Z
= INSTITUT NATIONAL
UNIV=RSIT= D= LYON DES SCIENCES
3 APPLIQUEES
$ LYON

N° d’ordre NNT : 2016LYSEi047 Année : 2016

THESE de DOCTORAT DE L'UNIVERSITE DE LYON

préparée au sein de
I’INSA de LYON

Ecole Doctorale MEGA ED 162
Mécanique, Energétique, Génie Civil, Acoustique

Spécialité de doctorat :
Génie Mécanique

Soutenue publiguement le 19/05/2016, par :

Hassan AL AKHRAS
Ingénieur INSA de Lyon

Automatic Isogeometric Analysis
Suitable Trivariate Models Generation -
Application to Reduced Order Modeling

Devant le jury composé de :

Professeur des Universités

David NERON Ecole Normale Supérieure de Cachan, France

Président du Jury

Professeur Ordinaire

Jean-Frangois REMACLE Université Catholique de Louvain, Belgique

Rapporteur

Professeur des Universités

Alain RASSINEUX Université de Technologie de Compiegne, France

Rapporteur

Professor

University of California, USA Examinateur

Yuri BAZILEVS

Professeur des Universités
Ecole centrale de Nantes, France

. Directeur de Recherche .
Michel ROCHETTE ANSYS, France Examinateur
Professeur des Universités

INSA de LYON, France

Francisco CHINESTA Examinateur

Anthony GRAVOUIL Directeur de thése

Maitre de Conférences HDR . R
Thomas ELGUEDJ] INSA de LYON, France Co-directeur de these

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LY SEI047/these.pdf
© [H. Al Akhras], [2016], INSA Lyon, tous droits réservés



Département FEDORA - INSA Lyon - Ecoles Doctorales — Quinquennal 2016-2020

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE
CHIMIE DE LYON L. M. Stéphane DANIELE
CHIMIE http://www.edchimie-lyon.fr Institut de Recherches sur la Catalyse et 1'Environnement de Lyon
IRCELYON—UMR 5256
Sec : Renée EL MELHEM Equipe CDFA
Bat Blaise Pascal 3¢ etage 2 avenuf% Albert Einstein
secretariat@edchimie-lyon.fr 69626 Villeurbanne cedex
Insa : R. GOURDON directeur@edchimie-lyon.fr
ELECTRONIQUE, M. Gérard SCORLETTI
E.E.A. ELECTROTECHNIQUE, AUTOMATIQUE Ecole Centrale de Lyon
http://edeea.ec-lyon.fr 36 avenue Guy de Collongue
69134 ECULLY
Sec : M.C. HAVGOUDOUKIAN Tél : 04.72.18 60.97 Fax : 04 78 43 37 17
Ecole-Doctorale.eea@ec-lyon.fr Gerard.scorletti@ec-lyon.fr
EVOLUTION, ECOSYSTEME, Mme Gudrun BORNETTE
E2M2 MICROBIOLOGIE, MODELISATION CNRS UMR 5023 LEHNA
http://e2m2.universite-lyon.fr Université Claude Bernard Lyon 1
. Bat Forel
Sec : Safia AIT CHALAL 43 bd du 11 novembre 1918
Bat Darwin - UCB Lyon 1 69622 VILLEURBANNE Cédex
04.72.43.28.91 Tél : 06.07.53.89.13
Insa : H. CHARLES e2m2@ univ-lyonl.fr
Safia.ait-chalal@univ-lyon1.fr
INTERDISCIPLINAIRE SCIENCES- Mme Emmanuelle CANET-SOULAS
EDISS SANTE . INSERM U1060, CarMeN lab, Univ. Lyon 1
http://www.ediss-lyon.fr Batiment IMBL
S%C : Safia AIT CHALAL 11 avenue Jean Capelle INSA de Lyon
Hopital Louis Pradel - Bron 696621 Villeurbanne
04 72 68 49 09 Tél : 04.72.68.49.09 Fax :04 72 68 49 16
Insa : M. LAGARDE Emmanuelle.canet@univ-lyon1.fr
Safia.ait-chalal@univ-lyon1.fr
INFORMATIQUE ET Mme Sylvie CALABRETTO
INFOMATHS | MATHEMATIQUES LIRIS - INSA de Lyon
http://infomaths.univ-lyonl.fr Bat Blaise Pascal
i 7 avenue Jean Capelle
Sec :Renee EL MELHEM 69622 VILLEURBANNE Cedex
Bat Blaise Pascal Tél : 04.72. 43. 80. 46 Fax 04 72 43 16 87
3¢ etage Sylvie.calabretto@insa-lyon.fr
infomaths@univ-lyon1.fr
MATERIAUX DE:: LYO_N M. Jean-Yves BUFFIERE
Matériaux http://ed34.universite-lyon.fr INSA de Lyon
MATEIS
Sec : M. LABOUNE Batiment Saint Exupéry
PM : 71..70 -Fax: 87.12 7 avenue Jean Capelle
Bat. SalnF Exupery 69621 VILLEURBANNE Cedex
Ed.materiaux@insa-lyon.fr Tél : 04.72.43 71.70 Fax 04 72 43 85 28
Ed.materiaux@insa-lyon.fr
MECANIQUE, ENERGETIQUE, GENIE M. Phﬂjppe BOISSE
MEGA CIVIL, ACOUSTIQUE INSA de Lyon
http://mega.universite-lyon.fr Laboratoire LAMCOS
Batiment Jacquard
Sec : M. LABOUNE 25 bis avenue Jean Capelle
PM:71.70 -Fax:87.12 69621 VILLEURBANNE Cedex
Bat. Saint Exupery Tél : 04.72 .43.71.70 Fax:04 72 43 72 37
mega@insa-lyon.fr Philippe.boisse@insa-lyon.fr
ScSo* Mme Isabelle VON BUELTZINGLOEWEN
ScSo http://recherche.univ-lyon2.fr/scso/

Sec : Viviane POLSINELLI
Brigitte DUBOIS

Insa : J.Y. TOUSSAINT

viviane.polsinelli@univ-lyon2.fr

Université Lyon 2

86 rue Pasteur

69365 LYON Cedex 07

Tél: 04.78.77.23.86 Fax:04.37.28.04.48

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LY SEI047/these.pdf
© [H. Al Akhras], [2016], INSA Lyon, tous droits réservés




Abstract

We present an effective method to automatically construct IsoGeometric Analysis (IGA)
suitable trivariate B-spline models of complicated geometry and arbitrary topology. Our
method takes as input a solid model defined by its triangulated boundary. The algorithm
includes three main steps:

- Using cuboid decomposition, an initial polycube approximating the input boundary
mesh is built. We begin by decomposing the triangulated input mesh into a set of pants
patches. Such segmentation decomposes a complicated surface into a set of shapes that
have a trivial topology: genus-0 surfaces with 3 boundaries. We then decompose each
pants patch into a set of cuboid patches. Each cuboid is one boxed region enclosed by
6 disk-like surfaces.

- The polycube serves as the parametric domain of the tensor-product spline represen-
tation required for IGA. The polycube’s nodes and arcs decompose the input model
locally into quadrangular patches, and globally into hexahedral domains. Using aligned
global parameterization, the nodes are re-positioned and the arcs are re-routed across
the surface in a way to achieve low overall patch distortion, and alignment to principal
curvature directions and sharp features.

- Based on the optimized polycube and parameterization, compatible B-spline boundary
surfaces are reconstructed. The interior volumetric parameterization is computed using
Coon’s interpolation and the B-spline surfaces as boundary conditions.

This method can be applied to reduced order modeling for parametric studies based on
geometrical parameters. For models with the same topology but different geometries, this
method allows to have the same representation: i.e., meshes (or parameterizations, in the
case of IGA) with the same topology.

The efficiency and the robustness of the proposed approach are illustrated by several
examples from the mechanical and medical domains.

iii
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"T am not a genius, I am just curious. I ask many questions.
And when the answer is simple, then God is answering."

- Albert Einstein
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Introduction

Isogeometric Analysis (IGA) is a new computational approach that offers the possibility
of seamless integration between Computer-Aided Design (CAD) and Computer-Aided En-
gineering (CAE). This method uses the same type of mathematical representation (spline
representation), for both geometry and physical solutions, and thus avoids the costly forth
and back transformations between CAD and CAE. Nevertheless, a prerequisite for IGA is
the availability of analysis-suitable models.

Reduced Order Models (ROMs) are usually thought of as computationally inexpensive
mathematical representations that offer the potential for near real-time analysis. Such
techniques show great abilities to accelerate solutions for linear and non-linear problems,
provide well suited strategies for parametric studies, and are essential for scenarios where
real-time simulation responses are desired. Their construction requires accumulating a
certain number of precomputations called snapshots. Nevertheless, a prerequisite for ROM
is the availability of solution vectors with the same dimension associated to all snapshots
(in order to avoid a projection step between different snapshots).

In this thesis, the problem of generating isogeometric analysis-suitable models is ad-
dressed. In the context of reduced order modeling, for different geometrical instances of
the same topological model, the issue of having isotopological solutions is addressed by
generating the same isogeometrical representation for all objects.

Aiming at converting boundary representation models into analysis-suitable models,
this thesis focuses on one of the most crucial problems of the conversion process: the
generation of a volume parameterization.

Surface (i.e., bivariate) parameterization can be viewed as a mapping from a surface
embedded in R3 to a parametric (or canonical) domain embedded in R2. Surface param-
eterization would suffice if only the surface geometry is of interest. In many cases, the
surface will enclose a volume. The basic problem is to develop a volume (i.e., trivari-
ate) parameterization in such a way that the surface parameterization is preserved. The
canonical domain must have the same topology as the model but simplified geometrical
features. For instance, genus-0 surface models can be mapped to a sphere. However for
models with more complex geometry and arbitrary topology, more complex domains are
required.

Due to its tensor-product nature, tensor-product spline fitting demands that the para-
metric domain (may be composed of a set of sub-domains) keeps regular. In addition,
the construction of trivariate splines requires parametric domains in R3. A popular shape
abstraction method is to use polycubes. A polycube is a set of cubes consistently glued
together. It can be used to approximate very roughly the geometry of an object while faith-
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Introduction

fully replicating its topology. Due to its highly regular structure, the polycube is suitable
for serving as the parametric domain of the tensor-product trivariate spline representation.

The polycube domain must satisfy two requirements: it must be topologically equiva-
lent to the input model and its cube sub-domains must be consistent. If these requirements
are satisfied, the model’s boundary can be mapped to cover the boundaries of all paramet-
ric sub-domains seamlessly and consistently. Namely each patch of the model’s boundary
is mapped to one of six faces of one cube of the polycube.

The advantage of this approach is that each local mapping is tensor-product regular
and the global mapping is seamless between different adjacent patches. In addition, it is
inherently volumetric in the sense that the surface parameterization (between the model’s
boundary and the polycube’s boundary) can be trivially turned into a volume parame-
terization using interpolation on each cube. However the quality of the resulting volume
parameterization strongly depends on the placement of polycube’s corners on the model’s
boundary.

The polycube consists of nodes and arcs embedded in the surface. Locally, neighboring
nodes and arcs partition the surface into quadrilateral patches, and globally neighboring
quadrilateral patches form hexahedral domains (i.e., cuboids). By using polycubes as
parametric domains, the problem of finding a volume parameterization of a solid model is
simplified to a problem of finding a surface parameterization between the model’s boundary
and the polycube’s boundary.

The isoparametric lines of this parameterization are then extracted and serve to define
the quadrilateral control mesh required for tensor-product spline representations. This
control mesh is said to be good if its elements are uniform, and its edges are orthogonal
and aligned with the surface’s geometric features. In addition, the quality of the control
mesh is mainly affected by singularities which are vertices touched by more or less than
four edges. These vertices are particularly important because they are the only ones where
the control mesh is not a regular grid.

A recent trend are aligned global parameterizations which adapt the parameterization
to the geometry of the surface by fitting its gradient to a smooth direction field interpolat-
ing reliable principal curvature directions and geometric features. This field can be seen as
a kind of proxy for the parameterization. In other words, each of the required properties
for a good parameterization (such as uniformity, orthogonality and singularities) can be
redefined in terms of desired properties of the field. Thus the task is shifted from the
definition of a surface parameterization to the design of a smooth direction field on the
surface.

An important property of direction fields is their singularities. A direction field sin-
gularity will generate an irregular vertex or a non-quadrilateral polygon in the control
mesh. Direction field design is the generation of a smooth direction field from a set of
constraints. These constraints can be topological (i.e., imposed singularities) and/or ge-
ometrical (i.e., imposed directions). Topologically, the direction field is constrained by
the polycube structure. This means that the direction field must be singular only at the
position of irregular nodes of the polycube. Geometrically, the direction field must follow
the geometric features of the surface.

The direction field, and hence the aligned global parameterization, are constrained by
the polycube structure. Depending on the quality of the polycube’s embedding in the
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Introduction

surface, the resulting parameterization may contain large distortions or even local non-
injectivities due to fold-overs. Based on the gradient of the parameterization’s objective
functional, the polycube’s embedding is optimized so as to arrive to a local optimum of
global embedding quality.

Using the optimized aligned global parameterization, a structured point grid is gener-
ated on each patch. This point grid is used to fit the boundary spline surfaces. The spline
volume is then obtained by interpolating the reconstructed spline surfaces.

In order to generate a volume parameterization of a given solid models two main issues
have to be addressed. The first is the computation of the polycube embedding, i.e., the
placement of the polycube’s nodes and arcs on the boundary surface of the input model.
The second is the computation of the optimized aligned global parameterization used to
extract the structured point grid needed for spline fitting.

This thesis is organized as follows: Chapter 1 gives a general presentation of the
context and the problematics addressed in this thesis; Chapter 2 presents model decom-
position and the polycube’s generation; Chapter 3 presents model parameterization and
the computation of the optimized aligned global parameterization; Chapter 4 illustrates
some results and potential applications of the proposed approach.
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Chapter 1

IGA Based ROM

Introduction

It is often desired to forecast the behavior of real phenomena which depend on the
geometry of objects by performing a numerical simulation. An essential ingredient of
numerical simulations is to accurately and simply describe the geometry of objects in a
digital environment (i.e., computers). This is the main task of Computer Aided Design
(CAD). Generally speaking, physical phenomenons are formulated using Partial Differen-
tial Equations (PDEs) and can not be formally solved. Another essential ingredient of
numerical simulations is to numerically find approximate solutions for these PDEs. This
is the main task of Computer Aided Engineering (CAE).

Despite the fact that CAD and CAE are both essential ingredients and very closely
related in numerical simulations, they usually use very different numerical geometric rep-
resentations. Most CAD systems usually employ the so-called spline representation, while
most CAE systems usually employ the so-called mesh representation. The typical situa-
tion in engineering practice is that geometrical objects are encapsulated in CAD systems
as spline objects, and mesh objects needed for CAE systems are generated from them.
The construction of meshes is costly, time consuming and creates inaccuracies. As a con-
sequence, novel methods are required in order to bridge the gap between the worlds of
CAD and CAE. This is the principal motivation behind Isogeometric Analysis (IGA).

Many modern numerical models of real-life physical phenomenons pose challenges when
used in numerical simulations, due to complexity and large size. Even if computer architec-
tures or numerical methods greatly improve, simulations of complex numerical problems
may lead to strong numerical difficulties and especially long computational times. As a
consequence, novel methods are required in order to tackle not only non-linear problems
but also large scale and parametric problems. In addition, such methods are essential for
scenarios where real-time simulation responses are desired (e.g. applications in the medical
domain). This is the principal motivation behind Reduced Order Models (ROMs).

1.1 Computational Modeling

Computer science provides attractive and efficient tools for various mathematical mod-
eling fields and industrial purposes. Numerical simulations have become an essential part
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1.1. Computational Modeling

of physics and engineering, and of even more unexpected fields such as biology and social
science. Such simulations are indispensable in situations where an experiment cannot be
performed as for instance the task of inspecting the stability of a building in case of an
earthquake. However, even in cases where an experiment could potentially be performed
(e.g. in the development of a new product), it often makes sense to run a simulation
instead of the real-world experiment in order to reduce development cost and/or time.

Physical Model

Modelization Error

Continuous Model

Geometry Description Partial Differential Equations | Initial/Boundary Conditions

Discretization Error

Discretized Model

Discretization Analysis
(Continuous to Discrete Model) (Partial Differential Equations Solver)

Numerical Error

Numerical Solution
Figure 1.1: Overview of the different steps of computational modeling.

Before obtaining a workable numerical model, several modeling steps are required.
These steps generate different kinds of error, which have to be estimated to qualify the
relevancy of the final result. Figure 1.1 presents a brief overview of the different modeling
phases:

- Continuous model: the physical model is put into equations by choosing the most
suited mathematical models and governing laws. This step induces a modeling error.

- Discretized model: in general, the continuous model is formulated with PDEs and can
not be formally solved. Geometry, characteristic variables and time are discretized, then
numerical methods (e.g. isogeometric method, finite element method, finite difference
method) are used for analysis. Analysis aims at finding approximate solutions for these
PDEs. This step induces a disretization error.

- Numerical resolution: once the model is discretized, the problem is generally cast
into an algebraic formulation. The resulting linear or non-linear system may be large,
and suited solvers provide the desired solution. This step is affected by numerical errors
(e.g. solver parameters, computer arithmetic, round-off errors).

The generation of a discretized model is the most time-consuming in a numerical anal-
ysis based on Finite Element Analysis (FEA). The numerical resolution might be time-
consuming depending on the type/size of the numerical problem and may arouse memory
storage issues.
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Finite Element Analysis (FEA) Isogeometric Analysis (IGA)
CAD ) CAD
(NURBS) - (NURBS)
Geometry Approximation Geometry
(Piecewise Linear Parameterization <€
Surfaces) (Parametric Surfaces)
Refinement Refinement
PDE Solvers PDE Solvers

(Polynomials) (Polynomials)
CAD and FEA use different CAD and IGA use the same

representations for the geometry representation for the geometry

(a) (b)

Figure 1.2: Geometrical representations in CAD and CAE: using FEA (a) and IGA (b).

In many of nowadays applications (e.g. car crash, flow around the wing of a plane,
stability of a building), describing the accurate geometry of objects numerically is essential.
With the rapid advances in scanning and acquisition techniques, it is now reasonably
easy to obtain a numerical representation of existing objects through some automatic
procedures. On step further, instead of replicating and enriching the real world in a
digital environment, designers and engineers are able to utilize the enormous potential of
today’s modeling environments to create new complex objects. Due to this wide range
of technologies and applications, there are different numerical geometric representations:
existing objects are usually represented by the so-called mesh representation, and designed
objects are usually represented by the so-called spline representation.

1.1.1 Computational Geometry: The Need for IGA

Spline representations of surfaces and more specifically tensor-product splines are widely
used in CAD [Far02]. Splines are piecewise-defined by polynomial functions, and possesse
a high degree of smoothness at the places where the polynomial pieces connect. In these
representations, the geometry of a surface is usually defined by a structured quadrilateral
control mesh. On the other hand, mesh representations of surfaces and more specifically
polygonal meshes are widely used in CAE. Meshes are piecewise-defined by linear func-
tions, and possesse only CY smoothness at the places where the linear pieces connect. In
these representations, the geometry of a surface is usually defined by a triangle or quadri-
lateral mesh. Thus, the geometric representations in CAD and CAE are very different.
The typical situation in engineering practice is that geometrical objects are encapsulated
in CAD systems as spline objects, and mesh objects needed for CAE systems are generated
from them. The construction of meshes is costly, time consuming and creates inaccuracies.
In some instances mesh generation can be done automatically but in most circumstances
it can be done at best semi-automatically. It is estimated that about 80% of overall
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1.1. Computational Modeling

analysis time is devoted to mesh generation in the automotive, aerospace, and ship build-
ing industries [Hug05]. Once a mesh is constructed, refinement requires communication
with the CAD system during each refinement iteration (Figure 1.2a). This link is very
time-consuming and often unavailable.

Surface representation would only suffice if analysis only requires the surface geometry
(e.g. stress or buckling analysis of a shell, linear analysis using the boundary element
method). In many cases (e.g. non-linear analysis using the finite element method), the
surface will enclose a volume and an analysis model will need to be created for the volume.
The basic problem is to develop a volume (i.e., trivariate) representation of the solid in
such a way that the surface (i.e., bivariate) representation is preserved. A volume spline
scheme has gathered growing interest from both graphics and analysis research communi-
ties. Volume-based analysis has a computational advantage over traditional surface-based
analysis because it is capable of expressing, in addition to the boundary, the interior phys-
ical space and materials of the model. It also promise to alleviate the burden of creating
effective trivariate analysis-ready domains in many solid modeling and volume graphics
applications.

The initial work on IGA was motivated by this existing gap between the worlds of
CAD and CAE. IGA employs the same basis functions to represent both the geometry
and the approximate solutions of PDEs, hence geometric representations in CAD and
CAE are the same (Figure 1.2b). A primary goal of IGA is to have a geometrically
exact representation no matter how coarse the discretization. Another goal is to simplify
refinement by eliminating the need for communication with the CAD geometry once the
initial analysis-suitable geometric representation is constructed.

1.1.2 Computational Analysis: The Need for ROM

Over the last decades, evolution of computer and supercomputer architectures provided
a first response to more demanding communities. This hardware evolution with the High
Performance Computing (HPC) was intuited by Moore’s law [Moo65]. The overall com-
putational improvement is also due to a simultaneous evolution of numerical methods
[Glo09]. Numerical models, which take into account more realistic physical phenomenons,
are becoming larger and more complex. Figure 1.3 presents different types of numerical
models with increasing complexity. Even if computer architectures or numerical methods
greatly improve, simulations of complex numerical problems may lead to strong numerical
difficulties and especially long computational times.

ROMs aim to lower the computational complexity of such problems. Reduced order
modeling techniques show great abilities to accelerate solutions for numerous linear and
non-linear problems, and provide well suited strategies for parametric studies. They are
also essential for scenarios where real-time simulation responses are desired (e.g. applica-
tions in the medical domain). Such methods consist in solving a problem into a reduced
subspace which is expected to capture the "most dominant trends" of the solution. There
are specific tools to design reduced basis that capture the most relevant and the most
contributory components (or modes) of the solution. Thereby, one can expect to write the
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Figure 1.3: Different types of numerical models with increasing complexity: Mono-physics
linear model (a); Multi-physics linear model (b); Multi-physics parametric linear model
(¢); Multi-physics parametric non-linear model (d).

solution with a sample of few modes (reducibility property). This result in cheap reduced
basis computations sparing most of the computational work.

