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ABSTRACT

The research work presented in this thesis was conducted at the Contact and Structural
Mechanics Laboratory (LaMCoS) of INSA Lyon (UMR CNRS 5259) in partnership with Airbus
Helicopters.

Noise measurements have shown that helicopters main gearboxes highly contribute to
the overall cabin noise. Gear mesh vibrations propagate through the shafts to the rolling
element bearings and the casing which becomes a source of radiated noise. The latter is
characterized by high-amplitude tones emerging from broadband noise whose frequencies lie
in the range of maximum human ear sensitivity.

In the context of continuous improvement in the acoustic comfort of helicopter
passengers, it is therefore necessary to analyse and optimize gearbox vibrations in order to
reduce casing noise radiations. The research work presented in this memoir is focused on the
development of a numerical model dedicated to the prediction of gear system dynamic
behaviour, comprising several gear stages and different types of gears. This model relies on
classic beam and lumped parameter elements along with specific two-node gear elements for
both cylindrical (spur, helical) and spiral-bevel gears. The equations of motion are developed
based on time-varying functions representative of mesh excitations which comprise: (a) mesh
stiffness functions, (b) quasi-static transmission error under load, and (c) kinematic (or no-
load) transmission error.

A number of comparisons with benchmark numerical and experimental results from the
literature are presented which demonstrate that the proposed approach is sound as far as
single-stage systems with spur, helical or spiral-bevel gears are considered. Validations are
then extended to double-stage gears and, here again, it is confirmed that the proposed
transmission error based formulation is accurate and can account for tooth shape
modifications.

In the second part of the memoir, several examples of application are presented and
commented upon. First, the combined influence of tooth pitch errors and load on the dynamic
behaviour of gear transmissions is tackled. An extended three-dimensional model and a
reduced torsional version are then confronted in order to investigate the dependency between
dynamic transmission errors and mesh force / root stress dynamic factors. Further
investigations on bearing dynamic response in two-stage spur gear systems are conducted and
the particular contributions of profile modifications are analysed. Finally, a system combining
a cylindrical gear and a spiral-bevel gear is considered and particular attention is paid to the
dynamic couplings between the various meshes and their influence on bearing dynamic
responses.
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RESUME

Les travaux de recherche présentés dans ce manuscrit ont été conduits au sein du
Laboratoire de Mécanique des Contacts et des Structures (LaMCoS) de 'INSA de Lyon (UMR
CNRS 5259) en partenariat avec Airbus Helicopters.

Des mesures ont montré que la boite de transmission principale contribue fortement au
bruit percu en cabine. Les vibrations induites par les engrenements se propagent a travers les
arbres jusqu’aux roulements, générant ainsi des efforts dynamiques aux roulements. Ceux-ci
sont une source d’excitation pour le carter, lequel devient a son tour une source de bruit
rayonné. Ce phénomene se caractérise par des raies émergeant fortement du bruit large bande
et dont les fréquences se situent dans la plage de sensibilité maximale de I'oreille humaine.

Dans un contexte d’amélioration permanente du confort acoustique des usagers, il est
donc nécessaire d’analyser et d’optimiser le comportement vibratoire des boites afin de
réduire le niveau de bruit rayonné par le carter. Les travaux de recherche présentés dans ce
manuscrit se concentrent sur le développement d'un modele numérique permettant de prédire
le comportement dynamique de transmissions composées de plusieurs étages d’engrenages
de types divers. Ce modele combine des éléments classiques de type poutre, des éléments a
parametres concentrés et des éléments a deux nceuds dédiés a la représentation d’engrenages
cylindriques et spiro-coniques. En supposant les corps des engrenages rigides, les équations
du mouvement sont écrites sur la base de fonctions du temps, lesquelles sont représentatives
des excitations générées par l'engrénement. Ces fonctions, définies en conditions quasi-
statiques sont : (a) la raideur d’engrénement, (b) I'erreur de transmission quasi-statique (sous
charge) et (c) 'erreur de transmission cinématique (a vide).

Apres que les fondements mathématiques de la formulation proposée aient été détaillés,
plusieurs éléments de validation sont présentés afin de confirmer sa pertinence. Différents
résultats numériques et expérimentaux de la littérature sont utilisés a des fins de comparaison.
Il est ainsi démontré que le modéle s’applique aux systemes a simple étage de réduction, par
engrenage cylindrique ou spiro-conique, et que les excitations liées a I'engrenement, ainsi que
les phénomenes de flexion d’arbres sont correctement représentés. La validation est ensuite
étendue aux systemes a deux étages de réduction et les résultats confirment que la formulation
basée sur les erreurs de transmission permet de tenir compte des corrections de profil.

Finalement, le modele est utilisé pour diverses applications. Premierement, 1'influence
des erreurs de pas sur le comportement dynamique de transmissions par engrenages est
discutée, ainsi que 'influence combinée du niveau de chargement appliqué. Dans un second
temps, une confrontation est réalisée entre un systéme tridimensionnel et un systeme réduit
torsionnel afin d’étudier la possible existence d’une relation linéaire entre l'erreur de
transmission dynamique et différents coefficients dynamiques (portant sur I'effort a la denture
ou la flexion en pied de dent). Le contenu spectral de la réponse au niveau des roulements est
ensuite étudié pour des systemes a deux engrenements cylindriques et I'influence d"une part
des corrections de profil et d’autre part du déphasage entre les engrénements est discutée.
Enfin, une application est réalisée sur un systeme comprenant un engrenage cylindrique
combiné a un engrenage spiro-conique. Les phénomenes de couplage entre les étages
successifs sont mis en évidence ainsi que la contribution des deux engrénements au contenu
spectral de la réponse aux roulements.
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NOMENCLATURE

ai
By
be
Sy
A

@(t,X)

[C]
Cm, Cr

Apparent pressure angle
Base helix angle

Initial shape deviation
Normal displacement

Tooth deflection

Variable depending on the sense of rotation and helix orientation of the pinion

Variable depending on the sense of rotation of the pinion
Torsional angular perturbation

Percentage of modal strain energy stored in the gear mesh
Bending stress

Dimensionless time variable

Time-varying, possibly non-linear scalar function
Rigid-body angular velocity

Global damping matrix

Motor and resistive torques

Dynamic stress factor

Dynamic mesh force factor

Vector of the nominal input and output torques
Inter-mesh force wrench

Static normal mesh force

Tooth force

Centroid of mesh force distribution

Transverse and polar moments of inertia

Global stiffness matrix (excluding gears)

Global stiffness matrix incl. average mesh stiffness
Gear stiffness matrix

Time-varying, possibly non-linear mesh stiffness
Time-averaged mesh stiffness

Distance to base radius

Normalized tooth bending moment
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My Maximum static bending moment

[M] Global mass matrix

M;] Gear mass matrix

n Unit outward-pointing normal vector
NLTE No-load transmission error

01, Center of pinion, gear

q Pinion and gear DOFs vector

R, Base radius

T Mesh period

TE Transmission error under load

u,v,w, 0,9,y Degrees-of-freedom associated to any node

Vg Gear structural vector

V¢ v; extended to total number of DOFs
w Projection vector for transmission error
X Global DOF vector

Xy Static solution with averaged mesh stiffness
X, Solution of the auxiliary problem
Subscripts

d Dynamic

1 Relative to the pinion

2 Relative to the gear

S Static

Superscripts

A A First and second time-derivatives of A
-1 Matrix inverse

0-p Half of peak-to-peak value

(L) Relative to mesh (L)

rms Root-mean-square value

T Matrix transpose
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GENERAL INTRODUCTION

Helicopters are known to be particularly noisy with cabin noise levels above 90 dB hardly
endurable without appropriate ear protections. Customer satisfaction can naturally be
significantly impacted by noise quality and environmental noise directives are issued to
regulate noise exposure. Helicopter noise reduction is therefore a serious concern for
designers. On-board noise measurements highlight the prominent contributions of main
gearboxes which generate high-amplitude peaks in cabin noise spectra, exceeding broadband
noise by up to 30 dB and located in the frequency range of maximum human ear sensitivity
(between 1000 Hz and 5000 Hz).

The present work was conducted in partnership between the Contact and Structural
Mechanics Laboratory (LaMCoS) of INSA Lyon and Airbus Helicopters and focuses on the
development of a numerical model aimed at predicting gearbox vibrations. Helicopter power
transmissions range from 300 kW for light helicopters to 2500 kW for heavy models and
provide very large speed reductions between the engine(s) (rotational speeds up to 23000 rpm)
and the main rotor (rotational speed around 300 rpm). The main gearbox is therefore
composed of multiple gear stages of different types. Spur and helical gears are used to transmit
low or medium torque between parallel shafts whereas spiral-bevel gears are required to
transfer rotation to the main rotor shaft. A planetary gear with rotating carrier (epicyclic gear)
generally ensures a large final speed reduction to the helicopter blades. At high speeds, gears
become a significant source of vibrations propagating through the supporting elements of the
transmission (shafts and bearings) to the housing which is a source of radiated structure-borne
noise. The definition of gearboxes at the early design stage appears therefore as a compromise
between contradictory constraints, i.e., vibration and noise reduction versus mass reduction
which remains a major objective in aeronautical applications

The first two chapters of this memoir are devoted to providing the reader with sufficient
information for a full understanding of the following sections. Chapter I presents the
excitation sources associated with gears along with the relevant parameters in gear dynamics
and proposes a state of the art of the existing gear dynamic models. Chapter II describes the
numerical model developed for the prediction of gear transmissions dynamic behaviour. It
relies on a transmission-error based formulation of mesh excitations which is adaptable to both
cylindrical (spur / helical) and spiral-bevel gears. The theory is first introduced on a simplified
one-degree-of-freedom system and then extended to three-dimensional multi-stage gear
systems.

The validation of the proposed formulation is addressed in Chapter III. Single-stage
systems with cylindrical and spiral-bevel gears are analysed and simulation results are
compared with various numerical and experimental findings from the literature. The
applicability of the formulation to double-stage systems is then assessed based on benchmark
results from the literature on gear dynamics. A number of comparisons with other modelling
strategies are presented which confirm the validity of the proposed methodology for ideal
gears and also gears with tooth profile modifications.

In Chapter IV, the model is applied to the specific analysis of the combined influence of
pitch errors and load on the dynamic response of a single-stage gear system. The link between
dynamic transmission errors and dynamic tooth loads is then investigated by using two

21

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LY SEI133/these.pdf
© [N. Sainte-Marie], [2016], INSA Lyon, tous droits réservés



different models: a) a full three-dimensional approach including the pinion, gear, shafts,
bearings and couplings, and b) a simplified torsional model restricted to the pinion and gear
only. Another example of application concerns the dynamic response of bearings in double-
stage spur gear systems. The influence of the relative phase shift on the dynamic response of
the idler gear system is also evaluated. Finally, a system combining a cylindrical and a spiral-
bevel gear, as is the case in helicopter transmissions, is studied. The couplings between the
various meshes are clearly illustrated and the role of the shaft connecting the two gears is
highlighted.
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Chapter I
Gear dynamics -
State of the art
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Chapter ]

This first chapter proposes a state of art of gear dynamics.

The first section will provide an overview of the process of vibrations by gear transmissions
and their consequences will be presented through a few examples. The issue of gear noise in
helicopters will be discussed.

The second section will focus on the different types of excitations generated at the mesh.
These excitations will be presented in two categories and we will show how the contributions
of each one of them can be accounted for in gear modelling.

The concepts of transmission error and dynamic factor will then be introduced as key
parameters for gear dynamic studies. Their definition is crucial for the understanding of
the work presented in the following chapters of this thesis.

A review of the literature will be proposed in a final section. The different types of existing
dynamic models will be exposed and an attempt is made to classify these models into distinct
categories in order to facilitate the reading. Models for cylindrical and bevel gears will be
treated separately before presenting the existing models of multi-stage systems.

In conclusion, the strateqy adopted for gear noise modelling will be detailed and the
objectives of this PhD work will be highlighted.
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Gear dynamics - State of the art

1 THE GEAR NOISE ISSUE IN HELICOPTERS

Geared transmissions are widely used in industry because of their high efficiency and low
power-to-weight ratio. Gears have the capacity to transmit high loads and operate at high
speeds thus making them interesting in aeronautics, naval or automotive applications.
However, high rotational speeds can generate dynamic phenomena which may have severe
consequences not only for the gears and but also the surrounding mechanical elements.

When operating at high rotational speeds, gears become a significant source of vibrations
which are transferred to the rest of the transmission system via the supporting elements
(shafts, bearings, housing). Such vibrations are detrimental for the gears themselves as they
can cause dynamic overloads between the mating teeth possibly leading to contact failures
such as pitting and tooth breakage.

The other direct consequence of gear vibrations is the noise, main issue considered in this
research work. Gear noise manifests itself in two different ways: a) under light loads,
momentary contact losses can occur between gear teeth, leading to vibro-impacts and so-called
rattle noise very common in automotive transmissions [1] and, b) tonal sound known as
whining noise at larger loads. The latter is typically the kind of noise produced by helicopters
main gearboxes, which transmit power up to several megawatts.

The supporting elements of the transmission (shafts and bearings) ensure structure-borne
propagation of the vibrations from the gears to the housing which becomes a source of
radiated noise [2]. In most cases, airborne propagation of housing radiations are considered as
the predominant source of noise. Moreover, vibrations propagate through the gearbox
suspension to the structure, inducing sound radiation of the structure itself. This structure-
borne noise highly contributes to helicopter global cabin noise, because of the MGB location
and suspension system. In some cases, it is considered to represent at least 40% of the global
MGB noise propagated to the cabin.
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Figure I-1 : Measured cabin noise spectrum (advanced flight phase), acc. to Roulois [3]
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The study of noise spectra recorded inside helicopter cabins allowed to identify the main
contributors to cabin noise [3-5]. A typical cabin noise spectrum is shown in Figure I-1. The
main rotor generates high-level noise (above 100 dB) at low frequency (around 20 Hz).
Aerodynamic effects manifest themselves as broadband noise whose level decreases with
increasing frequencies. The engines are characterized by noise at high frequency (around
10 kHz). This noise emerges significantly from broadband noise but is not the most annoying
because of its elevated frequency. The MGB however, generates several level rays which
emerge from the broadband noise from up to 30 dB and lie in a range of human ear maximum
sensitivity (between 1 and 5 kHz). For these reasons, MGB is considered as one of the main
preponderant source of noise inside the cabin of a helicopter.

The main rotor speed in a helicopter is relatively low (200-400 rpm) compared with that
of engines (up to 23 000 rpm) and several gear stages are needed to reduce speed accordingly.
The main gearbox architecture depends on helicopter characteristics (power needed, engines
speeds and locations, rotor speed, etc.) and Figure I-2 shows a typical example for twin-engine
helicopters. Main gearboxes usually comprise several types of gears: spur and helical gears are
used to transmit low or medium torque between parallel shafts whereas spiral-bevel gears are
required to transfer rotation to the main rotor shaft. A planetary gear with rotating carrier
(epicyclic gear) generally ensures a large final speed reduction to the helicopter main rotor.

Main rotor Epicyclic gear Spiral-bevel gear

Tail rotor

/
g%// Accessories
_ Y-
/ oD
3 z
Helical gears s
Spur gears

Figure I-2 : Components of the main gearbox of a twin-engine helicopter (from Roulois [3])
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The propagation of gear noise to helicopter cabin is rather well understood in terms of
sources and paths. The meshing process generates gear vibrations (as detailed in Chapter I -
Section 2) which are transferred from the gears to the bearings through the supporting shafts.
Under the action of the dynamic forces induced at the bearings, the casing vibrates and
radiates air-borne noise as illustrated in Figure I-3. Transmission noise then follows two
simultaneous paths [6] : direct airborne radiation and structure borne radiation. The
magnitude of airborne contribution is mostly governed by the geometry of the casing and its
ability to radiate acoustic power. Structure borne radiation is particularly difficult to stem. The
transmission mounts must be strong enough to allow helicopter lift-off and rigid enough for
stable control. They are therefore very favourable to the transmission of gear vibrations to the
airframe, causing vibrations of its structure and direct radiation of noise inside the cabin.

Gear vibrations under mesh excitations

Propagation through shafts to the bearings

Vibration and acoustic radiation of the casing

Figure I-3 : From mesh excitations to acoustic radiation of the gearbox casing
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The prevalence of gear noise inside the cabin has been experimentally demonstrated since
internal noise spectra exhibit several tones highly emerging from broadband noise which
correspond to the fundamentals and first harmonics of the mesh frequencies. Noise spectra
also indicate that all gear types contribute to cabin noise (cf. Figure I-4).
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Figure I-4 : Typical noise spectrum registered in a helicopter cabin — Identification of main contributing gears

Over the last years, noise reduction has become a major challenge in aeronautics (and
especially for helicopter manufacturers). Since MGB appears as one of the main source of noise
inside the cabin, efforts are devoted to the reduction of its contribution. Besides, helicopters
mass and production costs both have to be kept limited. Therefore, the addition of
soundproofing solutions is not a reliable solution to the MGB noise issue. For these reasons,
noise optimization of the MGB has to be considered at the early design stage.

Numerous dynamic models have been developed to address the major issue of acoustic
comfort, especially in the field of transports. A review of these models is proposed in Section
4 of this chapter. Beforehand, the excitation sources associated with gears and the relevant
parameters in gear dynamics are briefly presented.
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2 EXCITATION SOURCES

As shown earlier, gears are significant sources of vibrations because of their operating
principle for transmitting power and their unavoidable manufacturing inaccuracies.

Gears transmit loads by obstacles (gear teeth) which undergo elastic deflections when
loaded. Stiffness is often used to characterize how much teeth deflect under load, depending
on gear geometry. The number of teeth in contact is not constant with time and therefore, the
stiffness of the pinion-gear pair varies during the meshing process thus giving rise to
parametric excitations even for perfect gear geometries. Manufacturing and assembly always
lead to small positioning errors within tolerances depending on the quality grade of the gears.
Besides, it is sometimes necessary to voluntarily modify gear tooth shapes in order to avoid
premature engagements and delayed recesses, improve tooth load distributions, reduce
transmission errors etc. Both errors and tooth shape modifications can also generate excitations
and will be further addressed under the generic terminology of shape deviations.

2.1 Elastic deformations and mesh stiffness

Since the early spring-mass models developed by Tuplin [7], Figure I-5, the pinion-gear
interface is usually represented as a spring acting in the plane of action whose stiffness is
characterised from the elastic deflections under load. The very first models of this kind were
based on constant stiffness elements which were rapidly improved to account for mesh
stiffness time-variations [8,9]. The transmitted load is generally constant (imposed by the input
torque) but teeth deflections vary along the mesh cycle with the change in the number of tooth
pairs in contact. Schematically for spur gears, the pinion-gear pair is often considered as twice
as stiff when two pairs of teeth are in contact compared with the situation of one single tooth
pair in mesh.

STIFFNESS K

—x—]
e xl S

3~

Figure I-5 : Constant stiffness spring-mass model (acc. to Tuplin [7])

Several approaches have been proposed to quantify mesh stiffness and its fluctuations. A
first category considers that the global mesh stiffness results from different individual
contributions comprising;:

¢ tooth bending,
e tooth base deflections,
e contact deformations.
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Tooth bending deflections are determined by approximating one tooth by a cantilever of
variable cross-section (bi-dimensional approach, [10-12]) or a plate of variable thickness on an
elastic foundation (3-dimensional approach, [13,14]).

\\<’

Figure I-7 : Estimation of bending deflections using
tapered plate theory, acc. to Umezawa [13]

Figure I-6 : Estimation of bending deflections using
beam theory, acc. to Lin et Liou [12]

Tooth base deflections are often derived by considering that the tooth-gear body junction
can be represented by a semi-infinite elastic half space submitted to the stress distributions
representative of the influence of the load applied on the tooth profile [10]. A better
approximation was developed by Sainsot et al. who simulated gear body as an elastic annulus
[15]. The validity of the method was proved by comparing the analytical results with those
obtained using 2D finite elements. Stegemiller and Houser performed a three-dimensional
analysis of base deflections, using the moment image method to account for tooth end effects
[16]. The authors derived a simple model whose results compare well with those given by 3D
finite elements.

Contact compliance is usually determined by assimilating the contact between teeth to
two infinite elastic half spaces each submitted to a semi-elliptical Hertzian pressure
distribution. The most commonly used formulas for contact deflection are those developed by
Weber and Banascheck [10] or Lundberg [17]. It must be noted that these approaches do not
account for elastic convectivity implying that the displacements are nil at points which are not
directly loaded. Ajmi and Velex proposed to use Pasternak’s elastic foundations
(superposition of bending and shearing elements lying on independent springs) to convey
deflections from any loaded points to the neighbouring points, as illustrated in Figure I-8 [18].
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All individual contributions are finally combined as lumped stiffness elements in series
and / or in parallel to lead to the overall mesh stiffness function [19].

d d
. i
4
Il 1T T2
(a) No convective (b) Convective
effects effects

Figure I-8 : lllustration of convective effects on contact compliance, acc. to Ajmi and Velex [18]

Aside from the elementary methods exposed earlier, other global / hybrid approaches
can be used to quantify all (global methods) or some (hybrid methods) of the contributions to
mesh stiffness.

Complex potential method can be used to determine tooth bending and foundation
deflections [20]. Contact compliance could also be estimated from the same method by
introducing a realistic pressure distribution. For the sake of simplicity, loading is usually
represented by a lumped force and Saint-Venant’s principle is applied to determine the
structural deflections. Contact contributions are then estimated from an analytical method.

With the steady improvement of computational capacities, finite elements (FE) are widely
used and are commonly applied to estimate bending and foundation stiffness. An
advantageous method consists in characterizing each contribution by using influence
coefficients. These coefficients can be calculated all at once for all angular positions of the
pinion/ gear pair and allow to account for complex geometries.

