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Non-Linear Mechanics of Generalized Continua and Applications
to Composite Materials

Abstract
The micro-structure of materials is an essential feature for the design of engineering structures

with improved performances. Generalized continuum theories are able to account for the effect of
microstructure on the overall mechanical behavior of architectured materials. Indeed, one of the
most promising fields of application of generalized continuum theories is that of the study of the
mechanical behavior of woven fibrous composite reinforcements. Such metamaterials are constituted
by two order of fibers which have very high elongation stiffness, but very low shear stiffness. This
strong contrast in the mechanical properties of the mesostructure is such that the homogenized
material must necessarily be described at least in the framework of second gradient theories. As a
matter of fact, classical Cauchy theories are not sufficient for the description of specific deformation
patterns usually observed in such fibrous composites such as concentration of high gradients of
strains in thin boundary layers which can be seen to be related to flexural strains of the fibers. It is
worth to stress the fact that a classical Cauchy continuum theory is not able in any case to take into
account the effect of flexural bending stiffness of the yarns on the overall mechanical behavior of
fibrous composite reinforcements. On the other hand, it is easy to understand that such a mesoscopic
deformation mechanism may have an important macroscopic effect on the overall deformation of the
considered material, at least for particular boundary conditions and/or applied external loads. It
can be easily understood that the bending of the yarns, which takes place at lower scales, must be
necessarily taken into account if one wants to fully characterize the behavior of fibrous composite
reinforcements from a mechanical point of view. The macroscopic manifestation of mesostructure
could indeed play an important role when considering the molding process of the reinforcement
which may sometimes take complicated shapes so allowing the conception of complex engineering
structural elements. It is clear that, during the forming process of the raw woven composite, the
flexural rigidity of the yarns may play an important role on the final deformation of the blade. It is
for this reason that a generalized continuum theory is mandatory if one wants to correctly predict
the final deformed shape of the considered fiber reinforcements while remaining in a continuum
framework.

In the light on such considerations, we propose to use a second gradient continuum theory
to completely describe the mechanical behavior of woven fibrous composite reinforcements. The
introduced second gradient model is used to simulate the so-called bias extension test on 2D woven
reinforcements and a three point bending test on thick composite interlocks. In both cases, the effect
of the bending of the yarns at the mesoscopic level is seen to be essential to correctly describe the
deformation of the specimens at higher scales.

Keywords: Woven fibrous composite reinforcements, second gradient theories, generalized con-
tinua, bias extension test, three point bending of composite interlocks.
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Mécanique non-linéaire des milieux continus généralisés et applica-
tions aux matériaux composites

Résumé
La microstructure des matériaux est un levier essentiel pour l’optimisation des propriétés

mécaniques des structures. Le passage à la description continue de la matière conduit souvent
à une simplification trop drastique de la réalité et à une perte significative d’informations.
Les développements de la mécanique des milieux continus, des moyens de calcul numérique et
des techniques expérimentales permettent aujourd’hui de rendre compte des effets d’échelle
observés en mécanique des matériaux et des structures. Le but primaire de cette thèse
a été celui de développer un modèle continu de gradient supérieur pour intégrer dans la
modélisation continue la morphologie complexe des microstructures ainsi que les longueurs
caractéristiques associées. Ce modèle continu généralisé a ensuite été utilisé pour décrire
en détail le comportement mécanique des renforts de composites textiles. Des simulations
numériques qui montrent l’importance des termes de deuxième gradient pour la correcte
description du comportement mécanique de ces matériaux ont été développées dans le cadre
de cette thèse à l’aide du software COMSOL Multiphysics. Il a été montré que des théories
de deuxième gradient sont nécessaires pour intégrer dans la modélisation continue l’effet
de la flexion des mèches au niveau mesoscopique. Ceci a été mis en évidence pour le cas
du “bias extension test” et de la flexion trois points d’un interlock 3D de composite. Pour
le cas du “bias extension test”, les termes de deuxième gradient permettent la description
de certaines couches limites qui déterminent une zone de transition entre deux régions à
angle de cisaillement constant. Pour ce qui concerne la flexion trois points des interlocks
de composite, il a été montré que les termes de deuxième gradient sont nécessaires pour
décrire correctement la déformée des deux extrémités de la poutre et la courbure au milieu
de l’échantillon. Dans les deux exemples traités, l’effet de la flexion des mèches à l’échelle
mesoscopique est le mécanisme principal donnant lieu aux effets de deuxième gradient.

Mots-Clés: Renforts fibreux de composite, théories de second gradient, milieux continus général-
isés, bias extension test, flexion trois points d’un interlock de composite.
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General Introduction

It is nowadays well accepted that the microstructure of materials can be suitably tailored in order
to design engineering metamaterials which show better performances and new functionalities. In
this optic, a class of materials which is gaining more and more attention is that of so-called com-
plex materials, e.g. materials exhibiting different mechanical responses at different scales due to
different levels of heterogeneity. In fact, the overall mechanical behavior of such materials is macro-
scopically influenced by the underlying microstructure especially in presence of particular loading
and/or boundary conditions. Therefore, understanding the mechanics of meso- and micro-structured
materials is becoming a fundamental issue in engineering.

Complex metamaterials may exhibit superior mechanical properties with respect to more com-
monly used engineering materials, also providing some advantages as easy formability processes,
light weight and exotic behavior with respect to wave propagation. In this manuscript we address
the problem of the description of the mechanical behavior of a class of complex engineering materials
which are known as woven fibrous composite reinforcements. These materials possess a hierarchical
microstructure, since they are constituted by woven tows which are themselves made up of thousand
of fibers. We will show that the meso- and micro-structure of fibrous composites actually have a
strong impact on the overall mechanical behavior of the macroscopic engineering piece. In particular,
the macroscopic manifestation of the microstructure of such materials is accounted for by i) the use
of suitable orthotropic constitutive laws which allow for the description of two privileged directions
in the material corresponding to warp and weft and ii) the introduction of second gradient terms in
the strain energy density which permit to take into account the bending stiffness of the yarns.

A first gradient continuum orthotropic model is not able, alone, to take into account all the
possible effects that the microstructure of considered materials have on their macroscopic deforma-
tion. More precisely, some particular loading conditions, associated to particular types of boundary
conditions may cause some microstructure-related deformation modes which are not fully taken into
account in first gradient continuum theories. This is the case, for example, when observing some
regions inside the materials in which high gradients of deformation occur, concentrated in relatively
narrow regions. One way to deal with the description of such boundary layers, while remaining in
the framework of a macroscopic theory, is to consider so-called “generalized continuum theories”.
Such generalized theories allow for the introduction of a class of internal actions which is wider than
the one which is accounted for by classical first gradient Cauchy continuum theory. These more
general contact actions excite additional deformation modes which can be seen to be directly related
with the properties of the microstructure of considered materials.

The main aim of the present work is to explicitly show the interest of using second gradient
theories for the modeling of the mechanical behavior of fibrous composite reinforcements. This task
will be accomplished by presenting a second gradient modeling for two important experimental tests
on such materials, namely the “bias extension test” on 2D woven fabrics and the three point bending
of thick composite interlocks. We will show, by presenting suitable numerical simulations, that in
both cases the second gradient elastic moduli are able to describe the effect of the bending stiffness
of the yarn on the macroscopical behavior of considered materials.

This manuscript is constituted by six chapters. In the first one the hierarchical microstructure of
fibrous composite reinforcements is described in detail and some elementary tests, usually performed
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GENERAL INTRODUCTION 15

in order to characterize the mesoscopic and macroscopic behavior of these materials, are presented.
In chapter 2 the fundamental concepts and methods of the first gradient theory are recalled:

representation theorems, some classical constitutive laws for isotropic materials and the strong form
of the equations of motion are presented.

In the chapter 3 the basic kinematics of the micro-structured continua in the framework of
nonlinear regime is presented and the linear theory proposed by Mindlin [MIN64] is discussed through
a comparison with some new models recently proposed in the literature [NEF13, MAD13]. It is also
shown how to obtain a particular generalized theory by constraining a more general one by imposing
suitable constraints. We finally derive the equations of motion in strong form for a micromorphic
continuum by means of a suitable variational procedure.

In chapter 4 some well-established facts about second gradient theories are recalled and, in
particular, the general equations of motion in strong form for a hyperelastic, second gradient material
are presented. Finally, a generalized Hooke’s law for linear second gradient material is presented to
the sake of introducing some basic tools about constitutive modeling in second gradient theories.

In chapter 5 a technologically important class of fibrous composite reinforcements is considered
and their mechanical behavior is described at finite strains by means of a second gradient, hypere-
lastic, orthotropic continuum theory which is obtained as the limit case of a micromorphic theory.
The case of the bias extension test is analyzed and it is shown that second gradient energy terms
allow for an effective prediction of the onset of internal shear boundary layers which are related to
in-plane bending stiffness of the yarns.

Finally, in chapter 6 we propose to apply a suitable second gradient model to the case of the
three point bending of composite interlocks. We show that second gradient terms are able to account
for the effect of the out-of-plane bending stiffness of the yarns on the macroscopic bending of the
specimen.
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Chapter 1

Modeling the mechanical behavior of
woven fibrous composite reinforcements

In this chapter we show that fibrous composite reinforcements are materials with hierarchical mi-
crostructure. Indeed, different scales of heterogeneities may be identified, namely the microscopic
scale (scale of the fiber), the mesoscopic scale (of the yarns) and the macroscopic scale (of the engi-
neering piece). The micro- and meso-structure of the considered materials play a crucial role on the
overall mechanical behavior of the material at the macroscopic scale. We try here to specify which
are the main characteristics of the micro- and meso-structures which have a macroscopic manifes-
tation on the overall behavior of woven fibrous composite reinforcements. Some simple mechanical
tests are presented which allow to characterize some basic macroscopic deformation modes as related
to the meso- and microscopic ones. All the considerations exposed in this chapter are at the basis
of the conception of suitable macroscopic hyperelastic constitutive laws to be used in the modeling
of fibrous composite reinforcements in the framework of a continuum theories.
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1.1 General introduction

By definition, a composite material is a combination of two or more constituents which are not
miscible and whose resultant properties are improved with respect to those of the individual com-
ponents used separately. Composite materials are usually constituted by two phases, namely the
reinforcement and the matrix. These two phases posses different functionalities: the reinforcement
gives the fundamental mechanical properties to the material and the matrix plays the role of co-
hesion between the different components. The main advantages which can be found in the use of
these materials are light weight, improved strength and stiffness and the possibility of constructing
new materials, designed ad hoc, by choosing in an appropriate way the mechanical properties of
the constituents. There exists several examples of natural or artificial materials which respect the
definition given above and which can henceforth be classified as composite materials. Among them
we list, for example, wood, bone, mud brick and concrete, etc.

In the context of this manuscript we will be interested in the description of the mechanical be-
havior of some particular composite materials which are known as woven fiber-reinforced com-
posites. Such materials are conceived by molding the raw fiber reinforcement into the desired shape
and then injecting a polymeric resin which confers the final stiffness to the engineering piece. In
the framework of the present thesis we will consider the study of the mechanical behavior of the
raw woven reinforcement alone, before the injection of the polymeric resin. This study is of crucial
interest for an accurate description of the forming process of such reinforcements. The tools which
are needed to develop a complete theoretical framework for the description of the behavior of such
materials are not trivial since different complicated aspects must be taken into account. We will
show in the remainder of this thesis how the following points must be addressed when dealing with
the modeling of fibrous composite reinforcement:

• development of suitable hyperelastic constitutive laws which allow for the description of an
average material behavior at large strains,

• development of a generalized continuum theory which is able to account for the effect of the
presence of the mesostructure on the overall mechanical behavior of the considered material.

To approach the first problem, we will follow the efforts made in [CHA11b, ORL12, CHA12] in which
suitable hyperelastic, orthotropic constitutive laws are given for fibrous composite reinforcements.

The second problem is the key point of the present work, since different approaches are indeed
possible in order to account for the presence of microstructure on the homogenized behavior of
the material a higher scales (see e.g. homogenization methods, multi-scale methods etc.). One of
the possible approaches is that of remaining in the framework of a continuum theory, while trying
at the same time to account somehow for the effect of microstructure on the overall behavior of
the considered materials. This can be done (see e.g. [FOR06, ERI01, MIN64]) by using so called
generalized continuum theories which will be presented in detail in the body of this manuscript.

Before approaching more closely the problem of the mechanical modeling of fibrous composite
reinforcements, we recall in the following subsections some general aspects concerning composite
materials.

1.1.1 The Matrix

There are different types of matrix that can be used for conceiving a composite materials and the
choice usually depends on different aspects concerning the characteristics that the composite material
must posses. In general, all these matrices can be schematically divided in two categories:

• the organics matrices,

• the mineral matrices.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



CHAPTER 1. FIBROUS COMPOSITE REINFORCEMENTS 19

Examples of materials belonging to the first category are thermoplastic polymers, thermosetting
polymers and elastomers. On the other hand, examples for the second category are ceramics, metals
and graphite. The first category is the most used in the industry, while the second is are generally
employed to build advanced materials or when the environment is not suitable for the use of organic
matrix (high temperature and/or unfavorable humidity).

1.1.2 The Reinforcements

The reinforcements may be of various type and are generally classified by their geometry. One can
henceforth classify them as

• particulate reinforcements: this type of reinforcement consists in a series of inclusions dispersed
in the matrix. Such inclusions may be of different type: granular, lamellar or needle-shaped.

• reinforcements with discontinuous fibers: such reinforcementss are constituted by fiber of short
length that posses generally a random orientation.

• reinforcement with continuous fibers: this type of reinforcement is constituted by an assembly
of continuos fibers which posses a length comparable to the dimensions of the workpiece. These
fibers are generally oriented in specific directions in order to confer to the reinforcement specific
mechanical properties.

The fibers which constitute the reinforcement (continuous or not) may be of different nature: glass,
metal, etc. In this manuscript, as already mentioned above, we will focus our attention on the
reinforcements with continuos fibers and, in particular, on the so called class woven fibrous rein-
forcements.

1.2 Woven fibrous composite reinforcements

The reinforcements that will be the object of the study exposed in this manuscript are classified as
woven fibrous reinforcements. Such materials are constituted by packages of fibers, which are called
yarns, that are woven following more or less complex weaving patterns. In general, one can classify
the weaving as:

• 2D weaving;

• 2.5D weaving (interlocks);

• 3D weaving (tridimensional);

A brief description of each of these three classes can be found below.
In this manuscript we will address the problem of the mechanical modeling of such reinforcements

and we will present some examples concerning the characterization of the mechanical behavior of
2D and 2.5D fibrous reinforcements.

1.2.1 2D Weaving

This type of weaving is obtained by interleaving two networks (warp and weft), which are the
preferred directions of the fabric. There exists three principal patterns for the 2D weaving:

• the plain weave is the more simple pattern: each warp yarn passes alternately over and under
each weft yarn (see Fig. 1.1);

• the twill (n ×m): the warp yarn passes alternatively over n and under m yarns in the weft
direction by shifting from a given number of yarns at each passage (see Fig. 1.1);
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• the satin: the binding points of the warp and weft are scattered so as to mitigate the diagonal
effect of the twill (see Fig. 1.1).

Plain Weave Twill Satin

Figure 1.1: Different pattern for the 2D weaving.

1.2.2 2.5D Weaving - Interlock

Interlocks are 2.5D woven reinforcements, in which multiple layers of warp are joined together by a
plurality of weft. This structure of interwoven layers avoids the problems of delamination that may
occur in multi-layered materials obtained by superimposing independent woven layers and permits
the realization of thick reinforcements (see e.g. Fig. 1.2). Such materials are very expensive and are
hence reserved for advanced aeronautics and aerospace applications.

Figure 1.2: Example of 3D woven composite interlock reinforcement [ORL12] and general principle
of the interlock weaving pattern.

1.2.3 3D Weaving

This type type of weaving is obtained by adding a complete third direction of weaving to the warp
and weft described above. Such materials differ from the 2.5D described above since they are thicker
and they present a third material direction. The application of such reinforcements is nowadays
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rather limited since the third weaving directions usually produces spurious concentrations of stress
after the forming process and the subsequent injection of the polymeric matrix. Such problem of
stress localization may be deleterious for the engineering structure and is indeed much reduced when
using 2.5D reinforcements.

1.3 Multi-scale mechanical behavior of fibrous composite reinforce-
ments

In the light of the aforementioned description, it becomes clearer that woven composite reinforce-
ments are multi-scale materials and that their macroscopic mechanical behavior is influenced by the
different scales presented by the material. The hierarchical heterogeneity of composite reinforcements
is illustrated in Fig. 1.3, in which three different scales can be recognized:

• the macroscopic scale (left): scale of the specimen;

• the mesoscopic scale (center): scale of the mesh;

• the microscopic scale (right): scale of the fibre.

The study of the mechanical behavior of the material at the different scales itemized above permits a
correct characterization of its phenomenological behavior. Indeed, we will show that the mesoscopic
scale of the material has a visible effect on the overall mechanical behavior at the macroscopic
scale. Such influence of the microstructure on the averaged behavior of the material has a twofold
nature related to: i) the orthotropy conferred to the material by the presence of the woven yarns
and ii) the effect of some mesostructural properties (as the effect of the bending stiffness of the
yarns) on the macroscopic deformation mechanisms. We will show in this manuscript how the first
point concerning the orthotropy of the material will be approached by means of the use of suitable
hyperelastic constitutive laws, while the second point will be addressed by using generalized, second
gradient, continuum theories.

Figure 1.3: Macro, meso and microscopic scale of the composite reinforcement.

1.3.1 Mesoscopic behavior at the scale of the yarns

The macroscopic behavior of the material is influenced by deformations mechanisms associated to
the deformation of the yarns at the mesoscopic scale. Such mesoscopic deformation mechanisms
are, in turn, influenced by the microscopic structure of the material, i.e. by the behavior of the
fibers which constitute the yarns. In the remainder of this manuscript we will try to clarify how
the microscopic and above all the mesoscopic properties of the considered material influence the
deformation of the macroscopic piece. To do so we will need to

• develop suitable first gradient hyperelastic, orthotropic constitutive laws at the macroscopic
scale and
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• develop suitable second gradient macroscopic constitutive laws in order to account for the
effect of the bending stiffness of the yarns (and hence of the fibers) at the macroscopic scale.

In order to be able to conceive realistic macroscopic constitutive laws one needs to understand
deeply which are the deformation mechanisms which take place at the mesoscopic scale. To do so,
it is sensible to describe some basic experimental tests which are used in the community of woven
fiber reinforcements and which allows for the measurement of simple mechanical parameters related
to simple deformation mechanisms at the mesoscopic and microscopic scales. The presentation
and description of such experimental tests has then the twofold aim of i) better understanding the
deformation mechanisms which may take place at the mesoscopic (and also microscopic) scale and
ii) propose some simple procedures to measure some mechanical characteristics of the material at
the mesoscopic (or microscopic) scale.

1.3.1.1 Behavior of the Yarn Under Tension

The yarns, as already remarked above, are constituted by many fibers. When a yarn is subjected
to tension a nonlinear behavior can be recognized which is due to the fact that the fibers are
not all stretched simultaneously. Naturally, the type of nonlinearity also depends on the material
which constitutes the yarn (and then the fibers) which may be e.g. glass or carbon, and on the
procedure of fabrication. Nevertheless, when reaching a certain threshold load, corresponding to
which the fibers are all stretched, the yarn starts showing a very high stiffness. When the transition
from the nonlinear behavior to the acquisition of the complete stiffness of the yarn does not have
significant effects on the macroscopic material behavior of the woven fabric, one can also consider, as
a limit case that the fibers are inextensible. The study of the material behavior of woven composite
reinforcements based on such simplifying hypothesis (inextensibility) could be of interest in order
to obtain some “reference” material behaviors starting from which one could then conceive more
complicated constitutive laws. Nevertheless, such study introduces conceptual difficulties related to
the fact that the ratio between the value of the tension stiffness and that of the shear stiffness tends
to infinity. If such limit case could be perhaps analyzed by looking for suitable analytical solutions
obtained imposing some particular loading and boundary conditions, it is instead very delicate to be
treated from a numerical point of view. Indeed, it is known (see [HAM13a, HAM13b]) that when one
consider very high tension stiffnesses (of many orders of magnitude higher than the shear stiffness)
of the yarns then phenomena of locking can be observed when performing numerical simulations
that do not allow to obtain the correct solution to the considered differential problem.

1.3.1.2 Compaction of the Yarn in the Transverse Plane

The compaction of the yarn is defined as the change of the area in the transversal plane to the yarn,
which is the plane orthogonal to the fibers directions. When the yarn is compressed in the direction
orthogonal to its main direction the internal fibers are more closely packed together and fill the
voids initially present in the transversal section of the fibers. We remark that the behavior of the
material in compaction presents an asymptotical behavior: after an initial phase in which the fibers
organize themselves in such a way that the voids are filled, the material shows an increased stiffness.
In particular, the stiffness of the yarn finally tends to the stiffness of the material constituting the
fibers. In addition, is it worth noting that this type of mechanism is difficult to characterize from
an experimental point of view due to the fact that a pure compaction test is difficult to be realized
and reproduced.

1.3.1.3 Shear Behavior of the Yarn

There exist two types of shear modes in the yarns

• the distortion: this deformation mode occurs in the transversal plane of the yarn;
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• the transverse shear : this deformation mode occurs in the direction of the fibers.

The first deformation mode is characterized by the fact that the cross section of the yarn changes
its shape without activating compaction deformation modes. Such deformation mode is due to the
fact that the fibers constituting the yarn slide one with respect to the other in order to adapt the
overall imposed deformation. So, if one considers, for example, a yarn with cross sections which
are initially, let us say, vertical and if a bending deformation is imposed to the yarns, the fibers are
forced to slide one with respect to the other in order to let the yarn assume the desired form and,
at the same time, let the fibers respect the quasi-inextensibility constraint. This internal sliding of
the fibers can be interpreted as a motion of the cross sections (for example a rotation). It is worth
noting that a coupling mechanism can be recognized between the compaction of the yarn and its
distortion: when the yarn is compacted the distortion of the yarn occurs with increased difficulty.
This is sensible since when the fibers are compacted friction mechanisms are more pronounced which
render sliding more difficult.

The transverse shear is a deformation mode in the direction of the fibers and corresponds in
to a sliding between the fibers in the direction of the fibers themselves. As for the distortion,
an increased compaction of the yarn causes a stiffening effect on the transversal shear. It can be
also understood that, being the two quoted deformation modes of the yarns based on the same
microscopic mechanism of fibers’, a coupling exists between them. Both these types of deformation
are difficult to be characterized from an experimental point of view, in particular the stiffening effects
due to compaction.

1.3.1.4 Behavior of the Yarn Subject to Bending

There exist only few studies which concern the behavior of the yarns subjected to bending. This
type of studies, however, is interesting since the bending properties of the yarns can affect the
macroscopical behavior of the specimen. In particular, as we will see in the next chapters, the
fact of neglecting the effect of the bending stiffness of the yarns (and so of the fibers), produces
macroscopic models that are not able to describe all the experimental evidences. As it will be shown
in detail in the remainder of this manuscript, a Cauchy continuum theory is not able to account
for the effect of bending stiffness of the yarns on the macroscopic behavior of the fabric. It is for
this reason that generalized continuum theories (second gradient) may be introduced to palliate this
inconvenience. Such theories are indeed able to account for the macroscopic manifestation of the
mesoscopic bending of the yarns, still remaining in the framework of a continuum theory. In addition
to what said, the characterization of the behavior of the yarn subjected to bending is necessary if
one wants to realize a macroscopic model by the use of suitable homogenization procedures. These
latters, as well-known, start from the characterization of the microstructure and it is evident how
the experimental characterization can be fundamental to determine such microscopic properties.

(a) (b)

Figure 1.4: Bending of the yarn before the lateral expansion (a) and after (b).
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When the mesh is subjected to a three point bending test, three different types of mechanism
are turned on, that are (see Fig. 1.4)

• the transversal shear of the yarn;

• the bending of the fibers which constitute the mesh;

• the lateral expansion of the fibers in correspondence of the central support.

The first mechanism is activated due to the internal sliding of the fibers which takes pace as a
consequence of the fact that they are bending together and that they are almost inextensible. The
activation of the second mechanism is indeed evidently easy to understand. As for the third mecha-
nism, one can imagine that the contact with the central support can indeed let the fibers rearrange
in the horizontal plane.

1.3.2 Macroscopic Behavior

In order to characterize the macroscopic mechanical behavior of woven fibrous composite reinforce-
ments one must start from the conception of suitable elementary material tests that we try to
describe in this section. The tests described here will be subsequently used for the identification
of the first gradient constitutive laws used to describe the homogenized behavior of the considered
material.

1.3.2.1 Uniaxial Extension Test

The behavior of the material subjected to uniaxial tension test results to be nonlinear. This nonlin-
earity is due to the compaction of the yarns and the undulation of the tissue (with the subsequent
straightening). More particularly, when an uniaxial tension test is performed on a given specimen,
two successive phenomena can be observed

• a reduction of the undulation in the direction of the solicitation up to arrive to a complete
straightening of the yarns,

• the elongation of the yarns in the direction of the solicitation.

These two mechanisms give an easy interpretation of the diagram obtained from experimental mea-
surements in the plane force vs imposed displacement (see [CHA11b, ORL12]). In the first phase,
corresponding to the reduction of the undulation of the yarns in the direction of the solicitation, the
material possesses a stiffness that increases as the undulation decreases. When the complete straight-
ening of the solicited yarns is reached, the material offers a constant stiffness which corresponds to
an increasing force measured in function of the elongation of the yarns.

It is worth noticing that the stiffness at elongation showed by fibrous composite reinforcements
strongly depends on the orientation of the yarns with respect to the sides of the considered specimen.
Indeed, if one order of yarns is directed as the side of the specimen which is parallel to the applied
load, then the tension stiffness of the macroscopic material will be the maximum possible. A small
elongation of the macroscopic specimen will be observed due to a reduction of the undulation of
the weaving pattern. On the other hand, if the fibers are not parallel to the side of the specimen
(and hence to the applied load) the resistance to tension is much lower and significant macroscopic
elongations can be observed which are substantially due to pantographic motions of the yarns (see
Fig. 6.7).

Such experimental test can be used to characterize the constitutive behavior at elongations of the
macroscopic pieces. The macroscopic elongation mechanism can be easily activated when considering
standard loading conditions on macroscopic specimens.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



CHAPTER 1. FIBROUS COMPOSITE REINFORCEMENTS 25

1.3.2.2 Biaxial Extension Test

The biaxial extension test is performed by soliciting to tension the material simultaneously in the
warp and weft directions. If one denotes the deformation in one of the solicited observed direction
as εobs (i.e. warp or weft) and the deformation in the orthogonal direction as εorth, is possible to
define the coefficient of the biaxial extension test as

k =
εorth

εobs
, (1.1)

from which different cases of solicitation can be classified

• k = 0 or k = ∞ corresponds to a limit case in which the biaxial test degenerates into an
uniaxial one;

• k = 1 corresponds to an equal solicitation in both direction;

• k = r with r ∈ R corresponds to a solicitation case in which the deformation in the orthogonal
direction is r times the deformation in the observed one.

The results of the test, naturally, depend on the chosen value of the coefficient k and one can
experimentally observe that when k = 1 the deformation in the observed direction is due to the
compaction of the yarns, indeed when k = 0 or k = ∞ the deformation is due to the reduction
of the undulation (that involves the shear of the yarns in its transversal plane). When k = r the
two mechanism are in competition. The biaxial extension test can be hence used if one wants to
understand better which is the effect of such two deformation mechanisms on the overall mechanical
behavior of the macroscopic piece.

