accurate estimation of the
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10 general introduction

heterogeneity content and density. The role of heterogeneity size, location and material
properties, along with the hardening properties of the indented body are investigated.

1.3.2 EXPERIMENTAL STUDY

Micromechanical and microstructural characterizations are conducted to investigate
material properties and their consequence on the behavior under an applied stress �eld.
Scanning electron microscope (SEM) and Energy Dispersive X-ray (EDX) are the main
means used to characterize the matrix (M50, M50-Nil), the carbides and the nitrites.
Indentation tests allowed to obtain the material plastic behavior related to hardness
according to the depth. Also, micro indentation tests lead to determine the carbides
elastic modulus. Moreover, micro-tensile tests are performed in purpose to propose
a mechanism of carbides damaging. The results obtained from the experimental tests
have enabled a means of obtaining key components:

• Microstructure features: carbides and nitrides size, shape, distribution and vol-
ume fraction

• Comparison of M50 and M50-Nil media
• Data to build representative elementary volumes
• Local behavior of the matrix plastic strain around damaged and undamaged car-

bide

1.3.3 SYNTHETIC STUDY

Synthetic analysis is directly included in both experimental and numerical studies
when correlation is needed. Observations and material properties resulting from ex-
perimental tests are used as input of semi-analytical rolling contact model for numer-
ical simulations. The knowledge developed herein by summarizing experimental and
numerical studies consists in:

• The determination of the evolution of stress/strain �elds in M50 and M50-Nil
bearing material before damage occurrence.

• The prediction of the behavior of a cracked carbide stringer in relation with the
ductile matrix

• The consequence of heat-treatment on the microstructure (gradient of properties,
initial residual stress) and on the fatigue life (Dang Van damage criteria)

• A proper analysis of surface tribological behavior and accurate prediction of sur-
face and subsurface damage in rolling contact problems conducted on heteroge-
neous elastic-plastic materials
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2
T H E O R E T I C A L B A C K G R O U N D

The recent progress in the development of semi-analytical methods makes
it now possible to model three dimensional heterogeneous elastic-plastic con-
tact (HEPC) problems. A �rst attempt was made by Kabo and Ekberg [32]
to model the over-stress due to a cylindrical inclusion in an elastic-plastic
rolling contact situation using a two-dimensional �nite element analysis.
The same type of analysis was recently revisited by Pandkar et al. [44].
The purpose of the present chapter is to present the foundation of a three-
dimensional elastic-plastic contact model in the presence of a single or sev-
eral interacting inhomogeneities.
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12 theoretical background

2.1 INTRODUCTION
Two methods are employed to solve the contact problem when at least one of the bod-
ies in contact contains heterogeneities. The �rst one uses a method of decomposition
of the semi-in�nite space into subspaces, requiring a numerical solution [45]. This
method was initially introduced and validated by Jacq [37] and reiterated by Chaise
[39] and Fulleringer [41] and will be used to describe the plastic phenomenon. A sec-
ond direct method [46, 47], initially proposed by Mindlin and Cheng [48], which al-
lows to analytically determine the solution of the elastic �eld caused by eigenstrain
in an elastic semi-in�nite body. Because of the di�culty to treat the interactions be-
tween heterogeneities, most research works focus on the interactions between two or
three maximum heterogeneities. Moschovidis and Mura [30] have speci�cally studied
the in�uence of two ellipsoidal heterogeneities without interpenetration by approxi-
mating the expression of equivalent eigenstrains with Taylor’s series. This approach
was heavily explored and adapted to di�erent cases of restrictive applications [31, 49].
These solutions become very heavy when hundreds or thousands of heterogeneities
have to be treated numerically. It is worth developing a numerical method based on
conjugate gradient algorithms to solve a linear system of equations induced by these
multiples of thousands heterogeneities in order to minimize convergence iterations.

2.2 FORMULATION OF HETEROGENEOUS ELASTIC-PLASTIC CONTACT
PROBLEM
The Heterogeneous Elastic-Plastic Contact (HEPC) problem is considered in this study
as a contact involving an elastic indenter normally loaded onto an elastic-plastic matrix
containing one or several heterogeneities. For demonstration purposes the analysis and
the discussion are limited here to one elastic-plastic body only. However the model
can be easily applied to the problem when two heterogeneous elastic-plastic bodies in
contact are involved. For the same reason of simplicity the heterogeneous inclusions
are assumed to behave elastically with perfect bonding between them and the matrix
(i.e. continuity of displacements).

2.2.1 ELASTIC CONTACT

The resolution of the contact problem between two bodiesB1 andB2 (Fig. 2.1), consists
of �nding the solution ful�lling a set of equations describing the physics of the problem
as following:
the load balance eqation. The equality between the applied loadW and the

integral of the contact pressure p(x,y) on the contact area Γc must be satis�ed.

W =

∫
Γc

p(x,y)dΓ (2.1)

the surface separation eqation. The contact gap h is equal to the summa-
tion of the initial distance between the contacting surfaces hi(x,y), the rigid
body displacement δ and the normal component of the body displacementsuB1+B23 (x,y).
The subscript 3 corresponds to the direction normal to the surfacea .a

(1, 2, 3) used are
consistent to the

Cartesian coordinate
system (x,y, z)

h(x,y) = hi(x,y) + δ+ uB1+B23 (x,y) (2.2)
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2.2 formulation of heterogeneous elastic-plastic contact problem 13

the contact condition eqation. The non-interpenetration of contacting bod-
ies holds the distance h(x,y) positive or nil.

When h(x,y) = 0 then p(x,y) > 0 ⇔ contact
When h(x,y) > 0 then p(x,y) = 0 ⇔ separation (2.3)

Body 2

Body 1

plane

Figure 2.1: Description of the elastic contact variables

Polonsky and Keer [50] proposed a semi analytical algorithm based on the Conjugate
Gradient Method (CGM) and Fast Fourier Transform (FFT) to solve the set of Eq. 2.1-
2.2-2.3. Fig. 2.2

Since then the algorithm has been continuously improved for elastic contact prob-
lems, in particular by Liu et al. [46] and Gallego et al. [51] for frictionless and for
frictional contact, respectively. One of the key elements is the use of zero padding and
wrap-around order to avoid signal aliasing from the FFT treatment. This FFT algorithm
remains numerically e�cient as far as a linear relation exists between the contact pres-
sure at any surface point Ai and the surface displacement at another point Aj.

Under homogeneous isotropic and elastic assumptions, similarity and equilibrium
considerations dictated that the surface displacement has to vary inversely with the
distance from any point force applied on the half-space free surface.

It should be speci�ed that the tangential components of uB1+B2 are not considered
here since the problem is assumed frictionless. The e�ect of plasticity on the contact
problem consists of superposing an additional term to the gap h in eq. (2.2), due to
distributed plastic strain (eigenstrain) within the plastic domain.

Body 2

Body 1

plane

Distributed 
pressure

Unique pressure
solution

Current pressure 
and displacement

FFT & CGM
Algorithms

Superposition 
principe

Contact problem 
solved

Boussinesq and Cerruti
elementary solutions

Equilibrium 
load pressure

Figure 2.2: Resolution of the elastic contact problem
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14 theoretical background

2.2.2 INTEGRATION SUBSURFACE PROBLEM IN THE CONTACT RESOLUTION

Knowing that the contact solution does not depend only on the contact load but also
on the contacting body subsurface responses, two kinds of mis�t displacements ures
and u∗ are introduced into the contact solver as heterogeneous elastic-plastic contact
parameters. Note that mis�t displacement also depends on the contact loading and
their determination is discussed in the next section. Thus, the heterogeneous elastic-
plastic contact could be treated such as elastic contact problem by considering the
updated geometry. This geometry is obtained by summing the elastic displacement to
that induced by plasticity and the presence of inhomogeneities. Only h is changed into
hmod in the separation eq. (2.2) as:

hmod(x,y) = h(x,y) + ures(x,y) + u∗(x,y) (2.4)

Where h is the gap between contacting surfaces. The surface displacement ures is re-
lated to plasticity while u∗ comes from the presence of inhomogeneities. Note that
these two e�ects are dependent on each other and so must be solved together numeri-
cally.

2.2.3 COUPLING THE EFFECT OF PLASTICITY AND INHOMOGENEITIES

The HEPC problem can be split into a contact problem and a subsurface one. Since the
bulk contains both heterogeneous inclusions and plastic strains, the subsurface prob-
lem can be treated as a heterogeneous elastic part and an elastic-plastic one coupled
each other by making them interact as presented in Fig. 2.3. The heterogeneous elastic
contact is �rst solved in order to get the stress state of the material before checking
if plastic �ow occurs. When the total stress around a heterogeneous inclusion reaches
the yield condition, the plastic part is solved. Plasticity and inhomogeneity create ad-
ditional surface displacements that are the added to the initial surface geometry, and
the contact problem is then solved again with the updated geometry. The process is
repeated until convergence.
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Plasticity Heterogeneity

Contact

eigen-displacementresidual displacement

eigenstrainplastic strain

Figure 2.3: Subsurface contribution for solving the HEPC problem

The theoretical background part is fully detailed in the following section but could
be in a nutshell commented here as:

Theoretical background of the heterogeneity contribution

Eshelby s equivalent inclusion method is used to take into account the presence of a
single or multiple inhomogeneities within one of the bodies in contact from the de-
termination of the eigenstrain to the calculation of the subsurface eigenstresses and
surface mis�t displacement.

Theoretical background of the plasticity contribution

The plasticity is taken into account by the determination of the plastic strain using
Newton-Raphson algorithm. Then the residual stress and residual surface displace-
ment are calculated using the in�uence coe�cient from Maxwell and Betti’s reciprocal
theorem [52].

Numerical background to solve heterogeneity and plasticity contribution separately

To solve heterogeneity and plasticity respective problems, 3D-FFT and 2D-FFT are em-
ployed to accelerate the calculation. Wrap around order and zero-padding techniques
are used in order to remove the induced periodicity error (See [53]). A decomposition
technique is used to determine to solutions of heterogeneity and plasticity problems
for semi-in�nite bodies.

The HEPC problem consists into a weak coupling of three problems: the contact,
plastic and heterogeneous problems. All three problems are solved sequentially by con-
sidering the two other problems constant. The iterations between all three problems
are pursued until all are converged.

• The contact problem accounts for the plastic and heterogeneous contributions
in the gap computation Eq.(2.2) through the residual ures and heterogeneous
displacements u∗
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• The plastic problem takes as input the total stress σtot into the body that is the
sum of the stresses due to the contact pressure (and potential shears) σc, over-
stress due to the heterogeneity σ∗ and residual stresses due to the pre-existing
plastic strains σres as:

σtot = σc + σ∗ + σres

Convergence is reached when the yield function is negative or equal to zero at
every point.

• The heterogeneous problem similarly takes as input the total stress at each point
of the body. Note that the heterogeneity is here purely elastic and presents no
plastic behavior. Yet, plastic �ow could be computed, potentially with a hard-
ening law di�erent than that of the matrix, for the heterogeneity also and the
heterogeneous problem would then simply need to add the plastic strain to the
eigenstrain of the heterogeneity for the stress computation.

2.3 CONTRIBUTION OF PLASTICITY
2.3.1 PLASTIC STRAIN

The elastic-plastic behavior is described by the occurrence of irreversible deformation
inside the material (starting from the threshold value of the yield strength). For metallic
materials and alloys, the plastic deformation appears as the slippage of atomic plans
moving ones over the others. This phenomenon can be ampli�ed by the presence of
material defects or the accumulation of dislocations. The theory of plasticity is based
on the fundamental concept of yield function de�ning the state of the material and the
limit at which it becomes plastic:

f = f0(σ
tot − χ(εp)) −K(εp)

f < 0 ⇔ Elastic deformation
f = 0 ⇔ Plastic �ow (2.5)

Where σtot is the total stress �eld and εp the e�ective accumulated plastic strain de-

�ned by εp =

√
2

3
ε
p
ijε
p
ij, χ described the kinematic part of the hardening and K de-

scribed the isotropic one. Tensors are distinguished from scalars by the underline sym-
bol.
The plastic strain assessment makes use of:
the von mises criterion f0 – The Von Mises equivalent stress is considered here,

f0 = fVM . It is often referred as J2 plasticity.

fVM(σtot − χ) =
√
3 × J2(σtot − χ) =

(
3

2

(
σtot − χ

)
:
(
σtot − χ

))1/2
(2.6)

the hardening law describes the stress-strain relationship once plastic �ow oc-
curs. It is also called the �ow rule. The kinematic hardening law χ is used when
the di�erence between the traction and compression yield strengths remains con-
stant during the plastic �ow. This is expressed by the translation of the yield
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2.3 contribution of plasticity 17

function center. Equation 2.7 presents an example of a linear kinematic harden-
ing law. Conversely, the isotropic hardening law K represents the growth of the
yield function. Note that the combination of kinematic and isotropic hardening
laws is possible. This is often used to better �t the real material behavior. A mate-
rial elastic-perfectly plastic is a particular case when plastic �ow occurs without
hardening, then χ and K are nil. The application of the current model to the be-
havior of bearing steels, for which the isotropic hardening dominates, justi�es
the choice of a Swift law [37]:

χ = χ
1
+ χ

2
, dχ

1
= 2

3C1dε
p , dχ

2
= 2

3C2dε
p − γ2χ2dλ Armstrong-Frederick law

K(εp) = B(C+ εp)n Swift law
(2.7)

Where dλ is the plastic multiplier and εp the plastic strain tensor. Note that
Armstrong-Frederick law uses two hardening variables χ

1
and χ

2
that are both

tensors representing the center of the yield surface in the stress domain. The
use of two variables allows to represent a wide range of non-linear hardening
behaviors, though empirically. The �rst variable χ

1
evolves linearly with the

plastic strain while χ
2

allows to introduce a saturation term with the parameter
γ2. Note here that this law is purely phenomenological but was chosen as it
allows to describe a material easily whose hardening curve under pure tension
is equivalent to an isotropic hardening material described by a Swift law.

the consistency condition must be satis�ed as:

df = 0 ⇒ ∂f

∂σtotij
dσtotij +

∂f

∂εp
dεp = 0 (2.8)

the normality rule ensures that the direction of the plastic strain increment is
normal to the yield surface. This constitutes the main rule to determine the �nal
plastic strain by summing up its increments.

dε
p
ij =

∂f

∂σij
dλ = nijdλ (2.9)

where σ = σtot − χ(εp).
Finally, based on those previous equations, a three-dimensional implicit return map-
ping algorithm, as described by Simo and Taylor [54] and implemented by Chaise et
al. [55], is used to compute the plastic strain induced by the total stress �eld.

2.3.2 RESIDUAL DISPLACEMENTS AND STRESSES

The Maxwell and Betti’s reciprocal theorem is employed to compute the set of in�u-
ence coe�cients involved in the calculation. Let’s consider two di�erent states (S) =
(u, ε,σ, ε0) and (S

′
) = (u

′
, ε
′
,σ
′
) of an elastic body of volume Ω and boundary Γ .
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(S) represent a state with existing initial strain ε0 and (S
′
) is an elastic state at some

indeterminate time. Maxwell and Betti establish from σij · ε
′
ij the following equation:

−

∫
Γ

u
′
i ·σij ·nj ·dΓ +

∫
Ω

fi ·u
′
i ·dΩ = −

∫
Γ

ui ·σ
′
ij ·nj ·dΓ +

∫
Ω

f
′
i ·ui ·dΩ−

∫
Ω

ε0ij ·σ
′
ij ·dΩ

(2.10)

Where volume forces f ′i and fi are those used in the equilibrium equation σij,j + fi =
0 for each state. nj is the unit normal inward-oriented vector. From Eq. (2.10), after
having substituted the initial strain ε0 by plastic strain εp, and taking into account the
incompressibility of the plastic strain tensor, the following relation can be derived:

tr(εp) = 0 ⇒ ε
p
ij · σ

′
ij = 2µε

p
ij · ε

′
ij

It yields:

−

∫
Γ

u
′
i ·σij ·nj ·dΓ +

∫
Ω

fi ·u
′
i ·dΩ = −

∫
Γ

ui ·σ
′
ij ·nj ·dΓ +

∫
Ω

f
′
i ·ui ·dΩ−2µ

∫
Ω(p)

ε
p
ij ·ε

′
ij ·dΩ

(2.11)

Where µ is the material shear modulus andΩ(p) is the plastic domain.
The contact pressure p and p ′ are introduced by σij ·nj = −pi and σ ′ij ·nj = −p

′
i on

Γc, and Eq. (2.11) becomes:∫
Γc

u
′
i ·pi ·dΓ +

∫
Ω

fi ·u
′
i ·dΩ =

∫
Γ

ui ·p
′
i ·dΓ +

∫
Ω

f
′
i ·ui ·dΩ− 2µ

∫
Ω(p)

ε
p
ij · ε

′
ij ·dΩ

(2.12)

Equation (2.12) is su�cient to determine the in�uence coe�cient necessary to compute
the residual displacements and residual stresses due to the plastic strains. Note that
each term of this equation contains the variable from both state (S) and (S

′
) all at once.

Now, with the intent to keep out the surface displacement �eld of (S) , considering (S)
′

as a state corresponding to an applied unit normal force at point A on Γc, the pressure
equals to p ′(M) = δ(M−A) at any pointM. The volume forces are set to f ′i = 0 and
fi = 0. Eq.(2.12) leads to:∫

Γ

ui · p
′
i · dΓ = uz(A) =

∫
Γc

u
′
i · pi · dΓ + 2µ

∫
Ω(p)

ε
p
ij · ε

′
ij · dΩ (2.13)

One can conclude that, when the contact pressure pi vanishes, the residual displace-
ment on the contact area becomes:

urz(A) = 2µ

∫
Ω

ε
p
ij · ε

′
ij · dΩ(p) (2.14)
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If the plastic zoneΩ(p) is meshed withNp cuboidΩ(p)
n each containing constant plastic

strain, Eq. (2.14) can be expressed as:

urz(A) = 2µ

Np∑
n=1

ε
p
ij(n) ·

∫
Ω

(p)
n

ε
′
zij · dΩ =

Np∑
n=1

ε
p
ij(n) ·Drij(n) (2.15)

whereDrij is the in�uence coe�cient relating the plastic strain to residual displacement,
see Appendix A.4. The residual stress is obtained by a similar method. In this case,
state (S) ′ corresponds to an applied unit normal force at point B in the volumeΩ. The
volume force f ′i = δ(M− B) at any point M and the other one remains fi = 0. The
pressure is considered to be p ′(M) = 0. Eq.(2.12) gives:

urk(B) =

∫
Γc

u
′
ki · pi · dΓ + 2µ

∫
Ω(p)

ε
p
ij · ε

′
kij · dΩ (2.16)

Then, when the contact pressure pi vanishes, one can get the residual displacement in
the volumeΩ as follows:

urk(B) = 2µ

∫
Ω(p)

ε
p
ij · ε

′
kij · dΩ (2.17)

The residual stresses are related to the residual displacements by the Hooke’s law in
the form of:

σrij(B) = Cijkl

(
1

2

(
urk,l(B) + u

r
l,k(B)

))
(2.18)

2.4 CONTRIBUTION OF HETEROGENEOUS INCLUSIONS
As for plasticity, the presence of inhomogeneity modi�es the contact problem by adding
a supplementary term to the surface displacement, called here surface eigen-displacements,
see Fig. 2.3. Note that the displacements due to plasticity are called residual displace-
ments.

2.4.1 SWITCH BETWEEN A HETEREGENEOUS INCLUSION AND A HOMOGENEOUS ONE

Eshelby de�ned a heterogeneity as a subdomain Ω(i) having the same elastic proper-
ties as the surrounding matrix (in�nite-space)Ω(m) but containing mis�t strains called
eigenstrains. One can imagine eigenstrain as the strain free from the stress generated
by any external force or surface constraint. However, Mura [56] claimed that eigen-
stresses are produced by the incompatibility of eigenstrain as a self-equilibrated stress
�eld. Indeed, for a heterogeneous body, the notion of eigenstrain comes out when an
external load is applied. Then, the deformation between the heterogeneity and the sur-
rounding matrix is incompatible and generates stresses. Thus, eigenstrain may be con-
sidered as elastic in poroelasticity [57] and thermoelasticity [58] problems, or inelastic
when the studied body presents initial strains due to phenomena such as phase trans-
formation or material precipitations. Given this background, a heterogeneity can be
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20 theoretical background

seen as a domain with elastic constants di�erent from those of the matrix. Therefore a
transformation, as schematically illustrated in Fig. 2.4, is needed. This process consists
to consider a heterogeneity located within a loaded matrix which, in �ne, is equiva-
lent to the problem with a homogeneous inclusion plus an eigenstrain that creates an
eigenstress within the matrix in reaction to the external load.

Figure 2.4: Single heterogeneity transformation into inclusion in the sense of Eshelby and sub-
sequent eigenstress

2.4.2 HETEROGENEITY UNDER EXTERNAL APPLIED LOADING

In the framework of Eshelby [27] the main di�culty is to determine the tensor that
links the eigenstrain ε∗ij to the compatibility strain εij, with S known as the stress
tensor:

εij = Sijkl × ε∗kl (2.19)

The general form of this tensor is not simple because it involves harmonic and bihar-
monic potentials which are elliptic integrals (see Appendix A.1). Eshelby proposed an
analytical solution for some particular heterogeneity shapes: ellipsoids and spheres.
Moschovidis and Mura [30] determined εij and σij inside and outside a single hetero-
geneity domain Ω(i) and allowed to treat arbitrary shape as a cluster of multiple sub-
domains Ω(i)

1 , · · · ,Ω(i)
k , · · · ,Ω(i)

n . The sum of the contributions of each k subdomain
permits to get the compatibility strain εij at any pointM(x,y, z) as:

εij(x,y, z) =
n∑
k=1

εkij(x,y, z) (2.20)

Note that this expression holds under the assumption of small strains, only.
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Eshelby’s Equivalent Inclusion Method (EIM)

In the case of linear isotropic elasticity, when a matrixa Ω(M) of sti�ness C(M)
ijkl is sub- a

the upper-script (M)

refers to the matrix
jected to uniform strainb ε(c)kl , the over (elastic) stress σ(c)ij is expressed by the Hooke’s

b

the upper-script (c)

refers to �elds coming
from the contact

law as:

σ
(c)
ij = C

(M)
ijkl · ε

(c)
kl (2.21)

A single heterogeneityc Ω(I) of sti�ness C(I)
ijkl embedded into Ω(M) generates mis-

c

The upper-script (I)

refers to the inclusion

match strains εij due to the di�erence of the elastic properties between the hetero-
geneity and the matrix. The overstress is expressed as:

σ
(c)
ij = C

(I)
ijkl

(
ε
(c)
kl + εkl

)
inΩ(I)

σ
(c)
ij = C

(M)
ijkl

(
ε
(c)
kl + εkl

)
inΩ(M)

(2.22)

Applying Eshelby’s transformation, the heterogeneous inclusion Ω(I) is mathemati-
cally equivalent to an inclusion with the same elastic properties as the matrix C(M)

ijkl

plus an additional strain (eigenstrain) ε∗ij:

σij = C
(I)
ijkl

(
ε
(c)
kl + εij

)
= C

(M)
ijkl

(
ε
(c)
kl + εkl − ε

∗
kl

)
inΩ(I) (2.23)

Including Eq. (2.19) into Eq.(2.23) leads to:((
C
(I)
ijkl −C

(M)
ijkl

)
Sklmn +C

(M)
ijmn

)
ε∗mn = −

(
C
(I)
ijkl −C

(M)
ijkl

)
ε
(c)
kl (2.24)

Note that an additional eigenstrain ε∗resij caused by plasticity can be added in the same
way. Therefore Eq. (2.24) becomes:((

C
(I)
ijkl −C

(M)
ijkl

)
Sklmn +C

(M)
ijmn

)
(ε∗mn + ε

∗res
mn ) = −

(
C
(I)
ijkl −C

(M)
ijkl

)
ε
(c)
kl (2.25)

From Eq. (2.24), the eigenstrain ε∗ inside the heterogeneity is related to the contact
applied strain ε(c) by a linear expression. Finally, one can deal with the heterogeneity
part of the whole heterogeneous elastic plastic contact problem by determining the
eigenstresses and the surface eigen-displacement generated by the eigenstrains.

Determination of eigenstress and surface eigen-displacement
A solution for eigenstresses induced by an eigenstrain included in an isotropic in�nite
space has been described. This solution is adapted for a half-space with a free surface.
The superposition principle is applied to three sub-problems which, by summation, is
equivalent to the general problem presented in Fig. 2.5.

• (1) is the solution of the inclusion included in a full space.
• (2) is the solution of the mirror image of the inclusion when the symmetrical

plan is the boundary surface of the half space. Note that ε∗ (mirror)iz = −ε∗iz.
• (3) is the solution of the normal traction induced at the surface of the half-space

due to both inclusions.
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Figure 2.5: EIM decomposition method for a half-space

It should be noted that the same decomposition method is used the compute the
residual stresses created by plastic strains located beneath a three-dimensional half
space. One can get directly from this method the normal surface displacement induced
by plasticity or the presence of inhomogeneity as the solution of the sub-problem (3). In
the presence of multiple heterogeneities or a discretized heterogeneity, the eigenstress
solution is obtained from the summation of the contribution of each eigenstrain. Note
that in this case the stresses generated by the plastic strains or eigenstrains at any
point in�uence the others, then an iterative resolution process must be implemented.
The computational domain is meshed intoNx×Ny×Nz cuboids and the eigenstress
at point (x,y, z) is related to the eigenstrain at point (x ′ ,y ′ , z ′) by:

σ∗ij (x,y, z) =

Nz−1∑
z=0

Ny−1∑
y=0

Nx−1∑
x=0

Bijkl

(
x− x

′
,y− y

′
, z− z

′
)
ε∗kl
(
x
′
,y
′
, z
′
)

+

Nz−1∑
z=0

Ny−1∑
y=0

Nx−1∑
x=0

Bijkl

(
x− x

′
,y− y

′
, z+ z

′
)
ε
∗(s)
kl

(
x
′
,y
′
,−z

′
)

−

Ny−1∑
y=0

Nx−1∑
x=0

Mij

(
x− x

′
,y− y

′
, z
)
σ∗n

(
x
′
,y
′
, 0
)

(2.26)

where Bijkl and Mij represent the in�uence coe�cients for a unit eigenstrain, see
Appendix A.2. The normal traction σ∗n(x,y, 0) at a surface point (x,y, 0) is:

σ∗n (x,y, 0) = −

Nz−1∑
z=0

Ny−1∑
y=0

Nx−1∑
x=0

B33kl

(
x− x

′
,y− y

′
, z− z

′
)
ε∗kl
(
x
′
,y
′
, z
′
)

−

Nz−1∑
z=0

Ny−1∑
y=0

Nx−1∑
x=0

B33kl

(
x− x

′
,y− y

′
, z+ z

′
)
ε
∗(s)
kl

(
x
′
,y
′
,−z

′
)

(2.27)
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Finally, the eigen-displacement at point (x,y) of the surface is obtained by:

u∗3 (x,y) =

Ny−1∑
y=0

Nx−1∑
x=0

Kn
(
x− x

′
,y− y

′
)
σ∗n

(
x
′
,y
′
)

(2.28)

where Kn represent the in�uence coe�cients relating the pressure to the surface dis-
placement, see Appendix A.3.
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Part II

N U M E R I C A L M O D E L I N G

The semi analytical method o�ers the possibility to create contact and
rolling contact models in three dimensions, while maintaining an excel-
lent computational performance. Mostly, as long as non conforming con-
tact and small strain hypotheses are ful�lled, the models could be applied
to solve indentation and rolling contact problems. The contact solutions
(pressure and area) are compared against those obtained by Finite Element
Method (FEM), for validation. Some interesting results about the plasticity
around the heterogeneity are discussed. The local distribution of the stress
�eld is analyzed in the case of rolling contact. It was found out that, the het-
erogeneity raised the local plastic strain at its vicinity. Due to the presence
of plastic strain and residual stress, the heterogeneity remains constantly
under stress even if the external load is removed. The total residual stress is
then a combination of the residual stress due to plasticity and the residual
eigen-stress from the heterogeneity.
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3
H E T E R O G E N E O U S E L A S T I C P L A S T I C C O N TA C T P R O B L E M

The recent developments of the semi-analytical methods have led to numer-
ous improvements in their capabilities. They allow now to perform fast and
robust simulations of contact between semi in�nite bodies with either plastic
or visco-elastic behavior [55, 59], with anisotropic elasticity [60, 61, 62] or when
containing heterogeneities [63]. The latter can be considered as inclusions with-
out restriction about their nature or property. Thus, the model found its direct
applications in, respectively, hetero-elasticity, poroelasticity [64], thermoelas-
ticity [65], visco-elasticity [66] and elastic-plasticity when the inclusions get
the nature of, respectively, material precipitations (carbides), voids (or defects),
phase transformations of thermal origin and plastic strain (initial or not). The
in�uence of the size, depth, shape – cubic or spherical– and inclusion align-
ment on the residual stresses and elastic-plastic strains after a purely normal
loading and unloading is presented and discussed in detail.
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3.1 INTRODUCTION
The application of the Eshelby’s EIM to three-dimensional contact problems involves
two di�culties. The �rst one is the presence of a free surface (half-space) instead of an
in�nite space. The second one is the strain gradient in the vicinity of the contact, which
means a non-uniform eigenstrain within the heterogeneity instead of a uniform one
when the applied strain �eld (at in�nite) is uniform. In the literature most documented
studies focus on heterogeneities having simple and regular geometries (ellipsoid [27],
cuboidal [67], cylindrical [68]) in an in�nite elastic and isotropic matrix. Very few stud-
ies consider heterogeneities having arbitrary two-dimensional shapes [69] and even
less for three-dimensional shapes within a semi-in�nite body. Mura and co-authors [70,
71] and Chiu [72] provided integral solutions for ellipsoidal or cuboidal heterogeneity
in a semi-in�nite isotropic elastic body. The �rst analytical solution for cuboidal het-
erogeneities containing hydrostatic eigenstrains (εkk = 0) in a 3D contact problem
was derived by Jacq et al. in 2002 [37] and applied to elastic-plastic materials. Note
that for a large heterogeneity or for a complex shape it is always possible to discretize
it into small cuboids. Although the discretization of an arbitrary three-dimensional
shape with cubes requires a �ner mesh than with tetrahedral elements [71, 73], the
use of the latter shape is not numerically e�cient since the analytical solutions are not
known yet for such geometries.

3.2 ALGORITHM OF HETEROGENEOUS ELASTIC-PLASTIC CONTACT
PROBLEM
The HEPC-problem algorithm is presented in Fig. 3.1. At �rst, the initial state is de�ned
by the geometries of the two bodies in contact and their material properties. Note that
only one body is considered heterogeneous elastic-plastic in this study. This body can
include initial strains and stresses and have an initial hardening state. Then the load-
ing path is de�ned by a prescribed contact force or rigid body displacement. From that
input, the elastic contact is computed using a conjugate gradient method (CGM) and
the contact pressure distribution and elastic stresses are derived. The latter is added to
residual stresses forming the total stress used as input to perform eigenstrain, eigen-
stress and eigen-displacement calculation based on the Equivalent Inclusion Method
(EIM). This loop, called heterogeneous elastic contact, is repeated until convergence is
reached on the eigen-displacement. A new total stress is calculated taking into account
the additional stress generated by heterogeneities. Then, the plastic strain increment
is solved using the return-mapping algorithm. From plastic strain computed at each
point of the body, a new residual stress state and an update of surface residual displace-
ments are obtained using the superposition method described in Fig. 2.5 involving the
3D-FFT method as in [74]. The convergence of the problem is checked with the resid-
ual displacement. Note that in Fig. 3.1 δuf is the �nal output displacement getting from
the calculation core. It is used to validate the convergence of the contact problem as:
|δuf−δui|

|δui|
< ξ . Where δui is the initial or previous displacement and ξ the convergence

test tolerance.
η1 andη2 must be chosen in ]0; 1[ as relaxation coe�cients for the current displacement
used to update the surface geometry. If convergence of surface eigen-displacement and
plastic strains are reached, the load is incremented. Otherwise, the geometry is up-
dated for a new iteration of the heterogeneous elastic-plastic loop until convergence is
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reached. A computational code has been developed based on the described algorithm
and is validated in the following section.

Figure 3.1: Algorithm of Heterogeneous Elastic-Plastic Contact Problem

3.3 MODEL VALIDATION
For validation purpose, a comparison with the solution from a Finite Element Method
(FEM) is �rst performed. The maximum contact pressure and the yield strength are cho-
sen so that a relatively high level of plasticity is reached. The maximum contact pres-
sure is set to 4GPa for the elastic homogeneous solution. Figure 3.2 presents schemat-
ically the dry contact between a spherical indenter (dball = 2.78mm) and a HEP
body. A single spherical heterogeneity of radius 0.2× a is located at depth 0.3× a
below the surface, where a is the Hertzian contact radius. The elastic modulus ratio
between the matrix and the heterogeneity is de�ned as γ and set to the value of 3 or
1

4
. When γ > 1, the heterogeneity is sti�er than the matrix and when 0 < γ < 1, the

heterogeneity is softer than the matrix. The Poisson’s ratio ν is set to 0.3 for the hetero-
geneity. A Swift hardening law is chosen for the matrix of the HEP body (Eq. 2.7 where
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B = 640MPa,C = 4, and n = 0.0095) which gives an elastic limit σy = 730MPa.
Table. 3.1 recaps the values of parameters used for the validation.

Table 3.1: Values of parameters used for the validation

Parameter Value
Indenter radius R = 2.78

Indenter elastic properties E = 310GPa ; ν = 0.3

Matrix elastic properties E = 205GPa ; ν = 0.3

Matrix plastic properties
Swift law σy = B(C+ ε)n: B = 640MPa,C =

4,n = 0.0095⇒ σy = 730MPa

Heterogeneity elastic
properties γ = (3 or

1

4
) ; ν = 0.3

Heterogeneity size (radius) β = 0.2

Heterogeneity location
(depth) α = 0.3

Figure 3.2: Heterogeneous Elastic-Plastic Contact Problem

In order to ensure consistency with the Hertz contact theory, a homogeneous elastic
contact is performed with both methods (FEM and SAM). For the �nite element model,
the aim is to validate the geometry, mesh grid, type of elements and the axisymmetric
boundary conditions. Note that a �ner mesh is needed for the HEPC problem in order to
better represent the eigenstrain inside the heterogeneity and the eigenstresses outside.
Details of the mesh are presented in Fig. 3.3 and in Table. 3.1. Note that the size of the
linear axisymmetric triangular elements inside and in the vicinity of the heterogeneity
is 0.025× a for the FE model. Simulations using the semi analytical method (SAM),
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have been performed with 57× 57 elements in the x and y directions and 93 elements
in the z direction. This corresponds to an element size of 0.05a compared to 0.025a for
the FEM model. The semi analytical model mesh is limited to the potential plastic zone
de�ned as 1.5a× 1.5a× 2a. The mesh needs to be extended over a wider domain for
the FEM model to ful�ll the in�nite body assumption. Therefore each element has size
20µm× 20µm× 10µm. Note that a �ner element size is used in the z direction, being
the direction of the higher stress gradient. The semi analytical model computations
last in average six hours on a laptop when the FEM takes about �ve to eight days on a
workstation.

Figure 3.3: Finite element model used for the validation

Table 3.2: Details on the type and number of elements of the FE model

Part Geometry [mm] Element type Number
Indenter R = 2.78 3-node linear axisymmetric triangle (CAX3) 207,763
Matrix Lx = 4 ; Lz = 6 3-node linear axisymmetric triangle (CAX3) 136,522
Heterogeneity r = 0.2× a 3-node linear axisymmetric triangle (CAX3) 1,686

As expected the contact pressure distribution with Semi Analytical Method (SAM)
matches perfectly the one with the FEM, see Fig. 3.4(a) for homogeneous elastic and
homogeneous elastic-plastic assumptions. The contact pressure, in the HEPC case, is
plotted in Fig. 3.4(b) validating the semi analytical results by the FE model. Both pres-
sure pro�les appear very close even if a minor di�erence (less than 2%) is observed
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near the center of the contact for the softer heterogeneity. This relative di�erence can
likely be attributed to the way the spherical heterogeneity is meshed with cuboids in
the SAM. For sti�er heterogeneity the agreement is very good.
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Figure 3.4: Comparison of the contact pressure pro�les by SAM and FEM: (a) homogeneous
half-space; (b) half-space containing one single spherical heterogeneous inclusion

3.4 NUMERICAL RESULTS
This section aims to investigate the e�ects of the elastic properties (sti�er or softer),
shape (sphere or cube) and location (depth) of the heterogeneity on the elastic-plastic
response of the matrix (plastic strain and residual stress). The presence of a cluster of in-
homogeneity is also treated. Lastly, the in�uence of the matrix hardening properties is
also studied, by diminishing its yield strength, as to simulate overload. For fatigue resis-
tance of bearing steels, these parameters are very important when the bearing life has
to be improved. For instance, the gradient of carbide volume fractions in case-hardened
steels (M50NiL) due to the thermo-chemical surface treatment induces a bene�cial ef-
fect on the material resistance as long as it introduces residual compressive stresses up
to the Hertzian depth. Such type of analysis would be useful to optimize the surface
treatment parameters for a given application (mostly the contact size and the contact
pressure). This constitutes the engineering interest of this study. The plastic strain will
be kept moderate here in order to be close to what is encountered in most industrial
applications, with a maximum equivalent plastic strain lower than 2%.