The calculation of contact deflections by finite elements requires to use a very fine
meshing of the contact zone and to adjust it depending on the contact position on tooth flank
[21]. However, such computations remain highly time-consuming and FE models are
generally coupled to analytical contact formulation based on Boussinesq's theory [22,23]. The
main advantage of the finite element method is the possibility to account for the pinion and
gear real geometries thus including the contribution of rim deflections to mesh stiffness, as
opposed to most of the other formulations presented so far. This aspect become crucial in a
number of industrial applications such as aeronautics for which weight reduction is critical
and thin-rimmed gears are often used for which gear body deflections cannot be discarded.
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More global approaches consider that mesh stiffness is proportional to contact length
which, for spur and helical gears, can be estimated analytically using Fourier series [24] (see
Figure I-9). In the ISO 6336 standard [25], mesh stiffness per unit contact length is supposed to
be constant and its value is derived from a polynomial curve-fitted equation depending on
tooth geometrical parameters. Assuming a parabolic variation of mesh stiffness per unit
contact length between engagement and the end of recess, Gu et al. proposed an improved
formulation [26] which shows that mesh stiffness variations are mostly controlled by profile
and face contact ratios and that some values of these parameters can theoretically eliminate
mesh parametric excitations, as illustrated in Figure I-10.
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Figure I-9 : Time fluctuations of contact length for a) spur and b) helical gears —
Comparison of analytical and numerical approximations, acc. to Maatar and Velex [24]
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Figure I-10 : Contour plots of the RMS of the dimensionless mesh stiffness function for the first two mesh
harmonics versus profile and face contact ratio, acc. to Gu et al. [26]
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2.2 Shape deviations and assembly errors

Tooth profiles are the traces of tooth flanks in planes perpendicular to the axis of rotation
and, except for very specific applications such as horology [27], the vast majority of cylindrical
gears exhibit involute profiles. One advantage of involute mating profiles is that they are
conjugate thus ensuring a uniform velocity transfer from the pinion to the gear [28]. Besides,
centre distance variations do not impact on involute gears operation, as opposed to cycloidal
gears for example and a constant speed ratio is conserved. For involute spur and helical gears,
the contacts between the teeth are line contacts which all lie in a plane tangent to the base
cylinders, ie. keeping a constant orientation in space or a line when considering bi-
dimensional representations which is known as the line of action.

Although modern manufacturing processes can reach very high precision levels, gear
teeth will never be perfect and the deviations with respect to the theoretical tooth flanks are
characterised by a number of geometrical parameters whose tolerances define gear quality
grades [29,30]. The main tooth shape deviations are classified into distinct categories:

e pitch errors which represent the differences between the theoretical pitch (distance
between two successive teeth) and the real pitches measured around the pinion and
the gear,

e profile deviations which give, at any point on the tooth flank, the distance between the
theoretical and real profiles,

¢ helix deviations which correspond to the quantity from which the actual helix deviates
from the helix of reference.

Nxp

— theoretical profile
ceeeceee--- real profile

Theoretical profile

— - — Actual profile

Figure I-11 : lllustration of single (Dp) and cumulated pitch

Figure I-12 : lllustration of total profile
errors (Dpc) acc. to Jelaska [31] g f proft

deviations acc. to 1IS01328 [29]

Assembly or mounting errors often add up to tooth shape deviations. For example, if the
shafts are not perfectly parallel, misalignments arise and the contact zones between the mating
teeth can be significantly altered. Other common assembly errors comprise position errors of
the centres of the pinion and gear or deviations between the axes of rotation and the principal
polar axes of inertia of the pinion and the gear. These errors generate eccentricities and run-
out characterised by strong once-per-revolution excitations.
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On the other hand, voluntary profile deviations are frequently employed: gear teeth are
modified by removing material at the tip and/or the root in order to improve contact
conditions. These shape modifications can be achieved along the profile or in the direction of
the face width (longitudinal or “lead” modifications). Profile modifications are applied at the
top and/or root of the teeth (on the pinion and/or gear) mostly to prevent from premature
engagements and shocks due to tooth deflections. They are usually characterized by their
amplitude (or depth) and by their extent (or length) which can either be measured along the
profile or along the line of action

| Modification amplitude | | Crowning amplitude |

Modification extent I

Figure I-13 : lllustration of linear profile Figure I-14 : lllustration of longitudinal
modification (tip relief) modification (crowning)

All shape deviations alter the contact conditions between mating teeth and experimental
results prove that they can also be influential on gear dynamics [32]. The excitations induced
by shape deviations and assembly errors are often accounted for via the concept of
transmission errors, which will be presented in Section 3.1. In particular, quasi-static
transmission error is commonly used as a forcing term in dynamic models but also as a design
criterion to reduce mesh excitations.
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3 PARAMETERS IN GEAR DYNAMICS

A few key parameters are commonly employed in the literature on gear dynamics which
are introduced in the following section.

No-load and quasi-static transmission errors are used to characterize mesh excitations
and the influence of shape and mounting errors whereas dynamic transmission errors and
dynamic factors are widely used metrics to quantify the dynamic response of geared systems.

3.1 Transmission errors

The concept of transmission error was first introduced by Harris in 1958 [33]. Starting
from the consideration that dynamic tooth loads depend on tooth elasticity, errors and
modifications, the author suggested that the variations in relative displacements between
gears at low speeds were at the origin of vibrations when operating at higher speeds.
Numerous experiments confirmed that the time-variations of static transmission errors are
actually representative of mesh excitations. Since transmission errors include the influence of
mesh deflections, they depend on load. In the specific context of profile modification in spur
gears, Harris introduced the notion of design load which corresponds to that particular load
or torque for which transmission error is theoretically constant, i.e., mesh excitations are
minimal. By plotting for one given gear, the transmission error curves at different loads on the
same graph, the author generated the so-called Harris maps which provide a clear overview
of the system behaviour in terms of profile modifications and load (cf. Figure I-15), and which
have since been extensively used in the literature.
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Figure I-15 : Harris map - Variation of transmission error with load, from [33]

Transmission error was later defined as “for any instantaneous angular position of one
gear, the angular displacement of the mating gear from the position it would occupy if the
teeth were rigid and unmodified” [9] as illustrated in Figure I-16.
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Transmission error can be expressed as an angular deviation but it is also often expressed
as a distance by projection on the base plane.
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Figure I-16 : Definition of transmission error, acc. to Munro [34]

3.1.a) No-load transmission error

No-load transmission error, also referred to as kinematic transmission error, is relevant
for assembly errors, pitch errors and some types of tooth modifications. For any angular
position of the driving member, no-load transmission error is dictated by the maximum
deviation from perfect tooth flanks when considering all the contacts in the base plane at one
given time. It therefore describes the rigid-body rotation of the driven member with respect to
its theoretical position if the pinion and gear were perfect and rigid.

In the absence of errors and if tooth flanks are unmodified (perfect involute profile), the
no-load transmission error is nil. If the profile is modified over a large extent or in the presence
of lead crowning (for helical gears), no-load transmission error is not nil and its value varies
along the mesh cycle with a period equal to that of meshing (assuming that all the teeth of the
pinion (respectively the gear) have the same modification). Pitch errors however generate a
no-load transmission error function whose period is the least common multiple of the pinion
and gear rotational periods. A radial run-out on one of the gears generates a sine-wave shaped
no-load transmission error at once-per-revolution frequency. Records of no-load transmission
error typically show the influence of both phenomena (revolution- and tooth-periodic), as
illustrated in Figure I-17.
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Figure I-17: Typical no-load transmission error signal, acc. to Munro [34]

3.1.b) Quasi-static transmission error

In addition to tooth modifications and errors, the departure from perfect motion is also
due to tooth deflections under load which is also captured by quasi-static transmission errors.
As the load transmitted by gears is often constant, quasi-static transmission errors vary with
the number of tooth pairs in contact or contact length, opposite to mesh stiffness functions.

It has been experimentally verified that the time-variations of quasi-static transmission
error correlate well with gear noise and vibrations [35]. Transmission error is therefore
recognized as a reliable indicator of mesh excitations and often, by extension, of gear noise
quality. Lin et al. have studied the dynamic response of a spur gear pair with various
modifications and their results show that the lowest amplifications are obtained when the
modifications give the lowest peak-to-peak transmission error [36], as shown in Figure I-18.
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Figure I-18 : Quasi-static transmission and dynamic factor for various profile modifications, acc. to Lin et al. [36]

Consequently, transmission error is frequently employed as a design criterion to define
tooth modifications minimizing dynamic tooth loads and noise. Beghini ef al. led parametrical
studies on the influence of the extent of profile modifications on peak-to-peak quasi-static
transmission error for high and low contact ratio spur gears and provided optimization
guidelines [37]. Using an objective function based on quasi-static transmission error and
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genetic algorithms, Bonori et al. defined optimum profile modifications for spur gears, and
proved the efficiency of the predicted optima [38]. Artoni et al. proposed an algorithm for the
optimization of hypoid gear ease-off with regard to quasi-static transmission error variations
[39]. Astoul et al. developed an algorithm for the optimization of a spiral bevel pinion
topography with the aim of reducing the maximum contact pressure along the loaded contact
path [40]. The authors later showed that the method could be used to reduce the variations of
quasi-static transmission error and performed comparisons between numerical predictions
and experimental measurements of transmission error [41]. Based on different mesh stiffness
formulations, Bruyére et al. have recently proposed a set of analytical formulae to predict
optimum profile modifications with regards to transmission error fluctuations for both spur
and helical gears. The authors introduced the concept of Master Curve defining the set of
optimum linear symmetric tip reliefs [42-44]. Velex et al. proved that local transmissions errors
are also representative of mesh excitations in multi-stage gear systems [45].

Since its reliability to represent mesh excitations has been largely demonstrated, quasi-
static transmission error is directly used as a forcing term in many gear dynamic models, as
discussed in Section 4 of this chapter.

3.1.¢) Dynamic transmission error

Dynamic transmission error is the extension of quasi-static transmission error for higher
rotational speeds when dynamic effects cannot be ignored. It is often used to characterize the
vibratory and acoustic behaviour of gear transmissions. Measurement of transmission error
can generally be performed by the use of accelerometers mounted tangentially on the gear
wheel [46,47] or by optical means using graduated disks and light integration [48] or encoders
[49,50]). The time-fluctuations of dynamic transmission error can be used as an element of
comparison between model predictions and experimental evidences, as illustrated in Figure
I-19.
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Figure I-19 : Comparison of measured and predicted RMS values of dynamic transmission error, from [51]
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Another indicator of gear transmissions dynamic behaviour is the evolution of the
dynamic tooth loads, often related to the concept of dynamic factor presented in the next
section.

3.2 Dynamic factors

As mentioned in the first section of this chapter, a direct consequence of the dynamic
behaviour of gear systems is the occurrence of overloads in the contact zones between the
mating teeth. The estimation of the mesh force in dynamic conditions is crucial to predict wear
[52], determine the lubrication regimes [53,54] and understand the different modes of tooth
failure [55,56].

In this context, the concept of dynamic factor initially introduced by Walker in 1868 is
now often used to quantify dynamic overloads and is defined as the ratio of the maximum
dynamic to static tooth load. Depending on the authors, the dynamic factor can be expressed
based on:

o the global inter-mesh force,
e the force acting on one tooth of the pinion / gear,
e the stress at the root of one tooth of the pinion / gear.

The dynamic factor is therefore not relevant for tooth load distribution analyses but only
for characterizing overall dynamic tooth loads.

From an experimental viewpoint, dynamic factor is often correlated with tooth root
stresses measured by strain gauges cemented at the root of the teeth. As an example, the
dynamic root strains recorded experimentally by Kubo on a spur gear set [57] have been
extensively used for dynamic models validation [58-60] (cf. Figure 1-20). Such measurements
are always delicate and require a very cautious set up of the gauges on the root fillet in order
to prevent them from being expelled by centrifugal forces or damaged by the tooth tips of the
other member during the course of meshing. They also impose the use of slip rings or
telemetry to transfer the measured signal from the rotary to the stationary system.
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Figure I-20 :Comparison between Kubo’s experimental results [57] and numerical predictions,
acc. to Ozguven and Houser [58]
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Measurements of dynamic transmission error are usually more convenient, and this is
why many authors have examined the possibility to establish a direct correlation between
dynamic transmission error and dynamic factors. Based on numerical simulations conducted
on a one-degree-of-freedom torsional model, Tamminana and Kahraman proposed linear
relationships between dynamic mesh forces or root stress factors and dynamic transmission
errors for permanent contact conditions between the teeth [51]. Hotait and Kahraman later
confirmed these findings through experimental measurements performed on a bench
instrumented for both root stress and dynamic transmission error measurements [61]. In
parallel, Velex found that this linear dependency can only be analytically demonstrated for
systems for which torsion is prevalent [62]. Very recently, Dai et al. studied dynamic tooth root
strains of spur gears and showed that they are not directly related to dynamic transmission
error [63]. The authors observed that different rotating speeds below and above resonances
having the same RMS of dynamic transmission error present different tooth root strain curves,
in both shape and peak amplitude. They justified this phenomenon by the phase shift of
dynamic transmission error when moving across resonance areas. Sainte-Marie et al. [64]
exploited two different models of a highly instrumented spur / helical test-rig: a) a full three-
dimensional approach including pinion, gear, shafts, bearings and couplings, and b) a
simplified torsional model restricted to the pinion and gear only. They observed that, even if
some degree of correlation may exist between dynamic tooth loads and dynamic transmission
errors, the linear relationships in [51,61,62] are not fully satisfactory for three-dimensional
systems. However, they identified clear linear relationships on the torsional model. They
therefore postulated that the linear dependency observed by Tamminana [51] and Hotait [61]
could be a particular case related to the system characteristics and should be extrapolated with
care.
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4 GEAR DYNAMIC MODELS — LITERATURE REVIEW

The literature on dynamic gear models is abundant and comprises several kind of models
of varying complexity depending on the objectives of the study, the numerical technique used
to solve the state equations, etc. In this section, the literature survey is organized in three
sections, depending on the type of transmission (single-stage cylindrical gear, single-stage
bevel gear, multi-stage system). In each category, and especially in the first one, the models
will be presented from the simplest to the most comprehensive approach which more or less
follow the chronology of the developments.

4.1 Single-stage gear systems with parallel axes

The organisation is based on that proposed by Ozgiiven and Houser [65]. The first models
are limited to the study of tooth compliance and consider tooth stiffness as the only potential
energy storing element. In these models, the flexibility of the surrounding elements (shafts,
bearings, etc.) is discarded. The second category references models for gear dynamics,
accounting for shafts and bearings, as well as tooth compliance. Finally, models aimed at
studying complete gearboxes are tackled.

4.1.a) Models with tooth compliance

The first mathematical models of gear dynamics date back to 1950’s. One of the very first
contributions in this field is attributed to Tuplin [7] who introduced the first spring-mass
model, based on an equivalent constant mesh stiffness and used wedges of various shapes at
the base of the spring to simulate gear errors (cf. Figure I-5).

These models were then improved to account for mesh stiffness time-variations leading
to second order parametrically-excited linear differential equations referred to as linear time-
varying formulations by Blankenship and Singh [66], whose solutions can only be
approximated by numerical time integration techniques. Harris [33] developed a benchmark
single degree of freedom model based on the notion of transmission error which incorporated
three internal sources of excitation (manufacturing errors, variation in tooth stiffness and
contact loss non-linearity). Gregory et al. extended Harris” work and developed a torsional
model capable of predicting tooth contact losses [9]. The authors demonstrated experimentally
the influence of load and damping on the occurrence of amplitude jumps in the vicinity of
critical speeds (see Figure I-21).

Other models, designated as linear time invariant, rely on constant mesh stiffness and
quasi-static transmission error as forcing term [58,67-69] leading to second order linear
differential equations with constant coefficients for which analytical closed-form solutions can
be found.
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Figure I-21 : Experimental observation of tooth contact losses, from Gregory et al. [9]

More recently, Parker and Vijayakar developed a finite element model for spur gears and
conducted contact analysis at each time step [70] (Figure 1-22). Their model is able to predict
contact losses and eliminates the need for a preliminary determination of mesh stiffness or
static transmission error. The computational cost of this kind of modelling is however
significantly higher compared with one-DOF lumped parameter models.

Figure I-22 : Finite element model of a spur gear pair, acc. to Parker et al. [70]

Most of the models limited to the study of tooth compliance were reduced to torsional
one-DOF models as shown in Figure I-23. Despite their simplicity, these models provide
results in close agreement with experimental measurements, essentially because the majority
of the test rigs were designed accordingly i.e., torsion was prevalent so that the test rig meet
the basic assumptions of the mathematical modelling. In real applications, the vibration
couplings between the different elements of the transmission cannot be discarded and it was
realized in the late 1960s that for more general models, it was necessary to account for shaft
and bearing flexibilities.
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Figure I-23 : (a) Two-degree-of-freedom torsional model of a gear pair and (b) its equivalent single degree-of-
freedom system (acc. to Ongven and Houser [58])

4.1.b) Models including shafts and bearings

In 1970, Kohler et al. developed a 6-DOF torsional model of a helical gear which included
shaft and bearing flexibility [71] along with a constant mesh stiffness function (linear time
invariant formulation) and forcing terms based on transmission error. Fukuma et al. studied
three-dimensional gear vibrations using a multi-degree of freedom model including shaft and
bearing flexibility along with a lumped shaft mass [72]. The authors compared their findings
with experimental measurements.

With the improvement of computer performance, the number of degrees-of-freedom in
dynamic models has constantly increased over the years. In 1992, Kahraman et al. presented a
model based on a finite element discretization of gear shafts [73] which comprised 10 degrees-
of-freedom per shaft element (axial translations excluded) and 4 degrees-of-freedom for the
pinion/gear pair (two translations along the line of action and two torsional rotations). Mesh
stiffness was considered constant and a transmission error excitation was used. The authors
conducted parametric studies on shaft dimensions and bearing compliance to analyse the
influence of these elements on dynamic responses.

Velex et al. developed a formulation which is not based on a priori defined transmission
error or mesh stiffness functions. Instead, the contact problem is solved at each time step in
the base plane and is coupled to the solution of the dynamic equations [18,60,74]. To account
for shape deviations, each contact line on the base plane is discretized in elementary cells and
at each cell, the deviation is defined as the normal distance between a point of the pinion and
a point of the wheel that would be in contact for perfect geometries (cf. Figure 1-24). Contact
lines are translated on the base plane to simulate the course of meshing. The other elements of
the system are modelled by classic shaft and lumped parameter elements.

43
Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LY SEI133/these.pdf
© [N. Sainte-Marie], [2016], INSA Lyon, tous droits réservés



Chapter ]

Thearetical line of contact

Errorless flank position
Base plane on the base plane

Figure I-24 : Definition of shape deviations on the base plane, acc. to Velex and Maatar [60]

A similar discretization of the contact lines was used by Eritenel and Parker [75] to
develop an equivalent lumped parameter model. The authors showed that the distribution of
contact forces on the contact lines can be reduced to two discrete stiffness elements: a
translational one acting at a point called the centre of stiffness and a twist one. The model was
then applied to a nonlinear helical gear dynamic model with rigid shafts resting on bearings
represented by constant stiffness elements [76]. The proposed formulation allows to capture
partial contact losses but the parameters of the equivalent lumped stiffness elements must be
determined at each mesh frequency.

Recent experimental results proved the influence of shaft flexibility on gear dynamics
[47]. In this study, two gears (spur and helical) were instrumented with tri-axial accelerometers
to measure dynamic transmission error as well as rocking and axial motions. The reported
results show that increasing shaft flexibility can lead to additional natural modes hence
additional critical speeds. Furthermore, the helical gear mounted on compliant shafts
exhibited additional rocking and axial motions, thus justifying that purely torsional models
may not be suited for all real applications.

4.1.c) Models of complete gearboxes

Evaluation of noise radiation requires the analysis of housing vibrations, as mentioned in
the first section of this chapter. In this regard, the aforementioned gear-shaft-bearing dynamic
models were upgraded to include the housing and predict its response to mesh excitations.

Early models addressed the dynamic problem of the gear-shaft-bearing set and of the
housing independently and considered simple housing geometries [2]. The first models
coupling the housing with the interior of the gearbox in the dynamic analysis appeared in the
1990s [77,78]. Rigaud, Perret-Liaudet ef al. coupled a hybrid finite element / lumped parameter
element model of the gear-shaft-bearing system with a finite element model of the housing
[79,80]. The gearbox was submitted to transmission error excitations and the influence of its
component stiffness was analysed. The authors concluded that any change in the elastic
properties of the gearbox components modifies its dynamic behaviour, thus justifying the need
for an accurate model of the global gearbox.

Recently, Abbes et al. proposed an alternative method for the modelling of complete
gearboxes based on substructures. They compared the natural frequencies and mode shapes
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of a parallelepiped gearbox obtained with the dynamic substructure method with those from
a finite element model [81]. The same model was used to compute the forced response of the
gearbox to transmission error excitations and the influence of a stretcher on the vibratory level
of the gearbox was studied [82]. The authors then developed a coupled structural-acoustic
model accounting for the fluid inside the gearbox. They used it to predict surrounding acoustic
pressure distributions and showed that the acoustic field is dependent on the resonance
frequencies of the gearbox [83].

Zhou et al. [84] analysed the vibrations of a gearbox housing using a refined finite element
discretization as illustrated in Figure I-25. In this approach, the dynamic response of the geared
transmission is analysed independently and dynamic bearing forces are used as excitations
sources in the housing model. Hemispherical sound fields were defined around the housing
to study sound pressure levels and the authors analysed different solutions (additive thickness
and ribs) for low-noise gearbox design.

. Sample node Center node

“Sound field

1459

Figure I-25 : Finite element model of a realistic housing geometry, acc. to Zhou et al. [84]

Guo et al. [85] proposed a complete finite element / contact mechanics model of the
gearbox including the housing. This model provides a complete analysis of gear tooth contacts
and rolling element contacts including the fluctuations of bearing stiffness due to rolling
elements coming in and out of the loaded zone. However, the contact models for rolling
element bearings were not used for dynamic calculations as they require enormous
computational effort. To reduce computational costs and make it possible to cover a range of
speeds (speed-sweeps), the authors proposed an equivalent lumped-parameter model in
which gear tooth contact is solved by discretizing contact lines into distributions of linear
springs. Both of the aforementioned models allow to predict dynamic bearing forces which are
used as input data for the acoustic modeling and analysis of the housing using boundary
elements. Correlations with experimental noise measurements prove the validity of the
computational procedure to predict gearbox noise radiation.
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4.2 Single-stage gear systems with non-parallel axes

As seen in Section 4.1, the literature comprises a very large number of dynamic models
for parallel-axis gear systems whereas it is sparser for gears with non-parallel axes. However,
bevel gears are widely used in power transmissions in order to change the direction of rotation
(automotive, aeronautics to name a few). Bevel gears can have straight or curved teeth and are
referred to as spur- or spiral-bevel gears respectively. In some applications, the pinion is
shifted below or above the gear centreline so that bigger pinions with larger contact areas can
be used. In this case, the pinion and gear axes do not intersect and such gears are called hypoid
gears. An illustration of the different types of bevel gears is given in Figure I-26.