1.3.2.3 Transversal Compression Test

The transversal compression test is a test realized by compressing a specimen of composite rein-
forcement between two parallel plates. This test permits the characterization of the behavior of the
material in the direction orthogonal to the plane of warp and weft. Performing the test, one can
observe that this behavior results to be nonlinear, since the the contact between the yarns and fibers
increases when the plates approach one to the other. In oder words, the fact that the two plates
approach one to the other produces a compaction of the yarns and, as a consequence, a compaction
of the specimen.

Such an experimental test can be used for the constitutive characterization related to compaction.
Such deformation mechanism can be easily activated when considering standard loading conditions
on macroscopic specimens.

1.3.2.4 Shear Tests in the Plane of the Reinforcement (determination of the shear
stiffness)

The shear tests conceived for composite reinforcements show that the associated deformation mode is
a privileged mode also when considering more complicated macroscopic deformations. This means
that the stiffness of the material associated to this deformation mode (which we will call shear
stiffness) is very low when compared to the others. The macroscopic deformation associated to shear
is basically due to the change of the angle between yarns at the mesoscopic scale. The behavior
of the reinforcement subjected to shear in the plane, results to be highly nonlinear. Some studies
based on the technique of the image correlation [DUM03a, DUM03b] have shown that, in an initial
phase of the test, the two families of yarns rotate in a relative way (like rigid bodies connected by
internal pivots) and hence the shear force associated to this deformation is relatively low. When the
shear angle variation between yarns becomes larger than 40◦ (and lower than 50◦) a stiffening in
the shear behavior is observed and the mechanism of deformation drastically changes. In this phase
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the relative motions described above are replaced by a contact between the yarns (and their relative
lateral compaction), so to this fact corresponds to an increased stiffness.

Two simple tests permit the study of the behavior of the composite reinforcement subjected to
shear in the plane: the picture frame test and the bias extension test. Due to the important effect
that such macroscopic deformation mode has on the deformation of specimens subjected to more
complex loading conditions it is essential to set up experimental procedures which are able to give
precise informations in this sense.

(a) (b)

L L

d

γ/2 γ/2

Figure 1.5: Kinematic of the picture frame test. (a) Specimen before the deformation (b) specimen
after the imposed displacement d.

1.3.2.4.1 Picture Frame Test In the picture frame test the composite reinforcement is placed
into an articulated quadrilateral structure, that possesses initially a square shape. By imposing a
displacement d at one node of the structure, see Fig. 1.5, the reinforcement is subjected to pure
shear and a simple kinematical relation furnishes the shear angle variation γ as a function of the
imposed displacement d and the length of the edge of the articulated square , say L:

γ =
π

2
− 2 arccos

(
2d+

√
2L

2L

)
. (1.2)

1.3.2.4.2 Bias Extension Test The bias extension test is performed on rectangular samples
of composite reinforcements, with the height (in the loading direction) relatively greater (at least
twice) than the width, and the yarns initially oriented at ±45-degrees with respect to the loading
direction. The specimen is clamped at two ends, one of which is maintained fixed and the second
one is displaced of a given amount. The relative displacement of the two ends of the specimen
provokes angle variations between the warp and weft: the creation of three different regions A, B
and C, in which the shear angle between fibers remains almost constant after deformation, can be
detected (see Fig. 1.6). In particular, the fibers in regions C remain undeformed, i.e. the angle
between fibers remains at 45◦ also after deformation. On the other hand, the angle between yarns
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becomes much smaller than 45◦ in regions A and B, but it keeps almost constant in each of them.
In particular if in the zone A the angle is γ it will be of γ/2 in the zone B . Also in this case, a simple
kinematical relation furnishes the shear angle variation as function of the imposed displacement and
of the geometry of the specimen:

γ =
π

2
− 2 arccos

(√
2

2

(
1 +

d

L0 − w0

))
. (1.3)

A
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Figure 1.6: Kinematic of the bias extension test.

It is worth noting that the kinematical relations (1.2) and (1.3) are deduced by implicitly using
the assumption that the yarns are inextensible so that only pantographic motions are activated at
the scale of the yarns which allow to univocally relate the angle variation to the geometry of the
specimen and the imposed displacement. As we will show in the remainder of this manuscript,
other deformation mechanisms actually intervenes in the bias extension test which are related to the
bending of the yarns at the mesoscopic scale. Such mesoscopic bending actually creates transition
layers between the regions A, B and C which allow to shift from one value of the angle to the other.
It is for this reason that the bias extension test, when simulated in the framework of second gradient
theories, can be useful additional informations about the bending stiffness of the yarns.
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(a) (b)

d

Figure 1.7: Kinematic of the transversal shear test. (a) Specimen before the deformation (b) speci-
men after the imposed displacement d.

1.3.2.5 Transversal Shear Test

This test is performed in order to characterize the behavior of the composite reinforcement when it is
subjected to transversal shear. The machine, depicted in Fig. 1.7, imposes on the specimen (shaped
as a parallelepiped) a kinematic of pure transversal shear in order to solicit the only transversal shear
deformation mode. The test is usually performed twice by orienting the specimen in the direction
of the warp and weft, since the material, if not perfectly balanced, may have different stiffnesses in
these two directions.
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Chapter 2

Continuum Mechanics Preliminaries:
First Gradient Theory

In this chapter the fundamental concepts and methods of the first gradient theory are recalled.
First, the basic kinematical relations and the measures of strain are presented. Then, the concept of
internal contact actions (stress) are introduced. At the end of chapter, representation theorems for
the functional dependence of the strain energy density with respect to the invariants of deformation
are detailed, both for isotropic and anisotropic media. Some classical constitutive laws for isotropic
materials are also presented. Finally, the strong form of the equations of motion for a classical
Cauchy continuum are derived by means of a variational principle. It is worth noting that all these
aspects are “classical” and a more extensive and systematical presentation of these arguments can
be found in e.g. in [CIA88, HOL00b, SIL97].
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2.1 Finite Kinematics

A continuum body B is a set of material points that are in bijective correspondence, at each in-
stant of time, with the geometrical points of a region of the Euclidean Space, denoted as R3. The
abstraction of continuum body is, clearly, an approximation since the real structure of the mate-
rials is discontinuous, but it is necessary for performing the classical mathematical operation (e.g.
differentiation, etc...) and commonly accepted since the mathematical models developed under this
assumption are suitable for the description of many experimental evidences.

Under the infinite possible configurations of the body, we call reference configuration B0 and
current configuration B, the configurations of the body at time t = 0 and t ∈ R+, respectively. The
two configurations are equivalently called Lagrangian and Eulerian configuration and the material
points are labeled as X and x, respectively. The generic nonlinear transformation that maps the
reference configuration into the current one defined as

x = χ (X, t) (2.1)

is called placement. A fundamental hypothesis is that χ (X, t) is one-to-one in X in such a way that
compenetration of matter is excluded. Moreover, the placement map is usually assumed to be a C1

diffeomorphism, in order to be able to perform the space derivatives of this fundamental kinematical
field. In addition, we require that

det (∇χ) > 0 (2.2)

in which ∇ (·) stands for the gradient with respect to the Lagrangian variable X.
The vector field

u (X, t) = χ (X, t)−X (2.3)

is called displacement field.

2.1.1 Deformation Gradient

The second order tensor

F = ∇χ, Fij =
∂χi
∂Xj

(2.4)

is called the deformation gradient. This tensor has nine independent components and it characterizes
the motion in the neighbor of a material point. In view of Eq. (2.3) and Eq. (2.4) we can also write1

F = I +∇u, Fij = δij +
∂ui
∂Xj

(2.5)

in which by I is denoted the 3× 3 identity matrix and by δij the Kronecker delta.

2.1.2 Line, Area and Volume Element Transformation

With the definition of the deformation gradient it is possible to define the deformation of line,
area and volume elements from the reference to the current configuration. So, an infinitesimal line
element dX in the reference configuration is transformed into its image in the current configuration
through the formula

1Here and in the sequel, we present when possible formulas both in absolute notation and in its counterpart with
Levi-Civita index notation. In the body of the manuscript one notation will be preferred to the other for the sake of
consistency when no confusion can arise.
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dx = F · dX, dxi = FijdXj , (2.6)

where from now on we indicate by a central dot a simple contraction between two tensors of any
order greater than one.

Analogously, Piola transformation establishes a relation between an infinitesimal Lagrangian
area dS and its Eulerian image ds (see e.g. [CIA88, HOL00b])

ds = det (F) F−T︸ ︷︷ ︸ ·
=:cof(F)

dS = cof (F) · dS. (2.7)

In the previous formula dS := NdS, ds := nds, with N, n unit normal vectors with respect to the
two elements of area dS and ds.

Finally, the deformation of a volume element dV in the reference configuration is obtained by
the well known change of variables formula

dv = det (F) dV. (2.8)

2.1.3 Deformation Measures

In this section we introduce some deformation measures which are usually encountered in continuum
mechanics and which will be useful in the following for the formulation of suitable first and second
gradient constitutive theories. We want to stress the fact that the introduction of such deformation
measures in not unique. We will present different deformation measures which can be used in various
contexts with the aim of describing at best the available experimental evidences. For example, a
logarithmic deformation measure is introduced [NEF14a, NEF14b] with the main scope of showing
that such a measure can sometimes be more realistic than others to describe the deformation of
some materials like e.g. rubber.

B0

B

F

R

R
U

V

Figure 2.1: Geometric representation of the polar decomposition.

2.1.3.1 Polar Decomposition

The deformation gradient can be decomposed in a multiplicative form through the polar decompo-
sition, and one can obtain:
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F = R ·U = V ·R (2.9)

which is called right and left polar decomposition. In Eq. (2.9) R is an orthogonal tensor (i.e.
RT = R−1 and det (R) = 1) and it represents a rotation, and U and V are symmetric and definite
positive tensors. These two tensors are called right and left stretch tensor respectively and are linked
via the rotation tensor through the formula

V = R ·U ·RT . (2.10)

The right and left polar decomposition have a direct geometric interpretation that is depicted
in Fig. 2.1 (which is 2D only to ensure a rapid interpretation): the deformation of a body, under
the action of a constant F, can be obtained first by stretching it by means of U and later by the
application of the rotation R; equivalently, the same result can be obtained first by the application
of the rotation R and later by applying the stretch V.

Two important tensors, related to the right and left stretch tensors, are the right (C) and left (B)
Cauchy-Green tensor (this latter sometimes referred to as Finger tensor). Such tensors are defined
as

C = FT · F = (R ·U)T ·R ·U = UT ·RT ·R ·U = UT ·U = U2, Cij = FhiFhj =
∂χh
∂Xi

∂χh
∂Xj

B = F · FT = V ·R · (V ·R)T = V ·R ·RT ·VT = V ·VT = V2, Bij = FihFjh =
∂χi
∂Xh

∂χj
∂Xh

(2.11)
and are linked via the formula

B = R ·C ·RT . (2.12)

2.1.3.2 Different Types of Strain Measure

Suitable strain measures useful for applications are the Green-Lagrange strain tensor

ε =
1

2
(C− I) , εij =

1

2
(Cij − δij) (2.13)

and the Almansi strain tensor

e =
1

2

(
I−B−1

)
, eij =

1

2

(
δij −B−1

ij

)
(2.14)

that both become identically zero when the motion of the body is rigid.
It is worth noting that this is not the only way for the quantification of strain. As a matter of

fact, a family of Lagrangian strains is defined by (see [SET64, HIL70])

ε(m) =

{
1
m (Um − I) m 6= 0

ln [U] m = 0
(2.15)

in which ln [·] stands for the tensor logarithm and m ∈ R . Analogously a family of Eulerian strains
can be introduced as

e(m) =

{
1
m (Vm − I) m 6= 0

ln [V] m = 0.
(2.16)

The two family of strain are linked via the formula
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e(m) = R · ε(m) ·RT . (2.17)

Using the spectral decomposition theorem Eq. 2.15 can be rewritten as

ε(m) =

3∑
i=1

g (λi) gi ⊗ gi (2.18)

in which ⊗ stand for the classic dyadic product, g (λi) are the principal strains, expressed by the
formula

g (λi) =

{
1
m (λmi − 1) m 6= 0

ln (λi) m = 0.
(2.19)

λi are the principal stretches and gi the principal directions.

0.0 0.5 1.0 1.5 2.0
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m = 2

m = 1

m = 0 m = −2

Figure 2.2: Principal strain as function of the principal stretch.

In Fig. 2.2 the principal strain as a function of principal stretch is presented, for different
(integer) value of m, namely Green-Lagrange (m = 2), Biot (m = 1), Hencky (m = 0) and Almansi
(m = −2). We stress the fact that all the strain measure vanish when the principal stretch are equal
to one (i.e. when the deformation is locally a rigid rotation).

2.2 Internal Contact Actions

In this section we recall the concept of the internal actions (stress) and we discuss briefly the property
of the traction vectors and stress tensors. Finally, different stress tensors are introduced, namely
Cauchy, Piola-Kirchhoff (first and second) and Kirchoff.
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Figure 2.3: Traction vector in the current and reference configurations.

2.2.1 Cauchy Stress

The external forces that can act on a body may be classified as surface or body forces. The surface
forces represent the contact actions exerted by the environment on the body (e.g. the pressure
exerted by the wind on a surface); the body forces represent the “action-at-a-distance” that the
environment exert on the body (e.g. the gravitational force). Under this external action (but not
only) the body is solicited and this solicitation causes the onset of internal actions which finally give
rise to the deformation of the body.

Let us consider a body that occupy the region B0 ⊂ R3 with boundary ∂B0 in the reference
configuration, loaded by some external forces on a part of it that lead the body in the current
configuration B with boundary ∂B, as indicated in Fig. 2.3. We postulate that this external
solicitation causes the onset of internal actions per unit area. Under this postulation, if we cut
the current configuration of the body by a plane π with normal n, passing through a given point
x ∈ π ∩ B at a given time t ∈ R+, and if we consider a small neighbor ds of x ∈ π ∩ B, the two
parts of the body exchange through this small region internal contact actions with resultant force
df (resultant couples dm are not consider because it can be proved that they cannot be sustainable
by a first gradient medium) . By our assumption, we require that for every point x ∈ π ∩B and for
the surface element ds with normal n

df = tds. (2.20)

The vector t = t (x, t,n) is called Cauchy traction vector and represents the force per unit area
exerted on a surface element ds with normal n. We stress the fact that this vector is defined in the
current configuration, then it is the “real” internal action acting on the body. As stated above, the
Cauchy traction vector depend, at given time t ∈ R+, on the position x and on the normal n; an
important result that links the traction vector to the normal n in a fixed point x and at a given
time t ∈ R+, is the Cauchy’s stress theorem. This theorem states that there exists a unique second
order tensor σ = σ (x, t) such that

t (x, t,n) = σ (x, t) · n, ti = σijnj . (2.21)

The tensor σ = σ (x, t) is called Cauchy stress tensor and it can be proved that it is a symmetric
tensor (by imposing the balance of moments).

2.2.2 First Piola-Kirchhoff Stress

In spite of what stated above, one can define a traction vector defined on the initial configuration
and is are such that

df = TdS. (2.22)
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This traction vector, that acts on an infinitesimal surface dS of the point X = χ−1 (x, t) with
normal N, is the first Piola-Kirchhoff traction vector. It represents the internal contact action
referred to the reference configuration. The Cauchy theorem is also valid for the first Piola-Kirchhoff
traction vector, then

T (X, t,N) = P (X, t) ·N, Ti = PijNj . (2.23)

in which the second order tensor P is called first Piola-Kirchhoff stress tensor. The first Piola-
Kirchhoff stress tensor, in spite of the Cauchy stress tensor, is not symmetric.

2.2.3 Kirchhoff Stress

Another stress tensor can be defined through the Cauchy stress tensor σ and the volume ratio det (F)

τ = det (F)σ, τij = det (F)σij (2.24)

in which the tensor τ is referred as Kirchhoff stress tensor.

2.2.4 Second Piola-Kirchhoff Stress

The second Piola-Kirchoff stress tensor S is defined as the pulled-back of the Kirchoff stress tensor
τ . This tensor is a symmetric tensor (proof omitted) that not have a physical interpretation. It is
defined as

S = F−1 · τ · F−T , Sij = F−1
ih τhkF

−1
jk . (2.25)

2.2.5 Relations between Stress Tensors

The following relationships between the stress tensors defined above can be checked

P = det (F)σ · F−T , Pij = det (F)σihF
−1
jh

S = F−1 ·P, Sij = F−1
jh Phj

S = det (F) F−1 · σ · F−T , Sij = det (F)F−1
ih σhkF

−1
jk .

(2.26)

2.3 Hyperelastic Constitutive Laws

In this section we introduce the concept of hyperelastic material and we present some well known
representation theorems for isotropic, transversely isotropic and orthotropic materials. Such rep-
resentation theorems specify the functional dependence of the strain energy density on given sets
of invariants of the Cauchy-Green deformation tensor. The results provided by such theorems are
really useful for the effective construction of explicit constitutive laws which fit at best the available
experimental evidences on the materials that one wants to model.

At the end of this section, we give some examples of explicit constitutive laws for isotropic
materials which are of large use in mechanics. Such isotropic laws can be very effective to model
the mechanical behavior of simple materials which can indeed be considered isotropic, but are
not sufficient to model the complex materials which are the fibrous composite reinforcements. Such
explicit isotropic constitutive laws are given here as an example to get familiar with standard results.
We leave to the remainder of this manuscript (see Chap. 5 and 6) the introduction of suitable explicit
orthotropic constitutive laws which will be able to correctly model fibrous composite reinforcement.
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2.3.1 General aspects

Amaterial is said to be hyperelastic or Green-elastic material if there exist a scalar functionW , called
Helmhotz free energy function starting from which one can derive the stress-strain relationships .
In the case in which W = W (F) depend only on F, the Helmholtz function is referred to as strain-
energy function or stored-energy function. In the above description, the homogeneity of the medium
has been assumed, then the function W depends only on F. A more richer description could require
that the function W depends also on the position of the material point in the medium, which is the
case for materials which are macroscopically heterogeneous. In this manuscript we limit ourselves
to consider strain energy densities which are homogeneous at the macroscopic scale and we will
introduce the possibility of microscopic heterogeneity by means of second gradient or micromorphic
models (see Chap. 5 and 6).

With the aim of defining a suitable and consistent constitutive law for considered materials, the
strain-energy function must satisfy the fundamental requirement itemized below

• The function W must be differentiable with respect to F;

• The function must vanish in the the reference configuration (normalization condition), so that
W (I) = 0;

• The function W increases with the deformation, so that W (F) > 0;

• The function W must satisfy the growth condition{
W (F)→∞ as det (F)→∞
W (F)→∞ as det (F)→ 0+

(2.27)

this condition possesses a physical meaning: an infinite energy is needed for expanding a contin-
uous body in an infinite range or compressing it in a point with vanishing volume.

• The function must respect the principle of frame indifference (objectivity): the energy does
not change under a change of Galilean observer

W (F) = W (QF) (2.28)

for all orthogonal tensor Q.

• The energy must respect the symmetry group of the material

W (F) = W (FQ) (2.29)

for every Q ∈ G ⊂ SO(3), in which G is the symmetry group of the material.
It is important to note that the the condition of objectivity expressed by (2.28) is automatically

satisfied if one choses the right Cauchy-Green tensor as argument of W (i.e. W = W (C)) .

2.3.2 Representation Theorem for Isotropic Materials

A material is said to be isotropic if its response, in terms of stress-strain relation, is the same in all
possible direction (see e.g. [CIA88, RAU09]). The symmetry group for such material is represented
by all rotations and all reflections (i.e. G = O (3)). Then, the well known representation theorem
for the isotropic strain energy function states that the function W does not depend arbitrarily and
entirely on C but only on three scalar invariants of such tensor. In other words

W = W iso (i1, i2, i3) (2.30)

where i1, i2 and i3 are defined as
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i1 = tr (C) , i2 = tr (cof (C)) , i3 = det (C) . (2.31)

By using the Eq. (2.30), one can write the second Piola-Kirchoff stress tensor as

S = 2
∂W iso

∂C
= 2

[(
∂W iso

∂i1
+ i1

∂W iso

∂i2

)
I− ∂W iso

∂i2
C + i3

∂W iso

∂i3
C−1

]
. (2.32)

2.3.3 Representation Theorem for Transversally-Isotropic Materials

A material is said to be transversally isotropic when it has the same properties in one plane and
other properties in the direction normal to this plane, that we label as d1 (see e.g. [RAU09]). In
this materials

• a rotation around the direction d1

• a rotation with axis orthogonal to d1 and with angle π

before applying a homogeneous deformation should not change the strain energy.
Then, the representation theorem for transversally isotropic materials states that the energy

depends on five scalar invariants (see e.g. [RAU09]), so that

W = W tran (i1, i2, i3, i4, i5) (2.33)

where i4 and i5 are defined as

i4 = d1 ·C · d1, i5 = d1 ·C2 · d1. (2.34)

This two additional invariant (with respect the isotropic case), describe the local stretch in
the direction of the preferential direction d1 and changes of angles mixed to changes of length
respectively.

Then, as for the isotropic case, by using (2.33) one can write the second Piola-Kirchoff stress
tensor as

S = 2
∂W tran

∂C
=2

[(
∂W tran

∂i1
+ i1

∂W tran

∂i2

)
I− ∂W tran

∂i2
C + i3

∂W tran

∂i3
C−1

+
∂W tran

∂i4
d1 ⊗ d1 +

∂W tran

∂i5
(d1 ⊗ (C · d1) + (C · d1)⊗ d1)

]
.

(2.35)

2.3.4 Representation Theorem for Orthotropic Materials

If the material possesses two privileged directions, that we label as d1 and d2, in its reference
configuration then it is called orthotropic. For such materials it is natural to require that a rotation
around d1 or d2 with angle π before the application of an homogeneous deformation, should not
change the strain energy.

As discussed more extensively in the Chap. 5, the more diffused version of the representation
theorem for the strain energy potential for orthotropic media states that seven invariants can be
used to write the functional dependence of the strain energy density. However, it can be proved that,
indeed, only six independent scalar invariants are sufficient to completely describe the behavior of an
orthotropic material (see e.g. [RAU09]). So, the functional dependence of the energy with respect
to a suitable set of scalar invariants of C, can be written as

W = W orth (i1, i4, i6, |i8| , |i9| , |i10| , sgn (i8i9i10)) (2.36)

in which
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i6 = d2 ·C · d2, i8 = d1 ·C · d2, i9 = d1 ·C · d3, i10 = d2 ·C · d3. (2.37)

where d3 := d1 ∧ d2 and sgn (·) stands for the sign function2. It is worth noting that i6 represents
a stretch in the direction d2, while i8, i9 and i10 represent changes of angles mixed to changes of
length between the directions (d1,d2), (d1,d3) and (d2,d3) respectively. Then, by using (2.36), the
second Piola-Kirchhoff reads

S = 2
∂W orth

∂C
=2

∂W orth

∂i1
I + 2

∂W orth

∂i4
d1 ⊗ d1 + 2

∂W orth

∂i6
d2 ⊗ d2 + sgn (i8)

∂W orth

∂ |i8|
(d1 ⊗ d2 + d2 ⊗ d1)

+ sgn (i9)
∂W orth

∂ |i9|
(d1 ⊗ d3 + d3 ⊗ d1) + sgn (i10)

∂W orth

∂ |i10|
(d2 ⊗ d3 + d3 ⊗ d2) .

(2.38)

2.3.5 Hyperelastic incompressible materials

There exists a wide class of materials that are able to sustain large strains without notable changing
volume [OGD84, HOL00b]. Such kind of materials are nearly incompressible materials and in this
section we recall the principal aspects with respect to their modeling. In a more precise way, a
material is incompressible if it respects the constraint

det (F) = 1 (2.39)

under a generic motion. This constraint may be taken into account by defining a suitable strain
energy function

W = W (F)− p (det (F)− 1) (2.40)

in which the scalar function p is a Lagrangian multiplier added in order to take into account the
incompressibility condition. The quantity p can be identified as hydrostatic pressure and can be
determined only by solving the equilibrium equations equipped with suitable boundary conditions
[HOL00b]. It is worth noting that the incompressibility condition may be defined in an equivalent
way imposing e.g. det (C) = 1.

In the case of isotropic incompressible material [HOL00b] a suitable energy function is given by

W = W (i1, i2)− 1

2
p (i3 − 1) (2.41)

in which the functional dependency of W is reduced to only two scalar invariant (i.e. i1 and i2).
For a material described by a strain energy function of the type given in Eq. (2.41), the second
Piola-Kirchhoff stress tensor reads

S = −pC−1 + 2

[(
∂W

∂i1
+ i1

∂W

∂i2

)
I− ∂W

∂i2
C

]
. (2.42)

2The sign function for x ∈ R is defined as

sgn (x) :=


−1 if x < 0

0 if x = 0

+1 if x > 0

.
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2.3.6 Some Energies for Isotropic Materials

The simpler hyperelastic model for isotropic materials is the Saint Venant-Kirchhoff model. The
strain energy function for this model reads

W (ε) =
λ

2
tr (ε)2 + µtr

(
ε2
)

(2.43)

in which λ and µ are the Lamé constants of the material. It is worth noting that the strain energy
function of Eq. (2.43) may be expressed in terms of the right Cauchy-Green tensor C instead of the
Green-Lagrange tensor ε (see e.g. [CIA88]).

Another useful model is the Rivlin model [RIV48], in which the strain energy function is expressed
as a polynomial series. For incompressible materials it reads

W =

n∑
i=0,j=0

Cij (i1 − 3)i (i2 − 3)j (2.44)

in which C00 = 0 (normalization condition), and for compressible material

W =

n∑
i=0,j=0

Cij (i1 − 3)i (i2 − 3)j +

m∑
k=1

Dk (det (F)− 1)2k (2.45)

From the energy defined by Eq. (2.44), one can obtain different known models in the literature

• Neo-Hooke model

W = C10 (i1 − 3) (2.46)

• Mooney-Rivlin model

W = C10 (i1 − 3) + C01 (i2 − 3) (2.47)

• Yeoh model

W = C10 (i1 − 3) + C20 (i1 − 3)2 + C30 (i1 − 3)3 (2.48)

Finally, a model suitable for describing the behavior of incompressible (rubber-like) material is
the Ogden model [OGD84, HOL00b], in which the strain energy is defined as

W =
n∑
k=1

µn
αk

(λαk
1 + λαk

2 + λαk
3 − 3) (2.49)

where λi, i = 1, . . . , 3 are the principal stretches.
All the strain energy densities defined in this section are adapted to describe the behavior of

some specific isotropic materials and each of such energies is more or less adapted to fit experimental
evidences on real materials. Indeed, the choice of the constitutive expression to be used to model
a given material must be based on the correct fitting of the available experimental data. In such
sense, the constitutive choice of the energy can be seen as the “engineering effort” to model at best
the behavior of the considered system. Nevertheless, one is not always guaranteed that an arbitrary
choice of the constitutive relation for deformation energy always gives rise to a well posed problem.

A huge amount of work is available in the literature to establish some conditions which ensure
existence and sometimes uniqueness of the solution for differential problems stemming from defor-
mation energies. The convexity of the strain energy function with respect to F would render the
mathematical analysis of the associated minimization problem very simple (see e.g. [CIA88]). Nev-
ertheless, such requirement is too strict to lead to the choice of energies which are realistic enough
to model materials which rather complicated behaviors (see e.g. [CIA88]). It is for this reason that
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weaker requirements (policonvexity, rank-one convexity) have also been introduced for the strain
energy function which can still guarantee well-posedness of the associated differential problem (see
e.g. [CIA88]). It is sometimes hard to look for an energy which satisfies such requirements and which
fits well the experimental data. In such cases, one could try to rely on some theorems which state
that if a suitable second gradient energy is added to a generic first gradient energy, then the resulting
problem can be considered to be well posed. In the remainder of this manuscript we will adopt this
latter strategy to reach the compromise of modeling at best the available physical phenomena and,
at the same time, having good possibilities of dealing with a well-posed problem.