1.2 Isogeometric Analysis

IGA, introduced by Hughes et al. [Hug05], is a numerical analysis technique where
the same basis functions are used to represent both the geometry and the approximate
solutions of PDEs. This method is a promising approach to bridge the gap between CAD
and CAE. The first advantage of IGA is that it uses higher-order continuity basis functions
(such as B-splines) to approximate physical fields compared to classical finite elements used
in FEA. Another advantage is that since IGA uses the same geometric representation for
all design and analysis tasks, it allows to perform the analysis on the CAD geometry rather
than the approximate piecewise linear geometry. Furthermore splines provide refinement
possibilities and therefore refinement does not require any interaction with the original
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(a) (b)

Figure 1.4: Models acquisition using scanning techniques. These scanners create a point
cloud (a) that is triangulated using a reconstruction software (b). Unfortunately, this type
of output is not usable in a CAD context: a structured quadrilateral control mesh has to
be created (c) in order to generate the sought spline representation (d).

CAD model as in FEA. Simple operators such as knot insertion or degree elevation allow
us to perform any kind of refinements.

Nevertheless, a prerequisite in IGA is the availability of solid models represented by
trivariate tensor product splines. Geometry parameterization in IGA plays the same role
as geometry discretization (mesh generation) in FEA. Unlike surface parameterization,
volume parameterization involves parameterization of both boundary and interior of the
model. In fact, due to computational complexity, volume parameterization is considered
a big challenge and its quality has a big impact on the analysis [Coh10].

With the rapid advances in scanning and acquisition techniques, it is now reasonably
easy to obtain a triangle mesh representation of an existing object through some automatic
procedures. For instance, to obtain a triangle mesh from a real object, it is possible to use
a range laser scanner [Lev00]. These scanners create a point cloud that is triangulated by
a companion reconstruction software [Kaz06; Hor06]. The final result is a dense triangle
mesh of the surface of the object.

However in general, the obtained triangle meshes can not be directly used as control
meshes of trivariate spline representation required for IGA. The reason is because their cells
are triangular instead of quadrilateral, and because they are too dense as high-resolution
meshes are usually used to capture the least detail of the objects. Hence a trivariate
spline representation with respect to the given triangulated boundary has to be generated
(Figure 1.4).

Non-Uniform Rational B-Splines (NURBS) are the most widely used in CAD [Pie97;
Far99; Rog01; Coh01; Far02]. The major strengths of NURBS are that they are conve-
nient for free-form surface modeling (through the manipulation of control mesh’s points,
the shape of the underlying surface can be smoothly modified, while preserving its ini-
tial continuity), can exactly represent all conic sections (e.g. circles, cylinders, spheres,
ellipsoids), and there exist many efficient and numerically stable algorithms to generate
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Chapter 1. IGA Based ROM

(a) (b)

Figure 1.5: Boolean operations. A plate with the underlying control net (a). A circular
hole is cut into the plate by trimming: the underlying control net is still the same (b).
Analysis-suitable representation of the plate with hole (c).

Figure 1.6: Boundary representations. A cube with the underlying control net (a). The
cube appears as a volumetric object but the underlying description is defined as a set of
boundary surfaces (b). Analysis-suitable trivariate representation of the cube (c).

NURBS objects. They also possess useful mathematical properties, such as the ability to
be refined through knot insertion, CP?~!-continuity for p**-order NURBS, and the varia-
tion diminishing and convex hull properties. Moreover, the normal and all the differential
quantities (such as derivatives, geodesics, curvatures) of the surface can be precisely com-
puted at arbitrary parametric values without resorting to any numerical approximations.
In the context of this thesis, NURBS functions will be used as basis functions for IGA.

However in general, standard spline models can not be directly used in IGA. The
reason is because CAD modelers usually use boolean operations that lead to trimmed
surface models (Figure 1.5) and employ the Boundary Representation (B-Rep) method for
representing volume models (Figure 1.6). Hence a volume parameterization with respects
to the given boundary (possibly trimmed) spline surfaces has to be generated.

1.2.1 Analysis-Suitable Parameterization

Constructing analysis-suitable parameterization from a given solid model, defined by its
boundary triangle mesh or boundary (possibly trimmed) spline surfaces, remains one of
the most significant challenges in IGA. For a given object, various computational domains
can be constructed with the same shape but with different parameterizations. Cohen et al.
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1.2. Isogeometric Analysis

Figure 1.7: A torus (a) and its different parametric domains: the cylindrical domain pro-
duces inevitable degenerate points along the tube axis (depicted in red) (b); the polycube
domain uses at least eight cubes and generates some irregular points (depicted in red) (c);
the generalized polycube domain uses one cube with two opposite faces glued together
and don’t generate any irregular points (d).

[Coh10] studied the parameterization of computational domains in IGA, and showed that
the parameterization quality has a great impact on analysis results and efficiency. Pil-
gerstorfer et al. [Pill4] showed that in IGA the condition number of the stiffness matrix,
which is a key factor for the stability of the linear system, depends strongly on the param-
eterization quality. One basic requirement for computational domains in IGA is that the
resulting parameterization should have no self-intersections (i.e., the mapping from the
parametric domain to physical domain should be injective). Xu et al. [Xul3c] proposed a
linear and easy-to-check sufficient condition for the injectivity of a trivariate B-Spline pa-
rameterization. In addition, the parameterization should also satisfy these requirements:
the isoparametric elements should be as uniform as possible, and the isoparametric struc-
ture should be as orthogonal as possible.

Existing techniques to build analysis-suitable parameterizations generally follow differ-
ent trends. There are methods that exploit information about representation and topology
of volumes such as tetrahedral meshes or swept volumes. Martin et al. [Mar09] proposed a
parameterization method for a generalized cylinder-type volume defined by a tetrahedral
mesh. This method is based on discrete volumetric harmonic functions. After remeshing
the tetrahedral mesh with a hexahedral mesh, a trivariate B-spline for the solid model
is generated by an iterative fitting method. However, in terms of spline construction,
the cylinder-like domain produces inevitable degenerate points along the tube axis (Fig-
ure 1.7b). For genus-zero solids, using adaptive tetrahedral meshing and mesh untangling
techniques, Escobar et al. [Esc11] proposed a method to construct trivariate T-spline rep-
resentation. Aigner et al. [Aig09] proposed a variational approach to construct NURBS
parameterization of swept volumes, which cover many free-form shapes in CAD system
like blades or propellers. In this method, a spline approximation for a solid model is found
by solving a minimization problem with several penalty terms corresponding to particular
features of the shape.

For models which are given in boundary representation, some methods take as input
a spline boundary of the model. These methods are restricted to models with an explicit
specific topology: homeomorphic to a cube or a set of cubes. For models described by
six boundary (non-trimmed) B-spline surfaces, Xu et al. [Xul3b] proposed a variational
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Chapter 1. IGA Based ROM

harmonic method to construct a trivariate analysis-suitable parameterization. It consists
in a nonlinear optimization problem, in which a regular term is integrated into the opti-
mization formulation to achieve more uniform and orthogonal isoparametric structure. For
models topologically equivalent to a set of cubes and bounded by (non-trimmed) B-spline
surfaces, Xu et al. [Xul3a] studied the volume parameterization of the multi-block com-
putational domain. First, they found a volume parameterization with good uniformity
and orthogonality for each single-block computational domain by solving a constrained
optimization problem, in which the constraint condition is the injectivity sufficient con-
ditions. Then they extended their constrained optimization problem to the multi-block
case by adding the continuity condition between the neighboring B-spline volumes to the
constraint term. From six boundary (non-trimmed) B-spline surfaces, Wang et al. [Wan14]
proposed an efficient method by combining divide-and-conquer, constraint aggregation and
the hierarchical optimization technique to obtain valid trivariate B-spline solids. For mod-
els described by six boundary (non-trimmed) NURBS surfaces, Xu et al. [Xul4] proposed
a method for the construction of high-quality trivariate analysis-suitable parameterization
based on a Mobius transformation. After performing a reparameterization on the bound-
ary surfaces to achieve high-quality isoparametric structure without changing the shape,
the inner control points and weights are constructed using a variational harmonic metric.

Other methods take as input a triangulation of the model’s boundary. For a genus-
zero geometry, Zhang et al. [Zhal2] proposed a robust and efficient approach to construct
injective solid T-splines. They created a parametric mapping between the boundary tri-
angle mesh and the boundary of a unit cube, which is the parameter domain of the solid
T-spline. To do this, eight vertices have to be selected by the user, which correspond to
the eight corners of the cube. Then twelve curves are found via calculating the shortest
path between each pair of the selected vertices. Based on these curves, the input mesh is
divided into six sub-meshes, and each one is associated with one face on the unit cube.
Then the main work was to map each sub-mesh to a planar unit square using surface
parameterization based on harmonic mapping. For more general problems where objects
have complex geometry and arbitrary topology, there are methods based on shape decom-
position and abstraction. A popular shape abstraction method is to use polycubes [Tar04].
A polycube is a solid composed of cubes (Figure 1.7¢). It can be used to approximate
very roughly the geometry of an object while faithfully replicating its topology. Due to
its highly regular structure, the polycube can be used as the parametric domain for vol-
ume parameterization and spline modeling. However, in practice, due to the complexity
of shapes, polycubes are usually constructed manually, entailing considerable effort. It is
still challenging problem to automatically create polycubes for high genus geometry and
use them in constructing analysis-suitable trivariate splines. Based on Morse theory, the
work of Zhang et al. [Zhal2] has been extended by Wang et al. [Wan13] to models with
arbitrary topology. To extract the topology of the input geometry, they used the saddle
points of a smooth harmonic scalar field defined over the mesh. Based on these saddle
points, a polycube whose topology is equivalent to the input geometry is built and it
serves as the parametric domain for the solid T-spline. A polycube mapping is then used
to build a one-to-one correspondence between the input triangulation and the polycube’s
boundary. This method needs the interaction of the user at two stages to construct the
polycube domain: to select two extremum constraints which controls the harmonic field,
and to choose four seeds points which controls the polycube generation. Choosing these
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inputs without considering geometric features and symmetry can affect the polycube gen-
eration and may yield asymmetric parameterization. Recently, Li et al. [Lil12] extended
the conventional polycube to a Generalized PolyCube (GPC), which enables the curved
cuboid representation of the elementary sub-volumes (Figure 1.7d). This enables the poly-
cube map approach to be applied to more complex objects. After decomposing the entire
model into a group of T-shaped patches, they decompose each T-shape patch into four
connected cube-like sub-patches to obtain the polycube. As for the method proposed by
Wang et al. [Wan13], this method still needs the interaction of the user to select four seed
points which controls the GPC generation. Choosing these inputs without considering
geometric features can greatly affect the quality of the generated polycube.

1.2.2 Volume Parameterization

Our work investigates objects with complex geometry and arbitrary topology given
in boundary representations. Our goal is to generate a trivariate parameterization with
respects to a given solid model defined by its boundary triangle mesh or boundary (possibly
trimmed) spline surfaces. In order to have a unified framework for both input types, our
method takes as input a solid model defined by its triangulated boundary. Strong results
based on the theory of Delaunay triangulation have been developed for triangle meshes
[Fis06], and have been applied for the generation of a surface triangle mesh approximating
a piecewise smooth surface [Jam15]. In the context of this article, we used the softwares
ANSYS [ANS] and Rhinoceros [Rhia] to convert a CAD model defined by its boundary
(possibly trimmed) NURBS surfaces into a surface triangle mesh.

Assume that we are given a solid model defined by its triangulated boundary. In order
to convert a triangle mesh into a spline surface, one of the main problems we need to tackle
is the extraction of a good quadrilateral control mesh of the surface. This control mesh
is said to be good if its elements are uniform, and its edges are orthogonal and aligned
with the principal curvature directions of the surface. These properties make the control
mesh optimum in an approximation point of view, and greatly help to reduce unwanted
oscillations on the final spline surface built from it. In addition, the quality of the final
quadrilateral mesh is mainly affected by singularities which are vertices touched by more
or less than four edges. These vertices are particularly important because they are the
only ones where the quadrilateral mesh is not a regular grid. A singular vertex can have
different singularity indices, depending on the number of edges touching it. The total sum
of singularity indices is a topological invariant that depends on the genus of the surface
[Ray08]. Hence, the generation of quadrilateral meshes is an inherently global problem
since local changes in the mesh structure usually propagate globally across the mesh. So
the main problem in converting a triangular mesh into a spline surface is equivalent to the
problem of finding a proper quadrangulation of the surface (Figure 1.8).

The most popular and actively researched class of quadrilateral-meshing techniques is
the family of parameterization-based quadrilateral meshing methods [Bom13b]. A param-
eterization can be viewed as a mapping from a surface embedded in R? to a canonical
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Chapter 1. IGA Based ROM

Figure 1.8: Quadrilateral mesh from aligned global parameterization. The input trian-
gulated boundary surface homeomorphic to a pants patch (a). The polycube generated
from cuboid decomposition (b). The polycube structure is equivalent to a quad layout (c).
Locally, neighboring nodes and arcs partition the surface into quadrilateral patches (d).
Globally, neighboring quadrilateral patches form cuboids (e). The cross field topologically
conform with the quad layout, and geometrically aligned with the surface principal di-
rections and boundaries (f). The global parameterization aligned with the cross field (g).
The control quadrilateral mesh extracted from the global aligned parameterization (h).

domain embedded in R?. The isoparametric lines of this parameterization are then ex-
tracted and serve to define the quadrangulation, and hence the control mesh which has the
desired properties. For surfaces with topologies other than the disk, the canonical domain
must necessarily include discontinuities (e.g. cuts or seams). Methods based on local
parameterization often lead to visible breakup of the isoparametric curves along seams.
Global parameterization is of particular interest because it covers the entire surface, and
hence can alleviate this problem when the translational and rotational discontinuities in
the parameterization are compatible along cuts. A recent trend are aligned global param-
eterizations which adapt the parameterization to the geometry of the surface by fitting
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the parameterization gradient to a smooth field interpolating principal directions and ge-
ometric features of the surface [Ray06; K&l07; Bom09]. Such techniques consist in first
defining a cross field (i.e., a set of four orthogonal tangent unit vectors at each point of
the surface), and then finding a parameterization such that its gradient field matches the
cross field as much as possible. The cross field can be seen as a kind of proxy for the
parameterization (more precisely, its gradient field). Interestingly, each of the required
properties for a good parameterization (uniformity, orthogonality and singularities) can
be redefined in terms of desired properties of the cross field. Thus the task is shifted from
the definition of a good parameterization to the definition of a good cross field on the
surface.

The definition of a good cross field implies, among other things, the good placing of
singularities. In quadrilateral meshing, the field singularities play an important role. A
field singularity will generate an irregular vertex or a non-quadrilateral polygon. On the
global structure, each quadrilateral mesh implicitly defines a unique coarsest underlying
patch layout with quadrilateral patches (or quadrilateral layout). Its patch borders are
defined by those sequences of edges which form straight connections between irregular
vertices [Bom11]. In other words, quadrilateral layouts are embedded graphs which parti-
tion surfaces into non-overlapping quadrilateral patches. In practice, the patch layout of
a quadrilateral mesh is desired to be coarse and simple while still appropriately respect-
ing the underlying geometry. In mesh processing, the quality of these patches is of high
interest to support standard operations like high-order surface (e.g. B-splines or NURBS)
fitting.

We are seeking a volume parameterization which involves parameterization of both
boundary and interior of the model. A polycube is a solid composed of cubes. It can be
used to approximate very roughly the geometry of an object while faithfully replicating
its topology. Due to its highly regular structure, the polycube is suitable for serving as
the parametric domain of the tensor-product spline representation required for trivariate
NURBS-based IGA. To this end, starting with a triangulated boundary, we decompose
the input model into cuboids in two steps: pants decomposition and cuboid decomposi-
tion. The obtained set of cuboids compose a polycube approximating the input model.
The polycube consists of nodes and arcs embedded in the surface. Locally, neighboring
nodes and arcs partition the surface into quadrilateral patches, and globally neighboring
quadrilateral patches form hexahedral domains (i.e., cuboids). The process of decompos-
ing the surface into cuboids using a set of nodes and arcs is equivalent to the process of
constructing a quadrilateral layout. The polycube completely determines the topology of
the quadrilateral layout (i.e., combinatorial structure). In addition, the polycube also adds
another dimension to the quadrilateral layout because neighboring patches form cuboids.

In order to obtain a guiding field for the aligned global parameterization, we design a
cross field on the surface mesh. Cross field design is the generation of a smooth cross
field from a set of constraints. These constraints can be topological (i.e., imposed singu-
larities) and/or geometrical (i.e., imposed directions). We strike for a balance between
three important properties of the cross field: smoothness, singularity positions/indices,
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(d)

Figure 1.9: Trivariate NURBS Models Generation. The input solid region (a) along with
its triangulated boundary surface (b). The boundary surface is first decomposed into
pants patches (c). Each pants patch is further decomposed into 4 cuboids (d). For each
cuboid, 6 compatible B-spline boundary surfaces are reconstructed (e). The volumetric
parameterization from B-spline boundary surfaces (f).

and alignment with principal directions and geometric features. Topologically, the cross
field is constrained by the polycube structure. This means that the cross field must be
singular only at the position of irregular nodes of the polycube. Geometrically, the cross
field must follow the principal directions and geometric features of the surface.

The aligned global parameterization is constrained by the polycube structure. Depend-
ing on the quality of the generated polycube, the resulting parameterization may contain
large distortions or even local non-injectivities due to fold-overs. A practical solution to
this problem is to optimize the geometric embedding of the polycube based on the gra-
dient of the parameterization’s objective functional so as to arrive to a local optimum of
global embedding quality. The geometric embedding of the polycube describes the loca-
tions of its nodes and arcs as well as parameterizations of its patches. Based on the work
of Campen et al. [Cam14], the initial geometric embedding of the polycube’s nodes and
arcs is optimized. Using global aligned parameterization, the nodes are re-positioned and
the arcs are re-routed iteratively across the surface in a way to achieve low overall patch
distortion, as well as alignment to principal curvature directions and geometric features.

1.2.3 Trivariate Models Generation

Our method takes as input a solid model defined by its triangulated boundary. The
algorithm includes three main steps (Figure 1.9):

- The starting point of our algorithm is a triangulated mesh M bounding a solid model
V. As the boundary of a solid region, M = 9V is a closed surface and can be of complex
geometry and arbitrary topology. We begin by decomposing the input triangle mesh M
into a set of pants patches. Such segmentation decomposes a complicated surface into a
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set of shapes that have a trivial topology: genus-0 surfaces with 3 boundaries. The Euler
characteristic x for surfaces of most topological types are negative integers. For a pants
patch x = —1, and therefore pants decomposition provides a canonical decomposition
scheme for these surfaces. We then decompose each pants patch into a set of cuboid
patches. Each cuboid is one boxed region enclosed by 6 disk-like surfaces. The idea
is to generate nodes and arcs on each pants patch and decompose it into 4 connected
components, each having 8 nodes and 12 arcs like a cuboid.

- The polycube’s nodes and arcs decompose the input model locally into quadrilateral
patches, and globally into hexahedral domains. In order to obtain a guiding field for the
global parameterization, we design a cross field topologically conform with the polycube
structure and geometrically following the principal directions and geometric features of
the surface. The aligned global parameterization is constrained by the polycube struc-
ture, and may contain large distortions or even local non-injectivities due to fold-overs.
Based on the gradient of the global aligned parameterization’s objective functional, the
geometric embedding of the polycube is optimize so as to arrive to a local optimum of
global embedding quality.

- Using the quadrilateral mesh extracted from the optimized aligned global parameteri-
zation, a structured grid of points is generated on each patch, and then used to fit the
boundary B-spline surfaces [Ma95]. For each cuboid, the volumetric parameterization is
obtained using the reconstructed B-spline surfaces as boundary conditions. Keeping the
boundary control points fixed, the interior control points of the B-spline solid are com-
puted using Coons’ interpolation [Wanl4]. The positions of the interior control points
are then adjusted by minimizing a Laplacien based energy.

1.3 Reduced Order Modeling

ROMs are usually thought of as computationally inexpensive mathematical representa-
tions that offer the potential for near real-time analysis. Generally speaking, numerical
methods provide an algebraic formulation of the problem which has to be solved into a
space £ of dimension n (i.e., the number of degrees of freedom). The space £ is spanned
by the canonical basis composed of n unitary vectors (equaling 1 at a given degree of
freedom and 0 elsewhere). Reduction methods consist in finding an appropriate basis
composed of r < n vectors (the so-called reduced basis) spanning a subset of £ wherein
the problem is solved. This way, computational work may be spared. For instance, in
modal analysis of mechanical systems, the modal reduction method consists in choosing
the subspace spanned by the first normal modes of the studied body (modal truncation
method). A large literature shows how large is the field of applications of such techniques.
Nevertheless, finding a basis providing both an attractive dimensional reduction and a
relevant solution is challenging.

1.3.1 Reduction Methods

Reduction methods are distinguished between a posteriori approaches and a priori ap-
proaches. First, an a posteriori approach consists in prescribing a basis spanning a sub-
space before performing computations. Then, equations of the numerical model are pro-
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Figure 1.10: A parametric model where the geometric parameters a and b correspond to
the diameter and center’s position of the circular hole, respectively.

jected using e.g. a Galerkin method. Finally, sought solution is computed (online phase)
using the resulting ROM. It generally requires a low computational effort and such a strat-
egy is particularly suited for on-board computations and parametric problems. Both linear
and non-linear problems can be tackled [Kun01; Ryc06; Kerll; Ams12]. Nevertheless, to
design a working subspace some prior knowledge about the solution (called snapshots) are
required. These prerequisites can be obtained from prior computations, analytic solutions,
approximation of the solution on surrogate models, etc. Then, a relevant reduced basis
for them is computed using for instance a Proper Orthogonal Decomposition (POD) or a
Singular Value Decomposition (SVD). This preliminary phase is called offline phase and
may be expensive.

On the contrary, a priori approach does not require prior knowledge about the solution.
The reduced basis is computed and adapted on-the-fly during the resolution process. A
widespread a priori reduced basis method is the Proper Generalized Decomposition (PGD)
[Lad10; Chil0; Chill; Boul3; Chil4]. It is a general method tackling various problems
and consists in searching the solution into a low rank approximation (or separated form).
Such a representation for the solution provides several advantages as far as the compu-
tational work is engaged and the storage memory is required. Nonetheless, drawbacks of
this approach rely on the sustainability of the low rank format for the solution (lack of
orthogonal properties on the basis).