Figure I-26 : Scheme of a) a spur bevel gear pair, b) a spiral-bevel gear pair and c) an hypoid gear pair with offset e

Although many authors have performed loaded tooth contact analyses of hypoid or bevel
gears [86-89], only limited effort was dedicated to the dynamic analysis and modelling of bevel
gears. The first dynamic models seem to date back to the late 1990s. In 1999, Lim and Cheng
[90] proposed a three-dimensional model for the vibratory analysis of high-speed loaded
hypoid gears including shaft and bearing flexibilities. It is based on a linear mesh interface
formulation. The mesh point position and normal orientation are assumed to be time-invariant
and kinematic transmission error is used as the only source of excitation (cf. the schematic
representation in Figure I-27). The results obtained from this model revealed the influence of
pinion offset on dynamic mesh force and bearing reactions loads.

A few years later, this model was improved to account for time-varying mesh
characteristics [91,92]. The model includes gear backlash (clearance between mating teeth) and
a constant tooth friction coefficient. A preliminary quasi-static tooth contact analysis is
performed to obtain the time-varying mesh line-of-action, mesh position and load dependent
mesh stiffness. These preliminary results are then introduced into a three-dimensional
multiple-degree-of-freedom dynamic model whose forcing terms stem from loaded
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transmission error (cf. Figure 1-28). The results show that lateral, axial and bending
displacements are coupled by the gear emphasizing the need for multi-degree-of-freedom
models. A simplified single-degree-of-freedom model was derived by Wang and Lim to study
the effect of backlash and mesh stiffness non-linearity [93,94].

Engine

Figure I-27 : Schematic representation of the three-dimensional dynamic model proposed by Lim and Cheng for
hypoid gears [90]

Y2
Load ol

S

o

Figure I-28 : Evolution of the model presented in Figure I-27 to account for time-varying mesh characteristics [92]

In parallel, Li et al. developed a model for the prediction of the dynamic behaviour of a
rotor-bearing system coupled by a spur bevel gear pair [95] based on the assumption of perfect
rotation transfer and using a time-varying mesh stiffness function. The model was adapted for
spiral bevel gears [96] and the authors studied the influence of the spiral angle and mesh
stiffness on the dynamic behaviour. Gao et al. [97] proposed a finite element model to predict
the contact-impact behaviour of the bevel gear pair of an electric disk grinder.

In 2010, Peng and Lim [98] included the large rotations of the shafts in a coupled multi-
body dynamic and vibration model for both hypoid and bevel gears. Gear mesh interactions
are modelled as non-linear spring and damper combinations whose locations, directions,
stiffness and damping properties vary with gear angular positions. The time-varying mesh
characteristics are deduced from the results of a three-dimensional loaded tooth contact
analysis. External excitations such as torque and speed fluctuations are accounted for and
transient analyses are performed. In the same time, the same gear mesh interaction
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formulation was used by Hua and Lim [99] in a study focusing on the modelling of gear-shaft-
bearing structures. To this end, the authors employed beam elements to model the shafts and
the bearing stiffness formulation developed by Lim and Singh [100] to express the bearing
stiffness matrices. A new method was proposed to include effective supporting stiffness in
lumped parameter dynamic models.

In 2012, Teixeira, Wang et al. [101,102] presented and compared the results from two
lumped parameter dynamic models of spiral-bevel gears. Both models use beam elements to
represent shafts and lumped stiffness elements for bearings but they differ in the mesh
stiffness formulation. In the first one, the pinion and gear in mesh are connected by a single
time-varying mesh stiffness in the normal direction and located at the centroid of the contact
area. In the second model, the instantaneous local contact conditions are obtained by using
elementary stiffness elements distributed over the potential contact area. Both models predict
similar dynamic response while the second one makes it possible to estimate instant tooth load
distributions.

Wang and Lim [103] used the coupled multi-body dynamics and vibration model
proposed by Peng [98] to study the influence of load on dynamic response. Yang et al. [104]
compared the results from three models where the mesh characteristics (mesh point, line of
action, mesh stiffness and transmission error) are obtained from a) the gear design parameters
(pitch cone-based mesh model), b) an unloaded tooth contact analysis or c) a loaded tooth
contact analysis, respectively. It was concluded that a) the pitch cone method was the simplest
to obtain an estimate of the dynamic response and, b) loaded tooth contact analyses were
required for accurate predictions of gear dynamics.

Song et al. [105] used a lumped parameter model similar to that developed by Peng [98]
and they estimated equivalent shaft-bearing stiffness matrices via finite elements. The authors
applied the time-varying dynamic bearing forces predicted by the lumped parameter model
in a full finite element model of the housing. The simulated housing vibrations were compared
with experimental measurements from a marine gearbox, showing reasonable agreement.
However, the experimental results showed a response peak not predicted by simulation which
corresponded to the mesh frequency of a upstream reduction stage not taken into account in
the dynamic model, thus emphasizing the importance of dynamic couplings in multi-mesh
units.

Using a similar approach, Wang et al. [106] predicted the vibro-acoustic behaviour of a
vehicle final drive gearbox. Dynamic bearing loads were determined by a finite element model
of the gearbox and the housing frequency response functions were used as input data for a
boundary element model to estimate the sound radiated. No experimental correlation was
presented but extended parametric studies were conducted to evaluate the sensitivity of the
dynamic response of a gearbox to gear-shaft-bearing design.
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4.3 Multi-stage gear systems

In order to reach high reduction ratios, transmissions often comprise several stages and
experimental results [107] have shown, in this context, that a) couplings are observed between
the various tooth mesh excitations and, b) single-mesh models are not relevant any longer. The
early models of double-stage systems included only two-degrees-of-freedom and were used
to analyse the influence of the phase lag between the two meshes [107]. Rapidly, more degrees-
of-freedom have been considered to account for shaft and bearing flexibility [108].

Choy et al. studied the vibrational behaviour of a spur gear system with three gears and
two meshes. Their model accounted for imbalance along with mesh excitations and a modal
method was used to reduce the system order [109,110].

Kahraman set up a three-dimensional model of a drive train composed of three helical
gears excited by time-varying mesh stiffness and tooth profile errors [111]. Shafts were
supposed to be rigid compared to bearing and gear mesh. The model included the non-linear
effects of gear backlash, possibly generated by momentary tooth separations. Two
configurations (represented in Figure 1-29) were studied to analyse the influence of loading
conditions on dynamic mesh forces: an idler gear configuration (middle gear is idle) and a
split-torque configuration (power input on the middle gear). The mesh phase was also varied
by changing the angular position of the third gear.

CASE-I: Input-Gear 2
Output-Gears 1 and 3

Figure I-29 : Split torque (Case I) and idler gear (Case Il) configurations studied by Kharaman on a helical gear
system [111]

Vinayak and Singh adapted a multi-body dynamics modelling strategy to multi-mesh
spur or helical systems using time-varying mesh stiffness and static transmission errors as
excitations sources. In a first approach, each gear was considered as rigid [112] and the model
was later modified to account for gear blank flexibility [113].
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Raclot and Velex [114] proposed a model for single or multi-stage gear systems
accounting for shape deviations and assembly errors. Beam elements were used to represent
shafts and bearings were modelled by lumped stiffness matrices. A refined three-dimensional
analysis of tooth contact was performed to deal with shape deviations and mounting errors.
An iterative spectral method was developed to solve the equations of motion in the frequency
domain. The authors pointed out the dynamic couplings for different system configurations
(with or without intermediate shaft) and assessed the interest of profile modifications in multi-
stage systems.

A model for multiple counter-shaft helical gear systems was developed by Kubur and
Kahraman [115]. More attention was given to the flexibility of the gear supporting structures
and shafts were simulated by finite elements. Conversely, gear backlash and mesh stiffness
fluctuations were both neglected. A model of single-stage helical test rig was set up for
validation purposes. Dynamic transmission error was recorded by two methods (encoder- and
accelerometer based) and the simulation results for various loads over a range of speeds
agreed well with the experimental evidence. The model was then employed to estimate the
influence of shaft length, gear angle position and gear hand configuration on dynamic forces
for a three-shaft, two-gear mesh unit.

Al-Shyyab and Kahraman developed a lumped parameter dynamic model of multi-mesh
gears including gear backlash non-linearity and parametrically varying mesh stiffness. The
system order was reduced to two-degrees-of-freedom and the equations of motion were
solved by a multi-term harmonic balance method which predicted both period-one and sub-
harmonic motions [116,117].

Liu and Parker [118-120] proposed a nonlinear model enabling to capture partial and total
contact losses and studied the influence of tooth profile modifications on the dynamic response
of multi-mesh systems. Walha et al. [121] also proposed a model including non-linear effects
of gear backlash and time-varying mesh stiffness for a two-stage spur gear system. The non-
linear differential system is decomposed into piecewise linear equations which are solved in
the time domain using a Newmark integration scheme.

The model of multi-stage idler spur and helical gears developed by Fakhfakh et al.
[122,123] accounts for time-varying internal and external excitations (e.g. fluctuating external
torques). The contact lines in each plane of action are discretized into elemental cells which are
all attributed a time-varying mesh stiffness element (Weber-Banaschek model) as well as an
initial separation due to tooth shape deviations. The resulting non-linear differential system is
solved step by step in time using a Newmark integration scheme and a normal contact
algorithm.
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5 CONCLUSION

5.1 Gearbox noise modelling strategy

Noise reduction analyses, when performed after the gearbox design has been defined,
often lead to additional damping materials and thus to a possible mass increase, which has to
be avoided for aeronautic applications. However, it has been shown that gears can be
optimized with regard to noise at the early design stage by modifying the tooth flank geometry
for example [124] and it seems therefore interesting to perform noise analysis and gearbox
design in parallel.

With this objective in mind, it is necessary to develop numerical models dedicated to gear
noise prediction and optimization. These models should provide reliable estimates of gearbox
noise and make it possible to perform extensive parametric studies with minimum
computational effort. Different types of gears should be taken into account and a variety of
supporting elements should also be integrated since, most of the time, their contributions
cannot be ignored as mentioned earlier (cf. Section 4.1.b)).

The literature review indicates that a three-step methodology is commonly used for the
simulation of the vibro-acoustic behaviour of geared transmissions [85,125]:

a) Characterization of the principal sources of excitations (mainly relying on mesh
stiffness and transmission error [126])

b) Computation of the dynamic response of the transmission submitted to mesh
excitations and determination of the dynamic forces generated at the bearings

¢) Simulation of the acoustic radiations of the casing excited by the dynamic forces at the
bearings.

In step a), a kinematic and quasi-static analysis of each mesh must be performed to solve
the load distribution problem and determine the time variations of the excitation functions.
Step b) consists in the dynamic resolution of the equations of motion for the gear-shaft-bearing
system and step c) involves a vibro-acoustic simulation of the gearbox including its casing.

The main advantage of this methodology is to enable designers to perform extensive
parametric analyses and optimization at each step of the design process. For example,
iterations on quasi-static analyses of step a) can lead to the definition of gear macro- and/or
micro-geometries reducing mesh excitation amplitudes. The strategy of characterizing mesh
excitations by preliminary quasi-static analyses is also less time-consuming than the
simultaneous solution of the equations of motion and the dynamic contact conditions.

Step c) of the aforementioned methodology is usually conducted by using commercial
software solutions dedicated to the vibro-acoustic study of radiating structures. This analysis
is beyond the scope of this work, which is kept limited to the study of mesh excitations and
induced dynamic response of the components inside gearboxes (gears, shafts, couplings and
bearings).
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5.2 Objectives of the thesis

In the direct continuity of Roulois” developments [3], the main objective of this research
work is to develop a dynamic model of geared transmissions composed of several reduction
or multiplication stages with different gear geometries. To this end, a common theoretical
formulation for spur, helical and spiral-bevel gears is proposed which can be applied to a
variety of gear architectures with the exception of planetary gears.

Emphasis is placed on the prediction of bearing dynamic forces in gear-shaft-bearing
assemblies which relies on an original transmission error based approach to represent mesh
excitations. Particular attention will be given to the validation of the formulation. Simulation
results are confronted with a number of experimental measurements and benchmark
numerical results obtained by using different modelling strategies. It will be shown that the
model is adapted to spur, helical and spiral-bevel gears and that tooth shape modifications
and errors can be accurately accounted for.

The soundness of the model will also be demonstrated for multi-stage systems and
transmissions composed of both cylindrical and spiral-bevel gears will be studied.
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Dynamic model of gear systems
based on transmission error
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The main objective of this thesis is to develop and validate a dynamic model for multi-stage
gear systems using the concept of transmission error to characterize mesh excitations. The
next chapter is dedicated to the presentation of its mathematical grounding.

In a first section, the formulation is presented using a simplified one-degree-of-freedom
system to help identify the contribution of each of the following excitation functions: mesh
stiffness, quasi-static transmission error under load and no-load kinematic transmission
error.

The theory is extended to three-dimensional multi-stage systems. The model combines
classic shaft, lumped parameter and specific two-node gear elements. Each type of element
is presented individually and the assembly of the different components is then discussed,
leading to the final formulation of the equations of motion.

Finally, the techniques of resolution are presented for the definition of the excitations (quasi-
static problem) and for the computation of the dynamic response of the complete system.
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1 THEORY — ONE-DEGREE-OF-FREEDOM SYSTEM

As shown in the literature review of Chapter I, many of the early models of gear systems
were limited to the pinion and gear pair and their torsional degrees-of-freedom. For the sake
of clarity, the theory developed in this research will first be presented on such a simple
torsional model.

1.1 Reduced model

The system considered is similar to that shown in Figure II-1 (the base radii have been
reduced for the sake of clarity). The contributions of the shafts and bearings are ignored and
the only displacements taken into account are the small angular perturbations denoted 8, and
6, caused by mesh elasticity superimposed on rigid-body rotations. The pinion and the gear
are considered as two rigid cylinders of centres 0; and 0,, radii R,; and R,,, and polar
moments of inertia /; and J,, respectively. The plane of action is the plane tangent to both
cylinders and it is considered that all tooth contacts lie in this plane. A torque C,, is applied to
the pinion while the resisting torque on the gear is denoted C,.. In what follows; vector X is in
the pinion and gear axial direction.

Figure lI-1 : lllustration of a torsional model of a cylindrical gear pair

1.2 Mesh forces

The lines of contact are discretized into elementary cells, centred at a potential point of
contact M and all attributed an elementary stiffness function k(M) and a possible initial shape
deviation caused by tooth modifications and errors, §e(M). At any potential point of contact
M, the relative normal approach under load (with respect to rigid-body positions) reads:

5N(M) = COS ﬁb (Rb191 + Rb292) (Il-1)

where £, is the helix angle measured in the base plane.
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The deflection at point M is the difference between the normal approach and the initial
deviation:

A(M) = COS :Bb (Rb191 + Rb292) — 6e(M) (l/-2)
Introducing n; (M) the outward unit normal vector to the pinion tooth flank at point M

and considering that elasticity can be concentrated at the contact interface (hypothesis of rigid
bodies), the force exerted by the gear onto the pinion at each cell is:

dF;,,(M) = —k(M). (COS By (Rp161 + Rp20;) — 56’(M))- n, (M) (11-3)
Assuming that the outward unit normal vectors are the same at every point of contact
such that n; (M) = n; and neglecting the friction forces on tooth flanks, the global mesh force
exerted by the gear onto the pinion reads:

Fy;q =— f k(M). (cos By (Rp161 + Rp26,) — 8e(M)).ny
M

(1I-4)
—k(t). 08 By (Ry16y + Ryy8,)m, + f k(M). 5e(M).
M

where k(t) = [ v k(M) is the global time-varying mesh stiffness.

The moment generated at the center of the pinion is:

M,/1(01).X = (0,M x F,1). X

(l-5)
= —J(t) Ry G c0s? By (Rp161 + Ryp0) + Rp1Gcos By f k(M)e(M)
M

And from the action / reaction principle, the moment at the gear center is:
Ml/Z(OZ)'X = (OzM X Fl/Z)X

(11-6)
K(8) Rp2S 082 By Ry + Rpz62) + Rys cos B, f K(M)Se(M)
M

where § = +1 for a positive rotation of the pinion (thick line in Figure II-2) and § = —1 for a
negative rotation of the pinion (thin line in Figure II-2).

7 A

<Y

"
Rez
Figure ll-2 : Torsional model — Orientation of the base plane
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Dynamic model of gear systems based on transmission error

1.3 Equations of motion

Using a rigid-solid mechanics approach, one can successively isolate the pinion and the
gear and apply the dynamic moment theorem on each of them. The resulting equations are the
following:

]1(651 + Ql) = R,,Scos By, | —k(t) cos B, (Ry101 + Ry, 65) + f k(M)Se(M)| + C,, (11-7)
I (52 + QZ) = Ry,,Scos B, | —k(t) cos B, (Ry101 + Ry, 65) + f k(M)Se(M)| + C, (11-8)

Q4 and Q; are the rigid-body angular velocity of the pinion and gear, respectively. The
following differential system can be derived:

076 Rb1  Rp1Ru2|[6:

|+ k(E 2 [
]2] [92] (D5 cos” [RbleZ
R (I-9)
=[]~ ' +Scos, kD) 2]
Cr 0 ]z

M

To solve the semi-definite system in (II-9), the first equation is multiplied by Ry,/,, the

second one by Rp,/;. Then both equations are added term by term and then divided by

(]1R§2 +]2R§1). Taking into account that C;,,R;,, = C,Rp;, one obtains:

Meq (Rblél + széz) + k(t)S cos? By, (Rp161 + Rp265)

. . (ll-10)
= — — Meq(Rp1y + Rp2Qy) + G cos By f k(M)Se(M)
1

Ji/2

with my; = ——+—-
“ iR, +J2RE,

A new variable x can be introduced to get a classic equation of motion for a single-degree-
of-freedom system:

C . .
Meq¥ + k(t)G cos? By x = R_m — meq(Rle + Rp2Qy) + Gcos By f k(M)be(M) (Il-12)
b1
At this point, it is interesting to replace the time variable by a dimensionless variable 7 =
t/T,, where T, is the mesh period. T,, being constant, the equation of motion (II-11) can be
rewritten as:

1
—5 Megx"" + k(T)G cos? By x

Tz
c ) (I1-12)
= = o eq (Roa 0y + Ro3) + o5y [ (M)Oe(M)
Rbl Tm
. s dA
where = dr
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Chapter 11

The equation can be derived for quasi-static conditions when Q; — 0 (Ti - 0):
m

k(t)S cos? B, x5 = IS—Z + G cos By f k(M)5e(M) (I1-13)
M

Combining (II-12) and (II-13), and considering that the input speed is imposed constant
on the pinion such that Q} = 0, one finally gets:

1 1
—5 Megx"" + k(7)G cos? By x = k()G cos? B Xg — —MeqRpr ) (I1-14)
T2 T

1.4 Introduction of transmission errors

No-load transmission error (NLTE) is representative of geometrical deviations and is
defined from the rigid-body rotations of the pinion and gear ©; and 0,, respectively as a linear
deviation on the base plane:

NLTE = Rblel + szez (//-15)

Its time derivatives are thus linked to the rigid-body angular velocities of the pinion and
gear as:

d

ENLTE = Rblﬂl + szﬂz (//'16)
d? . .

ENLTE = Rblﬂl + RbZ‘Q‘Z (/l-l7)

Equation (II-17) can be reinjected in (II-14) and considering that the input speed Q; is kept
constant, it comes:

1 1
—5Megx"" + k()G cos? By x = k(1)G cos? By, Xg — — Mg NLTE" (I1-18)
T2 Tin

Quasi-static transmission error under load TEj is the result of the angular perturbations
015, 0,5 caused by mesh elasticity in quasi-static conditions along with rigid-body rotations.
Projected on the base plane, it reads:

TEs = Rp1(01 + 615) + Rp2(03 + O5)
= NLTE + Rb1915 + RbZHZS (//-19)
= NLTE + xs
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Dynamic model of gear systems based on transmission error

The equation of motion (II-18) can be rewritten by decomposing the global displacement
x into its quasi-static and dynamic components x = xg + xp:

1 1
T—Zmeqxb’ + k(t)Scos? By xp = — 2 MegXs — T—ZmeqNLTE” (II-20)
m m m

and using (II-19) to introduce TEs instead of xs, one gets:

1 n 1 n 1 n
ﬁmeqxl) + k(t)Scos? By xp = —ﬁmeq(TES — NLTE)" — ﬁmeqNLTE

(I-22)

= — ﬁ meqTES”

(II-21) evidences that the dynamic response is controlled by the time-variations of quasi-
static transmission error TEg. Since the latter is necessarily a periodic function, minimum
excitations will occur when TEj is constant.
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Chapter 11

2 APPLICATION TO MULTIPLE-DEGREE-OF-FREEDOM SYSTEMS

The model developed in this research work combines classic beam and lumped parameter
elements along with specific two-node gear elements. The formulation for each type of element
is detailed in the following section and the equations of motion are developed.

2.1 Simulation of the mesh interface

2.1.a) Mesh force distribution

We here consider a single stage reduction unit, composed of one pinion (denoted 1) and
one gear (denoted 2) in mesh. At this stage, the gear geometry is not defined and the contact
area between the pinion and the gear is possibly time- and/or load-dependent and is denoted
(4). The following therefore applies for any type of gears. Assuming that the pinion and the
gear have rigid kernels so that elasticity can be transferred to the contact interfaces, a rigid-
solid mechanics approach can be used leading to mesh forces that can be characterised by
wrenches of the form:

Royp= | dFzp(yds

Me(4) (ll-22)

M2/1(01) = f OlM X sz/l(M)dS
Me(4)

It is assumed that the friction forces on the tooth flanks can be neglected compared to the
normal contact forces. Moreover, we consider that the outward unit normal vectors with
respect to the pinion tooth flanks are the same at every point of contact such that n; (M) = n;.
Then equation (II-22) can be rewritten as:

R2/1 = - f dFZ/l(M) nlds
MEe(A)
(11-23)
lM2/1(01) =- f dF,,,(M)O;MdS | xn,
MEe(A)

From equation (II-23), it can be deduced that R, /;. M, ,,(0,) = 0 with R, ,; # 0 so that the
mesh force wrench reduces to a single sliding vector of intensity ||R,/1|| and whose line of
action is collinear with n;.

Introducing G, the instant centroid of the mesh force distribution, defined as:

f dF,,,(M)GM dS = 0 (11-24)
MEe(A)

It can be concluded from the moment equation in (II-23) that M,,,(G) =0 and
consequently that G lies on the line of action of the sliding vector.
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Dynamic model of gear systems based on transmission error

Based on these properties, the mesh force wrench coordinates can be simplified as:

R2/1 ng
{M2/1(01)} = ~Fn {016 X nl} (lI-25)

where F,,is the total normal mesh force.

Repeating the same reasoning for the mesh force from the pinion onto the gear, the inter-
mesh force wrench can be expressed in a compact form as:

Ir Rz 1| n,

M, (0,) 0,G xny

Fmesh = [ R1/2 J = _Fm -n, = —Fva (//-26)
M, ,,(0,) —0,6 xny

v; will be referred to as the structural vector and is dependent on the geometrical
characteristics of the gears.