3.4.1 INFLUENCE OF PLASTIC BEHAVIOR AND HETEROGENEITIES ON THE CONTACT PRES-
SURE DISTRIBUTION

It is well known since Hertz that the maximum pressure within an elastic contact in-
creases linearly with the equivalent Young’s modulus Eeq at the power 2/3, whereas
the contact radius decreases with Eeq at the power −1/3. In this study a spherical in-
denter is considered as a homogeneous elastic material with E = 310GPa and ν = 0.3
corresponding to silicon nitride (Si3N4) ceramic material. The elastic-plastic properties
of the matrix are those already mentioned in Table 3.1 excepted the Young’s modulus
which is now and in what follows E = 210GPa. Data regarding the heterogeneity is
given in Table 3.3.
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Table 3.3: Heterogeneity data

Heterogeneity data Value
Shape cube

Elastic properties γ = (2 or
1

3
) ; ν = 0.3

Size (semi-length) β = 0.2
Location (depth) α = 0.3

It can be seen in Fig. 3.5 that, for homogeneous half-space, the accumulation of plas-
ticity beneath the surface tends to �atten the contact pressure distribution while in-
creasing the contact area. The presence of a heterogeneity sti�er than the matrix in-
creases locally the contact pressure (see Fig. 3.5(a)) whereas a softer one decreases it,
see Fig. 3.5(b). One can also observe that the pressure peak is considerably reduced
by the plastic �ow for the heterogeneous elastic-plastic case compared to the hetero-
geneous elastic one when the heterogeneity is harder than the matrix. Similarly, the
pressure reduction is less in the heterogeneous elastic-plastic case when the hetero-
geneity is softer than the matrix. In Fig. 3.5, the actual contact radius a∗p for Hetero-
Elastic-Plastic case is 1.17a. Where a is the contact radius for a homogeneous elastic
contact (Hertzian solution). The Hetero-Elastic radius a∗ is close to the elastic one a.
Similarly the Hetero-Elastic-Plastic one a∗p is very close to the Elastic-Plastic contact
radius ap. Also note the contact pressure discontinuity due to the shape of the hetero-
geneity which is here a cube. It is also found by plotting together the contact pressure
when the heterogeneity is either a cube or a sphere (Fig. 3.6), that the maximum pres-
sure is almost the same. Actually, the two cases presented in Fig. 3.5 and Fig. 3.6 are
quite di�erent. In Fig. 3.5, the applied load is signi�cantly higher than the load lead-
ing to plastic �ow (σ0/σy0 = 4.7 where σ0 = 0.62P0 ) therefore the homogeneous
elastic-plastic case highly di�ers from the elastic one. For the heterogeneous elastic
case, strong peaks of pressure are observed since there is no plastic �ow to regularize
those stresses. Meanwhile, in Fig. 3.6, the applied pressure is lower than the limit load
(σ0/σy0 = 0.9) such that without heterogeneity no plastic �ow occurs. Only the over-
stress due to the presence of a heterogeneity leads to a plastic �ow. Note that in this
�gure, no elastic heterogeneous case is presented. Furthermore, the depths of hetero-
geneities are di�erent for both cases and therefore those can’t be directly compared.
The very strong in�uence of plasticity and heterogeneity on the pressure emphasizes
the need for the development of such techniques.
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Figure 3.5: Contact pressure pro�les between a spherical indenter and HEP body: (a) Hetero-
geneity sti�er than the matrix; (b) Heterogeneity softer than the matrix
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Figure 3.6: Comparison of the contact pressure pro�les for cuboidal and spherical hetero-
geneities

3.4.2 ACCUMULATION OF PLASTIC STRAIN LOCALLY AROUND THE HETEROGENEITY

The accumulation of plasticity around the heterogeneity is investigated here. Figure
3.7 shows the plastic strain distribution around a sti� heterogeneity (γ = 3) located at
di�erent depths as given in Table 3.4. The presence of the heterogeneity disturbs the
plastic strain distribution, creating a local plastic strain concentration by a factor 2.5
compared to the homogeneous situation (Fig. 3.7(a)).
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Table 3.4: Location (depth) of the heterogeneity beneath the surface

Heterogeneity in Fig. 3.7 Depth: zi = α× a
(b) α = 0.25
(c) α = 0.40
(d) α = 0.48
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Figure 3.7: Plastic strain distribution around a single sti� (γ = 3) and spherical heterogeneity:
(a) Elastic-plastic matrix without heterogeneity; heterogeneity centered at (b) zi =
0.35× a ; (c) zi = 0.7× a ; (d) zi = 0.9× a. The heterogeneities have the same
size of 0.2a

Figure 3.8 and Table 3.5 show that the plastic strain distribution around an hetero-
geneity is also dependent on its nature. When the heterogeneity is sti�er than the
matrix the plasticity grows up from the south pole. This explains the plastic strain
concentration below the heterogeneity in this case (Fig. 3.8(b)). In contrast, the con-
centration is located on the equator of the heterogeneity when it is softer than the
matrix (see Fig. 3.8(a) for a cavity).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI154/these.pdf 
© [K. Amuzuga], [2016], INSA Lyon, tous droits réservés



36 hep contact

Table 3.5: Data used for soft and sti� heterogeneities in Fig. 3.8

heterogeneity in Fig. 3.8 Parameter

(a)
Spherical shape; Size β = 0.2; Depth α = 0.3;

Elastic modulus ratio γ = 0

(b)
Spherical shape; Size β = 0.2; Depth α = 0.3;

Elastic modulus ratio γ = 3
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Figure 3.8: Plastic strain according to heterogeneity nature: (a) Heterogeneity softer than the
matrix; (b) Heterogeneity harder than the matrix

It might be needed to quantify the plastic strain around a heterogeneity located out
of the Hertzian zone. This situation is similar to that of a heterogeneity located out of
the Hertzian zone along the rolling direction in the case of rolling contact. As plotted
in Fig. 3.9, the plastic strain level is related to the heterogeneity size. These �gures
compare the plastic strain for a centered heterogeneity to a decentered one when the
distance d between their centers is kept constant (d = a). The outer heterogeneity
radius ranges from β = 0.05× a to β = 0.4× a. Table 3.6 recaps the heterogeneity
data used for this computation.
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Table 3.6: Data used for heterogeneity located out of the Hertzian zone in Fig. 3.9

heterogeneity in Fig. 3.9 Parameter

(b)
Size β = 0.05; Depth α = 0.48; Elastic modulus

ratio γ = 3

(c)
Size β = 0.2; Depth α = 0.48; Elastic modulus

ratio γ = 3

(d)
Size β = 0.3; Depth α = 0.48; Elastic modulus

ratio γ = 3

(e)
Size β = 0.4; Depth α = 0.48; Elastic modulus

ratio γ = 3

Centered heterogeneity
Size β = 0.05; Depth α = 0.48; Elastic modulus

ratio γ = 3

It is found that there is no plasticity accumulation around the outer heterogeneity
when β = 0.05× a (see Fig. 3.9(a)), and an increase of up to 30% of the maximum
plastic strain for the largest size. However the highest value always corresponds to
the one found around the smallest centered heterogeneity. Note also that the plastic
volume increases when the outer heterogeneity get larger.
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Figure 3.9: Local plastic strain concentration produced around two spherical heterogeneous
inclusions, the �rst one of small size located in the center of the contact and at
the Hertzian depth, the second one being an outer heterogeneity of varying size
and located at the Hertzian depth at the border of the contact (r = a): Elastic-
plastic matrix without heterogeneity (a); with an outer heterogeneity of radius ri =
0.05× a (b); ri = 0.2× a (c) ; ri = 0.3× a (d); and ri = 0.4× a (e)

The e�ect of a cluster of heterogeneities is now investigated. It was found [75] that
most commonly hardened materials contain large heterogeneities which are often ori-
ented in bands forming stringers. This orientation is generated by the rolling/forg-
ing operations performed between the casting and the heat treatment. Therefore, it is
quite interesting to look at the e�ect of the cluster orientation. A set of simulations
has been performed for a half-space containing a stringer of three sti� heterogeneities
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(γ = 3 , β = 0.1) located in the plane (y = 0). The orientation of the stringer is rep-
resented by the angle θ ranging from 0 to

π

2
. The distance between the heterogeneity

centers is di = 0.4× a. Figure 3.10 shows that the maximum plastic strain accumula-
tion is obtained for a vertical stringer i.e. for θ =

π

2
. One can also observe that 50%

of this value is reached for a horizontal stringer compared to only 10% without het-
erogeneity (Fig. 3.10(a)). What can also be shown is that, for inclusions softer than the
matrix, the most critical orientation is the horizontal one or the direction parallel to
the contact surface.
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Figure 3.10: Plastic strain according to the heterogeneity stringer orientation:(a) Elastic-plastic
matrix without heterogeneity; (b) Horizontal orientation; (c) Tilted stringer of ori-
entation θ =

π

6
; (d) Tilted stringer of orientation θ =

π

4
; (e) Tilted stringer of

orientation θ =
π

3
; (f) Vertical orientation

3.4.3 RESIDUAL STRESS CONCENTRATION IN THE VICINITY OF AN ISOLATED HETEROGENE-
ITY

The total residual stresses in a heterogeneous elastic-plastic body are a combination
of residual stresses due to plasticity and eigenstresses due to the presence of hetero-
geneities. The material and geometrical data used for the heterogeneity are listed in
Table 3.7. Fig. 3.11(a) shows the contact pressure distribution and related subsurface
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plastic strains for both homogeneous and heterogeneous elastic-plastic bodies. Note
that the maximum plastic strain for the homogeneous body is 2% (Fig. 3.11(b)) about,
whereas it reaches nearly 4% (Fig. 3.11(c)) with the heterogeneous inclusion.
The contribution of residual stresses (due to plasticity) and eigen-stresses (due to the
heterogeneity) to the total stress is plotted in Fig. 3.12. The contribution of the contact
pressure only is plotted in Fig. 3.12(a), the eigenstress due to the presence of the het-
erogeneity in Fig. 3.12(b), the residual stress due to plasticity in Fig. 3.12(c), and the
total stress in Fig. 3.12(d). It should be outlined that the maximum residual stress can
reach up to 0.4 times the maximum Hertzian pressure P0 (Fig. 3.12(c)) whereas it is lim-
ited to about 0.2× P0 in the absence of heterogeneity (Fig. 3.12(a)). As a consequence
the total residual stress, summation of both contributions and which is observed di-
rectly above and below the heterogeneity (Fig. 3.12(d)) may reach up to 70% of the
maximum Hertzian pressure. Similar plots are shown in Fig. 3.13 for the hydrostatic
pressure. Negative zones indicate compressive residual stress. Unlike the case of a ho-
mogeneous elastic-plastic body, the presence of the heterogeneity localizes the resid-
ual compressive stress between the inclusion and the surface with signi�cant residual
compressive stress at the corners of the heterogeneity.

Table 3.7: Heterogeneity data for residual stresses computation

Heterogeneity data Value
Shape cube
Elastic properties γ = 3 ; µ = 0.3
Size (semi-length) β = 0.2
Location (depth) α = 0.3
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Figure 3.11: Contact pressure pro�les and related plastic strain �elds: (a) Pressure distribution;
(b) Plastic strain within the homogeneous body; (c) Plastic strain within the het-
erogeneous body
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Figure 3.12: Decomposition of the total residual stress (Von Mises) observed after unloading:
(a) Residual stress due to plasticity only without heterogeneity within the EP ma-
trix; (b) Eigen-residual stress due to the presence of the heterogeneity and residual
stresses resulting from the surrounding plasticity; (c) Residual stress due to plas-
ticity only in the presence of the heterogeneity; (d) Total balanced residual stress
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Figure 3.13: Decomposition of the total residual stress (Hydrostatic Pressure) observed after
unloading: (a) Residual stress due to plasticity only without heterogeneity within
the EP matrix; (b) Eigen-residual stress due to the presence of the heterogeneity and
residual stresses resulting from the surrounding plasticity; (c) Residual stress due
to plasticity only in the presence of the heterogeneity; (d) Total balanced residual
stress

3.4.4 ANALYSIS OF PRINCIPAL STRESSES AND DIRECTIONS

In order to investigate and explain the damage mechanisms related to residual stresses
near an isolated heterogeneous inclusion, the principal residual stresses and their di-
rections are studied. From Fig. 3.14 one can forecast the crack initiation site and growth
direction nearby a cuboidal heterogeneity within an elastic-plastic matrix subjected to
a contact load.
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Figure 3.14: Principal stress I and principal direction I: (a) Elastic-plastic matrix; (b) Heteroge-
neous elastic-plastic body

For a cubic heterogeneity, that can be assimilated to a carbide in bearing steel, the
highest values of the principal stress are located at the bottom of the heterogeneity
and at its upper corners. Crack initiation can then be expected to occur at these lo-
cations. The orientation of the �rst principal stress σI is shown in Fig. 3.14(b) and
zoomed in Fig. 3.15, bringing insights to the most probable direction in which cracks
may propagate after initiation (in a plane perpendicular to the �rst principal direc-
tion). Note that σmaxI = 0.45× P0, when the homogeneous elastic-plastic case shows
σmaxI = 0.15× P0 in Fig. 3.14(a).

Inclusion

Figure 3.15: Zoom on the highest principal stress location and orientation: Prediction of crack
initiation direction that should be perpendicular the principal stress direction for
the mode I

3.5 PARAMETRIC STUDY
A parametric study is conducted for a heterogeneous elastic-plastic contact problem
investigating the in�uence of the heterogeneity material, size and location, on the con-
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tact pressure distribution and subsurface plastic strain. The values of the parameters
used here are recalled in Table 3.8 for one single heterogeneity of cubic shape.

Table 3.8: Data for parametric study, with α, β and γ being the dimensionless depth, semi-
length and Young modulus ratio, respectively

Contact Heterogeneity Plasticity

P0 = 4GPa ; 5GPa
α =

0.25 ; 0.3 ; 0.4 ; 0.48 ; 0.6 Swift Law
(E,ν)indenter =
(310GPa, 0.3) β = 0.05 ; 0.1 ; 0.2 ; 0.3

(B,C,n) =
(640MPa, 4, 0.095)

(E,ν)HEPC−body =
(205GPa, 0.3)

γ =
0 ; 1/7 ; 1/3 ; 2 ; 3 ; 4 σy = 730MPa

3.5.1 CONTACT PRESSURE

Figure 3.16 shows the in�uence of the depth α = zi/a (Fig. 3.16(a)), semi-length
β = ri/a (Fig. 3.16(b)) and elastic modulus γ = Ei/Em (Fig. 3.16(c)) of the cuboidal
heterogeneity on the contact pressure distribution. As expected for a sti� heterogene-
ity, the closest the heterogeneity is to the surface, the highest the peak of pressure is.
For a sti� heterogeneity (γ = 3) having a relatively small size (β = 0.2) with its center
at depth α = 0.25, the peak pressure reaches 1.15 times the Hertzian one, which is
approximately twice that observed for a homogeneous EP body (Fig. 3.16(a)). The most
critical size for a sti� heterogeneous inclusion located a depth α = 0.3 (Fig. 3.16(b)),
corresponds to β = 0.3, i.e. when it becomes tangent to the surface for which the
maximum pressure is found at the edge of the heterogeneity. This is of particular im-
portance for carbides that are sometimes observed at the surface of the raceway in
rolling bearings, that may be detached after a few rolling cycles. Finally, it can be ob-
served (Fig. 3.16(c)) that hard heterogeneities increase locally the pressure while soft
ones logically reduce it.
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Figure 3.16: E�ect of a cubic heterogeneity on the contact pressure distribution, according to
(a) its depth (for β = 0.2, γ = 3); (b) its size (for α = 0.3, γ = 3); and (c) elastic
modulus (for α = 0.3, β = 0.2)

3.5.2 EQUIVALENT PLASTIC STRAIN

The equivalent plastic strain pro�le along depth from the contact center (x,y) = (0, 0)
is plotted in Fig. 3.17, for various values of depth α = zi/a – Fig. 3.17(a), size β =

ri/a – Fig. 3.17(b) and elastic modulus γ = Ei/Em – Fig. 3.17(c). The shape of the
heterogeneity remains a cube, and the reference parameters are those of Fig. 3.16, i.e.
α = 0.3, β = 0.2, and γ = 3. In all sub-�gures the plastic strain obtained for a
homogeneous elastic plastic body with the same loading is plotted for reference. Note
that here again the heterogeneity remains elastic for simplicity. It can be observed that,
for a sti� heterogeneity, the maximum is always found above the top face or below its
bottom face, whatever are its depth and its size. This is consistent with the results
presented earlier in Fig. 3.8 for a spherical heterogeneity, for which the maximum was
found at the south or north pole for a sti� inclusion and at its equator for a soft one.
Note also that for a sti� heterogeneity the maximum plastic strain is found between
the contact surface and its top face when its center is below the Hertzian depth, see
Fig. 3.17(a). As the heterogeneity moves closer to the surface, the maximum of the
plastic strain switches to a depth below the bottom face. Finally, closer to the surface
is the heterogeneous inclusion, higher is the maximum plastic strain at a point that also
moves toward the contact surface. It can also be observed in Fig. 3.17(b) that it exists
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a critical size (here β = 0.1 when α = 0.3 and γ = 3) for which the plastic strain is
maximum (εp = 5%) compared to 3.5% and 3% only forβ = 0.2 and 0.05, respectively.
At last, it can be seen in Fig. 3.17(c) that the presence of a soft heterogeneity acts as a
damper or a screen reducing the plastic strain level while a sti� one increases it, with
peaks of plastic strain signi�cantly higher, up to the double (for γ = 4) of the one
observed in the homogeneous case.
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Figure 3.17: E�ect of a cubic heterogeneity on the equivalent plastic strain pro�le versus depth,
according to (a) its depth (for β = 0.2, γ = 3); (b) its size (for α = 0.3, γ = 3); and
(c) elastic modulus (for α = 0.3, β = 0.2)

3.5.3 STUDY OF THE OVERALL PLASTIC STRAIN

For evaluating the subsurface global behavior, an overall plastic strain is de�ned as:

τ =
1

Vp

∫
Ωc

εep(x,y, z)dΩc (3.1)

Where Vp is the volume of the total plastic domainΩc and τ the e�ective accumulated
plastic strain.
The overall plastic strain is plotted in Fig.3.18 and Fig.3.19 for various heterogeneity
parameters and as a function of the applied load. Results show that for various hetero-
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geneity depths (Fig.3.18(a)) and elastic modulus (Fig.3.18(a)) the presence of a hetero-
geneity mainly redistributes the plastic strain but barely changes it. This is not true for
low load values, i.e for the �rst step of plasticity when the presence of the heterogene-
ity causes a change in stress distribution and then cause either advanced or delayed
plasticity. Once the plastic �ow is rather general in the zone surrounding the hetero-
geneity (at about 0.6 times the maximum load for this speci�c case, like in Fig. 3.11(a)),
the in�uence of the heterogeneity on the overall plastic strain, and consequently dis-
sipated energy, is negligible. A few more speci�c cases are studied. Fig.3.19(a) shows
that the previous conclusion is not valid for heterogeneities tangent to the surface. The
case (β = 0.1 and α = 0.1) is that of a small (compared to the maximum contact ra-
dius) hard heterogeneity, typically a carbide, tangent to the surface. Its presence causes
early apparition of plastic �ow but its in�uence becomes negligible for increased load,
i.e. when the plastic and contact zones become considerably large relatively to the het-
erogeneity size. A similar, but deeper heterogeneity (β = 0.1 and α = 0.3) does not
present a similar e�ect. A large, hard heterogeneity tangent to the surface (β = 0.3
and α = 0.3), causes for all load values an increase in the plastic �ow. Critical sizes and
depth, both being interdependent, of heterogeneities can use the proposed method be
identi�ed.
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Figure 3.18: Independence of the overall plastic strain on heterogeneity’s parameters: (a) loca-
tion; (b) elastic modulus

For hard heterogeneities (γ = 3), some simulations are performed to investigate on
particular values of heterogeneity’s parametersα andβwhich strongly a�ect the over-
all plastic strain. Fig.3.19(c) presents the overall plastic strain when the heterogeneity is
tangent to the surface (See that α = β). One can notice that, in these studied cases, the
overall plastic strain increases when the couple (α , β) increases. For small values of
(α , β) < (0.1 , 0.1) , the overall plastic strain reach the homogeneous elastic-plastic

one, when
P

Pmax
> 0.6. Note that in this studied cases, when (α , β) > (0.1 , 0.1)

tangential heterogeneities are causing non-negligible overall plastic �ow compared to
that of the homogeneous elastic-plastic bulk, even for low contact pressures. Fig.3.19(b)
shows that for the same location α = 0.4 the overall plastic strain of β = 0.3 is more
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important than β = 0.1 one. This result emphasis that the critical parameter is the het-
erogeneity’s size when it is completely embedded beneath the surfaceα > β. Note that
one can also conclude that, if α > 0.4 and β < 0.1 the overall plastic strain matches
with the homogeneous elastic-plastic one. For the same size β = 0.1 the overall plastic
strain ofα = 0.1 (tangential heterogeneity) is higher than the embedded heterogeneity

α = 0.4 one, at
P

Pmax
< 0.6. But their behaviors match once the pressure exceeded

the threshold of 0.6× Pmax. In contrast, for the same size β = 0.3 the overall plastic
strain of tangential heterogeneity α = 0.3 is lower than the embedded heterogeneity

α = 0.4 one, at
P

Pmax
< 0.6. And their behaviors change once the pressure 0.6×Pmax

was exceeded. The tangential heterogeneity becomes more critical. One can summary
that β > 0.3 is the worth encountered case for embedded heterogeneity or tangential
heterogeneity independently of the other heterogeneity’s parameters.
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Figure 3.19: Dependence of the overall plastic strain on some particulars set of heterogeneity’s
parameters: (a) size; (b) size and location; (c) size and tangential position
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3.6 PARTIAL CONCLUSION
This study presents a three-dimensional model of heterogeneous elastic-plastic contact
(HEPC) using a semi-analytical method. The model is versatile and able to cover any
kind of heterogeneity size, shape, distribution and location. Interaction between close
inhomogeneities is also considered in the numerical algorithm. The following major
conclusions have been reached:

• The proposed method permits to couple the contact problem (the algorithm is
almost identical to the one for the homogeneous elastic contact problem), the
presence of heterogeneous inclusions (based on the Eshelby’s EIM) and plastic-
ity. All is solved simultaneously in the framework of semi-analytical methods.
The algorithm is very robust and converges at relatively high plastic strain. For
instance, plastic strain of 20% can be very easily reached.

• It is shown that the residual stress and the plastic strain state after loading arise
from a complex combination of the e�ects of plasticity and eigenstresses due to
the presence of inclusions.

• It exists for each con�guration (size, location, shape and material properties of
an isolated inclusion, one of these parameters being a variable) a critical value
for which the plastic strain is the highest. Critical locations of heterogeneities,
depending on their size and the loading conditions can therefore be determined.

• For inclusions sti�er than the matrix the maximum plastic strain is found at the
top and bottom face of the heterogeneity (north and south pole for a spherical
one) whereas it is found on the lateral sides of it (equator for a spherical one) for
a soft one.

• The presence of soft inhomogeneities tend to minors the level of plasticity: they
act as a damper.

• In presence of a stringer or cluster of interacting inclusions (i.e. close enough
so that they interact), the most detrimental orientation of the inclusions can be
determined. For sti� and iso-spaced inclusions the most critical orientation is the
vertical one (i.e. normal to the contact surface).
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4
H E T E R O G E N E O U S E L A S T I C P L A S T I C R O L L I N G C O N TA C T

The objective of this chapter is to characterize the critical e�ects generated
by the presence of heterogeneous inclusions in roller rings that may generate
peaks of stress and potential plastic �ow. The role of the size, depth and ma-
terial properties of the inclusion, along with the hardening properties of the
body will be studied. Special care will be devoted to the stabilization of the
pressure load when several rolling cycles are considered. For that the cou-
pling between the plastic behavior of the material and the inclusion must
be correctly accounted for. The semi analytical methods have proven their
e�ciency to solve contact problems even when the contacting bodies are het-
erogeneous and behave plastically. Themethod used here is fully coupled: the
mutual in�uence between inclusions, plasticity and with the contact is con-
sidered. Potential applications involve practical prediction of the criticality
of inclusions and engineering best practices for bearing ring manufacturing.
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4.1 INTRODUCTION
The pioneering works of D. Tabor, Eldredge [76] and Crook [77] in the middle of 50s
about the mechanism of rolling friction revealed that the rolling resistance was not
only due to interfacial slip since full lubrication regime is ensured, but also owed to
the permanent displacement of the material ahead the ball related to the plastic defor-
mation generated underneath. This new point of view led to the emergence of several
investigations to integrate plasticity phenomena in rolling contact failure studies. Af-
terwards, considerable experimental studies and observations [78, 79] brought out that
non-metallic inclusions are the main source of subsurface damage mechanism initia-
tion and propagation driving to the so-called white structure �aking (WSF). Hence,
both surface failure (from circumferential and axial cracks located at contact path
shoulder) and subsurface failure (from material imperfection as defects and hetero-
geneous inclusions) became welcomed research topics. Existing studies demonstrated
that the genesis of subsurface damage mechanisms around inclusions is representative
of the degradation of material crystallographic structure from martensite to ferrite [80]
manifested by the well-known butter�y wings which debonding regions are the site of
microcracks. Some suggested [81, 79] microstructural alteration which yields a decay-
ing of the butter�y wingspan regions into microcavities. Strong evidences, provided
by miscellaneous serial sectioning of test specimens and ex-service bearing rings, elu-
cidate statistically that the network connection of butter�y wingspan in presence of
multiple inclusions forms small white etching cracks that after a while propagate to
the surface [82].

However, the detection of the very �rst crack instant and location needs in-situ con-
trol technology and it seems to be complex because of the compact design of mechan-
ical systems and working conditions as lubrication and temperature. Even if helpful
approaches such as vibration sensor techniques are used as alternative to a proper
planning of substantial maintenance work, the detection threshold is a function of sev-
eral parameters such as the overall cost of the equipment and the physical limitations
(like signal interference when there is a need to lower detection threshold). Therefore
modest developments were made over the last two decades to establish an adequate
connection between the fatigue failure and the material properties when the contact-
ing elements (gears, rail-wheel and aerospace bearing) are getting nowadays complex
responses due to requirements speci�cation. Material property adjustment to improve
rolling elements tribological behavior, has been analyzed numerically in [83]. Several
numerical models[84, 85, 86] o�er the alternative to provide the fatigue life prediction
base theoretical and experimental background. Some of them can take to account the
e�ect of initial compressive stress as well as the e�ect of the tensile hoop stresses in-
duced during the mounting on the shaft with heavy �ts and the additional centrifugal
stress in high shaft speed conditions [85]. But it has been claimed that the development
of nascent residual stress during cyclic stress conditions due to plasticity must be con-
sidered. Then semi-empirical descriptions have been proposed in [87]. The residual
stress scatter can also be incorporated in the RFC life model, [88]. In addition, RCF
crack initiation life models have been proposed in [89] with good accuracy estimation.
Recently, Ghosh [90] simulates subsurface cracks initiation and propagation due to sur-
face fatigue during rolling contact, employing linear elastic fracture mechanics. But in
the present study, the rolling contact resolution consists of moving the contact problem
solved at each time-step, under quasi-static consideration, along a given direction.
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Furthermore, models based on Finite Element Method (FEM) have been commonly
used in rolling contact analysis treating crack propagation [91, 92], fatigue failure [93,
3], spalling [10], adhesion and slip e�ects [94]. Yet, solving three dimensional rolling
contact problem involving heterogeneity or plasticity with FEM is proven by Wang and
coworkers in [95], to be resources and time consuming, compared to Semi Analytical
Method (SAM) especially when a �ne mesh is required to e�ectively capture �elds in
interesting zones. A three-dimensional elastic plastic rolling contact modeling by FEM
is too computational resources demanding and even more if several cycles must be
performed when analyzing shakedown [96] or ratcheting [97] phenomena. Generally,
the contact pressure distribution is calculated separately for instance by using Carter’s
contact theory as in [98], before solving the subsurface problem by FEM.

The e�ciency and rapidity of SAM owe to the use of Conjugated Gradient Method
(CGM) [50] and Fast Fourier Transform FFT [53] techniques. Further enhancement
take into account the e�ect of non-linear behavior as plasticity [37], thermal-elastic-
plasticity [99], dynamic [55], visco-elasticity [100] along with the presence of heteroge-
neous inclusion from di�erent origins [66, 41, 101, 102], fretting stick-slip [51, 40] and
lubricated plasto-elastohydrodinamic [103]. A numerical resolution of heterogeneous
elastic plastic contact problem has been proposed in [104] by fully coupling contact,
plasticity and heterogeneity interactions in the same �owchart. This algorithm is the
core of the rolling contact model reported in this study. Guler [105] constructs a math-
ematical model of the rolling problem by using a singular integral equation approach.
But in the present work, the rolling contact resolution consists of moving the contact
problem solved at each time-step, under quasi-static consideration, along a given di-
rection.

The principal objective is to provide a comprehensive analysis based on the solu-
tions in terms of contact stress and subsurface stress-strain considering plasticity and
heterogeneity e�ect on the rolling contact. Conceding that the main failure mode of
mechanical components undergoing repeated rolling contact appropriates to surface
spalling, frictional contact has been achieved in purpose to examine the excessive plas-
tic strain endured by the material in presence of heterogeneity. Also the model yielded
good results when including the presence of initial compressive stress and/or gradi-
ent of plastic behavior. Although the entire results obtained here stand for numeri-
cal aspect, it has practical merit for replicating and con�rming advanced analysis per-
formed by expert �rms dealing with rolling contact problem in engineering systems
from design to manufacturing in reference to successful experiments works evaluat-
ing fatigue life concerning aircraft engine mainshaft bearing [86]. Bearing industry
engaging for high performance, perfected materials as AISI 52100 steel which have
very high strength. Also in order to raise its fracture-toughness, the AISI 52100 steel
has been substantially enhanced to the M50 steel by metallurgical purity, then M50
NiL appears as an improved processed variant of M50 with high low-nickel carbon.
The latter materials owe their strengthening to the presence of carbides and nitrides
together with intermetallic particles. Over loading cycles, the carbides and nitrides act
as stress intensi�er and become the site of subsurface crack initiation and propagation.
In other to seek the potential risky zones for crack departure around heterogeneity,
Dang Van crack initiation criterion [106] is used in relationship with the shear and
hydrostatic stress. This method allows to distinguish the initiation life from the total
life among a variety of empirical criteria as Goodman rules based on the mean and
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alternative stress. Similar to Sines criterion [107], Dang Van criterion o�ered a simply
explanation for understanding high cycle multiaxial fatigue life when the employed
material must withstand a located stress concentration. Dang Van criterion has been
used by Ekberg [108] to treat railway wheels rolling contact involving heavy load up
to 240kN. But the study assumed the material to be homogeneous and the plasticity
e�ect are not accounted despite the fact that it might be reasonably present in view
of the load magnitude. Further, Hofmann et al. [109] include plastic shakedown e�ect
and heterogeneity by considering a distribution of polycrystalline grains. However the
analysis was limited to two dimensions by means of calculation power.

In the following sections, let’s abbreviate Elastic by E, Elastic-Plastic by EP, Homo-
geneous Ho and Heterogeneous by He. These abbreviations are used as superscript
or subscript. Other abbreviations are used such as HEPC standing for heterogeneous
elastic plastic contact and HEP-RC for heterogeneous elastic plastic rolling contact.

4.2 ROLLING CONTACT ANALYSIS
Based on previous work of Amuzuga et al. [104] presenting the solver of heterogeneous
elastic plastic contact (HEPC) problem and its validation, the model is extended to
a rolling contact problem. The theoretical background and the �owchart are brie�y
described here.

4.2.1 DESCRIPTION OF THE HETEROGENEOUS ELASTIC-PLASTIC ROLLING CONTACT MODEL

Now, a rolling contact is conducted on a heterogeneous elastic-plastic (HEP) bulk by
and an elastic spherical roller. The bulk could be considered as the AISI 52100 or M50
- M50NiL steels containing sti� heterogeneous inclusions as carbides and the roller
stands for Silicon Nitride material (Si3N4). The Heterogeneous Elastic-Plastic Rolling
Contact (HEP-RC) simulation is described in Fig.4.1 and the parameter settings are
indicated in Table. 4.1. The heterogeneity is elastic and centered below the surface
in the plane P(y = 0). Numerical results are presented in dimensionless form. The
surface/subsurface stresses and distance are normalized by the homogeneous Hertz
maximum pressure P0 and radius a, respectively. The accumulative plastic strain εp is
expressed in percentage, and εpmax refers to its maximum value within the whole body.
The relative distances between the heterogeneity center position xi along the rolling
motion direction and the contact center position xc is noted δx = xi− xc. Hence δx is
negative when the load is arriving backward on the heterogeneity, positive when the
load passed over the heterogeneity and is going forward.
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Figure 4.1: The Heterogeneous Elastic-Plastic Rolling Contact simulations setting

Table 4.1: Values of HEPRC simulations parameters

Parameter Value

Indenter diameter d = 5.56mm

Applied maximum Hertzian
pressure P0 = 2.0GPa

Roller elastic properties Eball = 310GPa (Silicon Nitride) ; νball = 0.3

Surface friction coe�cient f = 0 ; 0.05 ; 0.1 ; 0.15 ; 0.2 and 0.25
Matrix elastic properties Em = 210GPa (M50NiL) ; νm = 0.3

Matrix plastic properties
σy = B(C+ εp)n where B = 240MPa,C = 4, and

n = 0.095

Heterogeneity elastic properties EI = 490GPa (Vanadium carbide) ; νI = 0.3

Heterogeneity size
Si = β× a where β = 0.05 ; 0.1 ; 0.2 ; 0.4 with a the

contact radius
Heterogeneity location zi = α×a where α = 0.3 ; 0.5 ; 0.8 and a = 63.48µm

Rolling distance Dx, from x = −2a = −120µm to x = 2a = 120µm

The maximum values reached by di�erent �elds during the rolling motion evolution
are analyzed. These maxima are not located at the same point during the entire cycle.
One can also notice that, when the bulk is elastic-plastic, the plotted �elds pro�les
present a non-symmetrical aspect. As these pro�les are obtained from the �rst rolling
cycle, the non-symmetrical aspect is a physical phenomena known as the contact sur-
faces permanent groove creation. It was �rst observed by G. Hamilton [110] when
performing rolling tests on copper rolling. The microscopic images reveal a forward
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movement or distortions in some case, of the surface layer of copper disc on grain level.
Further photoelastic imagery on aluminum glass disc has shown tilted fringe pattern
of the stress distribution even if normal loading is applied. This allows to explain the
phenomena as the material rolling resistance in the motion opposite direction when
plastic �ow occurred above the yield point. Indeed, in other to overcome this resis-
tance, the center of the pressure (where its magnitude is high) is thrown ahead of the
contact geometrical center. Note that the test conditions and specimens arrangement
ensure that the tilted stress distribution is not due to the shear traction induced by
the surface friction coe�cient f according to Coulomb’s friction law. This is con�rmed
here since f = 0 but the tilted stress distribution held as shown by Fig.4.3(c). It is neces-
sary to specify that the groove phenomena cannot be captured if the rolling motion is
modeled by moving a constant given distribution of pressure as seen in many studies.
The contact problem needs to be solved at each rolling step. Whatever, the groove phe-
nomenon is not crucial for statements established here since only the comparisons of
�eld orders of magnitude are mainly analyzed throughout present study. In addition,
when the bulk is homogeneous elastic-plastic, the steady state is reached for all the
considered �elds ( pressure Fig.4.2, stress Fig.4.3 and strain Fig.4.6 ) after a rolling dis-
tance of Dx = 3a. For calculation resources minimization purpose, the heterogeneity
center is placed at δx = 2a from the rolling starting point. Thus, the steady state is
not reached before the load is approaching the heterogeneity. But the error committed,
by this reduction of the computational zone is less than 1% which is admissible with
regard to the advantage in terms of the numerical code speed performance.

4.2.2 CONTACT PRESSURE EVOLUTION DURING THE ROLLING

The comparison between the contact pressure maximum during a rolling cycle is pre-
sented in Fig.4.2 when the �at body is assumed homogeneous/heterogeneous and elastic/elastic-
plastic. It could be seen that when the �at body is homogeneous elastic, the pressure
maximum is equal to the Hertzian one during the rolling. By adding a heterogeneity
(de�ned by Si = 0.1a, zi = 0.3a and EI = 490GPa ⇒ γ = 2.33), the pressure maxi-
mum started increasing when the contact xc is coming closer to the heterogeneity xi
in the motion direction. The increase begins at δx = xi − xc = −0.5a and reaches
the peak at δx = 0 where the over-pressure is PHemax − PHomax = 0.08P0. Afterwards, the
overpressure decreased and vanished at δx = 0.5a. Note that, in the presence of hetero-
geneity and when the �at is elastic, the maximum contact pressure is disturbed over a
distance of D(P)

i = a. But, when plasticity occurred, the disturbance distance is more
enlarged D(P)

i = 1.8a and the over-pressure is higher PHemax − PHomax = 0.16P0. In this
regarded case, the disturbance distance and the overpressure are practically doubled
when the �at body is elastic-plastic.
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Figure 4.2: Contact pressure evolution during the rolling

4.2.3 SUBSURFACE MAXIMUM SHEAR STRESS DURING THE ROLLING

Similarly to the evolution of the contact pressure, it could be seen in Fig.4.3 that, when
the bulk is elastic, the subsurface total stress a in the presence of the heterogeneity a

the maximum shear
stress is used here as
Tresca stress
τmax = σTresca =
1

2
Max(σI −

σJ)I,J=1,2,3

leads to a stress �eld disturbance spread over a distance of D(τ)
i = 2.2a with an over-

stress about τHemax − τHomax = 0.18P0. More critical, it turns out that, when the bulk is
elastic-plastic the disturbance spread over D(τ)

i = 3.4a with an over-stress of 0.22P0.
The maximum shear stress 0.4P0 exceeded the maximum Hertzian τHertzmax = 0.31P0
which is often used by product sta� to design the applied load.
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Figure 4.3: Subsurface maximum shear stresses during the rolling

4.2.4 MAXIMUM SHEAR STRESS DISTRIBUTION DURING THE ROLLING

Now the heterogeneity is centered at the depth of the maximum shear stress peak. The
maximum shear stress contours in the subsurface is presented in Fig.4.2, 4.3 , 4.4, 4.5.
The sub-�gures (a) and (b) show the stress distribution at the rolling motion starting
where δx = −2a. Following this logic, the sub-�gures (c) and (d) correspond to the
moment when the rolling contact center is aligned with the heterogeneity center along
the vertical axis z implying that δx = 0. The sub-�gures (e) and (f) stand for the
unloading at the end of the motion, where δx = 2a. It should be clari�ed that the sub-
�gures (a), (c) and (e) represent the view in the plane P(y = 0) when the sub-�gures
(b), (d) and (f) represent the view in the plane P(x = 0). The main reference (O, x,y, z)
is de�ned by its origin O located at the contact surface intersection with the vertical
axis z passing through the heterogeneity center. This means that the planes P(y = 0)

and P(x = 0) are centered on the heterogeneity and they intersect on the vertical axis
z.
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Figure 4.2: Evolution of the maximum shear stresses at particular rolling motion steps when
the body is homogeneous elastic: Step I 99K Contact loaded at−→δx = −2a, (a) rolling
viewed in the plane P(y = 0), (b) rolling viewed in the transverse plane P(x = 0)
centered on the heterogeneity; Step II 99K Rolling up to δx = 0, (c) rolling viewed
in the plane P(y = 0), (d) rolling viewed in the transverse plane P(x = 0) centered
on the heterogeneity; Step III 99K Contact unloaded at δx = 2a, (e) rolling viewed
in the plane P(y = 0), (f) rolling viewed in the transverse plane P(x = 0) centered
on the heterogeneity
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Figure 4.3: Evolution of the maximum shear stresses at particular rolling motion steps when
the body is homogeneous elastic-plastic: Step I 99K Contact loaded at δx = −2a,
(a) rolling viewed in the plane P(y = 0), (b) rolling viewed in the transverse plane
P(x = 0) centered on the heterogeneity; Step II 99K Rolling up to δx = 0, (c) rolling
viewed in the plane P(y = 0), (d) rolling viewed in the transverse plane P(x = 0)
centered on the heterogeneity; Step III 99K Contact unloaded at δx = 2a, (e) rolling
viewed in the plane P(y = 0), (f) rolling viewed in the transverse plane P(x = 0)
centered on the heterogeneity
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Figure 4.4: Evolution of the maximum shear stresses at particular rolling motion steps when
the body is heterogeneous elastic: Step I 99K Contact loaded at δx = −2a, (a) rolling
viewed in the plane P(y = 0), (b) rolling viewed in the transverse plane P(x = 0)
centered on the heterogeneity; Step II 99K Rolling up to δx = 0, (c) rolling viewed
in the plane P(y = 0), (d) rolling viewed in the transverse plane P(x = 0) centered
on the heterogeneity; Step III 99K Contact unloaded at δx = 2a, (e) rolling viewed
in the plane P(y = 0), (f) rolling viewed in the transverse plane P(x = 0) centered
on the heterogeneity
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Figure 4.5: Evolution of the maximum shear stresses at particular rolling motion steps when
the body is heterogeneous elastic-plastic: Step I 99K Contact loaded at δx = −2a,
(a) rolling viewed in the plane P(y = 0), (b) rolling viewed in the transverse plane
P(x = 0) centered on the heterogeneity; Step II 99K Rolling up to δx = 0, (c) rolling
viewed in the plane P(y = 0), (d) rolling viewed in the transverse plane P(x = 0)
centered on the heterogeneity; Step III 99K Contact unloaded at δx = 2a, (e) rolling
viewed in the plane P(y = 0), (f) rolling viewed in the transverse plane P(x = 0)
centered on the heterogeneity
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For homogeneous elastic (HoE) body, Fig.4.2 shows a Hertzian distribution of the
maximum shear stress moving with rolling load. This distribution is symmetrical with
respect to the local contact vertical axis zc as it can be observed in Fig.4.2 (a,c,d). The
symmetrical distribution can also be noted for the heterogeneous elastic (HeE) body
shown by Fig.4.4(a,c,d). But it turns out that in HeE case, the maximum shear stress
level is raised up in the heterogeneity environment. The peak value is τmax = 0.45P0
versus 0.31P0 noted in the HoE case. One can also point out that when the contact
is applied at δx = −2a, in both HoE and HeE cases the shear stress �eld reaching
the section plane P(x = 0) (where the heterogeneity is centered) is relatively very
low (less than 0.1P0) as shown by Fig.4.2(b) and Fig.4.4(b). Also, because of the elas-
tic behavior, the stress �eld vanishes after the unloading at the rolling motion end
where δx = 2a as illustrated by Fig.4.2 (e,f) and Fig.4.4(e,f). In contrast, if the sub-
strate matrix is elastic-plastic one can observe the residual stress �eld distribution after
the unloading in Fig.4.3(e,f) and Fig.4.5(e,f). When the body is heterogeneous elastic-
plastic (HeEP), the maximum shear stress value is considerably high at the vicinity
of the heterogeneity compared to the rest of the subsurface. Also, in this case the
maximum shear stress is slightly high comparing against the homogeneous elastic-
plastic (HoEP) case, regarding identical regions. As indication, the peak of τmax is
worth 0.15P0 in the HeEP case versus 0.1P0 in the HoEP case. Furthermore, Fig.4.2 b

Dx is the total rolling
distance. This is not
completely identi�ed in
Fig.4.3(e) and Fig.4.5(e)
because they considered
current computational
zone has 5a length. The
current computational
zone is, at each time
step moved, in
consistency with to the
rolling motion

versus Fig.4.3 and Fig.4.4 versus Fig.4.5 con�rm that the stress �eld is more widely dis-
tributed within an elastic-plastic matrix than the elastic one. But the τmax level is less
within an elastic-plastic matrix than the elastic one. For guidance, the peak values are
τ (HoE)
max = 0.31P0 versus τ (HoEP)

max = 0.16P0 and τ (HeE)
max = 0.45P0 versus τ (HeEP)

max = 0.4. The
presence of heterogeneity brings closer the elastic and elastic plastic cases maximum
shear stress peaks. But a factor of three appears when one looks at their peaks di�er-
ence as (τ (HoE)

max − τ
(HoEP)
max = 0.15P0) = 3× (τ (HeE)

max − τ
(HeEP)
max = 0.05P0) indicating that the

plastic strain ease three times the heterogeneity’s reaction on the shear stress maxi-
mum magnitude. It should be pointed out from Fig.4.3(c) and Fig.4.5(c) that when the
substrate matrix is elastic-plastic the symmetrical distribution around the local con-
tact vertical axis zc during the rolling is lost. This asymmetry is caused by permanent
groove creation owing to the surface permanent deformation as well as subsurface
plastic strain occurrences. From Fig.4.3(e,f) and Fig.4.5(e,f), the residual stress �eld dis-
tribution reveals a free shear stress area of 0.2a thickness, 2awidth andDx+2a length
b con�ned between a stressed surface layer of 0.1a thickness and the stressed subsur-
face. It must be emphasized that the free shear stress area is completely surrounded by
the residual stress zone.

4.2.5 SUBSURFACE EQUIVALENT PLASTIC STRAIN DURING THE ROLLING

The evolution of the maximum equivalent plastic strain in the homogeneous matrix
and heterogeneous is compared in Fig.4.6 during the rolling contact. It could be no-
ticed that the presence of heterogeneity leads to plastic strain increasing starting from
δx = −0.4a . The heterogeneity semi-length is Si = 0.1a c . The plastic strain contin- c

see more detail about
the heterogeneity in the
table attached to Fig.4.6

ues to increase until it holds a steady magnitude from δx = a to the motion end. The
di�erence of the plastic strain peaks obtained between the homogeneous and hetero-
geneous matrix is called here the over-plasticity and is εp (He)

max − ε
p (Ho)
max = 0.5% knowing

that the heterogeneity is 2.33 times sti�er than the substrate matrix.
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Figure 4.6: Subsurface equivalent plastic strain during the rolling

4.3 PARAMETRIC STUDY
Owing to the given number of parameters involved in the Heterogeneous Elastic Plas-
tic Rolling Contact (HEP-RC) analysis, sub-problems were treated distinctly. The re-
garded parameters have been studied independently and then in a combined way.
One focus on parameters related to the heterogeneity’s nature, size, location, cluster,
stringer orientation and mutual in�uence.

4.3.1 INFLUENCE OF HETEROGENEITY PARAMETERS

Let’s consider a heterogeneity having cuboidal shape with a semi-length Si, centered
at the depth zi beneath the surface and having an elastic modulus EI.

4.3.1.1 Heterogeneity location effect
Suppose that the heterogeneity described above is, for instance, a Vanadium carbide
2.33 times harder than the substrate matrix (EI = 490GPa and Em = 210GPa). Let’s
vary its center location zi = αa to examine the consequence on the surface pres-
sure and the subsurface stress-strain �elds during the rolling contact. Four depths
α = 0.3 , 0.5 , 0.8 and 1.5 are chosen hereafter in purpose to relate the interpretations
issued from these simulations to some typical position noticed in practice. Thereby,
α = 0.3 stands for a carbide close to the surface, α = 0.5 for carbide centered at
the Hertzian depth, α = 0.8 corresponds to a carbide located far from the surface but
belongs to a region in�uenced by the rolling stress and �nally α = 1.5 simulating a
carbide located far from the Hertzian depth and relativity less in�uenced by the rolling
stress.