Generally, efficient reduction methods involve a mixed approach between a posteriori
and a priori ones. For instance, given a reduced basis, some calculations are performed
on a ROM but results obtained do not satisfy a certain level of accuracy (a posteriori
approach). Then, the considered reduced basis can be enriched to span an improved
solution. A priori methods are able to fulfill this goal. To take another example, instead
of initializing a priori methods from scratch, prior knowledge about the solution could
be reused providing a first guess for the subspace to compute on-the-fly. That’s why
generally speaking, efficient strategies involve both a posteriori and a priori methods in
complementary roles [Ryc05; Kerll; Gallla; Galllb; Hey13].

1.3.2 Snapshots and Parametric Studies

The main objective of parametric studies is the following: given a parametric model, for
any value of an input parameter p € R find the solution field u(u) € R™. In a structural
mechanics context for instance, p would be the value of an imposed displacement, a
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u(p)

(a)

Figure 1.11: High-dimensional solution space represented by the triad Y and its embed-
ded low-dimensional manifold on which the field variable u(u) resides (a). The solution
corresponding to the parameter value p* is approximated by a linear combination of
previously computed solutions u(u;)i1<i<m corresponding to the previous design points
(b). From [Ver03].

material behavior parameter, or even a shape parameter. The solution u(x) would be the
displacement field, the stress field, or any additional variable computed by the behavior
model on the domain. Figure 1.10 presents an example of a parametric model based on
geometrical parameters.

The difficulty here stems from the fact that the solution field u(u) is a member of the
infinite-dimensional solution space Y associated with the partial differential equations that
are being solved. However, it can be intuited that the possible values of u(u) do not "cover"
the entire solution space Y. If we imagine Y being reduced to a three-dimensional space,
then u(u) can be conceived as lying on a curve or surface as depicted on Figure 1.11a. For
example, again in a computational mechanics context, we expect that the displacement
and stress fields which satisfies the governing equations does not vary randomly with the
parameter p, but in fact varies in a smooth fashion. In other words, the field variable is not
some arbitrary member of the high-dimensional solution space associated with the partial
differential equations; rather, it resides, or "evolves" on a much lower-dimensional manifold
induced by the parametric dependence as depicted on Figure 1.11b [Ver03; Gallla].

Let us define the considered parametric problem as a set of different linear static struc-
tural problems, one for each parametric configuration: A(u) - u(p) = b(u), where A(u)
is the usual stiffness matrix, u(u) the nodal displacement solution, and b(u) the external
generalized forces. As explained previously, one can assume that the current problem, or
current design point, still contains some characteristics of the previously computed ones.
To compute a reduced basis approximation space for the solution subspace, a Gram-
Schmidt process could be used for instance. By doing so, the different trends of snapshots
can be identified and redundancy among snapshots is eliminated. Nevertheless, such an or-
thogonalization process does not provide the most dominant directions for snapshots. For
that purpose, specific methods such as the POD and SVD are used. These methods orig-
inated mainly from the statistical field (principal component analysis, Karhunen-Loéve
decomposition, etc.) and aim to provide a reduced basis composed of most dominant
vectors for snapshots.
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Chapter 1. IGA Based ROM

Let U be a snapshot matrix. For instance, in the context of computational mechan-
ics, generalized displacements (n degrees of freedom) for all snapshots corresponding to

different parameters p; (j =1,...,m) can be cast into U as follows:
ur(pa) oo ua(pm)
U=| | =[uw) o ul) ] (1.1)
Un(p1) -+ Un(fim)

U € R™™ is a real rectangular matrix and u(su;) are snapshots of the generalized dis-
placement field. According to the singular value theorem [Eck36], U can be factorized
using SVD:

o1 -+ 0 (ﬁj
Uz\IlZ@T:[d)l z/;n} o U o (1.2)
o ... o |Lon

with [ = min(n,m), ¥ € R™*™ an unitary matrix containing left-singular vectors v, ® €
R™*™ an unitary matrix containing right-singular vectors ¢, and 3 € R™"*™ a rectangular
diagonal matrix containing positive singular values ¢ in decreasing amplitudes. This
decomposition is unique up to an arbitrary sign for pair (¢, ¢). The SVD factorization
can be rewritten into the following rank one expansion:

l
U=3 owydf. (1.3)
k=1
Given a matrix U € R"*™ whose entries are denoted by u;;, the matrix p-norm is
defined as follows:

n m %
IOl = D> ui P| (1.4)
i=1 j=1
For p = 2, the Frobenius norm is defined and is denoted by ||U||r. Taking into account
only the r < first singular values of the SVD expansion of U allows to define a low rank
approximation of U denoted by U:

U=> o1 . (1.5)
k=1

According to the Eckart-Young’s low rank approximation theorem [Eck36], U is the best
approximation of rank r of U with respect to the Frobenius’ norm. Moreover, if r = k then
U = U. The relative error between the snapshot matrix U and its SVD approximation
U is given by:

Generally, 7 is chosen in such a way that a great compression is gained and the correspond-
ing low rank approximation is sufficiently accurate (e.g. e(U) < 0.1). The dimension r of
the reduced basis is then of a key importance, because the gain in computational time is
directly related to it: the smaller r, the faster the computations.
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1.3. Reduced Order Modeling

_ Mesh | _ Meshy,
Morphmg Morphlng

Figure 1.12: A parametric model where the geometric parameters correspond to the cen-
ter’s position and diameter of the circular hole. For small variation of input parameters,
general mesh morphing techniques will work well (a), but will fail for large variations (b).

Nevertheless, a good prerequisite for ROM construction (in order to avoid a projec-
tion step) is the availability of solution vectors with the same dimension associated to all
snapshots (the snapshot matrix U is a real rectangular matrix). In other words, their con-
struction requires accumulating a certain number of simulations on isotopological meshes
(i.e., meshes with the same number of nodes and connectivity) while modifying the input
parameters. However for parametric studies based on geometrical parameters, isotopolog-
ical meshes can be difficult to obtain when using general mesh morphing techniques in the
case of a large variation of input parameters (Figure 1.12).

1.3.3 Isotopological Snapshots Generation

A morphing is a transformation that changes one shape into another through a seamless
transition. In other words, it is a one-to-one function which associates each point of
the first shape to the corresponding point of the second shape. If both shape have the
same topology, the morphing function between them can be computed by first finding a
canonical domain which have the same topology as both shapes. Then we compute the
parameterization functions between each shape and the canonical domain. Finally we can
express the morphing function as a composition of the parameterization functions. See
Figure 1.13 for an illustration.

For models with different geometries but same topology, a potential solution to gener-
ate isotopological snapshots is the use of analysis-suitable isogeometric parameterization
with the same canonical domain. In addition, isogeometric meshes are based on the param-
eterization of the model and can handle a large amount of distortions, hence can adapt to
large variation of input parameters. A summarizing workflow is proposed on Figure 1.14.

Conclusion

IGA is a numerical analysis technique where the same basis functions are used to rep-
resent both geometry and the approximate solutions of PDEs. However, a prerequisite
for IGA is the availability of solid models represented by trivariate tensor product splines.
Starting with the triangulated boundary of the solid model, we build a polycube approxi-
mating the input boundary mesh. Then we design a cross field topologically conform with
the polycube structure, and geometrically following the principal directions and geometric
features of the surface. A global parameterization whose gradient field is aligned with the
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Chapter 1. IGA Based ROM

Surface A

[

F=gof!

Canonical domain

Surface B

Figure 1.13: To compute the morphing function F' between surface A and surface B,
we begin by finding a canonical domain which have the same topology as both surfaces.
Then we compute two parameterization functions f and g between the canonical domain
and surfaces A and B, respectively. The morphing function F' can by computed as a
composition of the function f and ¢g: F = go f~!. For shapes with different geometry but
same topology, isotopological representations can be generated by using analysis-suitable
isogeometric parameterization with the same canonical domain.

cross field is then computed. The isoparametric lines of this parameterization are then
extracted and serve the define the control mesh for splines fitting.

ROMs are computationally inexpensive mathematical representations that offer the po-
tential for near real-time analysis. In the context of parametric studies, their construction
requires accumulating a certain number of system responses to different input excitations.
The accumulated system responses are called snapshots. The ROM is constructed by
using a compression method aiming at computing a basis spanning the snapshots. How-
ever, a prerequisite for ROM construction is the availability of snapshots with the same
dimension. In other words, all pre-computations (corresponding to different input param-
eters) must be done on isotopological meshes. For models with different geometries but
same topology, isotopological snapshots are generated using analysis-suitable isogeometric
parameterization with the same canonical domain.

22

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LY SEI047/these.pdf
© [H. Al Akhras], [2016], INSA Lyon, tous droits réservés



1.3. Reduced Order Modeling

Numerical
‘g Charts
1S
S IGA Mesh .g & - ('
28 S Iy
(&} :__’ o
5 =1 I R
2 § Reduced Order
[22]
o5l Model
39
® £
ee
o IGA Mesh A
Parametric
Studies
(a)
FEA Mesh
Numerical
%‘ Charts
£
o = ]
S g ‘
° 5
a § Reduced Order
o
o Model
=1 -
g E
& c
& IGA Mesh v
Parametric
Studies

FEA Mesh

(b)

Figure 1.14: Isotopological snapshots generation: using IGA (a) and using FEA (b).
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Chapter 2

Model Decomposition

Introduction

Volume-based spline modeling and analysis have gained much attention recently with
many applications. Compared with surface splines, volume splines can represent both
boundary and volumetric physical/material attributes of a model. This property makes
volume representations highly preferable in many physically-bases applications including
mechanical analysis. Hughes et al. [Hug05] have proposed IGA which uses trivariate spline
basis functions to represent both the geometry and the approximate solutions of PDEs.
Constructing analysis-suitable trivariate models from a given solid model, defined by its
boundary triangle mesh or boundary (possible trimmed) spline surfaces, remains one of
the most significant challenges in IGA [Cot09].

Due to the tensor-product nature, a single spline patch can only represent topological
rectangles. Employing multiple patches seems a natural way of solving the issue to deal
with various topological shapes. To handle models with complex geometry and arbitrary
topology, methods in a divide-and-conquer fashion are the most promising. Compared
with surface splines construction designed to extract features, volume splines construction
mainly focus on finding part-aware component domains. Due to their tensor-product
nature, spline fitting demands that the parametric domain keeps regular. In addition, the
parametric domain must have the same topology of the model but simplified geometric
features. A popular shape abstraction method is to use polycube domains. A polycube is
a solid composed of cubes. It can be used to approximate very roughly the geometry of
an object while faithfully replicating its topology. Due to its highly regular structure, the
polycube can be used as the parametric domain required for trivariate spline fitting.

The current work investigates objects with complex geometry and arbitrary topology
given in boundary representations. The first step toward a trivariate parameterization
is the polycube generation. The needed background material in topology, geometric rep-
resentations and surface parameterization techniques are introduced in Section 2.1. The
input is a triangulation of the solid model’s boundary. The boundary surface is decom-
posed into a set of cuboids in two steps: pants decomposition and cuboid decomposition
(Section 2.2). Pants decomposition decomposes a complicated surface into a set of pants
patches, i.e., shapes that have a trivial topology (Section 2.2.1). Cuboid decomposition
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2.1. Background Material

decomposes each pants patch into a set of cuboids, i.e., a boxed region enclosed by six
disk-like patches (Section 2.2.2). This set of cuboids compose a generalized polycube
approximating very roughly the input model’s geometry while faithfully replicating its
topology.

The novelty of the proposed method is the "geometry-aware" pants-to-cuboids de-
composition algorithm. The algorithm is completely automatic and very robust even for
low-quality and noisy meshes.

2.1 Background Material

2.1.1 Topology

This section briefly introduces the related background in topology. The reader is referred
to the book of Hatcher [Hat01] for more details. Topology is the study of properties of a
shape that are preserved under continuous deformations including stretching and bending,
but not tearing or gluing. This includes such properties as continuity, connectedness and
boundary.

Let X be a set. The elements x of X are usually called points. X is allowed to be
the empty set. Let N be a function assigning to each point x € X a non-empty set NV,
such that x € N, and N, C X. The set NV, is called the neighborhood of x with respect
to N. We denote by N the collection of sets N, for all x € X. Let X be a set and N a
collection of subsets of X with the following properties: 1) the empty set ) € N and the
space X € N; 2) the intersection of an arbitrary number of sets in N is also in N; 3) the
union of a finite number of sets in IV is also in N. Then we say that N is a topology on X
and that the pair (X, N) is a topological space (Figure 2.1).

Neighborhoods N

O The empty set and the set X are both
in N

The intersection of a finite number of
setsin Nisalsoin N
The union of a finite number of sets
in N is also in N

The collection of all points' neighborhood along with the set of points build up
a topological space

Figure 2.1: Topological space.

A homeomorphism is a continuous function between two topological spaces that has a
continuous inverse function. Such transformation preserve all the topological properties of
a given space. Two spaces with a homeomorphism between them are the same topologically
and are called homeomorphic (Figure 2.2).

2.1.1.1 Manifolds

An n-dimensional topological manifold (or n-manifold) M is a topological space such
that for each point p € M, there exist an open neighborhood U of p in M and a continuous

25

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LY SEI047/these.pdf
© [H. Al Akhras], [2016], INSA Lyon, tous droits réservés



Chapter 2. Model Decomposition

Homeomorphic Surfaces Non Homeomorphic Surfaces

Figure 2.2: Homeomorphic and non-homeomorphic surfaces.

bijective mapping x : D — U, where D is an open set in R™. In other words, M can be
parameterized locally using maps x. We will only be considering submanifolds of Euclidean
spaces R™. Examples of manifold in R?® include curves (1-manifolds) and surfaces (2-
manifolds) (Figure 2.3). A topological manifold M C R™ is a smooth manifold if for
every point p € M there is a smooth regular map x : D — M, where D C R" is
open, such that p € x(D). The smooth regular maps x are called patches. A mapping
f: My — Ms between smooth manifolds M; and Mo is a smooth map if X2_1 ofoxyis
infinitely differentiable for any patches x; of M7 and xo of M.

We will be interested in studying surfaces such as the closed unit disk which is not
included in the current definition of a smooth manifold. An n-dimensional manifold with
boundary (or n-manifold with boundary) M is a topological space such that for each point
p € M, there exist an open neighborhood U of p in M and a continuous bijective mapping
x: D — U, where D is either an open set in R" or an open set of the half plane R’}. As
before, we say that M is a smooth manifold with boundary if we can always choose maps
x so that they are smooth and regular and we will refer to the smooth regular maps x as
patches. A point p € M lies in the interior of M if there is an open neighborhood U of p
in M and a continuous bijective mapping x : D — U, where D is an open set in R”. The
set of all points that lie in the interior of M is called the interior of M and is denoted
by int(M). The set of all points p such that p ¢ int(M) is called the boundary of M and
is denoted by M. The boundary of a n-dimensional manifold is a (n — 1)-dimensional
manifold. If 9IM = 0, M is a n-dimensional manifold without boundary (or n-manifold
without boundary).

(a) (b) ()

Figure 2.3: An n-manifold is a topological space that "locally looks like" the Euclidean
space R™: curves are 1-manifolds (a) and surfaces are 2-manifolds (b). If the neighborhood
of a point is not like R™, then the considered n-dimensional object is not a manifold (c).
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2.1. Background Material

Surfaces

A surface M is a 2-manifold, 4.e, a topological space in which each point has a neighbor-
hood homeomorphic to either the plane R? or the closed half plane R%r. Points with closed
half-plane neighborhood are defined as the boundary OM of the surface M. In the context
of this thesis, we will only consider connected, orientable, compact surfaces possibly with
boundaries.

A connected surface is a topological space that cannot be represented as the union of
two or more disjoint non-empty subsets (Figure 2.4a-left). If a surface can be represented
in such a way, it is disconnected (Figure 2.4a-right). A surface in R? is called orientable,
if it is possible to distinguish between its two sides (Figure 2.4b-left). A non-orientable
surface has a path which brings a traveler back to his starting point mirror-reversed
(Figure 2.4b-right).

Triangulation is the division of a surface into a set of triangles, with the condition that
each side (except the ones forming the boundary) of each triangle is entirely shared by two
adjacent triangles. Every surface has a triangulation, sometimes with an infinite number
of triangles. A compact surface is a surface admitting a finite number of triangles in its
triangulation. A closed surface is a compact surface without boundaries (Figure 2.4c-left).
Removing b disjoint open disks from a closed surface yields a compact surface with b
disjoint boundary components (Figure 2.4c-right).

(a) ()

Figure 2.4: Connected (a-left) and disconnected (a-right) surfaces. Orientable (b-left) and
non-orientable (b-right) surfaces. Compact surfaces without boundary (c-left) and with
boundary (c-right).

The genus g of a connected, orientable, closed surface M is an integer representing
the maximum number of cuttings along non-intersecting simple closed curves without
rendering the resulting manifold disconnected. The genus g of a connected, orientable,
compact surface M with boundaries is defined as the genus of the corresponding connected,
orientable, closed surface (Figure 2.5).

Surfaces are topologically classified by their genus and number of boundaries, and
characterized by the FEuler characteristic. The Euler characteristic x is a topological
invariant, so that surfaces with different Euler characteristics cannot be homeomorphic
(Figure 2.6). The Euler characteristic completely classify connected, orientable, compact
surfaces up to homeomorphism. For a genus-g surface M with b boundary components, it
is given by:

X(M)=2-2g—b. (2.1)

If M is a triangulated surface with vertices V', edges F, and faces F', then:

X(M) = V[ = [E] + |F]. (2.2)
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Chapter 2. Model Decomposition

+@90090

(a) (b)

Figure 2.5: The genus of a surface is the maximum number of non-intersecting closed
curves which can be drawn on it without disconnecting the surface: genus-0 (a-b) and
genus-1 (c-d) surfaces.

Figure 2.6: Different homeomorphic surfaces with the same Euler characteristic: xy = 2.

2.1.1.2 Homotopy and Homology

A surface M is a topological space (2-manifold) where each point has a neighborhood
homeomorphic to either the plane R? (for interior points) or the half plane Ri (for bound-
ary points). The surface M has genus-g and a boundary 0 M which is a collection of its b
borders. The surface M considered here is compact, connected and oriented, so that each
point has a unique normal vector n.

Paths, Loops and Homotopy

A path p on a surface M is a continuous map p : [0,1] — M. A loop is a closed path,
meaning that the endpoints p(0) and p(1) coincide. The concatenation of two paths p and
q, with p(1) = ¢(0) is the path p o ¢ defined by:

p(2t) if t <1/2,

g2t —1)  ift>1/2. (2.3)

(poq)(t) = {

Two paths p; and py are homotopic p1 =¢ p2 if and only if one path can continuously
evolve to the other one through a family of paths on the surface (Figures 2.7a-2.7b).
Rigorously speaking, a homotopy between paths p; and po is a continuous map h : [0, 1] x
[0,1] — M subject to h(0,t) = p1, h(1,t) = p2, h(s,0) = qi1, h(s,1) = g2, for all s, ¢ € [0, 1],
where ¢; and go are two paths joining p;(0) with p2(0) and p1(1) with p2(1), respectively.

A loop based at point x of the surface M is contractible if it is homotopic to the constant
loop based at x, i.e., the loop that stays at x throughout. We denote the homotopy
equivalence class of path p as [p]. The set of homotopy equivalence classes of loops based at
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2.1. Background Material

x forms a group under concatenation, called the fundamental group and denoted 71 (M, x).
The identity element of the fundamental group is the homotopy class of contractible loops.

Chain, Cycles and Homology

A chain v on a surface M is an oriented 1-manifold embedded in M: v C M. Chains
are not necessarily connected and can be composed of multiple components. A cycle is a
chain v without boundaries: 9y = (). We introduce the following notions on chains and
cycles:

A chain v is oriented, i.e., it has a unique tangent vector t., at each of its points which is
also tangent to the surface M. Using this tangent vector, along with the surface normal
n, we can define a unique conormal vector n, = n x t, on the chain, which ensures that
(ty,n,,n) forms a natural local orthonormal basis called the Dabroux frame.

- The reversal —y of a chain ~ is the chain with opposite orientation: t_, = —t, and
n_, = —n,.

- 0 is called the boundary operator, such that M is the subset of points of the surface
M with neighborhood homeomorphic to the half plane. This subset is a cycle v. We
can choose an orientation for this cycle v by requiring its conormal to point outwards.
In this case, we say that the cycle v is a boundary.

- A chain v is called exact if there exists a submanifold M of M such that v = M. An
exact chain is necessarily a cycle which is a boundary.

- If the surface M is a topological disk then v = M is said contractible. The definition
of contractibility for loops is that a loop is contractible if it is homotopic to a null loop.
The definition of contractibility for cycles adds a notion of orientation as the reversal of
a contractible boundary cycle is not necessarily contractible.

Two cycles 71 and 72 are homologic v1 =; 2 if and only if 71 — 75 is exact (Figures 2.7c-
2.7d). More formally, the homology for cycles is defined as the quotient set of cycles over
exact chains. In particular the zero of homology () is the class of exact cycles. In other
words, a cycle v is exact if and only if v =; (). Note that homological cycles might have
different number of connected components. Homology is a more flexible concept than
homotopy: homology allows to split a cycle in two or fusion two cycle into one whereas
homotopy doesn’t.

() (b)

Figure 2.7: Homotopic (a) and non-homotopic (b) paths on a surface. Non-Homologic (c)
and homologic (d) chains on a surface.
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Cut Graphs, Homotopy and Homology Basis

Let G = (V, E) be a graph with a node set V and an edge set E C V' x V. An embedding
of the graph G in a surface M is a map which takes each node v of G to a distinct point
on M and maps each edge e = (v;,v;) of G to a curve on M which connects the images of
v; and vj.

Cut Graph

A cut graph is an embedding of a graph G in a surface M whose compliment is a
topological disk. A system of loops is a cut graph with only one node, i.e., all edges of the
cut graph are loops that start and end at the same node.

The algorithm for computing a cut graph for a surface mesh M is relatively simple.
A spanning dual tree T* of dual edges is computed. The primal of all non-spanning dual
tree edges is a cut graph which transforms M into a topological disk. The size of this cut
graph can be significantly reduced by iteratively removing all open paths.

Homotopy Basis

Homotopy basis is a generalization of the system of loops. The homotopy basis of
a genus-g surface consists of 2¢g loops whose homotopy classes generate the fundamental
group m (M, z) (Figure 2.8a). Every system of loops is a homotopy basis, but the converse
is not true: homotopy bases can contain self-intersections or intersections that can not be
removed by homotopy.

The algorithm for finding a greedy homotopy basis for a surface mesh M is actually
very simple. A spanning tree 7 of primal edges and a spanning tree 7* of dual edges
which does not cross T are computed. 2g primal edges will then not be contained in
T nor crossed by dual edges in 7*. Connecting these 2¢g primal edges to the root of T
through 7 yields the 2¢g loops forming the homotopy basis.