2.1.b) Deformed state

The pinion and the gear are attributed 6 degrees-of-freedom to account for
traction/compression, bending and torsion. These degrees-of-freedom represent small
displacements superimposed on large rigid-body rotations and can be represented by the
degree-of-freedom vector q:

u,(0,)
_| W1

1 u,(0;)
w;

(11-27)

u;(0;) represents the translational degrees-of-freedom at the centre of the pinion (i = 1)
and of the gear (i = 2) and w represents their rotational degrees-of-freedom.

Under the effect of the degrees-of-freedom, a relative normal displacement with respect
to rigid-body positions can be defined at every potential point of contact M as:

Sy(M) = (uy (M) —uy(M)).ny = v"(M)q (I1-28)
n, n, 0
OMXxXn 0,GXn GM Xn
v(M) = 1_n1 Y= 1_n1 Y+ 0 = v, + Av(M) (ll-29)
_OZMan —OZGan —GMan

Positive values of 8y (M) correspond to a normal approach whereas negative values
indicate that the points on the pinion and the gear move apart. The mesh deflection at M, A(M)
is the difference between the normal approach and the initial normal separation §e(M) at the
same point:

A(M) = v (M)q — Se(M) (11-30)
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Chapter 11

Introducing a normal mesh stiffness per unit contact length k(M), the total normal mesh
force is derived as:

Me(A) Me(4)
Reinjecting (II-30), the inter-mesh force in (II-26) can be rewritten as:
Fesn == | KGD(7 (M) — e())ds v )

Me(A)

After separating the terms dependent on the integration variable (M) and those which are
constant and using decomposition (II-29), one gets:

Fresn = —k(t, @[vevelg — f (k(M)AVY" (M)dS) q vg + f(t, 5e(M))vg (I1-33)

Me(4)

k(t,q) = [, ) k(M)dS is the time-varying, possibly non-linear global mesh stiffness.
f (t, oe(M )) = Me(a) k(M)se(M)dS is a forcing term induced by initial separations.

It can be observed from (II-29) that Av” (M) contains only rocking moment components.
The term fME( A)(k(M)AvT(M)dS) q v; in (II-33) can therefore be neglected if the latter are

discarded. In such conditions, the inter-mesh force wrench reads:

Friesn = —k(t, q) [vavg]q + f(t; 59(M))VG (11-34)

2.2 Gear elements

Gears are modelled by specific two-node elements with 6 degrees-of-freedom per node,
to account for traction, bending and torsion.

From equation (II-34), each gear element is attributed a 12x12 stiffness matrix defined as:
[K (D] = k(t, @lveve) (11-35)

This matrix is derived from the time-varying mesh stiffness k(t, q) and must therefore be
calculated at each time step. Mesh stiffness is obtained from a preliminary quasi-static analysis
which will be detailed in Section 3.1 of this chapter.

A 12x12 mass matrix is also attributed to the gear element, and defined as follows:

[M;] = diag(mq, my,my,J1, 11, 11, Mg, My, My, J3, 15, 15) (1-36)

where subscripts 1 and 2 refer to the pinion and the gear, respectively and m, I and J
respectively designate the associated mass, transverse and polar moments of inertia.

The following sections detail the specificity associated with each kind of gear.
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Dynamic model of gear systems based on transmission error

2.2.a) Cylindrical gear element

For cylindrical gears, the pinion and gear bodies are considered as two rigid cylinders of
centres 0, and O, whose radii are the base radii of the pinion and gear respectively. A local
coordinate system is associated with the gear element which is rooted at node 0, such that
axis X is in the axial (shaft) direction and axis Y is collinear to 0,0,. Each node 0, and 0, is
attributed 6 degrees-of-freedom (illustrated in Figure II-3), representative of
traction/compression (uy, u;), torsion (84, 6,) and bending (vy, v, wi, Wp, @1, 92, Y1, 12).

Figure II-3 : Cylindrical gears — Degrees of freedom

The structural vector v; can be deduced from the geometrical characteristics of the gear
pair. An intermediate frame (04, X, P, Q) can be defined with vector P oriented along the line
of action, such that (cf. Figure II-4):

0 0
P = | sina; Q = |—{cosa, (11-37)
feosa yy 7 sinay lyy 7
with { = 1 for a positive rotation of the pinion (thick line in Figure I1I-4) and { = —1 for a

negative rotation of the pinion (thin line in Figure II-4). a, is the apparent pressure angle.

Figure ll-4 : Cylindrical gears — Base plane orientations and gear coordinate systems

The normal to the pinion tooth flanks n; is contained in the base plane. Its direction is
also related to the base helix angle S}, in the case of helical gears, as illustrated in Figure II-5.
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"U['

—_—
X 4

Figure II-5 : Cylindrical gears — Orientation of the normal to the tooth flanks in the base plane

Its coordinates in the frame (04, X, P, Q) are:

esinfy

cosfBy

n1 = ]
0 Jxpro

(1-38)

where € depends both on the direction of rotation of the pinion and on the orientation of the
helix, as shown in Table II-1. LH designates a pinion with left-handed helical teeth while RH
stands for a pinion with right-handed helical teeth.

Table Il-1 : Cylindrical gears — Orientation of the normal according to helix orientation

Direction of
rotation of the Mesh interface
pinion
Positive 7
Negative ~>°: z ~o: z
/ 7/
RH LH
B . \
Ny
> >
Base plane : :
X | X
e=1 e=-1
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Dynamic model of gear systems based on transmission error

Denoting x(G) and p(G) the coordinates of the centroid of mesh force distribution G in
the base plane, we have:

x(G)
0,6 =|p(G) (11-39)
R xpg)
x(G) x(G)
0,6 = |p(G) — (R, + Ry, )sina, = lpz(G)‘ (I1-40)
¢Ry, (X.P.Q) CRo, (X.P,Q)

Using equations (II-38) to (II-40), the structural vector v; can finally be expressed as a
function of the geometrical characteristics of the gear pair:

esinfy,

cosPy
0

{Rp, cospPy
—&(Ry, sinfy,
x(G)cosfy, — ep(G)sinfy,
—e&sinfy,
—cosfy
0
{RpzcosBy
—&{Ry,sinfy
L—x(G)cosPy + ep2(G)sinBply p o)

(II-41)

And projected in frame (X,Y, Z):

esinfy,
cosfpsina;
{cosfBycosa;
{Rp1cosPy
—&{Rp,sinPpsina; — {(x(G)cospB, — ep(G)sinf,)cosa;
—&Rysinfycosay + (x(G)cosBy, — ep(G)sinfy)sina,
—esinfy
—cosfpsina;
—{cosfBycosa;
{RpacosPy
—&(Ry,sinfysina, + {(x(G)cosBy — ep,(G)sinfy)cosa,
| —&Ry,sinfycosay — (x(G)cosPy — ep,(G)sinPy)sina,

(l-42)

“(X.P,Q
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Chapter I1

2.2.b) Bevel gear element

For bevel gears, the pinion and gear bodies are considered as two rigid cones,
corresponding to the pinion and gear pitch cones (cf. Figure 1I-6). A local coordinate system is
associated to the element, with the origin located at node 0, centre of the pinion. The driving
cone axis is the direction of the X axis and the driven cone axis is contained in plane (04, X, Z).
Each node 0, and 0, is attributed 6 degrees-of-freedom (illustrated in Figure II-3),
representative of traction/compression, torsion and bending.

Pitch cone

Figure lI-6 : Spiral bevel gear pair — Representation of pitch cone of angle 6, and of the shaft angle X

In order to define the structural vector v, of the bevel gear pair, a quasi-static analysis is
performed which gives at each time step:

o the direction of the mesh force n,,
e the position of the centroid of the mesh force distribution.

Details of this analysis are given in Section 3.1.b) of this chapter.

il z

Figure Il-7 : Bevel gears — Degrees of freedom
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Dynamic model of gear systems based on transmission error

2.3 Shaft element

The shaft elements rely on Timoshenko’s beam theory. Each element comprises two nodes
with six degrees-of-freedom per node (three translations and three rotations) and is attributed
12x12 mass, stiffness and damping matrices. This type of element allows to account for
traction/compression (uy, u,), bending (v, v,, Wy, Wy, @1, 92,31,3,) and torsion (6, 6;).

In order to reproduce complex geometries of gearbox shafts by a minimum number of
degrees-of-freedom, a conical beam finite element has been implemented [127]. Following the
works of Cowper [128], shear effects are accounted for by using a shear coefficient K which,
for a hollow circular cross-section, reads:

6(1+v)(1+m?)?

= //_
7+ 6W)(1+m2)% + (20 + 12v)m? (l-43)

K

where v is Poisson’s ratio of the shaft material and m is the ratio of inner to outer radius.

A complete description of the shaft element mass and stiffness matrices is given in
Appendix A.

Wi __

& _
J:/"_‘\L\u‘ {_\u}z
. —

z

Figure I1-8 : Conical shaft element — Degrees of freedom and local frame

Figure II-g : Stiffness associated to the bearing element
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2.4 Lumped parameter elements

2.4.a) Bearings

Bearings are assimilated to linear elastic supports characterized by time invariant stiffness
elements. 6x6 stiffness matrices are consequently added at the node of the supported shaft. X
is the axial direction of the supported shaft. k,, is the axial stiffness, k,,, and k,, are the values
of the radial stiffness. k,, and ky,y, act on bending rotations and kggy can be used to represent
a resisting torque.

Damping matrices can be defined similarly, to account for the properties of
hydrodynamic bearings for example.

2.4.b) Elastic couplings

Two coaxial beam elements can be connected by a 12x12 stiffness matrix representative
of an elastic coupling. The matrix is symmetric and ensures the transfer of translations and
rotations in all directions (traction/compression, bending and torsion).

A diagonal 12x12 mass matrix can also be defined to account for the mass of the elastic
coupling.

2.4.¢) Additional polar inertias

The external elements connected to the helicopter main gearbox (engines and main rotor)
have very high polar inertias which strongly influence the dynamic response of the
transmission. Additional polar inertias are therefore implemented in the model:

o If the coupling between the external inertia and the gearbox is considered infinitely
rigid in torsion, the external inertia influences only the mass matrix of the system. In
this case, the external polar inertia is directly superimposed on the polar inertia of the
node to which it is connected (cf. Figure I1-10).

e If the connection between the external inertia and the gearbox is flexible, an additional
node is introduced and linked to the transmission by a torsional stiffness element
equivalent to the stiffness of the coupling (cf. Figure 1I-11). The external polar inertia is
added in the global mass matrix at the torsional degree-of-freedom associated with the
newly created node. This configuration therefore influences both the stiffness and mass
matrices of the complete system, as well as the total number of degrees-of-freedom.

?1'

r\w;(lh

Figure lI-10 : Additional inertia Igg with rigid coupling ~ Figure ll-11 : Additional inertia Iy with flexible coupling kgg
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2.5 Assembly and equations of motion

2.5.a) Assembly of the system components

The elemental matrices described earlier are assembled to form global square matrices of
dimension equal to the total number of degrees-of-freedom of the system.

In what follows, an N-mesh system is considered. For each gear pair, subscript 1 is used
to designate the driving member and subscript 2 refers to the driven one. In accordance with
equation (II-34), the inter-mesh force wrench for each mesh (L) is:

F& = —KP(©)q® + FH (1) (1I-44)

mesh —

The equations of motion for the complete system therefore read:

N N
MX +CX + (Ksys + Z Kg”(t))x = F, + Z F&O(0) + F(b) (I1-45)

L=1 L=1

X is the vector containing the degrees-of-freedom of the complete system.

M and C are the mass and damping matrices of the global system.

K, is the stiffness matrix of the global system, excluding the gear elements.
F is the static load vector (containing input and output torques).

F((gLe) ) =fW (t, se®) (M)) V(GL) with V(GL) the structural vector associated with mesh (L) v(GL)
extended to the total number of degrees-of-freedom (completed by zeros).

F;(t) is a forcing term due to the possible fluctuations of rotational speeds caused by initial
deviations.

2.5.b) Equations of motion

Introducing a time variable normalized by the smallest mesh period of the system 7 =
t/T, and noticing that T, is considered constant, the equations of motion (II-45) can be
rewritten:

N N

1 1

T MX" +— X'+ <Ksys + Z K& (r)) X=F,+ Z F& (1) + Fiy(0) (11-46)
m m =1 =1

4
where A’ = = 4

The quasi-static equations are derived by considering the limiting case TL — 0 and read:
m

N N
(KSyS + z KE;L)(T))XS = FO + z F((Slé)(‘[) (/I-47)
L=1 L=1
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The mesh stiffness of each gear stage can be decomposed into its mean value k,(,f) and its
time fluctuations Ak (1) such that:

(kP @] = (K + a0 @) v ]

= k,(rf) (1 + @ g(L) (T)) [VE;L)V(GL)T] (11-48)

where g™ (1) describes the shape of the time variations of mesh stiffness and varies between
-1and +1, a® is the relative variation amplitude and a < 1.

A new stiffness matrix is defined which combines the stiffness of all supporting elements
(bearings, shafts, couplings) with the average stiffness of the gears:

N

— T

K=Ky, + E kS vevE | (I1-49)
L=1

so that equation (II-47) becomes:
KX;=F,+ Z F(L)(-L-) Z k(L)a(L) g® (@) [V(L)V(L) ] Xq (I1-50)

X is the static deflection of the complete system. It is possible to consider that there is a
unique solution to the static problem and therefore that K is invertible. Using a fixed-point
theorem (cf. [129]), (II-50) leads to:

T —
X5 = Xo + Z (r® (z,6eM ) - kP aWgM @V X5) RV
(I1-51)
=X, + Z o®(z,5e® (M), Xs) K~V

L=1

with X, = K™1F, the static deflection with average mesh stiffness.
(p(L) (‘L’, seM (M), X s) is an unknown scalar function of time, associated with the tooth shape
deviations at mesh (L).

Replacing X in equation (1I-47) by (II-51), one obtains:

N N N
(Ksys + Z KE;”(T)) <X0 + Z 0@ (7,6¢P (M), X;) R‘lvgp)) =F, + Z FO@)  (152)
L=1 L=1

P=1

Re-using (1I-48) and (I1-49) leads to:

N N
_ T _
(K + Z Ak® (1) [VE;L)VE;L) ]) <X0 n Z 0P (z,8¢P (M), Xs) K‘lV(GP))
L=1

N P=1 (”'53)
=F,+ Z F& (1)
L=1
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Dynamic model of gear systems based on transmission error

Noting that KX, = F, and developing (II-53), one obtains:

o) (z,6eP (M), Xs5) VY

-

N
+ Z A® (1) [V(L)V(L> ]( + z 9P (1,5¢P (M), Xs) R'Wé”) (11-54)
P=1

Z F(L) @)

2.5.¢) Introduction of transmission errors

An auxiliary problem is introduced which corresponds to the isolated gear stage (L) with

average stiffness submitted to the static loading %(L)VéL) instead of F,. This loading
corresponds to a constant compressive mesh force Fs in the base plane acting on the pinion
and the gear with no torque on the pinion nor the gear shaft. The mesh deflections for the

auxiliary problem (denoted X gL)) and the actual static problem with average mesh stiffness in
the absence of tooth shape deviations are identical so that:

O

T
v x, =P P =
kP

(1I-55)

Besides:
X = g1 EPv® (11-56)

By definition of the auxiliary problem:

e The pinion-gear pair of mesh (L) is submitted to the sole internal force F; (L)V(L)

e This loading generates no torsion of the shafts. X g ) contains only torsional angles,

constant on every shaft. The bending and axial displacements in X gL) are all nil.
e No external action is induced on the rest of the system.
¢ No other loading acts on the rest of the system.
e Deflections at all other meshes (P) # (L) are nil:

T
v W =0 if (P) = (L) (11-57)

Using property (II-57) and equalities (II-55) and (I1I-56), it comes:

N N (L)
E
Z oW (1, 56D (M), X5) VY + Z AK® (7) % y®
L=1 A(L) N (l/'58)
+ z Ak (1) [V(L)V(L) ](p(L)(‘L' se(M), XS) D Z F(L)(‘L')
L=1 S L=1
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(II-58) holds true if the following is verified for each mesh (L):

FO (T, Se® (M))
W (7, 5o® Wy o
— L L ()5S __
=@ (Tr be (M)rXS) + Ak (T) kr(rll') (I1-59)
Ak (1) T_
D (5600, %) VR
E
and (II-59) can be rewritten:
Ak® (1)
— (L) (L)
fw (T, Se(L)(M)) = (1 + o (FS + oMz, (Se(L)(M),XS)) —F, (I1-60)
m

Projected on the base plane, the local quasi-static transmission error under load of mesh
(P) is defined as:

TE® = w® X, + NLTE® (1l-61)

where W) is a projection vector, not specified at this stage and NLTE") designates the no-
load transmission error associated with mesh (P), defined from the same projection vector
W® and the rigid-body angular positions of the gears in the presence of tooth errors and
modifications Xy as:

NLTE® = w®'x, (11-62)

Reinjecting (II-51) in (II-61) leads to:

X’(L)

N

TES(-P) — W(P)T <X0 + q)(l‘) (T’ 5e(L) (M); XS) ?L)
: : F,
- S

L=1

) + NLTE® (11-63)

Providing that the projection vectors W) are chosen such that:

w® = @y (I1-64)
(II-57) gives :
w® XD =0 if (P) # (L) (1I-65)

Rearranging (II-63) and using (II-65), one obtains:

JTES) — NLTE® —w®x,,

11-66,
w® g ey

o (z,6eP (M), Xs) = F;(P
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Dynamic model of gear systems based on transmission error

Finally, (II-60) can be rewritten as:
FO (T, Se® (M))

T P
(2P0 TE® — NLTE® —w®" (X, - X{?) | me
s kW wn ge

Assuming that the dynamic contact conditions are close to those in quasi-static conditions,
the combination of (II-46) and (II-67) gives the following equations of motion expressed in
terms of transmission errors:

N
1 n 1 1 (L)
= MX" +—CX' +| Ky + ) K (1) | X
Tz T, L,
" R AW (@) (TES - NLTE® —w®' (X, - ) o (68
=F0+ZES‘ 1+ (L) TA(L) _1 VG
L=1 km ww X,

+ Fy(7)

In the presence of shape deviations, the rotation transfer between the pinion and the gear
is altered giving rise to an inertial forcing term F (7) due to unsteady rotational speeds of the
form:

Fy(0) = [M]Q (11-69)

where Q contains the angular rigid-body accelerations at each node of the system.

The fluctuations of the driving and driven member angular velocities of stage (L) can be
expressed from the local no-load transmission error, following (I1-62):

%NLTE(L) —wW k, =w®'q (11-70)

Xz = Q contains the rigid-body angular velocities at positions corresponding to the
torsional degrees-of-freedom. Denoting WTORgL) and WTOR;L) the corresponding torsional

components in W) the time-derivative of no-load transmission error becomes:

d . .
aNLTE(L) = wrorPOL + wror PO (I1-72)

The accelerations of the driven member of stage (L) therefore read:

: 1 (d?

@ _ 5 (L)

0 = D ( T NLTE®W — O} wTOR§L>> (I1-72)
WToR,

And using the dimensionless variable T = t/T;;:

1 ! 1 !
T ow_ - " _ oW (L)

0,7 = NLTE Q7 WroR{ (I1-73)
Tm T-,% WTOR ;L) ( )
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It is further considered that the input speed of the system is constant so that le) = 0.
Under this condition, the acceleration of the driven member of stage (/) reduces to:
1 1 7
alire1 () Q)
Q7" = NLTE (11-74)
L 74
Tn T WTOR; )
For the following stages in the system (in the sense of the power circulation), the
acceleration of the driven member is subsequently deduced from the no-load transmission
errors of each preceding stage as:

L
1 1 "
— ol = ﬁz NLTE® (11-75)

m T Wror, " P

2.6 Damping

Damping largely controls the dynamic response of a system especially near the critical
speeds. Yet, its characterization remains a challenge and the literature on gear damping is still
sparse. Damping factors are usually employed and adjusted based on experimental evidence
but, so far, it seems that no formulation can be generalized to any gear geometry. Two global
formulations are commonly used in gear dynamics:

a) Rayleigh’s damping

Damping is introduced as a constant matrix which is expressed as a combination of the
average stiffness and mass matrices of the complete system under the form:

[C] = a[M] + b[K] (Il-76)

[K] is defined in (II-49) and empirical values of coefficients a and b are used which i) for a are
between 10% and 10* while ii) b ranges approximately from 1077 to 107%.

b) Modal damping factors

The damping matrix [C] is characterized using a modal approach with damping factors
either constant for all modes or dependent on the mesh contribution to the overall modal strain

energy such that:
‘I’E[C]‘Dp =26, /kq:pmqbp (1-77)

@, is the mode-shape of the undamped system with average stiffness matrix associated with
mode p.

Gp is the modal damping factor associated with mode p.

ke, and mg,  are the modal stiffness and mass associated with mode p.

In the case of an identical damping factor G for all modes, the values found in the literature
typically range from 0.01 to 0.2 [130].
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Dynamic model of gear systems based on transmission error

Gp can also be adjusted for each mode to try to account for the relative gear mesh
contribution to the total damping via the percentage of modal strain energy stored in the gear
mesh, leading to expressions of the form:

Gp =0.07 X p, +0.02 X (1 — pp) (I1-78)
pp is the percentage of modal strain energy stored in the gear mesh for mode p. 0.07 is a

typical order of magnitude of mesh damping factor whereas 0.02 represents internal
(structural) damping,.
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3 RESOLUTION

The simulation of the dynamic behaviour of a gear system can be viewed as a two-step
procedure (steps a) and b) as described in Section 5.1 of Chapter I). A quasi-static analysis is
performed first to characterize the excitations of the system (via mesh stiffness functions and
transmission errors). In a second step, these excitations are introduced as forcing terms in a
dynamic model including the elements presented earlier and the dynamic response of the
system is simulated by solving the equations of motion. This section presents each of these
tasks successively.

3.1 Definition of the excitations (quasi-static resolution)

Depending on the modelling strategy, the inter-mesh force wrench of each gear stage of
the system must be determined at each time step, prior to dynamic simulations. This wrench
is characterized by the gear mesh stiffness, transmission errors and structural vector.

These time-dependent parameters are calculated using specialised software codes
dedicated to the quasi-static analysis of cylindrical or spiral-bevel gears.

3.1.a) Cylindrical gears

Concerning spur and helical gears, the Load Distribution Program (LDP) developed at
the GearLab, of the Ohio State University [131] is used. The model can calculate tooth load
distribution based on gear elasticity and errors or modifications on the gear teeth. It includes
the effects of bending deflections, base rotation and local contact deflections of the contacting
teeth, along with the initial separations due to errors or modifications.