Contact pressure evolution according to heterogeneity location

Fig.4.7 reveals that the heterogeneity location which steps up the contact overpres-
sure value corresponds to α = 0.3. A small value of the over-pressure is found when
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the carbide is located at the Hertzian depth α = 0.5. Then, for carbides located from
α = 0.8 their maximum contact pressure pro�les coincide with the homogeneous one,
regardless if the substrate matrix is elastic or elastic-plastic. Let’s recall that the good
knowledge of the contact pressure �eld is essential to design the tolerable e�orts of
the rolling elements contacting surfaces.
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Figure 4.7: Contact pressure evolution according to heterogeneity location

Maximum shear stress evolution according to heterogeneity location

It has been observed experimentally that the location of the maximum shear stress
is identical to the maximum predicted damage location. To this end, the maximum
shear stress evolution is presented in Fig.4.8 for di�erent values of α. It brings out that
the carbide centered on the Hertzian depth α = 0.5 produced the highest overstress,
regardless if the substrate matrix is elastic or elastic-plastic. Let’s specify that the depth
α = 0.3 and 0.8 induced a sharper overstress in the elastic case than the elastic-plastic
one. When the substrate matrix is elastic, from α = 1.5 the carbide generates a quasi-
nil overstress and the maximum shear stress evolution is almost the same as that of the
homogeneous case, see Fig.4.8(a). But when the substrate matrix is elastic-plastic, the
overstress generated is about τ (HeEP)

max − τ
(HoEP)
max = 0.04P0. The carbide e�ect must not be

neglected since its presence disturbs the stress �eld along a certain distanceD(τ)
i

a , see a

D
(τ)
i Shear stress

disturbance distance
created by the
inhomogeneity relative
to the evolution in the
homogeneous case

Fig.4.8(b). This is because the residual stress generated during the rolling contributes
to increase the subsurface total stressed zone. Hence the carbide located deep down at
α = 1.5 becomes subjected to the total stress �eld even if that location was a stress-
free zone in the homogeneous case. It could be noticed that the �nal residual stress
is slightly higher when the carbide is close to the surface (α = 0.3) than the other
locations. The residual stress value obtained for α = 0.5 and for α = 0.8 are almost
matched.
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Figure 4.8: Maximum shear stress evolution according to heterogeneity location: (a) Elastic; (b)
Elastic-plastic

Equivalent plastic strain evolution according to heterogeneity location

Looking to the maximum plastic strain plotted in Fig.4.9 during the loading, one could
establish that the values reached at the steady state decrease when the carbide is getting
located deeper and deeper. It holds that from α = 1.5 the presence of the carbide did
not a�ect the plastic strain evolution and its trend is similar to that of the homogeneous
body. Table 4.2 lists the over-plasticity according to zi and one can underwrite that εpmax
is not linearly dependent to the carbide location.

Table 4.2: Maximum plastic strain peaks during rolling

Carbide location zi = αa Maximum plastic strain peaksMax
(
ε
p
max

)
zi = 0.3a 2.3
zi = 0.5a 2.1
zi = 0.8a 1.75
zi = 1.5a 1.55
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Figure 4.9: Equivalent plastic strain evolution according to heterogeneity location

4.3.1.2 Heterogeneity size effect
One is interested in the e�ect of Vanadium carbide size Si = βa on the contact pres-
sure, subsurface stress and strain �elds under the rolling load. Hereabout, four sizes
are considered as β = 0.05 , 0.1 , 0.2 and 0.4. The size Si = 0.05a replicates the very
small inter-granular carbide precipitates found in typical nitrided M50microstructure
and the size Si = 0.1a approximates the average carbide size mostly found. It is worth
reminding that the Hertzian contact radius a = 60µm is kept the same all over the
study. Larger sizes Si = 0.2a and 0.4a are used to simulate a heap of condensed car-
bides. All those carbides are centered at the Hertzian depth zi = 0.5a.

Contact pressure evolution according to heterogeneity size

First of all, Fig.4.10 indicates that the carbide size strongly in�uences the maximum
of the contact pressure during the rolling. The size e�ect is more noticeable than the
position e�ect in accordance with Fig.4.10 against Fig.4.7. For an elastic-plastic matrix
the contact pressure can achieve the Hertzian pressure peak P0 when the carbide size
is zi = 0.2a. If the body is homogeneous, the contact pressure reaches Pmax = 0.72P0.
More critical, when zi = 0.4a the pressure peak noted in the elastic-plastic case is
greater than the one in the elastic case. In terms of meaningful value, a heap of con-
densed carbides with a size of zi = 0.4a located at zi = 0.5a can almost double
the contact pressure maximum, since the body behaves plastically. One can add that
the pressure disturbance distance created by the carbide is spread over D(P)

i = 2.4a
which corresponds to three times the carbide length. In general, the over-pressure in-
crease whereas the carbide size grows up regardless if the substrate matrix is elastic
or elastic-plastic. But in particular, when the carbide size is β = 0.1 the over-pressure
generated staring to be quite small, then from size less than β = 0.05 the maximum
pressure is almost confounded with the homogeneous case.
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Figure 4.10: Contact pressure evolution according to heterogeneity size

Maximum shear stress evolution according to heterogeneity size

From Fig.4.11 one can note that, the maximum shear stress is arising when the carbide
size is increasing, regardless if the substrate matrix is elastic or elastic-plastic. Unlike
the pressure �elds, the stress is widely a�ected by even the smallest carbide sizes con-
sidered here. Hence, Fig.4.11(b) shows that the peak reached by the maximum shear
stress owing to β = 0.05 sized carbide is more than twice the value reached in the ho-
mogeneous case, when the matrix is elastic plastic. The worst case encountered here is
when β = 0.4 where the peak of the maximum shear stress is trice the homogeneous
one. Then, the residual stress after the loading is τmax = 0.32P0. This maximum value
of the residual shear stress remaining after the unloading becomes even greater than
maximum shear stress with which the bulk might be designed using homogeneous
elastic theory. The present result justi�es claims advocating that high residual stress
could be responsible for the lost cohesion between the carbide and the substrate matrix
even when the body is no more subjected to the rolling load.
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Figure 4.11: Maximum shear stress evolution according to heterogeneity size: (a) Elastic; (b)
Elastic-plastic

Equivalent plastic strain evolution according to heterogeneity size

Fig.4.12 reveals that the maximum plastic strain increase with the size until β = 0.2.
Then when β = 0.4 there is an abnormality in the maximum plastic strain trend in
concordance with the one observed for other sizes. The maximum plastic strain peak
reached for β = 0.4 is less than the one noted for the other sizes when the rolling con-
tact is moving from δx = −a to δx = 0. Also the steady value reached when β = 0.4
is smaller than when β = 0.1 and β = 0.2. One can tempt to relate this observation to
the fact that when a certain amount of deformation energy is subjected to the hetero-
geneous elastic plastic body via the contact, one part is absorbed by the heterogeneity
and the substrate matrix, another part is dissipated in a form of plastic strain. The het-
erogeneity reaction leads to a redistribution of the absorbed energy according to its
property, location and shape. Inside the matrix’s region where the energy was redis-
tributed, local concentration of overstress appears as a function of heterogeneity size.
Then according to how the over-stress is focused, the stress state could be favorable to
generate additional plastic �ow or be balanced by the residual stress released by the
existing plasticity. But it is sure that residual stress bene�t e�ect is bounded according
to the stress state as well as the heterogeneity reaction relative to its size. It should be
kept that for all cases the steady is reached from δx = a. Also when the rolling contact
center is behind δx = −a, the maximum plastic strain evolution is indistinct to the
homogeneous case regardless the carbide size.
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Figure 4.12: Equivalent plastic strain evolution according to heterogeneity size

4.3.1.3 Elastic properties effect
The heterogeneity properties e�ect on the rolling contact behavior, has an important
role in the comprehension of the damage mechanisms related to the interactions be-
tween plasticity and heterogeneity. Di�erent heterogeneity natures are modeled by
varying the elastic properties. A porosity is considered as a material with nil Young’s
modulus, an incompressible heterogeneity is set by a Poisson ratio of 0.5 and a sti�
heterogeneity or carbide is modeled by the ratio γ of its Young’s modulus and the
substrate matrix one.

Maximum shear stress evolution according to heterogeneity material property

The maximum shear stress evolution is presented in Fig.4.13. The heterogeneity size is
set to Si = 0.1a. In order to distinguish the material responses, when the heterogene-
ity is close to the surface from when it is centered in the Hertzian depth, two locations
zi = 0.3 and zi = 0.5 are considered, respectively. If the heterogeneity is taken as
a porosity, Fig.4.13(a) shows that when the substrate matrix is elastic, the maximum
shear stress reached a peak of τmax = 0.48P0 for zi = 0.3 and a slightly lower value of
τmax = 0.47P0 for zi = 0.5. But when the substrate matrix is elastic-plastic, the maxi-
mum shear stress magnitudes as well as the di�erence between each case’s magnitudes,
become signi�cant. This is con�rmed in Fig.4.13 (b), where the maximum shear stress
reached a peak of τmax = 0.72P0 for zi = 0.3 and τmax = 1.16P0 for zi = 0.5. These
values also correspond to the residual stress after the unloading. Let’s recall that the
results of these simulations are intended to provide an accurate stress-strain data to
support optimal design when dealing with functional materials having heterogeneous
microstructures. The aim is to reduce the needs of safety coe�cients or life reduction
factors often put in front of fatigue resistance formulas in order to adjusted predictions
on test results. This provides a more realistic endurance limit since it is accepted that
the phenomena incarnated by those reduction factors may interact then cause aliasing
issues during tests attempting to record the proper value of each factor. Considering
the incompressible heterogeneity case, it could be noticed that when the substrate ma-
trix is elastic-plastic, the maximum shear stress evolution is close to the porosity case
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one, until the moving contact reached δx = 0.4a, regardless the heterogeneity posi-
tion. But from the steady stress state to the unloading, the maximum shear stress peak
is less than the porosity case one. One can identify that τmax = 0.58P0 for zi = 0.3
and τmax = 0.96P0 for zi = 0.5. Regarding the maximum shear stress, for the same
setting (position, shape, size), the porosity and the incompressible heterogeneity are
more critical than the sti� heterogeneity b . b

the sti� heterogeneity
corresponds here to a
Vanadium carbide
which γ = 2.33 times
harder than the
substrate matrix
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Figure 4.13: Maximum shear stress evolution according to heterogeneity material property: (a)
Elastic; (b) Elastic-plastic

Equivalent plastic strain evolution according to heterogeneity material property

The maximum equivalent plastic strain presented in Fig.4.14 con�rms that, for the same
con�guration (position, shape, size), the porosity and the incompressible heterogeneity
produced more over-plasticity than the sti� heterogeneity. The highest plastic strain
is generated when the heterogeneity is incompressible and located close to surface
(zi = 0.3a). This observation can be explained by the fact that this incompressible
heterogeneity had the lowest overstress in the elastic case presented in Fig.4.13(a). The
contrast installed is that, knowing the overstress produced in the elastic case, one might
be tempted to predict that incompressible heterogeneity would have less plastic strain
in the elastic-plastic case. Whence this type of reasoning, often encountered, could be
sometimes misleading. Knowledge of the stress behavior in an elastic framework is
not fully su�cient to make predictions about the behavior of plastic strain in a similar
elastic-plastic framework. Furthermore it should be kept that when the rolling contact
center is behind δx = −a, the maximum plastic strain evolution is consistent with the
homogeneous case regardless the heterogeneity material property.
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Figure 4.14: Equivalent plastic strain evolution according to heterogeneity material property

Fatigue analysis by Dang Van crack initiation criterion

One is interested in the local behavior around the heterogeneity. Fig.4.16 and Fig.4.17
present the diagram of maximum shear stress evolution versus the hydrostatic pressure
on some particulars �xed points around the heterogeneity during the rolling motion.
Two lines are plotted in Figures, the horizontal line corresponds to τmax = 0.31P0
standing for the Hertzian maximum shear stress and the vertical line corresponds to
σHP = 0 separating the compression state by negative values on his left to the tension
state by positive values on his right.
This part consists to give a key point to perform a coarse fatigue analysis of damage
likelihood according to heterogeneity material property. Dang Van criterion is used to
investigate on the critical point where crack may �rstly initiate and grow in accordance
relationship with the stress state in the heterogeneity environment. It is well known
that once crack has initiated, the expected number of cycles to failure could be no
longer held. The criterion recalled in Eq.(4.1) is an inequality related to the mesoscopic
shear stress and hydrostatic stress at all instants t of the cycle, so that damaging loads
can be precisely characterized.

MAX
i

{τmax(t) + aDV .σHP(t)} 6 bDV (4.1)

Where τmax(t) and σHP(t) are the time-dependent values of mesoscopic shear stress
and hydrostatic pressure, respectively. Note that a is a positive dimensionless con-
stant incarnating the e�ect of the hydrostatic pressure determined by aDV = 3(bDV −

0.5b∞)/b∞, whereb∞ stands for the bending fatigue test endurance limit. ThenbDV =

t∞ represents the endurance limit t∞ of the employed material in pure shear under

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI154/these.pdf 
© [K. Amuzuga], [2016], INSA Lyon, tous droits réservés



4.3 parametric study 75

torsion fatigue test. Hills and coworkers [111] demonstrated how aDV and bDV could
also be related to the yield stress σY and the ultimate tensile stress σUTS as:

aDV =
2σ0

2(σ∗ − σ0)
; bDV =

σ∗σ̇0
2(σ∗ − σ0)

; where σ∗ = σY or σUTS (4.2)

Having noticed that the parameters required for Dang Van’s line representation are
strongly dependent on the material and cannot be chosen arbitrarily. In other to sup-
port interpretations stated here, the Dang van’s line was taken from Nelias and An-
taluca [112] study when they evaluate the contact risk zone in rolling on dented sur-
face. This representation stands for AISI 52100 steel having a similar elastic-plastic
behavior as the material modeled here, where aDV = 0.299 and bDV = 0.32P0. The
Dang Van’s line is plotted in Fig.4.16 and Fig.4.17 as the fatigue threshold during the
HEP-RC and it splits the τmax ↔ σHP stresses space across load paths. The region
below the line (τmax(t) + aDV .σHP(t) = bDV) constitutes the safe area where crack
is not expected. Conversely, the region above that line is considered as the failure risk
area. Now the risk of fatigue can be evaluated for each heterogeneity edge points at all
rolling instants.
The observed points are localized in the local referential centered on the heterogene-
ity illustrated by Fig.4.16(e) and Fig.4.17(c). These latter sub-�gures are surrounded by
sub-�gures presenting the results associated with the observed points located between
their centers and the heterogeneity center. For instance, the sub-�gure Fig .4.16(a) is
associated to the observed point M(−1, 0, 1) and the sub-�gure Fig.4.16(f) is associ-
ated to the observed pointM(1, 0, 0). The consistency between sub-�gures and theirs
associated targeted points, which are observed at each time step of the motion, is fully
detailed in Fig.4.16 and Fig.4.17 captions.
In the �rst place, it could be noticed in Fig.4.16 and Fig.4.17 that the homogeneous
elastic-plastic (HoEP) body is in a compression state and the maximum shear stress is
less than τmax = 0.31P0 regardless the targeted point during the rolling motion. The
body behavior is the same if the targeted points are observed at the depths zi = 0.3a
and zi = 0.5a. The residual stress remains in compression state after the unloading.
Now in the presence of sti� heterogeneity (Vanadium carbide), all the targeted points
located at the heterogeneity bottom undergo a residual tensile stress, Fig.4.16(g,h,i) and
Fig.4.17(d,e). But the residual stress levels in these places are relatively low. The maxi-
mum shear stresses are coming close to τmax = 0.08P0 and the hydrostatic pressures
almost reached σHP = 0.16P0. Yet in the same locations, if the heterogeneity is in-
compressible, the residual stress, still being in tensile state and it reveals a signi�cant
high levels exceeding τmax = 0.31P0. Knowing that tensile state tends to open the
cracks during rolling, this becomes a main issue for bearing product developers when
some defaults are unavoidable inside the materials due to the manufacturing process.
Regarding the targeted pointM(1, 1, 1), Fig.4.17(b) shows that porosity located at the
Hertzian depth generates an elevated maximum shear stress peak beyond three times
the Hertzian stress. Also the hydrostatic pressure is found in tensile state and is worth
σHP = 0.4P0. Dang Van criterion indicates a likely damage at that location as well as
at the targeted pointM(−1, 1, 1).
Having found that incompressible heterogeneity and porosity attest severity than the
carbide, it is worthwhile now to de�ne a critical instant which represents the moment
of loading step or even the number of cycles, when the (τmax(t),σHP(t)) stress tra-
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jectory crossed the fatigue threshold. Hence it appears that in all regarded cases the
points around the porosity passed the critical instant before the incompressible hetero-
geneity.
In addition, it should be speci�ed that the body with carbide presents higher stress
levels compared to the homogeneous body. Then an underestimation of the role of the
heterogeneity nature may turn out to be risky for the material. As guidance, one can
argue that rolling bearing lifetimes could be improved when materials are designed
according to parameters aDV and bDV which directly in�uence the resistance to likely
damage related to the presence of heterogeneity. The frontier of the critical instant
could be lifted by increasing the slope aDV . Also it is possible to shift upward the fa-
tigue threshold by augmenting bDV . However, being aware that the aforementioned
recommendation is not a trivial task in practice for designers to act on these param-
eters, another existing solution consists to lower the (τmax,σHP) stress levels. Forth-
coming section will demonstrate how a certain quantity of initial compressive stress
along with the yield stress could be bene�cial for the fatigue life.
For example, let’s put the analysis wording here in conceivable situation. During rolling
cycles, the tensile stress generated at a carbide interface could be conducive to a loss of
cohesion with the substrate matrix. This appearing void could be simulated in principle
as a porosity. Yet, the porosity leads to a more critical stress level. Finally, the material
would end up with starting cracks. In addition, assuming that, when the porosity is
close to the surface, it can be in�ltrated by the lubricant by the bias of grain bound-
aries defects or microcrack connected to the surface, then the �lled void could be seen
as an incompressible heterogeneity. The latter situation, even unlikely, would speed
up the damage than the last one because the shear stress and hydrostatic pressure lev-
els should become higher, according to the results discussed above and supported by
Fig.4.16 and Fig.4.17. It should be noted that, in the literature, only few investigations
discussed about porosity in�ltrated by lubricant. One can cite the works of Bold [113],
Fletcher [114] and Bogdanski [115] which encountered the oil entrapment via inclined
crack in the elastohydrodynamic lubrication contact problem. The �uid is drained by
the dynamic pressure during the �ow as illustrated by Fig .4.15. An incompressible
heterogeneity close to the surface is an alternative to model this con�guration.

Figure 4.15: Oil entrapment in lubricated crack
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Figure 4.16: Maximum shear stress versus hydrostatic pressure evolution according to hetero-
geneity material property: (a) heterogeneity edges point M(−1, 0, 1); (b) hetero-
geneity edge point M(0, 0, 1); (c) heterogeneity edge point M(1, 0, 1); (d) het-
erogeneity edge point M(−1, 0, 0); (e) heterogeneity referential and edge points
locations; (f) heterogeneity edge point M(1, 0, 0); (g) heterogeneity edge point
M(−1, 0,−1); (h) heterogeneity edge point M(0, 0,−1); (i) heterogeneity edge
pointM(1, 0,−1)
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Figure 4.17: Maximum shear stress versus hydrostatic pressure evolution according to hetero-
geneity material property:(a) heterogeneity edges point M(−1, 1, 1); (b) hetero-
geneity edge point M(1, 1, 1); (c) heterogeneity referential and edge points loca-
tions; (d) heterogeneity edge point M(−1,−1,−1); (e) heterogeneity edge point
M(1,−1,−1)

Eigenstress generated by a porosity and a carbide

The eigenstress in Eshelby’s sense generated by a porosity and a carbide are compared
under the same rolling conditions to con�rm the porosity critical nature in front of
the carbide one. Fig.4.18 presents the eigenstress as the additional elastic stress in re-
action to the eigenstrain undergone by the heterogeneity subjected to external load.
Three heterogeneity locations are considered as zi = 0.3a , 0.5a and 0.8a. The sub-
�gures Fig.4.18(a,b,c,d) correspond to di�erent sizes Si = 0.05a , 0.1a , 0.2a and 0.4a,
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respectively. Note that the substrate matrix is elastic. A general view shows that the
eigenstress generated by a porosity had a higher magnitude than the carbide one what-
ever their chosen sizes and locations. It can be seen in particular that, even the smallest
sized porosity in Fig.4.18(a), regardless its location in depth, produces more eigenstress
than any larger sized carbide in Fig.4.18(b,c,d), located at any depth except when the
carbide appears at the surface as the one labeled by zi = 0.3a(C) in Fig.4.18(b) leg-
end. The eigenstress associated to a porosity of size Si = 0.4a at the depth zi = 0.3a
was not fully shown in Fig.4.18(d) because it corresponds to an emerging porosity. In
practice, this con�guration simulates a perforated surface under a rolling. This causes
a convergence issue in the computation since the rolling pitch is 0.02a which is much
less than that surface mis�t hole length. But no issue occurred for the carbide located
at the same place and having the same size, because the carbide implies a presence
of matter in contrast to the porosity which represents a void. One can discern from
Fig.4.18(c,d) that the eigenstress induced by a carbide sized Si = 0.4a appearing in the
surface with zi = 0.3a, is almost equivalent to the on induced by a porosity half-sized
Si = 0.2a located far from the surface with zi = 0.8a.
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Carbide Heterogeneity material property EI = 490GPa and νI = 0.3
Porosity Heterogeneity material property EI = 0GPa and νI = 0

Figure 4.18: The additional overstress criticality of porosity versus carbide according to the
location and size : (a) size Si = 5a/100 ; (b) size Si = a/10 ; (c) size Si = 2a/10 ;
(d) size Si = 4a/10

4.3.2 EFFECT OF DISTRIBUTED HETEROGENEITY MUTUAL INFLUENCE

Having studied a single heterogeneity, now, one is interested in gathered heterogeneities.
Let’s recall that in bearing materials as M50, the carbide stringers preferentially orien-
tation is managed by the mechanical processing (forging, rolling). Also the carbides
cluster characteristics can evolve depending on the thermo-chemical treatment (case
hardening, quenching, nitriding) instructions. Thus knowledge of the consequences
associated with each variety of stringers and cluster allows to master the choice of
parameters that control the processes to improve and tailor the materials according to
its future functions and resistance expected in service.
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Stringer distribution

Three heterogeneities are arranged along an axis passing through their centers. They
are set by a variable angle θ relative to the rolling direction. Each heterogeneity which
composing the stringer sizes Si = 0.1a. The heterogeneity close to the surface is cen-
tered at zi = 0.3a. The distancedi between each heterogeneity center allows to control
their mutual in�uence. When di = 2Si then heterogeneities touch each other but if
di = 3Si then they interact through the substrate matrix that is settled between them.
One considered four particular orientations mainly observed in the studied materials.
When the value of θ is 0◦ and 90◦ then the cluster is parallel and perpendicular to the
rolling direction,respectively. The orientations θ = 45◦ and θ = −45◦ approximate
the most current stringers formed during intra-granular migration of segregated car-
bides and nitrides during heat treatment.
First of all, based on Fig.4.19, one can argue that during the Heterogeneous Elastic Plas-
tic Rolling Contact (HEP-RC), the maximum pressure, shear stress and plastic strain are
dependent on the stringer orientation θ and the interaction distance di. The magnitude
of the maximum contact pressure depends not only on the individual heterogeneity
close to the surface. Fig.4.19(a) claims that each heterogeneity composing the stringer
contributes to the change in pressure evolution according to its positioning via θ and
di. It is observed in Fig.4.19(b) that horizontal stringer (θ = 0◦) generated the most
severe plastic strain. In this case the maximum plastic strain value is more lifted when
the heterogeneities touched each other (di = 2Si). In contrast, when the orientations
are θ = 90◦ and θ = −45◦, the separated heterogeneities produced higher plastic
strain than those which are touching each other. More, when θ = 45◦, the maximum
plastic strains reached are almost identical once the steady state has been established,
regardless the gap between heterogeneities. Whatever the considered stringer, the plas-
tic strain always gets its steady value from δx = a.
To review, in some cases, the presence or not of the substrate matrix between the het-
erogeneities can generate more or less or even the same level of plastic strain. It could
be recalled, from our previous work [104] that the zone where the plastic strain is
maximal depends on the heterogeneity nature. When the heterogeneity is softer than
the substrate matrix, then the stress concentration yielded at certain portions of its
border. Conversely, if the heterogeneity is sti�er then stress concentration is reached
maximum at its center and also in some regions of the matrix closed to the heterogene-
ity according to the applied stress gradient direction. Hence the combination of these
regions in interaction with the position of the stringer’s heterogeneities, could be the
reason of the plastic strain level variability. To de�ne the stringer harmfulness in terms
of over-stress, one can see from Fig.4.19(c) that the maximum shear stress peak is pro-
duced by the stringer oriented by θ = −45◦. Therewith, when the heterogeneities are
separated by the substrate matrix (di = 3Si), the residual stress reaches the greatest
amplitude compared to all cases observed.
Fig.4.22 shows the distribution of the maximum shear stress around the stringer when
the rolling load center is vertically coincided with that of the stringer. The concordance
between sub-�gures and the stringers orientations is detailed in the �gure’s caption.
When the stringer is parallel to the rolling direction (θ = 0◦), the zone where the stress
is maximum, spreads below the stringer. This zone is continuous if heterogeneities are
in contact (di = 2Si) but it is crenelated otherwise (di = 3Si). However, whatever
the interaction distance di, if the stringer is vertical (θ = 90◦) then the shear stress
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is concentrated along heterogeneities central axis. Hence, in the case where there is
a substrate matrix between heterogeneities, it undergoes a very high shear stress. Re-
calling that the substrate matrix is less rigid than the considered heterogeneities, the
material area between heterogeneities is exposed to more damage risk than the rest
when the stringer is vertical. When the stringer is oriented at θ = −45◦, the high
stress zones are located in the stringer diagonal plane which is passing by each hetero-
geneity center, whatever di. Then, in that plane, the maximum shear stress value has
been seen concentrated at heterogeneities borders when they are separated, Fig.4.22(h).
But, when θ = 45◦, the high stress zones are located at each heterogeneity’s top and
bottom faces.
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Figure 4.19: Fields evolution according heterogeneity stringer orientation and mutual in�uence:
(a) Contact pressure; (b) Equivalent plastic strain; (c) Maximum shear stress
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Figure 4.20: Maximum shear stress evolution according heterogeneity stringer orientation and
mutual in�uence: (a) di = 2Si and θ = 0◦; (b) di = 3Si and θ = 0◦; (c) di = 2Si
and θ = 90◦; (d) di = 3Si and θ = 90◦; (e) di = 2Si and θ = 45◦; (f) di = 3Si
and θ = 45◦; (g) di = 2Si and θ = −45◦; (h) di = 3Si and θ = −45◦
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Cluster distribution

A cluster ofNi number of heterogeneities is studied here. Within a considered cluster,
each heterogeneity has a constant size Si and separated by di meaning once again the
smallest inter-center distance. A regular arrangement was established relative to the
three Cartesian directions to shape the cluster as a cube and to keep it outer size con-
stant regardless ofNi. Then the combination ofNi, Si and di is used to set the cluster
apparent volume fraction and density. Three clusters have been simulated. The �rst
one has Ni = 3× 3× 3 with Si = 0.1a , when the second has much more number
of heterogeneities Ni = 7× 7× 7 with smaller size Si = 0.05a. In this way, the two
clusters have the same volume fraction but not the same density. Every heterogeneity,
from each of the two clusters, feels a similar mutual in�uence since the separating gap
is held according to their respective size as di = 3Si. The last cluster has only one
heterogeneity meaning 100% of the volume fraction. Recalling that all clusters have
the same outer size, they are also centered at the same depth of 0.6a beneath the sur-
face. During the HEP-RC, Fig.4.21 compares the evolution of the maximum of contact
pressure, shear stress and plastic strain. One can see at �rst that these �elds maximum
are disturbed by the heterogeneities presence, over the same distance whatever the
regarded cluster. This implies that the distance over which the �elds disturbances are
scattered does not depend on the heterogeneity number Ni or their individual size
Si, but maybe only on the cluster’s apparent outer size. Except their magnitudes, also
the trend of �elds are not depended on Ni and Si. However Fig.4.21(a) shows that
the maximum pressure highest level is found when the cluster is formed by a single
heterogeneity and this is the highest level possible since that cluster has 100% of the
volume fraction. But for the same volume fraction, the maximum pressure lowest level
is attributed to the denser cluster which means the one having the larger amount of
heterogeneities with consequently the smaller sizes. One can argue that the maximum
pressure upper bound is driven by the volume fraction and the lower bound is con-
trolled by the density. Conversely to the pressure �eld, Fig.4.21(b,c) noticed that the
cluster formed by a single heterogeneity produced a lower level of maximum plastic
strain and maximum shear stress than the two others which are formed by distributed
heterogeneities. Even if the single heterogeneity has the largest volume fraction, the
mutual in�uence between heterogeneities composing the two other clusters, is capable
of increasing their stress and strain levels. Furthermore, for the same volume fraction
and similar mutual in�uence, the highest plastic strain and maximum shear stress was
found when the cluster is less denser. Above all, it should be mentioned that the resid-
ual maximum shear stresses, after the unloading, have nearly identical levels regardless
of the given cluster.
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Figure 4.21: Fields evolution according heterogeneity cluster density and mutual in�uence: (a)
Contact pressure; (b) Equivalent plastic strain; (c) Maximum shear stress

The maximum shear stress distributions have been represented in Fig.4.22 at two mo-
ments during the rolling. The �rst, when the load arrives at the cluster’s vertical cen-
tral axis position δx = 0, and the second when the load was removed at δx = 2a. It
is found out that when the load is passing on the clusters, the zones where the max-
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imum shear stress has higher values are distributed in the same way whatever the
cluster regarded. But the stress concentrations are more discretized when the density
increases, in Fig.4.22(a,c,e). The same phenomenon is observed on the residual stress
distributions, after the unloading, in Fig.4.22(b,d,f).
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Figure 4.22: Maximum shear stress evolution according heterogeneity cluster density and mu-
tual in�uence: One heterogeneity Si = 0.4a 99K (a) Rolling contact loaded at
δx = 0 ; (b) Contact unloaded at δx = 2a ; Cluster 1 Ni = 3~x× 3~y× 3~z and
Si = 0.1a ; di = 3Si 99K (c) Rolling contact loaded at δx = 0 ; (d) Contact un-
loaded at δx = 2a ; Cluster 2Ni = 7~x× 7~y× 7~z and Si = 0.05a ; di = 3Si 99K
(e) Rolling contact loaded at δx = 0 ; Contact unloaded at δx = 2a
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4.4 ADVANCED APPLICATIONS OF THE HEP-RC
This part is dedicated to evaluate to e�ect of the parameters describing the surface fric-
tion coe�cient and the material hardening properties on the HEP-RC. Also an analysis
of multi-cyclical rolling is conducted when plasticity ratcheting regime primed.

4.4.1 INFLUENCE OF HARDENING PROPERTIES

In general, owing to thermo-mechanical and thermo-chemical treatments, some va-
riety of rolling contact elements result in Plastically Graded Materials (PGM). These
treatments are at the origin of heterogeneities precipitated with a di�usion starting
from the outer surface to the core of the material. This di�usion results in a gradient
of elastic plastic properties incarnated by the yield stress gradient. The permanent de-
formation, due to the thermo-chemical processes, induces initial residual stress that
are often in a state of compression within the surface layer. Assuming that the perma-
nent deformation is planar, steady and continuous, then the initial stress components
σinitxx = σinityy which act parallel to the surface, are considered as non-nil and they vary
along the depth. In service, the aforementioned components since they are negative,
they will accommodate the applied stress tensile components in x and y directions.
The input initial stress and the input yield stress are plotted in Fig 4.23(a) as a func-
tion of the depth. It could be found in the literature [116] how the parameters related
the material treatments control the initial stress and the yield stress pro�les and magni-
tude. Hereafter, the initial stress is set to −0.16P0 at the surface, and its norm decreases
within a thinner layer of 0.1a, then it is maintained about a value of −0.13P0 on the
layer from zi = 0.5a to zi = 1.5a. The yield stress was increased to 30% at the sur-
face relatively to the given value in the material core unreached by the treatment. The
yield stress varies almost linearly from the surface up to a depth of zi = 2a which is
the lowest depth of the computational zone used in the simulations. Note that, the ini-
tial stress and yield stress trends are consistent with data obtained from really treated
materials, but the sources cannot be divulged. Likewise, the pro�le magnitudes were
modi�ed in supporting of the con�dentiality. However some publications give the ini-
tial stress [86] and yield stress [117] evolution according to the employed materials
and the treatments.
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Heterogeneities distribution di = 3Si
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Figure 4.23: Fields evolution according to hardening properties: (a) The input initial stress and
yield stress; (b) Contact pressure; (c) Equivalent plastic strain; (d) Maximum shear
stress

To simulate the e�ect of the hardening properties, which means the presence of Initial
Stress (IS) and Plasticity Gradient (PG), a cluster of 5 x× 5 y× 3 z heterogeneities is
created and embedded in an elastic plastic medium. The properties associated with the
heterogeneous microstructure are listed in the table attached to Fig.4.23. Four con�g-
urations are compared against each other. The �rst, (PG = o� ; IS = o�), represents
the material without any plasticity gradient and initial stress as the untreated material.
The second, (PG = on ; IS = o�), corresponds to a situation where the plasti-
cally graded material (PGM) loses its initial compression stress. The so-called relax-
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ation e�ect occurs when the subsurface accumulated plastic strain releases the certain
su�cient quantity of residual tensile stress over loading cycles. This phenomenon is
explained in Le et al. (2013) [118] where authors are studying the e�ect of intergran-
ular cementite arrays in nitrided steels on gear rolling contact fatigue. The third case,
(PG = o�f ; IS = on), envisages the presence of initial stress in the layer of large
thickness without any plasticity gradient. This could be a result of a isotopic distri-
bution of heterogeneities precipitates giving a uniform overall elastic-plastic property
without any gradient, followed by a permanent deformation left by the heat produced
during the surface �nishing processes. The last case, (PG = on ; IS = on), concerns
an ordinary PGM having both initial stress and plasticity gradient.
It could be seen in Fig.4.30(b) that the peak reached by the maximum pressure is quite
identical for all considered materials, at δx = −a, but the magnitude decrease from
that point to a steady level which is established from δx = a. The highest steady level
is obtained when (PG = on ; IS = on) and the lowest when (PG = o� ; IS = o�).
More interesting, the intermediate con�gurations (PG = o� ; IS = on) and (PG =

on ; IS = o�) have almost an equal steady maximum pressure level. It appears that
the input yield stress pro�le could, vice versa, compensates the e�ect of the input ini-
tial stress on the pressure, when one of them is o�. However, this e�ect did not hold for
the plastic strain. One can see in Fig.4.30(c), that (PG = o� ; IS = on) generates more
plastic strain, at the steady state, than (PG = on ; IS = o�). This con�rmed in this
framework that the simply way to diminish the plastic strain level remains to increase
the yield stress instead of introducing initial compressive stress. But the e�cient way
to keep the plastic strain lower is to input both plasticity gradient and initial stress. It
should be pointed out that the case (PG = o� ; IS = o�) remains detrimental since the
plastic strain produced is almost the double of the case (PG = on ; IS = on). It could
also be noticed in Fig.4.30(d) that, (PG = o� ; IS = o�) has the most upped level of
maximum shear stress and (PG = on ; IS = on) still is the preventive con�guration
since it has the lowest maximum shear stress level. The intermediate case behaviors
o�er the insight that to purposely soften the maximum shear stress, it is better to insert
an initial stress instead of increasing the yield stress. This is why (PG = on ; IS = o�)
presents higher maximum shear stress than (PG = o� ; IS = on). However, one can
observe that both intermediate cases end up with the same level of residual stress after
the rolling. This implies that the initial stress and the yield stress have compensatory
e�ect on the residual stress. The minimum residual stress level is observed when the
plasticity gradient and initial stress are present in the material and the highest level
stands for the opposite case.
Considering the bene�t presence of a plasticity gradient and an initial stress, according
to the e�ect on the stress/strain �eld, some furthers simulations are made to investi-
gate how that could ease the stress state (τmax vs σHP) induced by a porosity. Let’s
remind that it has been proven in the previous section that porosity is more harmful
than the given sti� heterogeneity in this study. Hereafter, the porosity is placed at the
depth zi = 0.3a then at zi = 0.5a and it sized Si = 0.1a. The maximum shear stress
versus the hydrostatic pressure evolution path around the porosity edges is compared
to the body in absence of plasticity gradient (PG) and initial stress (IS), against the body
having both PG & IS, in Fig.4.29 and Fig.4.30.
It should be noticed at �rst that the maximum shear stress has been signi�cantly re-
duced at the porosity edges by introducing PG & IS, whatever the porosity’s location.
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This minimizes the damage risk. Hence, when the porosity is centered at the Hertzian
depth,in Fig.4.29(d,f), the maximum shear stress τmax drops from 1.2P0 to about its
quarter 0.3P0 at the porosity’s front edge M(−1, 0, 0) and behind edge M(1, 0, 0). It
is worth specifying that the tensile or compression states could change and evolve in
the presence of PG & IS compared to the untreated material at the same location as
for M(−1, 1, 1) in Fig.4.29(d). There, the residual hydrostatic pressure becomes more
important and has been in tensile state when PG & IS are present. But the residual
hydrostatic pressure and the shear stress are reduced in other places like M(−1, 1, 1)
and M(1, 1, 1) as shown in Fig.4.30(a,b). In general, according to Dang Van threshold
plotted in the analyzed charts, the endurance limit has been enhanced by the introduc-
tion of initial compressive stress and the increasing of the yield stress via the plasticity
gradient, as expected. This is in qualitative agreement with results of earlier studies of
Harris [119] at the beginning the 90s.
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Figure 4.24: Initial stress e�ect on plastically graded material fatigue life according to Dang
Van criterion: (a) heterogeneity edges point M(−1, 0, 1); (b) heterogeneity edge
point M(0, 0, 1); (c) heterogeneity edge point M(1, 0, 1); (d) heterogeneity edge
point M(−1, 0, 0); (e) heterogeneity referential and edge points locations; (f) het-
erogeneity edge point M(1, 0, 0); (g) heterogeneity edge point M(−1, 0,−1); (h)
heterogeneity edge pointM(0, 0,−1); (i) heterogeneity edge pointM(1, 0,−1)
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Figure 4.25: Initial stress e�ect on plastically graded material fatigue life according to Dang Van
criterion: (a) heterogeneity edges point M(−1, 1, 1); (b) heterogeneity edge point
M(1, 1, 1); (c) heterogeneity referential and edges points location; (d) heterogene-
ity edge pointM(−1,−1,−1); (e) heterogeneity edge pointM(1,−1,−1)

4.4.2 CYCLICAL ROLLING AND RATCHETING ANALYSIS

Now multi-cycles rolling contact is implemented in the sake of the ratcheting regime
which starts right after the shakedown limit known as the limit loading state from
which the elastic regime is lost turning the optimal residual stress to a non-protective
stress then undergoing the material to an incremental failure. The analytical shake-
down limit had been given by Johnson and Je�eris [120, 121] and proven by Hills et
al. [122, 123] to be P0/τy0 = 4.68, where p0 is the maximum applied Hertzian pressure
and τy0 the shear yield strength. Note that, the shear yield strength could be related to
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the tensile yield strength σy0 for steel material τy0 = c σ
y
0 , where the coe�cient c could

be 0.577 by Von Mises criterion, 0.5 by Tresca criterion , 0.6 recommended by Shigley
[124], or 0.58 considering experimental results from tests made on many aeronautics
steels. It has been proven that shakedown limit not only depends on load level but
also on the material plastic hardening law. He et al. [103] shows when studying the
plasto-elastohydrodynamic lubrication behaviors in rolling contact that under a work-
ing condition that exceeding ratcheting threshold (p0/τy0 = 5.84), a linear-isotropic-
kinematic plastic law can end up with a shakedown. Hereafter, the shakedown limit is
largely exceeded (p0/τy0 = 12.65 using Von Mises criterion) in purpose to stay in the
ratcheting regime even if isotropic hardening is assumed.
Turning now to the HEP-RC problem, Fig.4.27(c) attests an accumulative plastic �ow
which sustains that the shakedown limit is exceeded and ratcheting regime occurred.
Indeed the combination of the residual and the current contact stress cannot prevent
from the yield even if the loading is the same over the cycles. The result plotted in
Fig.4.26(a) shows that there is no increase of the contact pressure from the 3rd cycle.
From Fig.4.27(a) one can see that the plastic strain increment per cycle brings out that
the ratcheting rate is not constant. Non-asymptotic trend is observed advocating that
the plastic strain increasing will not cease until the critical point of fracture. The evolu-
tion of the maximum plastic strain over cycles is �tted from the 2nd cycle to capture the
contact conforming groove. The curve �tting, very precise (see Appendix. B.1), leads
to a prefect power law as εpmax = c0+(c1+ c2×Ncycles)n, where the constant values
are c0 = 0.16, c1 = 13.5, c2 = 5 and n = 0.11. Considering the identi�ed curve equa-
tion, one can estimate the number of cycles for the ratcheting to reach material critical
point. This critical point has been taken from Klecka’s [75] compression test on M50
Through hardened material containing 20% of uniformly distributed carbides inclu-
sions up to 800µm under the surface. The fracture occurs when deformation is found
around 0.05. Therefore the number of cycle up to the failure of the homogeneous me-
dia is estimated toNcriticalhomogeneous = 336429 cycles. In the same time when the media
is heterogeneous the simulation is accordingly stopped at εpmax = 0.05 corresponding
to Ncriticalheterogeneous = 10 cycles. One can conclude that, in ratcheting regime, the het-
erogeneous media lifetime becomes more critical and the failure is sped up compared
to the homogeneous media. Therefore preventing the media from ratcheting regime
could save a lot of fatigue cycles when it contains heterogeneites.
Further analysis presented in Fig.4.27(b) shows that in the homogeneous case the max-
imum pressure decreases slowly during cycles when the maximum shear stress and
residual shear stress get stabilized from 5th cycle. But in the presence of heterogeneity,
the maximum pressure and residual shear stress increasing when the maximum shear
stress trend decreases until the 8th cycle after where a sharp increase happened. This
sharp increase leads to the fracture critical point aforementioned. In this moment, the
maximum shear stress peak and the maximum residual shear stress peak are the same
at the 10th cycle. One can explain this by considering the evolution of the maximum
shear stress over rolling cycles plotted on Fig.4.26(f). Very high maximum shear stress
is produced during the 10th cycle and the residual shear stress peak is greater than the
one produced during the loading. Then an elevation of the plastic strain occurred at
the unloading as observed from Fig.4.26(d). In the meantime, Fig.4.28 reveals that the
accumulated plastic strain comes up to the contact surface with the attributed critical
value of almost 0.05. This could suggest a source of damage.
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Figure 4.26: Fields evolution during several rolling cycles: Contact pressure (a) Homogeneous;
(b) Heterogeneous; Equivalent plastic strain (c) Homogeneous; (d) Heterogeneous;
Maximum shear stress (e) Homogeneous; (f) Heterogeneous
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Figure 4.27: Fields evolution according to the number of rolling cycles: (a) Peaks of the equiva-
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Figure 4.28: Plastic strain evolution in the plane P(y = 0) during rolling cycles: (a) Homoge-
neous material at 20th cycle; (c) Heterogeneous material at 10th cycle