2.4 Variational Deduction of the Equations of Motions

The action functional for a first gradient continuum is defined as

A =

ˆ T

0

ˆ
B0

W (ε) (2.50)

whereW is the Lagrangian strain energy density defined per unit volume which possesses the features
itemized in the previous section and ε is the Green-Lagrange strain tensor defined by Eq. (2.13).
In order to calculate the equations of motion for the considered continua, one must compute the
first variation (denoted as δA) of the action functional and impose it to be equal to zero. This
equations consist in bulk equation and duality condition, which must be satisfied in the domain
of the continuum body and on its boundary respectively. So, by assuming suitable kinematical
regularity for the field expressed by the placement function χ, one can write the first variation δA
as

δA =

ˆ T

0

ˆ
B0

(
∂W

∂ε
|δε
)

(2.51)

where the symbol | stands for the scalar product between two tensor of the same order3. For
notational convenience, we set

S =
∂W

∂ε
= ST , Sij =

∂W

∂εij
= Sji . (2.52)

Since the tensor H is symmetric, by recalling the Eq. (2.13), one can easily check that

S |δε = S
∣∣(FT · δF

)
, Sijδεij = SijFkiδFkj . (2.53)

Then, integrating by part Eq. (2.51) and remembering that Fkj = χk,j , one obtains

δA = −
ˆ T

0

ˆ
B0

(SijFki),j δχk +

ˆ T

0

ˆ
B0

(SijFkiδχk),j (2.54)

and using the divergence theorem

δA = −
ˆ T

0

ˆ
B0

(SijFki),j δχk +

ˆ T

0

ˆ
∂B0

SijFkinjδχk . (2.55)

From this last expression for δA, recalling that δχ = δu and assuming that the test functions
are arbitrary in the volume, it can be checked that the condition δA = 0 implies the bulk equation

Div

(
F · ∂W

∂ε

)
= 0 (2.56)

3Let for example A and B two four order tensors of component Aijhk and Bijhk, respectively. Their scalar product
is defined as A |B = Aijhk Bijhk .
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and the duality conditions

t · δu = 0. (2.57)

in which the quantity t is linked at the strain energy function through the relation

t :=

(
F · ∂W

∂ε

)
· n . (2.58)

Here no external action has been considered but its inclusion in the theory is straightforward,
especially if it can be derived from a potential energy.
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Chapter 3

Continuum Mechanics Preliminaries:
Micro-structured Continua

It is known that every material is heterogeneous if one looks at sufficiently small scales. It is hence
often interesting to introduce models accounting for the presence of the microstructure and which
are suitable for describing the real material behavior. The first gradient theory, presented in the
previous chapter, is not able to take into account some macroscopic manifestations of particular
microstructures and then in this chapter we want to highlight the existing so called continuum
micro-structured theory.

The introduction of generalized continuum theories dates back to Piola [PIO46, PIO14] who
was the first to use second and N-th gradient continuum theories to account for microstructure-
related long-range interactions. Then other authors continued to develop generalized continuum
theories (see Germain [GER73a] for second gradient theories, Mindlin and Eringen [MIN64, ERI64a,
ERI64b, ERI01] for micromorphic theories, Cosserat [COS09] for particular generalized theories
only accounting for rotation of the microstructure) giving rise to a flourishing research activity.
In addition to these references, more recent and interesting results can be found e.g. in [FOR06,
NEF06a, NEF06b, NEF07].

In the first part of this chapter, following [ERI01], we present the basic kinematics of the micro-
structured continua in the framework of nonlinear regime. Then, we present the linear theory of
micro-structured materials proposed by [MIN64]. Motivated by the large number of material con-
stants which are present in Mindlin’s micromorphic model, we present a particular simplified version
of it which is valid for the isotropic, linearized case, following the spirit of [NEF13]. Finally, start-
ing from this last simplified version of micromorphic model, we show how, by introducing suitable
constraints, it is possible to obtain second gradient theories from micromorphic ones. Moreover, we
propose another particular micromorphic model called “relaxed micromorphic model” introduced in
[NEF13], which has been proven to be the simplest possible micromorphic model which needs to be
considered in the linear, isotropic case, to guarantee well-posedness of the associated Euler-Lagrange
equations. In order to get familiar with the procedure of obtaining a particular generalized theory
by constraining a more general one with suitable constraints, we also show how a Cosserat contin-
uum theory can be obtained by constraining the relaxed micromorphic model. Finally, to the sake
of completeness, we also show how the equations of motion in strong form can be obtained for a
micromorphic continuum by using variational arguments.

The tools which are presented in this chapter are well established in the literature and the
constitutive choices made here for presenting them consists of very simple energy densities (often
isotropic and linearized case). Nevertheless, the core message which we want to transmit to the
reader is basically focused on the procedure of obtaining a particular generalized theory starting
from a more general micromorphic one. This procedure, suitably readapted for the more complicated
cases considered thereafter, will allow us, in the following, to obtain the hyperelastic, orthotropic,
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second gradient model which is needed for modeling fibrous composite reinforcements as a particular
limit case of a more general micromorphic model. As it will be better pointed out in the chapter
concerning the constitutive second gradient modeling of fibrous composite reinforcements, the tool
which will be used to impose the needed constraints in the considered micromorphic model will
be that of using suitable Lagrange multipliers. In this chapter, we refrain to present the theory
of Lagrange multipliers which is indeed well established in the literature (see e.g. [FER13]) and
we limit ourselves to make some considerations about the behavior of the considered micromorphic
model when considering suitable limit cases.
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3.1 Kinematics

In the classical Cauchy continua, as we have seen in the previous chapter, a continuum body is
seen as a set of material points which interact by means of simplified internal contact actions.
This type of mathematical idealization, which is suitable to give a global description of numerous
experimental evidences, however, is not always able to take into account the microstructure of the
materials which is evident when one look at a given characteristic length-scale. Then, in order to
take into account the effect of such microstructure on the overall mechanical behavior of considered
micro-structured materials, we present in this section (and in general in this chapter), what is called
theory of micromorphic continua. Also in this theory a continuum body is regarded as a set of
deformable material points, but the embedded microstructure is accounted for by the introduction
of suitable additional kinematical fields. In particular, the deformability of the material points, as
proposed in [ERI64a, ERI01], is taken into account by replacing the classical deformable particle by
a geometric point P and a set of vectors Ξα, α = 1, . . . , N , which account for its inner structures.
So, both the geometric point P and the vectors Ξα posses their own motion. A continuuum of this
type is called microcontinuum of grade N , but in this manuscript we focus the attention only on
the case N = 1.

3.1.1 Motions

As in the previous chapter, we call B0 and B the Lagrangian and the Eulerian configuration of the
body. The deformable material point P (X,Ξ), in the reference configuration, is characterized by
its centroid C (indeed, as in classical Cauchy theory a material point is seen as a small elementary
volume of the considered continuum) and by the vector Ξ attached to it (see Fig. 3.1). The centroid
is labeled as X (respectively x) in the reference (current) configuration; similarly the vector attached
to it is labeled as Ξ (respectively ξ).

B0

B

χ,ψ

X1 X2

X3

X

X′ x

x′

Ξ ξ

P (X,Ξ)

p(X, ξ, t)

Figure 3.1: Lagrangian and Eulerian configurations of the micromorphic continuum.

The classical placement function, that in this case map the centroid of the material point from
the reference configuration to the current configuration

x = χ (X, t) (3.1)

must be complement by the microplacement

ξ = ξ̂ (X,Ξ, t) (3.2)
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which maps the vector attached to the centroid from the reference configuration into the current
one.

Since the deformable material particle is considered small with respect the macroscopic scale of
the body, then a linear approximation is generally assumed for the microplacement

ξ = ψ (X, t) ·Ξ, ξ = ψijΞj (3.3)

where ψ (X, t) is a second order tensor often called microdeformation tensor.
Following [ERI01], a material body is called micromorphic continuum of grade one if its motion

is described by (3.1) and (3.3), which are of class C1 with respect to the variable X and t and
uniquely invertible

X = χ−1 (X, t)

Ξ = ψ−1 (X, t) · ξ.
(3.4)

Similarly to what done in the previous chapter for the first gradient theory, we require that

det (∇χ) > 0 (3.5)

and in addition

det (ψ) = 1/det
(
ψ−1

)
> 0. (3.6)

The two conditions expressed by the Eq. (3.5) and (3.6) ensure the physical assumption of con-
tinuity, indestructibility and impenetrability of matter. In addition, the three independent directors
Φi are transformed into three independent directors φi

φj = ψij (X, t) ai,

Φj = ψ−1
ij (X, t)Ai

(3.7)

in which Ai and ai (i = 1, 2, 3) are the components of suitable Cartesian unit vectors in the reference
and current configuration, respectively. Then, it is worth noting that a material point possesses, in
addition to the three usual translations, three deformable directors which represent the additional
degrees of freedom that are able to take into account the deformation of the microstructure.

3.1.2 Polar Decomposition for the Microdeformation Tensor

The polar decomposition presented in the previous chapter for the deformation gradient still holds,
but in a similar way one can perform the polar decomposition for the microdeformation tensor

ψ = R̄ · Ū = V̄ · R̄ (3.8)

where R̄ is an orthogonal tensor (i.e. R̄−1 = R̄T and det
(
R̄
)

= 1) called microrotation tensor
and Ū and V̄ are symmetric and definite positive matrices called right and left microstrech tensor,
respectively.

3.1.3 Definition of Different Type of Continua

By imposing particular constraints on the microdeformation tensor one can define particular class
of micro-structured continua. Here, following [ERI01], we recall, as an example, the definition of
two of the most famous types of microstructured continua. A systematical presentation of different
classes of micro-structured continua can be found in [FOR06].
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3.1.3.0.1 Microstretch Continua A microstretch continuum is a micromorphic continuum
constrained to undergo microrotation and microstretch (expansion and contraction) without micros-
hearing.

3.1.3.0.2 Micropolar Continua A micropolar continuum is a micromorphic continuum in
which the director are orthogonal and rigid, so that the microdeformation tensor consists only
in a microrotation.

Such particular cases of constrained generalized continua can all be rigorously obtained by im-
posing precise kinematical constraints on the introduced set of kinematical parameters. We refrain
here to extensively show here how such model are obtained from a general micromorphic model,
but we will show analogous procedures in the remainder of this chapter to obtain a second gradient
theory from a general micromorphic one and a Cosserat theory from a relaxed micromorphic one.

Then, one can summarize the situation in this way

• A micromorphic continuum is a classical continuum that possesses additional degrees of free-
dom represented by deformable directors;

• A micromorphic continuum in which the directors are stretchable but not shear-deformable is
called microstretch continuum;

• A micromorphic continuum in which the directors are rigid is called micropolar.

3.2 Micro-strucure in Linear Elasticity: Mindilin Theory

Once the kinematical framework which is needed for describing the mechanical behavior of mi-
crostructured materials via a continuum micromorphic theory is introduced, then one needs to deal
with the problem of the conception of suitable constitutive laws which are able to account for the
behavior which is peculiar of each microstructured material. The problem of choosing constitutive
laws which are representative of real material behaviors is not trivial and passes through the intro-
duction of suitable deformation measures. We will present in the following chapters constitutive laws
which are suitable for the description of the mechanical behavior of orthotropic micro-structured
materials at finite strains which are suitable for the study of the mechanical behavior of fibrous
composite reinforcements. Nevertheless, to the sake of conciseness and in order to focus on the main
objective of this chapter which is to introduce micromorphic theories and to show how they can be
suitably constrained to obtain more particular generalized theories, we limit ourselves to introduce
here some argumentations based on the constitutive modeling of materials under the assumption of
small strains. To this aim, it is of interest the presentation of the linear theory of micro-stuctured
continua that has been introduced by Mindlin in 1964 [MIN64]. The interest of this presentation
lies in the fact that

• the linear model possesses a paradigmatic structure that can be useful for a simpler compre-
hension of the nonlinear one since the mathematical complexity introduced by nonlinearities
is avoided;

• the linearized case allows to familiarize with the process of obtaining particular generalized
continuum theories by constraining more general micromorphic theories

• the linear model is suitable for the description of a wide range of physical phenomena.
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3.2.1 Kinematics and Lagrangian Deformation Measure

The kinematics of the model introduced by Mindlin in [MIN64] is the same presented in the previous
paragraph. Then, the classical placement map χ (X, t) is complemented by a second order tensor
field P (X, t), which accounts for the deformation associated with the microstructure of the medium.
So, the degrees of freedom of the system becomes 12, in spite of the 3 classical degrees of freedom
present in Cauchy continua.

The Lagrangian strain measures introduced by Mindlin are of the type1

E =
1

2

(
∇u +∇uT

)
, Eij =

1

2
(ui,j + uj,i) , macro strain

γ = ∇u−P, γij = ui,j − Pij , relative microdeformation
κ = ∇P, κijk = Pij,k, gradient of microdeformation

(3.9)

in which u = χ − X is the classical macroscopic displacement field. The tensor E is the classi-
cal linearized macro deformation strain tensor, the tensor γ accounts for the relative micro-macro
deformation and, finally, κ is the gradient of the microdeformation.

3.2.2 Kinetic and Potential Energies

Let us denote by % and η the macroscopic and microscopic mass densities defined per unit of macro
volume, then the kinetic energy-density defined by Mindlin is of the type

T =
1

2
% ‖u,t‖2 +

1

2
η
∥∥ψ,t∥∥2

, T =
1

2
% ui,t ui,t +

1

2
η Pij,t Pij,t (3.10)

in which ‖·‖ stands for the norm induced by the scalar product2 in R3 and in R3×3, respectively.
Since the second order tensor P is dimensionless the coefficient η has a dimension of a bulk density
times a square of a length. Then, if %′ is the true density of the microstructure one can write the
microscopic mass densities as

η = l2%′, (3.11)

where l is a characteristic length which can be directly associated to the characteristic size of the
microscopic inclusions embedded in the considered micro-structured material (see[MIN64]). It is
important to note that in the definition of the kinetic energy we have considered a micro-structured
material that possesses only one characteristics length. A more general form of the energy, account-
ing for a wealthy of characteristic lengths lij and hence for more complicated microstructures, in
considered in Mindilin [MIN64] and is of the type

T =
1

2
% ui,t ui,t +

1

2
ηij Pki,t Pkj,t, (3.12)

where ηij = l2ij%
′.

The general form of the strain energy density is a function of the 42 kinematical variables Eij , γij
and κijk

W = W (E,γ,κ) = W (Eij , γij , κijk) (3.13)

and it is defined for unit of macro volume.
1We consider here a microdeformation tensor P which is the transposed of the the microdeformation tensor ψ

introduced by Mindlin. This choise is related to the used convention about the differentiation of considered tensor
fields.

2Let a,b ∈ R3 two vectors and A,B ∈ R3 × R3 two second order tensors. We denote here and in the sequel the
scalar product in R3 and in R3×3 as 〈a,b〉R3 = aibi and 〈A,B〉R3×3 = A |B = AijBij .
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3.2.3 Variational Deduction of the Equations of Motion in Strong Form

Let T ∈ R+ and B0 the reference (Lagrangian) configuration of the considered continuum. The
equations of motion for a linear micromorphic continuum will be derived through the Hamilton
Principle which states that the motion of a dynamical system subjected to conservative loads make
minimum the Hamiltonian functional

H =

ˆ T

0
(T −W +Wext) (3.14)

with respect to all kinematically admissible motions that lead the system from the initial position to
the final one in the same interval of time [0, T ]. In the Hamiltonian functional expressed by Eq.
(3.14), the symbols T and W stands respectively for the total kinetic and elastic potential energies
which expressions are defined by

T =

ˆ
B0

T

W =

ˆ
B0

W

(3.15)

where T andW have been defined in (3.10) and (3.13) respectively andWext represents the potential
of the external loads.

The minimization condition for the action functional (3.14) can be written as

δH =

ˆ T

0
(δT − δW + δWext) = 0 (3.16)

from which one can derive the equations of motion as done below. The variation of the kinetic terms
expressed by Eq. (3.10) can be written as

ˆ T

0
δT =

ˆ T

0

ˆ
B0

δT = −
ˆ T

0

ˆ
B0

(%ui,tδui,t + ηPij,tδPij,t) (3.17)

that integrated by parts with respect to the time variable t becomes
ˆ T

0
δT =

ˆ T

0

ˆ
B0

δT = −
ˆ T

0

ˆ
B0

(%ui,ttδui + ηPij,ttδPij) (3.18)

in which the conditions δui|t=0 = δui|t=T = 0 and δPij |t=0 = δPij |t=T = 0 has been accounted for.
Analogously, for the elastic potential energy, which is given by Eq. (3.13), one can write

ˆ T

0
δW =

ˆ T

0

ˆ
B0

δW =

ˆ T

0

ˆ
B0

(
∂W

∂E
|δE +

∂W

∂γ
|δγ +

∂W

∂κ
|δκ
)

(3.19)

For notational convenience, we will set

σ =
∂W

∂E
= σT , σij =

∂W

∂Eij
= σji,

τ =
∂W

∂γ
, τij =

∂W

∂γij
,

µ =
∂W

∂κ
, µijk =

∂W

∂κijk
= µjik.

(3.20)

Recalling the definition of E from the first line of Eq. (3.9) and using the fact that σ is symmetric,
it is easy to check that

σ |δE = σ |δ∇u , σijδEij = σijδui,j . (3.21)
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With the notations given in Eq. (3.20) using Eq. (3.21) and the definition of γ (3.9), one can
check that Eq. (3.19) becomes

ˆ T

0
δW =

ˆ T

0

ˆ
B0

δW =

ˆ T

0

ˆ
B0

(σijδui,j + τij (δui,j − δPij) + µijkδPij,k) , (3.22)

which integrated by parts reads
ˆ T

0
δW =

ˆ T

0

ˆ
B0

δW =

ˆ T

0

ˆ
B0

{
[(σij + τij) δui],j − (σij + τij),j δui

− (τij + µijk,k) δPij + (µijkδPij),k

}
.

(3.23)

By using the divergence theorem, Eq. (3.23) is transformed into
ˆ T

0
δW =

ˆ T

0

ˆ
B0

δW =−
ˆ
B0

(σij + τij),j δui −
ˆ
B0

(µijk,k + τij) δPij

+

ˆ
∂B0

nj (σij + τij) δui +

ˆ
∂B0

µijknkδPij ,

(3.24)

in which nj (or nk) are the components of the unit normal vector n to the boundary surface ∂B0.
Following Mindlin [MIN64] we assume that the variation of the energy due to the external loads

takes the form

ˆ T

0
δWext =

ˆ T

0

ˆ
B0

δWext =

ˆ
B0

bext
i δui +

ˆ
B0

Φext
ij δPij +

ˆ
∂B0

text
i δui +

ˆ
∂B0

T ext
ij δPij , (3.25)

in which bext
i is the external body force per unit volume, text

i is the external surface force per unit
area, Φext

ij is the external double force per unit volume and T ext
ij is the external double force per unit

area (see [MIN64] for further details) .
So, by substituting Eqs. (3.18), (3.24) and (3.25) in Eq. (3.16) one finally obtains

ˆ T

0

ˆ
B0

[
(σij + τij),j + bext

i − %ui,tt
]
δui +

ˆ T

0

ˆ
B0

[
µijk,k + τij + Φext

ij − ηPij,tt
]
δPij

+

ˆ T

0

ˆ
∂B0

[
text
i − nj (σij + τij)

]
δui +

ˆ T

0

ˆ
∂B0

[
T ext
ij − µijknk

]
δPij = 0

(3.26)

from which, by assuming arbitrary variations of the introduced kinematical fields δui and δPij , one
obtains the bulk equations with associated natural boundary conditions in terms of components

(σij + τij),j + bext
i = %ui,tt

µijk,k +
∂W

∂γij
+ Φext

ij = ηPij,tt

nj (σij + τij) = text
i

µijknk = T ext
i

(3.27)

or in compact form

Div (σ + τ ) + bext = %u,tt

Div (µ) + τ + Φext = ηP,tt

(σ + τ ) · n = text

µ · n = Text

. (3.28)
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The tensors σ, τ and µ represent the Cauchy stress, the relative stress and the double stress,
respectively. It is worth noting that differently from first and second gradient theories in which the
only kinematical field is the displacement field, here the kinematical variables are the displacement
field u and the components of the microstructural tensor P. So, the scalar equations of motion are
augmented in a number that equates the one of the new kinematical variables.

3.2.4 Constitutive Equations

The general form of the potential energy presented in Mindlin [MIN64] is an homogeneous quadratic
function of the 42 variables Eij , γij and κijk, and it is of the type3

W =
1

2
cijkl Eij Ekl +

1

2
bijkl γij γkl +

1

2
aijklmn κijk κlmn

+ dijklm γij κklm + fijklm κijk Elm + gijkl γij Ekl.
(3.29)

In Eq. (3.29) there are 1764 scalar coefficients but only 903 of them are independent due to the
symmetries of the introduced strain and micro-strain tensors. The isotropy of the material reduces
again the number of independent constant at 18(see [MIN64]), so the potential energy expressed by
the Eq. (3.29) reduces to

W =
1

2
λ Eii Ejj + µ Eij Eij +

1

2
b1 γii γjj +

1

2
b2 γij γij +

1

2
b3 γij γji

+ g1 γii Ejj + g2 (γij + γji)Eij + a1 κiik κkjj + a2 κiik κjkj

+
1

2
a3 κiik κjjk +

1

2
a4 κijj κikk + a5 κijj κkik +

1

2
a8 κiji κkjk

+
1

2
a10 κijk κijk + a11 κijk κjki +

1

2
a13 κijk κikj +

1

2
a14 κijk κjik

+
1

2
a15 κijk κkji.

(3.30)

Such expression of the strain energy density is rather simplified with respect to the general one
introduced in Eq. (3.29). Nevertheless the number of constitutive parameters is still elevated, so
that we follow [NEF13] and introduce an ulteriorly simplified micromorphic strain energy density
which reflects, at least qualitatively, all the features of the classical micromorphic model of Mindlin,
but drastically reducing the number of constitutive parameters from 18 to 6.

W = µe ‖sym (∇u−P)‖2 +
λe
2

(tr (∇u−P))2 + µh ‖sym (P)‖2 +
λh
2

(tr (P))2

+ µc ‖skew (∇u−P)‖2 +
αg
2
‖∇P‖2 .

(3.31)

Suitable identification of the coefficients proposed here in terms of the ones introduced by Mindlin
can be found in [MAD13].

3.3 Relaxed Micromorphic Continuum and Constrained Micromor-
phic Models

In this section we introduce the relaxed micromorphic energy proposed in [NEF13] which is the
simpler micromorphic energy which can be introduced in order to prove existence and uniqueness of

3We recall once again that the microdeformation tensor P used in this manuscript is connected to the tensor ψ
used by Mindlin via the formula Pij = ψji so that the tensor κ introduced here has its two first indices inverted
with respect to the one used by Mindlin. This implies that, in order to correctly identify the constitutive coefficients
introduced here with those used by Mindlin, one must account for these slight differences.
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the associated Euler-Lagrange equations. Moreover, we will show how, imposing suitable constraints,
it is possible to obtain particular generalized models (like second gradient and Cosserat models) from
the classical micromorphic model and the relaxed micromorphic model respectively.

3.3.1 Notation

In order to make reading easier we declare here the notation adopted in the following paragraphs.
This notation is the same adopted in [NEF13], in order to avoid confusions in the reader.

Let a ∈ R3 a vector and A ∈ R3 ×R3 a second order tensor. We define the standard divergence
and curl operators for vectors and second order tensors as

Div (a) = ai,j , (Curl (a))i = aa,bεiab

(Div (A))i = Aij,j , (Curl (A))ij = Aia,bεjab
(3.32)

where ε is the Levi-Civita tensor. The gradient operator for vectors and tensors is the same adopted
in the previous paragraphs.

In addition, we denote the symmetric, skew-symmetric, spheric, and deviatoric part of a tensor,
respectively, as

sym (A) =
1

2

(
A + AT

)
, skew (A) =

1

2

(
A−AT

)
,

sph (A) =
1

3
tr (A) I, dev (A) = A− sph (A) ,

(3.33)

or equivalently

(sym (A))ij =
1

2
(Aij +Aji) , (skew (A))ij =

1

2
(Aij −Aji) ,

(sph (A))ij =
1

3
Akkδij , (dev (A))ij = Aij − (sph (A))ij ,

(3.34)

where δij is the Kronecker delta and I is the identity matrix.

3.3.2 The relaxed Micromorphic Energies

The kinetic energies in the relaxed micromorphic model is of the same type of one presented by the
Eq. (3.10). Instead, the authors in [NEF13] proposed the following strain energy density

W = µe ‖sym (∇u−P)‖2 +
λe
2

(tr (∇u−P))2 + µh ‖sym (P)‖2 +
λh
2

(tr (P))2 +

+ µc ‖skew (∇u−P)‖2 +
αc
2
‖Curl (P)‖2 ,

(3.35)

in which all the introduced constitutive coefficients are assumed to be constant. It is important to
note, as highlighted by the authors in [NEF13], that in Eq. (3.35) appears an energy term involving
the curl of the microdeformation tensor P, instead of its gradient as done in the classical models
(see Eq. (3.31)). This choice allows, among others, for the description of frequency band-gaps (see
[MAD13] for details) which are observed when considering wave propagation in phononic crystals
and lattice structures. The interesting aspect of this constitutive choice is that the structure of
the proposed strain energy density is the simplest possible which is needed to prove well-posedness
of the associated Euler-Lagrange equations by means of arguments related to Legendre-Hadamard
ellipticity of the Energy itself (see [NEF13]). Positive definiteness of the potential energy implies
the following simple relations on the introduced parameters [NEF13]

µe > 0, µc > 0, 3λe + 2µe > 0, µh > 0, 3λh + 2µh > 0, αc > 0. (3.36)
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One of the most appealing features of the energy proposed by the authors in [NEF13], is the
reduced number of elastic parameters which are needed to fully determine the mechanical behavior
of a micromorphic continuum. Indeed, as showed by the same authors [NEF13], each parameter can
be easily related to specific micro- and macro-deformation modes.

3.3.3 A second gradient model obtained as a limit case of a classical micromor-
phic model

As said above, the strain energy function expressed by Eq. (3.31) is the simpler one that reflects (at
least qualitatively) the classical micromorphic model of Mindlin. In this section we want to show
that such classical micromorphic model contains in itself a second gradient model when one consider
a suitable limit case. More precisely, if one let simultaneously µe → ∞ and µc → ∞ in Eq. (3.31),
since the energy must be bounded, this implies that

sym (P)→ sym (∇u) ,

skew (P)→ skew (∇u) ,
(3.37)

so, we finally have that

P→ ∇u (3.38)

and the strain energy function expressed by thus becomes

W →W2G (∇u,∇∇u) = µh ‖sym (∇u)‖2 +
λh
2

(tr (∇u))2 +
αg
2
‖∇∇u‖2 (3.39)

which is a function of the first and second gradient of the placement.
We have hence proven by simple arguments that if one is able to impose suitable constraints

on the extra degrees of freedom which are peculiar of a micromorphic theory then more particular
theories can be easily derived as particular cases. This type of procedure will be applied in the
remainder of this manuscript in order to numerically implement a second gradient theory as the
limit case of a micromorphic one.

3.3.4 A Cosserat model obtained as a limit case of a relaxed micromorphic
model

In a similar way, one can obtain another well-known model starting from the relaxed micromorphic
energy introduced above in Eq. (3.35). In particular, by letting µh →∞, since the energy must be
bounded, one equivalently obtain

sym (P)→ 0, (3.40)

and then

tr (P)→ 0. (3.41)

These two last equations imply that the relaxed energy (3.35) degenerates into the Cosserat one

W →WCosserat (∇u, skew (P)) = µe ‖sym (∇u)‖2 +
λe
2

(tr (∇u))2

+ µc ‖skew (∇u−P)‖2 +
αc
2
‖Curl (skew (P))‖2 .