X
Lxh (1-ox)

0

y

Figure Il-12 : Geometry of tapered plate model, from Yakubek [14]

The bending deflections of the teeth are estimated using the model developed by Yakubek
[14], which relies on a tapered plate model and a Rayleigh-Ritz method. Base rotation
calculations are based on the dimensionless approximation developed by Stegemiller and
Houser [16,132] deduced from finite element results and the moment image method to
simulate edge effects. Finally, local contact deflections are estimated from Weber’s model
[133].
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Dynamic model of gear systems based on transmission error

Involute teeth are considered so that all contact forces and deflections are in the base plane
and tooth surface modification or error are modelled as initial normal separation or approach
between the pinion and gear tooth flanks. Two distinct criteria are used to formulate the load
distribution problem:

(a) for any potential point of contact M, the total sum of the elastic deformations and initial
separations must be larger than or equal to the relative normal approach between the
pinion and the gear in the base plane (condition of compatibility),

(b) the sum of all the torques acting on a gear body must be zero. In other terms, the sum
of the moments generated by the contact forces about the line of action must be equal,
but opposite in sign, to the applied torque.

A slack variable is introduced to rewrite the inequality equation of condition (a) as an
equality and a simplex type algorithm is used to solve for the load distribution.

At each angular position of the pinion/gear pair, the contact zone is discretized into
elemental cells, and for each of them, the following parameters (among others) are determined:

e position of the point of contact (centre of the elemental cell),

e radius at the point of contact from the centre of the gear body,
e load carried by each contact point,

o total tooth deflection (bending, base rotation and contact),

e total initial separation at the point of contact.

Transmission error is obtained from the sum of all of the deflections and initial
separations (positive separation for material removal and negative for excess of material with
respect to ideal tooth flank geometry). This value is computed for each angular position of the
pinion/gear pair and at each point in the contact zone. The resulting transmission error is the
minimum value obtained over all the contact points and is expressed in the direction of the
line of action as:

Vi'Xs+ NLTE (I1-79)

TEs = !

57 cos By

The elemental mesh stiffness is computed at each cell using the inverse of the precedent

value and multiplying it by the normal load carried by the cell. The elemental stiffness
elements are added as springs in parallel thus leading to the global mesh stiffness function.

. Mesh Stiffness
Transmission Error

(uin) (m) (1E6 Ibf/in) (1E6 N/m)
500 % > ¢ r12.70 [ [543
510 $12.95 3.001 525
5201 r13.21 290+ L 508
530 T [13.46 [ A
540f f1372 280, 4490
550 +—+—+—t+—+—+—t+—+—+—+—t+—+——+—t+——t—t+——t—+—t—t——t+—t+—+—++++13.97 2.70 —t—t—t—t—t—t—t+——t——t—t+—t+—t—t+—t+—t—+—+— 473

0002 0406 081012 14 16 1.8 20 22 24 26 2.8 00 02 04 06 08 10 12 14 16 18 20

Position on Mesh Cycle Position on Mesh Cycle
Torque = 890 Ib-in (101 Nm) Torque = 3540 Ibf-in (400 N-m)

Figure lI-13 : Example of LDP transmission error and mesh stiffness outputs (from [131])
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Chapter I1

In practice, two cases must be considered: one at nominal torque to determine the mesh
stiffness and quasi-static transmission error TEg functions and one at very low load to obtain
the no-load transmission error NLTE.

For cylindrical gears, the normal to the pinion tooth flanks n, is supposed to be constant
during the meshing process and, as detailed in Section 2.2.a) of this chapter, its expression in
frame (X,Y, Z) is:

esinfy
n, = [ cosppsina; ] (I1-80)
Jcosf,cosa; XY.2)

For most of the applications, the position of the centroid of mesh force distribution is
averaged over the mesh period and G is assumed to be centered in the base plane. However,
it is possible to include the time fluctuations of 0, G using the output details obtained from
LDP.

In the present configuration, the structural vector v for cylindrical gears is also assumed
to be constant in time and mesh excitations are characterized by only three time-varying
functions, i.e.:

e mesh stiffness,
e quasi-static transmission error under load TE,
e no-load transmission error NLTE.

3.1.b) Bevel gears

The load distribution problem for bevel gears is solved using the software ASLAN,
developed at LaMCoS, INSA de Lyon by Teixeira et al. [101,134,135] and, here again,
decomposed into three operations:

e definition of gear geometry by simulating the gear manufacturing process,
e simulation of no-load kinematics,
e load distribution calculation.

Figure ll-14 : Finite element model of a spiral-bevel pinion for the calculation of the coefficients of influence
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Dynamic model of gear systems based on transmission error

Load sharing is determined by solving the displacement compatibility conditions along
with static torque equilibrium. The compatibility conditions account for bending and contact
deflections, which are both characterized by coefficients of influence, and for initial
separations. The structural deflections are calculated by finite elements while the local contact
compliance is approximated using Boussinesq’s theory for elastic half-spaces. The equations
obtained from the compatibility conditions and static torque equilibrium are solved iteratively
by a fixed-point method.

A number of results are provided at each angular position both for no-load and loaded
conditions (transmission error, mesh stiffness, pressure distribution, etc.). The kinematic (no-
load) transmission error is deduced from the geometry of the gears and the initial separations.
The quasi-static transmission error under load is obtained from the relative approach between
the pinion and the gear, to which the no-load transmission error is added. The global mesh
stiffness is defined as the ratio between the applied normal load and the induced relative
normal approach. The direction of the global mesh force and the centroid of the mesh force
distribution are also calculated at each time step. Transmission error can be expressed as an
angular perturbation or as a displacement. In this case, it is defined as:

T
TEs = V;"Xs + NLTE (11-82)
T s 370 000
3 T %0000
o -155 > 350000
3 = = 340000
5 & 330000
T -165 £ 320000
j = =
5 S 310000
s . £ 300000
5 a7s g 290 000
c = 280000
O 8 T
@ Q270000
b o
E -85 G 280000
i 250 000
T 19
0
= 30 20 10 0 10 20 30
30 20 -0 0 10 20 30
Pinion rotation angle (°) Pinion rotation angle (°)

Figure ll-15 : Example of ASLAN transmission error and mesh stiffness outputs

In the case of bevel gears, the time variations of the global mesh force direction cannot be
neglected any longer. Therefore, the structural vector v; has to be computed at each time step
in terms of the instant normal vector n; and the instant position G of the centroid of the mesh
force distribution.

For bevel gears, mesh excitations are therefore characterized by five time-varying
functions:

e mesh stiffness,

e quasi-static transmission error under load TEj,

e no-load transmission error NLTE,

e position of the centroid of mesh force distribution,

e orientation of the global mesh force (normal vector).
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3.2 Phase shift between successive gear stages

For gear stages separated by an intermediate shaft, the mesh period is different and the
phase shift between the excitation signals depends on the mounting conditions which are often
unknown.

However, if the pinions are mounted in series (one pinion meshes with at least two
others), the mesh period is the same for each mesh and the phase shift between the excitation
signals is imposed by geometrical considerations.

The calculation of the phase shift for a driving wheel at the extremity of the drive chain is
presented on the example illustrated in Figure II-16. Stage (1), composed of the driving wheel
(1) and of the first driven wheel (2) is the reference for the position of the lines of contact in
the base plane. The phase shift at stage (II) (between wheels (2) and (3)) is denoted Al. For
each mesh, the contact area is limited by points T{ and T,. When one line comes in contact at

T{ @ the phase shift Al is the distance between Ty U1 and the closest point of contact in the base
plane associated with mesh (/7). It can be mathematically expressed as:

Sb _SPba lf EPbaSSba
Alz{ @ . (11-82)
Sba+(1_£)Pba lf SPba>Sba

with:

Spa the apparent base tooth thickness of wheel (2)

Py, the apparent base pitch
|T1/(I)T1/(”)|

€= and || || is the remainder of the division.

Ppa

TI(II)

As illustrated in Figure II-16, the distance |T1’ o |

, following the lines of action and

base circles reads:

|T1,(1)T1,(11)| - |T1,(1)T2(1)] + DRy, + |T1(")T1’(")| (11-83)

The positions of points Ty and T, are imposed by the base and tip radii and, using the
basic geometrical properties illustrated in Figure 1I-17, it comes:

|Tlr(1)T2(1)] _ ’Réz _ Rgz (11-84)
|T1(”)T1'(H)| = |0,03]| sin aé") - ,/R6213 - RI%B (11-85)
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A First stage Second stage

Al

P(I) P (1)
> ; an >
70 T @

Figure lI-17 : Geometrical parameters for the calculation of the contact zone boundaries
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3.3 Harmonization of time discretization

Resolutions in time domain require the definition of a time step and of a total period of
acquisition. For most of the cases presented in this memoir, all the teeth of a given pinion/gear
pair exhibit the same profile: without any modification or with identical modifications on all
teeth. In this case, the period of the excitations generated by the meshing process is equal to
the mesh period of the gear pair and the quasi-static resolution can be ran over a single mesh
period.

In the presence of some types of errors (e.g. pitch errors), the excitations have a period
equal to the least common multiple between the rotational periods of the pinion and the gear.
In such cases, the simulation time for the quasi-static problem should be long enough so as to
capture all the possible combinations of contacting teeth.

Once the mesh excitations have been characterized for each gear stage, the time
discretization must be re-scaled in view of the dynamic resolution. The gear stage with the
smallest mesh period, and the associated time discretization used for the quasi-static analysis
are taken as reference. An interpolation function is used to update the discretization of the
quasi-static excitations associated with the other mesh stages of the systems, accounting for
the angular velocity ratio. An illustration is given in Figure II-18.

w1077 Stage 1 =107 Stage 2
4 4

_— _—
E, 3.5 E« 3.5
bl i
g 2
g 3 z 3
8 k:
% 2.5 % 2.5
o o
=1 =
S. 2 E 2

1.5 1.5

0 0.1 0.2 0.3 0 0.1 0.2 0.3
Angular position of the pinion (rad) Angular position of the pinion (rad)
_5
4 a lﬂ I 1 1 I

_—
E' 35F ?‘
ey
b=
ey
g 3
g
7
E 2.5
o
=
E 2

1.5 1 1 1 1

0 5 10 15 20 25

Time normalized by the mesh period of stage 1

Figure II-18 : Example of the interpolation of transmission error signals
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3.4 Dynamicresolution

After the preliminary quasi-static analyses, the equations of motion (II-68) are solved step-
by-step in time using a Newmark integration scheme. At each time step, the stiffness matrix
of the system and the forcing terms are recalculated to account for the instant mesh stiffness,
transmission errors and structural vectors.

For a single-mesh system, the resolution has to be performed over several mesh periods
to reach stationary regimes. For multi-stage systems, the different mesh periods have to be
taken into account and the time domain of the dynamic resolution must generally by increased
in order to be able to obtain stationary states. To facilitate convergence, the initial condition is
set to be the static deflection, such that:

X(t =0) = X
X(t=0)=0 (1I-86)
X(r=0)=0

For speed sweep calculations, the solution in displacements, velocities and accelerations
obtained at the last time increment of speed n — 1 is used as initial condition of speed n.
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3.5 Output parameters

Some key parameters have been selected as indicators of the dynamic behaviour which
are defined below and will subsequently be used in the following chapters of this memoir.

3.5.a) Critical eigenfrequencies

The eigenfrequencies of the system are estimated using an average stiffness matrix and,
for each mode p, the percentage of modal strain energy stored in mesh (L) is determined as:

W . W (ng(L) 1400} T(pp
pp = (11-87)
T ol Ko+ kPvOr T e,

and is considered as an indicator of the severity of one frequency with regard to pinion-gear
mesh (L) . Critical speeds (amplifications of tooth loads) are expected when the mesh
frequency matches one of the critical eigenfrequencies of the system.

3.5.b) Dynamic transmission error

Following the definition of quasi-static transmission error (II-61), the local dynamic
transmission error of a given mesh (L) is related to the global solution X of the equations of
motion as follows:

TE( = wW' X + NLTE® (11-88)
where the projection vector W) is the same as that used for the definition of the no-load and
loaded quasi-static transmission errors.

The time variation amplitudes of dynamic transmission errors are widely accepted as
relevant indicators in gear dynamics which, here, will be quantified by their peak-to-peak
amplitudes or RMS levels.

3.5.¢) Dynamic mesh force

Dynamic mesh force at one given mesh (or stage) (L) is another characteristic parameter
in gear dynamics which for both cylindrical (spur, helical) and bevel gears reads:

[k (8L - NirE® - w®" (x, - %7)

T
F = kW @v® x — g -1 (11-89)

k%) W(L) T)?(()L)

The maximum of the dynamic mesh force in steady-state conditions is representative of
possible tooth overloads in dynamic conditions. This parameter is often expressed in a
dimensionless form as the maximum dynamic to static mesh force ratio (known as mesh force
dynamic factor):

max (F ch))

(1I-90)
(L)
K

pF® =

mf
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4 CONCLUSION

This chapter presents the three-dimensional model developed in this work which is
dedicated to the simulation of the dynamic behaviour of multi-stage gear systems. The model
relies on a transmission error-based characterization of mesh excitations. The theoretical
grounding is first exposed on a simple single-degree-of-freedom system to highlight how
kinematic (no-load) and quasi-static loaded transmission errors control gear dynamic
response.

An extension to three-dimensional systems with multiple gear stages is then presented.
Mesh excitations are modelled by time-varying mesh stiffness functions and transmission
errors. The formulation allows to account for mesh elasticity as well as initial separations
between gear teeth (caused by tooth modifications or manufacturing and mounting errors). A
specific two-node gear element is developed which can be adapted to cylindrical or bevel
gears. The other components of the transmission (shafts, bearings, elastic couplings and
additional inertias) can be introduced using lumped parameter elements. All the components
of the system are assembled and the global equations are expressed in terms of time-varying
mesh stiffness and transmission errors of each gear stage. This formulation relies on the
assumption that the dynamic contact conditions are close to those in quasi-static and therefore
contact losses cannot be simulated this way.

A preliminary quasi-static analysis is performed for each gear stage to characterize mesh
excitations. The dynamic equations of motion are finally solved step by step in time using a
Newmark integration scheme.
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This chapter presents elements of validation of the proposed transmission error-based
formulation for single and double-stage systems.

The first two sections focus on single-stage systems with parallel axes.

The results from a different spur gear model are first compared with those obtained from the
transmission error-based approach. Different configurations of profile modifications are
studied, showing that the proposed model accurately accounts for tooth modifications.

Previous experimental evidence are presented in Section 2 and used to validate the proposed
model in the case of helical gears mounted on long transmission shafts requiring three-
dimensional degrees of freedom to account for bending and axial displacements.

The third section of this chapter presents an example application to spiral-bevel gears and
comparisons with results obtained by using a different modelling strategy.

Finally, the validity of the formulation is assessed on a double-stage spur gear system from
the literature. The results obtained using the transmission error-based theory are compared
with the simulations performed from a different modelling strategy. Different gear
arrangements are investigated and the influence of profile modifications is addressed.
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1 SINGLE-STAGE SPUR GEAR SYSTEM — NUMERICAL VALIDATION

This section presents the first elements of validation of the transmission error-based
model. It focuses on a single-stage spur gear system, which was initially studied by Raclot
[114]. The gears are first modelled without any tooth modification and two different
configurations of profile relief are studied.

Raclot compared the results obtained from two different models:

e In the first one, mesh excitations are approximated by their corresponding quasi-static
expressions and the equations of motion are projected in the frequency domain. The
solutions are then derived by an iterative spectral method, as proposed by Perret-
Liaudet [136].

e In the second model, a contact algorithm is coupled to the resolution of the dynamic
equations of motion. The actual contact conditions are therefore solved at each time
step and for any rotational speed, allowing to account for changes in contact pattern
under dynamic conditions (and for possible contact losses).

The results obtained from this second model are used in what follows in order to evaluate
the ability of the transmission error-based approach to accurately simulate mesh excitations.

1.1 Unmodified gears

The system as proposed by Raclot is depicted in Figure III-1. It is composed of a single
spur gear stage and the pinion and the gear shafts are both supported by two identical
bearings. Gear data are detailed in Table III-1. Table III-2 gives the shaft characteristics (using
the circled element numbers of Figure III-1) and bearings. The model comprises a total of 54
degrees-of-freedom. The global damping matrix is built using the mode shapes of the system
determined by considering a time-averaged stiffness matrix and a unique damping factor of
0.1 is used (cf. Section 2.6 b) of Chapter II).

Gear

Node #§

Output 5@ .@.Zi. Cg) 9
6
4

Bearing a

Input ga! @ @ .3 3
2 4

Pinion

Figure lll-1 : Single-stage model, from Raclot [114]
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Table lll-1 : Single-stage system — Gear data, from Raclot [114]

Pinion Gear

Number of teeth 27 63
Face width (mm) 72

Module (mm) 4

Pressure angle (deg) 20

Helix angle (deg) 0
Addendum coefficient 1.0 1.0
Dedendum coefficient 14 1.4
Profile shift coefficient 0 0

Table Ill-2 : Single-stage system — Shaft and bearing data, from Raclot [114]

Shaft Shaft element Length (mm) dialli:(::::l?;m)

1 116.775 80
Input shaft 2 116.775 80

3 98.43 80

5 92.43 90
Ouput shaft ° 209 %

7 59.69 90

8 76.69 90
Bearings Radial stiffness of 4.108N /m for all bearings

A constant input torque of 1 500 Nm is applied at the extremity of the pinion shaft and
the input speed is varied from 100 to 14 500 rpm. For each rotational speed, dynamic
transmission error is computed using the definition given in paragraph 3.5.b) of Chapter II.
The RMS value of the time-varying part of the dynamic transmission error signal (which Raclot
refers to as transmission error shape factor) is then used for comparison purposes. Figure III-2
shows the results obtained from the transmission error-based approach presented in Chapter
IT (“TE model”) compared with those from the model based on the resolution of the actual
contact conditions (“local model”, from Raclot [114]). Both methods provide results in very
close agreement, either in the position of the predicted critical speeds or in the amplitude of
the corresponding peaks.

Figure III-3 presents the same results as Figure III-2 but for a lower level of damping
(unique damping factor of 0.05). One can notice that the gear dynamic behaviour is dominated
by a large amplitude jump at the main critical speed, which is not reproduced by the
transmission error-based model. This observation highlights the major limitation of the
proposed approach: the theoretical formulation is based on the assumption that dynamic
contact conditions are close to those in quasi-statics and non-linearities are not accounted for.
Amplitude jumps associated with tooth separations cannot therefore be reproduced.
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Figure lll-2 : Single-stage system — Evolution of TE shape factor versus pinion speed (unmodified gears)

This limitation is considered acceptable provided that the model is dedicated to the study
of heavily loaded gear systems. Moreover, the occurrence of contact losses can be anticipated
from the transmission error-based approach by following the evolution of the global dynamic
mesh force. When the mesh force dynamic factor exceeds 2, tooth contacts are likely to be lost.
The speeds for which the dynamic factor is greater than 2 in Figure III-4 correspond to those
for which the local model predicts contact losses (around 3 650 and 6500 rpm).

%107

—&— TE model
— # — Local model

TE shape factor (m)

0 5000 10000 15000
Input speed (rpm)

Figure lll-3 : Single-stage system — Evolution of TE shape factor under reduced level of damping (5%)
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2.4
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Figure lll-4 : Single-stage system — Influence of damping on the evolution of the mesh force dynamic factor

These results confirm that the transmission error-based predictions are in accordance with
the expected dynamic behaviour for a single gear pair with ideal errorless and unmodified
teeth. The next section deals with the introduction of profile modifications and their influence
on the dynamic response.

1.2 Influence of profile modifications

Following Raclot [114], two configurations of profile modifications are studied in this
section and compared with the previous case with unmodified tooth profiles. The system is
identical to that exposed in the previous section, with the same gear macro geometry. The
profile modifications are symmetric tip reliefs with a depth of modification of 30 pm. A
schematic representation of the modifications is given in Figure III-5. The three following
conditions are then compared:

e unmodified profiles,
e short relief (modification applied over 20% of the active profiles),
¢ long relief (modification applied over 40% of the active profiles).

Unmodified profile

Length of modification
—— ¢ )

Depth of
modification
Length of active profile
< >

Figure lll-5 : Schematic representation of linear symmetric tip relief
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The results obtained with the short reliefs are shown in Figure III-6. Here too, both the
local and transmission error-based models deliver very similar results. However, larger
discrepancy is observed in Figure III-7 in the case of long profile modifications.

-6
10 = 10 .

—&—TE model
—— Local model

TE shape factor (m)

5000 10000 15000
Input speed (rpm)

Figure 111-6 : Single-stage system — Introduction of short profile modifications

%107

—&— TE model
—— Local model

TE shape factor (m)

0
0 5000 10000 15000

Input speed (rpm)

Figure lll-7 : Single-stage system — Introduction of long profile modifications

The reason for the discrepancy observed over the complete range of speeds in Figure II1-7
is that the long modifications were defined as optimal by Raclot, using a model based on a
constant stiffness per unit of contact length [42]. The stiffness formulation used in the
transmission error-based model is different and therefore, the long modifications are not as
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effective in reducing the fluctuations of quasi-static transmission error and hence the dynamic
amplifications near the critical speeds.

However, the comparison of the three configurations of tooth modifications shows that a
significant reduction in the fluctuations of transmission errors (both quasi-static and dynamic)
is obtained when long modifications are applied on tooth profiles. This trend is reproduced
by both models, as illustrated in Figure III-8.
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Figure llI-8 : Single-stage system — Comparison of different configurations of profile modifications

The results presented in this section prove that, for systems with linear behaviour, the
transmission error-based formulation is equivalent to a local model with a resolution of the
contact conditions at each time step. It is also evidenced that the proposed formulation allows
to account for tooth modifications. However, one of the main limitations of this approach has
been pointed out by showing that contact losses cannot be reproduced.

The next section proposes to extend the validation of the transmission error-based
approach by comparing experimental and numerical findings.
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2 SINGLE-STAGE SPUR [ HELICAL GEAR SYSTEM — EXPERIMENTAL
VALIDATION

The test bench mentioned in the following section was in operation at LaMCoS - INSA
Lyon in the 1990s. It was used to test high quality spur and helical gears with linear profile
modifications. The experimental setup did not allow transmission error measurements but
strain gauges were cemented at the fillet of some teeth making it possible to estimate root
strain/stress and tooth dynamic bending moments [74].

This section presents the numerical results obtained for the spur and helical gear
configurations from the transmission-error-based formulation presented in Chapter II and
compares them to the experimental evidence.