Moreover, the evolution of the maximum shear stress versus the hydrostatic pressure
around the heterogeneity is described in Fig.4.29 and Fig.4.30, for 10 HEP-RC cycles.
The heterogeneity is as always a Vanadium carbide (γ = 2.33) centered at the Hertzian
depth zi = 0.5a and sized Si = 0.1a. One can observe a closed-loop of the response
for all cycles except for �rst cycle which presents a remarkable shifting whatever the
regarded points. This deviation re�ects an exaggeration of the shear stress during the
�rst cycle which is explained by the creation of surface permanent groove. Hence,
from the second cycle, the maximum shear stress and the hydrostatic pressure ampli-
tudes are generally preserved at all the considered points. Note that at the �rst cycle
stresses (τmax;σHP) begins from (0; 0) but the following cycles start with a non-nil
value due to the residual stress stored over cycles. The alternation between tensile and
compression states, at the carbide bottom points as M(−1, 0,−1) and M(1,−1,−1),
establishes a fatigue cyclic behavior favorable to damage. Also the residual stress is
constantly in tensile state at these points. Finally, the Dang Van criterion demonstrated
that τmax ↔ σHP stresses path never cross the fatigue threshold around the hetero-
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geneity implying accordingly in�nite life until the critical point of fracture is neverthe-
less reached when the plastic strain comes up to the surface, Fig.4.28. This con�rms
that accumulative plastic strain trend and its history must be well accounted in failure
prediction especially when ratcheting regime primed in mesoscopic scale. Therefore,
even if in the presented case the heterogeneity not serve as nucleation points for crack,
its action as the plasticity riser contributes to large plastic strain gradients between
subsurface layers exhibiting plastic shearing and distortion as shown in Fig.4.28(b).
This very signi�cant plastically deformed narrow vertically straight band of material
becomes a site of backward and forward �ow occurrence with respect to the motion
direction in case of alternative rolling as described by Johnson [125] and Welsh [126].
Consequently, sti� heterogeneity like Vanadium carbide acts indirectly as precursors
of decohesion in the subsurface as well as wear by delamination in the surface sub-
jected to repeated rolling and sliding cycles.
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Figure 4.29: Maximum shear stress versus hydrostatic pressure evolution according to rolling
cycles: (a) heterogeneity edges point M(−1, 0, 1); (b) heterogeneity edge point
M(0, 0, 1); (c) heterogeneity edge point M(1, 0, 1); (d) heterogeneity edge point
M(−1, 0, 0); (e) heterogeneity referential and edge points locations; (f) heterogene-
ity edge point M(1, 0, 0); (g) heterogeneity edge point M(−1, 0,−1); (h) hetero-
geneity edge pointM(0, 0,−1); (i) heterogeneity edge pointM(1, 0,−1)
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Figure 4.30: Maximum shear stress versus hydrostatic pressure evolution according to rolling
cycles: (a) heterogeneity edges point M(−1, 1, 1); (b) heterogeneity edge point
M(1, 1, 1); (c) heterogeneity referential and edge points locations; (d) heterogene-
ity edge pointM(−1,−1,−1); (e) heterogeneity edge pointM(1,−1,−1)

4.4.3 EFFECT OF THE FRICTION COEFFICIENT ON THE HEP ROLLING CONTACT BEHAVIOR

Nowadays, advanced machining and �nishing processes prevent the rolling elements
form failure due to surface asperities. However, even if surface topography has been
successfully enhanced prior to commissioning, micro-dents could be created as sec-
ondary asperities during the service, by �nes hard particles inadequately �ltered in
the lubricant. Then interruption of lubricant supply or partial lubrication which occurs
during transient operating regime, system stop and startup phases, induce a friction
torque in the mating surfaces when the �lm thickness could not �ll the valleys. This
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situation could be modeled by a relatively low friction coe�cient between f = 0.05
and f = 0.1. Its e�ect on the rolling contact behavior is compared against the friction-
less one (f = 0), to provide more accurate estimation of heterogeneity criticality in
bearing endurance framework. The subsurface stress strain �eld is determined by tak-
ing into account the Coulomb’s shear force due to the friction. For reproducing most
unfavorable situations, friction coe�cient of f = 0.15, f = 0.2 and f = 0.25 were also
simulated.
Fiction leads to snowball e�ect under some particular condition when heat phenomena
and lubricant contamination are not well managed. Cheng [127] showed that heating
of the lubricant in the inlet zone of the contact reduces the thickness of the minimum
�lm owing to viscosity decreasing. This reveals some pits created by the lubricant con-
taminant as indicated by Harris [128]. Depending on the �lter rating, the sealing and
the thermal insulation, the number of surface defects can increase unrelentingly with
the operating time. The new appearing surface asperities result in the increase of the
surface friction. The latter is responsible for the additional sliding and shear traction
followed by the elevation of the temperature in the contact and end up with the heat
transfer (by conduction and convection) to the next arriving lubricant �ow. This sus-
tains the surface friction phenomenon depending on the lubrication regime.
First, let’s specify that some calculations are stopped during the rolling in purpose not
to exceed a plastic strain of 0.05 de�ned as the limit deformation in agreement with
the previous section. Also to avoid convergence issues in the contact solver when up-
dating the surface geometry, because small strain and displacement assumptions no
longer hold, since it is well known that frictional contact leads to a high plastic strain
at the surface, as shown in Fig.4.31(a). It could be seen Fig.4.32 that when the body is
homogeneous, regardless of the friction coe�cient, the calculation was not stopped
anywhere along the given rolling distance from −2a to 2a. But in the presence of the
heterogeneity, some stops occur for friction coe�cient above f = 0.1. Thus, the last
position reached by the rolling load before ending the calculations, is noted xend and
it decreases when f increases. One can mention that the HEP-RC was stopped at the
step xend = 1.2a for f = 0.15, xend = 0.6a for f = 0.2 and xend = 0.2a for f = 0.25.
Fig.4.31 shows plastic strain maps in the plane P(x = 0) when the friction coe�cient
is f = 0.25. One can observe that when the body is homogeneous the maximum plastic
strain is located at the surface reminding that the load has been moved along all the
given distance. However, when the body is heterogeneous the maximum plastic strain
is found not only at the surface, but also underneath between the heterogeneity and
the surface before the rolling was stopped at xend = 0.2a.
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Figure 4.31: Plastic strain contours in the plane P(x = 0) when the friction coe�cient is f =
0.25: (a) Homogeneous material ; (b) Heterogeneous material when the rolling was
stopped at δx = 0.2a

To go deeper in detail, it could be noticed in Fig.4.32(a,b), that the maximum normal
pressure decreases slightly when the friction coe�cient increases, in the presence of
the heterogeneity or not. Then, Fig.4.32(c,d) indicates that for a friction coe�cient up
to f = 0.1 the maximum plastic strain pro�les are nearly alike in each homogeneous or
heterogeneous case. A marked growth occurs in the maximum plastic strain evolution
when the friction coe�cient is greater than f = 0.1. If the body is homogeneous then
the peak of εpmax triple when switching from f = 0.1 to f = 0.25. Moreover, when the
body is heterogeneous, εpmax trend changes completely for f = 0.15, f = 0.2 and f =
0.25. These pro�les re�ect some very sharp increase of the plastic strain before their
calculations were stopped. Let’s mention that when the friction coe�cient increases,
the pro�les of the maximum plastic strain versus the rolling distance, in Fig.4.32(d),
tends to behave similarly as the damageD versus the number of fretting cyclesNcyc, in
Fig.B.3 from [129], see Appendix. B.3. One can see in Fig.4.32(e,f) that maximum shear
stress pro�les are almost parallel and shifted by a di�erence which can be partially
attributed to the additional shear stress produced by the Coulomb friction shear force,
in each homogeneous or heterogeneous case. Afterwards, the residual stress at the
end of the unloading, has the same level when the friction coe�cient remains below
f = 0.1, whatever the body is homogeneous or heterogeneous. It should be speci�ed
that, in the heterogeneous case, before calculations were stopped for f = 0.15, f =

0.2 and f = 0.25, the maximum shear stress magnitude changes its slope and get
increasing conversely to their trend which normally decreases so far. All considered,
the friction coe�cient of f = 0.1 is found to the lower bound of the severity of the
additional plasticity coming from the shear force. Over this limit value, the merging of
the friction stress with the heterogeneity reaction stress could aggravate the potential
damage.
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Figure 4.32: Fields evolution according to friction coe�cient: (a) Contact pressure; (b) Equiva-
lent plastic strain; (c) Maximum shear stress
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4.5 PARTIAL CONCLUSION
Encouraged by the increase of computer capacities, numerical simulation tools be-
come predominant alternative for a large operating range of investigations. Even if
models are limited by some assumptions, they are getting more realistic and essen-
tial for understanding complex mechanisms and especially in tribology. The hetero-
geneous elastic-plastic rolling contact (HEP-RC) analysis has been carried out with a
lowered yield strength compared to the real bearing material in purpose to highlight
and to amplify the plasticity phenomena. Di�erent �elds have been analyzed in or-
der to deepen the knowledge about the mechanical responses of the heterogeneous
elastic plastic body subjected to a rolling contact. Hence, the evolution of the contact
pressure, plastic strain, shear stress and hydrostatic pressure are fully monitored and
recorded during the motion as well as all over the cycles. The HEP-RC model based
on semi analytical method proposes a combined study of the role of the size, depth,
material properties and distribution of the heterogeneities, along with the contacting
surfaces friction properties and their elastic-plastic behavior. Heterogeneity stringers
and clusters have been replicated accounting their mutual interaction and density. In-
vestigations have been conducted on the e�ect of material hardening properties as the
plasticity gradient and the initial stress. Throughout this numerical study, the critical
e�ects of heterogeneous inclusions have been characterized and provide the insight of
the ensuing bearing life calculation by using the accurate stress-strain magnitude.
Several remarks should be kept, �rst noted that under the same condition, incompress-
ible heterogeneity produces more plastic strain than porosity. The latter produces more
than the considered sti� heterogeneity. It is worth noting that the results obtained
when the matrix is assumed elastic, lead to very di�erent ranking of the overstress pro-
duced by heterogeneity according to their nature. Special care must be taken to the
elastic-plastic behavior before calcifying the harmfulness of heterogeneity owing to
their type. However, one important �nding is that, during the rolling contact, the given
smallest porosity studied, regardless of its location in depth, produces more eigenstress
than any given larger sized carbide, located at any depth except when the carbide ap-
pears at the surface. In addition, fatigue analysis by Dang Van crack initiation criterion
more exhibits the severity of porosity and incompressible heterogeneity comparing
against a given sti� heterogeneity. Moreover, when many sti� heterogeneities formed
a stringer, the material area between them is exposed to a very likely damage risk than
the rest of the material mostly when the stringer is vertical. Therefore employed ma-
terials should be designed to endure such heterogeneity detrimental e�ect. Also this
paper raises two interesting points. On the one hand, the e�ect of the surface friction
has been found ampli�ed by the presence of sti� heterogeneity. This conclusion should
be underlined since it con�rms experimental observations that are not supported by
conventional elastic analysis, all the more because the plastic strain increases inex-
orably when the friction exceeds a certain threshold. On the other hand, the critical
point is quickly reached in ratcheting regime because the sti� heterogeneity acceler-
ates and sustains the plastic �ow even if the stress evolution over cycles indicates a
stable closed-loop and its path never cross the Dang Van line. The last success of this
study is the fact that it con�rms qualitatively the main feature of plasticity phenom-
ena under rolling contact, and to some extent quantitatively the behavior of bearing
materials containing multiple heterogeneites.
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Part III

A C A D E M I C A N D I N D U S T R I A L
A P P L I C AT I O N S

Two speci�c studies are conducted hereafter. Firstly, the semi analytical
model is used to investigate the e�ective elastic-plastic behavior of het-
erogeneous material subjected to contact loading. Classic homogenization
methods are restricted by their own fundamental assumptions when it
comes to estimate the overall inelastic and non-linear properties of a rep-
resentative volume loaded on its free boundary by indentation. Secondly,
the micromechanical characterization of M50 and M50NiL is conducted ex-
perimentally. The di�erent thermochemical treatments of these materials
lead to a graded microstructure and an introduction of compressive resid-
ual stress that enhances the RCF resistance. However the non-metallic in-
clusions precipitated during the thermochemical processes are found to be
the responsible of the subsurface damage risk. The rolling contact model
is applied to clearly identify the e�ect for heterogeneity clustering.
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5
E F F E C T I V E P R O P E R T Y A N A LY S I S O F E L A S T I C - P L A S T I C H A L F
S PA C E C O N TA I N I N G H E T E R O G E N E O U S I N C L U S I O N S U N D E R
C O N TA C T L O A D I N G

The objective of this study is to characterize the e�ects of the presence of multiple
heterogeneities on the e�ective properties of a body under contact loading. First, a het-
erogeneous elastic-plastic half space is subjected to a contact load and the macroscopic
response in terms of load-displacement relation is analyzed. The e�ective macroscopic
elastic-plastic properties are provided by identi�cation on the indentation curve of
a homogeneous half-space having equivalent properties, using a reverse Levenberg-
Marquadt algorithm. The �nal e�ective elastic modulus, yield stress and other e�ec-
tive hardening parameters can indeed be deduced from the load-displacement curve.
The role of inclusion size, location and material properties, along with the harden-
ing properties of the indented body are investigated. Special care is devoted to the
heterogeneities content and distribution evolution within the representative elemen-
tary volume (REV) considered under the contact. A semi analytical method is used for
the indentation simulations due to its e�ciency to solve contact problems when the
contacting bodies are heterogeneous and/or behave plastically. The coupling between
the semi-analytical method and the inverse analysis o�ers the possibility to obtain
the nonlinear macroscopic behavior. This method proposes improvements compared
to more classical homogenization methods that are (i) used to investigate properties
in the elastic domain only and (ii) not accurate for a volume close to a free or loaded
surface.
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5.1 INTRODUCTION
Appropriate selection of material to meet speci�c end-use requirement in a functional
system have been one of the principal objectives of research topics in mechanical and
civil engineering frameworks from the beginning of these disciplines. During centuries,
extensive progress is achieved in the comprehension of the relations between the me-
chanical properties, chemical compositions, micro/macro structures and the material
resistance under a given condition (static or dynamic loading). Materials started to be
tailored by mixing di�erent components leading to alloys. Since 1980s powder metal-
lurgy along with forging techniques introduces a manufacturing process that allows to
design material approaching the intended properties with very acceptable tolerances.
Mix between the host material (the matrix) and carbides, ceramics, borides, oxides or ni-
trides are the main elements used to compose new alloys having superior properties in
comparison to conventional fabrication process [130]. But knowing that tolerances are
getting narrow because of economic challenges, international standards and environ-
mental issues, there still is a need of process that can be entirely controlled to achieve
perfectly desired properties [131]. Thermo-chemical treatments also contribute to in-
creasing surfaces toughness while maintaining subsurface ductility (plastically graded
material PGM). Nowadays innovations in processing routes lead to build materials that
can have an alternately layered structure with dense and porous layers. This was ex-
perimented for silicon nitride as a strategy to augment strain to failure [132]. Silicon
nitride is used in hybrid bearing technology because it was found to o�er excellent re-
sistance at high temperature without deterioration even in corrosive environment. But
the outstanding mechanical performance of hybrid bearings is a�ected by the porosity
volume fraction contained in the silicon nitride [133, 134].

However, the more heterogeneous the materials become, the more the subsequent
e�ects on the local and global behavior become complex to be completely controllable
and predictable. A practice common and widespread in structural mechanics is to re-
place any encountered heterogeneous constituent by a homogenized �ctive material.
The e�ective properties are currently determined by experimental tests. Traditionally,
the fatigue strength of steels is usually considered propositional to the hardness and
tensile strength. Also the rule of mixture is a well-known law to estimate overall be-
haviors of heterogeneous bodies. But advancements in experimental methods con�rm
some of empirical models when others are found obsolete. Therefore designers must
be careful when generalizing these laws, since for instance, service condition and envi-
ronment can signi�cantly in�uence the most faithful one. Especially for bearing steel,
the fabrication process and service conditions in�uence massively the elements macro-
scopic property because of the microstructure transformations that occurs de facto at
microscopic scales. Even if excellent properties are obtained before commissioning,
such as ductility and fracture strength improvement, the accumulation of micro plas-
ticity along with the evolution of grain sizes, are such factors that a�ect the mechanical
properties over rolling cycles. The surface hardness decreases above annealing temper-
ature. In addition, manganese (Mn) content in most of these steels promotes austenitic
structure. This leads to FeMn3C carbides segregation which happened because of an
annealing produced by a local heating of the order of 800◦C typically in aeronautic
mechanisms (turbojet engines). The segregation phenomenon can also occur during
cold rolling. Property degradation can be attributed to the dissipated energy in the
form of heat escaping from sliding areas around the contact zone [135]. The material

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI154/these.pdf 
© [K. Amuzuga], [2016], INSA Lyon, tous droits réservés



5.1 introduction 107

macroscopic response is sensitive to any change and any perturbation which occur at
microscopic scale. Therefore the homogenization must take into account microstruc-
ture aspects such as plasticity, heterogeneity, porosity and damage.

Analytical models provide trusted bounds to frame the e�ective elastic properties,
but with respect to some assumptions limiting their application �elds. Some empirical
model [136] and classic homogenization techniques such as self-consistency are based
on such analytical solutions [137]. Apart from material properties, the unique input of
many analytical models is the heterogeneities volume fraction. But this is not a su�-
cient feature to access realistic e�ective properties. Investigating on porous material
properties, authors found experimentally some relationship between the pores shape
[138] and the elastic modulus [139] beside a given volume fraction. The purely ana-
lytical models become obsolete and need to be coupled with numerical methods that
can, for example, allow to discretize complex heterogeneity forms into multiple simple
cells.

The improvement in calculation machines capabilities promoted the establishment
of computational homogenization techniques to push forward investigations on global
behavior of structures having a nonuniform local behavior. Sophisticated numerical
approaches propose solutions incorporating more complex phenomenological aspects
(plasticity, creep, eigenstrain from di�erent origins) based on strong micromechanics
theories. From the pioneering and famous works of Eshelby [27], Mori T and Tanaka
K [140], Hashin and Shtrikman [141], Hill [142], signi�cant progress has been made by
Wills [143], Suquet [144, 145], Suresh [146], to integrate inelastic and nonlinear consti-
tutive behavior of the heterogeneous phases. For instance, studies [147, 148] have pro-
posed successfully easy implementable methods to obtain the homogenized properties
when the medium repeats a certain periodic pattern. Recent development enhanced
this method for modeling sintered porous material in [149]. It was validated by a good
agreement with available experimental data. However the analysis is restricted to elas-
tic properties. Also, a representative unit cell (RUC) is considered and it is di�cult to
correlate these results with a real REV overall behavior because of the structural size
ratio between the RUC and the REV. The statistical estimation of the REV size regard-
ing the number of heterogeneity which must be included, has been well studied and
documented in[150, 151, 152, 153] to cite a few of the earliest contributions (concerning
nonlinear mechanical properties). The in�uence of the REV choice on the overall prop-
erty predictions obtained by computational homogenization approaches are discussed
in [154]. This in�uence has been quanti�ed for perfectly periodic heterogeneous ma-
terial subjected to a dynamic excitation in [155]. In addition, it has been highlighted
in [156] that heterogeneity size, distribution and inter-distance have strong impact of
the homogenized behavior. The structural and the microstructure sizes e�ect on the
homogenized plastic behavior is described in [157]. Gitman claimed in [158] that the
REV size should be generally lager in an elastic-plastic matrix, than for a linear elas-
tic case. However no recommendation exists on REV that will be subject to a strong
stress gradient as especially in contact loading condition. Therefore, a new method of
REV dimensions determination has been proposed here, taking into consideration the
heterogeneity size and distribution.

Computational homogenization techniques are mainly used for the composite con-
stituents having nonlinear behaviors (plasticity [159, 160], thermoelasticity [161]). A
numerical homogenization method has been proposed in [162] taking into account the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI154/these.pdf 
© [K. Amuzuga], [2016], INSA Lyon, tous droits réservés



108 hep effective properties

size e�ects of a hyper-elastic �ber embedded in a hyper-elastic-plastic matrix material
but the model is only applied to unidirectional �ber reinforced composite materials.
Then the analysis conducted is restricted to two-dimensional domain and the �bers are
oriented in the same direction. However the robust Nonuniform Transformation Field
Analysis developed by Suquet et al. in [163] and improved in [164], enables to obtain
the overall constitutive relations of a three-dimensional REV containing randomly ori-
ented �bers. The macroscopic strength solution has been formulated in [165, 166] for
ductile porous materials. However the REV is subjected to axisymmetric uniform strain
rate boundary conditions. Indeed, thanks to Saint-Venant’s principle is often assumed,
during homogenization procedures, that an imposed strain at in�nity is equivalent to
a uniform average strain over the REV, [167]. But, under the Hertzian contact con�gu-
ration, the contacting bodies are semi-in�nite and the generated stress or strain has a
strong gradient along the loading direction. If the REV is selected in the vicinity of the
contact surface, then nonuniform boundary conditions can be considered on the REV
edge. Moreover, by considering a rough surface layer, it has been �gured out in [168],
that the REV’s e�ective behavior depends on the surface state.

Asymptotic homogenization based on FEM is also one of the numerical approaches
used to apply nonuniform boundary conditions on the REV edge [169, 170]. This method
has been used in [171] to characterize the e�ective properties of porous biomaterials.
Even if FEM enables integration of the structure design, excessive computational times
constitutes a crucial limitation. Yet, solving three dimensional contact problem involv-
ing heterogeneity or plasticity with FEM proved by Wang and coworkers [95] has been
too time consuming, compared to Semi Analytical Method (SAM), especially when �ne
mesh is required to capture �elds in interesting zones. The e�ciency and the fast con-
vergence of SAM is guaranteed by the use of Conjugated Gradient Method (CGM)
[50] and Fast Fourier Transform FFT [53] techniques. FFT method demonstrated their
e�ciency in terms of speed, during e�ective properties investigations on composite
reported in [172], compared to FEM for the same result quality. For two dimensional
computation, typical CPU times are roughly 13 minutes with the FFT method against 5
hours with the FEM. In this study the media undergoes non-homogeneous eigenstrain,
but the microstructure is considered periodic and homogeneous stress or strain bound-
ary conditions are assumed which means that the applied load is uniformly distributed.

Further enhancement in SAM takes into account the e�ect of nonlinear behavior as
plasticity [37], thermal-elastic-plasticity [99], dynamic e�ect [55], visco-elasticity [100]
along with the presence of heterogeneous inclusion from di�erent origins [66, 41], fret-
ting stick-slip [51, 40] and lubricated plasto-elastohydrodinamic [103]. In a recent study
conducted by Hayashi and Koguchi [173] a semi analytical model of elastic-plastic con-
tact has been proposed for anisotropic materials. But the plastic strain and residual
stress generate in the subsurface are not calculated and their e�ect is not integrated
in the contact solver. The latter is instead performed by imposing a contact pressure
upper limit standing for the e�ect of the yield stress as a constraint in the CGM. This
increases the contact projection area and the yielding region can be identi�ed under
the corresponding uniform distribution of the contact pressure. Conceding that the
resolution of the contact problem is essential to provide the macroscopic behavior of
the contacting bodies in terms of the load displacement, a numerical solver of hetero-
geneous elastic plastic contact problem has been proposed in [104] by fully coupling
contact, plasticity and heterogeneity interactions in the same method. This algorithm
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is coupled with a minimization technique in the present homogenization method, as in
[174]. The overall properties are obtained by optimizing the gap between the hetero-
geneous material response and that of the actual homogeneous material. The present
work is dedicated to bearing industry which engages for high performance (strength,
fracture-toughness) material as AISI 52100 steel, M50 and M50 NiL (an improved pro-
cessing variant of M50 having additional nickel but low-carbon). The latter materials
owe their strengthening to the presence of carbides and nitrides together with inter-
metallic particles. Let’s specify that the dimensionless analysis conducted in this study,
enables the consideration of di�erent properties of materials (matrix and phases).

5.2 HOMOGENIZATION BY INDENTATION REVERSE ANALYSIS
The investigation on the e�ective properties of the Representative Elementary Volume
(REV) is a widespread topic with purpose to predict the macroscopic behavior of a
real structure. However, the existing homogenization methods are limited by some
assumptions as the fact that (i) the load is applied far from the interesting zone leading
to, by the Saint-Venant principle; (ii) a distributed load quasi uniformly distributed on
the REV boundaries as illustrated by Fig. 5.1. In addition (iii) the distribution of the
heterogeneous phases is not taken into consideration. Finally (iv) the analysis holds
only when the material is assumed to have a linear and elastic behavior.

Uniformly redistributed load

REV
Figure 5.1: Equivalent uniformly redistributed load applied on the Representative Elementary

Volume

The homogenization is unavoidable, when sizing materials involved in transmis-
sion of load or motion such as gears, wheels/rails, bearings. Indeed, most mechanisms
are operated through contacting surfaces (except mechanisms run via gravitational or
electro-magnetic forces). Hence in the need of e�ective properties, designers are con-
strained by the aforementioned assumptions especially when the bodies mesoscopic
behavior is heterogeneous elastic plastic. Fig. 5.2 shows a typical example of a Hertzian
contact applied on a free surface leading to a graded stress �eld inside the REV.
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Figure 5.2: Contact load applied on the Representative Elementary Volume

5.2.1 REVIEW OF HOMOGENIZATION METHODS ASSUMING UNIFORMLY LOADED REV

The classic homogenization theoretical background is shortly recalled here. The main
assumptions and their consequences on the homogenized solutions are also discussed.
Most of the equations are referenced with their corresponding authors or bibliography
to provide sources to readers who are seeking more details.

5.2.1.1 Equilibrium equation formulation for heterogeneous material
The solution in terms of displacement, strain and stress (u, ε,σ) within an in�nite
elastic body, must satisfy the following equilibrium equation:

σij,j + fi = 0 (5.1)

Where fi is the applied body force. The material behavior is provided by Hooke’s law
as:

σij = Cijklε
e
kl (5.2)

Where Cijkl is the fourth order tensor describing the material elastic sti�ness proper-

ties and εekl the elastic strain tensor which is εekl =
1

2
(uk,l + ul,k). Eq. (5.1) becomes:

Cijkluk,lj(x) + fi = 0 (5.3)
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Ω
Ω
∂Ω

⇒
Thehomogenized properties C∗ is such that

Ω σ= Σ =C∗ : E

i A t ti i t t
Figure 5.3: Modeling heterogeneous body by a reference homogeneous material containing

property �uctuation along any arbitrary direction

Now the sti�ness tensor of a heterogeneous body (See Fig. 5.3) can be modeled, by
inserting a homogeneous reference material of sti�ness Cr and the property �uctuation
δc(x), so-called polarization tensor, as:

Cijkl(x) = C
r
ijkl + δcijkl(x) (5.4)

Where x is the position vector re�ecting the localization of properties within the het-
erogeneous body. Eq. (5.4) allows Eq. (5.3) to be written into an auxiliary problem as:

Crijkluk,lj(x) +
[
δcijkl(x)uk,l(x)

]
,j
+ fi = 0 ⇒ Heterogeneous body

Let, δfi(x) =
[
δcijkl(x)uk,l(x)

]
,j

and, fTi (x) = δfi(x) + fi then

Crijkluk,lj(x) + f
T
i (x) = 0 ⇒ Homogeneous reference body

(5.5)

Where fTi (x) is the total volume force applied to the Homogeneous reference body and
δfi(x) a �ctive body force standing for the heterogeneous body property �uctuation.
Let δui(x) be the displacement �eld in response to the �ctive body force δfj(x′) applied
on each heterogeneity surface S′.
δui(x) can be expressed in terms of the elastic Green’s function Gij(x, x′) integrated
around S′ as:

δui(x) =

∫
S′
Gij(x, x′)δfj(x

′)dS′ (5.6)

WhereGij(x, x′) is de�ned as the displacement in the i−direction at x−point, due
to the force in the j−direction at x′− point. The elastic Green’s function existence
can be proven by the solution uniqueness of the equilibrium equation:CijklGim,jl(x, x′)+
δmkδ(x, x′) = 0. Where δ(x, x′) is Dirac’s delta function and δnk is Kronecker’s delta
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function. The consequence of the Dirac function integration as
∫+∞
−∞ δ(x, x′)g(x′)dx′ =

g(x) for a given function g allows to express the entire solution �eld by knowing a sin-
gle solution under the elastic linear behavior assumption. In this case G only depends
on the relative displacement as Gij(x, x′) = Gij(x− x

′).
Writing δfj = τjknk where τjk is the so-called the polarization residual stress, Eq. (5.6)
becomes:

δui(x) =

∫
S′
Gij(x− x

′)τjknk(x
′)dS′

then, δui,j(x) =

∫
S′
Gil,j(x− x

′)τlk(x
′)nkdS

′

with, δεij = 1
2(δui,j + δuj,i)

δεij(x) =

∫
S′
1
2

[
Gil,j(x− x

′) +Gjl,i(x− x
′)
]
nkτlk(x

′)dS′

=

∫
V

1
2

[
Gil,jk(x− x

′) +Gjl,ik(x− x
′)
]
τlk(x

′)dV ′

since, τkl = δcklmnεkl

�nally, δεij(x) =

∫
V

1
2

[
Gil,jk(x− x

′) +Gjl,ik(x− x
′)
]
δcklmn(x

′)εmn(x
′)dV ′

(5.7)

Let Erij be the strain �eld of the homogeneous reference material, in response to the
applied body force fi from Eq. (5.5). Yet, δεij is found to be the solution ensuing from
the �ctive body force δfi problem. Under small strain assumption, since, fTi = fi+ δfi,
the general solution in terms of strain yields to εij(x) = Erij + δεij(x), so-called the
Lippmann-Schwinger integral equation [175]:

εij(x) = E
r
ij −

∫
V
Γijkl(x− x

′)δcklmn(x
′)εmn(x

′)dV ′ (5.8)

Where Γ is Green’s tensor modi�ed by Kröner [176] as Γijkl = −
1

2

(
Gik,jl +Gjk,il

)
.

Note that Eq. (5.8) contains its solution within the integral term. Then it cannot be
solved explicitly. This constitutes the point of departure of most homogenization proce-
dures. One of the �rst approach is based on the Neumann series development discussed
by Moulinec and Suquet in [177, 144]. Some iterative numerical solutions [178] applya

Multiplying the initial
equation by an

arbitrary �eld and then
applying integration on

each term of the
equation: So-called

Galerkin formulation

the Fast Fourier Transformation (FFT) to e�ciently solve the convolution production
from Eq. (5.8). A weak formulationa based on Hashin-Shtrikman [141, 179] variational
energy principle, has been reformulated into average elastic equivalent work to provide
accurate bound of the e�ective properties by FFT-based numerical method in Brisard
and Dormieux (2012) [180] . Otherwise, various homogenization methods have been
established since Eshelby’s [181] Equivalent Inclusion Method (EIM) presented here.
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5.2.1.2 Equilibrium equation formulation for homogeneous material containing incom-
patible strain
Let suppose that the homogeneous material contains inclusion (e.i. same properties
as the matrix) having incompatible strain ε∗ , so-called eigenstrain (See Fig. 5.4). The
elastic strain tensor becomes εekl =

1

2

(
uk,l + ul,k

)
− ε∗kl in the inclusion.

Figure 5.4: Homogeneous reference material containing incompatible strain

The Equilibrium equation Eq. (5.1) is written as:

Crijkluk,lj(x) −C
r
ijklε

∗
kl,j(x) + fi = 0 ⇒ Homogeneous body with incompatibility

Let, f∗i (x) = Crijklε∗kl,j(x) and, fTi (x) = −f∗i (x) + fi then

Crijkluk,lj(x) + f
T
i (x) = 0 ⇒ Homogeneous reference body

(5.9)

Where fTi (x) is once again the total volume force applied to Homogeneous reference
body and f∗i (x) a �ctive body force re�ecting the presence of incompatible strain ap-
plied to the inclusion surface SI.
The homogeneous incompatible problem is written asCrijkluk,lj(x)−C

r
ijklε

∗
kl,j(x) = 0.

The solution is constructed by Eshelby [27] using the following four steps of a "virtual
experiment".

Step 1

Remove the inclusion and allow it to undergo a stress-free strain: Fig. 5.5

Matrix Inclusion
εij = 0 εij = ε

∗
ij

σij = 0 σij = 0

ui = 0 ui = ε
∗
ijxj

Figure 5.5: Single inclusion problem: Step 1
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Step 2

Apply surface traction to SI in order to make the inclusion return to its original shape:
Fig. 5.6
The inclusion elastic strain should exactly cancel the eigenstrain, then εelij = −ε∗ij and
Tj = σijni = −σ∗ijni

Matrix Inclusion
εij = 0 εij = ε

∗
ij + ε

el
ij = 0

σij = 0 σij = C
r
ijklε

el
kl = −Crijklε

∗
kl = −σ∗ij

ui = 0 ui = 0

Figure 5.6: Single inclusion problem: Step 2

Step 3

Put the inclusion back to the matrix: Fig. 5.7
There is no change on the deformation �elds found in Step 2, either in the inclusion or
in the matrix.

Matrix Inclusion
εij = 0 εij = ε

∗
ij + ε

el
ij = 0

σij = 0 σij = C
r
ijklε

el
kl = −Crijklε

∗
kl = −σ∗ij

ui = 0 ui = 0

Figure 5.7: Single inclusion problem: Step 3

Step 4

Cancel the held surface traction by applying the opposite force Fj = −Tj = σ
∗
jknk on

inclusion: Fig. 5.8
Let uci (x) be the "constrained" displacement �eld in response to the opposite force
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Fj(x
′) applied on the inclusion surface SI. Hence, uci (x) can be expressed in terms of

the elastic Green’s function Gij(x, x′) integrated around SI as:

uci (x) =
∫
SI
Gij(x, x′)Fj(x

′)dS

=

∫
SI
Gij(x− x

′)σ∗jknk(x
′)dS

then, uci,j(x) =

∫
SI
Gil,j(x− x

′)σ∗lk(x
′)nkdS

with, εcij = 1
2(u

c
i,j + u

c
j,i)

εcij(x) =

∫
SI

1
2

[
Gil,j(x− x

′) +Gjl,i(x− x
′)
]
nkσ

∗
lk(x

′)dS

=

∫
VI

1
2

[
Gil,jk(x− x

′) +Gjl,ik(x− x
′)
]
σ∗lk(x

′)dV

since, σ∗kl(x
′) = σ∗kl = C

r
klmnε

∗
kl is constant within the inclusion

and replacing Kröner tensor, εcij(x) = −

[∫
V
Γijkl(x− x

′)dV
]
Crklmnε

∗
mn

then inserting Eshelby tensor, SEshijmn(x) = −

[∫
V
Γijkl(x− x

′)dV
]
Crklmn

�nally, εcij(x) = SEshijmn(x)ε
∗
mn

(5.10)

Matrix Inclusion
εij = ε

c
ij = S

Esh
ijklε

∗
kl εij = ε

c
ij = S

Esh
ijklε

∗
kl

σij = σ
c
ij = C

r
ijklS

Esh
klmnε

∗
mn σij = σ

c
ij − σ

∗
ij = C

r
ijkl

(
εckl − ε

∗
kl

)
= Crijkl

(
SEshklmn − Iklmn

)
ε∗mn

ui = u
c
i ui = u

c
i

Figure 5.8: Single inclusion problem: Step 4

Where Iijkl =
1

2

(
δikδjl + δilδjk

)
is the symmetric Identity tensor.

Let Erij be the strain �eld of the homogeneous reference material, in response to the
applied body force fi from Eq. (5.5). Yet, εcij is found to be the solution ensuing from
the �ctive body force f∗i problem. Under small strain assumption, since fTi = fi − f

∗
i ,

the general solution written in terms of strain, yields to εij(x) = Erij − εcij(x) as :

εij(x) = E
r
ij +

∫
V
Γijkl(x− x

′)Crklmn(x
′)ε∗mn(x

′)dV ′ (5.11)
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For a single ellipsoidal inclusion VI embedded in in�nite matrix V one can assume av-
erage �elds within the inclusion as ε∗ij(x) = ε∗ijθI(x) , where θI is an indicator function
de�ned as:

θI(x) =

1, if x ∈ VI
0, if x 6∈ VI

(5.12)

Written Eq. (5.11) for the inclusion leads to:

εIij = Erij +
[∫
VI
Γijkl(x− x

′)dV ′
]
Crklmnε

∗
mn

εIij = Erij + S
Esh
ijklε

∗
kl

σIij = Crijkl
(
εIkl − ε

∗
kl

)
σIij = Crijkl

(
Erkl + S

Esh
klmnε

∗
mn − ε

∗
kl

)
let, Σrij = CrijklErkl

then, σIij = Σrij +C
r
ijkl

(
SEshklmn − Iklmn

)
ε∗mn

(5.13)

William P. and William D. [182] proved, by reasoning based on energy conservation,
that Eshelby’s equivalent ellipsoidal inclusion method can be used to �nd the stress
and strain �elds in both the matrix and heterogeneity because Eshelby’s tensor can
always be inverted (its expression is non-singular).

5.2.1.3 Heterogeneous solution with Eshelby tensor
Let’s consider a single ellipsoidal heterogeneity (Fig. 5.9 ) [VI,C

I] embedded in an in�-
nite reference matrix [V ,Cr]. Note thatCI = Cr+ δcI and the strain εI �eld is assumed
to be uniform within the heterogeneity.

Figure 5.9: Single heterogeneity problem
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By writing the Lippmann-Schwinger integral equation Eq. (5.8) for the single ellip-
soidal heterogeneity leads to:

εij(x) = Erij −

[∫
VI
Γijkl(x− x

′)dV ′
]
δcIklmnε

I
mn

de�ning the heterogeneity average strain as, εIij =
1

VI

∫
VI
εij(x)dV

then, εIij = Erij −

(
1

VI

∫
VI

[∫
VI
Γijkl(x− x

′)dV ′
]
dV

)
δcIklmnε

I
mn

taking, T IIijkl =
1

VI

∫
VI

[∫
VI
Γijkl(x− x

′)dV ′
]
dV = SEshijmnC

r−1

mnkl

�nally, εIij = Erij − T
II
ijklδc

I
klmnε

I
mn

(5.14)

From Eq. (5.14), the single heterogeneity problem (Fig. 5.9) is linked to the single in-
clusion problem (Fig. 5.4) via the Eshelby tensor. Thereby the Eshelby’s equivalence
principle rises from this result.