(3.42)

As a general remark, we want to stress, once again, the fact that a rigorous but simple procedure
based on suitable constraining of micromorphic theories can lead to some other more particular
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generalized theories as limit cases. The operative way in which such constraints can imposed may
be different: one can, for example, think to let some elastic parameters to infinity, as done here, or
can use the well-known method of Lagrange multipliers (see e.g. [FER13]). In the following chapters,
when introducing a second gradient model for fibrous composite reinforcements, as the limit case of
a suitable micromorphic model, we will choose to use the method of Lagrange multipliers to impose
the desired constraints. This choice is related to the fact that we found more convenient this last
strategy to implement the constraints in the numerical code.
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Chapter 4

Continuum Mechanics Preliminaries:
Second Gradient Theory

In this chapter we recall some well-established facts about second gradient theories. In particular, we
introduce the definition of second gradient continuum and we find the general equations of motion in
strong form for a hyperelastic, second gradient material. The main scope of this chapter is to show
that second gradient theories can indeed be obtained both as constrained micromorphic theories but
also by means of direct variational principles based on a standard kinematics which accounts for the
displacement field alone.

In summary, we want to underline the fact that two possible strategies are possible to deal with
second gradient continua

• Directly use a constrained kinematics uniquely based on the macroscopic displacement field
and then consider higher gradients of the displacement in the strain energy density (this is the
strategy described in this chapter).

• Start from a richer kinematics (as done for micromorphic media) and then impose suitable
constraints on the extra kinematical descriptors in order to obtain the desired second gradient
model as as a limit case (see what done in Chap. 5).

Which of the two strategies has to be used to deal with the application of a second gradient theory
is a matter of convenience. In this manuscript we report all the available possibilities to the sake
of a complete description of generalized continuum theories. As it will be seen in the following, we
will privilege the second strategy in order to deal with the application of second gradient theories
to fibrous composite reinforcements. This choice was dictated by two advantages:

i) micromorphic theories are more suitable for an easier physical interpretation of internal
and external internal actions related to microstructure and

ii) micromorphic theories are more convenient to be treated from a numerical point of view
since the differential system of associated Euler-Lagrange equations is of lower order with
respect to second gradient case.

Notwithstanding the previous considerations, we want to stress the fact that the correct continuum
framework which we found to be well-adapted for describing the mechanical behavior of fibrous
composite reinforcements is the one of second gradient theories.
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CHAPTER 4. SECOND GRADIENT THEORIES 57

4.1 Nonlinear Second Gradient Models

The kinematics that has to be introduce when one wants to deal with second gradient continua
is the same introduced in the first chapter for the first gradient theory. Then, this kinematics
is described by the usual placement function χ (X, t) which associates at any material point that
occupies the position X in the reference configuration B0 its current position x in the current one.
The characteristic which makes a second gradient theory different from a first gradient one is the
fact that the strain energy density is a function not only of the Green-Lagrange strain tensor ε but
also of its gradient ∇ε (that is a third order tensor). In formulas, one have

W = W (ε,∇ε) . (4.1)

In the following subsection we derive the equations of motion for a second gradient continuum
in which the strain energy function is defined by Eq. (4.1) also considering the possible presence of
surfaces of discontinuity inside the considered medium (e.g. the considered domain is constituted
by two different materials).

4.1.1 Variational Deduction of the Equations of Motion

Let T ∈ R+ and B0 be the reference (Lagrangian) configuration of a body. The action functional
for the considered second gradient continuum is defined as

A =

ˆ T

0

ˆ
B0

W (ε,∇ε) , (4.2)

in whichW is the Lagrangian strain energy density defined per unit volume, ε is the Green-Lagrange
strain tensor defined as

ε =
1

2

(
FTF− I

)
, εij =

1

2
(FikFkj − δij) (4.3)

where δij stands for the Kronecker delta and F denotes the gradient of the placement function (i.e.
F = ∇χ).

In order to calculate the the stationary points of the action functional, one must compute its
first variation (denoted as δA) and impose it to be equal to zero. This allows to determine the
Euler-Lagrange equations and the associated duality conditions, which represent the equilibrium
equations that must be satisfied in the bulk and at any (eventual) surface of discontinuity. So, by
assuming that the kinematical field expressed by the placement function χ is suitably regular, one
can write the first variation of the action functional as

δA =

ˆ T

0

ˆ
B0

(
∂W

∂ε
|δε +

∂W

∂∇ε |δ∇ε
)

(4.4)

For notational convenience, we set

S =
∂W

∂ε
, Sij =

∂W

∂εij
,

S =
∂W

∂∇ε , Sijk =
∂W

∂εij,k
,

(4.5)

that, naturally, are a second order and a third order tensor, respectively. The tensor H is symmetric
and the tensor H is symmetric with respect to its first two indices, so, with these two symmetry
properties and by recalling Eq. (4.3), it can be checked that

S |δε = S
∣∣(FT · δF

)
, Sijδεij = SijFkiδFkj ,

S |δ∇ε = S
∣∣∇ (δFT · F

)
, Sijkδεij,k = Sijk (δFhiFhj),k .

(4.6)
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Integrating by part Eq. (4.4) a suitable number of times and remembering that F = ∇χ, one
obtains

δA = −
ˆ T

0

ˆ
B0

[(Sij − Sijp,p)Fki],j δχk +

ˆ T

0

ˆ
B0

[(Sij − Sijp,p)Fkiδχk],j

+

ˆ T

0

ˆ
B0

[SijpFkjδFki],p

(4.7)

By using the divergence theorem and by considering test functions with compact support K
included in B0 that have non-empty intersection ΣK with a (possible) discontinuity surface Σ (see
[DEL09a] for more details), the previous equation implies

δA = −
ˆ T

0

ˆ
K

[(Sij − Sijp,p)Fki],j δχk +

ˆ T

0

ˆ
ΣK

J(Sij − Sijp,p)FkinjδχkK

+

ˆ T

0

ˆ
ΣK

JSijpFkjnpδχk,iK
(4.8)

in which nj is the component of the unit normal vector n to the surface ΣK and the symbol
JaK := a+ − a− stands for the jump of any field a on a surface (here) or, with a slight abuse of
notation, also on an edge (after). The last term in Eq. (4.8) involve the quantity ∇δχ which can
be decomposed by projecting it in the normal and in the tangential direction of the surface as

∇δχ = ∇δχ · (n⊗ n) +∇δχ · (I− n⊗ n) = (δχ)n ⊗ n +∇Σδχ (4.9)

in which the symbol (a)n := ∇ (a)·n stands for the normal derivative of any field a, while the symbol
∇Σa stands for its surface gradient. In what follows, in order to distinguish the surface gradient
from other differentiations defined on the whole domain, we will use Greek letters. In particular, we
set
(
∇Σa

)
α

=: a,α. So, by using this decomposition, Eq. (4.8) becomes

δA = −
ˆ T

0

ˆ
K

[(Sij − Sijp,p)Fki],j δχk +

ˆ T

0

ˆ
ΣK

J(Sij − Sijp,p)FkinjδχkK

+

ˆ T

0

ˆ
ΣK

q
SijpFkjninp ((δχ)n)k

y
+

ˆ T

0

ˆ
ΣK

JSαjpFkjnpδχk,αK .
(4.10)

Integrating by parts of the last term of Eq. (4.8) and using the surface divergence theorem, one
finally obtains

δA = −
ˆ T

0

ˆ
K

[(Sij − Sijp,p)Fki],j δχk +

ˆ T

0

ˆ
ΣK

J(Sij − Sijp,p)FkinjδχkK

−
ˆ T

0

ˆ
ΣK

r
(SαjpFkjnp),α δχk

z
+

ˆ T

0

ˆ
ΣK

q
SijpFkjninp ((δχ)n)k

y

+

N∑
i=1

ˆ T

0

ˆ
Ei

JSαjpFkjnpδχkναK

(4.11)

in which Ei, i = 1, . . . , N are the edges of the surface ΣK and να is the component of the normal
ν to the border of ΣK .

From this last expression for δA, recalling that H is symmetric with respect to its first two
indices, that δχ = δu and assuming that the test functions are arbitrary in the volume but not
necessarily on the (eventual) discontinuity surface, it can be checked that the condition δA implies
the bulk equation

Div

[
F ·
(
∂W

∂ε
−Div

(
∂W

∂∇ε

))]
= 0 (4.12)
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and the duality conditions

Jt · δuK = 0,

Jτ · (δu)nK = 0,

Jf · δuK = 0.

(4.13)

The first two duality conditions of the Eq. (4.13) are valid on any (eventual) discontinuity surface
Σ ⊂ B0 and the last one on its (eventual) edges Ei, i = 1, . . . , N . The quantities that appear in
Eq. (4.13) are linked to the strain energy function by means of the following relationships

t :=

[
F ·
(
∂W

∂ε
−Div

(
∂W

∂∇ε

))]
· n−DivΣ

(
F · ∂W

∂∇ε · n
)
,

τ :=

(
F · ∂W

∂∇ε · n
)
· n,

f :=

(
F · ∂W

∂∇ε · n
)
· ν,

(4.14)

in which DivΣ (·) stands for the surface divergence operator.The vector t represents the so-called
“generalized force” which, contrarily to what happens in classical Cauchy theory, explicitly depends
on the “shape” of Σ. Moreover, following the notation introduced by Germain [GER73a], the vector
τ is the so-called “double-force”, i.e. a special type of non-local contact action which expends power
on the normal derivative of velocity. Finally, f represents a contact action per unit line which can
be exchanged by two sub-bodies of the considered body across the edges (if any) of the Cauchy cut.

Here no external actions have been considered but their inclusion in the theory is straightforward,
especially if they can be derived from a potential energy.

4.2 Constitutive Equations for Second Gradient, Isotropic Continua

In this section, we introduce some constitutive relations for isotropic second gradient continua. These
equations can be used to describe the material behavior of microstructured materials, such as fibrous
composite reinforcements, which can take advantage of a second gradient description. The introduced
constitutive equations take into account geometrical non-linearities (since the deformation measure
is the Green-Lagrange strain tensor) but not material non-linearities.

In [DEL09] dell’Isola et al., propose a generalization of the Hooke’s law for second gradient
materials and establish a relation between the generalized stress (named above as S and S) and
the strain and strain gradient (ε and ∇ε respectively). The constitutive relations expressed by the
Eq. (4.5) are assumed to be linear with respect to the strain measures and, then, the stored elastic
energy is assumed to be a quadratic form of both its arguments. In formulas

W (ε,∇ε) =
1

2
(Cijkl εij εkl + 2Kijklp εij,k εlp +Gijklpq εij,k εlp,q) (4.15)

where C, K and G are fourth-, fifth- and sixth-order tensors respectively, which satisfy the following
symmetry conditions

Cijkl = Cklij ,

Kijklp = Klpijk,

Gijklpq = Glpqijk.

(4.16)

Moreover, in [DEL09] it is shown that the symmetry of the Green-Lagrange strain tensor induce
on the tensors introduced above, other additional symmetries
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Cijkl = Cijlk = Cjikl,

Kijklp = Kjiklp = Kijkpl,

Gijklpq = Gjiklpq = Gijkplq.

(4.17)

So, with the definition of the energy (4.15) and using Eq. (4.5), the relation between generalized
stress and strain, becomes

Sij = Cijkl εkl +Kklpij εkl,p,

Sijk = Kijklp εlp +Gijklpq εlp,q.
(4.18)

By requiring that the energy satisfies frame indifference by means of the relation

W (εij , εij,k) = W (Qhi εij Qmj , Qhi εhm,n Qmj Qnk) , (4.19)

for all orthogonal tensors Q, in addition to the conditions (4.16) and (4.17), the authors obtain the
generalized Hooke’s law for isotropic second gradient materials in the form

Cijkl = λ δij δkl + µ (δik δjl + δil δjk) ,

Kijklp = 0,

Gijklpq = c2 (δij δkl δpq + δij δkp δlq + δik δjq δlp + δiq δjk δlp) + c3 δij δkq δlp

+ c5 (δik δjl δpq + δik δjp δlq + δij δjk δpq + δip δjk δlq) + c11 (δil δjp δkq + δip δjl δkq)

+ c15 (δil δjq δkp + δip δjq δkl + δiq δjl δkp + δiq δjp δkl)

(4.20)

These equations provide the most general linear elastic constitutive relations for isotropic materials.
Such relations generalize standard Hooke’s law to second gradient materials. The analysis presented
in [DEL09] shows that a complete isotropic second gradient constitutive theory must include five
more elastic parameters in addition to the classical Lamé constants λ and µ. Such parameters account
for internal lengths which are peculiar of the microstructure of the considered materials. Their value
can be estimated, for any given material, e.g. by means of comparison with experimental evidence
by inverse approach. This is what we will do when dealing with fibrous composite reinforcements.
In particular, we will present a particularized second gradient theory, we will perform numerical
simulations simulating some standard experiments and we will compare the obtained results with
available experimental data. This comparison will allow the estimate of some second gradient elastic
parameters for the considered materials. We will see that such parameters are, for the considered
material, related to the microstructural bending stiffness of the yarns constituting the composite
reinforcement.

With Eq. (4.20) the energy function in Eq. (4.15) particularizes into

W (ε,∇ε) =
1

2
λ εii εii + µ εij εij + 2c2 εii,j εjk,k +

1

2
c3 εii,k εjj,k + 2c5 εij,i εjk,k

+ c11 εij,k εij,k + 2c15 εki,j εij,k.
(4.21)

4.2.1 Positive definiteness of stored elastic energy

Always in [DEL09], the authors determine the conditions under which the strain energy function is
a strictly convex function of strain and strain gradient. Thus, some relations between constitutive
parameters λ, µ, c2, c3, c5, c11 and c15 are establish and read
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c11 > 0,

c11 > −2c15,

c15 < c11,

5c3 > 2c15 − 4c11,

c5 >
c3 (3c11 + c15) + 2

(
c2

11 − 5c2
2 − 6c15c2 − 2c2

15 + c11 (2c2 + c15)
)

4c15 − 10c3 − 8c11
.

(4.22)

Such relationships should be complemented and compared with the equivalent ones deriving imposing
the convexity of the energy with respect to ∇F. Indeed, as shown in [DEL14] convexity with respect
to this latter quantity is a suitable property in order to have a well posed problem.
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Chapter 5

Modeling the onset of shear boundary
layers in 2D fibrous composite
reinforcements by second gradient theory

2D second gradient modeling of fibrous composites
It has been known since the pioneering works by Piola, Cosserat, Mindlin, Toupin, Eringen,

Green, Rivlin and Germain that many micro-structural effects in mechanical systems can be still
modeled by means of continuum theories. When needed, the displacement field must be com-
plemented by additional kinematical descriptors, called sometimes microstructural fields. In this
chapter a technologically important class of fibrous composite reinforcements is considered and their
mechanical behavior is described at finite strains by means of a second gradient, hyperelastic, or-
thotropic continuum theory which is obtained as the limit case of a micromorphic theory. Following
Mindlin and Eringen, we consider a micromorphic continuum theory based on an enriched kinemat-
ics constituted by the displacement field u and a second order tensor field ψ describing microscopic
deformations. The governing equations in weak form are used to perform numerical simulations
in which a bias extension test is reproduced. We show that second gradient energy terms allow
for an effective prediction of the onset of internal shear boundary layers which are transition zones
between two different shear deformation modes. The existence of these boundary layers cannot be
described by a simple first gradient model and its features are related to second gradient material
coefficients. The obtained numerical results, together with the available experimental evidences,
allow us to estimate the order of magnitude of the introduced second gradient coefficients by inverse
approach. This justifies the need of a novel measurement campaign aimed to estimate the value of
the introduced second gradient parameters for a wide class of fibrous materials.
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Plain Weave Twill Satin

Figure 5.1: Schemes of weaving for fibrous composite reinforcements.

5.1 Introduction

In the engineering effort of designing new materials, a constant demand is directed towards the search
for better performances and new functionalities. A class of materials which is gaining more and more
attention is that of so-called complex materials, e.g. materials exhibiting different mechanical re-
sponses at different scales due to different scales of heterogeneity. Indeed, the overall mechanical
behavior of such materials is macroscopically influenced by the underlying microstructure espe-
cially in presence of particular loading and/or boundary conditions. Therefore, understanding the
mechanics of meso- and micro-structured materials is becoming a major issue in engineering.

Such materials may exhibit superior mechanical properties with respect to more commonly used
engineering materials, also providing some advantages as easy formability processes. We focus
in this chapter on a class of engineering materials which are known as woven fibrous composite
reinforcements (see Chap. 1 for additional details) . These materials, as already remarked in
chapter 1, are constituted by woven tows which are themselves made up of thousand of fibers.
Different weaving schemes can be used giving rise to different types of composite reinforcements (see
Fig.5.1), but in each of considered case one can assume that sharp changes in mechanical properties
may occur inside the unit cell. Indeed, for the considered materials, the tensile stiffness of tows can
be considered to be of many order of magnitudes higher than the shear stiffness related to angle
variations between yarns. The hierarchical heterogeneity of composite reinforcements is illustrated
in Fig. 5.2, in which three different scales can be recognized: the macroscopic scale (left), the
mesoscopic scale (center) and the microscopic scale (right).

All materials are actually heterogeneous if one considers sufficiently small scales, but the woven
composites reinforcements show their heterogeneity at scales which are significant from an engineer-
ing point of view. It is also clear that woven materials also macroscopically show strong anisotropy,
since their mechanical response significantly varies if the load is applied in the direction of the fibers
or in some other direction. As it will be better pointed out in the following, the introduced contin-
uum model for composite reinforcements belongs to the class of initially orthotropic continua, i.e.
continua which have two privileged directions in their undeformed configuration.

The fibrous composite preforms can be shaped and their final shape is maintained by injection
and curing of a thermoset resin or by the use of a thermoplastic polymer (see chapter 1 for additional
details). The final composite material commonly used in aerospace engineering is hence constituted
by the fibrous composite reinforcement and the organic matrix. We are interested here only in
describing the mechanical behavior of the fibrous composite reinforcements since this knowledge is
fundamental for the process of formability of the final composite. Following [CHA11a, CHA12] we
find convenient to model the quoted fibrous reinforcements as continuous media. This hypothesis
can be considered to be realistic if no relative displacement between superimposed fibers occurs. In
other words, we are assuming that two superimposed fibers can rotate around their contact point,
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Figure 5.2: The different scales of textile composite reinforcements.

while no slipping takes place. This hypothesis is generally verified during experimental analyses,
even at finite strains. In fact, when straight lines are drawn on the textile reinforcement, these lines
become curved after forming but they remain continuous (see e.g. [BOI95]). As it will be better
pointed out in the remainder of this chapter, the anisotropy of the considered reinforcements will
be taken into account by introducing suitable hyperelastic, orthotropic constitutive laws which are
able to characterize the behavior of considered materials also at large strains.

Nevertheless, a first gradient continuum orthotropic model is not able to take into account
all the possible effects that the microstructure of considered materials have on their macroscopic
deformation. More precisely, some particular loading conditions, associated to particular types of
boundary conditions may cause some microstructure-related deformation modes which are not fully
taken into account in first gradient continuum theories. This is the case, for example, when observing
some regions inside the materials in which high gradients of deformation occur, concentrated in those
relatively narrow regions which we will call boundary layers.

Actually, the onset of shear boundary layers can be observed in some experimental tests which
are used to characterize the mechanical properties of fibrous composite reinforcements. Indeed,
internal boundary layers do arise in the so-called bias extension test, the phenomenology of which
we duly describe in section 5.4. One way to deal with the description of such boundary layers, while
remaining in the framework of a macroscopic theory, is to consider so-called “generalized continuum
theories”. Such generalized theories allow for the introduction of a class of internal actions which
is wider than the one which is accounted for by classical first gradient Cauchy continuum theory.
These more general contact actions excite additional deformation modes which can be seen to be
directly related with the properties of the microstructure of considered materials.

Indeed, it has been known since the pioneering works by Piola [PIO46], Cosserat [COS09], Midlin
[MIN64], Toupin [TOU64], Eringen [ERI01], Green and Rivlin [GRE64] and Germain [GER73a,
GER73b] that many microstructure-related effects in mechanical systems can be still modeled by
means of continuum theories. It is known since then that, when needed, the placement function must
be complemented by additional kinematical descriptors, called sometimes micro-structural fields.
More recently, these generalized continuum theories have been widely developed to describe the
mechanical behavior of many complex systems, such as e.g. porous media [SCI07, DEL00, SCI08,
MAD08], capillary fluids [CAS72, DEG81, DEL95a, DEL96, DEL95b], exotic media obtained by
homogenization of heterogeneous media [ALI03, SEP11, PID97]. Interesting applications on wave
propagation in such generalized media has also gained attention in the recent years for the possible
application of this kind of materials to passive control of vibrations and stealth technology (see e.g.
[DEL12a, MAD12b, PLA13, ROS13]).

In this chapter, the class of fibrous composite preforms described before is considered and their
macroscopic mechanical behavior (i.e. at a scale relatively larger than the yarn) is described by means
of a second gradient, hyperelastic continuum theory. The quoted hyperelastic, second gradient theory
is obtained as the limit case of a micromorphic theory, following what done in [BLE67, MIN64] for the
linear-elastic case. The governing equations in weak form are used as a basis for the formulation of
suitable numerical codes, which allow to perform simulations reproducing the so-called bias extension
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test. We show that second gradient energy terms allow for an effective prediction of the onset of
internal shear boundary layers which can be defined as those transition zones between two different
regions exhibiting different shear deformation modes. The existence and thickness of these boundary
layers cannot be described by a first gradient model and its overall features are related to the
particular second gradient model introduced here. The obtained numerical results seem to be in
a good agreement with the already available experimental evidence and fully justify the need of a
novel measurement campaign.

5.2 Micromorphic media and second gradient continua

We describe the deformation of the considered continuum by introducing a Lagrangian configuration
B0 ⊂ R3 and a suitably regular kinematical field χ(X, t) which associates to any material point
X ∈ B0 its current position x at time t. The image of the function χ gives, at any instant t the
current shape of the body B(t): this time-varying domain is usually referred to as the Eulerian
configuration of the medium and, indeed, it represents the system during its deformation. Since
we will use it in the following, we also introduce the displacement field u(X, t) := χ(X, t) − X,
the tensor F := ∇χ and the Right Cauchy-Green deformation tensor C := FT · F (SEE E.G.
Chap. 2). The kinematics of the continuum is then enriched by adding a second order tensor
field ψ(X, t) which accounts for deformations associated to the microstructure of the continuum.
Indeed, as it was explained e. g. by Mindlin [MIN64] and Cosserat [COS09], the addition of
supplementary kinematical fields can be of help to describe the deformation of the microstructure of
the considered material independently of its average continuum deformation. If, on the one hand,
Cosserat’s models are able to complement the classical continuum deformations with extra rotations
of considered microstructure, on the other hand, micromorphic models also allow to consider micro-
stretches and micro-shear deformations. In particular, the introduced micromorphic tensor ψ(X, t)
allows to account for all these microscopic deformation in a very general fashion. If some constraints
are introduced on the tensor ψ, the micromorphic model can then be particularized so as to obtain
Cosserat or second gradient models as limit cases (SEE E.G. Chap. 3). In what follows, the current
state of the considered medium is, in general, identified by 12 independent kinematical fields: 3
components of the displacement field and 9 components of the micro-deformation field. Such a
theory of a continuum with microstructure has been derived in [MIN64] for the linear-elastic case
and re-proposed e.g. in [ERI64a, ERI64b, FOR06, FOR09] for the case of non-linear elasticity.
For the sake of clearness, using similar notations to [MIN64] and [BLE67], ALSO USED IN 3, we
introduce the following kinematical quantities which are all functions of the basic kinematical fields
introduced before

εij = (Cij − δij) /2, the macro-strain,
γij = εij − ψij , the relative(micro/macro) deformation, (5.1)
κijk = ψij,k, the gradient of micro-deformation,

where clearly Cij and ψij represent the components of the second order tensors C and ψ respectively.
If one, for example, imposes the relative deformation to be zero (i.e. ψij → εij), then κijk → εij,k and
one recovers the standard second gradient theory presented in [GER73a, GER73b]. As it will be more
clearly explained in the following, the external actions which can be introduced in the framework of
a micromorphic continuum theory are more easily understandable than those intervening in second
gradient theories since they have a more direct physical meaning. Since second gradient theory
can be readily obtained as limit case of the micromorphic theory, one can then derive the second
gradient contact actions in terms of the micromorphic ones following the procedure used in [BLE67].
We present in the following the weak formulation of a constrained micromorphic theory which will
actually give rise to a particular second gradient theory. This constrained micromorphic theory is
the one which we directly implement in the numerical simulations presented in this chapter.
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5.2.1 Equations in weak form for a constrained micromorphic continuum

We assume that we can write the power of internal actions as the first variation of a suitable action
functional A as follows

P int = δA = δ

ˆ
B0

[
W (εij , γij , κijk) +

n∑
α=1

λα fα(εij , γij , κijk)

]
dX, (5.2)

where W and f are real scalar-valued functions of the introduced deformation measures and, in
particular, W (εij , γij , κijk) is the bulk micromorphic strain energy density, λα are Lagrange multi-
pliers and fα are particular constraints the particular form of which will be better specified later on.
As it will be better explained in the sequel, this expression of the power of internal forces is the one
which is necessary to describe a micromorphic continuum which is subjected to the n constraints
fα(εij , γij , κijk) = 0.

Considering that the independent kinematical fields appearing in (5.2) are indeed εij , ψij and
κijk, it can be recovered that the power of internal actions can be rewritten by computing the first
variation of the action functional as

P int = δA =

ˆ
B0

(
∂W

∂εij
+

n∑
α=1

λα
∂fα
∂εij

)
δεij +

(
∂W

∂ψij
+

n∑
α=1

λα
∂fα
∂ψij

)
δψij

+

(
∂W

∂κijk
+

n∑
α=1

λα
∂fα
∂κijk

)
δκijk +

n∑
α=1

fαδλα,

(5.3)

where from now on we drop the symbol dX inside the integral sign and we adopt the Einstein
notation of sum over repeated indices if no confusion can arise.

As for the expression of the power of external forces, we assume that they take the following
general form (see also [MIN64, BLE67])

Pext =

ˆ
B0

bext
i δui +

ˆ
B0

Φext
ij δψij +

ˆ
∂B0

text
i δui +

ˆ
∂B0

T ext
ij δψij (5.4)

where bext
i are volume forces, Φext

ij are so called double forces per unit volume, text
i are forces per

unit area and T ext
ij are double forces per unit area. The physical meaning of aforementioned external

actions is immediate: bext
i and text

i work on the displacement of the centroid of each Representa-
tive Elementary Volume, while Φext

ij and T ext
ij work on micro-deformations inside the considered

REV. If one forces ψij → εij , i.e. imposes the constraint ψij − εij = 0, then a more compli-
cated form of the contact actions than those appearing in (5.4) can be derived by integration by
parts. In this way, it is possible to recover the standard form for external actions of second gradi-
ent materials which work on displacement and on the normal derivatives of displacement (see e.g.
[GER73a, MAD12a, SCI08, MAD08, DEL95c, DEL97, DEL12b]). Considering the surface power
densities text

i δui and T ext
ij δψij appearing in expression (5.4) for the power of external actions, one

can imagine to act on the boundary of considered body both by assigning the forces and/or double
forces (natural boundary conditions) or by assigning the displacements and/or micro-deformation
(kinematical boundary conditions).