Homology Basis

The set of cycles H(M) = {%H} L is a homology basis on the genus-g surface M
t=1,...,29
if it satisfies the following two conditions:

- Linear independence condition: > ai'yiH = lea=-= azg = 0.

- Spanning condition: ¥y € C(M), Ja € Z?9 such that v =; 3" a;v?, where C(M) the set
of all cycles on M.

In other words, any cycle v on the surface M is homologic to a formal sum of the homology
basis cycles. The homology basis of a genus-g surface consists of 2¢g cycles (Figure 2.8b).
Any homotopy basis is also a homology basis, but not vice versa, since the cycles in a
homotopy basis generally do not have a common point.

The tunnel and handle loops form a homology basis. Suppose a closed surface S C R3
separates R3 into a bounded space I and an unbounded space Q. Handle and tunnel loops
on S can be defined as follows. A loop a; is a tunnel if it spans a disk in the unbounded
space 0. A loop b; is a handle if it spans a disk in the bounded space I. There are various
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2.1. Background Material

existing algorithms for computing these loops on surfaces. We use the algorithm proposed
by Dey et al. [Dey07] which computes well defined handle and tunnel loops for three-
dimensional models, and guarantees that the resulting loops are topologically correct and
geometrically small.

T\ ) (>
AN
(@ ()

Figure 2.8: Homotopy (a) and homology (b) basis for a genus-2 surface. From [Eri05].

2.1.2 Geometric Representations

Surface representations are often divided into three major classes, namely implicit,
explicit, and parametric representations. The main idea of implicit representations is
based on the observation that a 2-manifold surface in R? is of co-dimension 1 and conse-
quently can be described as the kernel K = {p € R3: f(p) = 0} of a single scalar function
f : R? — R. For instance, a circle centered at the origin and with radius 7 can be described
by the equation f(p) = 0 — 22 + 32 — r2 = 0. However, explicitly evaluating points on
the surface, for example to render the surface, is equivalent to a root finding process and
thus typically very inefficient. In such situations explicit surface representations which are
given as a set of geometric primitives like points or polygons are more advantageous. In
computer graphics, the most prominent explicit representation is the triangle mesh, i.e.
the object surface is given as a set of triangles.

v I Yy
U 2K &

Figure 2.9: Parametric surface representation based on a continuous mapping between a
domain 2 C R? and its embedding f (©2) C R3.

The main concept of parametric surface representations is to describe a surface through
a mapping f(u,v) : Q — R3? between a base domain 2 C R? and the embedding space
R? (Figure 2.9). In this setting the properties of the function (continuity, differentiability,
etc.) are strongly connected to the shape of the surface and consequently the choice of
an adequate function space is essential. Even more general is the concept of manifolds
which enable the representation of topologically non-trivial objects by "stitching" several
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Chapter 2. Model Decomposition

parametric representations with the help of transition functions which guarantee compat-
ibility in overlapping areas. CAD parametric representations often appear in the form of
tensor product NURBS surfaces. The reason is that these piecewise polynomial surfaces
are on the one hand equipped with a guaranteed smoothness but on the other hand still
intuitively controllable by means on a net of control points.

2.1.2.1 Mesh Representations

In computers graphics, surface meshes are the classical representation of surfaces in R3.
A surface mesh M = (V, E, F') is formally a tuple of three sets, namely the vertices V', the
edges E and the faces F'. Each vertex v; € V is equipped with the position of its embedding
in R?: p(v;) = p; € R3. Each edge ¢; € E is a pair of two vertices: e; = (v;,vx). Each face
fi € F'is a tuple of diverse vertices which are cyclically connected to form a topological
polygon. For instance, all faces are triangles for a pure triangle surface mesh, and all
faces are quadrilaterals for a pure quadrilateral surface mesh. We further require that the
surface mesh be a topological 2-manifold. This requires that any two distinct faces of the
mesh must either be disjoint, intersect each other at a common edge, or intersect each
other at a common vertex. In addition, the faces of the mesh having a given vertex in
common share edges in a cyclic way.

Neighborhood relations between vertices, edges and faces are defined in the usual
graph theoretical sense. Two elements are said to be incident if the vertices of one are a
subset of the vertices of the other. While incidence describes the neighborhood relation
between elements of different dimensions, adjacency is a similar concept for entities of
equal dimension. Adjacent vertices are incident to a common edges, adjacent edges are
incident to a common vertex and adjacent faces overlap at a common edge. The valence
of a vertex is defined to be the number of its incident edges. An edge is called boundary
edge if it is incident to a single face, otherwise it is called interior edge. Vertices inherit
the boundary property from edges: a vertex is called boundary vertez if it is adjacent to
at least one boundary edge, otherwise it is an interior vertexz.

An orientation of a face f; € F of the mesh M is an ordering of its vertices vy, va, ..., v, €
V. We denote such an oriented face by [vi,ve,...,v,]. We say two orientations are the
same if they differ from each other by an even permutation of the vertices. For exam-
ple, the oriented triangle faces [v1,va, v3] and [ve, vs,v1] have the same orientation, where
[v1,v2,v3] and [v, vs, v2] have opposite orientations. An orientation of an edge e; € E is
an ordering of its vertices vj, vy € V. We will denote such an oriented edge by [v;, vg].
An edge e; with vertices v; and vy, has precisely two orientations, [vj,vx] and [vg,v;], so
we say that these oriented edges have opposite orientations. An oriented face induces an
orientation on its edges. For instance, the oriented triangle face [v1,v2,v3] induces the
oriented edges [v1,v2], [v2,v3], and [vs,v1]. A surface mesh M is orientable if each face
fi € F' can be oriented so that whenever two faces share a common edge, the orientations
induced by the faces on the edge are opposite.

For a surface mesh M = (V,E, F), its dual M* = (V*, E*, F*) is given by an iso-
morphism which uniquely maps the primal k-dimensional entities to the dual (2 — k)-
dimensional ones and vice versa. More precisely, each vertex v; € V is identified with the
dual face f;* € F*, each edge e; € E is identified with a dual edge e € £, and each face
fr € F is identified with a dual vertex v; € V*. The connectivity of the dual mesh is
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2.1. Background Material

uniquely inherited from the primal mesh: for instance, if two vertices are neighbored in
the primal mesh, so will be the corresponding dual faces in the dual mesh.

Triangle Meshes

Triangle meshes are the most widely used. One reason is that a triangle (or 2-simplex) is
in some sense the simplest 2-dimensional entity. A simplex is a generalization of the notion
of a triangle to arbitrary dimensions. A k-simplex is the convex hull of its k£ 4+ 1 (non-
collinear) vertices: for instance, a single point is a 0-simplex, a line segment is a 1-simplex,
and a triangle is a 2-simplex. It is important to notice that a triangle mesh is not only
an explicit surface representation but also possesses an intrinsic parameterization. Each
triangle (p;, pj,Pk) can be parameterized by the barycentric linear mapping I' (u,v) =
u-pi+v-pj+ (1l —u—wv) pr with u,v > 0and u+wv < 1. In practice all these individual
triangle mappings are often combined into one piecewise linear mapping.

Quadrilateral Meshes

Besides triangle meshes, today quadrilateral meshes enjoy a steadily increasing popu-
larity. While triangle meshes easily enable adaptive element sizes, quadrilateral meshes
exhibit a superior (mostly regular) structure. Quadrilateral meshes are often preferred
over triangle meshes especially in animation and simulation. One reason is that their
tensor-product nature easily generalizes to higher-order representations which are able to
satisfy the C?-continuity requirements that arise in many practical applications. However,
it is important to notice that a general quadrilateral mesh is not an explicit geometry rep-
resentation comparable to a triangle mesh. In contrast to a triangle, a quadrilateral might
be non-planar and/or non-convex. Consequently apart from specialized applications which
are restricted to the subset of convex and planar quadrilateral meshes, a quadrilateral mesh
is usually used as the control mesh of a parametric surface like tensor-product NURBS.

It is well know that a simple polygon (i.e., planar and non-intersecting) can always be
triangulated [Fou84; Cha91]. In contrast to that, it is not always possible to quadrangulate
a polygon. This observation indicates that the generation of quadrilateral meshes involve
some global aspects which are not present in the generation of triangle meshes. To be
useful in practice, a quadrilateral mesh typically has to fulfill strong quality requirements.
Besides local properties like regularity, element orientation and element shape, also global
properties like the patch structure usually play an important role. Consequently instead
of local optimization strategies, as typically applied in the generation and optimization of
triangle meshes, global optimization techniques are inevitable.

For a quadrilateral mesh, an interior vertex is called regular vertex if its valence is
equal to 4, otherwise it is called irregular (or singular or extraordinary). Analogously, on
the boundary a regular vertex is characterized by a valence of 3. Irregular vertices are
particularly important because they are the only ones where the quadrilateral mesh is not
a regular grid. They can have different singularity indices depending on their valence.
The total sum of singularity indices is a topological invariant that depends on the genus
of the surface [Ray08].

The relation between the valences val(v;) of a quadrilateral mesh vertices v; € V' and
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Chapter 2. Model Decomposition

the genus g of the represented closed surface is given by [Bom12a]:

14

Z (4 —val(v)) =8(1—g). (2.4)

i=1
The above formula is a necessary condition on the sum of vertex valences in a quadrilateral
mesh which represents a genus-g surface. This formula shows that for closed surfaces a
quadrilateral mesh where all vertices are regular can be found only if the genus of the
surface is 1. A genus-0 surface will require a total valence defect of 8. Therefore a valid
set of irregular vertices would be 8 irregular vertices with valence 3 (each having a valence
defect of 1). However, there are infinitely many different possibilities, since positive and
negative valence defects cancel out. For instance, a valence 3 and a valence 5 irregular
vertices together have a valence defect of 0. Even for genus-1 surfaces, it is often desirable
to introduce irregular vertices if the surface is more complex than a torus, like e.g. a coffee
cup.

The base complex is a unique partitioning of a given quadrilateral mesh into rectangular
patches. It can be constructed by connecting irregular vertices through straight chains of
edges called separatrices. In other words, the base complex corresponds to a simplified
version of the input quadrilateral mesh. Providing a high-quality quadrilateral mesh with
a coarse base complex is of great interest, since a coarse base complex induces a simple
patch layout which is desired for fitting NURBS patches.

2.1.2.2 Parametric Representations

We have introduced the mesh representation. Objects obtained by scanning technolo-
gies are often output as meshes. Although this representation is straight-forward, the
large amount of sampled points of a scanned physical object makes it very inefficient in
terms of memory and disk space for interactive editing. Furthermore, ensuring continuity
(smoothness) when modifying the curved regions of the surface means many points have to
be re-positioned accurately, which is a tedious task. These two problems can be overcome
by representing the object in a parametric representation. Parametric representations of
surfaces, and more specifically tensor-product splines, are widely used in CAD. In the
context of this thesis, we have chosen NURBS as the target spline representation.

B-Spline Basis functions

A knot vector is a non-decreasing set of real coordinates in the parameter space, written:

E’:{gov"wgia--wgm}? (25)
where the element ¢ is the " knot, and the half-open interval [¢;, & 1] is the i** knot
span (or element). Knot spans can have zero length, since knots don’t need to be distinct.
A knot vector is called uniform when its knot spans are identical, otherwise it is called
non-uniform.

Let p be the degree of the B-Spline. We will consider only non-periodic (or clamped
or open) normalized knot vectors, which have the form:

E={0,...,0,&51, s Em—p-1,1,...,1}. (2.6)
p+1 p+1
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Figure 2.10: Quartic (p = 4) basis functions for an open, non-uniform knot vector

= = {0,0,0,0,0,1,2,2,3,3,3,4,4,4,4,5,5,5,5,5}. The continuity across an interior el-
ement boundary is a direct result of the polynomial order and the multiplicity of the
corresponding knot value.

Given a knot vector Z = {&, ..., &y}, the it" B-spline basis function of degree p (order
p + 1), denoted by N; (&), can be efficiently computed using the Cox-De Boor recursive
formula as follows:

Ni70(5)2{1 if & < € < &,

0 otherwise. (2.7)

Nip(€) = ;;fi&zvi,pl(s) + mmﬂ,pmf»

Once the degree p is fixed, the knot vector = completely determines the B-Spline basis
functions N;,(£). Let m + 1 be the number of knots of the non-periodic knot vector =.
Then there are n + 1 basis functions, where n = m — p — 1. The B-Spline basis functions
have the following properties (Figure 2.10):

- The N;,(€) are piecewise polynomials, defined on the entire real line. Generally only
the interval [£y, &) is of interest: N;,(€) = 0 if £ is outside the interval [&;, &ipr1].

- The Nj (&) are non-negative, i.e., N; ,(§) > 0 for all 4, p and £. In addition, in any given
knot span [£;,&;41[, at most p + 1 of the N;,(£) are non-zero, namely the functions

Nj—pp(&),- - Njp(E)-

- For an arbitrary knot span [§;, &i+1[, the Njp(§) for j =i —p,...,i form a partition of
unity, i.e., 25, Njp=1.

- All derivatives of N; (&) exist in the interior of a knot span. At a given knot, N; ,(¢) is
p — k times continuously differentiable, where k is the multiplicity of the knot. Hence,
increasing degree increases continuity, and increasing knot multiplicity decreases conti-
nuity.

B-Spline Curves

B-spline curves in R are constructed by taking a linear combination of B-spline basis
functions. The vector-valued coefficients of the basis functions are referred to as control
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Chapter 2. Model Decomposition

m+ be a knot vector and {P;} a set of control points with
Em ) p

points. Let = = {&,...
P; € R% for i = 0,...,n. The B-Spline curve with degree p, where p = m —n — 1, is
(2.8)

defined by (Figure 2.11):
C(&) = Nip(&)Ps,
=0

where N;, are B-Spline basis functions of order p, corresponding to knot vector =.

" T

o

o

Figure 2.11: B-Spline curve (a), its control points (b) and its knot locations (c)

B-Spline surfaces
Parametric curves can be generalized to bi-parametric surface patches. One can consider
the parametric surface as the Cartesian product (tensor product) of two parametric curves.
,Mm, } be knot vectors, and {P; ;} a set of control

LetE:{fo,...

vEmo t and H = {no, ...
points with P; ; € R fori=0,...,ngand j =0,...,n;. The B-Spline surface with degree
p and ¢, where p = mg —ng — 1 and ¢ = my; — ny — 1, is defined by (Figure 2.12):

(2.9)

no ni

S(&m) = Z Z Nip(§)Mjq(n)Pi;,
i=0j=1

where N;,(€) and M, 4(n) are univariate B-spline basis functions of order p and ¢, corre-

sponding to knot vectors = and H, respectively.

(a)

Figure 2.12: B-Spline surface (a), its control points (b) and its knots locations (c).
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2.1. Background Material

B-Spline Volumes

Tensor product B-Spline volumes are defined in analogous fashion to tensor product B-
Spline surfaces. Let Z = {&o,...,&mots H =1{n0,---sMm, } and Z = {(1, ..., {my } be knot
vectors, and {P; ; 1} a set of control points with P; ;. € R fori=0,...,n9,j=0,...,n1
and k£ =0,...,ny. The B-Spline volume with degree p, ¢ and r, where p = mg —ng — 1,
q=m1—n1—1and r =me —ng — 1, is defined by:

ng mi N2

VENO) =D Nip()M;q(n) Ly (P ik, (2.10)

i=0 j=0 k=0

where N; (), Mj4(n) and Ly ,(¢) are univariate B-spline basis functions of order p, ¢ and
r, corresponding to knot vectors =, H and Z, respectively.

NURBS Curves, Surfaces and Volumes

A NURBS geometry is similar to a non-uniform B-spline geometry except that the
control points are defined in homogeneous coordinates rather than Cartesian coordinates.
Consider a control point P = (z;,¥;,2) € R3, its coordinates in homogeneous space can
be simply written as (z; - w;, y; - wy, 2; - w;, w;), where w; is the weight of the control point.
Given a knot vector = = {&,...,&n}, the it» NURBS basis function R; ), of degree p is

expressed as:
wiNip(§)
Rip(&) = =5 , (2.11)
o > =0 wiN; p(§)
where N;, (&) is the ith B-spline basis functions of order p, and n = m — p — 1. NURBS
curves, surfaces and volumes can be expressed exactly as their corresponding B-Spline
entities by simply replacing the B-Spline basis functions with NURBS basis functions.

2.1.3 Parameterization Techniques

Model parameterization is the fundamental basis and powerful geometry processing tool
with versatile applications such as meshing processing and spline fitting. Surface param-
eterization can be viewed as a mapping from a surface M embedded in R? to canonical
domain D embedded in R?. For topologies of M other than the disk, the domain D must
necessarily include discontinuities (e.g. cuts or seams). The ideal parameterization is
isometric, i.e., it fully preserves areas and angles. For surfaces, an isometric parameteriza-
tion is not possible in the general case. Therefore many approaches to surface Euclidean
parameterization attempt to find a mapping which is either conformal (i.e., no angular
distortion), or equiareal (i.e., no area distortion). A key fact about conformal maps is that
they always exist, as guaranteed by the uniformization theorem:.

Surface uniformization means that all metric surfaces can be conformally mapped to
one of the three canonical domains: the sphere, the plane, and the hyperbolic space.
Ricci flow is a parabolic system of partial differential equations which acts like the heat
equation to spread the curvature of a Riemannian metric evenly over the surface to produce
a metric of constant curvature. Computational discrete Ricci flow is the practical method
to compute surface uniformization [Jin08].
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Chapter 2. Model Decomposition

In this chapter, only the parameterization of disk-like surfaces and multiply connected
genus zero surfaces will be considered:

- For the parameterization of a disk-like triangulated surface M, we use the discrete
harmonic mapping. We construct a harmonic function f : M — R such that Af = 0.
The surface boundary M is first mapped to the boundary of the parameter domain
and then the parameterization for the interior vertices is obtained by solving a linear
System:

> wig [f(vy) = foi)] =0, (2.12)
JEN;
where v;,v; € S, INV; is the set of indices of vertices adjacent to v;, and w;; is a scalar
weight assigned to the directed edge e;j(v;,v;). Different parameterization methods
assign different weights w;; for each edge. Here, we choose the mean value coordinates
weights introduced by Floater [Flo03]:

Ay
>_keN; Aik

where 60;; and ¢;; are the angles the edge e;;(v;, v;) makes with its two immediate neigh-
boring edges at v;.

and \os — tan(@ij/2) —|—tan(¢ij/2)
v [oj = will

Wy j > (2.13)

- For the parameterization of multiply connected genus zero surfaces, we use the General-
ized Koebe’s Method presented by Zeng et al. [Zen09]. According to Koebe’s uniformiza-
tion theory, all genus zero multiply connected surfaces can be mapped to a planar disk
with multiply circular holes. Furthermore, this kind of mappings are angle preserving
and differ by Mobius transformations.

2.2 Part-Aware Partitioning

Due to its tensor-product nature, B-spline fitting demands that the parametric domain
(may be composed of a set of sub-domains) keeps regular. In addition, the construction
of volumetric splines requires parametric domains in R3. If the parametric domain is
composed by a set of sub-domains, consistency between different local domains is required.
If all these requirements are satisfied, the surface mesh of the model can be mapped to
cover the boundaries of all local parametric domains seamlessly and consistently. To
satisfy these requirements, the parametric domain (or the set of sub-domains) must have
the same topology of the model but simplified geometrical features. For genus-0 models,
the most simple way is to map them to a sphere without considering their geometrical
features. However for models with more complex geometry and arbitrary topology, more
complex domains are required.

A commonly used part-aware component is cylinder-like domains [Mar09]. Martin et al.
[Mar10] have extended this domain to mimic more complex shapes. However, in terms of
spline construction, the cylinder-like domain produces inevitable degenerate points along
the tube axis. To avoid such problem, a more popular shape abstraction method is to use
polycube domains. A polycube is a domain composed by gluing a set of cubes together.
Each patch of the boundary mesh of the input model maps to one of six faces of one
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cube. The advantage of this mapping method is that each mapping patch is tensor-
product regular and the global mapping is seamless between different adjacent patches.
The parameters between neighboring patches can transform consistently to each other
simply by linear parameter transformation or rotation. Polycubes allow the decomposition
of an object into a set of larger hexahedral pieces. However, the quality of the resulting
hexahedral representation strongly depends on the placement of polycube corners on the
input triangle mesh.

Tarini et al. [Tar04] pioneered the concept of polycube maps for seamless texture map-
ping with low angle and area distortion. The domain construction and mapping are com-
puted through simple projection. The map between the given 3D shape and the polycube
requires the projection of the vertices from the 3D shape to the polycube. This extrinsic
method may not produce a valid one-to-one map if the polycube differs from the modeled
shape significantly. Wang et al. [Wan07] presented an intrinsic method to construct the
polycube map which avoids the projection of the vertices on a 3D model to the polycube
domain. Their approach first maps the model and the polycube to a common canoni-
cal domain to guarantee bijectivity. The map between the given 3D shape and polycube
requires computing a global surface parameterization. Based on the uniformization the-
orem, this global parameterization maps models, depending on their Euler characteristic
X, to either the sphere S? (x > 0), the Euclidean plane E? (x = 0) or the hyperbolic disk
H? (x < 0). This intrinsic method, though theoretically sound to guarantee a bijection,
may not be practically useful for a topologically complicated surface. It is known that
embedding models with negative Euler characteristic is error-prone when points are very
close to the boundary of the hyperbolic disk due to the numerical rounding error. Hence,
this method is not practical and much less numerical stable to construct polycube maps
of large-scale models with negative Euler Characteristic.

Several methods have been developed to improve user control. Wang et al. [Wan08]
presented a technique where the user can interactively control the desired locations and
the number of singularities of the polycube map (i.e. the corners in polycubes) which
facilitates the manifold spline construction. Xia et al. [Xiall] allowed users to sketch
curve constraints to control the polycube map.

Automatic methods are usually difficult to control. Lin et al. [Lin08] used the Reeb
graph to segment the surface and then developed an automatic method to construct poly-
cube map. However, their segmentation method may not work for shapes with complicated
topology and geometry and does not guarantee bijection between the polycube and the in-
put model. He et al. [He09] proposed a divide-and-conquer algorithm by slicing the model
along an axis direction. Slicing along an axis produces very complex domain structure so
Gregson et al. [Grell] proposed a deformation-based method which is less prone to over-
segmentation. These methods work best for axis-aligned geometric models without any
twist bend, and spiral. Livesu et al. [Liv13] and Huang et al. [Hual4] introduced Polycuts
and L1-Polycubes to improve the corner configuration on the conventional polycube.