5.2.1.4 Equivalence principle
Recognizing that the polarization residual stress τ = δc (Er + ε) due to the properties
�uctuation is equivalent to the eigenstress σ∗ = Crε∗ due to the eigenstrain existence,
the equivalence principle is described by:

δc (Er + ε) = Crε∗(
Cr −CI

)
(Er + ε) = Crε∗

CI (Er + ε) = Cr (Er + ε− ε∗)

(5.15)

From Eq. (5.15), the eigenstrain becomes the unique unknown of the Equivalent Inclu-
sion Method (EIM). By inserting Eshelby tensor SEsh, the eigenstrain can be explicitly
expressed as a function of the heterogeneity sti�ness CI reference material strain Er
and its sti�ness Cr as :

ε∗ = −

[
SEsh +

(
CI −Cr

)−1
Cr
]
Er (5.16)

5.2.1.5 Multiple heterogeneity problem
Consider a heterogeneous media composed of N+ 1 distinct phases (composites and
polycrystals). The property of each phase i of volume V(i) is de�ned by its sti�ness
tensorC(i) represented in Fig. 5.3. The e�ective sti�ness tensor is desired to ful�ll this
relation:

Σ = CeffE (5.17)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI154/these.pdf 
© [K. Amuzuga], [2016], INSA Lyon, tous droits réservés



118 hep effective properties

WhereΣ andE are respectively the macroscopic stress and strain de�ned as the volume
average of the local stress σij(x) and strain εij(x) :

Σij = σij(x) = < σij(x) > =
1

V

∫
V
σij(x)dV

Eij = εij(x) = < εij(x) > =
1

V

∫
V
εij(x)dV

(5.18)

The local strain is related to the macroscopic strain by the localization tensor Aijkl(x)
and the local stress is related to the macroscopic stress by the concentration tensor
Bijkl(x) as:

σij(x) = Bijkl(x)Σkl

εij(x) = Aijkl(x)Ekl

(5.19)

If the problem formulation is of the ’applied strain’ type, then the uniformly applied
macroscopic strain E in Eq. (5.18) is combined with Eq. (5.19) and gives:

Σij = < σij(x) >=< Cijkl(x)εkl(x) >=< Cijkl(x)Aklmn(x)Emn >=< Cijkl(x)Aklmn(x) > Emn

since, Σij = CeffijmnEmn

hence, Ceffijmn = < Cijkl(x)Aklmn(x) >

(5.20)

Else if the problem formulation is of the ’applied stress’ type, then the uniformly applied
macroscopic stress Σ in Eq. (5.18) is combined with Eq. (5.19) leads to:

Eij = < εij(x) >=< Sijkl(x)σkl(x) >=< Cijkl(x)Bklmn(x)Σmn >=< Sijkl(x)Bklmn(x) > Σmn

since, Eij = SeffijmnΣmn

hence, Seffijmn = < Sijkl(x)Bklmn(x) >

(5.21)

Where S = C−1 is the compliance tensor. One can prove that < A >=< B >= I.
Finally, A or B becomes the unique unknowns of the multiple heterogeneity problem,
depending on the applied �eld.
Back to theN+ 1 phase heterogeneous media (Fig. 5.3), the sti�ness distribution �eld
can be modeled as:

C(x) = C0θ0(x) +
N∑
i=1
CIθI(x)

de�ning, ∆cI = CI −Cr

then, δc(x) = ∆c0θ0(x) +
N∑
I=1
∆cIθI(x)

(5.22)
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Where C0 and Cr are the matrix and the reference homogeneous media sti�ness, re-
spectively. Where again θI(x) is the indicator function de�ned by Eq. (5.12). Hence,
the Lippmann-Schwinger integral equation Eq. (5.8) becomes:

ε(x) = Er −

∫
V0
Γ(x− x′) : ∆c0 : ε(x′)dV ′ −

N∑
I=1

∫
VI
Γ(x− x′) : ∆cI : ε(x′)dV ′

de�ning, ε(x) = ε0θ0(x) +
N∑
I=1
εIθI(x)

hence, ε(x) = Er −

∫
V0
Γ(x− x′)dV ′ : ∆c0 : ε0 −

N∑
I=1

∫
VI
Γ(x− x′)dV ′ : ∆cI : εI

(5.23)

Considering the average strain inside any Ith phase as: εI = 1

VI

∫
VI
ε(x)dV , the latter

integral equation Eq. (5.23) yields to:

εI = Er −
N∑
J=0

1

VI

∫
VI

∫
VJ
Γ(x− x′)dV ′dV : ∆cJ : εJ

de�ning, T IJ =
1

VI

∫
VI

∫
VJ
Γ(x− x′)dV ′dV

hence, εI = Er − T II : ∆cI : εI −
N∑
J=0
J6=I

T IJ : ∆cJ : εJ

(5.24)

Where T IJ is so-called the interaction tensor between any phase I of volume VIand
phase J of volume VJ of the heterogeneous media. It can be noticed that VIT IJ =

VJT JI. One can also remind from Eq. (5.14) that T II = SEshCr
−1 . Inserting the strain

localization relation εI = AI : E in Eq. (5.24), one can write:

AI : E = Er − T II : ∆cI : AI : E−
N∑
J=0
J6=I

(
T IJ : ∆cJ : AJ

)
: E

AI =
(
I+ T II : ∆cI

)−1
:

Er : E−1 − N∑
J=0
J6=I

(
T IJ : ∆cJ : AJ

)
(5.25)

This induces an implicit determination of the localization tensor sinceAI is a function
of itself. Existing homogenization methods come out with particular assumptions and
simpli�cation to provide the scheme or algorithm that allows to obtain the localization
tensor and then the e�ective sti�ness Ceff.

Let’s remind that the present study is applied to bearing materials which are plas-
tically graded, owing to multiple carbide inclusions contents along the depth layers.
Carbides are typically considered to belong to the same family of sti�ness tensor. This
leads to a bi-phase media formed by the matrix and the (similar) carbides. Since matrix
and carbides are assumed isotropic, there are only two independent elastic constants
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which expressed the sti�ness tensor as C = 3K J+ 2GK , where K and G are the ma-
terial bulk modulus and shear modulus, respectively. J and K are four order tensors

de�ned as Jijkl =
1

3
δijδkl andKijkl = Iijkl−Jijkl. In this case, it is suitable to write the

sti�ness tensor like this because its inversion leads to simply express the compliance
tensor as S =

3

K
J+

2

G
K.

5.2.1.6 Effective elastic properties: from Eshelby dilute approximation to Mori-Tanaka
concentrated scheme
The dilute approximation considers a unique heterogeneity embedded in the matrix
m [183]. This equivalent heterogeneity has the sum of volume fractions VIf of all N

phases as Vf =
N∑
I=1
VIf . It is assumed that all phases have the same sti�ness. Once the

heterogeneity site scheme simpli�cation is made, it is also supposed that T IJ ≈ 0when
I 6= J. This last assumption is not accurate when heterogeneities are close to each other.
The average strain is considered to be the matrix one, E = Vfε

I + (1− Vf) ε
m ≈ εm.

This simpli�cation is not accurate for microstructures containing large heterogeneities
volume fractions. When the (ellipsoidal) heterogeneity and the matrix are isotropic, the
interaction tensor is analytically obtained from Eshelby tensor. Hence, by considering
the matrix as the reference homogeneous material, one obtains:

T II = SEshCr
−1

T II
Esh

= SEshCm
−1

T II
Esh

=
1

3Km + 4Gm

(
J+

3Km + 6Gm
5Gm

K

) (5.26)

Mura in [56], expressed the Eshelby tensor for some other heterogeneity shapes. One
can get the Eshelby’s dilute localization tensors, AI

Esh
for the heterogeneity and Am

Esh
from Eq. (5.25) as:

AI
Esh

=
[
I+ T II

Esh
:
(
CI −Cm)

)]−1
since, < A > = I

(1− Vf)A
m
Esh

= I− VfA
I
Esh

(5.27)

Finally, the Eshelby e�ective sti�ness tensor Ceff
Esh

is obtained by combining Eq. (5.20)
with Eq. (5.27), hence:

Ceff
Esh

= Cm + Vf

(
CI −Cm

)
AI
Esh

(5.28)
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Thus, the e�ective bulk modulus Keff and shear modulus Geff can be deducted from
Eshelby’s dilute approximation as:

Keff = Km + Vf
(
KI −Km

) Km(
KI −Km

)
η+Km

where, η =
3Km

3Km + 4Gm

Geff = Gm + Vf
(
GI −Gm

) Gm(
GI −Gm

)
ϕ+Gm

where, ϕ =
6Km + 12Gm
15Km + 10Gm

(5.29)

One can see from Eq. (5.29) that the diluted approximation leads to a linear dependence
of the e�ective modulus on the volume fraction.
Furthermore, Mori T. and Tanaka K. [140] propose their concentrated scheme which
reformulate the localization tensor for each individual heterogeneities I, J, ...N of vol-
ume fraction Vf(I, J, ...N) based on that of Eshebly as:

AI
MT

= AI
Esh

(
VfI+AEsh

)−1
where, A

Esh
=

N∑
I=1
VIfA

I
Esh

(5.30)

The �nal Mori-Tanaka e�ective sti�ness is:

Ceff
MT

= Cm +

N∑
I=1

VIf

(
CI −Cm

)
AI
MT

(5.31)

Since each heterogeneity localization tensor is treated separately, Mori-Tanaka concen-
trated scheme volume fraction could be better than Eshelby dilute approximation one.
However, the condition on the interaction tensor (T IJ ≈ 0when I 6= J) limits the Mori-
Tanaka concentrated scheme in practice when 30% of volume fraction is exceeded be-
cause heterogeneities become naturally close to each other inside the considered REV.
There are some extensions of Mori-Tanaka by Ferrari [184] and Benveniste [183] tak-
ing into account heterogeneities interactions under other assumptions not mentioned
here. Hence, the e�ective bulk modulus Keff and shear modulus Geff can be deducted
from Mori-Tanaka concentrated scheme (Benveniste reformulation) as:

Keff = Km + Vf
(
KI −Km

) Km
(1− Vf)

(
KI −Km

)
η+Km

where, η =
3Km

3Km + 4Gm

Geff = Gm + Vf
(
GI −Gm

) Gm
(1− Vf)

(
GI −Gm

)
ϕ+Gm

where, ϕ =
6Km + 12Gm
15Km + 10Gm

(5.32)

5.2.1.7 Effective elastic properties by Hill’s self-consistency scheme
The self-consistency method was originally proposed by Hershey (1954) [185] and Kro-
ner (1958) [186], then reviewed and elaborated by Hill (1965) [187]. It suggests choosing
the equivalent homogeneous medium as the unknown e�ective homogeneous medium
(Cr = Ceff then Er = E ). Hence, the e�ective elastic properties are found by iterative
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treatment. Once again, the interaction tensor is assumed nil (T IJ ≈ 0) when I 6= J,
restraining the self-consistency scheme to relatively small concentrations of hetero-
geneities. However, this approximation leads to excellent result compared to the other
methods, by enabling numerical approximation of the interaction between di�erent
phases even if the analytical interaction tensor is neglected. Because each phase is
assumed to be embedded in the e�ective medium, implying that the other phases are
accounted as though they have been already homogenized. The e�ective bulk modulus
Keff and shear modulus Geff can be expressed as:

Keff = Km +
VfK

eff
(
KI −Km

)
Keff + η

(
KI −K

eff
) where, η =

3Km
3Km + 4Gm

Geff = Gm +
VfK

eff
(
GI −Gm

)
Geff +ϕ

(
GI −G

eff
) where, ϕ =

6Keff + 12Geff

15Keff + 10Geff

(5.33)

5.2.1.8 Effective elastic properties by Voigt and Reuss bounds
The original work of Voigt [188] consisted of the minimization of the potential energy
for a problem driven by uniform imposed strain. Similarly, Reuss [189] worked on the
minimization of the complementary energy for a problem driven by uniform imposed
stress. Then, Hill (1952) [190] proved that Voigt and Reuss approximations are upper
and lower bounds of the e�ective sti�ness tensor. It was established that:

E =
(
1− VIf

)
εm

N∑
I=1
VIfε

I

Σ =
(
1− VIf

)
σm

N∑
I=1
VIfσ

I

(5.34)

Inserting localization tensor εI = AI : E and concentration tensor σI = BI : Σ, Eq.
(5.34) leads to:

Ceff
Voigt

= Cm +
N∑
I=1
VIf
(
CI −Cm

)
AI
Voigt

Seff
Reuss

= Sm +
N∑
I=1
VIf
(
SI − Sm

)
BI
Reuss

(5.35)

Voigt bound is found when the strain localization tensor AI
Voigt

= I meaning average
uniformly imposed strain everywhere inside the heterogeneous media as εm = εI =

E. Similarly, Reuss bound is found when the stress concentration tensor BI
Reuss

=

I meaning average uniformly imposed stress everywhere inside the heterogeneous
media σm = σI = Σ. For a bi-phase problem one can deduce that:C

eff
Voigt

= VIfC
I +
(
1− VIf

)
Cm

Seff
Voigt

= VIfS
I +
(
1− VIf

)
Sm

(5.36)
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5.2.1.9 Effective properties by Hashin-Shtrikman bounds
Hashin-Shtrikman [141, 179] variational principles is built on arguments of minimum
potential energy. It leads to the lower bound for a problem posed in the form of a
uniformly imposed strain. Similarly, the use of the complementary energy leads to
the lower bound for a problem posed in the form of a uniformly imposed stress. The
e�ective bulk modulus Keffup/low and shear modulus Geffup/low are:

Keffup = KI +
1− Vf

1

Km −KI
+

3Vf
3KI + 4GI

Kefflow = Km +
Vf

1

KI −Km
+

3 (1− Vf)

3Km + 4Gm

Geffup = GI +
1− Vf

1

Gm −GI
+
6(KI + 2GI)Vf

5GI
(
3KI + 4GI

)
Gefflow = Gm +

Vf
1

GI −Gm
+
6(Km + 2Gm) (1− Vf)

5Gm (3Km + 4Gm)

where, Km < KI and, Gm < GI

(5.37)

Note that the e�ective property bounds are independent of heterogeneity shape and
distribution. In practice the upper bound is used when Km > KI, and lower bound in
the opposite case. Hashin-Shtrikman bounds provide a good estimation when the ratio
between matrix elastic modulus and embedded phases ones are not too large.

5.2.2 THE HOMOGENIZATION METHOD FOR REV HAVING FREE SURFACE SUBJECTED TO
A CONTACT LOAD

The coupling between the semi-analytical method and the inverse analysis o�ers the
possibility to obtain the nonlinear behavior, as the macroscopic yield strength, when
most classic homogenization methods are used to determine elastic properties only.

5.2.2.1 Homogenization method by macroscopic response identification
By studying the macroscopic responses of indentation tests, Oliver-Pharr [191] and
Herbert [192] have shown that one can capture the reducedb Ereduced from the un- b

also called equivalent
elastic modulus

loading part of the load/displacement curves c Fig. 5.8(a), assuming that this phase is

c

also noted P(h) curves

purely elastic, as :

Ereduced =
S

2

√
π

A
(5.38)

Where S is the elastic contact sti�ness, called the unloading sti�ness.A is the projected
contact area estimated by the maximum displacement measured during the loading
hmax, the �nal plastic depth hp called indentation print, and the indenter tip geometry
(see [193, 194]). Note that hmax < he +hp ,where he is the maximum displacement if
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the contacting bodies are purely elastic. This inequality is attributed to the change of
slope during the unloading even if small strain state is guaranteed as on the example
illustrated by Fig. 5.8 where the maximum plastic strain is less than 2%. Hence, the
earlier the contact sti�ness is measured in the unloading step, the more correct its
value will be. It could be noticed that the elastic unloading curve is di�erent than the
elastic loading one, explaining that S =

dP

dh
must be determined at the beginning of

the unloading step when Slopeloading/Slopeunloading ≈ 1.
The e�ective elastic modulus Eeff is related to the reduced elastic modulus Ereduced
by:

1

Ereduced
=
1− ν2eff
Eeff

+
1− ν2tip
Etip

(5.39)

Where the subscript tip stands for the indenter properties. Also, the e�ective indenta-
tion hardness Heff is obtained through the relationship:

Heff =
Pmax

A
(5.40)

Where Pmax is the maximum indentation load. An isotropic hardening behavior is
assumed for the contacting bodies. Then, from Heff, one can access to the e�ective
Yield Strengh (σyeff), e�ective Ultimate Tensile Strength (σueff) by applying empirical
models established by Tabor [195], Cahoon’s [196], Pavlina and Van Tyne [197]. The
latter models take into consideration the indenter tip shape. However, those models are
based on correlations from experimental output data, assuming that the contacting ma-
terials are homogeneous, hence they are not appropriated for accurate e�ective yields
stress prediction when the matrix contains multiple particles, inclusions or porosities.
In general, those empirical laws tend to overestimate the yield stress value. Further-
more, better yield strength could be obtained, on the proposal of Takakuwa [198], by
considering the residual stresses owing to the generated plastic strain during the inden-
tation. But the bodies are assumed still homogeneous. Thus the present study comes
with a solution taking to account both plasticity and heterogeneity presence within
the contacting bodies. Hence, more accurate σyeff and σueff could be got from the P(h)
curve analysis.
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Figure 5.8: Indentation on homogeneous elastic-plastic body: (a) Load-displacement curve; (b)
Equivalent Plastic Strain in the indented body

The Fig. 5.9 describes the reverse analysis algorithm for the identi�cation of the
equivalent homogeneous material properties which produce the same macroscopic be-
havior as the heterogeneous REV. The technique consists, at �rst, to conduct an inden-
tation on the heterogeneous REV using the SAM. Then the outcomes load-displacement
data are stored as the setpoint which must �t with that of the homogenized body
at the convergence. The initial properties [E(0),σy(0)] are used to perform a sec-
ond indentation simulation using the SAM. It provides the load-displacement curve
which is then compared to the setpoint. If both curves match then the initial proper-
ties are the solution. Else, the homogeneous body’s properties are changed according
to the error minimization algorithm of Levenberg-Marquardt. Then another indenta-
tion simulation is performed with the optimized properties [E(i),σy(i)] leading to a
new load-displacement curve to be compared. The optimization process is repeated un-
til convergence is reached. Finally, the last properties are considered as the identi�ed
e�ective properties [Eeff,σ

y
eff]. Let’s recall that the indentation simulations are per-
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formed with the heterogeneous elastic plastic contact solver developed in Amuzuga
et al. (2015) [104] and the optimization loop is performed with the software Matlab.

Figure 5.9: Reverse analysis algorithm for the homogenization

5.2.2.2 Contact model validation by nano-indentation tests
The heterogeneous elastic-plastic contact model has been validated by results compar-
ison with a Finite Element Method models in the previous work [104]. Now the con-
tact model is validated experimentally. Nano-indentation tests have been performed
on two types of Silicon Nitride ceramics Y1T1700 and Y5T1700 (see [199] for details
about the composition of these materials). The porosity content in these ceramics are
quasi-nil. The load-displacement curves are compared to the ones obtained by the semi-
analytical simulation. One can see in Fig. 5.10, a good agreement between both numer-
ical and experimental results. The simulation parameters are recapped in the Tab. 5.1.
The relatively small di�erence could be attributed to the submicron scales of the ex-
periments. Indeed, Hayashi and Koguchi [173] argued that an increase of the yield
stress and the hardness could happen when the distance scales are getting smaller.
They found out that the real hardness is in�uenced by the interdependence between
the surface stress and the surface elastic modulus. But this could not be revealed by
plotting the evolution of the indentation hardness according to the indentation depth
normalized by the indenter radius because it leads to the same pro�le for di�erent in-
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denters. Note that the surface elastic modulus can be obtained by molecular dynamic
method based on Finnis and Sinclair potential [200].
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Figure 5.10: Contact model validation by nanoindentation test

Table 5.1: Value of the simulation parameters used for the contact model validation while it is
compared with experimental results obtained by nanoindentation tests

Parameter Value

Indenter radius d = 50µm

Applied indentation load f0 = 9N

Indenter properties Etip = 1141GPa (Diamond) ; νtip = 0.07

1st Silicon nitride matrix elastic properties Em = 335GPa (Y1T1700) ; νm = 0.3

1st Silicon nitride matrix plastic properties
σy = σy0 +Kε

p where σy0 = 7.4GPa and
K = 5.0e+10

2nd Silicon nitride matrix elastic properties Em = 317GPa (Y5T1700) ; νm = 0.3

2nd Silicon nitride matrix plastic properties
σy = σy0 +Kε

p where σy0 = 5.6GPa and
K = 4.7e+10

5.2.2.3 Determination of an objective and consistent REV
The aim is to build a REV - representative elementary volume - which must be con-
sistent according to the functions and parameters that drive the REV macroscopic re-
sponse. The determination of an objective REV is a condition to ensure the accuracy
of analysis and comparisons that arise from this study. The essential point is the het-
erogeneities volume fraction evaluation which is a direct result of the REV dimensions
and shape, as well as the heterogeneities size and distribution. However, the parameters
that control the description of the heterogeneous phase are the same that constrain the
REV dimensions setting. This means that the heterogeneities volume fraction value can
be biased by incorrect sizing of the REV, notwithstanding that the actual microstructure
con�guration (size and distribution of heterogeneities) remains the same. Moreover the
REV edges must be set to encounter the minimum region whose response is invariant
even if its dimensions increase. Hence to be objective, the REV must provide a volume
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fraction which is not �awed by the geometry relations linking the heterogeneity size
and distribution as well as the REV length.
Eq. 5.41 along with Tab. 5.2 recaps the parameters involved in the present homoge-
nization method. This equation recalls that the e�ective property is a function of, on
the one hand, the REV nature variables as the properties of the matrix m and the
heterogeneous phase I, and in the other hand, the REV structure variables as the het-
erogeneities size S and distributionD. The volume fraction Vf and the densityDensity
are considered as indicator variables that combine the value of S, D, the number of
heterogeneities N and the REV boundary dimension BREV . The latter is a rectangular
cuboid of 2BREV length, 2BREV width,BREV depth and whose upper surface is centered
on the contact.

(
Propertyeff

)
= function

(
S,D,PropertyI,Propertym

)
Vf =

N× S3
4B3REV

Density =
S

D

(5.41)

In addition, it should be emphasized that the volume fraction and the number of het-
erogeneities are obtained by a given set of (S,D,BREV) in Eq. 5.41, meaning that Vf
is not directly set as an input data. Also, the density is considered as an indirect input
because obtained from the given set of (S,D).

Table 5.2: Determination of a consistent REV

Parameter Symbol Description
Size S Heterogeneity size
Bound BREV REV boundary dimension
Number N Number of heterogeneities
Distribution D Heterogeneities inter-center gap
Volume fraction Vf Heterogeneity content
Density Density Heterogeneity density 1

To satisfy requirements related to sizing the REV edges, the heterogeneities distribu-
tion and size are �xed, then BREV is varied from a lower value BlowREV to an upper value
B
up
REV , arbitrary chosen. It must be ensured that the di�erence between BupREV and BlowREV

is greater than the contact radius a. Also BlowREV has to be less than a. Then, the volume
fraction can be calculated according to BREV as in Fig. 5.11(a). One can see that the
volume fraction is oscillating around an average value noted Mean(Vf) = 4.343%
and its oscillation amplitude decreases when BREV increases. This means that the rep-
resentative elementary volume becomes relevant for high values of BREV because the
volume fraction’s oscillation is diminishing and is stabilizing around its average value.
But by de�nition, the correctBREV is the minimum dimension of the REV that is able to
reproduce the same behavior as any other greater dimension. However, this minimum

1 The volume fraction must not be confused with the density, see the section Sec. 5.3.1 for the explanation
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value must be greater than a to ensure that the REV will frame the contact zone and
cover the stress/strain �elds generated by the applied load.
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Figure 5.11: Description of the REV: (a) Vf in function of the REV boundaries BREV ; (b) Load-
displacement generated by a given S = 0.1a and D = 0.3a

Indentation simulations are conducted on a heterogeneous elastic body for the dif-
ferent value of BREV by keeping S = 0.1a and D = 0.3a. The heterogeneities are
porosities (EI = 0GPa). Fig. 5.11(b) shows the load/displacement (P(h) curves) from
these simulations. It is found that for BREV = 0.9a, BREV = 1.5a and BREV = 1.9a,
their corresponding REV have a similar behavior in terms of P(h). It implies that the
macroscopic response is sensitive toBREV by the means of the volume fraction, remem-
bering thatD and S are constant. Note that when the REV boundary dimension BREV
is 0.9a, 1.5a and 1.9a, then it leads to the volume fraction Vf of 4.3%, 4.4% and 4.9%,
respectively. Each of these REV can be considered as a consistent REV since their vol-
ume fraction are close to the mean value Mean(Vf) plotted in Fig. 5.11(a). Moreover,
these REV have nearly the same load/displacement P(h) pro�les. But �nally only the
REV of BREV = 1.5a will be kept as the relevant one because it frames the contact
�elds. Moreover Fig. 5.12(c,d) exhibits that the stress �eld distribution around the het-
erogeneity when BREV = 1.5a, is the more representative. One can see that when the
REV edges are extended to BREV = 1.9a in Fig. 5.12(e,f), there isn’t any more overstress
around the additional heterogeneities. But when the REV is reduced to BREV = 0.9a
in Fig. 5.12(a,b), there is a lack of heterogeneities which might interfere with the stress
�eld in the places where they are missing.
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Figure 5.12: Von Mises stress σVM from the REV generated by S = 0.1a; D = 0.3a; Vf
controlled by REV boundaries BREV : (a-b) BREV = 0.7a 7→ Vf = 6.2%; (c-d)
BREV = 1.3a 7→ Vf = 5.2%; (e-f) BREV = 1.9a 7→ Vf = 5%

Fig. 5.12(b,d,f) presents the REV’s heterogeneities ranking and the heterogeneities
are represented inside the stress �eld (more precisely the maximum shear stressσTresca)
to show their position according to the stress gradient. Note that this stress contour is
that obtained if the contact loading is applied on the REV while it is assumed homoge-
neous and elastic. In these representations, the red colored heterogeneities are those
contributing to the volume fraction estimation. Those in blue are outside the REV and
are plotted solely to distinguish the actual microstructure and the region taken into
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account in the REV. Fig. 5.12(a,c,e) shows the total Von Mises stress �eld σVM corre-
sponding respectively to each REV plotted beside in Fig. 5.12(b,d,f). It should be pointed
out that the stress �eld appearing inside the porosities is due to the fact that since
there is a di�erence of elastic properties between the matrix and porosities, the latter
are considered as inclusions in the sense of Eshelby. This leads to an eigenstrain in-
side each porosity when the REV is loaded. Each eigenstrain produces its eigenstress
�eld, inside and outside the inclusion (porosity). The eigenstress �elds are added to
the elastic stress �eld produced by the homogeneous REV having the matrix elastic
properties. This explains why the obtained total stress �eld lets appear a stress �eld
inside each porosity. Nevertheless, this stress �eld does not actually exist physically.
The equivalent stresses σVM and σTresca are normalized by the maximum Hertzian
contact pressure applied. The distances x, y, and z are also normalized by their ratio
on the contact radius a.

Finally, the REV boundaries dimensions BREV are determined by the technique de-
scribed above and its volume fraction value of Mean(Vf) is automatically assigned.
However, several combinations of D and S can give the same volume fraction, then
one needs to couple each Vf with its corresponding density value. It is worth specify-
ing that a considerable error is not committed on the macroscopic response P(h) if the
BREV is not perfectly determined, because Fig. 5.11(b) showed that all regarded BREV
lead to a similar load/displacement curves. Nonetheless, the interpretations based on
Vf may be biased especially when the curves as Eeff = function (Vf) are compared
with other models, since Vf would not have a correct value. Hence it was necessary in
the present study not to neglect the step of objective REV determination for compari-
son purpose.

5.2.2.4 Load-displacement sensitivity to heterogeneities size
The indentation simulation described above is now conducted by varying the hetero-
geneities (porosities) size S from 0.025 to 0.15a, when the distribution D and BREV
are kept constant. Fig. 5.13(a) shows the heterogeneities volume fraction determined
with the technique explained in the Sec. 5.2.2.3. As expected, the volume fraction has a
monotonic growth when increasing the heterogeneities size. One can see in Fig. 5.13(b)
that the load displacement curve decreases whenVf increases through S augmentation.
The matrix is losing in sti�ness when its porosities content increases.
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Figure 5.13: Description of the REV: (a) Vf in function of the heterogeneities size S; (b) Load-
displacement generated by a given BREV = 1.5a and D = 0.3a

Fig. 5.14(b,d,f) presents the heterogeneities inside the REV, when their size increases.
Beside each REV, Fig. 5.14(a,c,e) shows the total Von Mises stress in the plane P(y = 0)

when the contact load is applied. It can be noticed that the stress concentration zone
around the porosities is increasing with the porosities size. Since the color scale is iden-
tical for the three Fig. 5.14(a,c) and (e), their stress levels indicate that the maximum
value reached when S = 0.075a, is higher than the one found for S = 0.15a. Note that
the gradient of the applied stress along with the loading direction, result in a graded
distribution of each porosity reaction, according to its position. Also interaction e�ect
between porosities can be seen for a relatively large size as S = 0.15a in Fig. 5.14(e).
It con�rms that the load distribution inside the REV and the heterogeneity interaction
according to their size must be taken into consideration by the homogenization tech-
nique. In the present method, these factors a�ect the P(h) curve. This is the reason
why the P(h) curve is used as the representative output re�ecting the REV overall
response as consequence of the local one.
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Figure 5.14: Von Mises stress σVM from REV generated by D = 0.3a ; BREV = 1.5a and
Vf controlled by heterogeneities size S: (a-b) S = 0.025a 7→ Vf = 0.02%; (c-d)
S = 0.075a 7→ Vf = 3.40%; (e-f) S = 0.15a 7→ Vf = 23.60%

5.2.2.5 Load-displacement sensitivity to heterogeneities distribution
The indentation simulation described in Sec. 5.2.2.3 is now conducted by varying the
heterogeneities (porosities) distribution D from 0.025 to 0.15a, when the size S and
BREV are kept constant. As noticed so far, only a regular distribution of heterogeneities
along the three space directions, is regarded in the present study. Fig. 5.13(a) shows that
the volume fraction diminishes whenD increases, remembering thatD stands for the
distance between heterogeneities. As a consequence, one can see in Fig. 5.13(b) that
the body sti�ens when D increases (thus the load/displacement curve rises up).
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Figure 5.15: Description of the REV: (a) Vf in function of the heterogeneities distribution D ;
(b) Load-displacement generated by a given BREV = 1.5a and S = 0.1a

Fig. 5.16(b,d,f) presents the heterogeneities inside the REV, when their distribution
increase and Fig. 5.16(a,c,e) shows the e�ect on the local Von Mises stress �eld. One can
�rst note that the presence of the porosities at certain regions of the Hertzian stress
�eld depends onD. Since the Hertzian stress magnitude is not uniform, each porosity’s
eigenstress magnitude will depend in turn on its position. Finally, the total stress in the
material depends on theD. This supports the idea that for the same volume fraction, a
change of the distribution will lead to a di�erent e�ective behavior. This phenomenon
cannot be taken into account by classic homogenization methods, since the applied
load distribution is considered uniform and there is no variable which stands for the
heterogeneities distribution. It should be added that the moreD increases, the more the
stress concentration level is high around each porosity. This agrees with the reasoning
argued on the fact that the concentration spreads out when S increases. Indeed, one
could hypothesize that, when a heterogeneous media is constituted of porosities, the
stress concentration level is sensitive to the dimension of the matrix between them,
instead of the gap separating their centers.
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Figure 5.16: Von Mises stress σVM from REV generated by S = 0.1a ; BREV = 1.5a ; Vf
controlled by heterogeneities distribution D: (a-b) D = 0.2a 7→ Vf = 12%; (c-d)
D = 0.3a 7→ Vf = 4.37% ; (e-f) D = 0.4a 7→ Vf = 1%

5.2.2.6 Load-displacement sensitivity to the elastic-plastic parameters
For the purpose of limiting the number of parameters to be identi�ed, tests are per-
formed on the P(h) curve sensitivity to the parameters regulating the reference homo-
geneous elastic-plastic body behavior. The elastic behavior is described by the Young’s
modulus E and the Poisson’s ratio ν. The plastic behavior is represented by the Swift
isotropic hardening law σy = B(C+ εp)n, where σy is the yield stress, εp the plastic
strain, B, n and C are Swift law coe�cient, exponent and o�set constant, respectively.
Even if the used identi�cation program has been validated and proven to provide ac-
curate results, for seeking multiple parameters during reverse analysis conducted in
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Richard (1999) [201] , only two parameters will be identi�ed in the present study for
uniqueness end of the solution. One parameter is �xed for the elastic behavior and the
last one for the plastic behavior. N. Azeggagh demonstrates in [202] that the identi�ca-
tion program converges on a unique solution, when each parameter controls a speci�c
part of the P(h) curve, whatever the starting guess value. Thereby, the program is
run the �rst time to identify the elastic parameter, assuming that the body is elastic.
Then the elastic parameter is set as a constant in the second execution to determine
the plastic parameter, by now considering the body as elastic-plastic.

Table 5.3: Parameters of the reference body sensitivity tests

Parameter Value
E0 210GPa

ν0 0.3
B0 240MPa

C0 4

n0 0.095

Indentations simulations are performed on homogeneous elastic plastic body. The
parameters values are recalled in Tab. 5.3. The chosen material properties simulate the
through-hardened M50 steel but its yield stress is lowered (divided by four) in pur-
pose to generate plastic strain under the applied contact pressure of 2GPa. Fig. 5.17(a)
shows the P(h) curve when the Young modulus E is varying around a reference value
E0. One can see at �rst that the indentation prints hp are almost similar for all values of
E. This is due to the fact that the plastic displacement is more related to the yield stress
and the hardening law than the Young modulus. However when E increases, the total
displacement hmax decreases. As a consequence, the loading part of the P(h) curve is
getting close to the unloading part as soon as the Young modulus decreases, because
of the conservation of the total energy. This means that the total area under the P(h)
curves must be equal for all values of E, since the dissipated energy via plasticity is the
same.
Fig. 5.17(b) shows that the indentation print evolves along with the Poisson ratio.
Hence, hp decreases when ν increases. The indentation print minimum is obtained
when the body is incompressible (ν = 0.5). Also, note that the P(h) curves unloading
part of all regarded ν are parallel with each other. This could be explained by the rea-
son that, during the unloading, plastic �ow did not occur and the elastic return is only
governed by the Young modulus which is the same for all values of ν.
Now, Fig. 5.17(e) shows that the elastic-plastic response is insensitive to the hardening
law parameter C which is varied from C0/4 to C0 × 4. In contrast hp is signi�cantly
sensitive to the Swift law parameters B and n in Fig. 5.17(c,d). Once again, the P(h)
curves unloading part of all regarded B and n are strictly parallel with each other. It
sustained that, since plastic �ow did not occur during the unloading, only the elas-
tic properties are controlling this phase. Furthermore, when B and n increase which
means that the yield stress increases, the total displacement and the indentation print
decrease. All in view, the similarity of the pro�les of P(h) curves according to param-
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eters B and n could allow to replicate any curve issued from a given B with another
curve issued from n, and reciprocally. It is therefore bene�cial to the identi�cation
program if only one of the parameters B and n, is chosen. However, comparing the
growth of P(h) curves with respect to B and n orders of magnitude, one perceives
that a better numerical accuracy could be expected by choosing B instead of n, owing
to the fact that B is a coe�cient and n an exponent.
Observing that the Young modulus can control both loading and unloading parts of the
indentation curve, and that the Swift law parameter B controls the indentation print,
E and B have been therefore chosen to regulate the identi�cation algorithm. Thus, the
e�ective elastic property is represented by the Young modulus noted Eeff on which the
identi�cation algorithm converged when the program has been launched for the �rst
time, considering the body as purely elastic. Likewise, the e�ective plastic property is
represented by the e�ective yield stress σyeff through the parameter B on which the
identi�cation algorithm converged when the program has been launched the second
time, considering lastly the body as elastic-plastic.
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Figure 5.17: Parameters controlling the elastic-plastic behavior: (a) Young modulus E; (b) Pois-
son coe�cient ν; (c) Swift law σy = B(C+ εp)n coe�cient B; (d) exponent n; (e)
o�set constant C
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5.3 APPLICATION OF THE HEPC MODEL FOR THE HOMOGENIZA-
TION
At this stage, one is able to build a consistent REV and to provide trusted parameters
to the present homogenization algorithm. The model will be applied in this section
to di�erent con�gurations of REV whose materials constants and loading conditions
are summarized in the Tab. 5.4. Two heterogeneities types are studied here. There are
porosities represented by EI = 0GPa and Vanadium carbides having EI = 490GPa

(in this case EI/Em2.33). Note that the M50 hardened material is considered as the
matrix. The principal aim is to exhibit that the e�ective properties not only depend on
the heterogeneities volume fraction but also on their distribution. Then only two dis-
tributions are regarded. Remember that the volume fraction or the density is not input
data. They are calculated for given values of the heterogeneities size and distribution,
by the technique described in the Sec. 5.2.2.3. Nonetheless, the highest volume frac-
tion generated here is 92%, knowing that in the literature, comparable studies found
did not exceed 50% a . This limitation is mainly due to preparation routes used in thea

up to 24% in Diaz and
Hampshire (2004) [203]

, 50% in Diaz
et al. (2005) [204] and
from 0.1% to 30% in

Fritzen
et al. (2012) [205]

samples fabrication process.

Table 5.4: Values of simulations parameters

Parameter description Symbol and value
Indenter diameter d = 29mm

Applied contact pressure P0 = 3.5GPa

Indenter elastic properties Etip = 310GPa (Silicon Nitride) ; νtip = 0.3

Matrix elastic properties Em = 210GPa (M50) ; νm = 0.3

Matrix plastic properties
σy = B(C+ εp)n where B = 240MPa,C = 4, and

n = 0.095

Heterogeneity elastic properties
EI = 490GPa (Vanadium carbide), EI =

0GPa (Porosity) ; νI = 0.3

5.3.1 HOMOGENIZATION OF POROUS MATERIAL

The porous materials are modeled by an elastic matrix containing heterogeneities with
a nil Young modulus Ei = 0. Fig. 5.21(a) presents the evolution of the density as a func-
tion of the volume fractionVf for two distributionsD = 0.3a andD = 0.4a. Let’s spec-
ify that both curves were obtained by varying the heterogeneity size S knowing that
the REV boundaries dimension BREV is automatically set by the technique described
in Sec. 5.2.2.3. Hence for each S the corresponding volume fraction and density are
calculated using the Eq. 5.41 according to the �xedD. It could be seen at �rst that the
density at a small volume fraction (Vf < 10%) is quasi identical for both regarded distri-
butions. However, the more volume fraction increases the more the di�erence between
the densities obtain for both distributions increases. Considering a given volume frac-
tion, the smallest density is obtained for the smallest heterogeneity distribution. This
is consistent with the reason that for a given heterogeneity size, the medium having
the smallest heterogeneities inter-center gap, is the one having largest volume frac-
tion (Fig. 5.16). It implies that for a given volume fraction, increase the heterogeneities
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inter-center gap leads to the density augmentation. This is counter-intuitive. Whereas
for a given density, increase the heterogeneities inter-center gap leads to the volume
fraction diminution. This is more instinctive. Let’s specify that the density has been
de�ned as the heterogeneity size S over the inter-center gapD, in order to present the
density as a unidimensional representation of the content. Considering S as the mate-
rial domain occupied by a single heterogeneity and D its available living space, then
the ratio S

D
could be in turns interpreted as the heterogeneity presence probability.

Hence, increase the density is re�ected in an increase of the heterogeneity presence
probability inclusion, in a mathematical sense. Also, the physical meaning of the den-
sity imposes the restrictions S > 0 and D > 2S. The minimum bound of the density
prevents the penetration between neighboring heterogeneities.
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Figure 5.18: Homogenization of porous material: (a) Density vs Volume fraction ; (b) E�ective
elastic property properties

The e�ective Young modulus Eeff of a porous material subjected to contact load is
presented in Fig. 5.18 as a function of the volume fraction, on the one hand, and the
density, on the other hand. Note that two given values of the distribution are analyzed.
Remind that the variation of the heterogeneity size controls the volume fraction and
the density. One can �rst found that Eeff is sensitive to the distribution. It could be seen
that for a small value of volume fractionVf < 10% and relatively high valueVf > 70%,
both regarded distribution lead to almost identical Eeff. It means that the macroscopic
response is sensitive to the interaction between heterogeneities. When Vf < 10%, the
interaction e�ect is quite low, then the overall response not depends on the distribution.
Otherwise when Vf > 70%, the interaction e�ect becomes high and begins to saturate
then the overall response becomes similar regardless of the volume fraction. However
looking at the e�ective Young modulus depends on the density, one can see that from
Density > 0.15, the di�erence between Eeff relative to both distributions increases
with the density. For a considered density value, ED=0.4a

eff > ED=0.3a
eff . Where ED=0.4a

eff

and ED=0.3a
eff are the e�ectives Young’s modulus when the heterogeneities distribution

D = 0.4 andD = 0.3, respectively. In general Eeff drops when the volume fraction or
density increases, since EI < Em, whatever the heterogeneities distribution.
Note that in the following section, e�ective properties will be analyzed only in function
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of volume fraction for comparison purposes with other models in the literature since
these models do not take into account the density.

5.3.1.1 Comparison with the rule of mixture
It is frequently encountered that, to treat problems involving a presence of hetero-
geneities, authors make quick homogenization using the rule of mixture for simpli�-
cation purpose as:

Propertyeff = Vf × PropertyI + (1− Vf)× Propertym (5.42)

One can see that this formulation did not consider the loading type and the distribution
of the heterogeneities. This leads to estimation errors depending on the rate of the
heterogeneities volume fraction as shown in Fig. 5.19. According to the distribution,
the e�ective property obtained by the rule of mixture can be over-estimated up to a
certain value of the volume fraction noted V limf , after which it becomes signi�cantly
underestimated (or reciprocally). The magnitude of V limf also depends on the ratio
PropertyI/Propertym. For instance, if the matrix is sti�er than the heterogeneity
which is a porosity here, the more the distance between porosities is smaller, the more
the V limf is low. Thus D = 0.3a leads to V limf = 20%, whereas if D = 0.4a then
V limf = 32%. The e�ective Young modulus can’t be identi�ed using a simple mixture
law when the body is subjected to contact load, more especially when the volume
fraction is getting relatively higher.
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Figure 5.19: Macroscopic E

5.3.1.2 Comparison with Diaz-Hampshire model, Linear law and Exponential law
One can �nd in the literature several models dealing with the e�ective elastic property
of porous material especially for ceramic materials made by sintering process which
consequently lead to micro-porosity inclusions. In this framework, linear and expo-
nential law are mainly established. Also, a power law model is proposed by Diaz and
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Hampshire in [203] and was validated for a good prediction up to 24% of porosity
content. Fig. 5.20(b) con�rms that for a distribution in a range of D = 0.3a, one can
�t the e�ective Young modulus by these laws even beyond the limit where Diaz and
Hampshire study was stopped. However Fig. 5.20(a) shows that, when D = 0.4a the
e�ective Young modulus is well described up to a volume fraction of about 30%. In all,
Diaz-Hampshire model and the exponential law make a good prediction up to 60%,
when porosities are closer to each other (D = 0.3a).