The mechanical governing equations in weak form can be directly expressed by imposing the
validity of the principle of virtual powers

P int = Pext, (5.5)

where P int and Pext are respectively given in Eq. (5.3) and (5.4). We explicitly remark that, given
the considered expression of the principle of virtual powers, we are assuming that the considered
phenomena are sufficiently slow to neglect inertia. We do not explicitly write here the corresponding
strong form of balance equations since we will directly implement a particularization of the weak
form (5.5) in the finite element code used to perform numerical simulations.
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5.3 Hyperelastic orthotropic model with micromorphic correction

In this section we specify the constitutive equations for the strain energy density W (εij , γij , κijk)
which we use to model the mechanical behavior of some fibrous composite reinforcements in the
finite strain regime. We will equivalently use the deformation measure C = 2ε + I instead of ε to
specify the form for the energy, i.e. W (εij , γij , κijk) = W̃ (Cij , γij , κijk). In particular, we will
assume that

W̃ (Cij , γij , κijk) = WI(Cij) +WII(κijk). (5.6)

In this formula WI is the first gradient strain energy and WII is the energy associated to the
macro-inhomogeneity of micro-deformation. We do not explicitly consider a coupling energy de-
pending on γij , but some coupling effects will be accounted for by introducing particular constraints
fα(εij , γij , κijk) = 0 in the power of internal actions by using Lagrange multipliers, as specified in
Eq.(5.2).

5.3.1 Representation theorem for hyperelastic orthotropic materials

Various hyperelastic constitutive equations for an isotropic strain energy density W iso(C) have been
proposed in the literature which are suitable to describe the mechanical behavior of isotropic materi-
als even at finite strains (see e.g. [OGD84, STE02]). Generalized constitutive laws are also available
for linear elastic isotropic second gradient media (see [DEL09]). These constitutive equations for
isotropic materials are classically derived starting from a well-known representation theorem for the
strain energy potential which states that only three independent scalar invariants of the Cauchy-
Green tensor C are sufficient to correctly represent the functional dependence of W iso on C. In
other words, for an isotropic material, it is sufficient to consider that W iso(C) = W (i1, i2, i3), where
i1, i2, i3 are the three scalar invariants of C classically defined as

i1 = tr(C), i2 = tr
(
det(C) C−T

)
, i3 = det(C). (5.7)

These three invariants respectively describe local deformations associated to changes of length,
changes of area and changes of volume: superposition of these three deformation modes are sufficient
to reproduce the global deformation of an isotropic medium. Constitutive equations for transversely
isotropic materials are also well assessed in the literature (see e.g. [ITS04, BOE87, BOE78, OGD03,
CHA11a, ITS00]) and their derivation relies on the classical representation theorem according to
which five independent invariants of the tensor C are needed to characterize the behavior of such
materials: W tran(C) = W (i1, i2, i3, i4, i5). If one denotes by d1 the unitary vector along the preferred
direction inside the transversely isotropic material in its reference (Lagrangian) configuration, then
the two additional invariants appearing in the representation of W tran are defined as

i4 = d1 ·C · d1, i5 = d1 ·C2 · d1. (5.8)

These two invariants respectively describe local stretch in the direction of the preferential direction
d1 and changes of angles mixed to changes of length.

As far as orthotropic materials are considered, clear and exploitable constitutive hyperelastic
equations are harder to be found in the literature. Plenty of authors try to generalize the represen-
tation theorems valid for isotropic and transversely isotropic media, but often there is apparently
not agreement between the different versions proposed for such a theorem. The more diffused ver-
sion of the representation theorem for the strain energy potential for orthotropic media states that
seven invariants can be used to write the functional dependence of the strain energy density (see e.g.
[HOL00b, SPE84, OGD03]). More precisely, denoting by d1 and d2 two orthogonal unitary vectors
along the preferred directions in the considered orthotropic material, the functional dependence of
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the orthotropic energy on C can be expressed in the form W orth = W (i1, i2, i3, i4, i5, i6, i7), where
the additional two invariants are defined as

i6 = d2 ·C · d2, i7 = d2 ·C2 · d2, (5.9)

Nevertheless, it can be proved that, indeed, only six independent scalar invariants are sufficient to
completely describe the behavior of an orthotropic material (see the elegant proof given in [RAU09]),
so that, even if it is effectively possible to write the strain energy as function of seven scalar invariants,
it must be kept in mind that not all of them are truly independent functions of C. In particular,
following [RAU09], one can think to introduce the following set of six invariants to represent the
functional dependence of W on C:

iO := {i1, i4, i6, i8, i9, i10} , (5.10)

where all the invariants not previously defined are given by

i8 = d1 ·C · d2, i9 = d1 ·C · d3, i10 = d2 ·C · d3, (5.11)

where d3 := d1 ∧ d2. All the invariants belonging to the set iO correspond to simple deformation
modes. In particular, in addition to the invariants already discussed before, one can remark that
i6 represents stretching in the direction d2, while i8, i9 and i10 represent changes of angles between
the directions (d1,d2), (d1,d3) and (d2,d3) respectively. It can be shown (see [RAU09]) that all
previously introduced invariants can be written as functions of the six invariants in iO as

i2 = i4i6 + (i4 + i6) (i1 − (i4 + i6))− i28 − i29 − i210,

i3 =
(
i4i6 − i28

)
(i1 − (i4 + i6)) + 2 i8i9i10 − i6i29 − i4i210,

i5 = i24 + i28 + i29,

i7 = i26 + i28 + i210.

(5.12)

The fact of correctly identifying the maximum number of scalar invariants which are all independent
functions of C is of fundamental importance when one wants to write the constitutive hyperelastic
laws starting from the considered strain energy potential. Indeed, a hyperelastic energy is, by
construction, differentiable with respect to the strain tensor C and, considered that all the invariants
in iO are independent functions of C, one can obtain the second Piola-Kirchhoff stress tensor for
orthotropic materials as

S :=
∂W orth

∂ε
= 2

∂W orth

∂C
= 2

∑
k∈iO

∂W orth

∂ik

∂ik
∂C

, (5.13)

W orth(C) := W (i1, i4, i6, i8, i9, i10) (5.14)

In [RAU09] it is also explicitly proved that a strain energy W̄ (i1, i2, i3, i4, i5, i6, i7) which is function
of the seven classical invariants can also be obtained starting from the strain energyW orth defined in
(5.14). If we consider the functional dependence ofW orth on the six invariants in iO given in (5.14) we
must take into account the results found in [RAU09] where it is proven that W (i1, i4, i6, i8, i9, i10) =
W̄ (i1, i4, i6, |i8| , |i9| , |i10| , sgn(i8i9i10)). Using this expression for the energy and replacing it in
(5.13), then it is possible to prove that the constitutive law for the second Piola Kirchhoff stress
tensor is given by

S = 2
∂W̄

∂i1
I + 2

∂W̄

∂i4
d1 ⊗ d1 + 2

∂W̄

∂i6
d2 ⊗ d2 + sgn(i8)

∂W̄

∂|i8|
(d1 ⊗ d2 + d2 ⊗ d1)

+ sgn(i9)
∂W̄

∂|i9|
(d1 ⊗ d3 + d3 ⊗ d1) + sgn(i10)

∂W̄

∂|i10|
(d2 ⊗ d3 + d3 ⊗ d2).

(5.15)
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This orthotropic constitutive law can be used to model the macroscopic behavior at finite strains of
3D interlocks of fibrous composite reinforcements. Fully reliable models which are able to describe
the mechanical behavior of 3D composite preforms are not completely developed up to now both for
the interlock reinforcements (see e.g. [CHA12]) and for the complete composite (reinforcements plus
organic matrix) (see e.g. [DUM87]). For this reason, the mechanical characterization of such mate-
rials is nowadays a major scientific and technological issue. The mechanical behavior of composite
preforms with rigid organic matrix (see e.g. [DUM87, OSH06, MAK10, MIK09]) is quite different
from the behavior of the sole fibrous reinforcements (see e.g. [CHA12]). In [CHA12] a hyperelastic
approach is presented which allows to capture the main features of 3D interlocks at finite strain. On
the other hand, in [CHA12] it is also underlined that Cauchy continuum theory may not be suffi-
cient to model a class of complex contact interactions which are related to local stiffness of the yarns
and which macroscopically affect the overall deformation of interlocks. Such microstructure-related
contact interactions may be taken into account by using generalized continuum theories, such as
higher order or micromorphic theories. In this chapter, we will limit ourselves to the application of a
hyperelastic, orthotropic, second gradient model to the case of thin fibrous composite reinforcements
at finite strains, for which the third direction can easily be thought to have negligible effect on the
overall behavior of the material.

5.3.2 Phenomenological choice of the potential WI for thin sheets of fibrous
composite reinforcements

Explicit expressions for the strain energy potential W orth as function of the invariants iO which
are suitable to describe the real behavior of orthotropic elastic materials are difficult to be found
in the literature. Certain constitutive models are for instance presented in [ITS04], where some
polyconvex energies for orthotropic materials are proposed to describe the deformation of rubbers in
uniaxial tests. Explicit anisotropic hyperelastic potentials for soft biological tissues are also proposed
in [HOL00a] and reconsidered in [SCH05, BAL06] in which their polyconvex approximations are
derived. Other examples of polyconvex energies for anisotropic solids are given in [STE03].

Polyconvex energies are energies automatically satisfying the Legendre-Hadamard (L-H) ellip-
ticity condition which, in turns, guarantees material stability of considered potentials. Reliable
constitutive models for the description of the real behavior of fibrous composite reinforcements at
finite strains are even more difficult to be found in the literature and can be for instance recovered in
[AIM09, CHA11a]. In the present chapter, we will introduce a first gradient anisotropic hyperelastic
potential of the type proposed in [CHA11a, CHA12] to model the overall behavior of considered
fibrous materials and we will add a second gradient term to account for the onset of some boundary
layers which are observed experimentally but which cannot be described by means of a first gradient
theory. We do not attempt in this manuscript to test L-H ellipticity of the chosen first gradient
potential WI(Cij), our major concern being that one of recovering the experimental deformed shape
of some particular fibrous composite preforms. We are nevertheless aware that the used first gradient
potential might not be L-H elliptic on some precise directions along which one could hence obtain
material instability. We postpone these investigations to subsequent works in which we will also
put in evidence how the addition of some second gradient terms in the energy potential can indeed
guarantee mathematical existence of the solution.

To the sake of consistency, we recall here some steps which have been followed to derive the
constitutive hyperelastic expression for the potential WI (C) proposed in [CHA11a, CHA12]. We
recall that the two privileged directions in the reference (or Lagrangian) configuration are identified
by means of two vectors d1 and d2 which are assumed to be orthogonal and to have unitary length.
For the considered fibrous composite reinforcements the two privileged directions clearly coincide
with the fiber directions d1 and d2 (called warp and weft) in the undeformed configuration. For
the case studied in this chapter, we focus on the modeling of specimens of fibrous composite rein-
forcements which are very thin in the direction d3 = d1 ∧ d2 and we will treat the case of thick
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composite reinforcements in subsequent works. The fact of considering very thin sheets of fibrous
composite preforms allows us to assume that the strain energy potential is constant with respect
to the invariants i9 and i10, so that the calculation to get the stress tensor S starting from (5.13)
results to be simplified since the last two terms are automatically vanishing. We hence propose the
following additive decomposition which separately accounts for the potential associated to isotropic
deformation, to elongation of fibers in the two privileged directions (warp and weft) and to the
variation of the shear angle among two fibers respectively

WI (C) = WNH(C) +W 1
elong (C) +W 2

elong (C) +Wshear (C) . (5.16)

The isotropic energy potential WNH can be assumed to take the classical Neo-Hooke form

WNH(i1, i4, i6, i8, i9, i10) = µ [(i1 − 3)− ln (i3(i1, i4, i6, i8, i9, i10))] , (5.17)

where the explicit expression of i3 as function of the other invariants is given in the previous sub-
section. We remark that, in the case studied in the following, the isotropic deformations can be
considered to be very small compared to the anisotropic ones, so that the stiffness coefficient µ
will be considered to be very small with respect to the anisotropic material constants. As for the
anisotropic energies appearing in (5.16), we now specify their explicit dependence on the invariants
i4, i6 and i8 following what done in [CHA12]. To do so, we first introduce the three scalar functions

I1
elong(i4) = ln

(√
i4
)
, I2

elong(i6) = ln
(√
i6
)
, Ishear(i4, i6, i8) =

i8√
i4i6

, (5.18)

which clearly represent elongation measures in the two principal directions of fibers and variation
of the angle between fibers. It can be checked that the function Ishear is indeed related to the
angle variation φ from the reference angle between the fibers by the formula Ishear = sin(φ) (see
e.g.[CHA11a, CHA12]). We then recall the explicit form of the three introduced potentials which
has been shown to be suitable for describing physically reasonable material behavior for thin fibrous
composite reinforcements (see [CHA11a, CHA12]):

W 1
elong (i1) =


1
2K0

elong

(
I1

elong

)2
if I1

elong ≤ I0
elong

1
2K1

elong

(
I1

elong − I0
elong

)2
+ 1

2K0
elongI

1
elongI

0
elong if I1

elong > I0
elong,

W 2
elong (i2) =


1
2K0

elong

(
I2

elong

)2
if I2

elong ≤ I0
elong

1
2K1

elong

(
I2

elong − I0
elong

)2
+ 1

2K0
elongI

2
elongI

0
elong if I2

elong > I0
elong,

Wshear (i4, i6, |i8|) =

{
K12

shear (|Ishear|)2 if |Ishear| ≤ I0
shear

K21
shear (1− |Ishear|)−p +W 0

shear if |Ishear| > I0
shear.

(5.19)

In the three proposed potentials one can notice the existence of threshold values of the three intro-
duced scalar functions, namely I0

elong for I1
elong and I2

elong and I0
shear for Ishear. The threshold value

for the elongation strain measures I0
elong is due to the fact that, for small stretch of the fibers, the

weft and warp yarns are undulated due to weaving. When the fibers are completely stretched, they
start showing their complete tension stiffness which can indeed reach extremely high values if one
considers e.g. carbon fibers. Also for the shear deformation measure a threshold value is identi-
fied (related to lateral contact between the yarns due to shearing) which discriminates between two
different behaviors.

As already explained in detail, the first gradient energy given by Eqs. (5.16), (5.19) has been
introduced on a phenomenological basis. The strong non-linearities and some loss of regularity of
such energy make the well-posedness of elastic problems related to it difficult to prove. Actually, some
new mathematical results seem to be needed in order to regularize the considered form of the energy
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potential. In the literature, these regularization has been proposed by the use of judicious numerical
techniques: in [HAM13a, HAM13b] the functional space where looking for solutions is constrained
by suitably choosing the mesh for employed finite elements. This is done in [HAM13a, HAM13b] in
conformity with the indications given by the models developed e.g. in [SPE84]. Another possible
method for regularizing hill-posed problems, as the one which seems to be confronted here, is to
introduce an ad hoc regularizing parameters involving higher order derivatives or fictitious additional
kinematical parameters. However, until a physical interpretation for such parameters is not reached,
one cannot consider that the ill-posedness is removed: indeed, as it is obvious, there is not a unique
limit of the solution when these parameters vanish. An elegant example of successful regularization,
obtained by introducing in the mathematical modeling some physically relevant corrections, is given
e.g. in [LAS88] where some important dissipation phenomena in strain softening are accounted for
by means of suitably chosen regularizing parameters. It has to be remarked that the first remedy
proposed by [HAM13a, HAM13b] determines the correct limit to be obtained when regularizing
parameters vanish. In the subsequent subsection we propose a first attempt to find a regularized
energy which is based on the physical concept of longer range mechanical interactions among non-
adjacent unit cells of considered fibrous composite reinforcements. A validation of the regularized
model proposed here is obtained by comparing the obtained numerical results with those presented
in [HAM13a, HAM13b].

Mathematically speaking, micromorphic models produce boundary problems for partial differen-
tial equations which are “singular perturbations” of the boundary problems obtained in the frame-
work of first gradient models. Therefore, the type of PDEs may change when micromorphic consti-
tutive parameters tend to zero and, as a consequence, it could be lost the possibility of describing
the onset of boundary layers. Also relevant are the phenomena of loss of stability, buckling and post-
buckling phenomena which may occur in considered structures: while refraining here to attempt to
model e.g. the wrinkling occurring in bias test for very high imposed displacements, we want to
mention that, by using methods similar to those presented in [LUO91, LUO01, LUO05], also this
modeling challenge may be confronted.

5.3.3 Some physical considerations leading to regularized micromorphic strain
energy potentials

In woven reinforcements for composite materials, when the external loads are applied only at the
terminal extremities of the yarns, a unit cell is deformed because of its interaction with the closest
ones. The basic assumption about these interactions which leads to first gradient homogenized
continua is that they are negligible when the two considered cells are not the closest adjacent
ones. However, simple mechanical considerations can be heuristically developed: i) for low loads,
friction among yarns introduces perfect constraints at the contact points between them and, in a
first approximation1, these constraints are internal pivots which do not interrupt continuity of single
yarns, ii) the actions which are deforming one unit cell are transmitted to closer cells via these
internal pivots. Therefore, jumps in elongation and in shear deformation are not allowed as it can
be seen from microscopic balance considerations. More detailed models considering friction between
yarns can be obtained by following e.g. the methods used in [NAD03]

We postpone to further investigations the quantitative analysis needed to identify the macro-
scopic constitutive parameters which we are going to introduce in terms of the microscopic properties
of yarns. Suitable multi-scale methods as the one introduced in [NAD06] may be generalized to be
applied to the present case. Moreover, the description of the considered system at the micro-
scopic scale may take advantage of some of the results proposed in [ATA97, HAS96, STE92, RIN08,
RIN09, RIN07a, RIN11, RIN13]. Indeed, we content ourselves here with the introduction of three

1When yarns experience a relative displacement of the contact points the macroscopic modeling may become very
difficult to be obtained from microscopic considerations: an eventual attempt should be based on the methods used
in [RIN13, RIN07b].
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phenomenological parameters controlling the thickness of the shear and elongation boundary layers
and the value of the introduced deformation gradients.

The micromorphic hyperelastic model which we propose here is based on a phenomenological
approach: the addition of the micromorphic terms in the strain energy density as specified in Eq.
(5.6) allows us to describe the existence of some regions inside the material in which high gradi-
ents of deformation occur (see also [AIF92, TRI86] for the use of gradient theories to model strain
localization). The onset of such boundary layers is completely accounted for by the proposed gener-
alized hyperelastic model and will be illustrated by numerical simulations which will be subsequently
compared with experimental results.

At this point, we can finally introduce the constitutive form of the micromorphic strain energy
densities which will be used to describe the onset of some boundary layers which are actually
observed in experimental tests on the described thin specimens of fibrous composite reinforcements.
In particular, we assume that the micromorphic term appearing in Eq.(5.6) takes the particular form

WII(κ) =
1

2
α1

(
d1
i κijk d

2
j

) (
d1
p κpqk d

2
q

)
+

1

2
α2

(
d1
i κijk d

1
j

) (
d1
p κpqk d

1
q

)
+

1

2
α3

(
d2
i κijk d

2
j

) (
d2
p κpqk d

2
q

) (5.20)

where we denoted by d1
i and d2

j the components of the vectors d1 and d2 respectively. We can then
rewrite the action functional defined in (5.2) as

A =

ˆ
B0

(
WI(ε) +WII(κ) +

3∑
α=1

λα fα(γ)

)
, (5.21)

where we set n = 3 for the number of introduced constraints which we now suppose to depend only
on the relative deformation γ. With the considered expressions of the strain energy densities WI (ε)
and WII(κ) and with the considered constraints, one can recover the particularization of the power
of internal forces given in (5.3) which reads

P int = δA =

ˆ
B0

((
∂WI

∂εij
+

3∑
α=1

λα
∂fα
∂γhk

∂γhk
∂εij

)
δεij

)

+

ˆ
B0

(
3∑

α=1

λα
∂fα
∂γhk

∂γhk
∂ψij

δψij +
∂WII

∂κijk
δκijk +

3∑
α=1

fαδλα

)
.

(5.22)

We now choose the following particular form for the constraints fα(γ)

f1(γ) = d1 ·
(
γ +

I

2

)
· d2, f2(γ) = d1 ·

(
γ +

I

2

)
· d1, f3(γ) = d2 ·

(
γ +

I

2

)
· d2. (5.23)

In other words, recalling the definition of γ given in (5.1), we are imposing that particular projections
of the micro-deformation tensor ψ on directions d1 and d2 actually tend to angle variations between
the directions d1 and d2 and to macroscopic stretches in these two privileged directions. Other
possible types of constraints could be included in the proposed micromorphic model which, for
example, impose inextensibility of yarns so giving rise to so-called micropolar continua (see e.g.
[ERI01, PIE09, ERE05, ALT03, ERE13]). This is not the case here, since we suppose that the yarns
are very stiff in elongation, but still deformable. More particularly and as it will be better seen in the
following, f1 imposes constraints on the variation of shear angle, while f2 and f3 impose constraints
on the elongations in the two preferred directions d1 and d2. Recalling definition (5.1) for γ, and
that the vectors d1 and d2 are constant vectors, it is possible to verify that the power of internal
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forces can be finally written as

P int =

ˆ
B0

(
∂WI

∂εij
+ λ1 d

1
i d

2
j + λ2 d

1
i d

1
j + λ3 d

2
i d

2
j

)
δεij

−
ˆ
B0

(
λ1d

1
i d

2
j + λ2 d

1
i d

1
j + λ3 d

2
i d

2
j

)
δψij +

ˆ
B0

(
∂WII

∂κijk
δκijk +

3∑
α=1

fαδλα

)
.

(5.24)

It can be checked that, imposing the principle of virtual powers P int = Pext, where P int and Pext

are respectively given by equations (5.24) and (5.4), and considering arbitrary variations δλi one
explicitly gets the constraints

f1(γ) = 0, f2(γ) = 0, f3(γ) = 0. (5.25)

We explicitly remark that, recalling definitions (5.1), the constraints fα = 0 actually relates the
micro-deformation to the macroscopic deformation as follows

f1(γ) = d1 ·
(
γ +

I

2

)
· d2 =

1

2
d1 · (C− 2ψ) · d2 =

1

2

(
i8 − ψ1

)
= 0,

f2(γ) = d1 ·
(
γ +

I

2

)
· d1 =

1

2
d1 · (C− 2ψ) · d1 =

1

2

(
i4 − ψ2

)
= 0,

f3(γ) =
1

2
m2 ·

(
γ +

I

2

)
·m2 =

1

2
m2 · (C− 2ψ) ·m2 =

1

2

(
i6 − ψ3

)
= 0

(5.26)

where we set ψ1 := 2 d1 · ψ · d2, ψ2 := 2 d1 · ψ · d1, ψ3 := 2 d2 · ψ · d2. If we now consider the
constitutive expression for WII given in Eq. (5.20), recalling that d1 and d2 are constant vectors
and that κijk = ψij,k, equation (5.24) reduces to
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(5.27)

together with the constraints ψ1 = i8, ψ2 = i4, ψ3 = i6. Recalling that d1 and d2 are constant
vectors, we can write
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(5.28)

and analogously
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(5.29)
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so that the power of internal forces, written in terms of the strain tensor C, finally simplifies into

P int =
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(5.30)

where we set λ̃i := λ/2 and α̃i := α/4. As for the power of external forces given in Eq. (5.4), we
neglect body actions setting bext

i = 0 and Φext
ij = 0, and we also set T ext

ij = 2β̃ext
1 d1
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ˆ
B0

(
∂WI

∂Cij
+ λ̃1 d

1
i d

2
j + λ̃2 d

1
i d

1
j + λ̃3 d

2
i d

2
j

)
δCij

−
ˆ
B0

3∑
i=1

λ̃iδψ
i +

ˆ
B0

3∑
i=1

α̃i ψ
i
,k δ(ψ

i
,k) =

ˆ
∂B0

texti δui +

ˆ
∂B0

3∑
i=1

β̃exti δψi,

(5.31)

together with the constraints ψ1 = i8, ψ2 = i4 and ψ3 = i6. We remark that the considered
expression for the external double forces, actually allows to consider external actions which expend
power on shear angle variations and on fiber elongation. In this way, one has the possibility to act
on the boundary of considered material assigning force or displacement, shear double force or shear
angle variation and also elongation double force or fiber elongation.

We finally want to explicitly remark that Eq. (5.31) actually represents a very particular case of
second gradient theory. In fact, using the constraints ψ1 = i8, ψ2 = i4 and ψ3 = i6 one gets
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(5.32)
so that Eq. (5.31) is also equivalent toˆ
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We have hence explicitly recovered a special second gradient theory starting from the proposed
constrained micromorphic model. Nevertheless, in our numerical simulations, instead of using the
second gradient weak form (5.33), we use the constrained micromorphic one (5.31). The advantage
of using the micromorphic approach instead of directly using a second gradient theory is that the
boundary conditions which can be imposed are, in the present case, more easily understandable from
a physical point of view. In particular, we remark that, for example, under the constraints ψ1 = i8,
the fact of imposing ψ1 = 0 on the boundary means that we are imposing zero variation of the
angle between the fibers. Analogously, under the constraints ψ2 = i4 and ψ3 = i6, imposing ψ2 = 1
and ψ3 = 1 is equivalent to prevent elongation in the preferred directions d1 and d2. We therefore
end up with a model in which it is possible to impose, at the boundary of considered system, both
the displacement field and the deformation fields measuring variation of the angle between fibers
and elongations along the two preferred directions. The generalized theory proposed in this chapter
becomes essential for describing deformation patterns in which high gradients of deformation occur
in relatively narrow regions of the material. This is the case for the deformation patterns which will
be described in the next section.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



CHAPTER 5. 2D SECOND GRADIENT MODELING OF FIBROUS COMPOSITES 76

5.4 Phenomenology of the bias extension test

The bias extension test is a mechanical test which is very well known in the field of composite
materials manufacturing (see e.g. [CAO08, HAR04, PEN13]). It is widely used to characterize the
mechanical behavior of woven-fabric fibrous composite preforms undergoing large shear deformations.
Such fibrous materials have attracted significant attention from both industry and academia, due to
their high specific strength and stiffness as well as their excellent formability characteristics. These
materials are widely being used in the aerospace industry since they provide a suitable compromise
between high mechanical performances, light weight and easy shaping. The bias extension test is
performed on rectangular samples of woven composite reinforcements, with the height (in the loading
direction) relatively greater (at least twice) than the width, and the yarns initially oriented at ±
45-degrees with respect to the loading direction. The specimen is clamped at two ends, one of which
is maintained fixed and the second one is displaced of a given amount. The relative displacement of
the two ends of the specimen provokes angle variations between the warp and weft: the creation of
three different regions A, B and C, in which the shear angle between fibers remains almost constant
after deformation, can be detected (see Fig. 5.3). In particular, the fibers in regions C remain
undeformed, i.e. the angle between fibers remains at 45° also after deformation. On the other hand,
the angle between fibers becomes much smaller than 45° in regions A and B, but it keeps almost
constant in each of them.

A
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BB
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BB
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Figure 5.3: Simplified description of the deformation pattern in the bias extension test.

The main characteristics of the bias extension test are summarized in Fig. 5.3 in which both the
undeformed and deformed shapes of the considered specimen are depicted. The specimen is clamped
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Figure 5.4: Boundary layers between two regions at constant shear (left) and curvature of the free
boundary (right).

at its two ends using specific tools which impose the following boundary conditions:

• vanishing displacement at the bottom of the specimen,

• assigned displacement at the top of the specimen

• fixed angle between the fibers (45°) at both the top and the bottom of the specimen.

• vanishing elongation of the fibers at both the top and the bottom of the specimen.