2.1 Experimental setup

The test rig represented in Figure III-9 and Figure III-10 is an open-loop single stage spur
or helical gear system. Power is supplied by a 220 kW electric motor which can operate the
pinion shaft between 0 to 6000 rpm whereas the output torque (maximum 4200 Nm) is
imposed by an electric generator. These elements are represented by external inertia at the
extremity of the input and output shaft of 3 kg.m? for the motor and 21 kg.m? for the generator.

The shafts are supported by hydrostatic (for low speed applications) or hydrodynamic
bearings which are housed in rigid casings fixed to the base of the test stand. The connections
between the motor / generator and the pinion / gear shaft are ensured by elastic couplings.
Axial forces are balanced by thrust bearings. The housing is made of cast iron and fixed to a
concrete block resting on springs and dampers. The reduction unit is permanently jet
lubricated by a lubricant (ISO VG 100) at a constant temperature of 55°C. A low pressure
system provides lubrication to the gears and the hydrodynamic bearings while hydrostatic
bearings are supplied in oil by a high pressure system.

Figure lll-g : Single gear stage experimental setup, from Baud and Velex [74]

The gear characteristics are listed in Table III-3. The pinion and gear tooth profiles are
modified by symmetric linear tip relief, as depicted in Figure I1I-5. Tooth leads are unmodified
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but slight chamfers have been introduced to avoid corner contacts. Gears are made of
30CrMoV steel and ground. Profile modifications as well as pitch errors were carefully
controlled and cumulative pitch errors do not exceed 20 um on either gear (ISO quality grade
4).

The shafts (Table I1I-4) were manufactured to close tolerances in order not to deteriorate
the accuracy of the gears. Magnetic probes positioned 90° apart are used to measure bending
displacements at four different locations on each shaft. Micro uniaxial strain gauges are
cemented at the root of three successive teeth on the pinion and the gear with four active
gauges distributed across the face width, as shown in Figure III-11. Two slip rings mounted at
the end of each shaft are used to transfer the gauge signals from the rotary to the stationary
system.

6m

r 3
A J

housing

generator
torquemeter

wheel [

A ‘ —
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=B [0 (] 2m
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= I - =t — 1

pinion
[‘:r’ﬁ—m | J v
_
motor . \ /
thrust bearing bearings

Figure lll-10 : Schematic representation of the complete setup, from Baud and Velex [74]

Table lll-3 : Single-stage experimental setup — Gear data

Pinion Gear
Tooth number 26 157
Module (mm) 4
Helix angle (deg) 0 (spur)
gle (deg 12.5 (helical)
Pressure angle (deg) 20
. 366 (spur)
Center distance (mm) 375 (helical)
Face width (mm) 50 40
Addendum coefficient 1 1
Dedendum coefficient 1.4 14
. . . . -0.16 (spur)
Profile shift coefficient 0.16 -0.14 (helical)
: I 20 (spur)
Profile modification - Depth (um) 13 (helical)
Profile modification - Length 20% of active profile
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Table Ill-4 : Single-stage experimental setup — Shaft data

Pinion shaft Gear shaft
Outer diameter (mm) 70 90
Inner diameter (mm) 30 30
Total length (mm) 1280 1415

Figure lll-11 : Strain gauges position, from Baud and Velex [74]

Thrust bearings are mounted on both shafts to compensate the axial forces generated by
helical gears. The associated axial stiffness are given in Table III-5. The dimensions of the
hydrodynamic bearings are listed in Table III-6 and the characteristics of the elastic coupling
mounted on the pinion shaft can be found in Table III-7.

Table Ill-5 : Single-stage experimental setup — Stiffness of thrust bearings
Pinion shaft Gear shaft

Axial stiffness (N/m) 4.107 6.107

Table I11-6 : Single-stage experimental setup — Dimensions of the hydrodynamic bearings

Pinion shaft Gear shaft
Diameter (mm) 70 90
Length (mm) 50 65
Radial clearance (um) 150 110

Table I1l-7 : Single-stage experimental setup — Elastic coupling characteristics

Mass 9.6 kg
Polar moment of inertia 0.025 kg.m?
Torsional stiffness 3.64 105 N.m/rad
Bending stiffness 1.37 10* N.m/rad
Radial stiffness 3.64 108 N/m
Axial stiffness 108 N/m
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2.2 Static behaviour

Preliminary static analyses have been performed in order to verify that the data from LDP
were consistent with the strain gauge measurements at low speeds. The experimental fillet
strain amplitudes have been normalized with respect to their maximum amplitudes and
compared with the dimensionless tooth bending moment calculated by simulation and
defined as:

_ FyxLy

p= M;nax (Ill-2)
s

where F; is the force acting on the tooth, L, is the tooth force lever arm taken as the difference
between the base radius and the radius at the point of contact, M[,’;ax is the maximum bending

moment in quasi-static conditions.

Figure III-12 shows that the normalized bending moment M, can be considered as
representative of normalized fillet stresses. However, slight differences can be observed when
the tooth is unloaded since the bending moment drops to zero whereas actual fillet stress does
not because of gear blank deflections.

1.2¢ : v 1 T
[ TE model l
Experimental signal |

0.8}
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Figure Ill-12 : Single stage spur gear test rig — Comparison between experimental and simulated fillet stress

2.3 Dynamic behaviour — Spur gears

In what follows, the experimental measurements were obtained for the spur gear set and
hydrodynamic bearings. The input speed was varied from 50 to 6 000 rpm on the pinion shaft
and the torque was set to 1 540 Nm on the gear shaft. Measurements and simulations were
performed for two different bearing positions: (a) a minimum bearing spacing of 320 mm and,
(b) a maximum bearing spacing of 640 mm. In both cases, the pinion and the gear were
centered with respect to the bearings. The stiffness and damping coefficients of the
hydrodynamic bearings have been estimated using the theory of finite-length journal bearings
detailed in [137] and the dimensions are given Table III-6.
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The finite element model of the entire gear system (with maximum bearing spacing) is
presented in Figure III-13. It should be noted that tooth modifications are accounted for in the
dynamic simulations, whereas the influence of pitch errors is neglected.

Thrust bearing

Load

Couplings Hydrodynamic bearings Additional inertia

Figure lll-13 : Finite element model of the single stage test rig

The damping matrix [C] is characterized using a modal approach with damping factors
Gp depending on the mesh contribution to the overall modal strain energy (cf. Section 2.6 of
Chapter II).

The normalized dynamic bending moment M, (I1I-1) is calculated for a number of speeds
and its maximum amplitude is sought over the second pinion revolution to make sure that
numerical transients are all eliminated. This maximum value of the normalized bending
moment is thereafter referred to as the bending moment dynamic factor. The dynamic
response curves are then derived by plotting the evolutions of this maximum value versus the
pinion rotational speed from which tooth critical speeds are identified as the speeds where
tooth bending moments are amplified.

Figure III-14 and Figure III-15 respectively show the simulation results for (a) the
minimum and (b) maximum bearing spacing together with the envelopes of experimental
measurements (i.e. the maximum and minimum of the maximum normalized fillet stresses
measured on several pinion revolutions). The two sets of results are in close agreement, both
in terms of tooth critical speed positions and peak amplitudes. The discrepancy in terms of
peak positions in Figure III-14 and Figure III-15 are caused by the softening effect induced by
instant contact losses and shocks between the teeth as observed by Baud and Velex [74]. The
proposed transmission error-based formulation being essentially linear, it cannot account for
this particular phenomenon, as discussed in paragraph 1.1 of this chapter. The two sets of
results show the significant influence of shaft bending on the dynamic behaviour of gear
transmissions and confirm that the model can accurately capture these phenomena.

99
Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LY SEI133/these.pdf
© [N. Sainte-Marie], [2016], INSA Lyon, tous droits réservés



Chapter III

Experimental measurements

—— Simulation

Bending moment dynamic factor

0.8 | | 1 1 | |
0 1000 2000 3000 4000 5000 6000

Pinion speed (rpm)

Figure lll-14 : Spur gear test rig — Comparison of experimental and simulated dynamic response — Case (a)
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Figure lll-15 : Spur gear test rig — Comparison of experimental and simulated dynamic response — Case (b)
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2.4 Dynamic behaviour — Helical gears

Similar tests were conducted using the helical gear pair and the maximum bearing
spacing configuration. In contrast with the spur gear results, the fillet stress distribution is not
uniform across the face width and different dynamic responses are obtained for each strain

gauge.

In Figure I1I-16, the maximum normalized bending moment is plotted against the pinion
speed (red curve) and compared with the average of the four strain gauges signals for one
tooth (grey envelope). Compared with spur gears, dynamic amplifications are far smaller
whereas the absolute scatter over the speed range is comparable thus leading to larger relative
dispersions around the average root stress amplitudes. It is believed that most of this
phenomenon can be attributed to the influence of pitch errors combined with relatively light
nominal loading.

However, it can be observed, here again, that the correlation between the experimental
and simulated fillet stresses is satisfactory and that the positions of the tooth critical speeds
are accurately predicted by the dynamic model. It can therefore be accepted that the proposed
dynamic model captures most of the dynamic tooth loading characteristics for this test rig with
either spur or helical gears.
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Figure lll-16 : Helical gear test rig — Comparison of experimental and simulated dynamic response
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3 SINGLE-STAGE SPIRAL-BEVEL GEAR SYSTEM — NUMERICAL
VALIDATION

To the author’s knowledge, the experimental measurements performed on bevel gears
available in the literature are limited to quasi-static analyses [50,138,139] and no studies have
been realised in dynamic conditions. For this reason, a numerical model developed by Wang
et al. [101,102] is used here for validation purposes. This dynamic model is based on a local
description of the instantaneous contact conditions through a discretization of the potential
contact area between the pinion and the gear into elemental cells to which mesh stiffness
elements (Wrinckler’s elastic foundations) are attributed. This model allows the estimation of
the dynamic pressure distribution between the gears in mesh and has been validated using
quasi-static results from the literature.

3.1 System under study

The gears used for the validation of the dynamic model were initially studied by Simon
[88,140,141]. The local dynamic model proposed by Wang managed to reproduce a similar
tooth pressure distribution in quasi-static conditions [102] and was then used to study the
evolution of the mesh force dynamic factor with the input speed of the system.

The main geometrical data of the spiral bevel gear pair is given in Table III-8. Further
details can be found in the literature [88,140,141]. Short and stiff shaft elements are defined to
eliminate the influence of shaft bending. Two identical bearings are located at the extremities
of each of the pinion and gear shafts, the associated stiffness are listed in Table III-9. In
accordance with Wang’s model, a Rayleigh damping matrix is introduced, following the
definition given in Section 2.6 of Chapter II. It is proportional to the mass matrix, with a
coefficient a = 1500.

Table 11-8 : Spiral-bevel gear system — Gear data

Pinion Gear
Tooth number 13 50
Module (mm) 5
Mean spiral angle (deg) 35
Pressure angle (deg) 20
Outside diameter (mm) 76.746 251.224
Face width (mm) 30
Addendum (mm) 6.068 2432
Dedendum (mm) 3.432 7.068
Pitch angle (deg) 14.5742 75.4258
Backlash (mm) 0.1
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Table Ill-9 : Spira

[-bevel gear system — Bearing data

Stiffness
Axial (N/m) 10°
Radial (N/m) 10°
Bending (N.m/rad) 104

3.2 Dynamic response

A constant input torque of 80 Nm is applied at the extremity of the pinion shaft and the
rotational speed of the pinion shaft is varied between 250 and 13 250 rpm. The global mesh
force is computed for each rotational speed, using the definition presented in Section 3.5.c) of
Chapter II. The corresponding dynamic factor is plotted versus the input rotational speed
(Figure III-17) and compared with Wang’s results. A very good correlation is observed

between the results from both models, in terms of critical speeds and peak amplitudes.
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Figure Ill-17 : Spiral-bevel gear system — Comparison of the transmission error-based model with Wang’s local
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The spectral content of the dynamic mesh force at each rotational speed is plotted in
Figure I1I-18. The spectrum contains the fundamental and first harmonic of mesh frequency
only. Besides, Figure III-18 shows that the major critical speed corresponds to a coincidence
between the fundamental of the spiral-bevel gear mesh frequency and the most critical natural
frequency of the system, for which 67% of the modal strain energy is stored in the mesh.
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Figure lll-18 : Spiral-bevel gear system — Spectral content of the global dynamic mesh force (amplitude in N) —
Static mesh force 3 574 N
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4 DOUBLE-STAGE SPUR GEAR SYSTEMS — NUMERICAL
VALIDATION

Raclot has realised an extensive study of double-stage spur gear systems, with different
gears and various profile modifications [114]. The model used is based on a simultaneous
resolution of the contact conditions on the teeth and the equations of motion.

Two different gear arrangements are studied:

¢ atwo-mesh system with four gears and an intermediate shaft between the two stages,
¢ atwo-mesh system with three gears comprising an idler gear.

Different profile modifications are introduced and their influence on the dynamic
behaviour of the system is investigated. The influence of the relative phasing between
successive meshes on the dynamics of the idler gear system will be discussed in Chapter IV.

4.1 System with intermediate shaft

4.1.a) Description of the system

The first example of application is the dual-mesh spur gear system proposed by Raclot
and shown in Figure III-19. The gear data are given in Table III-10. A coarse discretization of
the shafts was defined by Raclot and is precisely reproduced here for the sake of comparing
the two modelling approaches. The model comprises 13 nodes with 6 degrees-of-freedom per
node.

The three shaft axes lie in the same plane and their dimensions are given in Table III-11
using the element labelling in Figure III-19. The material characteristics are those of steel
(density 7 800 kg/m3, Young Modulus 210 GPa). Each shaft is supported by two bearings
located at its extremities. All bearings are identical (characteristics in Table I1I-12) and it should
be noted that the gears are not centred between the bearings. The system includes no external
inertia.

In this configuration, the relative phase shift between both mesh excitations is
independent of the shaft position and varies with time since the mesh periods are different.

Table lll-10 : Dual-mesh spur gear system with intermediate shaft — Gear data
Pinion 1 Gear 1 Pinion 2 Gear 2

Number of teeth 27 63 25 69
Face width (mm) 72 100
Module (mm) 4 6

Helix angle (deg) 0

Pressure angle (deg) 20 20
Addendum coefficient 1.0 1.0
Dedendum coefficient 1.4 1.4
Shift profile coefficient 0.0 0.0
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Figure lll-19 : Dual-mesh spur gear system with intermediate shaft — Model of the system

Table lll-11 : Dual-mesh spur gear system with intermediate shaft — Shaft data

Shaft Shaft element Length (mm) diarlil)::::l(atilm)
1 116.775 80
Input shaft 2 116.775 80
3 98.43 80
5 9243 90
6 59.69 90
Intermediate shaft
7 59.69 90
8 76.69 90
10 96.77 133.35
Output shaft 11 183.35 133.35
12 183.35 133.35

Table lll-12 : Dual-mesh spur gear system with intermediate shaft — Bearing data

Stiffness
Axial (N/m) 4 x 108
Radial (N/m) 4 x 108
Bending (N.m/rad) 1010
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4.1.b) Dynamic analysis

A constant 1 500 Nm input torque is applied whereas the input speed is varied between
100 and 30 000 rpm. The damping matrix is derived from the mode-shapes of the undamped
system employing a unique modal damping factor of 0.1. For each rotational speed, the local
dynamic transmission error associated with each mesh is calculated from the global solution
vector X following definition (II-88) along with the associated shape factor (RMS of the time-
varying part of the signal).

The results obtained for the unmodified gears are shown in Figure III-20 for both gear
stages and it can be observed that the results of the transmission error-based formulation agree
well with Raclot’s findings.

Figure III-21 and Figure III-22 show that the spectral content of the dynamic transmission
error at each gear stage is dominated by the associated mesh frequency (fundamental + first
harmonics). Critical speeds are observed in the evolution of the transmission error shape factor
when the mesh frequency (or one of its harmonics) of a gear pair matches one of the first critical
frequencies (for which an important percentage of the modal strain energy is stored in the

mesh).

Besides, some coupling between the two meshes can be observed in Figure III-21. The
spectrum of the dynamic transmission error of stage 1 contains low amplitudes at the mesh
frequency of the second gear stage. Stage 2 therefore has an influence on the dynamic
behaviour of stage 1 but stage 1 does not seem to influence stage 2 (Figure III-22). The
introduction of a stiffer intermediate shaft would probably amplify this coupling and generate
an additional critical speed on stage 1 (around 20 000 rpm).
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Figure lll-20 : Dual-mesh spur gear system with intermediate shaft — Dynamic response of the system with
unmodified gears
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Figure lll-21 : Dual-mesh spur gear system with intermediate shaft — Stage 1 —Spectral content of the dynamic
transmission error (Amplitude in m)
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4.1.c) Introduction of profile modifications

In what follows, profile modifications are introduced and the dynamic response of the
system is compared with that for unmodified tooth profiles presented in the previous section.
Linear symmetric tip reliefs with two different extents of modification are considered.

Table llI-13 : Dual-mesh spur gear system — Definition of linear symmetric tip relief

Stage 1 Stage 2
Depth of modification 30 pm 30 pm
Short relief % : % :
Length of modification 20% of e'lctlve 20% of ?ctlve
profile profile
Depth of modification 30 um 30 pm
Long relief 9 i 9 i
8 Length of modification 40% of e.lctlve 40% of éctlve
profile profile

First, the gears of both stages are simultaneously modified in the same way, following the
definition given in Table III-13. As visible in Figure III-23 and Figure I1I-24, the results obtained
from the transmission error-based model are in very close agreement with Raclot’s findings.

Besides, the results show that profile modifications have a significant influence on the
dynamic response of the system. In particular, the long reliefs allow to reduce efficiently the
dynamic amplifications over the complete speed range. These modifications were defined by
Raclot as optimal as they lead to almost constant quasi-static transmission errors (using a
model where the mesh stiffness per unit contact length is constant). The stiffness formulation
used in the proposed model is different and therefore, the long modifications do not lead to
perfectly constant quasi-static transmission errors and are therefore not as effective in reducing
the dynamic amplifications close to the critical speeds.

x 1075 Raclot x 10”3 TE formulation

1.2 1.2

—&— No modification
—— Short relief
Long relief

ot
%0
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5
5
TE shape factor (m)
= =
= =

0.2F

i i I 0 i i J
0 10000 20000 30000 0 10000 20000 30000
Input speed (rpm) Input speed (rpm)

Figure lll-23 : Dual-mesh spur gear system with intermediate shaft — Stage 1 — Influence of profile modifications on
the dynamic response
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Figure Ill-24 :
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Dual-mesh spur gear system with intermediate shaft — Stage 2 — Influence of profile modifications
on the dynamic response

The analysis of the spectral content of the dynamic transmission error of stage 2 in the

presence of

long reliefs on both gear pairs shows that the first stage influences the dynamic

response of the second one (Figure III-25). The presence of long reliefs introduces non-zero no-

load transm

ission errors functions which generate additional excitations via the rigid-body

angular accelerations of the driven shafts.

Figure Ill-25 :
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Dual-mesh spur gear system with intermediate shaft — Stage 2 — Spectral content of the dynamic
transmission error in the presence of long reliefs on both gear pairs (Amplitude in m)
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The interactions between the two gear stages are further investigated by introducing the
long “optimal” profile modifications separately on each stage. Figure III-26 and Figure III-27
show that the dynamic response of each stage has an influence on the other one. It was
observed earlier that, in the absence of tooth modifications, stage 2 has a slight influence on
stage 1 (Figure I1I-21). Logically, the reduction of the vibration level on stage 2 is also beneficial
for stage 1. The dynamic response of stage 1 is therefore lower when both stages are modified
by long reliefs than when only stage 1 is modified (Figure III-26). The opposite phenomenon
is observed on stage 2. Without modifications, stage 1 has no influence on stage 2 but as soon
as long reliefs are introduced on stage 1, an additional excitation appears and the dynamic
response of stage 2 deteriorates (Figure I1I-27).

These results evidence that reciprocal interactions take place between the successive gear
stages of a system when both gear pairs are modified. However, in comparison with the
unmodified configuration, it seems that the introduction of profile modifications on at least
one of the meshes always leads to a reduction of the gear vibratory level for a system with
intermediate shaft (except for some points in Figure III-27 but the difference in the vibratory
level is very low). Finally, when only one gear pair is modified, the response on the other stage
remains practically unchanged.
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Figure Ill-26 : Dual-mesh spur gear system with intermediate shaft — Stage 1 — Analysis of the interactions
between successive stages
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Figure Ill-27 : Dual-mesh spur gear system with intermediate shaft — Stage 2 — Analysis of the interactions
between successive stages

4.2 System with idler gear

4.2.a) Description of the system

A different double-stage system is studied in this section which is composed of three
pinions with an intermediate idler gear. The gear data are listed in Table III-14. The finite
element model of the system is shown in Figure III-28 which comprises 9 nodes with 6 degrees-
of-freedom per node for a total of 54 degrees-of-freedom.

The axes of the three shafts lie in the same plane. Each shaft is supported by two bearings
located at its extremities and their dimensions are given in Table III-15 using the element
labelling in Figure III-28. Shafts are made of steel (density 7 800 kg/m?, Young Modulus
210 GPa. All bearings are identical (characteristics in Table I1I-16) and it should be noted that
the gears are not centred between the bearings. Lumped inertia elements are added at the
extremities of the input and output shaft to represent the motor and the load. For each of them,
the value of the polar moment of inertia is 6 kg.m?.
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Table Ill-14 : Double-stage spur gear system with idler gear — Gear data

Pinion1 Pinion?2 Pinion 3

Number of teeth 23 39 67
Face width (mm) 60

Module (mm) 6

Helix angle (deg) 0

Pressure angle (deg) 20
Addendum coefficient 1.0
Dedendum coefficient 14

Shift profile coefficient 0.0

Output
7 9
. 8
6
2nd stage Node @
Idler gear

4 5 5 Bearing i
4 6

3 I..L|111|)§(| I
p—t |5t stage inertia

Input g-1 1 2
2

Pinion

Figure Ill-28 : Double-stage spur gear system with idler gear — Model of the system

Table lll-15 : Double-stage spur gear system with idler gear — Shaft data

External
Shaft Shaft element Length (mm) diameter (mm)

1 350 80
Input shaft

2 100 80

4 150 100
Intermediate shaft

5 100 100

7 150 120
Output shaft

8 300 120
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Table I1I-16 : Double-stage spur gear system with idler gear — Bearing data
Stiffness

4 x 108
4x 108

Axial (N/m)
Radial (N/m)

Bending (N.m/rad)

0

Prior to the global dynamic analysis, the quasi-static excitation functions are defined for
each stage separately. Unlike the configuration with an intermediate shaft, the relative position
of the shafts imposes the phase shift between the meshes and the mesh frequency is the same
for both stages. The relative phase shift is calculated using the method detailed in Section 3.2
of Chapter II. For this particular architecture (three shafts in the same plane), the phase shift
happens to be almost nil. The corresponding excitation functions for the two gear meshes are
shown in Figure I1I-29 and Figure III-30.
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Figure lll-30 : Double-stage spur gear system with idler gear — Mesh stiffness functions

4.2.b) Dynamic analysis

A constant input torque of 3 000 N.m is applied at the extremity of the input shaft and the
input speed is varied from 100 to 14 500 rpm. The damping matrix is derived from the mode-
shapes of the undamped system using a unique modal damping factor of 0.1. For each
rotational speed, the local dynamic transmission error associated with each mesh is calculated
from the global solution vector X following definition (II-88) along with the associated shape
factor (RMS of the time-varying part of the signal).