Law Parameters
(1− aVf)

n a = 0.076;n = 17.81
exp(−bVf) b = 1.36
1− hVf h = 1.32

Law Parameters
(1− aVf)

n a = 0.021;n = 52.5
exp(−bVf) b = 1.1
1− hVf h = 0.97
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Figure 5.20: Comparison with Diaz-Hampshire model, Linear law and exponential law: (a)D =
0.4a ; (b) D = 0.3a

5.3.2 HOMOGENIZATION OF MATERIAL CONTAINING CARBIDES PARTICLES

Now, one is interested in the homogenization of matrices containing sti�er hetero-
geneity (Ei > Em), especially Vanadium carbides (EI = 490GPa). Fig. 5.21 presents
the evolution of the e�ective Young modulus and e�ective yield stress according to the
carbide volume fraction for the distributions D = 0.4a and D = 0.3a. As expected,
both the e�ective Young modulus and the yield stress, increase with the volume frac-
tion in general. But their evolution pro�les depend on the regarded distribution. Once
again this mismatch between e�ective properties pro�les which held according to each
distribution is attributed to the e�ect of carbide interactions. It is worth noticing that,
even if the carbides are considered purely elastic (σyI /σ

m
I = +∞), the e�ective yield

stress could not be increased by 50% of the matrix yield stress, when the volume frac-
tion which reached to about Vf = 90% with D = 0.3a. But, with the same carbide
volume fraction and distribution, the e�ective Young modulus has been doubled, re-
calling that Ei/Em = 2.33.
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Figure 5.21: E�ective properties of material containing carbides particles: (a) Young’s modulus
; (b) Yield stress

Effective Young modulus comparison with classic homogenization methods

The e�ective Young modulus of elastic bodies containing Vanadium carbides is stud-
ied here for two values of distribution (D = 0.3a and D = 0.4a) when the volume
fraction is varying. Fig. 5.22 presents the comparison of these results with the pre-
dictions made by classic homogenization methods reviewed in Sec. 5.2.1. It could be
seen at �rst that the classical method does not take into account the carbides distribu-
tion. It is interesting to �nd that the present method gives solutions which are close
to the classic one. In particular when the D = 0.3a the e�ective Young modulus Eeff
is framed by the Voigt and the Reuss solutions proved as the e�ective property upper
and lower bounds; respectively. But when D = 0.4a one can see that Eeff pro�le is
under the Reuss bound. This is more noticeable for high volume fraction of Vf = 90%.
This leads to argue that when the load is applied on the REV free surface, the clas-
sic homogenization methods over estimates the homogeneous solution for relatively
large heterogeneities inter-center gap (D = 0.4a) with large heterogeneities size. More
distributions must be studied in other to con�rm this argument. Also for the regarded
distributions, the present solution is not contained between Hashin-Shtrikman bounds.
Fig 5.22(b) shows that the Mori-Tanaka and Self-Consistency are quite similar. In ad-
dition, one can note that Eshelby’s diluted scheme overestimates the Eeff when the
volume fraction is less than a threshold noted V limf (D) which depends on the distribu-
tion D. Then Eeff is underestimated above this threshold. It could be observed in Fig.
5.22(b) that V limf (D = 0.4a) = 44% and V limf (D = 0.3a) = 56%
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Figure 5.22: E�ective Young modulus comparison with classic homogenization methods: (a)
Voigt Reuss and Hashin-Shtrikman bounds ; (b) Mori-Tanaka, Self consistency and
diluted Eshelby

5.4 PREDICTION OF THE MACROSCOPIC ELASTIC MODULUS AND
YIELD STRESS
The purpose of this section is to build a general law describing the evolution of the
macroscopic elastic and plastic behaviors for a particular distribution of heterogeneities
(D = 0.4a).

5.4.1 HETEROGENEOUS MATERIAL ELASTIC BEHAVIOR LAW ESTABLISHMENT

Fig. 5.24 presents the general trend of macroscopic Young modulus for a �xed distri-
bution of D = 0.4a when heterogeneity Young modulus EI and the volume fraction
Vf are varying. One can notice that there are two distinguishable trends according to
the Vf value. When Vf < 50% the trend is called here, a dominant matrix macro
behavior and when Vf > 50% the trend can then be called a dominant heteroge-
neous phase macro behavior. The dominant matrix macro behavior brings up a concave
shape of the e�ective Young modulus Eeff evolution when a tangent is laid at the point
Eeff = Ei = Em in Fig. 5.24(a). Where Em is the matrix Young modulus. But this curve
becomes convex for the prevailing heterogeneous phase macro behavior in Fig. 5.24(b).
These observations bring to set up a rheological model that can catch Eeff evolution.
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Figure 5.23: E�ective Young modulus of heterogeneous elastic material subjected to contact
loading: Behavior law establishments (a) when Vf < 50%; (a) when Vf > 50%

The e�ective Young modulus is �tted by four parameters power law curve (Ap-
pendix. B.2) as:

Eeff
Em

= p1 + p2

(
p3 +

EI
Em

)p4
(5.43)

One can see that the parameter p1 is considering as the Eeff threshold to prevent it
from negative value. The parameter p3 is o�setting EI to avoid Eeff to be nil. Those
two parameters are expected to depend only on the matrix Young’s modulus but not
sensitive to the heterogeneities volume fraction. But Fig. 5.24 shows that after the curve
�tting, p1 and p3 vary relatively toVf. One can also see that the rheo-coe�cient p2 = 0
when Vf = 0 implying Eeff = EI because p1 = 1. This is consistent with the fact that
in absence of heterogeneity the macroscopic behavior is the matrix one. Let’s specify
that the problem complexity leads us to propose a four parameters model which is able
to represent the e�ective behavior because below this number, tested models do not
strictly produce all the cases.
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Figure 5.24: Evolution of parameters p1 , p2 , p3 , p4

It could be observed that the rheo-exponent p3 is less than 1 when Vf < 50% and
p3 > 1 when Vf > 50% explaining the concave and the convex shape of Eeff, respec-
tively. Hence for a given heterogeneity elastic property, one can predict the homog-
enized elastic property, depending on the distribution, whatever the volume fraction
by �nding those rheological parameters. However, even if a general law could �nd to
�t the Eeff trend according to EI and Vf, one must be aware that the parameters used
to describe Eeff evolution are non-independent. The homogeneous elastic behavior is
complex to be fully described and generalized by simple laws when heterogeneities
parameters such as density, distribution and the mutual in�uence must be taken into
account. Thus, numerical model is proven still essential to obtain correct and accurate
e�ective properties of the heterogeneous elastic plastic bodies under contact.

5.4.2 EFFECTIVE YIELD STRESS ANALYSIS OF THE HETEROGENEOUS ELASTIC-PLASTIC BODY

The macroscopic yield stress σyeff obtained for a �xed distribution D = 0.4a is pre-
sented in Fig. 5.25 when EI and Vf are varying. The heterogeneities are considered
elastic meaning σyI = +∞. It could be noticed that when the heterogeneity Young
modulus increases, the e�ective yield stress increases for EI < E0 and decreases for
EI > E0. One can explain this by the fact that when the di�erence

∣∣EI − E0∣∣ increases,
it leads to raise the overstress around heterogeneities then the plastic �ow occurs ear-
lier than expected which gives insight to have the e�ective yield stress dropping. This
phenomenon is emphasized by the mutual interaction between heterogeneities when
their size is increasing, even more, when they are getting close to each other.
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Figure 5.25: Heterogeneous material plastic behavior trend

5.5 PARTIAL CONCLUSION
Encouraged by the increasing of computer capacities, numerical simulation tools be-
come predominant alternative for a large operating range of investigations. Even if
models are limited by some assumptions, they are getting more realistic and essen-
tial for understanding complex mechanisms, particularly in tribology. Throughout the
present work, a three-dimensional heterogeneous elastic-plastic contact model based
on semi analytical method, proposes a combined study of the role of the size, location,
material properties and distribution of the heterogeneities and their elastic-plastic be-
havior. Investigations have been conducted on the e�ect of heterogeneities content
and density on the macroscopic behavior of a body subjected to contact loading. The
mutual in�uence of heterogeneities according to their distribution, has been charac-
terized and provide the insight to ensuring bearings material sizing by involving the
accurate e�ective elastic-plastic properties. Several remarks should be kept from this
study. Firstly, one must be aware that classical homogenization models are inadequate
when strong gradient of stress distribution is issued from the REV boundary conditions
as contact loading in the present case. Also, mutual in�uence between heterogeneities
is not accounted in most used classical techniques, especially when the matrix is al-
lowed to yield plastic behavior. In addition this study raises two interesting points.
On the one hand, the elastic e�ective property such as the Young’s modulus cannot be
identi�ed using a simple mixture law. But the Diaz-Hampshire model and the exponen-
tial law make a good prediction when the porosities are closer to each other. On the
other hand, the plastic e�ective property such as the yield stress is increased when the
embedded elastic heterogeneities are sti�er than the matrix whatever the volume frac-
tion. This conclusion should be underlined since it con�rms experimental observations
that could not be described by conventional elastic analysis. However, one important
�nding is that, even if the numerical simulation allows to analyze materials with high
heterogeneity contents, the homogeneous elastic behavior is complex to be fully de-
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scribed and generalized by simple laws when the heterogeneities parameters such as
density, distribution and the mutual in�uence must be taken into account. Knowing
that an employed material under contact mechanisms should be designed by consid-
ering such parameters, therefore, numerical model is proven still essential to obtain
correct and accurate e�ective properties of the heterogeneous elastic plastic bodies
under contact. The last success of this study is the fact that it con�rms qualitatively
three major advantages of semi analytical method for treating inelastic and nonlinear
behaviors, making:

• Very robust contact computation and full coupling of contact/heterogeneous/-
plastic problems.

• Large number of simulations for speci�c heterogeneities distributions is easily
a�ordable in relatively low computation time.

• Good agreement with experimental results and other computational methods.
Finally, two main applications of the present method is the homogenization of porous
materials (in bio-tribology: bone/cartilage) and the overall property of heterogeneous
plastically graded materials (M50, M50NiL, M50 obtained from Powder Metallurgical
Process) subjected to contact loading.
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6
I N F L U E N C E O F H E T E R O G E N E I T I E S A N D H A R D E N I N G
P R O P E R T I E S O N P L A S T I C A L LY G R A D E D B E A R I N G
M AT E R I A L S : M 5 0 A N D M 5 0N I L

In service, the active component surfaces of aerospace bearings are subjected to al-
ternate high pressure due to successive passage of rolling elements on the raceway.
This may end up by fatigue damage marked through material spalling or etching.
After initiation in the subsurface, the main features grow toward the surface, which
results in the loss of the bearings initial properties. The bearing loses its initial prop-
erties. The material imperfections and the presence of non-metallic inclusions such
as carbides aid to ease crack nucleation. All these considering, investigating on the
damage mechanisms need a complete knowledge of the material microstructure, and
their consequence on the behavior under an applied stress �eld. The microstructure
characterization is conducted with scanning electron microscope (SEM), coupled with
hardness measurements. In situ SEM tensile tests are performed to determinate the
local mechanical behavior after thermomechanical treatments (nitriding and carbur-
izing) and evaluate the behavior of microstructure features such as small cracks and
carbides during the deformation. Observations and material properties resulting from
tested specimens are used as input of a semi-analytical heterogeneous elastic-plastic
rolling contact model for numerical simulations.
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150 micromechanical characterization

6.1 INTRODUCTION
The superior resistance to rolling contact fatigue (RCF) of high strength bearing steels
is signi�cantly enhanced by surface treatment technologies such as plasma nitriding
[206], carburizing [207, 208], thermal-spraying [209, 210, 211], shot peening [212, 213]
etc. These processes can be combined to tailor the material for attaining some very
special targeted properties. Hardening (carburizing or through-hardening) followed
by gaz nitriding seem to be the best-known coupling to achieve remarkable properties
with taking into account economic constrains. The hardening+nitriding treatments
are particularly relevant to two prevailing aeroengine bearing steels designated as M50
and M50NiL. The chemical composition of the alloy leading to the traditional M50 base
material is described in [214]. But for the M50NiL, nickel is included to prevent from
ferrite formation, in the same alloy as the M50 except that the initial carbon content is
signi�cantly lowered and the silicon is also reduced. Hence, since M50 base material
disposes of a su�cient quantity of carbon, the conventional hardening treatment phase
is a through-hardening (quenching/tempering). In contrary, the M50NiL base material
has initially low carbon, then it needs carbon intake by case-hardening following the
carburizing.

The bene�cial e�ect of the carburizing for work pieces is well known in material
engineering [215, 216, 217, 218, 219]. The thermochemical treatments lead to (i) a hard
surface enabling good resistance to wear and pitting; (ii) residual compressive stress
linking the surface to the subsurface and enhancing the toughness under rolling con-
tact fatigue; (iii) ductile core allowing the material e�ciently dissipating high applied
deformation energy in the form of plasticity. The initial compressive stress tends to
close the micro-cracks so to delay their propagation. This explained why cracks size
could be related to the probability of failure [220]. But the accumulation of plasticity
during rolling cycles generates residual tensile stress in a su�cient amount to can-
cel the existing compressive stress. Tensile stress is then more developed and damage
mechanisms are accentuated. Residual tensile stress can also be introduced when the
surface layer decarburization is provoked. Carbon depletion is a known source of fa-
tigue life reduction in bearing industry, [221]. However optimal conditions are needed
for the hardening+nitriding process to meet the requirements enabling resistance to
the RCF, as studied for M50 and M50NiL in [222], because of the competitive kinetic
of nitrogen and carbon elements [223].

Lately, Xie [224] pointed out that the nitrided steel can withstand higher applied
contact stress and reduce the likelihood of plastic strain in comparison to the un-
treated material. The nitrided steel advanced resistance to the wear is also claimed
in [225]. Moreover, Sun [226] pointed out that the introduction of rare earth elements
as additives-catalysts [227] during plasma nitriding enhances signi�cantly the case-
hardened M50NiL properties (hardness, wear resistance). Surface treatments have been
proven to increase the outlying layer hardness which then gradually decreases accord-
ing to the distance from the surface [228]. It should be speci�ed that surface alloying
could lead to two distinguishable material types. On the one hand, functionally graded
materials (FGM) which is the term standing when the elastic property such as Young’s
modulus evolves with respect to the depth [105]. In the other hand plastically graded
material (PGM) which is the term suiting when the plastic property such as hardness
evolves with respect to the depth [229, 230]. For martensitic and austenitic steels, FGM
are mainly obtained by coatings and PGM by thermochemical treatments.
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The bearing steels performance continues to be awarded to the outermost surface
layer hardness [231, 232], loading conditions [233, 234, 235], lubricant chemistry [15]
and the subsurface microstructure characteristics such as cleanness, unmelted particles
[236], initial stresses [237] etc. Despite all these aspects, it is accepted that, within duc-
tile matrix, cracks appear when the plastic strain locally outgrows the material fracture
strain [238]. Observing large number of failed bearings [81, 239], evidence is provided
that micro-cracks initiated from non-metallic inclusions [240] and from micro-defects,
grow randomly [241], connected to each other and �nally coalesce to create the princi-
pal cracks [79, 242]. Also, with the development of fractography techniques [243] and
examination by dye-penetrants [244], damage evolution could be investigated. Non-
destructive procedures are used to follow cracks propagation. A quasi-exhaustive list-
ing is made in Márquez’s review [245] fully devoted to wind turbines. For bearings,
in-situ cracks detections could be investigated by acoustics emission [246, 247, 248]
and vibrations signal [249], since the �rst signs of fatigue damage.

Nowadays, the high e�ciency of hybrids bearing involving Si3N4 and high-strength
steels is more and more claimed. The tenacity in front of severe operating pressures
and the reliability in a high temperature environment such as in aircraft engines are
ones of the factors often appreciated for this technology. This is justi�ed by the im-
portant di�erence between the expansion coe�cients of both materials. However the
present study does not take into account thermo-elastic e�ects [250, 251] even if it
has been �gured out that contact pressure increases when temperature gradient in-
creased between the contact surfaces, [252]. Nevertheless, failure analysis of bearing
races surfaces is often attributed to macro-pits and spalls related to the presence of
carbides in the vicinity of the outlying layer. Cracks issued from extremely brittle car-
bides can rapidly reach the surface during cyclic rolling under excessive contact load
[253]. The chemical composition of carbides, strongly impacts their resilience under
the stress �eld transmitted through the matrix. Vanadium [254] and molybdenum [255]
are mainly known as responsible for the quantity of supersaturated carbons during seg-
regation phases preceding carbide formations. In the literature, Klecka [254] exposes an
inventory of carbide types present in bearing materials as those used in the aerospace
framework.

Of course numerous factors are at the origin of component failures [256] during
rolling contact, but one must emphasize that stress raisers reduce the fatigue life signif-
icantly below the prediction obtained when referring to smooth samples [257]. Due to
the fact that analytical modeling of rolling contact problem requires too many assump-
tions and simpli�cations [258], their use for fatigue life prediction could be question-
able. Numerical methods become a good compromise. Finite element method (FEM)
is intensively used by many researchers thanks to its �exibility to solve the problem
of structure involving complex geometries. But the computation burden is increased
drastically when large number of elements is needed to mesh the structure [259]. A
three-dimensional semi-analytical method (SAM) [52], based on in�uence coe�cients
[260] derived from Boussinesq-Cerruti integral equations [261, 262], o�ers the alterna-
tive to be faster by combining the Conjugate Gradient Method (CGM) [263, 264] with
the discrete convolution and fast Fourier transform (DC-FFT) algorithm [53]. New fea-
tures are progressively integrated to the SAM solvers throughout the following pub-
lications: [265, 112, 266, 267, 268, 269] . Recent developments [104] allows to perform
heterogeneous elastic plastic rolling contact (HEP-RC) simulations. The numerical part
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of the present work is an application of the HEP-RC models as a tool to understand the
in�uence of the microstructure, in particular the carbide distribution, on the bearing
lifetime. Therefore an experimental part is needed to identify the microstructure and
to determine the mechanical properties of di�erent phases. Since the studied materials
are heterogeneous, it is needed to follow in-situ the deformation during loading, at
microscopic scale in order to detect the brittlest zones of the microstructure where the
material are likely to crack.

The twofold focus of the present work are: (i) the micromechanical characterization
of M50 and M50NiL materials; (ii) the consequence of their microstructure on the meso-
scopic behavior through numerical rolling contact models. The �rst point aims to ex-
plore the local heterogeneous elastic-plastic properties related to the thermochemical
treatments experienced by the concerned materials (M50 and M50NiL). The purpose
of the second point is to investigate the in�uence of carbide population (size, location
and distribution) on the overall elastic-plastic properties of a representative elemen-
tary volume embedded in the substrate as clusters or stringers. The results presented
herein, have been sustained and commented by comparison with other works.

Figure 6.1: General context of the rolling contact on graded heterogeneous elastic-plastic ma-
terial

Fig. 6.1 presents the general context of the rolling contact on graded heterogeneous
elastic-plastic material which experienced a thermochemical treatment. The latter in-
troduces initial compressive stress and hardness gradient along the depth.

6.2 MATERIALS AND METHODS
Statistical analysis of heterogeneities along the depth axis, reveals that the gradient
of property is a direct consequence of the heterogeneity distribution. The microstruc-
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ture characterization is an essential ingredient to create a numerical model capable
of reproducing the material behavior during the simulations. The versatile quality of
the semi-analytical method allows to investigate on the consequence of di�erent mi-
crostructure patterns. The surface contact pressure and area, as well as the subsurface
stress-strain �elds will be the output for a thorough, hence used to identify the factors
that in�uence the material RCF resistance.

6.2.1 MATERIALS

M50NiL is the enhanced version of M50 with nickel addition and low carbon (see Tab.
6.1). The purpose of this section is to reconstruct these material microstructures in
order to simplify their modeling for numerical simulations.

Table 6.1: Chemical composition (mass fraction)(wt.%) of the M50 in [270] and M50NiL in Sun,
Zhang, and Yan (2014) [226]

Element C(%) Si(%) Mn(%) P(%) S(%) Cr(%) Mo(%) V(%) Ni(%) Fe

M50
0.78-
0.88

0.20-
0.60

0.15-
0.45

MAX
0.030

MAX
0.30

3.75-
4.50

3.90-
4.75

0.80-
1.25 Balance

M50NiL 0.13 0.18 0.13 0.012 0.002 4.10 4.20 1.20 3.40 Balance

Figure 6.2: Typical heat treatments for M50 and M50NiL steels described in [271] where the
numbers in the squares are relative to di�erent stages of the treatments as: (1) ox-
idation; (2) carburizing; (3) stress relief; (4) solution treatment and quenching; (5)
tempering; (6) sub-zero cooling

Fig. 6.2 presents a typical heat treatment experienced by M50 and M50NiL steels. The
heating+cooling temperatures and duration are the fundamental variables that con-
trol the �nal microstructure features such as the grain size, the carbide precipitation
(size, location, chemistry, distribution, clustering, sti�ness), the gradient of hardness
and the initial compressive stress. On the one hand, the M50 has a high amount of C
and carbides will form during tempering (0.80 wt%). It has thus been �rst quenched,
then tempered and �nally nitrided. On the other hand, the M50NiL contains much less
carbon. It has been carburized before quenched. This intake of carbon via the specimen
surface allows to control the quantity of di�used carbon at high temperature. Then car-
bide precipitations are controlled during the quenching and tempering process. Finally,
the M50NiL is also nitrided. The nitriding process crates a very hard surface layer with
initial compression stress pro�le owing to thermoplastic deformation inside grains.
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METALLOGRAPHIC SPECIMEN PREPARATION PROCEDURE

The specimen preparation procedure for Optical Microscopy (OM) and Scanning Elec-
tron Microscopy (SEM) explained in [272], is adopted. Tab. 6.2 recaps the polishing
sequence route of M50 and M50NiL before microscopic observations. Polishing was
performed on an automated polishing Buehler device. After polishing, specimens are
etched by Nital solution composed by 95% ethanol and 5% nitric acid in volume pro-
portion.

Table 6.2: Polishing sequences route of M50 and M50NiL

Step
Abrasive paper’s grit

sizes (P− grade)

Grinding
force
(N)

Head
speed
(rpm)

Base
speed
(rpm)

Duration
(min)

1 P180 45 -60 +400 3
2 P320 45 -60 +400 5
3 P600 20 -60 +400 5
4 P1200 20 -30 +200 5
5 3µm Diamond �uid 10 -30 +120 5
6 1µm Diamond �uid 10 -30 +120 10
7 0.5µm Diamond �uid 5 -30 +60 15

6.2.2 OBSERVATION TECHNIQUE

For magni�cation lower than×500, samples were observed on conventional optical mi-
croscopy. For higher magni�cation measurements, microstructure observations were
performed on a ZEISS Supra 55 VP FEG Scanning Electron Microscope, operated be-
tween 10 and 15 kV, and equipped with a 80mm2 Oxford Instrument SDD EDX detec-
tor.
XRay Tomography experiments were performed at 160kV using the v|tome|x device of
GE Sensing & Inspection Technologies Phoenix X|ray. The voxel resolution is 3µm×
3µm× 3µm. Tomography test is performed on the M50 sample of dimensions: length
= 1560µm, width = 1560µm and height = 1852µm. The sample is sliced beneath the
surface along the property gradient direction to be consistent with observations on
microscopy images.

MATERIALS MICROSTRUCTURE IMAGES PROCESSING

In order to reconstruct the material microstructure, the particles and defects must be
sorted by categories. The carbides have to be isolated according to their surface area
and the ratiowidth/length by making the threshold to the microscopy images. In ad-
dition statistical study have to be conducted to investigate on the e�ective property re-
lated to the carbides content, type, size, shape, location and distribution. The �owchart
presented in Fig. 6.3 is inspired by the one used in [273] for magnetic nanoparticles
analysis. The commercial software Matlab was chosen here because of its useful and
powerful library of functions in Image Processing Toolbox. Matlab Statistic tools used
here has been testing and validated by Jana Salacova [274].
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1: procedure Initialize variables
2: fi ← Current image �le ; Im← Current image ; Nf ← Total number of images % Counters

3: diskImOpen (pixel)← Disk areas % Delete particles less than diskImOpen

4: diskImClose(pixel)← Disk areas % Fill inner voids less than diskImClose

5: diskImBackground (pixel)← Disk areas % Background and Adjustment

6: coefGrayThresh← Coe�cient % Convert into binary And Threshold gray scale
7: median2D (pixel)← 2-D median �ltering % 2−D median �ltering

8: deleteLessXpixel (pixel)← Disk areas % Delete particles less than deleteLessXpixel

9: lowerBound (pixel)← Disk areas % Sort particles less than lowerBound

10: upperBound (pixel)← Disk areas % Sort particles larger than lowerBound

11: imConcat (char)← Horizontally or Vertically % Multiscanned images concatenation layout according to storage order

12: end procedure

1: procedure Pre-processing
2: for fi = 1 : Nf do
3: Im = imcomplement(rgb2gray(imread(fi))) % Read, convert color map to grayscale and get image

complement

4: Im = adapthisteq(Im) % Enhances the contrast of the grayscale image

5: Im = imopen(Im, strel( ′disk ′,diskImOpen)) % Perform morphological opening on the grayscale

6: Im = imclose(Im, strel( ′disk ′,diskImClose)) % Perform closing with a disk structuring elements of

diskImClose

7: ImBackground = imopen(Im, strel( ′disk ′,diskImBackground))% Background adjustment

8: Im = imsubtract(Im, ImBackground) % Subtract one image from another

9: Im = imadjust(Im) % Adjust image intensity values in grayscale

10: endfor
11: end procedure

1: procedure Core
2: for fi = 1 : Nf do
3: Im = im2bw(Im, 1− coefGrayThresh× graythresh(Im)) % Convert to binary image by threshold

grayscale

4: Im = med�lt2(Im, [median2Dmedian2]) % Perform median �ltering of a binary image in two dimensions

5: Im = im�ll(Im, 4, ′ holes ′) % Fill all the hole: Two-dimensional connectivity value 4 for connecting neighborhood

6: Im = bwareaopen(Im,deleteLessXpixel) % Delete particles less than deleteLessXpixel

7: ImParticles = regionprops(Im, ’Area’) % Measure properties (Area) of image regions

8: ImParticlesArea = [ImParticles.Area] % Return measured region area

9: endfor
10: end procedure

1: procedure Post-processing
2: if imConcat = ′ Vertically ′ then
3: ImScan = vertcat(Im{1 : Nf}) %
4: elseif imConcat = ′ Horizontally ′ then
5: ImScan = [Im{1 : Nf}] %
6: endif
7: allImScan = bwlabel(ImScan) %
8: REV = regionprops(ImScan, ’Area’) %
9: smallParticles = �nd([REV .Area] < lowerBound) %

10: midParticles = �nd([REV .Area] >= lowerBound&[REV .Area] <= upperBound) %

11: largeParticles = �nd([REV .Area] > upperBound) %
12: smallParticlesIm = ismember(allImScan, smallParticles) %
13: midParticlesIm = ismember(allImScan,midParticles) %
14: largeParticlesIm = ismember(allImScan, largeParticles) %
15: smallParticlesRegion = regionprops(smallParticlesIm, ’Area’) %
16: midParticlesRegion = regionprops(midParticlesIm, ’Area’) %
17: largeParticlesRegion = regionprops(largeParticlesIm, ’Area’) %
18: R = 0 ;G = 0 ;B = 1 % Blue color for small particles

19: smallParticlesColor = cat(3, smallParticlesIm × R, smallParticlesIm ×
G, smallParticlesIm×B) %

20: R = 1 ;G = 1 ;B = 0 % yellow color for medium particles

21: midParticlesColor = cat(3,midParticlesIm × R,midParticlesIm ×
G,midParticlesIm×B) %

22: R = 1 ;G = 0 ;B = 0 % red color for large particles

23: largeParticlesColor = cat(3, largeParticlesIm × R, largeParticlesIm ×
G, largeParticlesIm×B) %

24: ColoredREV = smallParticlesColor+midParticlesColor+ largeParticlesColor%
25: end procedure

Figure 6.3: Image processing �owchart for multi-scanned images

Let’s remember that the objective of automatic images treatment is to deal with to-
mography or multi-scanning microscopy images, with a large number of images to
be simultaneously treated. At this step, one need to test it on representative images
samples chosen randomly in order to calibrate the variables. If the result obtained by
the post-processing procedure is acceptable as the example shown in Fig. 6.3 relative to
setting in Tab Tab. 6.3, then the algorithm can be executed on the entire microstructure
images stack. The pre-processing procedure intended to convert the images into matri-
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cial objects in order to perform contrast, intensity and morphological adjustments be-
fore the real processing which will be held in the Core procedure. The pre-processing
procedure can also allow to reveal some particular aspects of the microstructure (as
porosity) and take them into account.

Table 6.3: Value of parameters used in the �owchart of Fig .6.3 to obtain the processed images
of Fig .6.4

Parameter Value
1pixel (px) 292nm

diskImOpen 1px

diskImClose 1px

diskImBackground 210px

coefGrayThresh 0.9
median2D 7px

deleteLessXpixel 1px

lowerBound 20px

upperBound 100px

imConcat ’Horizontally’

(a) (b) (c)

(d) (e) (f)

Figure 6.4: Image processing outputs carried out on the quenched/tempered and nitrided M50
microstructures selected inside the hardened layer of: (a) the M50 obtained by pow-
der metallurgy technology and (d) the M50 obtained by VIM-VAR

Fig. 6.4(b,e) shows the binary images obtained from the Core procedure related to the
initial images Fig. 6.4(a,d), respectively. One can see that the microstructure is accu-
rately preserved. The post-processing procedure o�ers the possibility to create three
families of particles according to their size. In Fig. 6.4(c, f) the relatively tiny carbides
are colored in blue then can be homogenized in the numerical REV. The large carbides
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are colored in red when the medium-size ones are colored in yellow. This classi�cation
is made with respect to the variables lowerBound and upperBound set. The output �le
consists of the size of large carbides considered critical for the RCF, their distribution
and their volume fraction. These data are directly used to simulate the REV for the
modeling part.

6.2.3 MECHANICAL PROPERTIES DETERMINATION

The macroscopic mechanical properties were made using micro tensile samples, to
measure the mechanical properties of the di�erent layer, assuming there were homoge-
neous. Those measures are supplemented with micro and nano and micro indentation
tests are conducted to check the values found in the literature, for the di�erent layers
and the carbide phases.

6.2.3.1 Mechanical characterization by micro-indentation

Figure 6.5: Nitrided M50 and M50NiL samples slicing for micro-indentation tests. The surface
and the hardness gradient direction are indicated. The Rockwell indentation is per-
formed on the surface while the Vickers indentation is performed on the subsurface.

Micro-indentation tests are performed on nitrided M50 specimens. Fig. 6.5 presents sec-
tioned sample geometries with respect to the entire bearing race structure. Rockwell
indentations are conducted normal to the property gradient direction for qualitative
analysis of the overall behavior when the bulk material is subjected to contact load.
Since the Rockwell indenter tip is spherical, these tests permit to reproduce the sever-
ity of the indentation caused by hard spherical particles during the RCF (such as debris
which are not yet led to the oil �ltration device). The purpose is to analyze the macro-
scopic surface cracks produced, according to the loading force and the hard particle
equivalent diameter. Vickers indentations are performed for quantitative analysis of
the local behavior at di�erent depths along the applied stress gradient direction. Vick-
ers indentation is chosen here, because the hardness value provided can be used to esti-
mate the material yield strength via existing models in the literature (Tabor (2000) [195]
, Cahoon, Broughton, and Kutzak (1971) [196] , Pavlina and Van Tyne (2008) [197] ).
One can then reconstruct the gradient of the material plastic properties. For instance,
Tabor’s rule is used in [275] to convert Vikers hardness to yield stress in order to
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obtained plastic response along the depth of graded materials without the need for
tension or compression tests.

6.2.3.2 Specimens preparation for the micro-tensile tests

4-Crosscutting 

1-Drilling 2-Wire cutting

3-Wire cutting

(a) (b) (c)

Figure 6.6: In-situ micro-tensile test setup: (a) Specimens preparation (b) Specimen �nal geom-
etry after thermochemical treatments; (c) Loading stage with a mounted specimen.
The micro-tensile tests are performed on the M50 material. The samples are treated
after the step (4-Crosscutting) of (a)

The aim of micro-tensile tests is, �rst, to measure the tensile properties of the di�erent
layers, assuming homogeneous layers. The specimens are sectioned by wire-cutting
process before the thermochemical treatments, Fig. 6.6(a). Then the whole samples
were cemented or nitrided. Three states were then tested for each composition: bulk
metal, cemented and nitrided.
As this micro-tensile device is designed for SEM in situ measurements, the second
objective was to follow the crack apparition and propagation in situ in the SEM, and
to correlate its path with the local microstructure.
Fig. 6.6shows the setup of the in situ micro tensile tests on M50 materials. Micro-tensile
tests were performed using a 2kN Deben commercial micro-tensile stage. The loading
device requires the specimens sizing described in Fig. 6.6(b). The thickness is calculated
knowing that the maximum achievable force is 2kN.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI154/these.pdf 
© [K. Amuzuga], [2016], INSA Lyon, tous droits réservés



6.3 results 159

6.3 RESULTS
6.3.1 MICROSTRUCTURE CHARACTERIZATION
6.3.2 THE THROUGH-HARDENED AND NITRIDED M50

Figure 6.7: Microstructure of M50 alloy (Quenched/Tempered and Nitrided) from (a) Optical
microscopy and (b) SEM observations

Fig. 6.7 presents the microstructure of M50 alloy from (a) Optical Microscopy (OM)
and (b) SEM observations. The nitrided layer appears darker on the OM image, and its
length is around 200µm. The hardened layer is found to be 2000µm.
Some �ne and elongated gray contrast are close to the surface. It is reported as ’an-
gel hair’ carbides in GIRODIN (2008) [117] . Micrometric spherical carbides are also
observed in the nitrided layer.
In the bulk metal, some large rectangular cuboid particles (10µm in length, 2µm large)
are visible, identi�ed as carbides from EDX measurements. They are oriented parallel
to the surface along the rolling/forging direction and align as long stringer chains. They
can be close to each other along their width side but they leave a minimum gap of about
5µm along the length side which corresponds to the stringer direction. The relevant
direction frequently observed is the one parallel to the surface along with the rolling
direction. The e�ect of carbide stringer is studied by a numerical model presented in
the section 6.4.1.
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Figure 6.8: SEM observations of the through-hardened and nitrided M50microstructure: (a) an
overview; (b) the nitrided zone; (c) the through-hardened zone

Smaller spherical shaped particles, identi�ed as carbides from EDX measurements are
also present in the through-hardened zone as shown in Fig. 6.8(c). The composition of
carbide stringers found in Fig. 6.8(b) was measured by EDX. Carbon content could not
be quanti�ed, but the carbides contain mostly molybdenum, together with vanadium
and chromium and some iron.
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Figure 6.9: Characterization of beneath layers: (a) M50 microstructure [Voxel = 3 × 3 ×
3(µm3)]; (b) Histogram of carbides inside the REV obtained by tomography
[REV =L1560×W1560×H1852.2(µm3) and carbide content = 4.6046% in the
REV]

It is well known that the large rectangular cuboid carbides play an important role on
the material mechanical behavior during the RCF (Nélias et al. (1999) [4] , Bhadeshia
and Solano-Alvarez (2015) [276] ). In order to get a quantitative description of the size
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distribution and space repartition of those carbides, a 3D X-Ray Tomography analysis
was performed, see Fig. 6.9. Thanks to the absorption di�erence of the matrix and of
those carbides, a clear contrast is observed. Fig. 6.9(b) con�rms the continuous distribu-
tion of M50 carbides. The carbide volume fraction obtained from the image processing
is 4.6%. One can also see that about 85% of the carbides size is less than 1000µm3. But
less than 2% of the carbides are larger than 3000µm3 and that occurrence is constant
up to 5000µm3.

6.3.3 THE CASE-HARDENED AND NITRIDED M50NIL

Figure 6.10: SEM observation presenting: (a) Global view of the M50NiL; (b) and (c) closer view
of the nitrided zone; (d) closer view of the case-hardened zone

On SEM images, the nitrided layer appears darker than the core material. Its width
is around 200µm. In the nitride zone, ’angel hair’ carbides are present such as in the
case of the M50 sample, but slightly larger, and present at higher depth in the sample.
Nanometric needle shaped nitrides are also present in the grains, together with coarser
spherical shaped carbides, with diameters close to 500nm. In the case-hardened zone,
micrometric spherical shaped carbides are visible and aligned at what seems to be
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former austenitic grain boundaries, while smaller spherical carbides are present inside
the grains, see Fig. 6.11.

Figure 6.11: Inter and intra-granular carbides inside the hardened layer of the M50NiL Case-
hardened Quenched/Tempered and Nitrided
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Figure 6.12: EDX map showing the chemistry of carbides in the core material of the M50NiL.
Carbides contain C, Cr, Mo V, and some Si

Table 6.4: Chemical composition (% at) of targeted intergranular carbides of M50NiL nitrided
layer

Si V Cr Mn Fe Mo Ti Ni N Total
1.02 29.22 11.55 0.79 15.69 41.58 0.15 0 0 100

Fig .6.10 presents the intergranular carbides in the M50NiL nitrided layer by EDX anal-
ysis. These carbides can have two distinguishable forms. Some of them are almost
spheroidal with a diameter equivalent to approximately 1µm as in Fig .6.10(d). The
others have subatomic thickness but their length is about 5µm. The latter are curved
as in Fig .6.10(c). All these carbides are found between grain boundaries of the nitrided
layer. This can be explained by the fact that the nitriding di�usion drains the old inter-
granular carbides resulting from the case-hardening. These carbides are then blocked
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI154/these.pdf 
© [K. Amuzuga], [2016], INSA Lyon, tous droits réservés



164 micromechanical characterization

between the grain boundaries. These carbides form stringers oriented by the grain
boundary directions. The length of these stringers depends on the grain boundary size.
One will observe during the micro-tensile tests that longer a carbide stringer is, more
it is able to generate long cracks. Thus it is preferable to control the heat treatments in
purpose to obtain small grains. Moreover, the Tab. 6.4 shows the chemical composition
(% at) of a targeted intergranular carbides M50NiL nitrided layer. It can be seen an ab-
sence of silicon inside the intergranular carbide whereas the studied nitrides contain
silicon. But vanadium and molybdenum are found to be the predominant amount ele-
ments inside the intergranular carbide with an uncertainty of the EDX measurements
of about 1%. It is interesting to specify that the carbides containing a high quantity
of vanadium and molybdenum are likely to break in a ductile matrix submitted to ten-
sile stress. This fact can predispose the nitrided layer to crack initiations when there
are strong stress concentrations in tensile due to plastic strains in areas where resides
these carbides. This point will be developed in the section devoted to micro-tensile
tests.

MODELING OF THE MATERIALS MICROSTRUCTURES AFTER THERMO-CHEMICAL TREAT-
MENTS

Fig. 6.13 recaps the main characteristics of the microstructures of M50 from M50NiL.
One can see that the nitrogen di�usion layer of both materials have similar thickness,
as the nitriding parameter are similar for the two compositions. In both cases, ’angel
hair’ carbides with thicknesses of few hundreds of nanometers at grain boundaries
are observed, together with smaller carbides. In the M50NiL nanometric nitrides are
present while large carbides are observed in the case of the M50.
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(a)

(b)

Figure 6.13: Modeling of the materials microstructures after thermo-chemical treatments:
(a) M50 Quenched/Tempered and Nitrided; (b) M50NiL Case-hardened
Quenched/Tempered and Nitrided

It should be mentioned that the martensitic structure created during the quench/tem-
pering process is conserved in the hardened layer. It means that the material core re-
mains ductile compared to the hardened layer which is more brittle. Concerning the
hardened layer, one can see that only M50NiL presents intra and inter granular car-
bides. In the M50 hardened layer, large carbides are rather organized as clusters and
stringers. The e�ect of stringer orientation and cluster density along with carbides mu-
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tual in�uence is studied numerically in the section sec:StringerCluster.
The carbides and nitrides presence in M50 and M50NiL materials resulting from the
carburizing and nitriding have been characterized. Now the mechanical behavior re-
lated to the local microstructure is investigated at nano and micro scales.

MECHANICAL BEHAVIOR
6.3.3.1 Mechanical characterization by Nano-indentations

(a) (b)

Figure 6.14: Mechanical characterization by nano-indentation tests performed in the M50: (a)
through-hardened material zone with presence of high carbide clusters population;
(b) material matrix

The Young modulus of the M50 matrix and carbides is determined through nano-indentation
tests thanks to the nanoindenter Aligent G200. This machine has been used in [202]. A
Berkovich tip has been used for the carbides and a spherical tip for the matrix because
of the di�erence in hardness between the nature of both materials. Only the largest
carbides could be analyzed. From the load/displacement curve provided by the nano-
indentation test, the elastic plastic behavior of the carbides could also be identi�ed.
Note that the measured Young modulus error is less than 10%.

0 500 1000 1500 2000 2500
0

80

160

240

320

400

Displacement into surface (nm)

Y
ou

n
g
m
o
d
u
lu
s
(G

P
a
)

Sample 1 Sample 2
Sample 3 Sample 4
Sample 5 Sample 6
Sample 7 Sample 8

(a)

0 300 600 900 1200 1500
0

80

160

240

320

400

Displacement into surface (nm)

Y
ou

n
g
m
o
d
u
lu
s
(G

P
a
)

Sample 1 Sample 2
Sample 3 Sample 4
Sample 5 Sample 6
Sample 7 Sample 8

(b)

Figure 6.15: Young’s modulus obtained by nano-indentation tests performed in the M50: (a)
material matrix; (b) through-hardened material zone with presence of high carbide
clusters population
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Fig. 6.15 presents the Young’s modulus obtained by the nano-indentation tests. It could
be seen in Fig. 6.15(a) that the e�ective Young modulus of the M50-through-hardened
matrix is tending toward the value of 240GPa. Klecka, Subhash, and Arakere (2013) [254]
estimated the M50-through-hardened matrix modulus to be 210± 10GPa, close to the
mean value of 215GPa found here (Tab. 6.5). The maximum values of carbide Young’s
modulus are extracted from Fig. 6.15(b) and presented in Tab. 6.6. Mean modulus is not
relevant for carbides owing to their tiny thickness because the indenter tip drill the
carbide material and touch the matrix material below. The scattered values of modulus
could lead to argue that there are di�erent families of carbides. More tests have to be
performed in order to have more data for statistics classi�cation of carbide families.
In addition one can estimate the carbide thickness by measuring the distance covered
by the indenter before the modulus dropped to the matrix modulus mean value. So
far these carbides Young modulus values agreed with that provided in [254] where
carbides found in M50-through-hardened have Young’s modulus of 290± 15GPa.