Recently, Li et al. [Li12] extended the conventional polycube to a Generalized PolyCube
(GPC), which enables the curved cuboid representation of the elementary subvolumes
decomposed via shape analysis. This enables the polycube map approach to be applied
to more complex objects. The drawback to their method is that polycube corners had to
be selected manually by the user.
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Chapter 2. Model Decomposition

2.2.1 Pants Decomposition

(a) (b) (c)

Figure 2.13: Different geometric representations of a pants patch: a disk with 2 boundaries
(a); a T-shaped geometry with 3 boundaries (b); a sphere with 3 boundaries (c).

2.2.1.1 Definition

Pants decomposition has been studies by Hatcher et al. [Hat00] and work has been
done to investigate the optimal segmentation of a given surface into pants patches by
Verdiére et al. [Ver07]. Pants decomposition provides an elegant topological tool to study
the consistent segmentation of high-genus surfaces systematically.

Let My be a surface of genus g with b boundary components. A pants patch is a
genus-0 surface (topological sphere) with 3 boundary components (Figure 2.13). A pants
decomposition of My is a collection of pairwise disjoint simple cycles that splits the surface
into a set of pants patches (Figure 2.14).

We assume that M is a surface with negative Euler characteristic, i.e., M is none of
the surfaces My, (topological sphere), My 1 (topological disk), My (topological cylinder),
and M, o (topological torus). In this case pants decomposition of M do exist, and each
pants decomposition consists of 3g + b — 3 curves and divides M into 2g + b — 2 pants
patches. y = —1 for a pants patch and therefore pants decomposition provides a canonical
decomposition scheme for these surfaces.

Figure 2.14: A pants decomposition of a surface (a) is a collection of pairwise disjoint
simple cycles (b) that splits the surface into a set of pants patches (c).

2.2.1.2 Algorithm

A consistent pants decomposition algorithm was presented by Li et al. [Li08]. The
homology basis of a genus-g surface M consists of 2¢g cycles. We will use the homology
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()

Figure 2.15: Pants decomposition of a 3-torus. Triangulated boundary surface (a) along
with its handle and tunnel loops in green and red, respectively (b). Pants decomposi-
tion using loops with shortest distance (c), and loops passing through areas of minimum
curvature (d).

basis formed by the handle and tunnel loops. From this homology basis, we can pick a
subset H composed of g simple and pairwise disjoint handle loops {h1,...,hy}. Slicing
a genus-g surface M with b boundary components along its ¢ handle loops will lead to a
genus-0 surface M with 2g+b boundary components. We denote these 2g+4b boundaries as
W =wi,..., wagqp. We iteratively pick two boundaries w; and w; from W and compute
a new simple cycle w;; to bound them, i.e., w;; is homotopic to w; o w;. The three cycles
w;, w; and w;; bound a pants patch Tj. We remove this pants patch T}, from M. The
patch left is still genus-0 but its boundary number reduces by 1: the two cycles w; and
w; are removed, and one new cycle w;; is inserted. This is iteratively performed until
|W| = 3. This idea is formulated in Algorithm 1, and the operation that traces a cycle w;;
homotopic to cycle w; o w; is formulated in Algorithm 2. Figure 2.16 gives an illustration
for the complete algorithm.

In Algorithm 2 Step 8, the "metric" can also be adapted to favor loops passing through
areas of symmetry or minimum curvature. For instance, in Figure 2.15¢, pants decompo-
sition was performed using loops with shortest distance, whereas in Figure 2.15d, pants
decomposition was performed using loops passing through areas of minimum curvature.
All the tracing of cutting cycles are from Dijkstra’s algorithm [Dij59] conducted on the
weighted triangle mesh. Therefore, we can integrate different geometric criteria into the
weight of each triangle edge [Zhal4]. The favored edges will have a smaller weights so that
traced cycles will more likely go through them. Different geometric criteria can be used
to guide the pants decomposition:

- Shortest length: shortest cutting cycles discretely approximate the geodesics and are
simply desirable in most scenarios. For an edge e = (v;,v;), its shortest-length weight
for the Dijkstra tracing is defined as the Euclidean distance w; (e) = |v; — vi]? between
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Algorithm 1 Pants Decomposition Algorithm.
Input: Triangulated genus-g surface M with b boundary components and its g handle

loops.
Output: Set of 2g + b — 2 pants patches T = {T1,...,Thg1p—2}, where M = JT;.
1. k+1
2: Slice M along all its handle loops and get a genus-0 surface M}, with 2g+b boundaries.
3. Put all boundaries of My, in a set W = {w,...,wayp}
4: while |W| > 3 do
5:  Select two boundaries w; and w; from W and compute a loop w;; homotopic to
W; © Wy .
6:  {w;,wj, w;;} bound a pants patch T}. Remove T}, from My My, < My, \ Ty
7: Remove w; and w; from W, and add w;; into W.
8 k+k+1
9: end while

Algorithm 2 Homotopic cycle computation.

Input: Triangulated genus-0 surface M with b boundary components {wi, ..., wp}.
Output: A cycle w;; homotopic to cycle w; o w;.

Compute shortest path connecting w; to w;.

Slice M along this path to get one new large boundary c;;.

Connect all other boundaries together using shortest paths.

Slice M along these paths to get one new large boundary c;. M becomes a topological
cylinder.

Compute the shortest path v connecting the cylinder’s two boundaries ¢;; and cy.
Slice M along the path v: every point p; € «y splits into a pair (p;, p;).

Trace all paths connecting points pairs (p;, p;).

Among these paths, w;; is the one that has the minimal length.

its vertices.

- Symmetry: many models have intrinsic symmetric patterns. One may prefer to cut the
surface along its symmetry plane. We can define a scalar value d(v) on each vertex
v using its Euclidean distance to the symmetry plane. For an edge e = (v;,v;), its
symmetry weight for the Dijkstra tracing is defined as wg (e) = 0.5 [d(v;) + d(v;)].

- Minima rule: human perception often cuts the surfaces along concave regions, which is
know as the minima rule [Lec05]. We define a value on each vertex by the minimum
curvature value, which is calculated by the tensor field computation [All03]. Since the
range of minimum curvature values are too diverse, we normalize the values. If k(v) is
the minimum curvature value at a vertex v, the normalized value is r(v) = (k(v) — p) /o,
where (1 is the mean and o is the standard deviation of k(v) over all vertices of the mesh.
For an edge e = (v;,v;), its minima-rule weight for the Dijkstra tracing is defined as
wm (€) = 0.5 [r(v;) + r(vj)].
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(g)

Figure 2.16: Pants decomposition algorithm overview. Triangulated boundary genus-2
surface along with its 2 handle loops (a). The surface is sliced along these loops (b). The
surface become a topological sphere with 4 boundaries (c). 2 boundaries are selected and
the shortest path between them is computed. The shortest path connecting the remaining
2 boundaries is also computed (d). The surface is sliced along these two shortest paths
(e) and become a topological cylinder (f). The shortest path ~ connecting the cylinder’s
two boundaries is computed. The cylinder is then sliced along the path v and every point
p € « is split into a pair of points. Between all paths connecting all pair of points, we
choose the path w which has the minimal length (g-h). Finally, the surface is sliced along
the path w to get two pants patches (i).

2.2.2 Cuboid Decomposition

After decomposing the boundary surface into a set of pants patches, we decompose each
pants patch T; into a set of 4 cuboids {C;;}. The idea is to generate corners and polyedges
on each pants patch and decompose it into 4 connected components, each having 8 corners
and 12 polyedges like a cuboid (illustrated in Figure 2.17).

As input, we have a set of pants patches. The 3 boundaries of a given pants patch will
be arbitrary denoted by B;, By and B3s. We process these pants patches one by one in
an arbitrary order. To guarantee corner alignment, when we determine one pants patch’s
result, we transfer its corners on the boundaries of the adjacent pants patches if they are
not processed yet. The proposed algorithm is very robust even for low-quality and noisy
meshes (Figure 2.23).
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Chapter 2. Model Decomposition

Figure 2.17: Cuboid decomposition of a 3-torus: the polyedge structure (a) and the cuboid
organization (b).

2.2.2.1 Cutting Curves
Step 1 We generate 3 cutting curves Wy, Wa, and W3 (illustrated in Figure 2.18):

a) We compute 3 discrete harmonic functions: fi, fo and f3. To compute f;, we set
fi = 0 for vertices on the boundary B; and f; = 1 for vertices on the remaining two
boundaries B; and By. Then we solve A f; = 0 using mean value coordinates (Figure
2.18a).

b) Each harmonic function f; has one minimum component and two maximum compo-
nents. Hence, the function f; must have one saddle point. We denote the saddle points
of the functions f1, fo and f3 by s1, s2 and s3, respectively (Figure 2.18b).

¢) Let f; = min{f;(si), fi(s;), fi(sr)}. Then the cutting curve W; is defined as the
isoparametric curve of the function f; for the value f; (Figure 2.18c).

2.2.2.2 Boundary Corners

Step 2 We generate all corners on the boundaries By, By and Bs (illustrated in Figure
2.19):

a) We conformally map the pants patch to a planar disk with 2 circular holes in the
parametric domain, using circular conformal mapping [Zen09]. The boundary By is
mapped to the outer circle of the planar disk and the boundaries B; and B; are mapped
to the inner circular holes (Figures 2.19a and 2.19b).

b) In the parametric domain, by intersecting the line passing through the centers of the
inner circles with the 3 boundaries, we get 6 intersection points (Figure 2.19¢). By
projecting these points back to the pants patch, we obtain 6 points s;j, Sik, Sji, Sjk,
sk and sg; (Figure 2.19d). Throughout, these points will be called "seed points".

c) Each boundary B; has 2 seed points s;; and s;,. Let ; : [0,1] — R3 be an arc-length
parameterization of the boundary B; with v;(0) = 7;(1) = s;;. We define the points
~i(0.125), v;(0.375), v;(0.625) and 7;(0.875) as the corners of the boundary B;.
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B3

(a)
\m
(c) (d)

Figure 2.18: Generation of cutting curves. A pants patch (a) and the discrete harmonic
function f; (b). Saddle points of the three discrete harmonic functions f1, fo and f3 (c).
The three generated cutting curves using saddle points (d).

At the end of this step, each boundary of the pants patch has 4 corners. Throughout,
we will denote by { Py, P2, P3, P,} the corners on By, { P, Ps, Py, Pg} the corners on Bg, and
{Py, P1o, P11, P12} the corners on B3 (Figure 2.20a). We also pair the corners on different
boundaries as follows: {Pl,Pg}, {PQ,Plo}, {P37P7}, {P4,Pg}, {P5,P11}, and {Pﬁ,PlQ}
(Figure 2.20b).

2.2.2.3 Boundary Polyedges

Step 3 We trace the 6 polyedges between each pair of corners in 3 passes. At each pass,
we trace 2 polyedges (illustrated in Figure 2.21):

a) We remove a long branch by cutting along its cutting line W. After filling the cutting
hole, the resulting patch is a topological cylinder with 2 boundaries B; and B;. We
denote this patch by Py (Figure 2.21a).

b) We map the topological cylinder Py to a cylindrical domain [u,v] following the ap-
proach of [Mar09]. We first set u = 0 for vertices on B; and u = 1 for vertices on
Bj, then solve Au = 0. We trace an iso-v curve along Vu from the seed vertex s;, on
the boundary B; to the boundary B;. We slice P} along this iso-curve and get two
duplicated boundary paths. We finally set v = 0 and v = 1 on them respectively and
solve Av = 0 (Figure 2.21Db).
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B3

B1

(a) (b)
(c) (d)

Figure 2.19: Generation of boundary seed points. A pants patch (a) and its cicular
conformal map (b). Seed points locations in the parametric space (c¢) and in the physical
space (d).

(a) (b)

Figure 2.20: Corner points on the pants patch’s boundaries (a) and the polyedges con-
necting each pair of corner points (b).

c) On B; and Bj, we select the 2 pairs of corners that are the furthest from the seed
points s;; and sj,. We map all 4 corners to the cylindrical domain. For each pair
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of corners, we trace the straight line between them on the cylindrical domain (Figure
2.21c), then project this parametric straight line back to the patch Py and get the
resulting polyedge (Figure 2.21d).

@) )i B2
(a) <b)
i @ g\
o
| @
(©) :

Figure 2.21: Generation of polyedges between corner pairs. The topological cylinder after
removing a long branch (a) and its cylindrical parametric domain (b). Polyedges between
pairs of corners in the parametric space (c¢) and in the physical space (d).

2.2.2.4 Central Cuboid

Step 4 We now generate the remaining corners and polyedges of the central cuboid
(illustrated in Figure 2.22):

a) The 4 corners {Pi3, P14, P15, Pig} are the intersection between the cutting curve Ws
(Figure 2.22a) and the polyedges generated in the previous step using subpatches P;
and P, (Figure 2.22b).

b) Using the cylindrical parameterization of subpatch Ps, we trace polyedges between the
corner pairs { P13, P14} and {Pi5, Pig} following the method presented in the previous
step (Figure 2.22c¢).

c) The 4 corners { P13, P14, P15, Pig} are the intersection between the newly traced polyedges
and the polyedges generated in the previous step using subpatch P3 (Figure 2.22d).
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Figure 2.22: Generation of corners and polyedges of the central cuboid.

Conclusion

The objective is to generate a trivariate parameterization with respects to a given solid
model defined by its boundary mesh or boundary (possibly trimmed) spline surfaces. In
order to have a unified framework for both input types, the input is a solid model defined
by its triangulated boundary. The first step toward this objective is the generation of
an initial polycube approximating the input boundary mesh. The polycube approximates
very roughly the geometry of the model while faithfully replicating its topology. Due to
its regular structure, the polycube is suitable for serving as the parametric domain of the
tensor-product spline representation required for IGA.

The generalized polycube domain is obtained after two steps of domain decomposition
based on topology and geometry. The model is split into a set of cuboids based on solving
harmonic functions on the surface. The boundary triangle mesh is first decomposed into
a set of pants patches. Such segmentation decomposes a complicated surface into a set of
shapes that have a trivial topology: a pants patch is a genus-0 surface with 3 boundaries.
Each pants patch is then decomposed into a set of cuboids: a cuboid is a boxed region
enclosed by 6 disk-like surfaces. The novelty of the proposed method is the "geometry-
aware" pants-to-cuboids decomposition algorithm. The algorithm is completely automatic
and very robust even for low-quality and noisy meshes. In can be also integrated to
existing volume parameterization techniques (e.g. [Lil2], [Wanl3]) in order to render
them completely automatic.

The second main step toward generating a trivariate parameterization is presented in
the next chapter (Chapter 3). It consists in computing an aligned global parameterization
between the cuboids’ boundaries and the boundary of the generated generalized polycube
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Figure 2.23: Cuboid decomposition of different geometries of a pants patch (a-c). The
algorithm a very robust even for low quality (d-f) and noisy (g-i) meshes.

domain. The parameterization must be topologically conform with the polycube structure,
and geometrically must follow the geometric features of the model.
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Chapter 3

Model Parameterization

Introduction

Surface manipulation and representation is becoming increasingly important, with ap-
plications ranging from special effects for films and video-games to digital fabrication and
architectural design. Despite significant research efforts, there is still a large technological
gap between the acquisition of models and the tools used to process, edit, and render
them. Acquired objects do not possess a high level structure; they often start as a point
cloud of surface points from which a triangle mesh is derived. Conversely, the majority of
models used in CAD applications are smooth surfaces with a shape that is controlled by
a coarse grid of quadrilaterals. Depending on the application, the quadrilaterals can be
either subdivided or used as control points for defining high-order polynomial surfaces.

There is a fundamental difference between the mesh and the target spline representa-
tion. A mesh is an enumerated sampled representation of the geometry, whereas a spline
surface requires more structure. The gap between both representations is filled by con-
structing an abstract representation of the object, i.e., a parameterization. In order to pro-
duce a "geometry-meaningful" parameterization that fulfills the anisotropy, the iso-value
lines of the parameterization are guided by an anisotropy-adapted direction fields. Such
parameterizations are called aligned global parameterization. Since the parameterization
is adapted to the geometry, the iso-value lines define a natural quadrilateral control mesh
of the surface, optimum from an approximation theory point of view. Parameterization-
based quadrilateral remeshing techniques are introduced in Section 3.1.

The anisotropy-adapted direction field is represented by a cross field, i.e., a set of four
orthogonal directions at each point of the surface. A smooth cross field, topologically
conform with the polycube, is designed on the surface. This means that the cross field is
singular only at the position of irregular nodes of the polycube. Within this topologically
fixed space of cross fields, a smooth cross field interpolating principal directions and geo-
metric features of the surface is computed. The design of such cross field is presented in
Section 3.2.

The global parameterization is then found such that its gradient field matches the cross
field as much as possible. The approach of using the polycube’s structure to constrain the
cross field (and hence the parameterization) is inherently volumetric in the sense that
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the volume parameterization can be trivially computed just by interpolating the surface
parameterization of each cuboid. Constraining the parameterization by the polycube
structure may lead to large distortions or even local non-injectivities due to fold-overs.
This problem is solved by re-positioning the polycube’s nodes based on the gradient of
the aligned global parameterization’s objective functional with respect to their positions,
so as to arrive at a local optimum of global embedding quality. The computation and
optimization of such parameterization are presented in Section 3.3.

The novelty of the proposed method is the design of a cross field topologically con-
forming the polycube structure and geometrically interpolating the geometrical features
of the model by only solving two linear systems. This is done by combining two different
discretization approaches of direction fields on surfaces. Previous methods (e.g. [Ray08])
relies on computing such field using mixed-integer optimization formulations.

3.1 Quadrilateral Remeshing

The conversion of a triangle mesh into a quadrilateral mesh is a difficult problem that
has been deeply studied during the last decade. Many different approaches have been
proposed and transferred from academia to commercial modeling and CAD softwares.
However, there are still many open problems to solve to provide a fully automatic pipeline
that converts an unstructured model into a high-level representation that can be directly
used in a conventional modeling pipeline.

The creation of triangle meshes has been extensively studied in the past few decades,
and many robust algorithms are currently available in production-quality software li-
braries. Its main limitation is that it does not contain any global structure, and it is
thus difficult to edit or use as a control grid for higher-order surfaces. This is why quadri-
lateral meshes are ubiquitous in CAD and CAE applications: they naturally represent a
pair of directions and have good numerical properties for discretizing PDEs.

3.1.1 Quality Requirements

The quality of a triangular mesh is usually determined by the shape and size of the
triangles; equilateral and uniformly sized triangles are often preferred for rendering smooth
surfaces. High-quality triangular meshes also exhibit better numerical properties when
used for solving partial differential equations. For more sophisticated geometric modeling
and processing applications (like CAD and CAE), quadrilateral meshes are often preferred
over triangle meshes. However, the generation and handling of quad meshes is significantly
more difficult due to the anisotropic nature of quadrilaterals. While for high quality
triangle meshes it is usually sufficient to have a fairly regular vertex distribution, good
quadrilateral meshes have additional orientation and consistency constraints to satisfy.

A quadrilateral mesh is usually used as a control grid for a subdivision or NURBS sur-
face. Similar quality metrics could be defined for quadrilateral meshes: the quadrilaterals
elements should be as uniform and as orthogonal as possible. In addition, the quality of
the final surface is mainly affected by the distribution of singularities which are vertices
touched by more or less than four edges. These vertices are particularly important because
they are the only ones where the quadrilateral mesh is not a regular grid.
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Chapter 3. Model Parameterization

A singular vertex can have a different singularity index, depending on the number
of edges touching it. The total sum of singularity indices is a topological invariant that
depends on the genus of the surface [Ray08]. Thus, the quality of a quadrilateral mesh
depends of the number and the geometric location of the singularities. Hence, the op-
timization of quadrilateral meshes is an inherently global problem since local changes in
the mesh structure usually propagate globally across the mesh. This is not the case for
triangle meshes where mesh optimization can be performed based on local operations.

3.1.2 Parameterization-Based Techniques

Quadrilateral-remeshing techniques have a long tradition within the graphics community
and nice surveys exist [All05; Bom13b]. Early works tried to generate oriented quadri-
lateral elements by explicitly tracing lines along the principal curvature directions [All03;
Mar04], resulting in quad-dominant meshes. Most recent parameterization based tech-
niques are very successful in generating curvature oriented all-quadrilateral meshes. They
are able to automatically find adequate singularity positions, e.g. by non-linearly smooth-
ing the cross field induced by the principal curvature directions [K&l07], optimizing a
non-linear objective function [Ray06; Hua08; Zhal0], or solving a mixed-integer problem
[Bom09]. Typically these methods can generate quadrilateral meshes with a nice angle
and edge-length distribution as well as adequate singularities. However, the quality of
the induced quad mesh is often not sufficient. The major reason for this imperfection
is that mesh singularities are usually placed based on geometric considerations but oth-
erwise fairly independently from each other. An important consequence of this is that
geodesically neighboring singularities are not properly connected to form a nicely shaped
patch layout. In practice such a clean patch layout is highly desirable to support standard
operations like texturing or NURBS fitting.

Instead of using the principal curvature directions as a guiding, another class of algo-
rithms directly exploits a patch layout with specified topology to generate quadrilateral
meshes via a global parameterization. The patch layout is constructed manually [Ton06;
Bom08] or derived automatically from a Morse-Smale complex [Don06]. If all patches of
the layout are topologically equivalent to quadrilaterals then we talk about quadrilateral
patch layout (or for short quad layout). A quad layout is an embedded graph which parti-
tions the surface into a set of non-overlapping quadrilateral patches. In practice, the quad
layout of a quadrilateral mesh is desired to be coarse and simple while still appropriately
respecting the underlying geometry. In mesh processing, the quality of these patches is of
high interest to support standard operations like high-order surface fitting (e.g. NURBS).
Automatic generation of pure quadrilateral patch layouts on manifold meshes has received
a lot of interest in recent years. Powerful automatic algorithms have been developed
[Cam12; Bom13a; Raz15]. In the context of this thesis, we will use our method based on
cuboid decomposition to automatically generate the initial quad layout. The advantage
of our method is that adjacent quad layout’s patches form cuboids which adds an extra
dimension to the standard quad layout, and allows the construction of trivariate splines.