The results obtained for the unmodified gears are shown in Figure I1I-31 and Figure III-32.
The simulation performed from the transmission error-based formulation is in very close
agreement with Raclot’s findings.

Figure III-31 and Figure III-32 show that the spectral content of the dynamic transmission
error at each gear stage is dominated by the mesh frequency of the system (fundamental + first
harmonics). Critical speeds are observed in the transmission error shape factor curve when the
mesh frequency (or one of its harmonics) of a gear pair coincides with one of the tooth critical
frequencies.
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Figure lll-31 : Double-stage spur gear system with idler gear — Stage 1 — Spectral content of the dynamic
transmission error (Amplitude in m)

117

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LY SEI133/these.pdf
© [N. Sainte-Marie], [2016], INSA Lyon, tous droits réservés



Chapter I1I

2xf
1073 "
45l 6000 f,
4 5000
3.5¢ _
[
3 4000
7]
2.5 8
) 53000
¥
2 =
3
o
1.5 mznnn
1000
0.5 — — — - Ist critical frequency - p = 83 %
0
2000 4000 6000 8000 10000 12000 14000
Input speed (rpm)
3.5 % 107
——&— TE model
— 3r —— Local model | 7
g
—2.5 :
=
¥ i
& 2
e1.5 ]
@
@
E 14 .
0.5 E

2000 4000 6000 8000 10000 12000 14000
Input speed (rpm)

Figure Ill-32 : Double-stage spur gear system with idler gear — Stage 2 — Spectral content of the dynamic
transmission error (Amplitude in m)
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4.2.c) Introduction of profile modifications

In what follows, long profile modifications (amplitude 30 um, extent 40% of the active

profile) are introduced simultaneously on both gear meshes. This configuration implies that
both flanks of the idler gear are modified. In a second step, the tooth profiles of each gear stage
are modified alternatively. The transmission error shape factors resulting from the four
configurations of profile modifications are shown in Figure III-33 and Figure I11-34.

Several observations can be drawn from this analysis:

Unlike the system with an intermediate shaft, the introduction of profile modifications
on one stage is not always beneficial for the global system. It can be observed in Figure
III-33 that the modification of the gear profile on stage 2 leads to an increase in the
vibration level on stage 1.

As observed on the dual-mesh system with intermediate shaft, profile modifications
can be used to improve the dynamic behaviour of the system. In this case, the
simultaneous introduction of profile modifications on both gear meshes causes a
reduction of the vibration level for both gear stages.

Whatever the configuration, the introduction of profile modifications does not alter the
position of the major tooth critical speeds. This observation could have been
anticipated since the dynamic response is mostly controlled by the mesh frequency
which is unique in this system with idler gear.

Finally, contrary to what was observed on the dual-mesh system with intermediate
shaft, the introduction of profile modifications on only one of the meshes always
influences the dynamic behaviour at the other gear stage, especially in the vicinity of
the critical speeds.

This analysis allowed to highlight the interactions that take place between the meshes of
a double-stage system with idler gear, which are more important than those observed for a
dual-mesh system with intermediate shaft.
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Figure lll-33 : Double-stage spur gear system with idler gear — Stage 1 — Influence of profile modifications
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Figure lll-34 : Double-stage spur gear system with idler gear — Stage 2 — Influence of profile modifications
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5 CONCLUSION

Several numerical simulations have been performed in order to validate the results
obtained on both single and multi-stage gear systems with the model presented in Chapter II.
In this context, both parallel and intersecting shaft systems are studied and the simulation
results are compared with experimental and numerical results from the literature. A good
agreement is obtained for each case studied, proving that the proposed transmission error-
based formulation is sound.

The first case study shows that the proposed model is well adapted to the simulation of
the dynamic behaviour of single-stage spur gear systems with unmodified gears. By reducing
the amount of damping, regimes with contact losses and impacts can be observed and it is
confirmed that the intrinsically linear model based on transmission error cannot simulate this
particular behaviour. However, it is believed that the proposed approach is adapted to heavily
loaded gear systems such as helicopter transmissions.

Different configurations of profile modifications are then introduced in the model and
results are correlated with the predictions derived from a more precise model accounting for
the instant contact conditions on tooth flanks. It is demonstrated that the transmission error-
based formulation can accurately simulate the contributions of tooth profile modifications
which can be used to reduce dynamic amplifications.

Extensive comparisons with evidence from a spur and helical gear test rig are presented
and it is confirmed that the model is able to simulate the dynamic behaviour of a complete
reduction unit, including shaft bending and bearing effects.

The simulation of spiral-bevel gears dynamic behaviour is finally tackled. A local model
from the literature is used for the validation of the transmission error-based formulation. Both
models provide results in very close agreement regarding mesh force dynamic factors.

A number of dynamic analyses of a double-stage spur gear system are finally conducted
and, here again, it is found that the proposed formulation is well adapted to multi-stage gears.
Similar conclusions are drawn for a) a double-stage system with intermediate shaft and, b) a
system with an idler gear.
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Chapter IV
Application to single- and
double-stage gear systems
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Chapter IV

The model presented in the previous chapters is applied to the study of the dynamic
behaviour of single- and double-stage gear systems.

The first two sections are dedicated to the study of single-stage systems.

First, the pitch errors measured on the pinions and gears of the test rig presented in Chapter
III are introduced in the model. The combined influence of pitch errors and load on dynamic
tooth loads is analysed.

Two different models of this system are exploited in Section 2: a) a full three-dimensional
approach including the pinion, gear, shafts, bearings and couplings, and b) a simplified
torsional model restricted to the pinion and gear only. The possibility to establish a linear
dependency between dynamic transmission errors and dynamic tooth loads is discussed.

The third section concerns the double-stage spur gear systems proposed by Raclot and
presented in Chapter I11. For each gear arrangement, the dynamic response at the bearings
is analysed and the influence of the relative mesh phasing on the dynamic response of the
idler gear system is evaluated.

Finally, the dynamic behaviour of multi-mesh systems comprising both cylindrical and
spiral-bevel gears is tackled. The couplings between the various meshes are clearly illustrated
by analysing the local dynamic transmission error spectra and, finally, the role of the shaft
connecting the two meshes is highlighted.
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Application to single- and double-stage gear systems

1 SINGLE-STAGE GEAR SYSTEM — INFLUENCE OF PITCH ERRORS

Although most of the gears used for power transmission are manufactured with high
precision, tooth shape errors can hardly be avoided thus altering the motion transfer between
the gears. Amongst all the possible types of manufacturing errors, tooth pitch errors are very
common and are known as potentially influential on mesh excitations.

Several authors studied the influence of pitch errors on tooth loads and root stresses [142]
and showed that they significantly modify quasi-static transmission errors under load
[143,144]. However, only a few studies directly dealt with the influence of manufacturing
errors on gear dynamics [145-147]. Bihr et al. [146] compared nominal and topologically
measured micro geometries of automotive counter gear drive train and found significant
differences in noise excitations. The authors highlighted the influence of manufacturing errors
on transmission error spectra and on the amplitude of dynamic tooth forces at critical speeds.
Inalpolat et al. [147] performed dynamic simulations over a range of speeds for errorless gears
and gears with deterministic or random spacing errors. The authors concluded that indexing
errors lead to higher dynamic response amplitudes along with additional frequency
components. They also stressed the role of the assembly configuration (such as clocking) when
accounting for indexing errors.

However, the vast majority of the dynamic models do not consider pitch errors although
their results compare generally well with experimental evidence. At first glance, this seems
contradictory with the fact that pitch errors strongly modify transmission error signals and
further studies are certainly needed in this area. Moreover, most of the results reported in the
literature are limited to spur gears and extensions to helical gears are certainly useful.

The three-dimensional model of the spur / helical test rig presented in Section 2 of
Chapter III is used for the present study. Pitch errors were carefully measured on the tested
gears [148] and the control charts are reproduced in Appendix B. These errors are introduced
in the model of the test rig and their influence is examined on the quasi-static and dynamic
behaviour of spur and helical gear systems. The combined influence of pitch errors and load
is then investigated.

1.2 Quasi-static analysis

In theory, the calculation of quasi-static excitations should be performed over Z; X Z,
mesh periods to capture all the possible contact combinations between the pinion and gear
teeth. However, the acquisition period was limited to two revolutions of the pinion to ensure
a sufficient time discretization and because of computational limitations. It is believed that
most of pitch error contributions to dynamic tooth loading can be captured in these conditions.
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Application to single- and double-stage gear systems

Figure IV-1 and Figure IV-2 show the influence of pitch errors on the time fluctuations of
transmission errors and mesh stiffness. It appears clearly that the introduction of pitch errors
modifies the period of the excitation signal. The spectral contents of the excitations are also
altered, as shown in Figure IV-3. While the spectrum of quasi-static transmission error in the
absence of tooth errors is only composed of the mesh frequency and its harmonics, additional
peaks appear when pitch errors are introduced. The resulting tooth bending moments
(simulated at very low speed) with and without pitch errors are shown in Figure IV-4.
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Chapter IV

1.2 Dynamic response

When tooth errors are considered, the dynamic factor computed at a given speed may
substantially vary from one tooth pair to the next depending on the combined tooth flank
deviation (cf. Figure IV-4). In order to account for this variation and in accordance with what
is done for the experimental root stress signals, the maximum and minimum values are
recorded at every rotational speed. It can be noticed in Figure IV-5 (spur gear case) that the
band of maximum dynamic root stress amplitudes calculated from the model agrees well with
the experimental envelope and the position of the tooth critical speeds is not affected by pitch
€eITorsS.
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Figure IV-5 : Single-stage spur system — Dynamic response in the presence of pitch errors

The spectral content of the total mesh force is computed at different speeds and presented
as a waterfall diagram in Figure IV-6 and Figure IV-7. When tooth errors are discarded, the
spectrum only contains the fundamental and the harmonics of the mesh frequency, whatever
the rotational speed (Figure IV-6). On the other hand, with pitch errors, additional peaks
appear and the amplitudes at the mesh frequency and its harmonics tend to decrease for all
speeds (Figure IV-7). These observations correlate well with the conclusions obtained by
Inalpolat et al. on spur gears [147].

Critical eigenfrequencies are computed using the definition given in Section 3.5.a) of
Chapter II and superimposed on the waterfall diagrams. The maximum amplitudes of the
global mesh force are obtained when the mesh frequency or its harmonics match one of the
critical eigenfrequencies. Major peaks are observed in the evolution of the maximum
normalized bending moment at these rotational speeds (Figure IV-5).
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Chapter IV

The same analysis has been conducted for helical gears. Again, the transmission error and
mesh stiffness functions were simulated over two pinion revolutions. The maximum and
minimum of the bending moment dynamic factor are sought on three successive teeth of the
pinion, in accordance with the experimental procedure.

Results are shown in Figure IV-8. Spectral contents of the global mesh force are shown in
Figure IV-9 and Figure IV-10. As for spur gears, additional peaks appear in the total mesh
force spectrum when pitch errors are considered. Besides, it is also observed that the
amplitudes at the mesh frequency and its harmonics significantly decrease at all speeds. The
maximum amplitude at the mesh frequency is approximately 24 % of the static mesh force
without pitch errors and it drops to less than 7 % in the presence of errors.

It can be concluded that the influence of pitch errors is more significant on the helical gear
example than on the spur gear one and that it would have probably been necessary to perform
the helical gear simulations over longer times to obtain better agreement with the
measurements (Figure IV-8).
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Figure IV-8 : Single-stage helical system — Dynamic response in the presence of pitch errors
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Chapter IV

1.3 Influence of load

In this section, simulations have been performed with a higher output torque of 4270 Nm
(instead of 1540 Nm in the previous sections) in order to appraise the possible combined
influence of load and pitch errors on dynamic tooth loads. Results are shown in Figure IV-11
to Figure IV-13 for helical gears only, but the same conclusions were obtained for spur gears.

As previously noticed, the introduction of pitch errors does not modify the positions of
tooth critical speeds. However, with a larger load, the scatter around the no-load solution
decreases, as visible in Figure IV-11. In the same way, the amplitude reduction at the mesh
frequency and its harmonics at critical speeds is less marked when the torque is increased, as
seen in Figure IV-12 and Figure IV-13). Without pitch errors, the maximum amplitude at the
mesh frequency is approximately 25 % of that of the static mesh force, and it is reduced to 18 %
when pitch errors are introduced. As a reminder, a reduction of 17 % was observed after the
introduction of pitch for a gear torque of 1540 Nm. It can therefore be concluded that the
influence of pitch errors on the dynamic response of spur and helical gears tends to become
less marked at higher loads.
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Figure IV-11 : Single-stage helical system — 4270 Nm — Dynamic response in the presence of pitch errors
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Chapter IV

2 SINGLE-STAGE GEAR SYSTEM — CORRELATION BETWEEN THE
DYNAMIC TRANSMISSION ERROR AND DYNAMIC TOOTH LOADS

Dynamic transmission error is a commonly used metric for gear vibrations although
dynamic mesh forces and root stresses are more relevant criteria when considering failures
and durability. In some recent studies, the possibility of a direct connection between dynamic
load or stress factors and dynamic transmission errors has been investigated [51,61,62]. The
evidence from the spur gear back-to-back test rig in [51,61] seems to indicate that the RMS or
peak-to-peak of dynamic transmission error is proportional to tooth load / root stress. As far
as the authors are aware, this linear dependency has been theoretically demonstrated for
torsional models only [62], and more research is certainly required for helical gears and / or
systems for which shaft bending cannot be neglected.

In this section, two different models based on the spur / helical test rig presented in
Section 2 of Chapter III are exploited: a) a full 3D approach which accounts for the pinion-
gear pair along with the shafts, bearings, couplings and load machines, and b) a simplified
torsional model restricted to the pinion and gear only. A number of results are presented to
study the possibility of establishing a linear relationship between dynamic transmission error
and dynamic tooth load or dynamic root stress factors.

A variety of dynamic factor definitions can be found in the literature on gear design to
quantify the dynamic effects on root stresses or mesh forces. Following [51], the two following
definitions are used in what follows:

max(Fy)

Dme = F—S (IV-12)

D = max(ag) _max(My,)

= =~ — V-
7 max(ds) max(M) (V=)

2.1 Three-dimensional models

Simulations have been performed based on the full three-dimensional test rig model with
maximum bearing spacing in order to evaluate the correlation between dynamic factors and
dynamic transmission errors as discussed in [51,61,62]. As opposed to the test rig used in
[51,61], the test bench in Figure III-9 and Figure III-10 can hardly be assimilated to (and
simulated by) a purely torsional system because of the shaft lengths along with the bearing
and coupling positions. One drawback, however, is that this test rig was not instrumented for
transmission error measurements and consequently only simulated transmission errors will
be used in the analysis which, in view of the overall agreement with the experimental
evidence, are nonetheless believed to be representative of actual signals (cf. results in Sections
2.3 and 2.4 of Chapter III).

Figure IV-14 and Figure IV-15 synthetize the variations of the dynamic factors in (IV-1)
and (IV-2) for both the spur and helical gears versus dynamic transmission errors. Two series
of points (circles and triangles) are displayed which correspond to low-medium speed results
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Application to single- and double-stage gear systems

(circles) and higher speed results above secondary tooth critical frequencies (triangles). In
Figure IV-14 (a) and Figure IV-15 (a), the abscissa is based on the theoretical findings in [62]
which indicate that, for a purely torsional model, it is possible to establish the following
relationship between dynamic mesh force factors DF,,; and the zero-to-peak amplitude of
dynamic transmission errors as:

_ km 0-p
DFyy =1+ 2= (TEq = TEy) (IV-3)
S

Figure IV-14 (b) and (c) and Figure IV-15 (b) and (c) correspond to the empirical
relationships proposed in [51] which relate dynamic mesh force / dynamic root stress to
dynamic transmission error TE, as:

0-p 0-p
Fo " _TEg e
F A
max(TE,)
DF, = ——— V-
?  max(TEs) (V-s)

with A = mean(TEg) — mean(NLTE)

Figure IV-14 (d) and Figure IV-15 (d) are based on the experimental findings of Hotait et
al. [61] which confirmed, after [51] that a linear relationship could be found between DF, and
the RMS of dynamic transmission error on their test rig. The coefficient of proportionality was
found to depend on load and profile modifications and lies within the range [7.8 pm - 13.1 pm]
for the examples treated.

Based on the simulation results, the following observations can be drawn:

e even if it seems that there is some degree of correlation between dynamic tooth loads
or stresses and transmission errors, the linear relationships in [51,61,62] are not fully
satisfactory and some significant scatter is observed which is more marked in the
helical gear example,

e it also seems that depending on the speed range (below or above the secondary tooth
critical speed in these examples), different behaviour is to be expected regarding the
dependency between dynamic forces / stresses and dynamic transmission errors.
Bifurcations can be observed with a tendency to generate two different branches in the
graph which approximately correspond to the two speed regimes mentioned above.
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Figure IV-14 : Single-stage spur system — Correlation between dynamic factors and dynamic transmission error —
Three-dimensional model
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Chapter IV

2.2 Torsional models

A reduced torsional model has been derived from the complete system described in
Figure III-13. The loading conditions are the same but the pinion and gear are supposed to be
mounted on very short and stiff shafts supported by rigid bearings in order to minimize the
influence of shaft bending and bearing deflections. The motor shaft and the elastic couplings
are not taken into account so that the driving torque is applied directly on the pinion shaft as
illustrated in Figure IV-16. Gear blank deflections are taken into account in the calculation of
mesh stiffness but do not interfere with the degrees of freedom attributed to the gear limited,
here, to one torsional angle.

Rigid bearings

Rigid bearings

Figure IV-16 : Single-stage spur / helical system — Reduced torsional system derived from the test rig

The corresponding comparisons between dynamic transmission errors and dynamic
factors are presented in Figure IV-17 and Figure IV-18 for the spur and helical gear examples.
In contrast with the previous set of results obtained from the complete three-dimensional
model, a linear relationship is clearly visible even if the results at higher speeds seem to deviate
slightly from the linear dependency observed at lower speeds.

It is therefore postulated that dynamic tooth loading and transmission errors might be
connected to some extent but in a more complex way than that suggested in [51,61]. The
experimentally observed linear dependency could be a particular case related to the test rig
characteristics and should be extrapolated with care. Further experimental and analytical
analyses are certainly needed in this area.
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Figure IV-18 : Single-stage helical system — Correlation between dynamic factors and dynamic transmission error —
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3 DOUBLE-STAGE SPUR GEAR SYSTEMS

Following the analysis of the vibratory response at the gear meshes of double-stage spur
gear systems in Section 4 of Chapter III, this paragraph focuses on the analysis of the dynamic
behaviour of bearings. The dynamic forces induced at the bearings by mesh excitations are the
principal source of dynamic excitations on the casing and it is therefore crucial to understand
how the vibrations generated at the meshes propagate to the bearings.

Besides, the influence of the relative phase shift between the successive meshes of the idler
gear system is analysed.

3.1 System with intermediate shaft — Bearing response

The dynamic forces generated on the bearings by mesh excitations are computed from the
solution X of the equations of motion. For each bearing, the vector of the dynamic
displacement is multiplied by the associated stiffness matrix to estimate the bearing dynamic
forces at each time step. The spectral content of the resulting signal is analysed for each
rotational speed by using a Fast Fourier Transform and compared with the peak-to-peak
dynamic force. The spectral content of the bearing dynamic force is plotted under the form of
a spectrogram (frequencies versus input speeds). The mesh frequencies of the system are
represented as straight lines passing through the origin of the diagram and are denoted f,,1,
fm2 for the mesh frequencies of stage 1 and stage 2, respectively (and multiples for the
harmonics).

In a first step, the system with unmodified gears defined in Sections 4.1.a) and 4.1.b) of
Chapter III is analysed. The results are shown in Figure IV-20 to Figure IV-23 for bearing 2, 3,
4 and 6 respectively (see bearing labelling in Figure IV-19). Several conclusions can be drawn:

o The spectral content of the different bearing dynamic forces is dominated by the mesh
frequency (and its first harmonics) of both gear stages.

e Amplifications of the bearing dynamic forces fluctuations are observed when the mesh
frequency (or its first harmonics) of one gear pair coincides with one of the major tooth
critical frequencies. Similarities can therefore be noticed between the gears and
bearings major critical speeds (e.g. 21 000 rpm for gear stage 2 - Figure III-22 - and
bearing 3 - Figure IV-21).

e Even though bearing 4 is located closer to stage 1, its dynamic response is principally
controlled by the excitations generated at stage 2 (Figure IV-22). This observation
shows that strong couplings occur between the gear meshes and the surrounding
elements of the system.
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Figure IV-19 : Dual-mesh spur gear system with intermediate shaft — Bearing elements numbering
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Figure IV-20 : Dual-mesh spur gear system with intermediate shaft — Bearing 2 — Spectral content of the dynamic
force (Amplitude in N)
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Figure IV-22 : Dual-mesh spur gear system with intermediate shaft — Bearing 4 — Spectral content of the dynamic
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Figure IV-23 : Dual-mesh spur gear system with intermediate shaft — Bearing 6 — Spectral content of the dynamic
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In a second phase, the same analysis is performed based on the system with modified
tooth profiles, using the long profile modifications defined in Section 4.1.c) of Chapter III. It
was shown that these modifications reduce significantly gear vibrations and their effect on
bearing dynamic responses is investigated in what follows.