It is clear that the third type of boundary condition which imposes that the angle between fibers
cannot vary during deformation of the specimen is a boundary condition which, at the level of
a macro model, imposes deformation and not displacement. The same is for the fourth type of
boundary conditions blocking elongation of fibers. Boundary conditions of this type cannot be
accounted for in a first gradient theory, while they can be naturally included in a second gradient
one, as duly explained in the previous section.

Moreover, the deformation scheme described in Fig. 5.3 does not take into account some speci-
ficity of the deformations which are actually observed during a bias extension test. In particular,
the following two experimental evidences are not included in the scheme presented in the quoted
figure:

• the presence of transition layers between two adjacent zones with constant shear deformation

• the more or less pronounced curvature of the free boundaries of the specimen.

Indeed, both these evidences can be observed in almost any bias extension test on woven composite
preforms, as it is shown in Fig. 5.4.

A set of bias tests run on specimens under identical circumstances have produced some suggestive
results which were gathered in a picture of [CAO08] which we reproduce here in Fig. 5.5. In
this figure the contour of the shear angle variation between yarns is depicted as the result of some
optical measurements conducted at INSA-Lyon. Unfortunately, the yarns constituting the considered
reinforcements have a very high extensional rigidity and, as a consequence, the thickness of the
corresponding elongation boundary layers is relatively smaller. Hence, in order to obtain similar
results for the elongation boundary layers, suitably targeted measurement campaigns should be
conceived.
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Figure 5.5: Contour of shear angle in a bias-extension test obtained from the optical measurement
software Icasoft (INSA-Lyon).

Table 5.1: Constitutive first gradient coefficients used in the numerical simulations.

K0
elong K1

elong I0elong K12
shear K21

shear p W 0
shear I0shear

[MPa] [MPa] [−] [MPa] [MPa] [MPa] [−]

37.85 816.33 1.45×10−2 0.07575 1.69×10−4 3.69 -1.69×10−4 4.20×10−3

The principle of virtual powers for constrained micromorphic media formulated in Eq. (5.31)
allows for the description of the onset of thin boundary layers in which high gradients of shear
deformation occur and which allow for a gradual transition from one value of the shear angle to the
other one. The onset of these boundary layers cannot be accounted for by a first gradient theory,
while it can be described by adding a dependence of the energy density on gradients of the shear
deformation. Curvature effects will be also pointed out in the results obtained in the performed
numerical simulations and which will be shown in the next section.

5.5 Numerical simulations

We now propose to apply the introduced second gradient model to perform numerical simulations
of the bias extension test which take into account the onset of shear boundary layers. We consider a
rectangular specimen of 100 mm of width of and 300 mm of height in the undeformed configuration.
The fibers are at ±45◦ with respect to the direction of the height of the specimen in the undeformed
configuration. To perform the numerical simulations we choose a fixed orthonormal basis such that,
the components of the two structural vectors introduced before are d1 =

(√
2/2,
√

2/2, 0
)T and d2 =(√

2/2,−
√

2/2, 0
)T and we impose at the top of the specimen a vertical displacement d = 55 mm.

Clearly, also the deformation tensor C and all its introduced invariants can be accordingly written in
the chosen basis. We summarize in Tab. 5.1 the values of the first gradient constitutive parameters
appearing in the orthotropic hyperelastic potential (5.19) which are used to perform the numerical
simulations presented in this section.

These values have been proposed in [CHA12] as the result of specific measurement campaigns.
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5.5.1 First gradient limit solution

As discussed in detail by [HAM13a, HAM13b], first gradient energies, in which the physical phe-
nomena governing the onset of boundary layers are neglected, actually produce mesh-dependent
numerical simulations. To remedy to this circumstance, [SPE84] suggested some techniques whose
numerical counterpart has been developed in [HAM13a, HAM13b] for considered case: following the
ideas there exposed we could get numerical simulations in which boundary layers reduce to lines and
deformation measures are subjected to jumps.

Figure 5.6: Shear angle variation φ for an imposed displacement d = 55 mm obtained with the first
gradient theory. The lateral bar indicates the values of φ in degrees.

We show the result of one of these numerical simulations in Fig. 5.6. This picture represents the
shear deformation field which is the correct limit to which regularized models must converge when
higher gradient parameters tend to zero. In particular, figure 5.6 shows the shear angle variation
φ which is obtained as solution of the first gradient equilibrium problem resulting from (5.31) by
setting α̃1 = α̃2 = α̃3 = 0 and β̃ext

1 = β̃ext
2 = β̃ext

3 = 0. The boundary conditions which have been
used to solve the first gradient equilibrium problem are

• Vanishing displacement on the left surface: δui = 0, i = {1, 2},

• Assigned displacement on the right surface: δu1 = 55 mm, δu2 = 0,

• Unloaded lateral (top and bottom) surfaces (i.e. text
i = 0, i = {1, 2}).

As it can be seen, the three zones A, B and C defined in Fig. 5.3 can be identified in the solution
shown in Fig. 5.6: the red zones (corresponding to zones C) are such that no angle variation occurs
with respect to the reference configuration (φ = 0). On the other hand, the green and the blue zones
respectively correspond to regions B and A and are such that two different constant angle variations
(φB ≈ φA/2 6= 0) with respect to the reference configuration occur. The first gradient solution is
such that a sharp interface between each pair of the three shear regions can be observed.

5.5.2 Second gradient solution and the onset of boundary layers

For what concerns the solution which we have obtained by means of the introduced second gradi-
ent model, we start by heuristically choose the values of the second gradient parameters by using
an inverse method based on physical observations. However, further investigations are needed to
establish a theoretical relationship between the microscopic structure of considered reinforcements
and the macroscopic parameters here introduced: it is indeed well known (see e.g. [CAS72, DEG81,
DEL95a, FOR10]) that the second gradient parameters are intrinsically related to a characteristic

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



CHAPTER 5. 2D SECOND GRADIENT MODELING OF FIBROUS COMPOSITES 80

length Lc which is, in turn, associated to the micro-structural properties of considered materials.
It is also known that many identification methods have been introduced to relate the macroscopic
second gradient parameter to the microscopic properties of the considered medium. Some of these
methods are presented in [ALI03, SEP11]. Calling Lc the measured thickness of the shear boundary
layer highlighted in Fig. 5.4, we tune the value of the second gradient parameters α̃i, i = {1, 2, 3}
in our numerical simulations until we obtain a boundary layer having the same thickness Lc. In
particular, for a characteristic length Lc ≈ 2 cm, we obtain, by inverse approach, the following
values of the shear and elongation second gradient parameters respectively

α̃1 = 3× 10−5 MPa m2, α̃2 = α̃3 = 9× 10−3 MPa m2. (5.34)

The second gradient solution for the shear angle variation φ, obtained for the aforementioned
values of the second gradient parameters, is shown in Fig. 5.7. For obtaining this solution, Eq.
(5.31) was solved with the following additional boundary conditions

• Zero angle variation at the clamped ends of the specimen: ψ1 = i8 = 0,

• Zero elongation of the fibers at the clamped ends of the specimen: ψ2 = i4 = 1, ψ3 = i6 = 1.

• Boundaries on the lateral (top and bottom) surfaces free from micromorphic loads: β̃ext
i =

0, i = {1, 2}.

Figure 5.7: Shear angle variation φ for an imposed displacement d = 55 mm obtained with the
proposed second gradient theory. The lateral bar indicates the values of φ in degrees

It can be noticed that in the second gradient solution shown in Fig. 5.7 the transition zones
between different shear regions are regularized and shear boundary layers can be clearly observed,
as well as a curvature of the free boundaries on the two free sides. It can be immediately remarked
how the solution shown in Fig. 5.7 is, at least qualitatively, very close to the experimental picture
shown in Fig.5.5.

We show in Fig. 5.8 the first and second gradient solutions for the shear angle variation along
the sections I and II.

It can be clearly seen that, along section I, the first gradient solution (dashed line) produces a
sharp variation of the shear angle across the two regions C and B. On the other hand, the second gra-
dient solution (continuous line) clearly regularizes the transition between the zone at zero variation
of the shear angle and the adjacent zone. The same arrives in section II, which spans on the whole
specimen, in which the transition zones are clearly regularized by the second gradient solution.

In Fig. (5.9) we show the effect of the variation of the shear second gradient parameter α̃1 on the
solution for the shear angle variation φ along the sections I and II respectively. It can be seen that
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Figure 5.8: Definition of the sections I and II (top) and shear angle variation φ for the two sections
I and II both for first gradient (dashed line) and second gradient (continuous line).

the effect of increasing the shear second gradient parameter actually lower the value of the shear
angle variation so producing more regular transitions from the two regions at different constant
shear. This clearly results in an increasing of the characteristic size of the shear boundary layer.
It can be also noticed that the value of φ increases with α̃1 in the center of the specimen. We can
conclude that the choice of the shear second gradient parameter α̃1 is directly related to the fact of
fixing the thickness of the shear boundary layer. This parameter can be hence easily tuned on the
basis of experimental evidences. In the presented numerical simulations, we tuned the shear second
gradient parameter α̃1 in order to have a boundary layer of thickness Lc ≈ 2 cm, so obtaining the
quoted value α̃1 = 3× 10−5 MPa m2.

As for the choice of the second gradient elongation parameters, the identification procedure is
less direct than that one used for identifying the shear parameter α̃1. First of all, due to symmetry of
material properties in the directions of weft and warp, we set a priori that α̃2 = α̃3. Unfortunately,
due to the very high tensile stiffness of the yarns, experimental measurements of elongation boundary
layers in the fiber directions are not available, as it was instead the case for shear boundary layers
(see Fig. 5.5). The precise tuning procedure which allows us to fit the second gradient elongation
parameters to experimental measures of elongation boundary layers is henceforth not possible at this
stage. Therefore, the value of the parameters α̃2 and α̃3 was tuned after performing the parametric
study shown in Fig. 5.10 in which the effect of the variation of the second gradient elongation
parameter on the value of the shear angle is shown. It can be remarked from this picture that
increasing the value of the second gradient elongation parameter results in an overall increase of the
shear angle variation φ. The value of α̃2 which gives, in the center of the specimen, the same value
of φ obtained for the limit first gradient solution shown in Fig. 5.6 was chosen, so resulting in the
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Figure 5.9: Parametric study on the shear second gradient parameter α̃1 ∈ [7 × 10−6, 6 ×
10−5] MPa m2, taking fixed α̃2 = α̃3 = 9× 10−3 MPa m2.
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Figure 5.10: Parametric study on the elongation second gradient parameter α̃2 = α̃3 ∈ [3×10−3, 9×
10−3] MPa m2, taking fixed α̃1 = 3× 10−5 MPa m2.

value α̃2 = 9× 10−3 MPa m2. We obtained, in the performed numerical simulations, an elongation
field which is everywhere very small: the maximum value of elongation is of the order of 10−3. We
show in figures 5.11 the elongation boundary layers (each corresponding to the elongation in one of
the two preferred directions of the fibers) obtained in the performed numerical simulations. In order
to precisely reveal the nature of these elongation boundary layers suitable experimental campaigns
as well as adapted microscopic models should be developed together with suitable micro-macro
identification techniques.

5.5.3 By using first gradient models it is not possible to correctly describe the
onset of boundary layers

One could wonder if it is really necessary to introduce micromorphic continuum models to carefully
describe the onset of boundary layers in bias tests. In the present subsection we discuss some
difficulties which arise if one tries to use the methods discussed in section 5.1. Actually, as shown
by Fig. 5.12, although it is indeed possible to describe the onset of some boundary layers still
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Figure 5.11: Elongations in the direction +45◦ (top figure) and −45◦ (bottom figure).

remaining in the framework of first gradient models, it seems very unlikely that with those methods
one can catch all experimental features which are present in bias extension tests. In the numerical
simulations leading to Fig. 5.12 one can see formation of boundary layers where high gradients of
shear and elongation are concentrated even if this simulation is conducted in the framework of first
gradient theory. However, the solution is qualitatively and quantitatively different from the first
gradient sharp solution shown in Fig. 5.6 so that realistic quantitative values for shear deformations
cannot be obtained from it.

Moreover, if one evaluates the reaction force on the fixed clamped end in the last considered case,
it can be checked that its value exceeds of a big amount the reaction force which is expected. More
particularly, the force evaluated for the limit first gradient solution depicted in Fig. 5.6 is of the
order of 5 N which is a sensible force for the bias extension test. On the other hand, if one evaluates
the force for the case depicted in Fig. 5.12, this force exceeds from 10 to 100 times the 5 N obtained
in the limit sharp first gradient solution, depending on the choice of the mesh. This means that
the mesh dependence of the first gradient solution is even more evident when analyzing force than
when analyzing deformation. Such a problem on the value of calculated force is not present when
considering the second gradient solution shown in Fig. 5.7. This point allows us to conclude that,
using first gradient models, it is not possible to correctly describe the onset of boundary layers and
that the reaction forces at clamped ends are definitely overestimated as soon as one gets far from
the limit first gradient solution shown in Fig. 5.6.
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Figure 5.12: Shear angle variation φ for an imposed displacement d = 55 mm obtained with the first
gradient theory and for an arbitrary mesh. The lateral bar indicates the values of φ in degrees

5.6 Conclusions

In this chapter a constrained micromorphic theory is introduced which includes, as a particular case,
a second gradient model. Particular orthotropic, hyperelastic, constitutive laws are introduced in
order to account for the anisotropy of fibrous composite reinforcements undergoing large deforma-
tions. The obtained theoretical framework is used to model the mechanical behavior of such fibrous
composite materials during the so-called bias extension test.

The first and second gradient solutions are compared showing that the proposed second gradient
model is actually able to describe the onset of shear boundary layers which regularize the first
gradient sharp transition between two zones at different levels of shear. Moreover, differently from
what happens for the first gradient model, the proposed second gradient theory also allows to describe
the curvature of the free boundaries of the specimen.

In order to identify the values of introduced second gradient parameters we proceed by inverse
approach, performing numerical simulations which correctly fits the experimental data. More par-
ticularly, we choose the values of second gradient parameters in order to fit at best the characteristic
length of the shear boundary layer which is observed is bias test experiments.

Therefore, the results obtained allow us to estimate the order of magnitude of the second gradient
parameters to be used for the considered fibrous materials. These results are promising and justify
the need of novel experimental campaigns in order to estimates such gradient parameters for a wider
class of composite preforms.
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Chapter 6

Second Gradient Modeling of the Three
Point Bending of 3D Interlocks

In this chapter we present a simple quadratic second gradient model for the description of the three
point bending of thick composite interlocks. In particular, we will address the following points:

• formulate a first 3D extension of the 2D model presented in [DEL14] by introducing suitable
quadratic second gradient deformation energy dependences,

• adopt the same deformation energy introduced by [CHA12] for the description of first gradient,
hyperelastic, orthotropic constitutive behavior,

• introduce a 3D generalization of the numerical integration scheme proposed in [FER13] to
describe the 3 point bending test with fixed cylindrical supports for which [CHA12] supplies
experimental evidence and first gradient numerical simulations,

• calibrate second gradient constitutive parameters to describe the experimental mechanical
behavior of the 3 point bending of 0◦/90◦ and ±45◦ fibrous composite interlocks.

The performed numerical simulations were obtained by interfacing the solid mechanics module (used
to model contact and first gradient constitutive behavior) with the weak form PDE module (used to
implement second gradient constitutive laws) in COMSOLr. Second gradient effects were obtained
by using suitable Lagrange multipliers linking the introduced micromorphic kinematical descriptors
to some orthotropic invariants of the right Cauchy-Green deformation tensor.

In conclusion, we can state that the numerical difficulties found when applying Cauchy models
are a symptom of their weakness in the modeling capabilities of complex physical phenomena.
Introducing second gradient models, one simultaneously obtains a twofold effect i) to enlarge the
scope of applicability of continuum theories and ii) to improve the efficiency of introduced numerical
integration schemes.
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6.1 Kinematics

In this section we are interested in the introduction of the correct kinematical framework which is
needed to describe the deformation of three dimensional interlocks. To do so, we follow the reasonings
proposed in [DEL14] for the case of two dimensional networks in which suitable second gradient
energies are proposed which account for the effect of yarns’ bending stiffness on the deformation of
the considered 2D woven fabrics.

Fibrous composite interlocks are constituted by different layers of thin woven fabrics which
are held together by a third weaving pattern. To account for the fact that such materials show two
privileged material directions, we introduce two orthonormal vectors D1 and D2 which represent the
warp and weft directions of the yarns constituting the 2D woven fabrics in the reference configuration.
These weaving directions are the same for all points in the considered woven specimen. A third
direction can be introduced as D3 = D1 ×D2: it is worth noticing that while D1 and D2 actually
identify the pattern of the yarns in the undeformed configuration, the third unit vector D3 does not
necessarily represent a material direction. The quoted set of unit normal vectors is known to be
worth to describe the reference configuration of an orthotropic material (see e.g. [RAU09]). Once
the Lagrangian unit vectors are introduced, we can define the corresponding Eulerian vectors as:

d1 = F ·D1, d2 = F ·D2, d3 = F ·D3, (6.1)

where F = ∇χ is the gradient of the usual placement map χ. The vectors d1, d2 and d3 are the
push-forward in the current configuration of the vectors D1, D2 and D3 respectively. It is worth
to stress the fact that, while the vectors d1 and d2, represent the current directions of the warp
and weft, the vector d3 cannot be related to privileged directions inside the considered orthotropic
material.

We can summarize by saying that the kinematics of the considered continuum is univocally
determined by the introduction of a suitably regular placement field χ : B0 → R3 which maps
the Lagrangian configuration B0 ⊂ R3 of the considered body into the 3D Euclidean space. The
deformation of the body is hence completely described by means of the deformation gradient F = ∇χ
as in classical continuum mechanics. In this framework, if one introduces an orthonormal basis
{D1,D2,D3}, the corresponding deformed vectors {d1,d2,d3} are immediately found by means of
Eq. (6.1). The fact of identifying two of the Lagrangian material vectors (namely D1 and D2)
with the reference directions of yarns will be seen to be useful to describe in an intuitive way the
deformation of the considered orthotropic material.

γ2

γ1

θ

γ := γ1 + γ2

D1

D2

d1

d2

Figure 6.1: Eulerian yarn vectors d1 and d2: the angle θ is the angle between yarns in the current
configuration, γ is the total angle variation with respect to the reference configuration

In fact, with reference to Fig. 6.1 for the definition of the angles θ and γ, it is possible to remark
that the shear strain S can be related to the total angle variation γ according to the formula

S = d1 · d2 = |d1| |d2| cos (θ) = |d1| |d2| sin (γ) , (6.2)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



CHAPTER 6. 3D SECOND GRADIENT MODELING OF INTERLOCKS 88

where γ = γ1 +γ2 is the total angle variation field between the two orders of yarns from the reference
configuration to the current one and |·| represents the length of considered vectors. Analogously,
λ1 = |d1| and λ2 = |d2| are a measure of the yarns’ stretches: indeed the elongations of the two
orders of yarns with respect to the reference configuration can be easily obtained as λ1−1 and λ2−1
respectively.

6.2 Second gradient energy density for 3D interlocks

The aim of this section is to introduce constitutive laws which are suitable to describe at best the
mechanical behavior of 3D fibrous composite reinforcements. It will be shown that a second gradient
constitutive law which is able to account for the in-plane and out-of-plane bending stiffnesses of the
yarns is indeed necessary to correctly model the mechanical behavior of such materials. Following
what done in [DEL14] for the 2D case, we suppose that the deformation energy density W depends
on the deformation tensor and on its gradient by means of the following additive decomposition:

W (F,∇F) = WI (F) +WII (F,∇F) , (6.3)

where WI and WII are the first and second gradient energies respectively.
In order to determine a suitable constitutive expression for the first gradient energyWI , we start

recalling the representation theorem for orthotropic materials (see [RAU09]) which states that the
first gradient energy for an orthotropic material can take the following functional form:

WI (F) = WI (i1, i4, i6, i8, i9, i10) , (6.4)

where

i4 = D1 ·C ·D1 = λ2
1, i6 = D2 ·C ·D2 = λ2

2, i8 = D1 ·C ·D2 = S,

i9 = D1 ·C ·D3, i10 = D2 ·C ·D3, i1 = tr (C) ,
(6.5)

are the invariants of the right Cauchy-Green deformation tensor for an orthotropic material and
where C = FT · F is the classical right Cauchy-Green deformation tensor. It is worth noticing
that the first three invariants respectively coincide with the square of the stretches in the yarns’
direction and with the shear strain. The invariants i9 and i10, on the other hand, are related to the
out-of-plane angle variations of the two orders of yarns and their spacial gradient can be related to
the out-of plane bending of the yarns. Specific constitutive laws for the first gradient energy which
fit available experimental data will be given in the next subsection.

As far as the second gradient energy is concerned, a general class of expressions which can be
considered is of the type

WII (F,∇F) = WII (∇i1,∇i4,∇i6,∇i8,∇i9,∇i10) . (6.6)

In the next subsection we will point out some reasonings which will allow us to consider simpler
constitutive expressions for the second gradient energy which are suitable to describe the overall
behavior of the considered interlock subjected to three point bending..

6.2.1 Constitutive choice for the first gradient energy

Following what done in [CHA12], we introduce some specific functions of the introduced invariants
which are relatively simple to be determined by means of suitable experimental settings:

I1
elong = ln

(√
i4
)
, I2

elong = ln
(√
i6
)
, Ip

sh =
i8√
i4i6

,

It1
sh =

i9√
i4i11

, It2
sh =

i10√
i6i11

, Icomp = ln

(√
i3
i4i6

)
,

(6.7)
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where the invariants which have not been previously introduced are defined as

i3 = det (C) , i11 = D3 ·C ·D3. (6.8)

Indeed, considering an energy which depends on the quantities appearing in (6.7) is equivalent to
consider a functional dependence of the type (6.4). In fact, as shown in [RAU09], the additional
two invariants defined in (6.8) depend on the previously introduced ones by means of the following
relationships

i11 = i1 − i4 − i6,
i3 =

(
i4i6 − i28

)
(i1 − i4 − i6) + 2 i8 i9 i10 − i6 i29 − i4 i210.

(6.9)

The interest of introducing a particular functional dependence of the strain energy density on the
invariants (6.5) through the introduction of the quantities (6.7) can be found in the fact that these
quantities can be easily measured by means of suitable experimental set-ups. The two quantities
I1

elong and I2
elong are directly related to yarns elongations λ1 =

√
i4 and λ2 =

√
i6. As for the

second quantity, it can be checked that Ip
sh = sin (γ) (see also Eq. (6.2)): this means that it can

be directly related to the shear angle variation between yarns. Analogously, It1
sh and It2

sh represent
the out-of-plane angle variations of the two orders of yarns and are thus related to out-of-plane
shear modes. Finally, Icomp represent a normalized volume variation which can be directly related
to a compression deformation mode. The possibility of performing simple elementary measurements
on the quantities (6.7) allows the conception of constitutive laws which characterize the behavior
of composite interlocks and which show considerable agreement with the available experimental
evidences. In [CHA12] it is proposed a constitutive expression of the first gradient deformation
energy of the type

WI = W 1
elong +W 2

elong +Wcomp +W p
sh +W t1

sh +W t2
sh , (6.10)

where

W 1
elong =


1
2K0

elong

(
I1

elong

)2
if I1

elong ≤ I0
elong

1
2Kelong

(
I1

elong − I0
elong

)2
+ 1

2K0
elongI

1
elongI

0
elong if I1

elong > I0
elong,

W 2
elong =


1
2Kelong

(
I2

elong

)2
if I2

elong ≤ I0
elong

1
2K1

elong

(
I2

elong − I0
elong

)2
+ 1

2K0
elongI

2
elongI

0
elong if I2

elong > I0
elong,

Wcomp = Kcomp

((
1− Icomp

I0
comp

)−q
− q Icomp

I0
comp

− 1

)

W p
sh =

{
K12

shp

(
Ip

sh

)2
if
∣∣Ipsh∣∣ ≤ Ip0

sh

K21
shp

(
1−

∣∣Ip
sh

∣∣)−p +W 0
shp if

∣∣Ipsh∣∣ > Ip0sh

W t1
sh =

{
1
2K12

sht1

(
It1

sh

)2
if
∣∣It1sh

∣∣ ≤ I0
sht1

K22
sht1

(
It1

sh

)2
+ K21

sht1

∣∣It1
sh

∣∣+W 0
sht1 if

∣∣It1sh

∣∣ > I0
sht1

W t2
sh =

{
1
2K12

sht2

(
It2

sh

)2
if
∣∣It2sh

∣∣ ≤ I0
sht2

K22
sht2

(
It2

sh

)2
+ K21

sht2

∣∣It2
sh

∣∣+W 0
sht1 if

∣∣It2sh

∣∣ > I0
sht2.

(6.11)
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In the previous formulas, all the quantities which have not been introduced before are constant.
It is worth noticing that the elongation energiesW 1

elong andW 2
elong are defined in such a way that

a threshold value I0
elong exists for which the yarns’ rigidity is smaller for small elongations than for

higher ones (K0
elong < Kelong). This constitutive choice allows to take into account the fact that the

yarns are not initially straight due to weaving and they can hence initially be elongated more easily.
The elongation threshold I0

elong corresponds to the configuration in which the yarns are completely
straightened and start showing a higher resistance to deformation. The need of introducing such
elongation strain energy densities is related to the fact that they actually carefully describe the
response of the woven yarns to elongation. Nevertheless, the elongation of yarns is a mechanism
which is definitely less important than the deformation mechanism associated to the angle variations
between the two orders of yarns. We can actually say that, in most of the experimental tests, the
considered yarns can be considered almost inextensible with respect to the observed predominant
shear strains: the energy associated to elongation is negligible when compared to the energy associ-
ated to the in-plane and out-of-plane shear of the considered set of yarns. As it will be better pointed
out in the next subsection, this feature, which is peculiar of fibrous composite reinforcements, will
be essential for choosing a simplified constitutive expression for the second gradient energy.

6.2.2 Constitutive choice for the second gradient energy

In this subsection we specify the constitutive expression which we will use to model the mechanical
behavior of 3D composite interlocks. To do so, we start considering some results recently proposed
in [DEL14] for 2D woven composites. In the quoted paper, it is shown that a suitable 2D second
gradient energy which is able to account for in-plane bending stiffness of the yarns at the mesoscopic
scale is of the type

WII (F,∇F) =
1

2
Aλ

(
|∇λ1|2 + |∇λ2|2

)
+

1

2
AS |∇S|2 , (6.12)

where Aλ and AS are positive constants. This energy has been shown to be a good choice for the
description of the mechanical behavior of 2D woven composites due to its convexity with respect to
∇F which guarantees well posedness of the resulting differential problem. A second gradient energy
of this type has also been used in [FER13] to model the bias extension test on 2D woven composites.
It is clear that, when considering inextensible yarns, the gradient of elongations are vanishing and
the second gradient strain energy density thus reduces to

WII (F,∇F) =
1

2
AS |∇S|2 =

1

2
AS |∇i8|2 . (6.13)

In [DEL14] it is also shown that, in the limit case of inextensible yarns, an alternative to the strain
energy density (6.13) is given by

WII (F,∇F) =
1

2
Ag

(
|g1|2 + |g2|2

)
, (6.14)

where
g1 = κ1ν1, g2 = κ2ν2 (6.15)

are two vectors which account for the bending of the yarns at the mesoscopic level and Ag is a
positive constant. In the last formulas κ1 and κ2 are the bending strains of the two orders of yarns
and ν1 and ν2 are vectors orthogonal to the current yarn directions d1 and d2 respectively (see
[DEL14] for more details). Direct comparison of equations (6.13) and (6.14) allows to conclude
that, in the case of almost inextensible yarns, the fact of considering an energy accounting for the
gradient of the shear angle variation is equivalent to consider an energy accounting for the bending
of the two orders of yarns at the mesoscopic level. This interpretation is intriguing since it provides
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a clear interpretation of the deformation mechanisms which take place at the mesoscopic level when
considering woven fabrics.