The polycube consists of nodes and arcs embedded in the surface. Locally, neighboring
nodes and arcs partition the surface into quadrilateral patches. Globally, neighboring
quadrilateral patches form hexahedral domains (i.e., cuboids). The process of decomposing
the surface into cuboids using a set of nodes and arcs is equivalent to the process of
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constructing a quad layout. The polycube completely determines the topology of the quad
layout (i.e., combinatorial structure). In addition, the polycube adds another dimension
to the quad layout because neighboring patches form cuboids. The geometric embedding
of the polycube describes the locations of its nodes and arcs as well as parameterizations of
its patches. Based on the work of Campen et al. [Cam14], the initial geometric embedding
of the polycube’s nodes and arcs is optimized. Using aligned global parameterization, the
nodes are re-positioned and the arcs are re-routed across the surface in a way to achieve
low overall patch distortion, as well as alignment to principal curvature directions and
sharp features.

3.2 N-Symmetry Direction Fields

Spline surfaces require a quadrilateral control mesh of the object. The edges of an opti-
mal quadrilateral mesh of an object should be orthogonal and aligned with the curvature
principal directions of the surface [dAz00]. This type of mesh, called anisotropy-adapted
control mesh, helps to reduce unwanted oscillations in the final spline surface. To create
such control mesh, we first compute a guidance direction field that will steer the placement
of the edges, then we generate the mesh itself. In other words, this direction field captures
the anisotropy of the surface.

Many algorithms in computer graphics and geometry processing are based on smooth
direction fields (unit tangent vector fields) defined over a surface. For instance, such a
direction field was used to place hatch strokes in non-photorealistic rendering [Her00], to
steer the orientation of features in texture synthesis [Pra00; Tur01; Dic02], or to remesh
a surface with cells aligned with the principal curvature directions [All03]. These appli-
cations use objects of higher symmetry than simple direction fields, i.e. objects invariant
by rotation of m or m/2. Such objects are called N-symmetry direction fields, where N
represent the order of symmetry. N-symmetry direction fields on surfaces are fields that
associate to every point of the surface a set of N unary vectors forming equal angles
between radially consecutive directions. For example, a 2-symmetry (line) field can be
used to guide texture placement, a 4-symmetry (cross) field can be used for quadrangu-
lar remeshing [Bom09], and a 6-symmetry field can be used for triangular and hexagonal
remeshing [Niel0].

Direction fields are different from vector fields in the way that their topology is closely
related to the topology of the surface on which they are defined. In particular, their
singularities can not be defined as zeroes (because by definition, they have unit norm),
but as holes in their definition domain. In quad remeshing, the field singularities play
an important role. For instance, a singularity will generate an irregular vertex or a non-
quadrilateral polygon. A variety of methods were proposed for N-symmetry direrction
field construction. A number of methods rely on manually placed singularities [Ray08;
Lail0; CralO] and other methods compute singularity positions automatically [Ray09;
Bom09; Kno13].

Classical direction field design is much studied [Tri00; The02; Zha06]. There are also
works on 2-symmetry direction fields (or tensor fields) design [Zha07]. However, these
methods do not provably control singularities. Ray et al. [Ray08] were the first to present
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a method for designing higher symmetry direction fields on arbitrary surfaces. They
were also the first to give a formal definition of N-symmetry direction fields and rigorous
mathematical tools that link the topology of the direction field to the indices of singularities
and hence the Poincaré-Hopf Index Theorem. This section is organized as follows:

- We introduce the notion of N-symmetry direction field, that generalizes direction fields.
We also introduce the definitions of turning number and index to characterize the singu-
larities of a N-symmetry direction field. We finally introduce an analog of the Poincaré-
Hopf theorem, implying that the indices of the singularities of a N-symmetry direction
field defined on a manifold surface sum to its Kuler characteristic.

- We introduce a discrete representation of N-symmetry direction fields for triangular
meshes. The values of the field are defined on the faces of the mesh. In addition,
we introduce the notion of connections angles or period jumps. There are one-forms
attached to the edges of the dual mesh. They represent the variations of direction
between two adjacent faces and enables representing singularities of arbitrary indices.

- We want to design a smooth 4-symmetry direction field (cross field) that is topologically
conform with the quad layout induced by the polycube. We present an algorithm for N-
symmetry direction field topological design. From a user-defined set of singularities, the
algorithm constructs a smooth N-symmetry direction field satisfying these constraints.
If the indices of the user-defined singularities satisfies the Poincaré-Hopf theorem, the
constructed field has no other singularity.

- Within the topologically fixed space of cross field topologically conform with the poly-
cube, we strive to find a smooth cross field that interpolates sparse directional con-
straints, corresponding to reliable principal directions and sharp features. We present
an algorithm for N-symmetry direction field geometrical design. From a user-defined set
of fixed directions, the algorithm constructs a smooth N-symmetry direction field satis-
fying these constraints and the given topology. We also add the use of soft constraints
which, while mostly achieving accurate alignment to constraints directions, provides
some freedom around singularities.

3.2.1 Continuous Representation

This section presents the fundamental tools for studying N-symmetry direction fields
defined over surfaces with boundaries, and especially to study their topology. Topology is
the study of properties which are invariant by continuous deformations. In other words,
topology tries to answer under what condition are two objects homeomorphic (i.e., topo-
logically equivalent). For oriented surfaces with boundaries, the answer is that they need
to have the same genus g and the same number of boundaries b. For this reason, we say
that the two integers (g, b) are surfaces’ Topological Degrees of Freedom (TDoF'). We want
to answer the same question for N-symmetry direction fields and find their TDoF.

We will see that the TDoF of N-symmetry direction field are the turning numbers of a
homology basis of cycles. Moreover, turning numbers generalize singularities which alone
do not control all of the field topology (Figure 3.1). The intuitive idea behind turning
numbers is that when following a closed cycle, a N-symmetry direction field might do an
arbitrary number of N** turns before coming back to its starting point. For instance,

o4

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LY SEI047/these.pdf
© [H. Al Akhras], [2016], INSA Lyon, tous droits réservés



3.2. N-Symmetry Direction Fields

Figure 3.1: The turning number associated to a generator cycle defines topology that
cannot be captured by singularity indices: two topologically different direction fields de-
fined on a torus having no singularities but different turning numbers around homology
generators (a-b).

imagine that we are traveling on earth along a cycle with a compass giving us the north
direction. Then using the compass, we can count the number of turns while following the
cycle. If we turn around a tree (assuming that there are no trees at earth poles), we will
get one turn. But if we follow the equator or turn around a pole, we will get zero turn. We
can do the same on any surface, and with any N-symmetry direction field defined over it.
The number of turns is called the turning number of the field along the cycle (it depends
on both the cycle and the direction field). These turning numbers capture the topology of
the N-symmetry direction field: two N-symmetry direction fields have the same topology
if and only if they have the same turning numbers along 2g + max(b — 1,0) cycles of a
homology basis (i.e., a basis for cycles on a 2-manifold). This shows that the topology of
a N-symmetry direction field is entirely defined by 2g + max(b — 1,0) integers (multiple
of 1/N), which are its TDoF.

3.2.1.1 Continuous Direction Fields

A direction field defined on a surface S is a tangent unit vector field: at each point
of the surface, there exists a direction w such that |w|| = 1 and w - n = 0, where n is
the normal of S. A N-symmetry direction field VW is a multivalued direction field: at
each point of the surface S, there exists a N-symmetry direction w which is a set of NV
directions {w1, ..., wy} preserved by rotations of 2 /N around the normal n of S (Figure
3.2). In the following, we will omit the term "N-symmetry" for brevity.

The set of derivable directions fields of a surface S is denoted by Dy (.S). Two direction
fields Wi, W, € Dy (S) are called homotopic if there exists a continuous function I' :
[0,1] = Dn(S) such that T'(0) = Wy and I'(1) = Wj. In other terms, two direction fields
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Figure 3.2: N-symmetry direction fields. A 1-symmetry direction field (i.e., unit vector
field) V on a torus: at each point of the surface S, there exists one direction v (a). A 4-
symmetry direction field (i.e, cross field) C on a cube: at each point of the surface S, there
exists one 4-symmetry direction ¢ which is a set of 4 directions {ci, c2,c3, ¢4} invariant
by a rotation of 7/2 around the normal (b).

are homotopic (i.e., have the same topology) if they can be continuously transformed one
into another. As this is a relation of equivalence, homotopy classes can be defined as the
sets of all direction fields equivalent to a given one. Homotopy classes of direction fields
can be characterized by the turning numbers of the field along some cycles.

3.2.1.2 Turning Numbers

The turning numbers of a direction field along a cycle corresponds to the number of
rotations of the field along this cycle, and are characteristic of homotopy classes of direction

fields, hence of their topology. The turning number Tyy () of a direction field W around
a cycle v can be expressed as [Ray08]:

Tw() = 55 § o = ), (31)

where ryy is the geodesic curvature of the direction field WV around the cycle v, and &~ is

the geodesic curvature of the tangent vector of the cycle . The turning number is always

an integer multiple of 1/N, and corresponds intuitively to the number of N th turns the
direction field W does in the Darboux frame along ~.

Turning numbers have two fundamental properties which make them useful for studying
direction field topology:

- Let S be a surface (2-manifold with boundary 95) embedded in R? with genus g and b
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Saddle (-1) Tripod (-1/2) Thorn (+1/2) Focus (+1) Apple (+3/2)

Figure 3.3: The index of singularity I of a vector field V at a point p is the number of
counter-clockwise rotations that the vectors make as we travel counter-clockwise along a
loop around p.

boundaries, then [Ray08]:
Ty(05) = x(S), (3.2)

where x(S) = 2 —2g — b is the Euler characteristic of S.

- Two direction fields W; and W, defined over a surface S are homotopic if and only
if they have the same turning numbers along the cycles of an homology basis H of S
[Ray08]:

WL =Wy & Vy € H(S), Tw (7) = T, (7), (33)

where = denotes the homotopic equivalence.

3.2.1.3 Singularities

For a vector field V defined on a surface S, a singularity is a point p € S such that
V(p) = 0. Singularities can be of various types, according to how the vector field winds
around the singularity. This property is referred to as index in vector field topology [Tri02]
(Figure 3.3). On a surface S, The Poincaré-Hopf Index Theorem states that the indices of
all singularities sum to its Euler characteristic. Direction fields are different from vector
fields in the way that their singularities can not be defined as zeroes (because by definition,
they have unit norm), but as holes in their definition domain.

For direction fields, the concept of replacing singularities with holes allows singularities
to be handled as borders. This way the singularity is characterized by the behevior of the
direction field along the boundary of the hole. The other advantage of this concept is
that borders have indices, which correspond to the index of the singularity obtained if
we contract the border to a single point. Hence, the turning numbers of cycles around
singular points characterize the singularities in the direction field. For a direction field
W, let p be a singular point and dp the border of a disk covering p. The index L (p)
of the singular point p is related to the turning number Ty around the cycle dp by the
following equation [Ray08]:

Iw(p) = 1+ Tw(9p). (34)
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Chapter 3. Model Parameterization

With this definition for the index of singular points in a direction field, the Poincaré-
Hopf theorem can be generalized to N-symmetry direction fields defined on a surface S
[Ray08]:

S 1= \(9), (35)
=1

where s is the number of singular point p; with index I;, and x(.5) is the Euler characteristic
of the surface S.

3.2.2 Discrete Representation

With this understanding of continuous direction fields topology, we introduce the notion
of connection angles and period jumps and use them to build a discrete field representation.
We work with a triangulated connected 2-manifold mesh M with a set of vertices V', edges
FE and faces F'. Its dual mesh M* has a set of vertices V*, edges £* and faces F*. The
dual mesh doesn’t have to be explicitly constructed since dual quantities can be stored
on the corresponding primal elements. M is also oriented: each face f € F has coherent
normal, and each edge e € E has an orientation. This allows to define a unique orientation
for each dual edge e* € E*.

3.2.2.1 Discrete Direction Fields

The first step of the discretization of a direction field W on a mesh M is the choice of
tangent planes. Storing directions at vertices V' requires the definition of tangent planes in
terms of extrinsic geometry. Storing directions at faces F' is more natural because tangent
planes can be defined intrinsically. Hence, in the context on this thesis, direction fields
will be represented at faces F' of the mesh M, or equivalently at vertices V* of the dual
mesh M*.

The direction field is then sampled by defining one direction on each face. This is done
by choosing a local orthonormal frame (x,y) on each face f. x is the unit vector along one
of the oriented edges e of f, and y = n x x with n being the normal of f. The direction
w defined on f can then be expressed in terms of polar coordinates. Since w has unit
norm, it is completely parameterized by the polar angle « it forms with x (Figure 3.4a).
Angles in adjacent faces can be represented in a common coordinate frame by flattening
both faces along their common edge. Given an angle ! in face f;, it can be expressed in
an adjacent face f; as:

Oéz = O[i: — 51']' + (5]'7; = O[i: + Kij with Kij = —(51']' + (5]'1' = —Kji, (36)

where 6;; and d;; are the angles between the shared edge e and the reference direction x;
and x; respectively, and k;; € | — 7, 7] represents the angle between reference directions
x; and x; (Figure 3.4b).

3.2.2.2 Connection Angles and Period Jumps

However by representing the direction field only at a set of points, its topology cannot
be accessed. In particular, there is no information about the behavior of the direction
field between the discretization points. Assume that we want to interpolate a direction w
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3.2. N-Symmetry Direction Fields

Figure 3.4: N-symmetry direction fields representation. A 4-symmetry direction w on a
face f is a set of directions {w1, ws, w3, ws} defined as the image of a reference direction
x by rotations of a+ k(7w /2),k € {0,1,2,3} (a). Angles in adjacent faces f; and f; can be
expressed in a common coordinate frame using the rotation angle x;; between reference
directions x; and x; (b).

along an edge [AB] knowing w4 and wp. If the direction field is continuous, the angular
variation w along [AB] verifies:

wap = /A Y do = L(warwp) + (2n/N)pas, (3.7)

where Z(wa,wp) € | — m, 7] is the angle between w4 and wpg, and p € Z is an integer.
The angular variation w has infinitely many possible values for all the possible values of p
(Figure 3.5a). This ambiguity can be solved by (Figure 3.5b):

- specifying one direction at A or B and the real w. w € R is called the connection angle
and it specifies the amount of rotation the direction undergoes when passing from A to
B. We will refer to this method, developed by Crane et al. [Cral0], as the connection

based discretization. In this case, an angle a! defined on face f;, expressed as o in an
adjacent face f;, is in general equal to ag-:
Jo_ i - . Jj_ 3
o = o + Kij + wij and o = ;. (3.8)

Hence a direction angle on one face and connection angles on all dual edges are required
to completely define the discrete direction field.

- specifying the directions at A and B and the integer p. p € Z is called the period jump
[Li06] and it specifies the number of N** turns the direction w undergoes when passing
from A to B. We will refer to this method, developed by Ray et al. [Ray08], as the
period jump based discretization. In this case, an angle oz?deﬁned on face f;, expressed

as o in an adjacent face fj, is in general different than a;:

ol = al+ ki + (21/N)pi; and of # ol (3.9)

Hence direction angles on all faces and period jumps on all dual edges are required to
completely define the discrete direction field.
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Figure 3.5: N-symmetry direction fields discretization. Between two directions given at
points A and B, different interpolations are possible (a). This ambiguity can be solved
by specifying an angle on one face and a real w. w is called the connection angle and it
specifies the amount of rotation a direction undergoes when traversing a dual edge. This
ambiguity can be also solved by specifying angles on both faces and an integer p. p is
called the period jump and it specifies the number of N** turns a direction undergoes
when traversing a dual edge (b).

For the sake of simplicity, the angle a! defined on face f; will be simply denoted by
«;. In the context of this thesis, we use both discretization methods. Connection based
discretization (3.8) is used for topological design. This is done by finding the proper
connection angles on dual edges satisfying the topological constraints. Period jump based
discretization (3.9) is used for geometrical design. This is done by fixing period jumps
on all dual edges and then fitting direction angles on primal faces to the geometrical
constraints.

3.2.3 Topological and Geometrical Design

In order to obtain a guiding field for the aligned global parameterization, we design a
4-symmetry direction field (i.e., cross field) C on the surface. Direction field design is the
generation of a smooth direction field from a set of constraints. These constraints can be
topological (i.e., imposed singularities) and/or geometrical (i.e., imposed directions). We
strike for a balance between three important properties of direction fields : smoothness,
singularity positions/indices, and alignment with local geometry. Topologically, C must
be conform with the quad layout £ induced by the polycube. This means that C must
be singular only at the position of irregular nodes of £. Geometrically, C must follow the
principal directions and sharp features of the surface.

The basic idea of our designing mechanism is to find the right values of direction angles
and connections angles/period jumps over the whole triangular mesh that correspond to
the desired direction field topology and geometry. The design procedure consists of the
following two steps:

- Topologic step: for a genus-g surface with b boundaries, the topology of the direction
field is entirely defined by its turning numbers along 2g homology generator cycles,
max(b—1,0) boundary cycles, and s cycles around singularities. We need to fix all these
TDoF in order to restrict to direction fields topologically compatible with the quad
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3.2. N-Symmetry Direction Fields

layout induced by the polycube. We obtain the correct values of connection angles, and
hence the topology of the direction field is fixed.

- Geometric step: within the topologically fixed space of direction fields, we want to find
a smooth direction field interpolating sparse directional constraints and sharp features.
This way, the direction field can be made adapted to the anisotropy of the triangular
mesh. After computing the fixed values of period jumps accommodating the given set of
directional constraints, we obtain the direction angles such that the so-created direction
field has the smoothest geometry.

3.2.3.1 Smoothness Energy

A common requirement on direction fields is smoothness. For a mesh M, the curvature
of a direction field xyy along a dual edge e* is the angle difference between neighboring
faces represented in a common coordinate frame [Ray08|:

rwles;) = wij = aj — i + ki + (27 /N)pis) (3.10)

where € is the dual edge oriented from face f; to face fj, wi; € R is the connection angle,

a; € R and a; € R are direction angles in faces f; and f; respectively, k;; € | —m, 7] is
the angle between local frames, and p;; € Z is the period jump along the dual edge €];.

The smoothness energy of a direction field E5(W) can be measured as its integrated
squared curvature xkyy [Ray08]:

2
E,(W) = Z HKVW(eij)H (3.11)
eijE*
= >l (3.12)
e;-*JEE*
= > i+ i+ (27/N)pij — o (3.13)
ej].eE*

Topological design is based on the minimization of energy (3.12), and geometrical
design is based on the minimization of energy (3.13).

3.2.3.2 Topological Design

The problem solved by the algorithm can be formalized as follows: given a triangulated
surface S of genus g, and a subset of vertices Vs = v; € V with desired non-zero indices I;
respectively (such that > I; = 2 — 2g), the algorithm generates a direction field such that
the index of v; is equal to I; and that provably does not contain any other singularity.

On a smooth surface S, a connection §2 describes how a direction rotates locally when
moved an infinitesimal distance along a given direction. Once this local information is
provided, by integrating these infinitesimal rotations along a curve, a direction can be
mapped between distinct tangent planes. This process is called parallel transport. For a
mesh M, a connection can be represented as an angle w on each dual edge e*. This angle
represents the integrated rotation that a direction undergoes when passing from one face
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Figure 3.6: Discrete connections. Transport using Levi-Civita connection can be described
as follows: unfold the faces isometrically into the plane, translate the vector across the
shared dual edge, and then fold the faces back into their initial configuration (a). In
general, a vector parallel transported around a loop ! will not end up where it started.
The angle between the initial direction w and the transported direction w’ is called the
holonomy . Every connection has an associated curvature K. If [ bounds a region then
the curvature K over this region equals the holonomy § around the loop (b).

to its neighbor. Once a connection (2 is defined, there is a straightforward way to construct
a direction field YW on the mesh M. Namely, starting with an arbitrary face and an initial
direction, this direction is transported to adjacent faces until the entire mesh is covered.

The simplest connection is obtained by setting connection angles to zero on all dual
edges: this is the Levi-Civita connection (Figure 3.6a). In general for a curved surface
S, a direction parallel transported around a loop [ by a connection will not return to
its original orientation. The difference in angle between the initial and final directions is
called the holonomy § of the connection around the loop I. Every connection has also an
associated curvature K. In particular if the loop [ bounds a region of the surface S, then
the curvature K of the connection over this region equals its holonomy 0 around the loop
[ (Figure 3.6b).

A cycle v is a sequence of primal faces that form a loop (Figure 3.7a). This loop is
defined as the sequence of dual edges orthogonal to primal edges shared by adjacent faces
of 7y after unfolding the cycle isometrically to the plane (Figure 3.7b). From this definition,
the discrete geodesic curvature s at a face equals the signed angle between corresponding
primal edges (Figure 3.7c). In this case, the holonomy ¢, of the Levi-Civita connection
around the cycle v can be defined as [Myl12]:

6y ==Y kyl€") = 0y = —ky, (3.14)
e*cy

where k. is the total discrete geodesic curvature of the cycle .

Because of holonomy, depending on which connection is used, the direction field might
not be consistently defined. A direction field is considered to be consistent only if directions
are mapped to themselves modulo 27 /N by parallel transport. For instance, the holonomy
of the Levi-Civita connection equals the Gaussian curvature, so in general a direction
transported around a closed loop is not mapped back to itself. As a consequence, transport

62

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LY SEI047/these.pdf
© [H. Al Akhras], [2016], INSA Lyon, tous droits réservés



3.2. N-Symmetry Direction Fields

(a) (b) ()

Figure 3.7: Cycles holonomy. A cycle « is a sequence of primal faces (a). By unfolding
~ isometrically to a plane, a loop [ is defined as the sequence of dual edges orthogonal
to primal edges shared by adjacent faces of v (b). Within a face, [ turns an angle ,
computed as the oriented angle between corresponding adjacent primal edges (c).

from one point to another will depend on the choice of path. Crane et al. [Cral0] showed
that transport via trivial connections, i.e., connections with globally vanishing holonomy, is
path-independent. However zero holonomy everywhere implies zero curvature everywhere.
According to the Gauss-Bonnet theorem, the total Gaussian curvature of a surface is equal
to 27wy, where x is the Euler characteristic of the surface. To overcome this problem, the
total curvature is distributed over the mesh in a way that doesn’t interfere with parallel
transport. In particular, curvature will be concentrated at boundaries and/or at a set
of vertices called singularities in increment of 27 /N. In this case, for a given cycle v, a
direction might do an arbitrary number of N** turns before coming back to its starting
point. This quantity is called the turning number.

The turning number T, of the direction field WV along the cycle v [Ray08]:

27T, = Z rw(e®) — Z Ky (€%), (3.15)

e*ey e*ey

where kyy is the curvature of the direction field W, and &, is the geodesic curvature of
the cycle v.