Table 6.5: Young modulus of nitrided M50 matrix
from nano-indentation Fig. 6.15(a)

Sample

Average
Young

Modulus
(GPa)

Max Young
Modulus
(GPa)

1 241.2 257.4
2 181.1 233.5
3 227.2 249.9
4 199.5 245.6
5 218.0 250.5
6 236.7 255.2
7 195.3 239.8
8 218.9 253.5

Mean 214.7 248.1721

Table 6.6: Young modulus of
nitrided M50 carbides
from nano-indentation
Fig. 6.15(b)

Sample Max Young Modulus (GPa)
1 370.8
2 265.1
3 259.4
4 271.0
5 337.2
6 269.1
7 275.0
8 265.9

6.3.3.2 Rockwell indentation on nitrided M50
In order to analyze the cracks, Rockwell indentation has been performed at di�erent
loads with di�erent sizes of indenters as referenced in Tab. 6.7. Note that the indents
are separated by at least g = 1.5mm to avoid interactions between each stamp residual
�elds (displacement, stress, strain). This held since the contact print radius is ten times
less than the gap g regardless of the load and the tip size.
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(a) (b)

(c) (d)

Figure 6.16: Cracks observed during the Rockwell indentation on nitrided M50 surface: (a) ra-
dial cracks of 120µm length; (b) circumferential cracks; (c) radial crack bifurcation
by an emerged carbide (×20 optical magni�cation); (d) radial crack bifurcation by
an emerged carbide (×100 optical magni�cation)

Two cracking modes are observed as presented in Fig.6.16. Radial cracks named start
crack located at the indents edges. The circumferential cracks located at the indents
edges and inside the indentation print. On the one hand, the typical start cracks in Fig.
6.16(a), occurred when the indenters tip is less than 400µm under 50daN applied force.
However when the load is diminished to 10daN, the material stopped cracking. On the
other hand, the typical circumferential cracks in Fig. 6.16(b), occurred when the applied
force is higher than 50daN under the tip of 600µm. Note that the presence of emerging
carbides located at the print edge can create a radial crack when circumferential cracks
are holding, typically in Fig. 6.16(c). In this con�guration, the carbide forks the radial
crack propagation but its initial trajectory is recovered after a certain distance as shown
in Fig. 6.16(d).
It should be speci�ed that the corresponding maximum contact pressure could be cal-
culated for all con�gurations. But for an equivalent maximum contact pressure the
cracking modes could be di�erent according to the applied force and the indenter size.
For that reason the surface toughness and cracking modes should be analyzed regard-
ing both the applied force and the indenter size instead of only the maximum contact
pressure.
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Table 6.7: Indents dimensions from Rockwell indentations on nitrided M50

Indentation N◦ Load (daN)
Tip radius
(µm)

Indent radius
(µm) Crack observed

1 10 200 61 No
2 50 200 118 Radial
3 50 400 121 Radial
4 50 600 166 Circumferential
5 100 600 128 Circumferential

In order to con�rm that the heterogeneous microstructure of the M50 Nil sample
generates a hardness gradient, Vickers Hardness measurements were performed.

6.3.3.3 Vickers indentation on the nitrided M50NiL
Micro indentation tests are performed on nitrided M50NiL sample, along the rolling
direction and along the depth; see Fig. 6.17. The purpose is to obtain the yield stress σy
distribution as a function of the depth. Existing models (Pavlina and Van Tyne (2008) [197]
, Tabor (2000) [195] , Ashby and Jones (1980) [277] ) allow to relate the yield stress and
the ultimate tensile stress to the hardness value. For most metallic materials, in partic-
ular steels, the Cahoon’s [196] relationship σy = HV

3
(0.1)m−2 is often used.HV is the

Vickers hardness in daN/mm2 andm is the Mayers’s hardness coe�cient [216]. For
accurate estimation of σy, Takakuwa, Kawaragi, Soyama, et al. (2013) [198] propose a
model that takes into account the e�ect of residual compressive stress resulting from
thermal process, on the hardness.

Figure 6.17: Vickers indentations on the nitrided M50NiL subsurface. Global view of indents
location inside the case-hardened and the nitrided layers

The Tab. 6.8 presents the mean values of Vickers hardness obtained at di�erent
depths as HV = hvmean = 1/n

∑i=n
i=1 hvi, where n the number of tests perform

at a given depth. As expected, the hardness decreased from 1018daN/mm2 at the
outlying layer to 451daN/mm2 in the substrate material, with respect to the trend
described in Fig. 6.24(a). Similar values of the hardness are obtained in Sun, Zhang, and
Yan (2014) [226] and in Ooi and Bhadeshia (2012) [214] .
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Table 6.8: Vickers micro indentation

Depth z(µm) Hardness HV(daN/mm2)
60 1018
120 945
200 790
240 451

6.3.3.4 Tensile properties of M50 sample, with and without surface treatments
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Figure 6.18: Stress-Strain curves: (a) In�uence of M50 base material specimens thickness; (b)
E�ect of quenched/tempering and nitriding

The stress and strain curves from micro-tensile tests performed on M50 sample, un-
der optical microscopy after thermochemical treatments are presented in Fig. 6.18.
Micrographs were acquired regularly during the tensile tests, and image correlation
could be performed to extract the correct stress/strain behavior. The axes are nor-
malized by the maximum value obtained when the base material sample thickness
is e = 250µm. The maximum values are σmaxBasematerial; e=0.25mm = 366.5MPa and
εmaxBasematerial; e=0.25mm = 0.022. The results of Fig. 6.18(a) are obtained when two
samples (e = 250µm and e = 300µm) of the untreated M50 material are pulled. It
could be seen that the elastic slope is not a�ected by the samples thickness but the
plastic part and the fracture point were in�uenced. The sample of e = 250µm m is ar-
bitrarily chosen for the thermochemical treatments. Fig. 6.18(b) shows that the elastic
slope of the quenched/tempered M50 and that of the base material are perfectly super-
imposed, meaning that both elastic modulus are equal. However the yield stress has
been increased by the case-hardening. Moreover one can observe that the plastic �ow
part of the quenched/tempered M50 and that of the base material are almost parallel.
This allows to model the gradient of plastic property of the treated M50 by a unique
hardening law weighted with a variable coe�cient in function of the depth. The hard-
ening law parameters could be obtained from any chosen layer. Hereafter the plastic
behavior of the treated M50 is represented by Swift hardening law σy = B(C+ εp)n,
where only the coe�cient B depends on the depth. Even if the elastic modulus is not
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a�ected, one can note that the ductility has been decreased by the through-hardening.
Then the total strain before the fracture point is also decreased by the case-hardening.
Through hardened M50 can still undergo large applied deformation energy because of
its ductile core which remains soft. This hold with respect to a particular size ratio be-
tween the subtract (core) and the treated layer. This ductility is an important factor for
the fatigue resistance at low-cycle with relatively heavy load. But the hardened layer
is still ductile compared to the nitrided one. It has been shown in previous sections
that the nitrided layer is 200µm when the case hardening one is 2000µm, then since
sample thickness is 250µm or 300µm, it implies that there is no gradient inside the
sample because the treatment is done from the two sides of the samples, and the whole
volume is a�ected. Gradient should appear when the thickness is more than 400µm at
least. Then the nitrided sample is fully nitrided and it represents the M50 nitrided layer.
Fig. 6.18(b) shows that this layer is very brittle. The nitriding signi�cantly decreased
the elastic property. It should be speci�ed that on a real structure, the nitrided layer is
sustained by the substrate, so that the overall behavior accounts the subsurface elastic-
plastic property. Furthermore, from the in-situ footage, the total strain of the nitrided
specimens have been measured by the image correlation tool developed in [278]. It
is found to be barely 0.15% at the fracture point. This con�rms the extremely brittle
behavior of the nitrided layer.

DEFORMATION MECHANISM OF M50 SAMPLE

Now M50 samples are characterized by in-situ micro-tensile tests. Tests were per-
formed in situ in the SEM to follow the deformation behavior of the matrix and of
the carbides. More precisely, cracks onset and propagation modes are investigated un-
der tensile tests. Note that one can correlate the tensile stress with that of compression
stress which is the loading con�guration undergone by the bearing material during
rolling contact. An external compression load applied on material free surface leads in
stress �eld which can get a positive sign (tensile) at some locations within the material.
This is called an indirect-tensile. It is known that tensile stress is one of the factors that
promote crack nucleation and propagation [221]. The e�ect of localized tensile stress
is studied hereafter, in particular at the vicinity of carbide stringer and cluster. Note
that only a small fraction of the cracks that are present in the sample is visible, as most
of them appear in the volume and do not reach the surface at �rst.
The following observations were made:

• All specimens tested failed for applied stress under σmax = 2GPa. This value
could be considered as a stress limit in tensile or indirect-tensile of the M50
hardened layer at micro-scale.

• It should be noticed that all cracks observed in the case-hardened M50 material
are located nearby carbide clusters and stringers, except obviously in the frac-
tured section of the specimen.

• A good cohesion between carbides and the matrix before the tests; see for ex-
ample Fig. 6.19. In this case, the debonding between carbides and matrix is a
consequence of crack initiation. It should be speci�ed that imperfections and
�aws at inclusion-matrix interfaces, attributed to the metallurgic process, are of-
ten the precursors of debonding even for high-strength steels in very high cycle
fatigue regime [279].
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• Fig. 6.22 investigates on the composition in molybdenum and vanadium of cracked
carbide Spectre 12 versus the non-cracked Spectre 15. Considering EDX measure-
ment errors, and the e�ect of the thickness on the measurement, there is not
much di�erence in the precipitate concentrations. The size, orientation and dis-
tribution of the particles should then be determinant factor that controls the
crack ability of the carbide.

• In addition, Fig. 6.21 highlights that the crack length varies with the carbide size.
Moreover, only stringers have been cracked. Clusters stayed undamaged. This
could imply that particular grouping is favorable for cracking.

• It could be seen from Fig. 6.21(a) that isolated elongated carbides are also likely
to crack. In this case the crack is located in the middle of the carbide in the direc-
tion of the largest axis, almost perpendicular to the traction direction. Relatively
small cracks take sources from the largest crack and rip the elongated carbide in
multiple parts. Fig. 6.21(b) shows that the carbide cracking leads to the cleavage
of its underground matrix. This implies that secondary cracks could be initiated
out of the principal crack plane.

Figure 6.19: Mechanical characterization by micro-tensile tests

Fig 6.20 reveals that cracks appear preferentially inside aligned carbides which form
stringers. From Fig 6.21, it can be seen that there is an in�uence of the orientation of
those stringers toward the tensile direction. In this area, stringers are oriented perpen-
dicular of parallel to the tensile direction, and one can see that the crack appears in
the perpendicular family of carbides. As a result, cracks are oriented perpendicular to
the applied tensile direction, such as cracks are quasi parallel to each other and par-
allel to the fractured section. It could be argued that in presence of multiple carbides
(in form of a cluster), the principal crack will follow the line connecting carbides in
a way to remain perpendicular to the applied tensile direction. This can also explain
the orientation of butter�y wingspan cracks observed around non-metallic inclusions
after rolling contact fatigue (RCF) tests when the load was strictly moving in one way.
In deed the areas where the mean stress is in tensile around the inclusion are inclined
perpendicularly regarding of the butter�y wing, [280].
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(a) (b)

Figure 6.20: Cracks and dislocation activities after micro-tensile tests: (a) zone close to the frac-
tured section; (b) zone far from the fractured section

It is observed that the crack dimensions depends on a combination of the stringer
length and location according fractured section. Hence, Fig. 6.21 shows that the cracks
C4 and C5 have the same lengths but the crack C5 is thinner than the crack C4. It
could be explained by the fact C4 closer to the fractured section. However, the width
of the crack C2 is larger than that of the crack C1 even if the stringer associated to
C1 is the closest to the fractured section. In that case, the stringer associated to C2 is
longer than that of C1. Both the location and the length of the stringer seem to a�ect
the crack dimension. From C3, it is held that, for far from rupture and short stringers,
crack dimensions remain small.

Figure 6.21: Cracks issued from the micro-tensile tests

The view of dominant dislocation activities informs about a prevalent plastic behav-
ior. A certain degree of ductility is preserved in the M50 case-hardened layer. In Fig.
6.20, dislocation activity ceases in the matrix in areas situated beyond 10mm away
from the fractured section, however, cracks still happen there. This supports the argu-
ment that cracks are initiated from carbides, being more brittle.
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(a) (b) (c) (d)

Figure 6.22: Spectroscopy of cracked and non-cracked carbides

Fig. 6.21 also shows that there are non-cracked carbides situated in some zones be-
side cracked carbides stringers. This could be explained by stress relaxation induced
ahead the crack. In addition, one can see two dark shades, inclined 45◦, indicating a
relief left by permanent deformation at each crack front. The plasticity happened ow-
ing to high stress concentration when the carbide crack encountered the elastic-plastic
matrix. The material yielding is di�used in the direction where the cracks might be sup-
posed to propagate, because those regions undergone stress peaks that did not exceed
the fracture limit. Note that regardless of the stringer crack dimensions and orienta-
tion, the two plastic zones at a crack front are oriented at 45◦ and −45◦ relative to the
applied tensile direction. Hence, an angle of 90◦ is always conserved between the two
plastic zones, see Fig. 6.21 and Fig. 6.20(a). One can make the hypothesis that in RCF
situation of through-hardened M50, the early cracking of carbides led to plastic strain
in the surrounding material. In the meantime, during cycles, material resistance is de-
creasing due to microstructure degradation promoted by carbides. Then the overstress
produced by primary cracks becomes su�cient enough to provoke further nucleation
followed by other cracks departure. The coalescence and propagation of those cracks
inside the material could be responsible for the spalling failure.
All considered, carbide parameters that a�ect the treated M50 behavior can be sum-
marized as:

• size
• alignment
• orientation
• environment

These parameters will be included in the numerical modeling.

6.4 MODELING
APPROACH FOR INTEGRATION OF EXPERIMENTAL DATA TO NUMERICAL MODELS

Fig. 6.23 illustrates how the experimental data coupled with numerical models are used
to meet fabrication process objectives. First, the treatment is performed on some speci-
mens and the value of the parameters used to control the process is stored. The general
evolution laws of the hardness and residual stress pro�les are built by analyzing the
observed trends along with the variables and constant data identi�ed on these latter
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pro�les. Now the numerical model of rolling contact fatigue is performed based on
the general evolution laws. Once strong correlations could be established between the
process input parameters and those of the numerical model, simulation set is launched
by varying the model parameters. Subsequently, a meta-analysis is conducted on the
results issued from simulation set in order to extract the best quali�ed numeral model
setup which led to ful�ll the objectives initially de�ned. Then the corresponding setup
of the parameters that might control the process is obtained by reverse correlation.
Validation procedures are �nally needed to examine whether the material obtained by
the selected setup is con�rming the objective list experimentally.

Figure 6.23: Flowchart to determine optimal parameters of a process by numerical modeling
and simulation set

Particularly for martensitic steel, the positions of t1,2,...,∞, presented in Fig. 6.24,
depend on the thermochemical treatment parameters and conditions such as furnace
time, temperature, catalyst nature and quantity, etc. However the general trends of
the residual stress pro�les remain similar [224]. This also holds for the yield stress
pro�les in [216] or the hardness pro�les in [226, 214]. This allows the establishment of
correlations between the process input parameters and those of the numerical model.
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(a) (b)

Figure 6.24: Modeling the distribution of (a) initial stress and (b) yield stress after thermochem-
ical treatments by analytical expressions involving a set of parameters depending
on: t1,2,...,∞

The typical gradient of the yield stress obtained after case hardening and/or nitriding
is modeled as a function of the coordinate along the depth z, by this following set of
equations :
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(6.1)

Where, σysurface is the yield stress value at the surface layer; σyt1 and σyt2 are the yield
stress values at speci�c transition points; σyt3 and σyt∞ are the yield stress values of the
substrate material;CYS1 andCYS2 are constant coe�cients to identify for di�erent input
distributions of the yield stress; cys1 and cys2 are constant to ensure the continuity of
each portion of the curve between t1, t2 and t3 as:
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(6.2)

In practice the yield stress is inferred from the Vickers hardness as aforementioned in
Sec. 6.3.3.3. The typical pro�le of the residual stress distribution obtained after hard-
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ening and/or nitriding is modeled as a function of the depth z, by this following set of
equations :

σres(z) =



σressurface + z
(
σrest1 − σressurface

)
/zt1 , if z 6 zt1

σrest1 + (z− zt1)
(
σrest2 − σrest1

)
/ (zt2 − zt1) , if zt1 < z 6 zt2

σrest3 +CRS1
(
exp

(
crs1 (zt3 − z)

)
− 1
)

, if zt2 < z 6 zt3
σrest3 + (z− zt3)

(
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)
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σrest4 +CRS2
(
1− exp

(
crs2 (z− zt4)

))
, if zt4 < z 6 zt5

σrest5 + (z− zt5)
(
σrest∞ − σrest5

)
/ (zt∞ − zt5) , if zt5 < z 6 zt∞

(6.3)

Where, σressurface is the residual stress value at the surface layer; σrest1 , σrest2 , σrest3 , σrest4 and
σrest5 are the residual stress values at particulars transition points; σrest∞ is the residual
stress value in the core of the substrate material;CRS1 andCRS2 are constants that remain
to be identi�ed for di�erent input distributions of the residual stress; crs1 and crs2 are
constant to ensure the continuity of each portion of the curve between t1, t2, t3, t4
and t5 as:

crs1 = log
((
σrest2 − σrest3 +CRS1

)
/CRS1

)
/ (zt3 − zt2)

crs2 = log
((
σrest4 − σrest5 +CRS2

)
/CRS2

)
/ (zt5 − zt4)

(6.4)

The parameters of the above analytical models Eq. 6.1 and Eq. 6.3, are identi�ed for
the yield stress and the initial residual stress pro�les coming from real samples of
through-hardened and nitrided M50 presented in Fig. 6.25. The yield stress dependency
on the depth and the hardening law consistency evoked in Sec. 6.3.3.4, lets to model
the gradient of plastic property of the case-hardened and nitrided M50with the values
recapitulated in Tab. 6.9. The distribution of the initial residual stress is �tted by the
values listed in Tab. 6.10.
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Figure 6.25: Fitting the model on pro�les coming from nitrided M50

Table 6.9: Value of variables and constants
modeling the yield stress pro-
�les coming from nitrided M50
presented in Fig. 6.25

Parameter Value
σ
y
surface 1.272
σ
y
t1

1.240
σ
y
t2

1.0
σ
y
t3

0.946
zt1 0.756
zt2 2.142
zt3 2.457
CYS1 0.274
CYS2 0.034

Table 6.10: Value of variables and con-
stants modeling the residual
stress pro�les coming from ni-
trided M50 presented in Fig.
6.25

Parameter Value
σressurface -0.169
σrest1 -0.099
σrest2 -0.094
σrest3 -0.138
σrest4 -0.138
σrest5 -0.107
σrest∞ -0.049
zt1 0.063
zt2 0.126
zt3 0.788
zt4 0.788
zt5 1.827
zt∞ 2.457
CRS1 0.027
CRS2 0.00132

6.4.1 APPLICATION OF THE HETEROGENEOUS ELASTIC PLASTIC CONTACT MODEL

The numerical model based on the semi-analytical method developed in [104], is used
to simulate an indentation and a rolling contact on nitrided M50. The model is supplied
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by the material data brought in by experimental investigations presented in previous
sections.

6.4.1.1 Model validation
The semi-analytical model is �rst validated by comparison with results obtained by
the �nite element method in terms of contact pressure and plastic strain. The heteroge-
neous elastic plastic contact model is presented in Fig. 6.26. The gradient of properties
and initial residual stress described in Fig. 6.25 are taken into account. The contact load
is �rst applied to indent the body, then the load is moved in one direction to simulate
pure rolling contact. As cuboidal shape particles are mostly observed in the above M50
microscopic images, the carbides are represented by cubes. This eases the numerical
model in such a way to create heterogeneities which coincide with the matrix mesh.
For dimensionless analysis, the carbide size ri is reported on the Hertzian contact ra-
dius a introducing new variable β = ri/a. The carbide location is represented by
α = zi/a, where zi is the coordinate along the depth of its center. The carbide prop-
erty is involved via the parameter γ = Ei/Em, where Ei and Em are the carbide and
matrix Young’s modulus, respectively.

Max shear
stress zone

R

Nitrided 
layer

(a) (b)

Figure 6.26: Indentation and rolling contact on nitrided M50: (a) Problem presentation; (b) Het-
erogeneity variables

It is noteworthy that the thicknesses of the case-hardened and the nitrided layers must
be controlled in accordance with the domain of distribution of the applied energy. As
in Fig .6.26(a), for the same quantity of applied energy by a given sized sphere, the
Hertzian stress �eld could be concentrated in the case-hardened layer. But a smaller
sized sphere leads to stress peak that is located in the nitrided layer. In consequence,
the resistance to the RCF will be di�erent for each of the two con�gurations.

Comparison with FEM

The indentation model used for the numerical validation is an assumed rigid sphere
with a radius of Rtip = 2.78mm in contact with a heterogeneous elastic plastic half-
space in frictionless state. Note that in rolling contact, the contact pressure may very
slightly increase when increasing the friction coe�cient [281]. The indenter mate-
rial is a silicon nitride Si3N4 which properties are a Young’s modulus E = 310GPa

and Poisson’s ratio ν = 0.3. The half-space matrix material elastic properties are
(E,ν)m = (210GPa, 0.3) when that of the carbides are (E,ν)I = (305GPa, 0.3). A
normal Hertzian pressure distribution of Pmax = 4GPa is applied on a = 63.5µm
when the computational domain is discretized into a 65dx× 65dy× 35dz uniform
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cubic elements of dx = dy = dz = 4µm. Note that, for validation purpose, mate-
rial yield stresses are lowered in order to produce the plastic �ow under this applied
pressure. The used plastic properties and hardening law of the matrix and carbide are
listed in Tab. 6.11.

Table 6.11: Numerical model parameters

Contact Carbide Matrix
Pmax = 4GPa ;
a = 63.5µm ;
(E,ν)sphere =
(310GPa, 0.3) ;

(E,ν)m = (210GPa, 0.3) ;
Rtip = 2.78mm ;

dx = dy = dz = 4µm ;
Rolling distance
X = 288µm

Perfect plasticity
σ
y
I = 1GPa ;

(E,ν)I = (305GPa, 0.3) ;
size β = 0.1a ; position

α = 0.3a

Swift law
σ
y
m = B(C+ εp)n with

(B,C,n) =
(350MPa, 4, 0.095) then

σ
y
m = 730MPa
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Figure 6.27: Numerical validation of the heterogeneous elastic plastic contact

Fig. 6.27 presents the comparison of SAM and FEM contact pressures at the surface
when the space coordinate y = 0 and their corresponding plastic strains induced along
the axisymmetric line z. Distances and pressures are normalized by the Hertzian con-
tact radius a and maximum contact pressure P0, respectively. Two con�gurations are
presented. The blue and black plots are obtained when the value of the carbide yield
stress is twice that of the matrix, σyi = 2σ

y
m. The red and orange plots are obtained
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when the value of the carbide yield stress is half the one of the matrix, σyi = 1/2σ
y
m.

In all cases carbide is three times sti�er than the matrix Ei = 3Em. It is interesting to
note that very good agreement is obtained for both SAM and FEM results.
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Figure 6.28: Comparison of the plastic strain distribution: (a) the indenter radius is 600µm
when the load is 100daN; (b) the indenter radius is 200µm when the load is
65.5daN

Moreover the plastic strain distribution is compared in absence of carbide to validate
the semi-analytical model capability to describe plastic strain over 2%. It can be seen
in Fig. 6.28 that the plastic strain distributions are quite similar for both SAM and FEM.
However a di�erence between maximum values starts appearing when the accumu-
lated plastic strain exceeds 15%, see Fig. 6.28(b).

Comparison with experimental result: surface displacement produce by a spherical
particle entrapped in the contact

The elastic plastic response of the nitrided M50 in terms of surface displacement pro-
duced by a spherical particle entrapped in the contact is shown in Fig. 6.29. The particle
has a radius of 100µm and was pressed at 50daN. Remember that the one goal of the
nitriding is to enhance the surface resistance to pitting caused by entrapped hard par-
ticles. The elastic plastic e�ective properties of the nitrided layer have been provided
by homogenization.
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Figure 6.29: Experimental validation: (a) Hard particle entrapment problem; (b) Surface dis-
placement uz comparison

Fig. 6.29(b) presents the displacement in z direction obtained from the indentation sim-
ulation against that provided by a pro�lometer for a Rockwell indented a nitrided M50
sample (in the same conditions as the simulation). A good agreement can be noticed
between the numerical and experimental results. It is interesting to observe that the
height of the �ash and the stamp diameter are well captured by the simulation result.
The topology of the residual imprint is important because it informs about the mate-
rial hardening type (isotropic or kinematic). It could be related to the maximum plastic
strain rate yielded inside the material by empirical laws. This is why residual imprint
data are often used to predict the resistance of surface layers. Note that soft particles
can also be dangerous when they completely become entrapped between contacting
bodies. Since the particle becomes full plastic, it is considered incompressible. Hence,
by load transmission, the pressure between the contacting surfaces becomes extremely
high according to the �nal size of the particle. This phenomenon has been studied by
Nelias and Antaluca in [112].

6.4.2 HETEROGENEOUS ELASTIC PLASTIC ROLLING CONTACT

Now the contact is moved to simulate pure rolling contact. This approach is formu-
lated in the quasi-static point of view, or steady-state. A new contact problem is solved
at each displacement time-step. The total distance of the motion is 228µm with an
increment of 12µm when the domain is discretized into a 195dx× 65dy× 35dz. The
material properties and the loading con�guration are the same as in Tab. 6.11. Let’s
remember that carbides are assumed elastic perfectly plastic and their elastic limit is
1GPa when the matrix yield stress is 0.73GPa. The chosen properties simulate the
through-hardened M50 steel and its carbides but the yield stress is lowered in purpose
to emphasize the plastic strain generated under the applied contact pressure of 4GPa.

6.4.2.1 Rolling contact on carbides stringer
Rolling contact simulations are performed on stringers composed of three carbides.
The middle carbide center is located at the depth of zi = 0.3a underneath the surface.
The stringers are inclined by an angle θwith respect to the rolling direction. The e�ect
of the stringer orientation is studied when θ is varying from −45◦ to 45◦. The stringers
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are centered in the symmetric plan P(y = 0). The distance between carbide centers
is di and each carbide size is Si in terms of semi-width. One set di = 2Si so that
the carbides touch each other. The contact pressure peaks, the stress and plastic strain
maxima are recorded during the load �rst passage and are presented hereafter. Let’s
speci�ed that metallic materials, especially steels are weaker in shear than tension and
more than compression [282, 283]. This is the reason why only the shear component
of the stress is regarded here. This corresponds to Tresca’s stress. In contrast ceramic
materials are even weaker in tension than in compression [220]. Since compression is
applied via the rolling contact, one will not present the stress �eld in the silicon nitride
ball used to perform the following simulations.

Contact pressure

Fig. 6.30 shows that the contact pressure peaks Pmax are lower than the maximum
Hertzian pressure P0 applied. This means that the contact areas increased and also
that one part of the applied deformation energy has been dissipated by plasticity oc-
currence in the subsurface. However one can observe that Pmax augments when the
load is arriving on the top of the stringer, then diminishes and reaches the steady value
(0.86P0), whatever the orientation θ. Also the maximum values of Pmax are almost
equal for all regarded θ. But the distance along which the pressure increase is pro-
portional to the projected length of the stringer on the motion axis. Henceforth, the
pressure is increased over a long distance when the stringer is parallel to the motion
axis as one can see for θ = 0◦. Note that δx is the relative distance between the load
and the stringer. δx = xi − xc, where xc is the contact center and xi middle carbide
center location in the motion direction.
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Figure 6.30: Maximum contact pressure during rolling contact on a stringer of carbides
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Shear stress

Fig. 6.31 shows maximum shear stress during rolling contact on carbide stringers. The
total shear stress is noted σtot when the shear component of overstress also called
eigen-stress produced by the carbides is noted σ∗.
It could be clearly seen that the total shear stresses are almost equal for all consid-
ered stringer orientations. Nonetheless in the literature one can �nd out on sliced
samples after RCF tests that some particular stringer orientations lead the carbides
to be favorable for crack initiations, than other orientations. This was also con�rmed
on microscopy images obtained after the micro-tensile tests in Sec. 6.3.3.4.

Henceforth, one investigates on the eigen-stress, not as the unique responsible for the
stress that increases the likelihood of cracking. This vision could help improve crack
initiation criteria by including the eigen stress σ∗ in RCF models. It is now distinguish-
able that when the stringer is oriented at θ = −45◦ the overstress undergone by the
carbides is more important than that of the other orientation. In addition Fig. 6.31
allows the determination of the relative position of the eigen maximum shear stress
according to the load situation through δx. Hence, the moment when, and the location
where, σ∗ gets its highest value can also be used to predict the crack point of departure
in relative time and relative space for long carbide stringer. Furthermore, one can see
from Fig. 6.31 that, the residual part of σ∗ after the unloading, depends on the stringer
orientation θ but di�erence is not noticeable on the residual σtot since all curves land
on the same value.
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Figure 6.31: Maximum shear stress during rolling contact on carbide stringer
s

Fig. 6.32 shows the distribution of the total maximum shear stress inside the body at
δx = 0. One can notice that the highest magnitudes are located at the carbides edges
perpendicular to the rolling direction. But this �gure frames correspond to only one
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rolling time-steps in the quasi-static point of view. Actually from δx = −a to δx = a

the highest magnitude of τmax rides along the entire stringer boundary. This period
can promote the loss of cohesion between the matrix and the carbide. Therefore, this
period is referred as the potential decohesion moment.
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Figure 6.32: Total shear stress distribution during rolling contact on carbide stringer
s

Fig. 6.33 shows the distribution of the eigen maximum shear stress inside the body
when the load is situated at the position where σ∗ is higher for each θ respectively.
It could be seen that the highest magnitudes are located along the stringer diagonal
following the rolling direction. This instant is favorable to the carbides internal cracks,
as located at the stringer middle in Fig . 6.21(a) or at a single carbide middle in Fig.
6.21(b). Knowing that carbides are brittle materials, fracture can occur locally when the
imposed deformation through σ∗ exceeds their nominal strain at the break. Therefore,
this instant is referred as the potential carbide fracture moment.
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Figure 6.33: Eigen shear stress distribution during rolling contact on carbide stringer
s

Correlations can be established from this analysis and the cracks observed during the
micro-tensile test. One can argue that the decohesion noticed in Fig. 6.20 occurred due
to damage mechanisms attributed to the period when there is high stress concentra-
tion at carbide interfaces. Then in Fig. 6.21, the fractures occurrence inside carbides
could be associated to the instants when the eigen maximum shear stress reach the
carbide nominal strain at the break at the middle of the stringer.

Equivalent plastic strain

Fig. 6.34 presents the maximum accumulated equivalent plastic strain during rolling
contact on carbide stringers. The elevated value of the plastic strain is obtained when
the stringer is horizontal. However by observing the plastic strain distribution in Fig.
6.35(a), one can �gure out that the plastic strain is more concentrated and elevated
in the matrix region below the horizontal stringer. Moreover, the level of the plastic
strain inside the carbides of the horizontal stringer is the smallest in comparison with
the other orientations. In contrast, the vertical stringer produced the minimum plastic
strain in the material but the value reached inside, is higher than that inside the other
stringers regarded. The plastic strain generated by the stringer oriented at θ = −45◦

and at θ = 45◦ are almost confounded. These results yield to argue that the capacity
of the material to dissipate the applied energy in form of plasticity is in�uenced by
the stringer orientation. Hence, under a given total stress as in Fig. 6.31, the plastic
�ow evolves di�erently according to θ. As consequence, the more the material plastic
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behavior is susceptible to change by the stringer orientation, the more the e�ective
ductility of a representative volume embedding the stringer could be controlled.
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Figure 6.34: Maximum accumulated equivalent plastic strain during rolling contact on carbide
stringer

s

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI154/these.pdf 
© [K. Amuzuga], [2016], INSA Lyon, tous droits réservés



188 micromechanical characterization
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Figure 6.35: Accumulated equivalent plastic strain during rolling contact on carbide stringer
s

6.4.2.2 Rolling contact on carbide clusters
Rolling contact simulations are performed on two clusters of carbides and a single
carbide. The carbides size Si, number Ni and separation distance di are set in such
way to ensure equivalent density for both clusters (see value in Tab. 6.12). The single
carbide occupied the same domain as the other clusters, therefore its volume fraction
is considered 100% facing to VCluster1f = 42% and VCluster2f = 67% for the Cluster1
and Cluster2, respectively.

Table 6.12: Cluster setting

Designation Cluster1 Cluster2 singleCarbide

Number of carbide Ni = 3 × 3 × 3 Ni = 7 × 7 × 7 Ni = 1

Carbide size Si = 0.1a Si = 0.05a Si = 0.4a

Distance between carbide
centers di = 3Si di = 3Si

The clusters as well as the single carbide are centered in the symmetric plans P(y = 0)

and P(x = 0), at the depth of zi = 0.3a underneath. The gap between clusters carbides
centers is set to di = 3Si so that carbides could not touch each other. The e�ect of the
presence of matrix material between the multiple carbides is analyzed. The in�uence
of clusters volume fractions along with the density is studied. The contact pressure
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peaks, the stress and plastic strain maxima are recorded during the load �rst passage
and are presented hereafter.

Contact pressure

Fig. 6.36 shows maximum contact pressure Pmax during rolling contact on the con-
sidered clusters and the single carbide. The evolution of Pmax is quite identical for
both clusters and the single carbide. However one must note that the pressure peak
increased when the load is passing on the carbides top. In accordance with analysis
mentioned above in Sec. 6.4.2.1, the distance along which the pressure increase is the
same for the clusters and the single carbide because their projections on the contact
surface are equal.
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Figure 6.36: Maximum contact pressure during rolling contact on carbide cluster
s

Shear stress

The maximum shear stress during rolling contact on carbide clusters and the single
carbide are presented in Fig. 6.37. Once again, the total maximum shear stress σtot
are similar for the two clusters and the single carbide even if there is a signi�cant
di�erence between their volume fractions. Knowing that the two clusters have equiv-
alent density, it could be argued that σtot is more sensitive to the density, than to the
volume fraction. However the evolution of eigen maximum shear stress σ∗ allows to
eliminating the hypothesis that the carbide reactions would be proportional to their
volume fraction, because max(σ∗Cluster2) < max(σ∗Cluster1) < max(σ∗singleCarbide)
but VCluster1f < VCluster2f < V

singleCarbide
f . But one can notice that the peak of σ∗

grows with the carbides size, since SCluster2i < SCluster1i < S
singleCarbide
i . The conse-

quence of the carbides size on the eigen maximum shear stress peak lead to con�rm
that having smaller carbides, even if they are numerous, will contribute to the increase
the resistance to RCF of the treated M50. Moreover, the magnitude of the total and
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eigen residual stresses, generated by the plasticity inside and outside the Cluster2, are
relatively lower than that of the other cases.
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Figure 6.37: Maximum shear stress during rolling contact on carbide cluster
s

It could be seen from Fig. 6.38 that the distribution of the total shear stress in the
matrix outside of the clusters is identical to that of the single carbide. But very high
stress concentration could be noted inside the area �lling by the clusters of carbides.
Herewith the matrix material between the multiple carbides is subjected to important
stress rising because of mutual interactions held between carbides. Hence, these areas
are conducive to the damage.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI154/these.pdf 
© [K. Amuzuga], [2016], INSA Lyon, tous droits réservés



6.4 modeling 191

−5 0 5
−2

−1.5
−1

−0.5

x/a

z
/
a

σ
Tresca

/P0

0.05

0.1

0.15

0.2

0.25

(a)

−5 0 5
−2

−1.5
−1

−0.5

x/a

z
/
a

σ
Tresca

/P0

0.05

0.1

0.15

0.2

0.25

(b)

−5 0 5
−2

−1.5
−1

−0.5

x/a

z
/
a

σ
Tresca

/P0

0.05

0.1

0.15

0.2

0.25

(c)

Figure 6.38: Total shear stress distribution during rolling contact on carbide cluster
s

Fig. 6.39 presents the eigen shear stress distribution during rolling contact at the instant
when the highest value of eigenstress is reached on carbide clusters and the single car-
bide. It was found out that at this particular instant, the eigen stress is concentrated
along the diagonal of each carbide, as one can clearly see in Fig. 6.39(a, c). In addition
the magnitude of the peak grows with the carbide size. Also, the peak is located at
the corners of edges aligned diagonally. These corners belong to the interface carbide-
matrix. The eigen stress concentration spreads into the material via the edges along
the carbide diagonal. This �nding is suggesting a close relationship between the con-
centration along the extended axis of carbide diagonal and the apparition of fatigue
butter�ies wings which usually being located there.
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Figure 6.39: Eigen shear stress distribution during rolling contact on carbide cluster
s

Equivalent plastic strain

The maximum accumulated equivalent plastic strain recorded during rolling contact
on carbide clusters and the single carbide is plotted in Fig. 6.41. One can see that the
plastic strain peak is the same for all regarded cases. The distribution of the plastic
strain in Fig. 6.41 reveals that the peaks are achieved in the matrix material because
the matrix yield stress is less than that of the carbides. Yet there is no plasticity, or
at least a little plastic strain, in the material between those carbides, compared to the
rest of the matrix, as shown in Fig. 6.41. The carbides composing the Cluster1 have the
same elastic limit, the same elastic properties and the same size as those of stringers
in Fig. 6.35, but the plastic strain yielded is lower inside the Cluster1 carbides than that
inside any of the stringers studied above. Hence, the clustering of carbide leads to less
plastic strain than the ranking in form of stringer. Remember from Fig. 6.21 that, even
if no plasticity activity is noticeable in the matrix, cracks appear along stringers when
clusters remain undamaged. Therefore the overall elastic limit has been arti�cially in-
creased in the representative volume embedded the carbides. The augmentation of the
e�ective yield stress has been explained in Chap. 5. However one can observe from Fig.
6.41 that the magnitude of the plastic strain is higher inside the single carbide than in
the Cluster1 and even more than in the Cluster2. Finally, the plastic strain level reached
inside the carbides would strongly depend on their size and their spatial arrangement.
This always brings back to the e�ect of the mutual in�uence between the carbides, in
grouping situation.
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Figure 6.41: Accumulated equivalent plastic strain during rolling contact on carbide cluster
s
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6.5 PARTIAL CONCLUSION
The micromechanical characterization of two plastically graded rolling bearing mate-
rials (M50 and M50NiL) has been conducted in purpose to investigate on the e�ects of
microstructures and hardening properties resulting from thermochemical treatments.
In summary, the microstructure di�erence of both materials lies mainly in carbide size,
shape, distribution and properties. It is important to realize that for both M50/M50NiL,
nitriding lead to the same results in terms of the a�ected thickness and formed nitrides.
However there is still a presence of large carbides in the M50 nitrided layer, and intra-
granular carbides in the M50NiL nitrided layer. The small carbides have been drained
by the nitriding di�usion front. This is the reason of absence of small carbides in both
M50 or M50NiL nitrided layers. Nevertheless, knowing that nitrides are hard but brittle
compounds, the issue is to �gure out whether their presence could prevent or postpone
the spalling phenomena by resistance to the crack initiation and propagation. This can
also explain somewhere the increased life of nitrided bearings. The micro-tensile tests
raised some interesting observations about the carbide rupture. It was found that vana-
dium and molybdenum are elements having the largest concentration in the cracked
carbides. From spectroscopy outputs, it seems like molybdenum is responsible for the
carbide brittleness when vanadium enhances its resilience. However, stringers of car-
bides cracked much more than clusters. This could imply that particular grouping is
favorable for cracking. Moreover, the shorter and farther from the fractured section the
cracked stringer is, the smaller the crack dimensions are. Nearby all observed stringers,
plasticity happened when the carbide crack encountered the elastic-plastic matrix. In
the second part of this study, a three-dimensional heterogeneous elastic-plastic contact
model allows to reproduce the surface displacement of the indent left by a hard particle
entrapped in hybrid contact (Si3N4 on nitrided M50). Very good agreement is obtained
by comparing the displacement component along the depth direction against that pro-
vided by measurements on an indented nitrided M50 sample. The numerical model
takes into account the heterogeneous microstructure, the gradient of plastic property
as well as the initial compressive stress. All considered, the present work suggests con-
trolling the heating stages of the hardening+carburizing to ideally avoid the formation
of elongated carbide stringers, found by the micro-tensile tests as well by numerical
analysis, to be detrimental for the material resistance to cracking.
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G E N E R A L C O N C L U S I O N

A robust, fast and versatile model using a semi-analytical method (SAM)
has been developed for a fully coupled analysis of contact pressure, contact
area and subsurface stress-strain �elds for accurate damage prediction. The
main advantages of the SAM are its performances in computation time, the
non-necessity to mesh the boundary conditions and the fact that the meshed
volume can be limited to the zone of interest like the plastic zone. The models
developed can be directly applied for contact mechanisms working in severe
conditions such as gears and rolling bearings when high contact pressure
occurs in service transition phases or overloading conditions (e.g. loss of the
structure balance). The main potential applications consist to evaluate the
criticality of the presence of heterogeneities (manufacturing best-practices).
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7.1 DISCUSSIONS AND SUMMARIES
The present work has aimed at developing a fast and versatile tool for studying damage
mechanisms related to plastic strain and residual stresses induced by rolling contact
loading on a heterogeneous elastic-plastic body. The model has the capability to solve a
three-dimensional contact problem between two half-spaces having a gradient of prop-
erties and containing initial residual stresses. The e�ect of multiple heterogeneities has
been analyzed studying the in�uence of their position, size, mechanical properties and
distribution beneath the contact surface.
The Heterogeneous Elastic Plastic Contact solver (Chap. 3) was the �rst approach
developed. Based on the theoretical background exposed in Chap. 2, a fully coupled
algorithm of the contact, the plasticity and the heterogeneity problems have been de-
veloped. The distribution of the contact pressure and area above the heterogeneity
is one of the main output. It is known that the contact pressure decreases when the
material starts to yield, but the presence of a hard elastic heterogeneity increases the
maximum pressure according to its location and size.

Moreover in the subsurface, the residual stresses generated by the plastic strain tend
to decrease the elastic stress �eld due to the applied contact, but once again the het-
erogeneity eigenstress raises the total stress at its vicinity. When the heterogeneity
is harder than the matrix, the stress concentration reaches its maximum inside the
heterogeneity. But, if the matrix is harder than the heterogeneity, then the stress con-
centration peak is observed at their interface. This could explain the likely debonding
between heterogeneity and the matrix, or, even more, a crack initiation if the hetero-
geneity is considered as a void.