By extension of the previous reasoning, we consider the following expression for the second
gradient energy to be used for accounting for out-of plane bending stiffness of the yarns in 3D
composite interlocks

WII (F,∇F) =
1

2
At1
S |∇i9|2 +

1

2
At2
S |∇i10|2 . (6.16)

By this constitutive choice, we are considering that the wires are almost inextensible (small elonga-
tions compared to the shear strains) and that the predominant second gradient deformation modes
are the out-of-plane bending of the yarns at the mesoscopic level. This is coherent with the usual
phenomenology observed when dealing with 3D composite interlocks.

As a matter of fact, the constitutive choice (6.16) for the second gradient strain energy den-
sity deserves more accurate investigations in future works in order to be generalized to describe
any observable material behavior of thick composite interlocks. Actually, even if the predominant
mesostructure-related deformation mechanisms which are activated in the three point bending test
are the out-of-plane bending of the yarns, it is possible that other second gradient mechanisms could
be activated when considering other loading and/or boundary conditions. In order to explore all
these possibilities, other independent macroscopic tests need to be conceived which are able to un-
veil such supplementary material behaviors taking place at the mesoscopic level. A fully realistic
constitutive choice for the generalized elasticity parameters remains a big challenge for mechanicians
and it constitutes an open field of research. Despite the simplicity of the constitutive choic made
here, non-linear material behaviors are likely to occur also for second gradient deformation mech-
anisms. If Eq. e(6.16) is well adapted for describing the macroscopic effect of the mesostructure
when considering a macroscopic bending of the specimen, it is possible that more general expressions
(including a dependence of the elastic second gradient parameters on the first gradient strain and/or
more complicated functional expressions for the strain energy density) will be needed to describe
the behavior of interlocks when subjected to arbitrary loading and boundary conditions.

6.3 Least action principle and principle of virtual powers

Once the kinematics and the adopted constitutive laws for 3D orthotropic materials have been
introduced, we can introduce the action functional as

A =

ˆ
B0

W (F,∇F) dB0 =

ˆ
B0

(WI (F) +WII (F,∇F)) dB0, (6.17)

where WI and WII are constitutively given by (6.10) and (6.16) respectively. Assuming the previous
expression for the action functional implies that all inertia effects are neglected and that we are
hence considering a static case. As it will be shown in the remainder of the chapter, this assumption
is sensible for the applications which are targeted here.

6.3.1 Second gradient theory as the limit case of a micromorphic theory

In this subsection we will present the principle of virtual powers for the considered second gradient
material passing through the theory of micromorphic media. The theory of micromorphic media (see
[MIN64, ERI01]) is known to be suitable to account for microstructure in elastic materials. This
theory is more general than a second gradient one in the sense that the set of unknown kinemati-
cal fields is enriched with respect to the classical kinematics based on the displacement field alone.
More precisely, supplementary kinematical fields accounting for the motion of the microstructure
are provided thus generalizing the classical kinematical framework of Cauchy and second gradient
continua. In this chapter, we state the principle of virtual powers for 3D composite interlocks by
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means of a simple micromorphic model and we use suitable Lagrange multipliers to let the con-
sidered micromorphic model tend to the second gradient model presented in the previous sections.
The interest of introducing the principle of virtual powers by means of this approach is threefold:
i) the presentation via a micromorphic model allows to better catch the physical meaning of the
considered internal and external actions, ii) the natural and kinematical boundary conditions which
can be used naturally take an intuitive meaning, iii) last but not least, the numerical implementation
of the considered generalized problem is easier and the obtained solution is more stable. As far as
considering the third quoted advantage of using constrained micromorphic theories to numerically
implement second gradient problems, one has to notice that the gain in terms of numerical calcu-
lations is evident. Indeed, when considering a differential problem stemming from a micromorphic
model, the associated differential equations are of lower order with respect to those which would
directly derive from a second gradient model. These lower order equations are obviously easier to
be solved from a numerical point of view and the obtained numerical solution will be more stable
and precise.

To proceed according to this optic, we introduce the kinematical fields of the considered micro-
morphic model by means of the two vector functions

χ : B0 → R3, ψ : B0 → R2, (6.18)

the first one being the classical placement field introduced before also for the 2nd gradient kinematics
and the second one accounting for microscopic motions in the considered continuum. The micro-
morphic model proposed here is simpler than the classical one proposed by Mindlin and Eringen
[MIN64, ERI01] since we only consider here two additional scalar functions instead of the 9 which
are introduced in the quoted models. We hence introduce a micromorphic strain energy density
which take the following particular form and which is used to implement our numerical simulations:

W̃II (∇ψ) =
1

2
At1
S |∇ψ1|2 +

1

2
At2
S |∇ψ2|2 , (6.19)

where we denoted by ψα, α = 1, 2 the components of the vector ψ. By direct comparison of the
energies (6.19) and (6.16) it can be checked that the proposed micromorphic energy tends to the
second gradient one introduced before if ψ1 → i9 and ψ2 → i10. In order to account for such
constraints in the weak formulation of the problem, we introduce suitable Lagrange multipliers Λ1

and Λ2 which have an associated energy density of the type

WL (F,ψ,Λ) = Λ1 (ψ1 − i9) + Λ2 (ψ2 − i10) , (6.20)

where we clearly set Λ = (Λ1,Λ2).
We hence propose to write the action functional of the proposed micromorphic medium as

A =

ˆ
B0

(
WI (F) + W̃II (∇ψ) +WL (F,ψ,Λ)

)
dB0, (6.21)

where WI is the same energy given in 6.10, while the energies W̃II and WL are introduced in terms
of the additional kinematical variables as in formula (6.19) and (6.20) respectively. The power
of internal forces of the considered constrained micromorphic medium can be written as the first
variation of the considered action functional as

P int = δA =

ˆ
B0

((
∂WI

∂Fij
+
∂WL

∂Fij

)
δFij +

∂WL

∂ψα
δψα +

∂W̃II

∂ψα,j
δψα,j +

∂WL

∂Λα
δΛα

)
. (6.22)

The power of external forces is easily introduced when considering a micromorphic framework (see
e.g. [BLE67]) and in the present case, neglecting body external actions, can take the form

Pext =

ˆ
∂B0

(
f ext
i δχi + τiδψi

)
. (6.23)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



CHAPTER 6. 3D SECOND GRADIENT MODELING OF INTERLOCKS 93

Indeed, in the performed numerical simulations we assume that the virtual fields δψi is arbitrary
on the boundary of the considered specimen (vanishing double force: τi = 0), while the virtual
displacement δχi is arbitrary almost everywhere, except on small subparts of the boundary where the
displacement is assigned or vanishing. Such small parts of the boundary on which the displacement is
vanishing can eventually change during deformation as happens for the contact of simply supported
interlocks undergoing large bending deformations. The boundary conditions to be applied to model
contact between two deformable continua is of difficult implementation but contact laws are usually
already implemented in numerical codes as e.g. COMSOL Multiphysics. We used such tool to model
the contact in our numerical three point bending simulations.

The weak formulation of the differential problem for the considered constrained micromorphic
medium can be then stated as

P int = Pext, (6.24)

where the internal and external power are respectively given by (6.22) and (6.23).
It is worth to remark that, starting from this formulation of the principle of virtual powers and

considering arbitrary variations δΛi of the Lagrange multipliers, one gets the bulk constraints which
actually let the considered micromorphic model tend to the particular second gradient one previously
introduced, namely

ψ1 = i9, ψ2 = i10. (6.25)

It is clear that, starting from the principle of virtual powers and integrating by parts, one could
also obtain the strong form of the bulk equations and naturally associated boundary conditions in
duality of the virtual variations δχi and δψi. Nevertheless, since the numerical simulations presented
in the following are directly implemented via the weak form (6.24), we do not explicitly write here
such strong equations.

6.4 Numerical simulations for three point bending of composite in-
terlocks

In this section we present the numerical results stemming from the application of the proposed
second gradient model to the case of three point bending of a composite interlock. The first gradient
constitutive parameters appearing in equation 6.11 are assumed to take the values presented in tables
6.1, 6.2 and 6.3, in agreement with the experimental identification proposed in [CHA12]. We remark
that the two out-of-plane shear potentials are not symmetric in the sense that the corresponding
constants appearing in table (6.3) do not take the same values for the two order of yarns. This fact
is due to different weaving patterns in the warp and weft directions and has been experimentally
observed in [CHA12].

K0
elong Kelong I0

elong Kcomp I0
comp q

37.85 [MPa] 816.33 [MPa] 0.0145 7.57×10−3 [MPa] -1.12 2.85

Table 6.1: Constitutive parameters appearing in the elongation and compression energy potentials.

K12
shp K21

shp p I0
shp W 0

shp

0.07575 [MPa] 1.69×10−4 [MPa] 3.69 4.2×10−3 -1.69×10−4 [MPa]

Table 6.2: In-plane shear constitutive parameters.
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K12
sht1 K22

sht1 K21
sht1 I0

sht1

0.064945 [MPa] 0.00401131 [MPa] 0.00079691 [MPa] 1.4×10−2

K12
sht2 K22

sht2 K21
sht2 I0

sht2

0.0330351 [MPa] 0.0042497 [MPa] 0.000736072 [MPa] 3×10−2

Table 6.3: Out of plane shear constitutive parameters.

Indeed, it must be said that the constitutive expressions for the in-plane and out-of-plane shear
potentials (last three equations in 6.11) are slightly different from the ones used in [CHA12]. Never-
theless, the associated stresses (derivatives of the energy with respect to Ip

sh, I
t1
sh and It2

sh) are seen to
be almost equivalent. The reason to introduce here a simplified expression for the shear potentials is
that a quadratic energy (linear stress) is more easily treated in numerical calculation than an energy
in which non-integer powers of the considered invariants appear. All other constitutive laws used
here (see Eq. 6.11) coincide with the one proposed in [CHA12].

The physical test we want to reproduce here is a simple three point bending of a composite
reinforcement beam with rectangular cross-sections. The considered interlocks are 3D materials (see
Fig. 6.2) in which a specific meso-structure with particular ordered patterns can be identified.

Figure 6.2: Example of 3D woven composite interlock reinforcement [ORL12] and general principle
of the interlock weaving pattern.

As it can be inferred from figure 6.2, such materials are realized by different superimposed sheets
of 2D woven fabrics which are partially interwoven in the direction orthogonal to the plane of the
yarns. More particularly, the weaving in the direction orthogonal to the plane of the yarns is not
continuous through the thickness of the specimen and thus cannot be considered as a material
direction. For more details about the considered woven materials, we refer to [CHA11b, ORL12] in
which the mesostructure of Snecma composite interlocks are described in greater detail.

In this chapter we will focus on two different three types of samples which basically differ one
from the other for the direction of warp and weft with respect to the boundaries of the considered
specimen. More particularly, we consider a three point 0◦/90◦ bending test (warp and weft directions
aligned with the edges of the specimen) and a three point ±45◦ bending test (the yarn directions form
an angle of 45◦ degrees with respect to the longer sample edge). Numerical simulations showing the
effect of the introduced second gradient parameters will be proposed for both cases and a discussion
on the need of considering such a generalized continuum theory will be performed.
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In all the performed numerical simulations we consider specimens with the dimensions of 200×
30 × 15 mm, and we impose in the middle of the specimen a displacement of 60 mm. As already
discussed, since large deformations are imposed to the specimen, the contact law between the spec-
imen and the two cylindrical supports is a crucial point for the correct modeling of the considered
problem. More particularly, as far as boundary conditions are concerned, we suppose that external
double-forces are vanishing, while the force at the supports are assumed to follow a frictionless con-
tact law which is built-in in the COMSOL code. In the middle of the top surface a displacement is
applied which goes from 0 to 60 mm.

As for the values of the second gradient parameters appearing in Eq. (6.16), they are chosen by
fitting the performed second gradient numerical simulations with the available experimental data
concerning three point bending of 0◦/90◦ and ±45◦ composite interlocks. As it will be seen in the
following subsections, the values of the second gradient parameters which are needed to fit at best the
experimental evidences are not constant but depend on the entity of the macroscopic deformation.
This indicates that the constitutive law (6.16) may not be general enough to catch all the possible
material behaviors at high strains. Indeed, as far as sufficiently small imposed displacements are
considered (up to 30−40 mm), a quadratic constitutive law of the type (6.16) is sufficient to describe
quite precisely the overall material behavior. On the other hand, when higher imposed displacements
are considered, different values of the second gradient parameters must be chosen to fit at best the
experimental shape. Further studies on the formulation of the constitutive behavior of composite
interlocks are thus needed which are focused on the development of more complex non-linear second
gradient constitutive equations.

6.4.1 Three point 0◦/90◦ bending test: the effect of out-of plane yarns’ bending
stiffness

In this subsection we present the numerical simulations obtained via the proposed linear second
gradient model and we compare the obtained solutions with those issued by the classical Cauchy
theory.

Figure 6.3 shows the comparison between the experimental tests, the first gradient solution
and the second gradient one. It can be immediately noticed that the first gradient solution does
not allow to correctly describe the deformation of the two ends of the beam whose deformation
significantly deviates from the experimental data. This discrepancy between the experiments and
the first gradient solution can be better pointed out in Fig. 6.4.

In this picture the fact that the the two ends of the beam do not correctly lift up results to
be quite evident. On the other hand, the better fitting of the second gradient solution with the
experimental evidence can be seen in Fig. 6.5.

It can also be remarked in the quoted picture that the fitting between the second gradient
solution and the experimental data is performed by using two different values of the second gradient
parameter when considering small and high deformations. These observations lead naturally to infer
that the second gradient out-of-plane parameters cannot be considered to be constant, but seem to
vary with deformation. This allows to conjecture that the second gradient constitutive law should
indeed be generalized with respect to the simple quadratic form considered in Eq. (6.16) in order to
include material non-linearities also in the second gradient terms. In this chapter, we limit ourselves
to the quadratic second gradient constitutive law (6.16) which is able to catch the most important
features of the mechanical behavior of considered interlocks with very few elastic constants. On the
other hand, we also remark that, in subsequent works, a generalized non-linear constitutive law needs
to be formulated for the second gradient energy in order to complete the mechanical characterization
of considered materials.

The results obtained by means of the performed numerical simulations are appealing as they
strongly suggest that the presence of second gradient terms in the strain energy density of the
considered orthotropic material is unavoidable if one wants to correctly model the three point bending
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Figure 6.3: 0◦/90◦ three point bending for an imposed displacement of for 30mm (left) and for
60mm (right). Top: experimental shapes [ORL12], middle: first gradient numerical simulations
[CHA12], bottom: second gradient numerical simulations with At1S = At2S = 1.2 × 10−5MPa ×m2

(left) and At1S = At2S = 5× 10−6MPa×m2(right).

of a 0◦/90◦ interlock while remaining in a continuum framework. Indeed, it is sensible that the out-
of-plane bending stiffness plays a very important role in the deformation of such materials. In fact,
the predominant deformation mode in such a test is related to the bending deformation of the order
of yarns which are aligned with the longer side of the specimen. The order of yarns aligned with the
depth of the specimen has very little influence on the global deformation of the considered sample.
The fact that the longer yarns bend and that they posses a non-negligible out-of-plane bending
stiffness allow the two ends of the beam to lift up. Such a deformation pattern is well recovered
by the second gradient numerical simulations, but not by the first gradient ones (see Fig. 6.3).
Moreover, it can be seen in the quoted figure that, as far as the three point bending of a 0◦/90◦

specimen is considered, the cross sections of the beam are not orthogonal to its mean axis: this is
directly related to the fact that the yarns can be considered almost inextensible in the considered
woven composite.

Indeed, as it can be seen in Fig. 6.6, a specimen which behave as an Euler-Bernouilli beam would
need that the upper part of the specimen shrink and the lower part elongate in order to let the cross
sections stay orthogonal with respect to the mean axis. This shrinking/elongation deformation of the
specimen is not possible due to the quasi-inextensibility of the yarns: the inextensibility constraint
actually imposes a relative sliding of the yarns and, as a result, a rotation of the cross-sections with
respect to the direction orthogonal to the mean axis.
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Figure 6.4: Comparison between experimental data (dots) and first gradient solution: current shape
of the mean axis of the specimen for imposed displacement of 30mm (a) and for 60mm (b).
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Figure 6.5: Comparison between experimental data (dots) and second gradient solution: current
shape of the mean axis of the specimen for imposed displacement of 30mm and At1S = At2S =
1.2× 10−5MPa×m2 (a) and of 60mm (b) and At1S = At2S = 5× 10−6MPa×m2.

6.4.2 Three point ±45◦ bending test

The present subsection is devoted to the comparison between first and second gradient solutions for
the ±45◦ 3 point bending. Figure 6.7 shows a schematic representation of the bending of a ±45◦

specimen.
It can be seen from this figure that in such a deformation pattern, the upper part of the specimen

necessarily undergoes to shrinking, while the bottom part is instead elongated. This change of length
of the specimen is not due to elongation of the yarns (which we know to be almost inextensible), but
to their pantographic motions. Indeed, it is known (see also Fig. 6.7(b) and (c)) that pantographic
structures can increase or decrease their global length without changing the length of the single
elements constituting the pantograph itself. Such “pantographic” variation of length of the specimen,
coupled to out-of-plane angle variation of the two order of yarns give rise to the overall deformed
shape of the ±45◦ specimen.

Figure 6.8 shows the comparison between the experiments and the first and second gradient
solutions for the ±45◦ specimen for an imposed displacement of 60mm. It can be inferred from this
figure that the first gradient solution is closer to the experimental shape than in the 0◦/90◦ case.
This means that the second gradient effects due to in-plane and out-of-plane bending of the yarns
are definitely less important than in the 0◦/90◦ case. Indeed, this is sensible since the yarns are
short compared to the length of the specimen and they can hence deform (rotate) changing their
out-of-plane shear angle with no significant bending.

Figure 6.9 shows the experimental deformation of the mean axis together with those obtained
via the first and second gradient theories. It is evident that that the two ends of the specimen
are partially lifted up even when considering the first gradient solution (which means that some
out-of-plane rotation takes place even without bending), but the experimental shape becomes much
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Figure 6.6: Schematic representation of 0◦/90◦ bending test: Euler-Bernouilli hypothesis of cross
sections orthogonal to the mean axis is violated.

(a)

(b) (c)

Figure 6.7: Schematic representation of (a) ±45◦ bending test: Euler-Bernouilli hypothesis of cross
sections orthogonal to the mean axis is almost verified; (b) and (c) possible motions of panthographic
structures allowing for elongation and shrinking of the macroscopic specimen.

closer to the experimental one for a non vanishing value of the out-of-plane shear second gradient
parameters. The fact that a partial lift-up of the two ends of the beam takes place even in the case
of a first gradient theory is due to the fact that the fibers can rather easily rotate with respect to the
vertical direction even without bending, due to their reduced length. Such almost rigid rotation of
the fibers produces a non-local transmission of deformation which allows the two ends of the beam
to partially lift-up. Nevertheless, a small amount of bending of the yarns can be seen to be present
also in the ±45◦ case. Such effect of the shear bending stiffness can be recognized to be important
both for the complete lift of the two ends of the beam and for the curvature of the middle part of
the specimen.

Once again, we remark that the value of the second gradient parameter used in the numerical
simulations is not the same as the one used for the 0◦/90◦ test. This corroborates the thesis according
to which the introduced simple constitutive load must be further generalized in order to account for
nonlinear second gradient material behaviors.

6.5 Conclusions

In this chapter we present an orthotropic 3D second gradient model which is suitable to describe
the complex mechanical behavior of thick composite interlocks. The need of using such generalized
continuum theory is revealed by the study of the three point bending of 3D fibrous composite
reinforcements. The considered specimens are parallelepipeds with the dimensions of 200 × 30 ×
15 mm. Two types of specimens are considered which differ for the relative directions between the
yarns and the edges of the specimen itself. More particularly, we consider the so-called 0◦/90◦

specimen in which one order of long yarns follows the direction of the longer edge of the specimen,
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Figure 6.8: ±45◦ three point bending for an imposed displacement of 60mm (right). left: ex-
perimental shape [ORL12], middle: first gradient numerical simulation [CHA12], bottom: second
gradient numerical simulation with At1S = At2S = 7.5× 10−6MPa×m2..
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Figure 6.9: Comparison of experimental data with different second gradient solutions for an imposed
displacement of 60mm and At1S = At2S = 7.5× 10−6MPa×m2

while the second order of shorter yarns is directed along the depth of the specimen itself. The
second type of specimen is called ±45◦ and is such that the yarns are directed at ±45◦ degrees with
respect to the direction of the longer edge of the sample. In both cases, the specimens are subjected
to a classical three point bending test and the experimental results are compared with numerical
solutions obtained via first and second gradient continuum theories. It appears clearly from the
obtained results that the use of a second gradient theory is useful tool if one wants to correctly
model the behavior of composite interlocks subjected to three point bending. Indeed, we show that
the fact of including the gradient of the out-of-plane shear angle variations in the strain energy
density is directly related to the fact of considering the out-of-plane bending stiffness of the yarns
at the mesoscopic level. Such bending rigidity of the mesostructure is crucial to correctly describe
the response of the material to the applied external sollicitations. In particular, we show that the
out-of-plane bending of the yarns is one of the leading mesoscopic deformation mechanism affecting
the macroscopic bending of 0◦/90◦ specimens. In fact, when subjected to bending, such materials
basically behave as a “package” of superimposed wires which are held together by a second order of
shorter yarns which indeed do not intervene directly in the deformation process. The longer wires so
bend all together (as happens for the pages of a book when one tries to bend it) and their bending
rigidity allows to the two ends of the macroscopic specimen to lift up and to the middle part of the
specimen to take its characteristic curvature. A first gradient theory is not able to account for the
bending of the mesostructure and hence is not suitable to correctly describe all the mechanisms which
intervene in the complex process of deformation of composite interlocks. Moreover, we explicitly
point out that the constraint of “quasi-inextensibility” of the yarns is directly related to the fact that
a 0◦/90◦ specimen does not behave as an Euler-Bernouilli beam in the sense that cross-sections which
are initially orthogonal to the mean axis of the beam, do not remain orthogonal during deformation.
Indeed, due to large bending deformations, the upper and lower surface of the specimen inevitably
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have different curvature and cross sections could remain orthogonal to the mean axis if and only if
a significant change of length occurred in the direction of the longer edge of the specimen. This is
actually impossible, due to the fact that the yarns have a very high extensional rigidity.

Similar reasonings can be repeated also for the ±45◦ specimens, even if the deformation of such
materials is more complex to be understood from a phenomenological point of view. We prove that
in such a case, the bending rigidity of the yarns intervenes much less on the macroscopic deformation
of the specimen, even if it keeps playing some role. Indeed, the main part of the out-of-plane motion
of the yarns is accounted for by simple rotations of the yarns with no (or very few) associated
bending. Such a deformation mode is possible due to the fact that the yarns are relatively short
with respect to the size of the specimen and they can rotate rather easily with respect to the vertical
direction. Nevertheless, the fact of considering the bending of the yarns still bring some complements
to the complete description of the experimental behavior of the considered materials, both for what
concerns the complete lift of the two ends of the specimen and its global curvature. We finally
remark the ±45◦ specimens almost behave as Euler-Bernouilli beams. This is possible since changes
of length of the specimen are allowed due to pantographic motions of the yarns.

We can summarize by saying that 3D composite interlocks can be correctly modeled by consider-
ing the bending stiffness of the yarns by means of second gradient theories. When considering three
point bending tests, the influence of the out-of-plane bending stiffness is much higher for 0◦/90◦

specimens than ±45◦ ones. We can infer that for orthotropic media with different initial angles
between yarns the effect of second gradient terms would be of intermediate importance with respect
to the two limit cases presented here.

The results proposed here are a fundamental step for the characterization of the mechanical
behavior of thick composite interlocks for the impact that such results can have on the modeling
of forming processes of complete engineering components. Nevertheless, the conception of more
complex non-linear, second gradient constitutive laws appears to be a crucial point for further
investigations.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



General Conclusions

The complete characterization of fibrous composite reinforcements must account for the description
of their mechanical behavior at the mesoscopic and microscopic scales. In order to consider the
presence of lower scales in a macroscopic continuum theory, suitable constitutive laws must be
introduced which account for

• the description of the microstructured material at high strains by means of suitable hyperelastic
constitutive laws accounting for the orthotropy of the material,

• the description of microstructure-related deformation modes (as the bending of the yarns) by
means of second gradient theories.

In order to bring new elements to the constitutive characterization of fibrous composite reinforce-
ments, the hyperelastic constitutive laws proposed in [CHA11b] are complemented here by adding
suitable second gradient terms which account for the effect of the bending stiffness of the yarns on
the macroscopic mechanical behavior of the considered fibrous composite reinforcements.

Two experimental tests are targeted, namely the bias extension test on 2D fibrous composites
and the three point bending of tick composite interlocks, which are simulated by means of a second
gradient continuum model. It is shown that, in both the considered cases, the fact of using second
gradient theories allows for the description of in-plane and out-of-plane bending modes of the yarns
which inevitably have a non-negligible effect on the overall deformation of the considered specimens.

In particular, for the bias extension test, internal boundary layers are individuated which are
transition zones between two regions of the specimen in which the shear angle between fibers remains
almost constant. In such transition layers in-plane bending of the fibers can be observed which allows
for a gradual variation of the angle between the two quoted zones. Such in-plane bending modes are
associated to a simple second gradient energy whose elastic coefficients are determined by inverse
approach.

The second considered experimental test is the three point bending of composite interlocks. It
is seen that in this case a second gradient energy is needed to describe the out-of-plane bending
modes of the yarns. The second gradient terms are proved to determine a complete fitting between
the numerical simulations and the experimental results. In fact, if the solution obtained by a first
gradient theory does not allow for the correct description of the deformation of the two ends of
the interlock beam, a second gradient theory cures this inconvenient by providing a more realistic
deformed shape of the specimen.

In the light of the previous remarks, we can conclude that the work presented in this thesis
actually provides an advancement in the knowledge of the mechanical behavior of fibrous composite
reinforcements. Nevertheless some open points still remains open and then need to be addressed in
further works. Among them we can list

• Conception of general non-linear, second gradient constitutive laws which allow to univocally
characterize the mechanical behavior of considered woven composites for any deformation
state (small and very large deformations) and consequently for any set of imposed loads and
boundary conditions.
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• Inclusion of the inextensibility constraint of the yarns in the adopted second gradient analytical
model in order to investigate limit systems which can serve as a reference for more complicated
material behaviors.

• Micro-macro identification, i.e. identification of the macroscopic average second gradient co-
efficients as function of the microscopic mechanical characteristics.

• Rigorous study of the well-posedness (existence and uniqueness) of the second gradient differ-
ential problem.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



Bibliography

[AIF92] Aifantis E.C., (1992). On the role of gradients in the localization of deformation and
fracture. International Journal of Engineering Science, 30:10, 1279-1299.

[AIM09] Aimène Y., Vidal-Sallé E., Hagège B., Sidoroff F., Boisse P., (2009). A hyperelastic
approach for composite reinforcement large deformation analysis. Journal of Composite
materials, 44:1, 5-26.

[ALI03] Alibert J.-J., Seppecher P., Dell’Isola F., (2003). Truss modular beams with deforma-
tion energy depending on higher displacement gradients. Mathematics and Mechanics of
Solids, 8:1, 51-73.

[ALT03] Altenbach H., Eremeyev V.A., Lebedev L.P., Rendón L.A. (2010). Acceleration waves
and ellipticity in thermoelastic micropolar media. Archive of Applied Mechanics, 80 (3),
217-227.