By substituting the curvature %)y of a direction field along a dual edge by its connection
angle w (3.10), and the total geodesic curvature k- of a cycle by its holonomy 0, (3.14), the
turning number T, (3.15) of the direction field W along the cycle v can also be expressed
as:

21Ty = Y w(e*) + 6y = > w(e) = —0, + 2nT,. (3.16)
e*ey e*Ey
In terms of connections, this states that the trivial connection angles around a given cycle
should cancel the holonomy found with Levi-Civita, and potentially add a certain amount
of curvature in order to respect the Gauss-Bonnet theorem.

The topology of a direction field is entirely defined by the turning numbers of the direc-
tion field along 2¢g homology generator cycles, max(b— 1,0) boundary cycles, and s cycles
around singularities [Ray08]. We need to fix all topological degrees of freedom in order
to restrict to cross fields topologically compatible with the quad layout £. The turning
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Figure 3.8: N-symmetry direction fields topological design. The TORSO model along
with its quad layout £ obtained from polycube decomposition. The quad layout singular
nodes are depicted by circles (a). The cross field C obtained by setting the initial direction
angle to a random value. The cross field singular vertices (depicted by circles) are conform
with the quad layout £ singular nodes (b). The directional constraints on boundary faces
corresponding to the direction of boundary edges (c). The cross field obtained by setting
the initial direction angle to the mean value of all directional constraint angles expressed in
a common face. Locally, the cross field directions don’t respect the directional constraints
on each face (d).

numbers around singularities, homology generators and boundary cycles are determined
using the method described by Campen et al. [Cam14]|. For an irregular node its turn-
ing number is determined from its valence m as —0.25m. For a homology generator or
boundary cycle, the turning number needs to be fixed to +0.25 (n,, — n,), where n, is the
number of arcs crossed by the cycle and n,, the number of nodes in the closest homotopic
arc cycle.

Crane et al. [Cral0] presented an algorithm that, given the above turning numbers, de-
termines the appropriate trivial connection by minimizing energy E(W) (3.12). Finally,
we still need to define one direction to construct the direction field. To obtain this direc-
tion, all directional constraints are transported from their respective faces to a common
face fo. The initial direction angle «y is defined to be the mean of all directional constraint
angles expressed in fy (Figure 3.8).
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3.2.3.3 Geometrical Design

Within this topologically fixed space, we now strive to find a smooth direction field that
interpolates sparse directional constraints, corresponding to reliable principal directions,
feature curves directions, or user specified intents. In other terms, given a mesh M and
a subset of faces F'¢ C F with constrained directions af, we search for the smoothest
interpolating direction field W restricted to a given topology.

In the general case (W’s topology is free), as presented by Bommes et al. [Bom09],
the smoothest interpolating direction field W is computed by finding integer valued period
jumps p on dual edges and real valued direction angles « on faces minimizing the direction
field smoothness energy Fg(W) (3.13) subject to directional constraints a“ on the set of
faces F°. In our case, the direction field WV is restricted to a given topology so the integer
valued period jumps p are fixed, and the real valued angles « are the only variables in the
constrained optimization problem. For the mesh M, let |E| be the number of its edges
and |F'| the number of its faces. Then the energy E (W) can be expressed as:

EW)= > |la; + kij + 21 /N)pij — o> = |[Aa — b, (3.17)

ez‘jEE*

where A € RIEXIFI b e RIEI and a € RIFI is the vector of unknowns corresponding
to direction angles on faces. For the k** dual edge e;; oriented from face f; to face fj,
A(k,i) =1, A(k,j) = —1, and b(k) = — [k;j + (27/N)p;;]. The constrained minimization
problem can then be formulated as follows:

min ||[Aa — b||? subject to oy = of , Vf; € F°. (3.18)
acRIF|

For a given face f¢ € F¢, it is not inherently clear by which of W’s N directions the
directional constraint is to be interpolated. This choice has an important effect on the
fixed values of the period jumps. Assume that for a given face f;, the direction angle is
given by «;, and the period jumps are given by p;o, p;1 and pso. If the angle «; is rotated
by a multiple of 27r/N around the normal (i.e., &; = o; + k- 2n/N), in order to preserve
the direction field topology, this change must be compensated by updating the affected
period jumps (i.e, p;j = pij — k, j =0,1,2). Using a modified version of the technique for
reducing the search space [Bom09], we proceed as follows to compute the fixed values of
period jumps accommodating the given set of directional constraints (Figure 3.9):

1. We construct a forest of Dijkstra trees of the dual mesh, where each constrained
face in F is the root of a separate tree such that no tree connects constrained faces
[Bom09].

2. In each constrained face f;, we normalize the direction angle a; and the constraint
angle af to | —m/N;m/N]. This choice is justified by the fact that a direction field is
invariant by rotations of 27r/N around the normal. We then find the integer k € Z
minimizing the absolute difference | o; + k- 2r/N — «f |. Finally, the interpolating
direction in face f{ is set to be &; = a; + k- 27/N.
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() (d)

Figure 3.9: N-symmetry direction fields directional constraints interpolation. We are
searching for the smoothest cross field with no singularities and interpolating 4 directional
constraints (a). The cross field satisfying topological constraints and constructed using
the mean value of the directional constraints. The primary directions are indicated by an
arrow on each face, and the period jumps are indicated by a value on each edge (b). The
reconstructed cross field starting at constrained faces and following the forest of Dijkstra
trees (c). The cross field satisfying topological and geometrical constraints (d).

3. Starting at constrained faces f¢ with interpolating directions &, we reconstruct the
direction field using the connection angles and following the forest of Dijkstra trees.
We note that at this point, the direction field is unchanged : it was only discretized
differently so its period jumps could agree with the directional constraints.

4. The fixed period jumps p are defined to be the integers minimizing the direction
field curvature kyy (3.10) on each dual edge.

The geometrical direction field is the solution of a symmetric linear system obtained
by setting the gradient of the energy Ey (3.18) to zero (Figure 3.10):

aE(;—g/V) =0=A'A-a=A. (3.19)
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Figure 3.10: N-symmetry direction fields geometrical design. The topological cross field
doesn’t satisfy all directional constraints on boundary faces corresponding to boundary
edges (a-b). The geometrical cross field satisfies all directional constraints while preserving
the same topology (c-d).

Hard constraints can be difficult to handle because in some cases additional singularities
should arise to exactly satisfy all the constraints. To prevent undesired singularities and
have some freedom around imposed singularities, the constrained minimization problem
(3.18) can be modified to integrate soft directional constraints:

mi‘r}wl(l — )N JAa —b|* + X |la — &||* subject to a; = af , Vf; € F°, (3.20)
acR
where & € R is the set of soft constraints on faces, and the parameter \ € [0, 1] is used

to control the trade off between smoothness and fitting. A value of A = 0.75 proved to
perform very well in practice, and has been used in all the examples.

3.3 Aligned Global Parameterization

Once the guidance direction field is computed, we now study how to generate a coordi-
nate system of the object (i.e., global parameterization), aligned with the direction field.
Every mesh M can be cut to a topological disk M., by removing a set of seam edges from
the mesh. In this case, a global parameterization (Figure 3.11) is a piecewise linear map
from the mesh M, € R3 to a topological disk domain D € R?. Since the parameterization
should be piecewise linear, it is sufficient to assign a (u,v) parameter value to each face
corner of the mesh. The parameterization should be locally oriented according to the
guiding field. This implies that the gradients Vu and Vv of the piecewise linear scalar
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fields v and v should follow the cross field directions u® and v¢ on each face. The function
u and v are found by minimizing the following energy functional:

E, = / [I1V — hue|? + | Vo — hve|?] ds, (3.21)
S

where h is a scale factor that sets the correspondence between the length scale of the
parametric domain and the surface. For a mesh M, the discrete version of this energy
functional is:
By =Y [IVu—hutl* + Vo — hve|’] Ay, (3.22)
fer

where A; is the area of the face f.

The most popular and actively researched class of quadrilateral-remeshing techniques is
the family of parameterization based quad meshing methods. They all strive to generate
an integer-grid map [Bom13a], i.e. a parameterization of the input surface into R? such
that the canonical grid of integer isolines forms a quad mesh when mapped back onto
the surface in R?. Parameterization based quad meshing methods can roughly be divided
into those that employ some form of harmonic parameterization [Don06; Ton06; Hua08;
Zhal0] and those that generate parameterizations which minimize some alignment energy,
e.g. to achieve curvature and/or feature alignment [Ray06; Kal07; Bom09; Myl10; Myl13].
Given an input mesh M = (V, E,T), an integer-grid map I' is the union of linear maps
I'; : R?* — R? that map each triangle (p;, q;, ;) € R3*3 of M to a triangle (u;, v;, w;) €
R2*3 in the plane. Moreover, it satisfies three constraints:

- The transition functions g;; mapping the chart of triangle f; to the chart of the adjacent
triangle f; have to be grid automorphisms [K&l07], i.e. be of the form

8ij (a) = Rggja + tij, (3.23)

where Rgg is a rotation by 7/2, p;; € Z is the matching, and t;; € 72 is an integer
translation.

- Singular points have to be mapped to integer coordinates, i.e.
['(s;) € Z2, ¥s; € S, (3.24)
where S is the set of singular points in M.
- The image of each triangle has to have a positive area:

det(v; —u;, w; —u;) > 0. (3.25)

3.3.1 Seamless Parameterization

We are interested in global parameterizations where the transition functions across
seems are not arbitrary but of a very restricted class: rigid transformations with a rotation
angle of some multiple of /2. In addition for quadrangulation, it is necessary that the
transitional part of the transitions are integral (3.23). In this case, we talk about integral
seamless parameterization. We follow the method of Bommes et al. [Bom09] to compute
such parameterization:
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Figure 3.11: Global parameterization. A triangulated mesh (a) and its parameterization
(b). The intersection between the Cartesian Grid and the parameterization (c) is inversely
mapped onto the mesh in order to obtain a quadrilateral mesh (d).

- A cut is a connected graph G of mesh edges, such that M \ G is topologically equivalent
to a disk D € R%. The appropriate cut graph is computed in two steps. First we start
from a random face and grow a topological disk by constructing a spanning tree of the
dual mesh. Thus the primal of all non spanning tree edges is already a cut graph G which
transforms M into a topological disk D. The size of this cut graph can be significantly
reduced by iteratively removing all open paths. In the second step, paths connecting
the cross field singularities to the cut graph are added.

- The cross-field is made consistent: the angles representing the field are changed so that
the period jumps across all non-cut edges are equal to zero. It is possible to achieve this
since the cut passes through all singularities. As the period jumps are all equal to zero
at non-cut edges, if we arbitrarily label one of the directions of the field on a face f as
u’, the label can be consistently propagated to all other faces. The /2 rotated vectors
of the cross-field are labeled v¢. The vectors u® and v¢ are the target values for the
gradients of the parametric coordinates Vu and Vv in the face f.

- The parameterization is computed as a solution to the constrained minimization problem
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Chapter 3. Model Parameterization

Figure 3.12: The input quad layout induced by the polycube (a). The intermediate
state of tracing iso-parameter curves from the quad layout nodes in an unconstrained
parameterization to obtain the base complex (b). The base complex of a parameterization
with node connection constraints; now the base complex is structurally equivalent to the
input quad layout (c).

of the energy E, (3.22):

min 3" [[|Vu — bl + |Vo — hve|?] Ay, (3.26)
(uv) fef

where Ay is the area of the face f, and h is a scale factor that sets the correspondence
between the length scale of the parametric domain and the surface.

The constraints imposed on (u, v) correspond to transitions across seams. We want the
match across seams to be the same as for the guiding cross-field: if the u® direction across
a seam is transformed to a v¢ direction, then the parametric directions are transformed in
the same way. More precisely, if two faces f; and f; share a cut edge e;;, with parametric
positions of endpoint corners p} and pj on one side of the cut, and p{ and p% on the other
side, these are related by:

pl = RbIp! + t. and p} = R ph + to, (3:27)

where Ry is a rotation by 7/2, p;; is the period jump of the cross-field along the edge e;;,
and t. is an unknown translation. The constraints (3.27) are then incorporated as linear
constraints into parameterization problem (3.26) using elimination of variables.

3.3.2 Arcs Embedding Optimization

A parameterization of this kind induces a base complex, which can be extracted by
tracing iso-parametric curves (i.e., separatrices) from the nodes. With iso-parametric we
mean that either the u or v parameter is constant among the curve when taking transitions
into account. We now further constrain the parameterization problem (3.26) using node
connection constraints, derived from the structure of the layout, to accomplish that this
induced base complex is structurally equivalent to the quad layout £. This ultimately
allows us to derive an embedding for the quad layout £ from the global parameterization.

We have to ensure for each arc of the quad layout £ that the two incident nodes (n;
and ny) lie on a common iso-parametric curve. In other words, we want to change the
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3.3. Aligned Global Parameterization

parameterization so that a parametric line starting at n; passes through ns. If a mesh
can be parametrized without seams, the requirement of nodes alignment easily translates
into a constraint on parameterization: both nodes should be on the same parametric line,
i.e., share the same u or v value. For parameterizations with cuts, the situation is more
complicated. A parametric line on the surface undergoes a jump to a different point
and direction in the parametric space when it crosses a cut. While the rotation is entirely
determined by the cross field to which the parameterization is aligned, the positional jump
depends on the parameterization itself. The resulting constraint will depend not only on
the pair of nodes (nj, ny), but also on the variable translational parts t. at the cut edges
we cross. In the general case, consider a path crossing cut edges e;, i = 0, ..., m between
nodes n; and ng. Assuming the final direction of the path is A\(u,v) € {u,v}, and that
p1(u1,v1) and pa(uz,ve) are the parametric positions of n; and ny respectively, then the
complete constraint has the form [Myl10]:

m m—1 /m—i—1
[(HRmz>p1 + Z ( H ij>tei +tem = | P2 ) (328)
=0 =0 7=0 /\(u,v) )\(u,v)
for either A(u,v) = uw or A(u,v) = v, where this subscript means taking the u or v

coordinate.

3.3.3 Nodes Embedding Optimization

While the described constrained parameterization procedure optimizes the embedding
of arcs and patches, the nodes remain fixed due to the very nature of the setup. This not
only restrains the achievable quality, it further gives rise to large distortions or even local
non-injectivities due to fold-overs. After computing a global parameterization, the quad
layout’s nodes are re-positioned based on the gradient of the parameterization’s objective
functional with respect to their positions. This is done iteratively until a local optimum of
global embedding quality is reached. Campen et al. [Cam14] described a method to per-
form this re-positioning using an easy-to-implement estimator of the objective functional’s
true gradient.They advocated a strategy to move the nodes so as to arrive at a solution
with lower residual. Thus, while taking care of the distortion problems, this strategy si-
multaneously optimizes the nodes’ embedding, basically by exploiting the information the
distortion provides.

Technically speaking, we are going to optimize (3.26) not only w.r.t. the parameters u
and v (thus the arcs’ and patches’ embedding) but also w.r.t. the geometric positions of
quad layout’s nodes on the mesh M. We tackle this non-linear problem using a strategy
which optimizes (3.26) A) with respect to u and v (with fixed nodes) and B) with respect
to the node positions (with fixed u and v) in an alternating manner. In this way the
large problem A (O(] M |) variables) can still be solved as a simple linear problem as
described in the previous section. The smaller non-linear problem B (O(| £ |) variables),
is addressed using a gradient descent strategy. In order to locally move a node n in such
a way that the residual of the energy E, (3.21) decreases, we need to move this node in a
gradient descent manner in direction

d(n) = - (aangE(ng,nn), (;;E(ng,nn)> , (3.29)
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Chapter 3. Model Parameterization

Figure 3.13: The physical embedding of a vertex (a), its isometric map (b), and its geodesic
polar map (c).

where (£, 1) are 2D coordinates in some local coordinate chart of the mesh M around the
node n and (ng,n,) expresses the current position of node n accordingly. Note the E
depends on n¢ and n, because nodes are embedded in vertices (i.e., node positions are
vertex positions).

The gradient (3.29) of energy (3.21) depends on n¢ and n, in multiple ways: they
appear directly in the discrete gradient operator V and in Ay, but indirectly also in the
cross field (i.e., in u® and v¢), as well as in the parameterization (u,v). If we neglect these
indirect dependencies, i.e., consider E where u® and v¢ as well as (u,v) are fixed, we can
analytically derive:

T
0 - 0 0A;
—F = Z (Vﬂi) (Vtu )At + — H Vtu — uf ||2
8n§ teT(n)[ 0 ng on, ng
) ’ 9A
+2 (V{U) (V{U Vt) A + 7'5 H Viv — Vt ”2] (3.30)
8n5
T
0 - 0 0A
aiE = <8Vtu> (Vtu llt)At —|- t H Vt — ut H2
" teT (n) "
) ’ 9A
+2 (Vﬂ)) (Vv —v§) Ay + = || Viv — v§ H2] . (3.31)
ony, ony,
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3.3. Aligned Global Parameterization

Note that the sum is only over triangles T'(n) incident to node n, as all other terms vanish
due to independence from n¢ and n,. The corresponding approximate gradient d(n) can
thus be very efficiently evaluated based on only the 1-ring neighborhood.

In order to compute the gradient descent vector d for a node curretly embedded in
vertex a, we first need to obtain a local 2D coordiante system of a’s 1-ring. To this end we
employ the commonly used geodesic polar map [Wel94], effectively flattening the 1-ring to
the plane while preserving radial lengths (I;) and relative angles by uniformly scaling the
inner angles ¢; incident to a such that they sum to 27; origin and axes in the plane can
be chosen arbitrarily (Figure 3.13).

Let (ag, ay), (be,by) and (cg, ¢;) denote the 2D coordinates of a triangle t’s vertices in
this system, and (ay, ay), (by, by) and (cy, ¢,y) their current (u, v) parameters. uf and v§ are
the first and second cross field vectors in ¢ (expressed in the 2D system). The per triangle
gradient (a%éEAt, %E})T at center vertex a in triangle ¢ can then be computed based
on well-known expressions for triangle area A and triangle gradient V. The expressions
related to the triangle’s area A are given by:

1

A= B [ag (by — ¢n) + be (¢ — ay) + ce (ay — by)], (3.32)
0 1 0 1
87%14_5@"76’7)’07%%1_5(57%)' (3.33)

The expressions related to the triangle’s gradient V are given by:

H, = ay (b, — ¢y, ce — bg)T + by (¢ — ay, ae — 05)T + cu (an — by, be — ag)T, (3.34)

H, = ay (by — ¢, cc = be)" + by (e — ay,ag = ce) " + ¢y (an — by, bg —ag)", (3.35)

1

Vu = iHu ; Vo= ﬂHv, (3.36)
(;;Vu = i (0,by — cu)’ — Q;HU&ZA, (3.37)
8(277Vu i (cy — by, O)T — 2;2Huacf7A’ (3.38)
;%vq) - i (0,by — )T — zipH”&zfx’ (3.39)
@zan = i (cy — by, O)T — 2;12Hv8a87,14’ (3.40)

The final gradient descent vector a(a) is then computed by summation over the triangles
T'(a) incident to a:

—FE)T. (3.41)
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Chapter 3. Model Parameterization

Conclusion

Aligned global parameterizations adapt the parameterization to the geometry of the
surface by fitting the parameterization gradient to a smooth cross field interpolating prin-
cipal directions and geometric features of the surface. Interestingly, each of the required
properties for a good parameterization (uniformity, orthogonality and singularities) can
be redefined in terms of desired properties of the cross field. Thus the task is shifted from
the definition of a good parameterization to the definition of a good cross field on the
surface.

The anisotropy-adapted direction field is represented by a cross field, i.e., a set of four or-
thogonal directions at each point of the surface interpolating principal curvature directions
and geometrical features (e.g. boundaries, sharp features). The cross field’s orthogonal
property will ensure that the iso-parametric structure is as orthogonal as possible. In
addition, the quality of the quadrilateral mesh is mainly affected by the distribution of
singularities. To this end, the structure of the generated polycube in the previous chapter
(Chapter 2) will be used. Topologically, the guiding cross field is conform with the poly-
cube’s structure. In other words, the cross field is singular only at the position of irregular
nodes of the polycube. The novelty of the proposed method is the design of a cross field
satisfying both topological and geometrical constraints by only solving two linear systems.

The parameterization is found by a constrained global minimization of an energy func-
tional using functions of the actual parameters u and v (coordinates in the parametric
space) of the surface. The parameterization should be locally oriented according to the
guiding direction field. This implies that the gradients Vu and Vv of the piecewise linear
scalar fields v and v should follow the cross field directions u¢ and v¢. A scale factor that
sets the correspondence between the length scale of the parametric domain and the sur-
face is integrated in the energy functional. This factor will ensure that the quadrilateral
elements are as uniform as possible. The parameterization is constrained by the polycube
structure. While the described constrained parameterization optimizes the embedding of
the polycube’s arcs and patches, its nodes remain fixed. This may give rise to large distor-
tions or even local non-injectivities due to fold-overs. A practical solution to this problem
is to re-position the polycube’s nodes based on the gradient of the parameterization’s ob-
jective functional with respect to their positions, so as to arrive at a local optimum of
global embedding quality.

The approach of using the polycube’s structure to constrain the parameterization is
inherently volumetric. The polycube decomposes the solid model into hexahedral do-
mains, i.e., cuboids. By computing an aligned global surface parameterization between
the cuboids’ boundaries and the polycube’s boundary, the volume parameterization can
be trivially computed just by gridding the interior of each cuboid.

Extraction of spline surfaces and volumes from the computed aligned global param-
eterization is presented in the next chapter (Chapter 4). Using the quadrilateral mesh
extracted from the optimized aligned global parameterization, a structured point grid is
generated and used to fit the boundary spline surfaces. The spline volume is then obtained
using the reconstructed spline surfaces as boundary conditions.

74

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LY SEI047/these.pdf
© [H. Al Akhras], [2016], INSA Lyon, tous droits réservés



Chapter 4

Applications

Introduction

As it is pointed by Cottrell et al. [Cot09], one of the most significant challenges towards
IGA is constructing analysis-suitable parameterizations from models given in boundary
representations. In the context of this thesis, a potential solution to this problem is
obtained by the following strategy. The input is the model’s boundary triangle mesh. This
triangle mesh is approximated by a polycube (Chapter 2). Due to its regular structure, the
polycube serves as the parametric domain required for tensor-product trivariate splines
fitting. The parameterization between the boundary triangle mesh and the boundary of the
polycube is computed using global parameterization aligned to a cross field. The cross field
is topologically conform with the polycube structure, and geometrically interpolates the
model’s geometric features (Chapter 3). The approach of using the polycube’s structure
to compute a parameterization is inherently volumetric. Spline surfaces and volumes
construction is presented in Section 4.1.