Finally looking at the highest principal stress location and orientation around hard
heterogeneity, one can predict crack initiation directions, that should be perpendicular
to the principal stress direction for the mode I in a fracture mechanics point of view.
Hence it was found that locations favorable to crack are the heterogeneity bottom and
upper corners.
The Heterogeneous Elastic Plastic Rolling Contact solver (Chap. 4) has been an
extension of the HEPC solver. It consists to move the contact loading along a given
direction on the surface. The presented rolling contact model is a three-dimensional
analysis based on the quasi-static displacement of the loading which reproduces the
motion observed in ball bearings. Interesting conclusions have been drawn from nu-
merical simulations with di�erent types of inclusions according to the Dang Van dam-
age criteria. It was found that an incompressible heterogeneity a will generate morea

for instance a porosity
�lled by a low viscosity

lubricant oil that
entered via emerged

crack network

damage than a porosity and even more than a vanadium carbide which is 2.33 times
sti�er than the M50NiL matrix. However the critical e�ect of these heterogeneities is
signi�cantly decreased by introducing an initial compressive stress of −0.14P0 from
the depth −0.5 to 1.5a beneath the surface, where P0 and a are the applied maximum
Hertzian contact pressure and Hertzian contact radius, respectively.

It is well known that over a certain number of rolling fatigue cycles, even if the ap-
plied nominal stress did not exceed the material yield stress, plastic deformed layer ap-
pears. This may be caused by the elastic plastic property degradation attributed to the
damage mechanism initiated at microscopic scale. Further plasticity growth is gener-
ally prevented by the residual bene�cial stress developed during the self-balanced phe-
nomena known as the shakedown. However, if the system is submitted to extremely
high-cycle fatigue and/or if the material’s behavior is particularly in�uenced by the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI154/these.pdf 
© [K. Amuzuga], [2016], INSA Lyon, tous droits réservés



7.1 discussions and summaries 197

presence of heterogeneities, then the shakedown limit can be exceeded. This promotes
a progressive accumulation of plastic deformation known as ratcheting. Shakedown
and ratcheting phenomena have been studied over a simulated multi-cycle rolling con-
tact, in presence of vanadium carbide when the material is assumed to have an isotropic
hardening behavior. It was found that the contact pressure at the surface reaches a
quasi shakedown regime from the second rolling pass, while the maximum sheer stress
in the subsurface, continues to increase during ten rolling cycles. Yet, without the pres-
ence of the vanadium carbide the maximum shear stress level was constant for twenty
cycles. Thus heterogeneity disrupts the shakedown establishment and could cause an
earlier ratcheting than in homogeneous body. The severity of the heterogeneity on
the accumulated plastic strain over cycles was also studied. During twenty cycles, the
maximum plastic strain level has barely increased by 10% for the homogeneous body,
whereas this level has more than doubled in only ten cycles for the heterogeneous
body.

Finally, the evolution of the plastic strain distribution inside the heterogeneous body
reveals that after the 10th cycle, the region located between the heterogeneity upper
edge and the contact surface experienced a severe elevation of the plastic strain max-
imum, about three times the nominal value obtained at the Hertzian depth. It is well
known that the more the level of the plastic strain increases, the harder the material
becomes. The hardening means the loss of ductility. This situation leads to potential
cracks occurrence, even more, since the plastic zone is located near the surface where
contact stress is very high. The present chunk of material created by cracks network
will be snatched at a forthcoming rolling pass by letting appear a spalling.
The effective property analysis of elastic-plastic half space containing heteroge-
neous inclusions under contact loading is the academic and industrial application
of the HEPC solver. It is often found that the homogenized properties predicted by clas-
sical methods diverge according to the inclusion density and especially for indentation
loading. The source of this inaccuracy is the assumptions that underpin the classical
methods which are brie�y reviewed in the Chap. 5. The presented study proposes an al-
ternative method consisting in a reverse identi�cation of e�ective properties by �tting
the heterogeneous body behavior with that of a homogeneous body.

The results from homogenization simulations, raised some noteworthy points. The
�rst most important is that a single model is not su�ciently e�cient to describe the
e�ective properties while indicating the heterogeneities distribution and their volume
fraction. This is due to the fact that, depending on the heterogeneities number and
size, several distributions could be established while maintaining the same volume
fraction, and vice versa. The homogenized property sensitivity to the heterogeneity
distribution rather than only the volume fraction could partly explain the divergence of
classic methods. It is also imperative to specify that classic methods are not appropriate
for high densities of heterogeneity even more when a contact load is applied on the
REV boundary leading to a strong gradient of stresses. However, in case of a relatively
low volume fraction and a quasi-uniformly distributed stress �eld on the REV, the
distribution has an insigni�cant e�ect on the macroscopic response. Then the classic
methods become faster and more suitable.

In addition, it should be noticed that the elastic property of the heterogeneity in�u-
ences the e�ective plastic property of the homogenized body. It was �gured out that
the overall yield stress decreases when the absolute value of the di�erence between the
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matrix and heterogeneity sti�ness
∣∣EI − Em∣∣ increases, for a �xed volume fraction.But

in general, the overall yield stress increased with the heterogeneity volume fraction
because they are �rstly considered as purely elastic which implies that their individual
elastic limit is in�nite. However this evolution is nonlinear, since the mutual in�uence
between heterogeneities and their interaction with the surrounding plastic zone highly
depends on many factors discussed in Chap. 4. Finally, the overall Young’s modulus in-
creases when the ratio between the matrix and heterogeneity sti�ness increases, for a
given volume fraction.
The influence of heterogeneities and hardening properties on plastically graded
bearing materials (M50 and M50NiL) was the �nal part (Chap. 6) that combined ex-
perimental data with simulation results in an industrial application. Micromechanical
and microstructure characterization have been conducted to highlight the e�ect of the
carburizing and the nitriding on the material behavior. The carbide precipitation, the
gradient of hardness and the compressive stress introduced were analyzed trough in-
dentations and micro-tensile tests. Two analytical models were proposed to �t the data
(the pro�les of the hardness gradient and the initial stress). Rolling contact simulations
were performed on a typical M50material containing stringer and clusters of carbides.
The evolution of the contact pressure peaks and the distribution of the shear stress and
plastic strain maxima have been the subject of numerical studies.

The microstructure characterization has shown a very close relationship between
the carbide shape and size in both M50 and M50NiL treated materials in accordance
with the heat treatment procedures. However, it has been observed and quanti�ed that
the sizes of carbides in M50 are larger than those in M50NiL. Also, the M50NiL car-
bides population could be sorted into two families depending on when they have been
formed during the heat treatment procedures. One family of very small and spherical
intragranular carbides and the other family of a relatively larger elongated intergran-
ular carbides. The nitrogen di�usion layer of both materials have similar thicknesses,
implying that the initial microstructures do not inhibit or promote the nitriding pro-
cess. But the absence of small carbides inside the nitrided layer suggests that they have
been drained down during the nitriding di�usion front progression.

The micro-tensile tests revealed that M50 carbide stringers are likely to crack, more
than carbide clusters. The crack dimensions are related to the stringer position. Hence,
the shorter and farther from the fractured section the cracked stringer is, the smaller
the crack dimensions are. In addition to carbides distribution, their chemical composi-
tion in�uences the crack likelihood. EDX analysis showed that vanadium and molybde-
num are elements having the largest concentration inside the cracked carbides. How-
ever, molybdenum may be linked to the carbide brittleness when vanadium enhances
its resilience.

Furthermore, nearby all cracked stringers, high plastic deformation was observed
when the carbide crack encountered the matrix. This point suggests that even if car-
bides are fragile, their surroundings matrix remains ductileb . This di�erence of behav-b

meaning that it can
still allow yielding

(plasticity) in reaction
to high stress

concentrated by the
carbide

ior explains the two scenarios of rupture found during the micro-tensile tests. These
are cleavage fractures and debonding.
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Figure 7.1: Carbides cracks by cleavage during the micro-tensile tests [16]

Fig. 7.1, describes cleavage fractures which is the most frequent rupture observed here.
Firstly, the elongated carbides crack when the lateral deformation exceeds their elonga-
tion at rupture. The crack is perpendicular to the tensile stress direction, i. e. parallel to
the direction of the indirect compression experienced by the carbide along its longest
axis. Secondly, the cleavage is growing because of the matrix’s elastic-plastic defor-
mation. Finally, when the dimensions of each cracked carbide are su�ciently large,
a connection is established between neighboring cracks. The coalescence of multiple
cracks along the carbides stringer enables the main crack propagation.

Rupture by carbide debonding is also observed during the micro-tensile test. Due to
the weakness of the matrix/carbide interface, the tensile stress could generate a loss
of cohesion along one of longest edge of the elongated carbide, as presented in Fig 7.2.
Afterwards, the created void growth will be promoted by the surrounding matrix’s
elastic-plastic deformation. Once again, a main crack is started by the coalescence of
neighboring debonded carbides that composing the stringer.
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Figure 7.2: Carbides cracks by dedonding during the micro-tensile tests [16]

In the scheme of all analysis conducted in the present work, it can be argued that,
although heterogeneities (such as carbides or nitrides) are responsible for the high
resistance of the studied materials, some of them (those whose length exceeds tens
of micrometer or those which form stringers in a particular direction) become, over
fatigue cycles, the main sources of damage, from their local scale up to the macroscopic
failure of the structure.

7.2 PERSPECTIVES
The heterogeneous elastic-plastic contact solver o�ers the possibility to explore several
problems mentioned above. The analysis conducted in the academic and industrial con-
texts, constitutes a major point of di�erentiation from others three-dimensional numer-
ical solvers based on �nite elements method. The di�culty comes when the resolution
requires �ne meshing of boundary conditions. All these factors lead to expensive com-
putational resources for the contact resolution. Some perspectives of the application
of the HEPC solver are exposed hereafter.

7.2.1 EFFECTIVE ELASTIC-PLASTIC PROPERTIES OF RANDOMLY DISTRIBUTED HETEROGENEITIES

The homogenization method presented in Chap. 5 was only applied to cases where the
heterogeneities have the same shapes, sizes and regular distribution inside the consid-
ered REV. However, isotropic materials have random distribution of heterogeneities as
in Fig. 7.3. The preferential distribution imposed to the hetrogeneities in the present
work, can lead to an induced anisotropic behavior. This will change the e�ective prop-
erties when the applied contact force is a combination of normal and tangential com-
ponents. Therefore the induced anisotropic behavior must be studied considering the
type of distribution (regular and random).
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(a) (b)

Figure 7.3: Heterogeneities distribution in present work: (a)Regular distribution; (b) Random
distribution

7.2.2 DAMAGE MECHANISMS OF THE SILICON NITRIDE ROLLER

Remembering that the aim of the present work was to investigate the hybrid bear-
ing (ceramic on steel), it may be noted that the study focused only on the steel ring,
whereas the ceramic could also be studied as a porous elastic-plastic material. It was
noticed in hybrid bearing that the ceramic rollers have a higher RCF resistance than
the steel races. A procedure for evaluating the probability of survival of the hybrid ball
bearings has been presented in [220]. However a static damage analysis is proposed
for only the silicon nitride roller. The porosities are the principal heterogeneities found
in ceramic materials for reasons linked to the manufacturing processa . The plastic be- a

Chemical Vapor
Deposition (CVD), Hot
Isostatic Pressing (HIP),
Sintering, etc.

havior of ceramics was proved by the permanent stamp left by indentation test as in
Fig. 7.4(b).

(a) (b)

Figure 7.4: Indentation conducted on a silicon nitride [202]: (a)circumferential crack (a) race-
way; (b) plastic deformation of the surface

However, the ceramic materials are weaker in tension than in compression. This ex-
plains the initiation of circumferential cracks observed in Fig. 7.4(a) at the contact
�ange where the tensile component of the stress tensor is greater than the others. But,
knowing that the ultimate tensile strength (UTS) of ceramics are relatively high, the
circumferential cracks that occurred at a tensile stress lower than the UTS, can be
attributed to the presence of porosities which weaken the e�ective UTS of a repre-
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sentative elementary volume (REV) located at the contact edge. Indeed, the apparent
decrease of the UTS inside the considered REV, is due to the fact that the level of stress
is raised by the porosities. The matrix is therefore subjected to a more elevated stress
in comparison to what it would experience without porosities. Fig. 7.5 presents the
concentration of the equivalent Von Mises stress around porosities. It can be seen that
the stress is almost doubled around the porosities close to the surface, and even more
when the porosity is close to the Hertzian depth.

Figure 7.5: Concentration of the equivalent Von Mises stress in a representative volume con-
taining porosities compared to the stress level in a homogeneous matrix

The consequence of the presence of subsurface porosities on the radial component of
the stress tensor at the surface outermost layer is reported in Fig. 7.6. It is well estab-
lished that the radial stress is positive outside the contact circle and has its maximum
value at the edge of the contact patch when x/a = 1; where a the elastic homogeneous
contact radius and x one of the Cartesian coordinates of the axisymmetric referential
centered on the contact. Note that the partial cone cracks (so-called c-cracks) observed
on silicon nitride balls after RCF, result from a combining e�ect of the oblique impact
velocity and the maximum radial stress at the contact periphery, [284].

Figure 7.6: Distribution of radial stress at the surface outermost layer of the porous body com-
pared to that of the homogeneous body

From Fig. 7.6, it can be noted that the contact size is a little increased by the presence
of porosities and that the peak of the tensile radial stress is also increased compared to
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that of the homogeneous body. The magnitude of this peak depends on the porosities
sizes, shapes, locations and distribution.

Fig. 7.7 describes the static damage analysis that could be conducted on the silicon
nitride roller. The objective is to correlate the circumferential crack radius acrack, pro-
vided by an indentation test, with the contact size a∗ determined numerically by the
heterogeneous elastic-plastic contact model. From the critical stress level obtained at
the vicinity of representative porosities micro scale damage criteria could be estab-
lished. The prediction of the ceramic’s breaking point will be an excellent application
of the HEPC model for a deeper understanding of the hybrid bearing fatigue resis-
tance.

Figure 7.7: Static damage analysis of the silicon nitride roller

7.2.3 SIMULATION OF BUTTERFLY WING FORMATION AROUND CARBIDE

The multi-cycles rolling contact model developed in Chap. 4 could be extended to sim-
ulate Butter�y Wing Formation (BWF) around nonmetallic inclusions found in the
high-strength steels, as illustrated by Fig. 7.8. The aim is to predict and distinguish the
total fatigue life from the life before the BWF and beyond. Flatwasher fatigue tests can
be conducted to obtain material data for the numerical model. With the development
of in-situ monitoring facilities, information such as stress �uctuations and the number
of rolling cycles could be captured directly on the test bench to validate the numerical
model predictions, by detecting and following in-time the BWF evolution during the
tests. Recently, Barkhausen noiseb measurements have been used to detect the early b

perturbations in the
magnetic signals from
a ferromagnetic
material

stages of SAE52100 bearing steel material’s microstructural alterations during RCF
[285].
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Figure 7.8: Rolling Contact Fatigue on �atwasher for BWF investigations

The numerical fatigue damage model is a coupling of the HEP rolling contact solver
with the damage law proposed in Moghaddam et al. (2015) [280] . It is postulated that
the formation of butter�y wings is related to cyclic damage accumulation at the vicin-
ity of the inclusion. This type of damage accumulation is manifested physically by the
alteration of the material microstructure, implying a degradation of its properties such
as sti�ness. This is sustained by many observations of serial sectioned worn bearing
raceway [79, 286, 81] and pioneering research works [287] referred to RCF since the
middle of the last century. It is assumed in Moghaddam et al. (2015) [236] that marten-
site decaying to ultra�ne ferritic grains occurs when the damage reaches a critical
value of 0.1. This value allowed to reproduce the microstructural changes accompa-
nying the stress history over rolling cycles inside a de�ned REV around the inclusion.
The damage evolution rate is given by the following expression as:

dD

dN
=

(
τamplitude + |τmean|

σr(1−D)

)m
(7.1)

WhereD is the damage variable,N the number of rolling cycles, τamplitude the ampli-
tude of shear stress, τmean the mean shear stress, m the damage law exponent which
depends on the material and σr the resistance stress standing for the material’s ability
to resist to fatigue damage accumulation. Note that σr and m can be obtained from
S−N curves of fatigue tests [288] or torsion fatigue experiments [82].

However numerical resolution of high cyclic rolling contact needs extremely long
computational time. A Jump-in-cycles technique can therefore be used with respect to
recommendations outlined in Lemaitre (1992) [289] , in order to accelerate the damage
evolution. But a damage increment ∆D must be set to relate the simulation number
of cycle Ns to the theoretical number of cycle Nt permitted by the Jump-in-cycles
technique [10]. Therefore, the more the assumed damage increment ∆D is small, the
more the theoretical number of cycle Nt will be close to the real number of cycles N.

The fatigue damage solver is based on a scheme composed by three blocks of com-
putation: (i) an initialization block for allocating the starting values of material data
and numerical parameters; (ii) a simulation block consisting of the semi-analytical HEP
rolling contact resolution; (iii) a looping block used to update the Young modulus of the
material as Ei = (1−Di)Ei−1 and to launch a next simulation block until the damage
converges to the value set in the initialization block (e.g. 0.1 in this case, to reproduce
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the BWF). The superscript i designates the current cycle. Then Di is calculated from
the previous stress history ( τi−1amplitude, τ

i−1
mean) and the previous damage state Di−1.

Damage calculation using the Jump-in-cycles, has been well detailed in Warhadpande
et al. (2012) [9] .

Fig .7.9 illustrates a qualitative result concerning a three-dimensional reconstitution
of BWF obtained from the fatigue damage solver described above. It can be seen that
the microstructural transformation starts from the interface inclusion/matrix and then
propagates along a direction forming 45◦ with the opposite rolling direction. The next
stage of the application of the fatigue damage solver would be to conduct parametric
study by varying the inclusion and the matrix initial properties and also the loading
conditions, in order to obtain quantitative output such as the evolution of the e�ective
degraded material volume according to the number of fatigue cycle.

Figure 7.9: Simulation of Butter�y Wing Formation around nonmetallic inclusion. (a) [79]

7.2.4 SIMULATION OF ETCHING AREAS APPEARANCE IN PRESENCE OF CARBIDES

Another microstructural transformation during RCF is known as White Etching Area
(WEA). The development of a WEA generally leads to a White Etching Crack (WEC)
which connects to the surface as shown in Fig .7.10(b)-(c). It can be a precursor of
spalling. Inclusions are mostly found at the source of crack propagation in a WEA.
However the WEA features are related to the occurrence of local micro-plastic de-
formations that relax to some extent the high stress concentration undergone over
continued cycling. This phenomenon is discussed in [290], highlighting one variant as-
sociated with WEA called Dark Etching Areas (DEA) found in the subsurface regions at
the depth of the maximum Hertzian stress. Therefore, investigating on the DEA, WEA
and WEC requires a full coupling of the fatigue damage solver with that of heteroge-
neous elastic plastic rolling contact. One interesting application would be to explore
the protective role of the nitrided layer on the propagation of a WEA. As one can see
in Fig .7.10(a), the evolution of a WEA seems to be blocked and/or diverted when it
encounters the nitrided layer.
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Figure 7.10: Bearing rings subsurface risk [78]

To be able to replicate the etching regions also described as the RCF a�ected zones
in Bhattacharyya, Subhash, and Arakere (2014) [291] , Eq. 7.1 is modi�ed to a fatigue
plastic damage model consisting in the degradation of the material plastic properties.
The present damage noted Dpd will decrease the elastic limit instead of the Young
modulus, in a representative volume surrounding the Hertzian zone and the inclusion.
The plastic damage evolution rate can be expressed as:

dDpd

dNpd
=

( ∣∣τpd∣∣
σpd(1−Dpd)

)mpd
(7.2)

Where τpd = max (τmax(t) + aDV .σHP(t) − bDV , 0) representing the stress respon-
sible for plastic properties degradation. The script pd stands for plastic damage. Note
that τpd is an equivalent stress corresponding to the gap between the Dang Van stress
and the material fatigue line described in Chap. 4. It is 0 when the stress trajectory
never crosses the fatigue line during the regarded rolling cycle. aDV and bDV are ma-
terial constants related to the Dang Van fatigue criteria. Npd, σpd and mpd are the
plastic damage parameters, counterparts of that of the elastic damage responsible for
BWF. But here, σpd is closely related the material yield strength. Hence, the fatigue
elastic plastic damage solver is constructed on the same scheme as in the above Sec.
7.2.3, by adding the plastic damage model into the simulation block.

Fig .7.11 illustrates a qualitative result concerning a three-dimensional reconstitu-
tion of RCF a�ected zones obtained from the fatigue elastic plastic damage solver de-
scribed above. It can be seen that the layer where the equivalent stress responsible for
elastic plastic properties degradation corresponds to the etching regions on both sides
of the Hertzian depth. The stress is more concentrated inside and around the inclusionc
. This could explain why in practice, etching regions are observed more accentuatedc

in the present case the
inclusion is harder than

the matrix

in the vicinity of inclusions, but seem to be homogeneous elsewhere, in reference to
Fig .7.10(d)-(e). In addition, a potential butter�y wing formation was found nearby the
inclusion.
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Figure 7.11: Description of plastic layer over rolling fatigue cycles in presence of nonmetallic
inclusion

Figure 7.12: BWF, DEA and WEA is discussed in Bhadeshia and Solano-Alvarez (2015) [276]
by reporting results from experimental studies
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Fig .7.12 presents BWF, DEA and WEA is discussed in Bhadeshia and Solano-Alvarez (2015) [276]
by reporting results from experimental studies. But no numerical model has been found
in the literature proposing a full description combining these three phenomena. (a) Uni-
form layer of dark etching region on the circumferential section, following 107 rota-
tions while subjected to contact stress of 3.3GPa at 70◦C. Micrograph courtesy of T. B.
Lund. (b) Three-dimensional form of dark etching microstructures. (c) White etching
regions emanating from inclusion in Evans et al. (2013) [79] . (d) Irregular white etching
regions associated with axial crack on bearing. Micrograph courtesy of R. Errichello,
GEARTECH. (e) Typical sequence of damage evolution. Fatigue index is a measure of
heterogeneous strains within material. The fatigue elastic plastic damage solver can
allow a theoretical bearing life prediction accounting plasticity and heterogeneity in-
teractions. This suggests investigation on the:

• In�uence of material datam, σr, σpd andmpd

• In�uence of heterogeneity shape, size, location and sti�ness
• Consequences related to the initial compressive stress and the gradient of hard-

ness
• Evolution of the stress concentration around heterogeneity and the subsurface

plastic zone
• E�ect of loading variables such as the amplitude of the contact pressure, the

friction coe�cient
In the scheme of things, the interaction of the microstructural alterations (BWF, WEA,
DEA) result in microcavities and cracks which coalescence lead to the bearing failure.
A control of the design parameters (loads sizing, microstructures tailoring, manufac-
turing procedures etc.) which contribute to acting on the microstructural alterations,
is an excellent alternative to improve the bearings operating performance. The bear-
ing engineering practice in perspective of the present work will be to delay the fatigue
cracks and to ensure a realistic prediction of their occurrence then to enable a more
accurate planning of maintenance operations.
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Part IV

A P P E N D I X

This part is dedicated to the comprehension elements that sustain the mod-
els developed above in the study. Details are given about the in�uences
coe�cients necessary to solve the heterogeneous elastic plastic contact.
The scripts of the computational code are not mentioned. The reader is
directed to the �owchart referred in second part, if need to reproduce the
semi analytical model
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A
I N F L U E N C E C O E F F I C I E N T S R E L AT I V E T O T H E
H E T E R O G E N E O U S E L A S T I C P L A S T I C P R O B L E M

The semi-analytical method is based on the numerical summation
of elementary analytical solutions. The latter are obtained by solv-
ing an applied unit force problem. A normal force applied on the
surface leads to the Boussinesq solution when a tangential force
leads to the Cerruti solution. The combination of both solutions are
su�cient to have in�uence coe�cients for any given distribution
of contact pressure. A normal force applied on a volume element
within in�nite space leads to the elastic or the plastic or the hetero-
geneous problem in�uence coe�cients according to the resolution of
the equilibrium equation. These in�uence coe�cients are exposed
here below.
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212 influence coefficients relative to the heterogeneous elastic plastic problem

A.1 ESHELBY TENSOR

The results presented here are limited to a uniform eigenstrain, therefore, only the
calculation of the tensor Dijkl is performed.

Dijkl =
1

8π(1− ν)
[Ψ,ijkl − 2νδklφ,ij − (1− ν)(δklφil + δkiφ,jl + δjlφ,ik + δliφ,jk)]

(A.1)

Ψ(x) =

∫
Ω
|x− x ′|dx ′

φ(x) =

∫
Ω

1

|x− x ′|
dx ′

The harmonic potential φ(x) and the biharmonic potential Ψ(x) can be expressed as
a function of the elliptical integrals E(θ ′,k) and F(θ ′,k) [292] , where:

E(θ ′,k) =
∫θ ′
0

(1− k2sinw)1/2dw

F(θ ′,k) =
∫θ ′
0

1

(1− k2sinw)1/2
dw

θ ′ = sin−1

(
1−

a23
a21

)1/2

k =
3(a21 − a

2
2)

(a21 − a
2
3)

Assuming that a1 > a2 > a3, with a1,a2,a3 the semi-axes of the ellipsoidal inclusion.
The Eshelby’s tensor Sijkl is obtained from Eq. (A.1) as:

Sijkl = Dijkl(x
I)

where xI = (xI1, x
I
2, x

I
3) represents the position of the inclusion center in Cartesian

reference frame.

A.2 STRESSES WITHIN A HALF-SPACE SUBMITTED TO A NORMAL PRESSURE UNIFORM
OVER A RECTANGULAR PATCH

An isotropic half-space is submitted to a uniform normal pressure σn discretized over
a rectangular element of size 2∆x1 × 2∆x2 at the center point P(x ′1, x ′2, 0). The stress
at an observation point Q(x1, x2, x3) is given by [293]:

σij(x1, x2, x3) =Mij(x1 − x
′
1, x2 − x

′
2, x3)σ

n(x1, x2)

σij(x1, x2, x3) =
σn

2π
[hij(ξ1 +∆x1, ξ2 +∆x2, ξ3) − hij(ξ1 +∆x1, ξ2 −∆x2, ξ3)

+ hij(ξ1 −∆x1, ξ2 −∆x2, ξ3) − hij(ξ1 −∆x1, ξ2 +∆x2, ξ3)]

where

ξi = xi − x
′
i.
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The functions hij() in Eq.(B1) are de�ned by

h11(x1, x2, x3) = 2ν tan−1 x
2
2 + x

2
3 − ρx2
x1x3

+2(1−ν) tan−1 ρ− x2 + x3
x1

+
x1x2x3

ρ(x21 + x
2
3)

,

h22(x1, x2, x3) = h11(x2, x1, x3),

h33(x1, x2, x3) = tan−1 x
2
2 + x

2
3 − ρx2
x1x3

−
x1x2x3
ρ

(
1

x21 + x
2
3

+
1

x22 + x
2
3

)
,

h12(x1, x2, x3) = −
x3
ρ

− (1− 2ν) log(ρ+ x3),

h13(x1, x2, x3) = −
x2x

2
3

ρ(x31 + x
2
3)

,

h23(x1, x2, x3) = h13(x2, x1, x3),

where

ρ =
√
x21 + x

2
2 + x

2
3.

A.3 NORMAL DISPLACEMENT AT THE SURFACE SUBJECTED TO NORMAL PRESSURE (KN)

The contact between a sphere and an elastic half-space having respectively elastic con-
stants (E1,ν1) and (E2,ν2), where the surface x3 = 0 is discretized into rectangular
surface elements 2∆1×2∆2, is now considered. The initial contact point coincides with
the origin of the Cartesian coordinate system (x1, x2, x3). The relationship between the
normal displacement at an observation point P(ξ1, ξ2, 0) and the pressure uniformly
distributed to an elementary surface element centered atQ(ξ ′1, ξ

′
2, 0) is built using the

following functions Kn.

Kn(c1, c2) =

[
1− ν21
πE1

+
1− ν22
πE2

]
4∑
p=1

Knp(c1, c2),

Kn1 (c1, c2) = (c1 +∆1) log

(
(c2 +∆2) +

√
(c2 +∆2)2 + (c1 +∆1)2

(c2 −∆2) +
√
(c2 −∆2)2 + (c1 +∆1)2

)
,

Kn2 (c1, c2) = (c2 +∆2) log

(
(c1 +∆1) +

√
(c2 +∆2)2 + (c1 +∆1)2

(c1 −∆1) +
√
(c2 +∆2)2 + (c1 −∆1)2

)
,

Kn3 (c1, c2) = (c1 −∆1) log

(
(c2 −∆2) +

√
(c2 −∆2)2 + (c1 −∆1)2

(c2 +∆2) +
√
(c2 +∆2)2 + (c1 −∆1)2

)
,

Kn4 (c1, c2) = (c2 −∆2) log

(
(c1 −∆1) +

√
(c2 −∆2)2 + (c1 −∆1)2

(c1 +∆1) +
√
(c2 −∆2)2 + (c1 +∆1)2

)
,

where

c1 = ξ1 − ξ
′
1 and c2 = ξ2 − ξ

′
2
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214 influence coefficients relative to the heterogeneous elastic plastic problem

A.4 RESIDUAL STRESSES IN AN INFINITE BODY

The in�uence coe�cients giving the residual stresses generated in an in�nite space
by a cuboid of uniform strain εpij (i, j = 1, 2, 3) are recalled here [67]. The source
of the displacements is a cuboid of a uniform strain of dimensions ∆x × ∆y × ∆z
with its center located at the origin of the coordinate system (x,y, z) = (0, 0, 0). The
calculation point M is at (x,y, z). It should be recalled here that the body is considered
in�nite, thus the origin of the coordinate system has no importance. ν is the Poisson’s
ratio of the body. The vectors linking the corners of the cuboid to the observation point
are �rst de�ned as follows:

C1 =

(
x−

∆x

2
,y−

∆y

2
, z−

∆z

2

)
=
(
c11, c

1
2, c

1
3

)
C2 =

(
x+

∆x

2
,y−

∆y

2
, z−

∆z

2

)
=
(
c21, c

2
2, c

2
3

)
C3 =

(
x+

∆x

2
,y+

∆y

2
, z−

∆z

2

)
C4 =

(
x−

∆x

2
,y+

∆y

2
, z−

∆z

2

)
C5 =

(
x−

∆x

2
,y+

∆y

2
, z+

∆z

2

)
C6 =

(
x−

∆x

2
,y−

∆y

2
, z+

∆z

2

)
C7 =

(
x+

∆x

2
,y−

∆y

2
, z+

∆z

2

)
C8 =

(
x+

∆x

2
,y+

∆y

2
, z+

∆z

2

)
For a cuboid with constant unit normal plastic strain, i.e. εp11 = 1 and εpij = 0|(i, j) 6=
(1, 1), the elastic strains at the observation point M are given by:

ε1111 =
1

8π3

8∑
m=1

[
Dm,1111 +

2− ν

1− ν

(
Dm,1111 +D

m
,1133

)]
−H (M)

ε2211 = −
1

8π3

8∑
m=1

[
−Dm,1122

]
+

ν

1− ν

(
Dm,2222 +D

m
,2233

)
ε3311 = −

1

8π3

8∑
m=1

[
−Dm,1133

]
+

ν

1− ν

(
Dm,2233 +D

m
,3333

)
ε1211 =

1

8π3

8∑
m=1

[
ν

1− ν
Dm,1112

]
+
1+ ν

1− ν

(
Dm,2221 +D

m
,3312

)
ε1311 =

1

8π3

8∑
m=1

[
ν

1− ν
Dm,1113

]
+
1+ ν

1− ν

(
Dm,3331 +D

m
,2213

)
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ε2311 =
1

8π3

8∑
m=1

[
ν

1− ν

(
Dm,2233 +D

m
,3332

)]
For a cuboid with a constant unit shear plastic strain, i.e. εp12 = ε

p
21 = 1 and εpij =

0|(i, j) 6= (1, 2), (2, 1), the elastic strains at the observation point M are given by:

ε1112 =
1

8π3

8∑
m=1

[
−2ν

1− ν
Dm,1112

]
+ 2

(
Dm,2221 +D

m
,3312

)

ε2212 =
1

8π3

8∑
m=1

[
−2ν

1− ν
Dm,1222

]
+ 2

(
Dm,1112 +D

m
,3312

)
ε3312 =

1

8π3

8∑
m=1

[
−2ν

1− ν
Dm,3312

]

ε1212 =
1

8π3

8∑
m=1

[
−2ν

1− ν
Dm,1122 +D

m
,1111 +D

m
,2222 +D

m
,1133 +D

m
,2233

]
−H (M)

ε1312 =
1

8π3

8∑
m=1

[
−
1+ ν

1− ν
Dm,1123

]
+Dm,2223 +D

m
,3332

ε2312 =
1

8π3

8∑
m=1

[
−
1+ ν

1− ν
Dm,2213

]
+Dm,1113 +D

m
,3331

If the point M is located inside the cuboid, H (M) = 1 and H (M) = 0 otherwise. The
functions Dm,ijkl (m = 1 . . . 8) are de�ned as following:

Dm,1111 =2π
2(arctan

(
cm2 c

m
3

cm1 R

)
−
cm1 c

m
2 c

m
3

2R

(
1(

cm1
)2

+
(
cm2
)2 + 1(

cm1
)2

+
(
cm3
)2
))

Dm,1112 =− π2(sign (cm3 )

× ln

 R+
∣∣cm3 ∣∣√(

cm1
)2

+
(
cm2
)2 −

(
cm1
)2
cm3((

cm1
)2

+
(
cm2
)2)

R

)

Dm,1122 =
π2cm1 c

m
2 c

m
3((

cm1
)2

+
(
cm2
)2)

R

Dm,1123 = −
π2cm1
R

where

R =

√(
cm1
)2

+
(
cm2
)2

+
(
cm3
)2
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216 influence coefficients relative to the heterogeneous elastic plastic problem

The otherDm,ijkl functions are obtained by circular permutations of the subscripts. Sim-
ilar permutation allows to determine the elastic strain components at the observation
point M generated by other plastic strain components. At last the use of the traditional
Hooke’s law allows to calculate the elastic stresses generated by the plastic strains
from the elastic strains.

A.5 RESIDUAL SURFACE DISPLACEMENT GENERATED BY A CUBOID OF UNIFORM EIGEN-
STRAIN

The in�uence coe�cients giving the residual displacements at the surface of a half-
space generated by a cuboid of uniform eigenstrain are recalled here. The solution
for the displacement normal to the surface was �rst given by Chiu [72] in an integral
form and later by Jacq et al. [37] in an analytical form. The extension to the tangential
displacements along the x and y directions was made by Fulleringer et al. [41] to couple
the e�ects of both plasticity and tangential e�ects for use in semi-analytical models.
The source of the displacements is a cuboid of a uniform strain of dimensions ∆x×
∆y×∆z with its center C at (x,y, z). The calculation pointA is located at the surface
of the body, at the origin of the coordinate system (x,y, z) = (0, 0, 0).ν is the Poisson’s
ratio of the body.

A.5.1 RESIDUAL DISPLACEMENT IN THE Z DIRECTION

The residual displacement in the direction normal to the surface (z or 3) is given by:

uresz (A) = εpijD3ij (A,C) | (i, j) = 1, 2, 3

The function D3ij was analytically integrated by Jacq et al. [37] and is given by:

D3ij (A,C) = F3ij

(
x+

∆x

2
,y+

∆y

2
, z+

∆z

2

)
− F3ij

(
x+

∆x

2
,y+

∆y

2
, z−

∆z

2

)
− F3ij

(
x+

∆x

2
,y−

∆y

2
, z+

∆z

2

)
− F3ij

(
x−

∆x

2
,y+

∆y

2
, z+

∆z

2

)
+ F3ij

(
x+

∆x

2
,y−

∆y

2
, z−

∆z

2

)
+ F3ij

(
x−

∆x

2
,y−

∆y

2
, z+

∆z

2

)
+ F3ij

(
x−

∆x

2
,y+

∆y

2
, z−

∆z

2

)
− F3ij

(
x−

∆x

2
,y−

∆y

2
, z−

∆z

2

)
with:

F311 (x,y, z) =
1

π

(
−νx ln (y+ R) − (1− 2ν) z arctan

(
y+ z+ R

x

))

F322 (x,y, z) =
1

π

(
−νy ln (x+ R) − (1− 2ν) z arctan

(
x+ z+ R

y

))
F333 (x,y, z) =

1

π

(
(1− 2ν)

(
2z arctan

(
x+ y+ R

z

)
+ x ln (R+ y) + y ln (R+ x)

)
+
z

2
arctan

(xy
zR

))
F312 (x,y, z) =

1

π
(−2νR− (1− 2ν) z ln (z+ R))

F313 (x,y, z) =
1

π

(
2x arctan

(
y+ z+ R

x

)
+ y ln (z+ R)

)
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F323 (x,y, z) =
1

π

(
2y arctan

(
x+ z+ R

y

)
+ x ln (z+ R)

)
with R =

√
x2 + y2 + z2.

A.5.2 RESIDUAL DISPLACEMENT IN THE X DIRECTION

The residual displacement in the direction parallel to the surface (x or 1) is given by:

uresx (A) = εpijD1ij (A,C) | (i, j) = 1, 2, 3

The functionD1ij was analytically integrated by Fulleringer et al. [41] and is given by:

D1ij (A,C) = F1ij

(
x+

∆x

2
,y+

∆y

2
, z+

∆z

2

)
− F1ij

(
x+

∆x

2
,y+

∆y

2
, z−

∆z

2

)
− F1ij

(
x+

∆x

2
,y−

∆y

2
, z+

∆z

2

)
− F1ij

(
x−

∆x

2
,y+

∆y

2
, z+

∆z

2

)
+ F1ij

(
x+

∆x

2
,y−

∆y

2
, z−

∆z

2

)
+ F1ij

(
x−
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with:

F111 (x,y, z) =
1

2π
(z ln (R+ y) + y ln (R+ z) + 2x arctan

(
y+ z+ R

x

)
+ x arctan

(yz
xR

)
+ (1− 2ν)

(
2x arctan

(
y+ z+ R

x

)
+ z ln (R+ y) +

1

2
y ln (R+ z) −

zy

2 (R+ z)

)
)

F122 (x,y, z) =
1

2π

(
−y ln (R+ z) + (1− 2ν)y

(
z

2 (R+ z)
+
1

2
ln (R+ z)

))
F133 (x,y, z) =

1

2π

(
−2νz ln (R+ y) + (1− 2ν)y

(
2x arctan

(
R+ y+ z

x

)
+ y ln (R+ z)

))
F112 (x,y, z) =

1

π

(
2y arctan

(
x+ z+ R

y

)
+ z ln (R+ x) +

1− 2ν

2

(
x ln (R+ z) +

xz

R+ z

))
F113 (x,y, z) =

1

π

(
2z arctan

(
x+ y+ R

z

)
+ y ln (R+ x)

)
F123 (x,y, z) =

−R

π

with R =
√
x2 + y2 + z2. For residual displacement along the y or 2 direction, the

solutions for F2ij can be found easily by circular permutations of the indices.
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B
I D E N T I F I C AT I O N O F O V E R A L L B E H AV I O R

Identi�cation algorithm is executed to �nd parameters need to
describe the overall behavior of a heterogeneous elastic plastic
representative volume. The identi�cation is based on Levenberg-
Marquardt algorithms implemented in matlab code MIC2M. The
evolution of the ratcheting during multi-cycles rolling contact is �t-
ted. The homogenized elastic bodies are found to follow some rheo-
logical behaviors according to the ratio between heterogeneity and
matrix Young’s modulus.
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220 identification of overall behavior

B.1 RATCHETING RATE CURVE FITTING

The Fig.B.1 presents the identi�cation of parameters needed to describe the evolution
of plastic strain during rolling cycles when ratcheting regime primed (see section 4.4.2)
by curve �tting made through data points using least-square method.
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Identification: y = a + (b + c× x)n

Figure B.1: Ratcheting rate curve �tting

B.2 RHEOLOGY LAW PARAMETERS IDENTIFICATION OF THE HOMOGENIZED BODY ELAS-
TIC BEHAVIOR

The results presented here are the identi�cation of parameters needed to describe the
elastic macroscopic behavior of the heterogeneous elastic media for a �xed distribution
D = 0.4a. The e�ective Young’s modulus Eeff is obtained in function of the hetero-
geneity Young’s modulus EI relatively to each volume fraction Vf. In Fig. B.2 Eeff as
well as EI are normalized by the matrix Young’s modulus Em.
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Figure B.2: Rheology law parameters identi�cation: (a) Vf = 1%; (b) Vf = 15%; (c) Vf = 42%;
(d) Vf = 61%

B.3 DAMAGE EVOLUTION ACCORDING TO FRICTION COEFFICIENT

Working on contact problems involving coated surfaces subject to fretting fatigue load-
ing Jerbi et al. [129] propose an elastic damageable model, base on semi analytical algo-
rithms, to describe the damage evolution according to friction coe�cients. The pro�les
of the damageD versus the number of fretting cyclesNcyc, in Fig.B.3, tends to behave
similarly as the maximum plastic strain εpmax versus the rolling distance δx, in Fig.B.3,
when the friction coe�cient, noted µ, increases. A link could be made between both
studies, sinceNcyc could be likened to δx and the coating was modeled by multiple het-
erogeneities. AlsoD could be correlated to εpmax because the damage criteria used and

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI154/these.pdf 
© [K. Amuzuga], [2016], INSA Lyon, tous droits réservés



222 identification of overall behavior

its evolution is analog to the plastic strain one. The damage integration is described by
a set of relations as:

f(ε,D) = ε̃−K(D)

f < 0 ⇔ Elastic behavior
f = 0 ⇔ Damage �ow

D =
ε̃− εd0
εR − εd0

σ = (1−D)E0ε

f damage yield function
ε̃ Mazars’s equivalent strain modi�ed
K(0) = εd0 damage threshold for virgin material
εd0 limit strain beyond which damage occurs
εR strain to failure
E0 Initial Young’s modulus

Those relations reminds the plasticity yield function equations used to determine
ε
p
max.

(a)

−2 −1 0 1 2
0
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8
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εp m
a
x
(%

)

Heterogeneous f = 0 Heterogeneous f = 0.05

Heterogeneous f = 0.1 Heterogeneous f = 0.15

Heterogeneous f = 0.2 Heterogeneous f = 0.25

(b)

Figure B.3: Damage evolution according to friction coe�cient: (a) Typical evolution of the dam-
age as a function of the number of cycles according to friction coe�cient, see [129]
for more details on the calculation input data. (b) Evolution of the plastic strain as
a function of the rolling distance according to the friction coe�cient
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