[ATA97] Atai, A.A., Steigmann, D.J. (1997). On the nonlinear mechanics of discrete networks.
Archive of Applied Mechanics, 67:5, 303-319.

[BAL06] Balzani D., Neff P., Schröder J., Holzapfel G.A., (2006). A polyconvex framework for soft
biological tissues. Adjustment to experimental data. International Journal of Solids and
Structures, 43, 6052-6070.

[BLE67] Bleustein J.L., (1967). A note on the boundary conditions of Toupin’s strain gradient-
theory. International Journal of Solids and Structures, 3, 1053-1057.

[BOE87] Boehler, J.P., (1987). Introduction to the invariant formulation of anisotropic constitutive
equations. In: Boehler, J.P. (Ed.), Applications of Tensor Functions in Solid Mechanics
CISM Course No. 292. Springer-Verlag.

[BOE78] Boehler J.P., (1978). Lois de comportement anisotrope des milieux continus. Journal de
mécanique, 17.2, 153-190.

[BOI95] Boisse P., Cherouat A., Gelin J.C., Sabhi H., (1995). Experimental Study and Finite
Element Simulation Of Glass Fiber Fabric Shaping Process. Polymer Composites, 16:1,
83-95

[CAO08] Cao J., Akkerman R., Boisse P., Chen J., et al., (2008). Characterization of mechanical
behavior of woven fabrics: experimental methods and benchmark results. Composites
Part A: Applied Science and Manufacturing, 39, 1037-53.

[CAS72] Casal P., 1972. La théorie du second gradient et la capillarité. C.R. Acad. Sci. Paris, Ser.
A 274, 1571-1574.

[CIA88] Ciarlet P. G., (1988). Mathematical Elasticity, volume I. Noth-Holland, Amsterdam.

103
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



BIBLIOGRAPHY 104

[CHA11a] Charmetant A., Vidal-Sallé E., Boisse P. (2011). Hyperelastic modelling for mesoscopic
analyses of composite reinforcements. Composites Science and Technology, 71,1623-1631.

[CHA11b] Charmetant A., (2011). Approches hyperélastiques pour la modélisation du comporte-
ment mécanique de préformes tissées de composites. PhD thesis, INSA-Lyon, 2011.

[CHA12] Charmetant A., Orliac J.G.,Vidal-Sallé E., Boisse P. (2012). Hyperelastic model for large
deformation analyses of 3D interlock composite preforms. Composites Science and Tech-
nology, 72, 1352-1360.

[COS09] Cosserat E., Cosserat F., (1909). Théorie de Corps déformables. Librairie Scientifique A.
Hermann et fils, Paris.

[DEG81] deGennes, P.G., (1981). Some effects of long range forces on interfacial phenomena. Jour-
nal de Physique Lettres, 42.16, 377-379.

[DEL95a] dell’Isola F., Gouin H., Seppecher P., (1995). Radius and surface tension of microscopic
bubbles by second gradient theory. C.R. Acad. Sci. II, Mec. 320, 211-216.

[DEL95b] dell’Isola F., Rotoli G., (1995). Validity of Laplace formula and dependence of surface
tension on curvature in second gradient fluids. Mechanics Research Communications, 22,
485-490.

[DEL95c] dell’Isola F., Seppecher P., (1995). The relationship between edge contact forces, double
force and interstitial working allowed by the principle of virtual power, C.R. Acad. Sci.
II, Mec. Phys. Chim. Astron. 321, 303-308

[DEL96] dell’Isola F., Gouin H., Rotoli G., (1996). Nucleation of Spherical shell-like interfaces by
second gradient theory: numerical simulations, European journal of mechanics. B, Fluids,
15:4, 545-568.

[DEL97] dell’Isola F., Seppecher P., (1997). Edge contact forces and quasi-balanced power, Mec-
canica 32, 33-52.

[DEL00] dell’Isola F., Guarascio M., Hutter K., (2000). A variational approach for the deformation
of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress
principle. Archive of Applied Mechanics. 70, 323-337.

[DEL09] dell’Isola F., Sciarra G., and Vidoli S., (2009). Generalized Hooke’s law for isotropic
second gradient materials. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Science, 465, 2177–2196.

[DEL09a] dell’Isola F., Madeo A., Seppecher P., (2009). Boundary Conditions at Fluid-Permeable
Interfaces in Porous Media: A Variational Approach. International Journal of Solids and
Structures, 46, 3150–3164.

[DEL12a] dell’Isola F., Madeo A., Placidi L., (2012). Linear plane wave propagation and normal
transmission and reflection at discontinuity surfaces in second gradient 3D Continua.
Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM), 92:1, 52-71.

[DEL12b] dell’Isola F., Seppecher P., Madeo A., (2012). How contact interactions may depend on
the shape of Cauchy cuts in N-th gradient continua: approach “à la D’Alembert”. ZAMP,
63:6, 1119-1141.

[DEL14] dell’Isola F., Steigmann D.J., (2014). A Two-Dimensional Gradient-Elasticity Theory for
Woven Fabrics. Journal of Elasticity, DOI 10.1007/s10659-014-9478-1.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



BIBLIOGRAPHY 105

[DUM03a] Dumont F.. Contribution à l’expérimentation et à la modélisation du comportement de
renforts de composites tissés. Thèse de doctorat LMSP/LM2S, Paris : Université de Paris
VI, 2003, 149 p.

[DUM03b] Dumont F., Hivet G., Rotinat R., Launay J., Boisse P., Vacher P.. Mesures de champs
pour des essais de cisaillement sur des renforts tissés. Mécanique & Industries, 2003, vol.
4, pp. 627–635.

[DUM87] Dumont J.P., Ladeveze P., Poss M., Remond Y., (1987). Damage mechanics for 3-D
composites Composite structures, 8:2, 119-141.

[ERE05] Eremeyev V.A., (2005). Acceleration waves in micropolar elastic media. Doklady Physics
50:4, 204-206.

[ERE13] Eremeyev V. A., Lebedev L. P., Altenbach H. (2013). Foundations of micropolar mechan-
ics. Springer, Heidelberg.

[ERI64a] Eringen A.C., Suhubi, E.S. (1964). Nonlinear theory of simple microelastic solids: I.
International Journal of Engineering Science, 2, 189-203.

[ERI64b] Eringen A. C., Suhubi, E. S. (1964). Nonlinear theory of simple microelastic solids: II.
International Journal of Engineering Science., 2, 389-404.

[ERI01] Eringen A. C., (2001). Microcontinuum field theories. Springer-Verlag, New York.

[FER13] Ferretti M., Madeo A., dell’Isola F., Boisse P., (2014). Modeling the onset of shear bound-
ary layers in fibrous composite reinforcements by second gradient theory, ZAMP 65, 3,
pp. 587-612.

[FOR06] Forest, S., Sievert, R. (2006). Nonlinear microstrain theories. International Journal of
Solids and Structures, 43, 7224-7245.

[FOR09] Forest S., (2009). Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and
Damage. Journal of Engineering Mechanics, 135:3, 117-131.

[FOR10] Forest S., Aifantis E.C., (2010). Some links between recent gradient thermo-elasto-
plasticity theories and the thermomechanics of generalized continua. International Journal
of Solids and Structures, 47:(25-26), 3367-3376

[GER73a] Germain, P., (1973). La méthode des puissances virtuelles en mécanique des milieux
continus. Première partie. Théorie du second gradient. J. Mécanique 12, 235-274.

[GER73b] Germain, P., (1973). The method of virtual power in continuum mechanics. Part 2:
Microstructure. SIAM Journal on Applied Mathematics, 25, 556-575.

[GRE64] Green A.E., Rivlin R.S., (1964). Multipolar continuum mechanics. Archive for Rational
Mechanics and Analysis, 17: 2, 113-147.

[HAM13a] Hamila N., Boisse P., (2013). Tension locking in finite-element analyses of textile com-
posite reinforcement deformation. Comptes Rendus Mécanique, 341:6, 508-519.

[HAM13b] Hamila N., Boisse P., (2013). Locking in simulation of composite reinforcement
deformations. Analysis and treatment. Composites Part A: Applied Science and
Manufacturing,109-117.

[HAR04] Harrison P., Clifford M.J., Long A.C. (2004). Shear characterisation of viscous woven
textile composites: a comparison between picture frame and bias extension experiments.
Composites Science and Technology, 64, 1453-1465.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



BIBLIOGRAPHY 106

[HAS96] Haseganu, E.M., Steigmann, D.J. (1996). Equilibrium analysis of finitely deformed elastic
networks. Computational Mechanics, 17:6, 359-373

[HOL00a] Holzapfel, G.A., Gasser, T.C., Ogden, R.W., (2000). A new constitutive framework for
arterial wall mechanics and a comparative study of material models. Journal of Elasticity
61, 1-48.

[HOL00b] Holzapfel, G.A., (2000). Nonlinear Solid Mechanics, Wiley.

[ITS00] Itskov M. (2000). On the theory of fourth-order tensors and their applications in com-
putational mechanics. Computer methods in applied mechanics and engineering, 189:2,
419-38.

[ITS04] Itskov M., Aksel N., (2004). A class of orthotropic and transversely isotropic hyperelastic
constitutive models based on a polyconvex strain energy function. International Journal
of Solids and Structures, 41, 3833–3848.

[LAS88] Lasry D., Belytschko T., (1988). Localization limiters in transient problems.International
Journal of Solids and Structures, 24: 6, 581-597.

[LEE08] Lee W., Padvoiskis J., Cao J., de Luycker E., Boisse P., Morestin F., Chen J., Sherwood
J., (2008). Bias-extension of woven composite fabrics. International Journal of Material
Forming, 1:895-898.

[LUO91] Luongo A. (1991). On the amplitude modulation and localization phenomena in interac-
tive buckling problems. International Journal of Solids and Structures 27:15, 1943-1954.

[LUO01] Luongo A. (2001). Mode localization in dynamics and buckling of linear imperfect con-
tinuous structures. Nonlinear Dynamics 25:1, 133-156.

[LUO05] Luongo A., D’Egidio A. (2005). Bifurcation equations through multiple-scales analysis
for a continuous model of a planar beam. Nonlinear Dynamics 41:1, 171-190.

[MAD08] A. Madeo, F. dell’Isola, N. Ianiro and G. Sciarra, (2008). A Variational Deduction of
Second Gradient Poroelasticity II: an Application to the Consolidation Problem. Journal
of Mechanics of Materials and Structures, 3:4, 607-625.

[MAD12a] Madeo A., George D., Lekszycki T., Nieremberger M., Rémond Y., (2012). A second
gradient continuum model accounting for some effects of micro-structure on reconstructed
bone remodelling. CRAS Mécanique, 340:8, 575-589.

[MAD12b] Madeo A., Djeran-Maigre I., Rosi G., Silvani C., (2012). The Effect of Fluid Streams in
Porous Media on Acoustic Compression Wave Propagation, Transmission and Reflection.
Continuum Mechanics and Thermodynamics, 25.2-4 (2013): 173-196.

[MAD13] Madeo A., Neff P., Ghiba I. D., Placidi L., Rosi G. (2013). Wave propagation in relaxed
micromorphic continua: modeling metamaterials with frequency band-gaps. Continuum
Mechanics and Thermodynamics, 1-20.

[MAK10] Makradi A., Ahzi S., Garmestani H., Li D.S., Rémond Y., (2010). Statistical continuum
theory for the effective conductivity of fiber filled polymer composites: Effect of orienta-
tion distribution and aspect ratio A Mikdam. Composites Science and Technology, 70 :3,
510-517.

[MIK09] Mikdam A., Makradi A., Ahzi S., Garmestani H., Li D.S., Rémond Y., (2009). Effective
conductivity in isotropic heterogeneous media using a strong-contrast statistical contin-
uum theory. Journal of the Mechanics and Physics of Solids, 57:1, 76-86.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



BIBLIOGRAPHY 107

[MIN64] Mindlin R.D. , (1964). Micro-structure in linear elasticity. Archive for Rational Mechanics
and Analysis, 51-78.

[NAD03] Nadler, B., Steigmann, D.J. (2003). A model for frictional slip in woven fabrics. Comptes
Rendus - Mecanique, 331 (12), pp. 797-804

[NAD06] Nadler, B., Papadopoulos, P., Steigmann, D.J. (2006). Multiscale constitutive modeling
and numerical simulation of fabric material. International Journal of Solids and Struc-
tures, 43 (2), pp. 206-221.

[NEF06a] Neff P., (2006). Existence of minimizers for a finite-strain micromorphic elastic solid.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 136(05), 997-
1012.

[NEF06b] Neff P., (2006). A finite-strain elastic–plastic Cosserat theory for polycrystals with grain
rotations. International journal of engineering science, 44(8), 574-594.

[NEF07] Neff P., Forest S., (2007). A geometrically exact micromorphic model for elastic metallic
foams accounting for affine microstructure. Modelling, existence of minimizers, identifi-
cation of moduli and computational results. Journal of Elasticity, 87(2-3), 239-276.

[NEF13] Neff P., Ghiba I. D., Madeo A., Placidi L., Rosi G., (2013). A unifying perspective: the
relaxed linear micromorphic continuum. Continuum Mechanics and Thermodynamics,
1-43.

[NEF14a] Neff P., Ghiba I.D., Lankeit, J., (2014). The exponentiated Hencky-logarithmic strain en-
ergy. Part I: Constitutive issues and rank–one convexity. arXiv preprint arXiv:1403.3843.

[NEF14b] Neff P., Lankeit J., Ghiba I.D., Martin R., Steigmann, D.; (2014). The exponentiated
Hencky-logarithmic strain energy. Part II: Coercivity, planar polyconvexity and existence
of minimizers. arXiv preprint arXiv:1408.4430.

[OGD84] Ogden R.W., (1984). Non-linear elastic deformations. New York: Wiley and Sons.

[OGD03] Ogden R.W., (2003). Nonlinear Elasticity, Anisotropy, Material Stability and Residual
stresses in Soft Tissue. CISM Courses and Lectures Series 441, 65-108.

[ORL12] Orliac J.G., (2012). Analyse et simulation du comportement anisotrope lors de la mise
en forme de renforts tissés interlock. PhD thesis, INSA-Lyon, 2012.

[PEN13] Peng X., Guo Z., Du T., YuW.R., (2013). A Simple Anisotropic Hyperelastic Constitutive
Model for Textile Fabrics with Application to Forming Simulation. Composites Part B:
Engineering, 52, 275-281.

[PIE09] Pietraszkiewicz W., Eremeyev V.A., (2009). On natural strain measures of the non-linear
micropolar continuum. International Journal of Solids and Structures, 46:3, 774-787.

[OSH06] Oshmyan V.G., Patlazhan S.A., Rémond Y., (2006). Principles of structural-mechanical
modeling of polymers and composites. Polymer Science Series A, 48:9, 1004-1013.

[PID97] Pideri C., Seppecher P., (1997). A second gradient material resulting from the homoge-
nization of an heterogeneous linear elastic medium. Continuum Mechanics and Thermo-
dynamic, 9:5, 241-257.

[PIO46] Piola G., (1846). Memoria intorno alle equazioni fondamentali del movimento di corpi
qualsivogliono considerati secondo la naturale loro forma e costituzione. Modena, Tipi
del R.D. Camera.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



BIBLIOGRAPHY 108

[PIO14] Piola G., (2014). The Complete Works of Gabrio Piola: Commented English Translation
(Vol. 1). Springer.

[PLA13] Placidi L., Rosi G., Giorgio. I., Madeo A., (2013). Reflection and transmission of plane
waves at surfaces carrying material properties and embedded in second gradient materials.
Mathematics and Mechanics of Solids, DOI: 10.1177/1081286512474016.

[RAU09] Raoult A., (2009). Symmetry groups in nonlinear elasticity: An exercise in vintage math-
ematics. Communications on Pure and Applied Analysis, 8:1, 435-456.

[RIN07a] Rinaldi A., Lai Y.C., (2007), Damage Theory Of 2D Disordered Lattices: Energetics
And Physical Foundations Of Damage Parameter. International Journal of Plasticity, 23,
1796-1825 .

[RIN07b] Rinaldi A., Krajcinovic D., Mastilovic S., (2007). Statistical Damage Mechanics and
Extreme Value Theory. International Journal of Damage Mechanics, 16:1, 57-76.

[RIN08] Rinaldi A., Krajcinovic K., Peralta P., Lai Y.-C., (2008). Modeling Polycrystalline Mi-
crostructures With Lattice Models: A Quantitative Approach. Mechanics of Materials,
40, 17-36.

[RIN09] Rinaldi A. (2009). A rational model for 2D Disordered Lattices Under Uniaxial Loading.
International Journal of Damage Mechanics, 18, 233-57.

[RIN11] Rinaldi A. (2011). Statistical model with two order parameters for ductile and soft fiber
bundles in nanoscience and biomaterials. Physical Review E, 83(4-2) 046126.

[RIN13] Rinaldi A. (2013). Bottom-up modeling of damage in heterogeneous quasi-brittle solids.
Continuum Mechanics and Thermodynamics, 25, Issue 2-4, 359-373.

[RIV48] Rivlin R.S, (1948). Large elastic deformations of isotropic materials. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences , vol.
241, pp. 379–397.

[ROS13] Rosi G., Madeo A., Guyader J.-L., (2013). Switch between fast and slow Biot compression
waves induced by “second gradient microstructure” at material discontinuity surfaces in
porous media. International Journal of Solids and Structures, 50:10, 1721-1746.

[SCH05] Schröder J., Balzani D., Neff P., (2005). A variational approach for materially stable
anisotropic hyperelasticity. International Journal of Solids and Structures, 42, 4352-4371.

[SCI07] Sciarra G., dell’Isola F., Coussy O., (2007). Second gradient poromechanics. International
Journal of Solids and Structures, 44:20, 6607-6629.

[SCI08] Sciarra G., dell’Isola F., Ianiro N., Madeo A., (2008). A Variational Deduction of Sec-
ond Gradient Poroelasticity I: General Theory. Journal of Mechanics of Materials and
Structures, 3:3, 507-526.

[SEP11] Seppecher P., Alibert J.-J., dell’Isola F., (2011). Linear elastic trusses leading to continua
with exotic mechanical interactions. Journal of Physics: Conference Series, 319.

[SET64] Seth B.R. (1964). Generalized strain measure with applications to physical problems. In:
Reiner M., Abir D.. Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics.
Pergamon Press, Oxford, 162-172.

[SIL97] Silhavy M., (1997). The Mechanics and Thermodynamics of Continuous Media. Springer.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



BIBLIOGRAPHY 109

[SPE84] Spencer A.J.M., (1984).Constitutive theory for strongly anisotropic solids, in Contin-
uum Theory of Fibre- Reinforced Composites, CISM International Centre for Mechanical
Sciences Courses and Lecture Notes, 282, Spencer A.J. M. Ed., Springer.

[STE92] Steigmann D.J, (1992). Equilibrium of prestressed networks. IMA Journal of Applied
Mathematics (Institute of Mathematics and Its Applications), 48:2, 195-215.

[STE02] Steigmann D.J, (2002). Invariants of the stretch tensors and their application to finite
elasticity theory. Mathematics and Mechanics of Solids, 7:4, 393-404.

[STE03] Steigmann D.J, (2003). Frame-invariant polyconvex strain-energy functions for some
anisotropic solids Mathematics and Mechanics of Solids, 8:5, 497-506.

[TOU64] Toupin R., (1964). Theories of elasticity with couples-stress. Archive for Rational Me-
chanics and Analysis, 17, 85-112.

[TRI86] Triantafyllidis N., Aifantis E.C.A., (1986). Gradient approach to localization of deforma-
tion, I. Hyperelastic materials. Journal of Elasticity, 16:3, 225-237.

[HIL70] Hill R., (1970). Constitutive inequalities for isotropic elastic solids under finite strain.
Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,
314(1519), 457-472.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



FOLIO ADMINISTRATIF

THESE SOUTENUE DEVANT L'INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON

NOM :  FERRETTI DATE de SOUTENANCE : 07/11/2014
(avec précision du nom de jeune fille, le cas échéant)

Prénoms : Manuel

TITRE : Non-Linear Mechanics of Generalized Continua and Applications to Composite Materials

NATURE : Doctorat Numéro d'ordre :  AAAAISALXXXX 

Ecole doctorale : Mécanique, énergétique, Génie civil, Acoustique

Spécialité : Mécanique, Génie mécanique, Génie civil 

RESUME :

La microstructure des matériaux est un levier essentiel pour l'optimisation des propriétés mécaniques des structures. Le passage à la
description continue de la matière conduit souvent à une simplification trop drastique de la réalité et à une perte significative d'informations.
Les développements de la mécanique des milieux continus, des moyens de calcul numérique et des techniques expérimentales permettent
aujourd'hui de rendre compte des effets d'échelle observés en mécanique des matériaux et des structures. !Le but primaire de cette thèse a été
celui de développer un modèle continu de gradient supérieur pour intégrer dans la modélisation continue la morphologie complexe des
microstructures ainsi que les longueurs caractéristiques associées. !Ce modèle continu généralisé a ensuite été utilisé pour décrire en détail le
comportement mécanique des renforts de composites textiles.
Des simulations numériques qui montrent l'importance des termes de deuxième gradient pour la correcte description du comportement
mécanique de ces matériaux ont été développées dans le cadre de cette thèse à l'aide du software COMSOL Multiphysics.
Il a été montré que des théories de deuxième gradient sont nécessaires pour intégrer dans la modélisation continue l'effet de la flexion des
mèches au niveau mesoscopique. Ceci a été mis en évidence pour le cas du ''bias extension test'' et de la flexion trois points d'un interlock
3D de composite. 
Pour le cas du ''bias extension test'', les termes de deuxième gradient permettent la description de certaines couches limites qui déterminent
une zone de transition entre deux régions à angle de cisaillement constant.
Pour ce qui concerne la flexion trois points des interlocks de composite, il a été montré que les termes de deuxième gradient sont nécessaires
pour décrire correctement la déformée des deux extrémités de la poutre  et la courbure au milieu de l'échantillon.
Dans les deux exemples traités, l'effet de la flexion des mèches à l'échelle mesoscopique est le mécanisme principal donnant lieu aux effets
de deuxième gradient.

MOTS-CLES : Renforts fibreux de composite, théories de second gradient, milieux continus général- isés, bias extension test, flexion trois
points d’un interlock de composite.

Laboratoire (s) de recherche :
LaMCoS, INSA-Lyon, France.
Université de L'Aquila, Italie.

Directeur de thèse: 
BOISSE Philippe, INSA-Lyon, France
LUONGO Angelo, Université de L'Aquila, Italie

Composition du jury : 
BOISSE Philippe, DELL'ISOLA Francesco, LUONGO Angelo, MADEO Angela, REMOND Yves, RUBINO Bruno

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0100/these.pdf 
© [M. Ferretti], [2014], INSA de Lyon, tous droits réservés


	Notice XML
	Page de titre
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	General Introduction
	Chapter 1 Modeling the mechanical behavior of woven fibrous composite reinforcements
	1.1 General introduction
	1.1.1 The Matrix
	1.1.2 The Reinforcements

	1.2 Woven fibrous composite reinforcements
	1.2.1 2D Weaving
	1.2.2 2.5D Weaving - Interlock
	1.2.3 3D Weaving

	1.3 Multi-scale mechanical behavior of fibrous composite reinforcements
	1.3.1 Mesoscopic behavior at the scale of the yarns
	1.3.1.1 Behavior of the Yarn Under Tension
	1.3.1.2 Compaction of the Yarn in the Transverse Plane
	1.3.1.3 Shear Behavior of the Yarn
	1.3.1.4 Behavior of the Yarn Subject to Bending

	1.3.2 Macroscopic Behavior
	1.3.2.1 Uniaxial Extension Test
	1.3.2.2 Biaxial Extension Test
	1.3.2.3 Transversal Compression Test
	1.3.2.4 Shear Tests in the Plane of the Reinforcement (determination of the shear stiffness)
	1.3.2.4.1 Picture Frame Test
	1.3.2.4.2 Bias Extension Test

	1.3.2.5 Transversal Shear Test



	Chapter 2 Continuum Mechanics Preliminaries :First Gradient Theory
	2.1 Finite Kinematics
	2.1.1 Deformation Gradient
	2.1.2 Line, Area and Volume Element Transformation
	2.1.3 Deformation Measures
	2.1.3.1 Polar Decomposition
	2.1.3.2 Different Types of Strain Measure


	2.2 Internal Contact Actions
	2.2.1 Cauchy Stress
	2.2.2 First Piola-Kirchhoff Stress
	2.2.3 Kirchhoff Stress
	2.2.4 Second Piola-Kirchhoff Stress
	2.2.5 Relations between Stress Tensors

	2.3 Hyperelastic Constitutive Laws
	2.3.1 General aspects
	2.3.2 Representation Theorem for Isotropic Materials
	2.3.3 Representation Theorem for Transversally-Isotropic Materials
	2.3.4 Representation Theorem for Orthotropic Materials
	2.3.5 Hyperelastic incompressible materials
	2.3.6 Some Energies for Isotropic Materials

	2.4 Variational Deduction of the Equations of Motions

	Chapter 3 Continuum Mechanics Preliminaries: Micro-structured Continua
	3.1 Kinematics
	3.1.1 Motions
	3.1.2 Polar Decomposition for the Microdeformation Tensor
	3.1.3 Definition of Different Type of Continua

	3.2 Micro-strucure in Linear Elasticity: Mindilin Theory
	3.2.1 Kinematics and Lagrangian Deformation Measure
	3.2.2 Kinetic and Potential Energies
	3.2.3 Variational Deduction of the Equations of Motion in Strong Form
	3.2.4 Constitutive Equations

	3.3 Relaxed Micromorphic Continuum and Constrained Micromorphic Models
	3.3.1 Notation
	3.3.2 The relaxed Micromorphic Energies
	3.3.3 A second gradient model obtained as a limit case of a classical micromorphic model
	3.3.4 A Cosserat model obtained as a limit case of a relaxed micromorphic model


	Chapter 4 Continuum Mechanics Preliminaries: Second Gradient Theory
	4.1 Nonlinear Second Gradient Models
	4.1.1 Variational Deduction of the Equations of Motion

	4.2 Constitutive Equations for Second Gradient, Isotropic Continua
	4.2.1 Positive definiteness of stored elastic energy


	Chapter 5 Modeling the onset of shear boundary layers in 2D fibrous composite reinforcements by second gradient theory
	5.1 Introduction
	5.2 Micromorphic media and second gradient continua
	5.2.1 Equations in weak form for a constrained micromorphic continuum

	5.3 Hyperelastic orthotropic model with micromorphic correction
	5.3.1 Representation theorem for hyperelastic orthotropic materials
	5.3.2 Phenomenological choice of the potential WI for thin sheets of fibrouscomposite reinforcements
	5.3.3 Some physical considerations leading to regularized micromorphic strain energy potentials

	5.4 Phenomenology of the bias extension test
	5.5 Numerical simulations
	5.5.1 First gradient limit solution
	5.5.2 Second gradient solution and the onset of boundary layers
	5.5.3 By using first gradient models it is not possible to correctly describe the onset of boundary layers

	5.6 Conclusions

	Chapter 6 Second Gradient Modeling of the Three Point Bending of 3D Interlocks
	6.1 Kinematics
	6.2 Second gradient energy density for 3D interlocks
	6.2.1 Constitutive choice for the first gradient energy
	6.2.2 Constitutive choice for the second gradient energy

	6.3 Least action principle and principle of virtual powers
	6.3.1 Second gradient theory as the limit case of a micromorphic theory

	6.4 Numerical simulations for three point bending of composite interlocks
	6.4.1 Three point 0°=90° bending test: the effect of out-of plane yarns’ bending stiffness
	6.4.2 Three point ± 45 °bending test

	6.5 Conclusions

	General Conclusions
	Bibliography
	Folio administratif