Moreover isogeometric representation reduces the number of parameters needed to de-
scribe the geometry, which is of particular interest for shape optimization and analysis.
In addition, it can be applied to reduced order modeling for parametric studies based on
geometrical parameters. For models with the same topology but different geometries, this
method allows to have the same isotopological representation required for ROM construc-
tion (in order to avoid a projection step). An application is presented in Section 4.2.

4.1 Analysis-Suitable Trivariate Models

Using the quadrilateral mesh extracted from the optimized aligned global parameteri-
zation, a structured grid of points is generated on each patch, and then used to fit the
boundary B-Spline surfaces. For each cuboid, the B-Spline solid is obtained using the
reconstructed B-Spline surfaces as boundary conditions. Keeping the boundary control
points fixed, the interior control points of the B-Spline solid are computed using Coons’
interpolation. The positions of the interior control points are then adjusted by minimizing
a Laplacien based energy.
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Chapter 4. Applications

4.1.1 Spline Surfaces Reconstruction

Physical Space

/ Initial boundary \
triangle mesh

/3
\Topologicalcube/

{aping 1+

Parametric Space

Structured point grih
in the parametric space

Physical Space

ﬁtructured point grih
in the physical space

Inverse

Mapping

Unit cube in the
\parametric domain/

]
\ NURBSsrfacs /

Figure 4.1: B-Spline Surfaces reconstruction.

Let S(u,v) be a B-Spline surface. A structured point grid is extracted from the param-
eterization on each cuboid, and then used to reconstruct the boundary B-Spline surfaces.
For each cuboid, six compatible B-Spline boundary surfaces with optional G1 smoothness
constraint are reconstructed as follows:

6

. i §retching i, l_)ending i perror
nin ;:1 [)‘1 1 + Ay - B + A3 B ] ; (4.1)
subject to C1 - X =0, C5-Y =0, C3-Z =0, (4.2)

. sretching Lot 2 L2

with E; = 1Siull® + 1Siv]]”) du - dv, (4.3)
d Ebending o bl S. 2 2118 2 S. 2 du - d 4.4
and tu; o Jo 1S uull” + 2/ Si,ull” + [|Siw0ll U - av, (4.4)

where X, Y, Z are the vectors of the coordinates of the surface control points, and E;""
is the deviation from the fitted B-spline surface to the boundary triangle mesh, calculated
by the method presented by Ma et al. [Ma95]. A larger A} and A} will make the surface
smoother and suppress mesh folding, and a larger A} will reduce the fitting error. The
constraints (4.2) represent simplified G1 linear constraints presented by Shi et al. [Shi04]
that ensure G1 continuity across both the shared edges and corners. In the context of this
thesis, the software Rhinoceros [Rhia] was used for B-Spline surfaces fitting.
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4.1. Analysis-Suitable Trivariate Models

Figure 4.1 illustrates the method for B-Spline surfaces reconstruction. The input
is a boundary triangle mesh topologically equivalent to a cube. Using aligned global
parameterization, a parametric mapping between the boundary triangle mesh and the
boundary of the unit cube in the parametric domain is built. A regular and structured
points grid on the parametric cube is generated, and then mapped to the original boundary
triangle mesh using barycentric coordinates. The structured points grid in the physical
space is used to reconstruct 6 compatible B-Spline surfaces.

4.1.2 Spline Volumes Reconstruction

Figure 4.2: B-Spline solid reconstruction of a 3-torus: exploded view with some cuboids
removed to show the interior parameterization.

For each cuboid, the B-Spline solid is obtained using the reconstructed B-Spline surfaces
as boundary conditions. Keeping the boundary control points fixed, the interior control
points of the B-Spline solid are computed using Coons’ interpolation. The inputs are six
valid and compatible B-Spline boundary surfaces, Si(u,v), Sa(u,v), Ss(u,w), Si(u,w),
Ss(v,w), and Sg(v,w). Let ¥ =1 —wu, Y§ =1—v, Y§ =1 —w} = u, Y] = v, P’ = w,
then the Coons solid V (u, v, w) is defined as follows [Wan14]:

V(u,v,w) = 1y S1(u,v) + 7 Sa(u, v) + 15 Ss(u, w) + 17 Ss(u, w) + g Ss(v, w)
+101S6 (v, w) — [hgpg’S1(u, 0) + P75 S1(u, 1) + gy’ Sa(u, 0) + ¢ihi" Sz (u, 1)
+516 51(0,v) + iy S1(1,v) + P pi"S2(0, v) + iy’ Sa (1, v) + ¢g1pS3(0, w)

4.5
FY1PeS3(1, w) + Yo Sa(0, w) + i1 Sa (1, w)] + [¢hgvebg S1(0,0) 9
+P1gg S1(1,0) + Pai s S1(0,1) + i S1(1, 1) + ¥gep i’ S2(0,0)
TP S2(1, 0) + Y1y’ S2(0, 1) + ¢y 9y Sa (1, 1)].
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Chapter 4. Applications

This Coons volume is then used to generate the initial internal control points of the
B-spline solid. We uniformly distribute the parameters u, v, w and evaluate the equation
(4.5) to obtain a set of inner points of the Coon’s volume T, (%, o %), i=1,...,n—1,
j=1....m—-1,k=1,...,1—1.

We then adjust the positions of the interior control points by minimizing the Laplacian
based energy given by:

Eijr) = > wx-lIpije —pall; (4.6)
AeNi,j,k

where p; ; ;. is an internal control point, IV; ; 1 is the set of indices of control points adjacent
to p;jk, and wy is a weight. In our implementation we simply use the uniform weight
wy = 1/6. We move the grid points iteratively and we stop when changes of all nodes are
smaller than a given threshold.

4.1.3 Trivariate Models Examples

The software Rhinoceros 5 [Rhia] is used for visualisation, and RhinoCommon [Rhib]
for NURBS manipulations. In addition, for solving the various sparse linear systems, the
SuperLU [Dem99], SuiteSparseQR [Dav08], CHOLMOD [Che08], and CoMISo [Bom12b]
solvers are used. Figures 4.3-4.4 demonstrate the method for models with high genus,
Figure 4.5 for models with sharp features, and Figures 4.6-4.7 for models with boundaries.

The "Tetra" and "Block" models are courtesy of the AIM@ShapeProject. We thank

Aline Brunon (LaMCoS) for her help in providing the "Bust" model, and Daniel Silva
Soto (University of Sheffield) for his help in providing the "Aortic Cross" model.
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4.1. Analysis-Suitable Trivariate Models

Figure 4.3: Tetra model: input boundary triangle mesh (a); initial pants decomposition
(b); initial (c) and optimized (h) cuboid decomposition; initial (d) and optimized (g) poly-
cube embedding; initial (e) and optimized (f) aligned global parameterization; extracted
structured point grid (i); reconstructed B-Spline boundary surfaces (j); reconstructed B-
Spline solid (k). Reconstructed B-Spline boundary surfaces using local harmonic param-
eterization: notice the tangential discontinuity of the isoparametric lines across different
patches (1).
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4.1. Analysis-Suitable Trivariate Models

Figure 4.5: Plate model: boundary triangle mesh (a); initial (b) and optimized (e) poly-
cube embedding; initial (¢) and optimized (d) aligned global parameterization; extracted
quad mesh (f); B-Spline boundary surfaces (g); B-Spline solid (h).
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Chapter 4. Applications

4.2 Statistical Shape Analysis

Statistical shape analysis is an analysis of the geometrical properties of some set of
shapes by statistical methods. It has applications in various fields including medical
imaging. For instance, it could be used to quantify differences between normal and patho-
logical vessel, bone or organ shapes. Important aspects of shape analysis are to obtain
a measure of distance between shapes, to estimate mean shapes from (possible random)
samples, to estimate shape variability within samples, to perform clustering and to test
for differences between shapes [Zie94; Dry98]. One of the main methods used is principal
component analysis. Such techniques require the creation of a proper isotopological shape
model for all members of the population. An isogeometric representation over all shapes
can be a useful tool. This technique is going to be illustrated on a database of abdominal
aortas that present an aneurysm.

4.2.1 Abdominal Aortic Aneurysm

The aorta is the main blood vessel that supplies blood to the abdomen, pelvis, and
legs. Abdominal Aortic Aneurysm (AAA) is a localized dilatation of abdominal aorta
that exceeds standard diameter length by more than 50%. It is the most prevalent type
of aortic aneurysm.

Femoral artefy

Figure 4.8: The aorta is the largest artery in the body. An abdominal aortic aneurysm is
a ballooning of that large artery in the abdomen. From [Med16].

EndoVascular Aneurysm Repair (EVAR) is a type of endovascular surgery used to treat
pathology of the aorta, most commonly an AAA. The procedure involves the placement of
an expandable stent graft within the aorta to treat aortic disease avoiding open surgery.
Performing statistical shape analysis on a population of pathological aortas can have many
advantages:

- It allows to define a metric on the human variability. Hence for each new patient, the
closest patient in the existing database can be identified. This allows the clinician to get
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4.2. Statistical Shape Analysis

information corresponding to the closest patient: stent dimensions, eventual problems
which occurred during or after the intervention, etc.

- It gives access to the population variability and can be used to make sure that the set
of existing stents covers all the potential patients (useful for stent design and manufac-
turing).

- It allows to generate "virtual patients". For instance, virtual patients which are on the
limits of the population variability can be generated in order to train surgeons.
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Figure 4.9: Algorithm overview. The input triangulated boundary surface homeomorphic
to a pants patch (a). The polycube generated from cuboid decomposition (b). The embed-
ding of the quad layout induced by the polycube (c). The cross field topologically conform
with the quad layout, and geometrically aligned with the surface principal directions and
boundaries (d). The global parameterization aligned with the cross field (e). The control
quad mesh extracted from the global aligned parameterization (f).
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Chapter 4. Applications

4.2.2 TIsotopological Representations

The input data is a database of 90 aortas’ meshes. These surface triangle meshes are
obtained from preliminary analysis of preoperative CT scans (using the software Endo-
Size, Therenva). This analysis is conducted by the vascular surgery department of the
CHU (Centre Hospitalier Universitaire, Rennes, France) and the LTSI (INSERM U1099,
Université de Rennes 1, France) as part of a research protocol on EVAR interventions.
The study protocol was approved by the CHU’s ethics committee and patient consents
were obtained before including their anonymous data into the database.

Each input triangle mesh is homeomorphic to a pants patch. Using the cuboid decompo-
sition algorithm, a polycube approximating the input mesh is generated. The quad layout
induced by the polycube decomposes the input mesh locally into quadrilateral patches
and globally into hexahedral domains. A global parameterization aligned with a cross
field is then computed. The cross field is topologically conform with the quad layout, and
geometrically aligned with the surface principal directions and boundaries. The parame-
terization is optimized until a local optimum of global embedding quality of the polycube
is reached. The control quadrilateral mesh is finally extracted from the optimized global
aligned parameterization. Figure 4.9 illustrates the complete algorithm, and Figure 4.10
illustrates the aligned global parameterization during the course of the optimization of the
polycube’s embedding.

e/
7]
1121

(b)

Figure 4.10: The evolution of the aligned global parameterization after 0 (a), 5 (b), 10
(c), and 15 (d) iterations. In the beginning severe distortions and inversions are present
which successively vanish in the course of the optimization.

For the subsequent principal component analysis using singular value decomposition,
all aortas must have the same representation (in order to avoid a projection step), i.e.,
meshes with the same number of nodes and connectivity. This can be implicitly achieved
by mapping all the input meshes to the same canonical domain. In addition since each
decomposition is optimized to fit the given input geometry, not only the output meshes
will have the same topology, but they have the optimal geometry representing each shape.
Figure 4.11 illustrates the morphing between two aortas with different morphologies, and
Figure 4.12 illustrates isotopological meshes for different patients.
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4.2. Statistical Shape Analysis

Figure 4.11: Morphing between two aortas with different morphologies.

Figure 4.12: Isotopological meshes for aortas with different morphologies.
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Chapter 4. Applications

4.2.3 Singular Value Decomposition

Consider a set of m shapes x; (j = 1,...,m), each of them consists of a set of n points
pi (i =1,...,n), where each shape is represented as:
T
Xj = |: r1T Yir 21 - Ty Yn Zn i| 5 (47)

where (z;,9;, 2;) are the coordinates of a point p; of the shape x;. In our case, the set
of aortas composes the set of shapes and each aorta is represented by the set of points of
its mesh (Figure 4.13). All aortas are represented by isotopological meshes. Hence each
mesh can be considered as a snapshot and the snapshots matrix is given by:

U:[Xl xm]. (4.8)

R3n

Figure 4.13: Each shape is a vector in R3”. The goal is to find a new subspace B with
better coordinate system which reflects the distribution of the data. In such basis, few
coordinates suffice to represent a high dimensional vector.

The goal is to project the data onto a low-dimensional linear subspace that best ex-
plains their variation. This subspace can be found using principal component analysis.
The SVD factorization of U can be written as:

l
U=9U2d" = 039,¢f with | = min(n,m), (4.9)
k=1
T
where ¥ € R™ ™ contains left-singular vectors v, = [ Vi1 o Yin } , & € RMxm
T
contains right-singular vectors ¢; = { bi1 o Dim } ,and ¥ € R™*™ contains positive

singular values oy, in decreasing amplitude (Figure 4.14).
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Figure 4.14: The amplitude of the singular values decreases with respect to the modes.

An existing snapshot x; (j = 1,...,m) can be written as a linear combination of left
singular vectors v amplified by the singular values ¢ and the values of right singular
vectors ¢ (Figure 4.15):

! I
Xj = Y oxbptrg = Y ¥y, with o, = gy, - d 5. (4.10)

k=1 k=1

The left singular vectors @ are called modes, and the value ai represents the coefficient of
the snapshot x; with respect to the mode ;.. These modes capture the principal variations
of the population and the weight of each mode is given by its associated singular value.
The first modes capture global characteristics of the population. For instance, the first
mode represents a scaling (Figures 4.16a-c) and the second mode contains mainly the
orientation (Figures 4.16d-f) over the population of aortas. For higher modes, local effects
are more present (Figures 4.16g-1). The mean shape x,, is given by:

l m

1 .
= UL ith o}t = — J. 4.11
Xm kzz:lak 1, with af mjz::lozk ( )

Ps

Figure 4.15: Each snapshot can be written as a linear combination of modes. The first
mode is homogeneous to a shape and the other modes are homogeneous to a variation.
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Chapter 4. Applications

(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

Figure 4.16: Three configurations are depicted corresponding to the minimum (a,d,g),
mean (b,e,f) and maximum (c,f,i) coefficients of the represented mode. Between the con-
figurations corresponding to the minimum and maximum coefficients, the nodes which
move the most are depicted in red and the ones which move the less are depicted in blue.
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4.2. Statistical Shape Analysis

Taking into account only the r < k first modes allows to define a low rank approximation
of x; denoted by x;:

.
Xj= > . (4.12)
k=1

The approximation basis of rank r will be called the truncated basis of dimension r. The
low rank approximation snapshot matrix U of U is:

U=> opof. (4.13)
k=1

The relative error between the snapshots matrix U and its SVD approximation U of rank
r is given by:

(4.14)

This relative error with respect to the rank of the SVD approximation is depicted in
Figure 4.17. For instance, if the truncated basis is of dimension 20, then the relative error
¢ is about 4.95%.

1,00E+00
1,00E-01
1,00E-02

1,00E-03

Relative Error

1,00E-04

Number of Modes

Figure 4.17: Residual square sum of singular values with respect to the number of modes.

A snapshot xj; can be projected into the truncated basis and its coefficient ai with
respect to the mode 1), can be computed as:

ol =x; -1y (4.15)

Figures 4.18-4.19 represent, for two snapshots, a comparison between the exact and pro-
jected shapes using a truncated basis of different dimensions. The dimension of the trun-
cated basis, and hence the number of modes, have a direct effect on the precision of the
projection. The choice of the number of modes depends on the desired application, and is
beyond the scope of this thesis.
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Chapter 4. Applications

(h) (i)

Figure 4.18: The exact (a,d,g) and the projected shapes using 10 (c¢), 20 (f) and 30 (i)
modes. The mean projection error is around 2.3 mm (b), 1.1 mm (e) and 0.6 mm (h).
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Figure 4.19: The exact (a,d,g) and the projected shapes using 10 (c), 20 (f) and 30 (i)
modes. The mean projection error is around 3.6 mm (b), 1.9 mm (e) and 0.7 mm (h).
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Chapter 4. Applications

Conclusion

The efficiency and the robustness of the proposed approach were illustrated by several
examples from the mechanical and medical domains. It has been successfully applied to
high-genus models with boundaries and sharp features. For models with the same topology
but different geometries, this method allows to have the same representation: meshes (or
parameterizations) with the same topology. This is very useful in the context of reduced
order modeling in order to avoid a potential projection step.
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Conclusion

In this thesis, an effective method to automatically construct isogeometric analysis-
suitable trivariate models of complicated geometry and arbitrary topology. The input is
a solid model defined by its boundary triangle mesh. One of the most crucial problems of
the conversion process is the generation of a volume parameterization.

A parameterization is a mapping from an object embedded in R3 to a parametric do-
main. The canonical domain must have the same topology as the model but simplified
geometrical features. By using polycubes as parametric domains, the problem of finding
a volume parameterization of a solid model is simplified to a problem of finding a sur-
face parameterization between the model’s boundary and the polycube’s boundary. The
surface parameterization can be trivially turned into a volume parameterization using
interpolation on each cube.

The first step toward a trivariate parameterization is the polycube generation. A poly-
cube is a set of cubes consistently glued together. It can be used to approximate very
roughly the geometry of an object while faithfully replicating its topology. Due to its
highly regular structure, the polycube can be used as the parametric domain required for
tensor-product trivariate spline fitting.

The boundary triangle mesh is decomposed into a set of pants patches. Such segmen-
tation decomposes a complicated surface into a set of shapes that have a trivial topology.
A pants patch is a genus-0 surface with 3 boundaries. The Euler characteristic y for
surfaces of most topological types are negative integers. For a pants patch y = —1, and
therefore pants decomposition provides a canonical decomposition scheme for these sur-
faces. Each pants patch is further decomposed into a set of cuboids. A cuboid is a boxed
region enclosed by 6 disk-like patches.

The polycube consists of nodes and arcs embedded in the surface. Locally, neighboring
nodes and arcs partition the surface into quadrilateral patches, and globally neighboring
quadrilateral patches form hexahedral domains (i.e., cuboids).

The second step toward a trivariate parameterization is the computation of a surface
parameterization between the model’s boundary and the polycube’s boundary. A recent
trend are aligned global parameterizations which adapt the parameterization to the geom-
etry of the surface by fitting its gradient to a smooth direction field interpolating reliable
principal curvature directions and geometric features. Interestingly the required proper-
ties for a good parameterization (such as uniformity, orthogonality and singularities) can
be redefined in terms of desired properties of the field.
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Conclusion

The anisotropy-adapted direction field is represented by a cross field, i.e., a set of four
orthogonal directions at each point of the surface. A balance between three important
properties of direction fields is desired: smoothness, singularity positions/indices, and
alignment with geometrical features. A smooth cross field, topologically conform with the
polycube structure, is designed on the surface. This means that the cross field is singular
only at the position of irregular nodes of the polycube. Within this topologically fixed
space of cross fields, a smooth cross field interpolating principal curvature directions and
geometric features of the surface is computed.

The global parameterization is then found such that its gradient field matches the
cross field directions as much as possible by solving a constrained global minimization
problem. The parameterization is constrained by the polycube structure. While the
described constrained parameterization optimizes the embedding of the polycube’s arcs
and patches, its nodes remain fixed. This may give rise to large distortions or even local
non-injectivities due to fold-overs. A practical solution to this problem is to re-position
the polycube’s nodes based on the gradient of the parameterization’s objective functional
with respect to their positions, so as to arrive at a local optimum of global embedding
quality.

Using the quadrilateral mesh extracted from the optimized aligned global parameteri-
zation, a structured grid of points is generated on each patch, and then used to fit the
boundary spline surfaces. For each cuboid, the volume parameterization is obtained using
the reconstructed spline surfaces as boundary conditions. Keeping the boundary control
points fixed, the interior control points of the spline solid are computed using Coons’ in-
terpolation. The positions of the interior control points are then adjusted by minimizing
a Laplacien based energy.

The efficiency and the robustness of the proposed approach were illustrated by several
examples from the mechanical and medical domains. It has been successfully applied to
high-genus models with boundaries and sharp features. For different geometrical instances
of the same topological model, this method allows to have the same representation. This
is very useful in the context of reduced order modeling to address the issue of having
isotopological solutions and avoid potential projection steps.

Limitations and Perspectives

A given surface admits infinitely many pants decompositions. Figures 4.20a-c illustrates
different pants decomposition for a genus-2 model. In general, not all pants decomposition
results are suitable for the following cuboid decomposition algorithm. For instance, it is
the case of the pants decomposition illustrated in Figure 4.20c. As already mentioned,
the proposed pants-to-cuboids algorithm is very robust and still going to generate the
corresponding cuboid decomposition even for very distorted pants patches (Figure 4.20d).
However, the extracted volume parameterization is greatly affected by the quality of the
initial pants decomposition and might contain very distorted elements (Figures 4.20e-f).
In practice satisfying results were obtained if the pants decomposition is guided by the
different geometric criteria (shortest length, symmetry, minima rule).
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Conclusion

Figure 4.20: Different pants decompositions of a 2-torus (a-c). The cuboid decomposition
(d) corresponding to the most distorted pants decomposition (c), along with its surface
(e) and volume (f) parameterizations. The volume parameterization is greatly affected by
the quality of the initial pants decomposition.

Pants patches can be geometrically assimilated to three branches meeting together.
Typically, but not exhaustive, examples of models having such configuration are illustrated
in Figures 4.21a-c. The proposed cuboid decomposition algorithm generates only T-shaped
configurations (Figure 4.21a). However other configurations might be more optimal in
some cases in order to capture the geometrical features of the model. For instance in
the case of the plate model, Figures 4.21d-g illustrates two cuboids decompositions using
different configurations and its impact on the generated quadrilateral control mesh. In
order to select the most suitable configuration in a general way, a potential solution is to
extract the skeleton of the model and select the cuboids’ configuration in a skeleton-aware
manner.
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Conclusion

(f)

Figure 4.21: Different possible cuboids’ configurations for a given pants patch (a-c). The
cuboids decomposition for the plate model (d) using the first configuration (a) and the
extracted quadrilateral mesh (e). The cuboids decomposition for the plate model (f) using
the second configuration (b) and the extracted quadrilateral mesh (g). The quality of
the generated quadrilateral control mesh is greatly affected by the choice of the cuboids’
configuration.
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