The spectral content and amplitudes of the bearing dynamic forces are shown in Figure
IV-24 and Figure IV-25 for bearings 2 and 3 only but similar findings were obtained for the
four other bearings of the system. It can be observed that:

e The spectral content of the bearing dynamic forces is not significantly altered by the
introduction of gear profile modifications. The major components remain the mesh
frequencies of both gear pairs, along with their first harmonics.

e The amplitude of the fluctuations of the bearing dynamic forces is efficiently reduced
in the presence of profile modifications, over the entire range of speeds.

e This effect is not identical for all frequencies. In the spectral content of bearing 3
dynamic force (Figure IV-21 and Figure IV-25), the amplitude reduction is larger at the
mesh frequency of stage 2 than at that of stage 1. As a consequence, the peak force is
reduced by almost 70 % at 21 500 rpm but by only 30 % at 8 500 rpm.
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on the bearing dynamic forces (Amplitude in N)

1500 7000

6000

m2

s (Hz)
2

1000
ical frequency - Stage 1 - p =66 %

0.5 1 1.5 2 25 3
Input speed (rpm) x10%

Dynamic force - Bearing 3
T T T

12000 T T
—=#— No modification
10000 —+— Modification on both stages | |
Fam)
Z
4
o
u
iy
g
2
[
U
=5}
0 1 1 1 1 1
0.5 1 1.5 2 25 3
Input speed (rpm) x10*

Figure IV-25 : Dual-mesh spur gear system with intermediate shaft — Bearing 3 — Influence of profile modifications
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3.2 System with idler gear

3.2.a) Influence of phase shift

As presented in Section 3.2 of Chapter II, the relative phasing between the successive
meshes of a system with idler gear is imposed by the angle between the center lines. The
previous results were obtained for a configuration where the shaft axes are contained in the
same plane which corresponded to a phase shift close to zero (see Figure III-29 and Figure
I11-30). By changing the angle between the center lines by 5°, the mesh excitation functions are
nearly out-of-phase (cf. Figure IV-26). Without any loss of generality, the analysis is kept
limited to unmodified gears.

The results of the dynamic simulations are displayed in Figure IV-27 for stage 1 and
Figure IV-28 for stage 2. The blue curves with triangular markers correspond to the results
obtained for in-phase excitations, already presented in paragraph 4.2.b) of Chapter III. It can
be noted that the maximum vibratory level for stage 1 is obtained when the excitations are out
of phase whereas the opposite phenomenon is observed on stage 2, suggesting some form of
energy transfer between the meshes.

Finally, the long reliefs defined in Section 4.2.c) of Chapter III are introduced on both
gear meshes simultaneously. The corresponding results are presented in Figure IV-29 for stage
1 and in Figure IV-30 for stage 2. One can notice that, as for the configuration with nil phase
shift, these profile modifications lead to a reduction in gear vibrations for both gear stages. It
can reasonably be concluded that changes in phase shift between the successive meshes of an
idler gear system have no impact on the effectiveness of tooth profile modifications.
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Figure IV-26 : Double-stage spur gear system with idler gear — Quasi-static transmission error functions with non-
zero phase shift
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Figure IV-28 : Double-stage spur gear system with idler gear — Stage 2 — Influence of the phase shift on the gear
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Application to single- and double-stage gear systems

3.2.b) Bearing response

An analysis of the bearing dynamic response is conducted following the same method as
for the system with intermediate shaft, described in Section 3.1 of this chapter.

The analysis is first conducted on the idler gear system with unmodified gears and in-
phase excitations, as presented in Section 4.2.b) of Chapter III. The results in Figure IV-32 to
Figure IV-34 for bearing 2, 4 and 6 respectively (see label conventions in Figure IV-31) lead to
the following conclusions (similar observations have been made on the three other bearings of
the system):

e The spectral content of the dynamic forces at the bearings is limited to the mesh
frequency (and first harmonics), which is the only source of excitation in this system.

e It seems that the peak-to-peak of the bearing dynamic forces is amplified when the
mesh frequency matches one of the tooth critical frequencies. Thus, in these conditions,
the critical speeds for bearings and gears are identical.

e A strong coupling is observed between the dynamic response of the bearing and that
of the closer gear. The most critical speed in the dynamic response of bearing 2
corresponds to the major critical speed of gear stage 1 (9 250 rpm) whereas the dynamic
response of bearings 4 and 6 is dominated by the critical speed of gear stage 2 (around
6 000 rpm).
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Figure IV-31 : Double-stage spur gear system with idler gear — Bearing elements numbering
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(Amplitude in N)

Bearing dynamic responses in the presence of tooth profile modifications are now
analysed (see description in paragraph 4.2.c) of Chapter III) with the objective of assessing if
the profile modifications effective with regard to gear vibrations can also reduce bearing
dynamic forces (and hence the dynamic excitations on the casing).

The results, presented in Figure IV-35 to Figure IV-37 indicate that the spectral content of
the bearing dynamic forces is not significantly altered by the introduction of profile
modifications. Whereas dynamic force amplitudes are generally lowered when the gears are
modified, except for a peak at low speed (around 1 000 rpm).
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4 DOUBLE-STAGE GEAR SYSTEM WITH INTERSECTING AXES

To reproduce a geometry similar to that of a helicopter gearbox, a system is now studied
which combines a cylindrical and a spiral-bevel gear. The first stage is a unity-ratio cylindrical
gear pair whereas the second reduction stage is made of the spiral-bevel gear studied in a
single-stage system by Wang [102] and already used in a single-stage spiral-bevel system in
Section 3 of Chapter III.

A spur and a helical gear (with identical tooth numbers) are successively employed as
stage 1. The geometry of the shaft connecting the two reduction stages is varied and the
couplings between the cylindrical and spiral-bevel gears are studied for each configuration.
The dynamic response at the bearings is then analysed.

4.1 Description of the system

A schematic representation of the system under consideration is shown in Figure IV-38.
The cylindrical pinion / gear and the bevel pinion are centred between two bearings whereas
the bevel gear is overhung. For all the applications presented in the following sections, the
bearings are located at 20 mm from the centre of the nearest pinion / gear. Two additional
bearings are located at the extremities of the input and output shafts. All bearings have
identical characteristics, listed in Table IV-1. The shaft dimensions are also detailed in Table
IV-1 (density 7 800 kg/m?3, Young Modulus 210 GPa). The length of the intermediate shaft is
varied for some applications and will be subsequently specified in the following sections. The
gear data are listed in Table IV-2.

I Output

Spur / Helical gear

Spiral bevel gear

Input -

Bearings

Figure IV-38 : Double-stage system with intersecting axes — System geometry
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Table IV-1 : Double-stage system with intersecting axes — Shaft and bearing data

. External
Shaft Shaft section Length (mm) diameter (mm)
Upstream 40 36
Input shaft
Downstream 20 36
Upstream 40 36
Intermediate shaft Intermediate 150 36
Downstream 20 36
Upstream 10 52
Output shaft
Downstream 70 52
Bearing radial stiffness 108 N/m
Bearing axial stiffness 107 N/m

Table V-2 : Double-stage system with intersecting axes — Gear data

Cylindrical Spiral-bevel

Pinion Gear Pinion Gear
Tooth number 25 25 13 50
Module (mm) 4 5
Pressure angle (deg) 20 20
Helix angle (deg) 3 (()) ((}?511;;;1) 35
Face width (mm) 2%]5(}(;}1);;)1) 30
Shaft angle (deg) 0 90
Addendum (mm) 4 4 6.068 2.432
Dedendum (mm) 5 5 3.432 7.068
Backlash (mm) 0.1 0.1

4.2 Spur and spiral-bevel gear system

4.2.a) Dynamic behaviour

For this application, the first reduction stage of the system is a spur gear. A constant input
torque of 400 N.m is applied on the pinion shaft and the input speed is varied from 1 to
27 000 rpm. The time-signal and spectrum of the dynamic transmission errors of both stages
are computed for each rotational speed.

The critical frequencies / critical speeds correspondence is well illustrated by the
Campbell diagram in Figure IV-39: at 13 000 rpm, the spur gear mesh frequency f;,,; matches
the most critical frequency associated with this mesh (5656 Hz, p) = 58%) which leads to a
major peak in the transmission error shape factor curve. The same observation can be made
for the spiral-bevel gear (Figure IV-40) whose mesh frequency f,,, coincides with the most
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Chapter IV

critical frequency for this stage around 18 000 rpm thus generating the largest amplitude of
transmission error shape factor.

Figure IV-39 Figure IV-40 reveal that the spectral content of the local dynamic
transmission error at each gear stage is dominated by its own mesh frequency. It must be noted
that a very small percentage of modal strain energy (p/" = 3%) is stored in the spiral-bevel
gear mesh at 5656 Hz (major tooth critical frequency for stage 1). Conversely, at 3833 Hz (major
critical frequency for stage 2), only 2% of modal strain energy is stored in the spur gear mesh.
Except a slight influence of the spiral-bevel gear on stage 1 (see Figure IV-39), both meshes are
almost perfectly decoupled from a dynamic viewpoint.
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Figure IV-39 : Spur and spiral-bevel gear system — Stage 1 — Spectral content of the dynamic transmission error
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Figure IV-40 : Spur and spiral-bevel gear system — Stage 2 — Spectral content of the dynamic transmission error
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4.2.b) Influence of the intermediate shaft on dynamic couplings

The length of the intermediate shaft is then reduced to 50 mm in order to study the
evolution of the coupling phenomena between both meshes.

In this configuration, the most critical mode for the spur gear (o = 31%) also induces a
significant level of modal strain energy stored in the spiral-bevel gear (p"” = 19%). This
stronger interaction is also visible in the dynamic transmission error spectrum of the spur gear
(Figure IV-41) where components at the spiral-bevel gear mesh frequency emerge thus
generating an additional critical speed around 22 000 rpm.
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4.2.c) Influence of load

The dynamic response of the system with a 150 mm-long intermediate shaft presented in
Section 4.2.a) of this chapter is now calculated under an input torque of 80 N.m. The evolution
of the mesh force dynamic factor is compared to that obtained under an input torque of
400 N.m in order to evaluate the influence of external loading.

The results in Figure IV-43 for the cylindrical gear of stage 1 and in Figure IV-44 for the
spiral-bevel gear (stage 2) show that the load has nearly no influence on the spur gear whereas

significant changes are observed in the dynamic response of the spiral-bevel gear.

These observations are directly correlated to the influence of load on the quasi-static
behaviour of each gear:

e The length of contact of spur gears and the associated mesh excitations are not really
sensitive to load so that the fluctuations of the quasi-static transmission error at 80 and
400 N.m are similar.

e The average mesh stiffness of the spur gear is also independent of the input torque.

e Concerning the spiral-bevel gear however, the pressure distribution is significantly
affected by the input load. As a consequence, the average value of the mesh stiffness
decreases with decreasing load, justifying that the major critical speed is lower at

80 N.m than

at 400 N.m.

e Besides, the peak-to-peak of quasi-static transmission error is higher at 400 N.m than
at 80 N.m. This is why amplifications of the mesh force dynamic factor are more
marked under a higher load.
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Figure IV-43 : Spur and spiral-bevel gear system — Influence of load — Stage 1
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Figure IV-44 : Spur and spiral-bevel gear system — Influence of load — Stage 2

4.3 Helical and spiral-bevel gear system

The spur gear in the previous section is replaced by a helical gear whose date are listed in
Table IV-2.

4.3.a) Gear dynamic behaviour

As for the previous application, the helical gear and the spiral-bevel pinion are connected
by a 150 mm-long shaft. The pinion torque is 400 N.m and the input speed ranges from 1 to
33 000 rpm. A significant influence of the spiral-bevel gear on the helical stage can be seen in
Figure IV-45. A major critical speed is observed when the mesh frequency of the spiral-bevel
gear coincides with the major tooth frequency for stage 1, around 31 000 rpm. However, Figure
IV-46 shows that the helical gear has no influence on the spectral content of the dynamic
transmission error of stage 2.
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Chapter IV

4.3.b) Influence of the intermediate shaft

Contrary to the spur and spiral-bevel gear system, a strong coupling therefore occurs
between both meshes, even when they are located 150 mm apart, suggesting that this coupling
is mainly due to axial displacements. Given that the axial stiffness of the intermediate shaft is
only slightly influenced by its length, a new geometry is introduced in which the helical gear
shaft and the spiral-bevel pinion shaft are connected by an elastic coupling (characteristics in
Table IV-3). An illustration of this system is shown in Figure IV-47.

Table V-3 : Helical and spiral-bevel gear system — Elastic coupling characteristics

Stiffness
Axial (N/m) 10°
Radial(N/m) 107
Torsional (N.m/rad) 10*
Bending (N.my/rad) 10°

I Output

Elastic coupling

Helical gear

==

T

f
=
|

I R

il
i

Spiral bevel gear

Input -

Bearings

Figure IV-47 : Helical and spiral-bevel gear system — Finite element model of the system with elastic coupling

The corresponding results are shown in Figure IV-48 and Figure IV-49 for stage 1 and
stage 2, respectively. Comparing Figure IV-45 and Figure IV-48, one can notice that the
introduction of the elastic coupling between the helical and the spiral-bevel gears cancels the
influence of the spiral-bevel gear on the helical one to a large extent. With the elastic coupling,
both gears are decoupled from a dynamic point of view and the spectral content of each gear
dynamic transmission error is dominated by its own mesh frequency.
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Chapter IV

4.3.C) Bearing response

This section is devoted to the analysis of the bearing dynamic forces in the two
configurations studied previously (without and with an intermediate elastic coupling). The
objective is to evaluate how couplings may affect the dynamic response at the bearings. The
bearing elements labelling is shown in Figure IV-50.

Figure IV-51 to Figure IV-53 show the spectral content of the dynamic forces on bearings
2,5 and 6 respectively. In each figure, the top image shows the results obtained for the system
with continuous intermediate shaft, configuration for which a strong dynamic coupling was
observed between the two gear meshes. The image at the bottom shows the spectral content
obtained for the configuration with elastic coupling (Figure IV-47).

A strong influence of the spiral-bevel gear on the bearing dynamic forces can be observed
in Figure IV-51 and Figure IV-52 for the case with continuous intermediate shaft. This
observation shows that the excitations produced at the spiral-bevel mesh propagate through
the intermediate shaft to the helical pinion shaft (bearing 2). For both bearings, this influence
is significantly reduced with the introduction of an elastic coupling separating the two stages.
Besides, one can notice a non-negligible reduction in dynamic force amplitudes, for all
frequencies.

The dynamic forces spectrum for bearing 6 is dominated by the mesh frequency of the
spiral-bevel gear and the presence of the elastic coupling brings no substantial changes
although the dynamic forces are slightly attenuated (Figure IV-53).

Spur / Helical gear

Figure IV-50 : Helical and spiral-bevel gear system — Bearing elements numbering
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Chapter IV

5 CONCLUSION

This chapter has presented several applications of the transmission error-based model to
the study of the dynamic behaviour of single- and double-stage gear systems with cylindrical
and spiral-bevel gears.

It is observed that pitch errors can significantly modify the spectral content of the global
mesh force and introduce some scatter around the no-error solution. However, they do not
alter the positions of the major tooth critical speeds and their influence on the dynamic
response tends to decrease with increasing loads.

Several authors have published analytical, numerical and experimental results
supporting the idea that a linear relationship between dynamic transmission error and
dynamic mesh force or dynamic bending stress could exist [51,61,62]. The extensive simulation
results in this chapter confirm the existence of such a linear relationship but mostly for spur
and helical gear systems which can effectively be described by torsional models. An influence
of speed has also been reported with contrasted behaviour at medium and higher speeds
which could be related to the passage of secondary tooth critical frequencies. It is therefore
postulated that dynamic tooth loading and transmission errors might be connected to some
extent but in a more complex way than that suggested in [51,61].

Two configurations of double-stage spur gear systems have been studied: a) a double-
stage system with intermediate shaft and, b) a system with an idler gear. For each
configuration, the analysis of the dynamic bearing response highlights the simultaneous
influence of both gear stages and shows that profile modifications can reduce dynamic bearing
force amplitudes. Two different phase shift configurations are studied on the idler gear
system. It is shown that profile modifications can reduce dynamic mesh forces regardless of
mesh phasing. The phase shift only influences the maximum vibration level of each gear and
energy transfer between the two meshes is observed.

Finally, some original applications to cylindrical / spiral-bevel gear systems are proposed
which lead to the following conclusions:

e Strong couplings occur between the cylindrical and spiral-bevel gears, modifying the
spectral content of local dynamic transmission errors.

e In particular, the spiral-bevel gear influences the dynamic behaviour of the cylindrical
gear stage (either spur or helical).

e Coupling intensity depends on the stiffness of the connection between the two meshes.

e For the spur / spiral-bevel gear configuration, a longer intermediate shaft may be
sufficient to decouple the gear meshes.

e For the helical / spiral-bevel gear system, axial couplings seem prominent and the
length of the intermediate shaft has therefore little effect. However, the introduction of
an intermediate elastic coupling between the helical gear and the spiral-bevel pinion
can isolate the two mesh excitations.

e The dynamic response at the bearings is also affected by the different meshes of the
system. Specifically, the influence of the spiral-bevel gear is visible on the response of
the bearings located on the helical pinion shaft.
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Application to single- and double-stage gear systems

e Decoupling both gear stages from a dynamic point of view allows to reduce the
dynamic bearing forces fluctuations. Considering that these fluctuations are the main

source of excitation of the gearbox casing, this result can be of great interest for gearbox
noise reduction.
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General conclusion

GENERAL CONCLUSION

The results presented in this memoir mainly deal with the numerical simulation of gear
dynamics in the context of helicopter main gearboxes.

Gears have been long recognized as significant sources of noise and vibrations which have
been widely studied particularly in the field of transport. In the vast majority of these studies,
gear mesh excitations stem from a) tooth deflections under load and, b) shape deviations along
with mounting errors which are often combined via the notions of mesh stiffness functions
and transmission errors. Many dynamic models can be found in the literature mostly for single
mesh systems which can hardly be extended to multi-stage gears with strong couplings as is
the case in helicopter transmissions. Moreover, most of the research is focused on parallel axis
systems and more work is certainly needed in the area of bevel gears.

In order to be able to simulate a helicopter main gearbox comprising spur, helical and
spiral bevel gears, a unified theoretical framework is proposed which makes it possible to
account for various gear geometries in a systematic way. The methodology relies on quasi-
static results aimed at characterizing mesh excitations prior to solving the equations of motion.
Gears are supposed to be rigid bodies connected by lumped stiffness elements and it is
assumed that the contact conditions in dynamic and quasi-static conditions are the same. The
supporting elements such as shafts and bearings are also integrated. The resulting state
equations point to a linear second order differential system with time-varying stiffness
matrices and forcing terms expressed in terms of transmission errors. Using a time-step
integration scheme, dynamic mesh and bearing forces can be determined and used as input
data for further noise analyses.

The validity of the model is assessed by comparisons with experimental evidence and
benchmark numerical results from the literature. Starting with a single mesh spur gear set, a
good agreement is reported except in the vicinity of tooth critical speeds with tooth contact
losses and shocks, thus highlighting one of the limitations of the proposed approach which is
essentially linear. However, this behaviour is rarely observed in heavily loaded helical gear
sets and does not actually reduce the interest of transmission error based models in the present
industrial context. A complete single mesh spur and helical gear test rig is then simulated over
a broad range of speeds. For each configuration, the theoretical and experimental
dimensionless root stress signals agree well proving that the theory is sound for gears with
profile modifications. Considering a spiral bevel gear, the predicted transmission errors are
close to what is found by combining a normal contact algorithm and the solution of the
equations of motion. Comparisons are finally extended to double mesh spur gear systems with
various arrangements (idler gear or two pinions on the same intermediate shaft). It can
therefore be concluded that the proposed formulation can be applied to a variety of gear
geometries and is adapted to the problem of helicopter main gearbox dynamic simulations.

Chapter IV is devoted to a number of applications of the modelling technique. First, the
combined influence of pitch errors and load on dynamic tooth loads is analysed based on the
single mesh test rig geometry previously used for validation purposes. It is observed that pitch
errors strongly modify response spectra but have no influence on tooth critical speeds thus
explaining why errorless models can correlate well with experimental findings as far as mesh
forces are concerned. It is also shown that pitch errors contribute less at higher loads.
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General conclusion

Using the same theoretical background, the relationship between dynamic transmission
errors and dynamic tooth loads is then studied. Several authors have suggested that a linear
dependency could be found between these two parameters and proposed formulae to
determine tooth mesh forces from transmission error measurements and therefore avoid slip
rings or telemetry to transfer signals from the rotary to the stationary systems. Massive runs
have been performed which reveal that a linear relationship can exist but only when shaft
bending and bearing displacements can be neglected, in line with some previous theoretical
developments implying that direct transpositions from transmission error to mesh or tooth
force signals need to be critically examined and cannot be generalized.

The dynamic bearing response is analysed in a double mesh system and the combined
contributions of the two meshes is highlighted proving that mesh-by-mesh analyses should be
employed with care. It is verified that profile modifications can reduce dynamic tooth loads
and bearing forces which seems interesting in the context of structure borne noise reduction.

Finally, in order to reproduce a part of a helicopter transmission, a system comprising a
spur/helical gear and a bevel gear is considered. Particular emphasis is placed on inter-mesh
couplings and their consequences on bearing dynamic forces. A strong influence of the bevel
gear on the rest of the system is reported and the interest of elastic couplings between the two
reduction stages is discussed.

Although the proposed transmission error based model has been proved effective in
simulating single and multi-mesh gears, a number of limitations have been identified which
certainly require more attention and further research. First of all, the planetary systems usually
used as the final reduction stage in helicopter transmissions have not been incorporated. It has
been recently demonstrated that the concept of transmission error remains valid for such
systems and can be used to minimize dynamic mesh forces [45,149], suggesting that dynamic
models based on transmission errors can be constructed. The influence of tooth friction has
been neglected but some studies show that, in some particular cases, the reversal of sliding
and friction on tooth profiles can generate vibrations and noise [150]. The damping mechanism
in gears are complex and certainly deserve more attention as they largely control the
amplifications at critical speeds and corresponding noise levels (Ankouni et al. [151]). The
bearing models used in this memoir are simplified and it would interesting to introduce more
realistic representations including the influence of the time-varying number of loaded rolling
elements which lead to parametric excitations possibly influential on casing vibrations and
noise [77,78,152,153]. More effort should also be put in the simulation of thin-rimmed gears
which are common in aeronautical applications and can hardly be accounted for by lumped
parameter elements such as those used in this work [154,155].
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Annexes

ANNEXES

A. SHAFTELEMENT

The shaft elements rely on Timoshenko’s beam theory. Each element comprises two nodes
with six degrees-of-freedom per node (three translations and three rotations) and is attributed
12x12 mass, stiffness and damping matrices. This type of element allows to account for
traction/compression (uy,u,), bending (v, v,, wi, wy, @1, 92, ¥1,,) and torsion (64, 6,).

In order to reproduce complex geometries of gearbox shafts by a minimum number of
degrees-of-freedom, a conical beam finite element has been implemented [127]. Following the
works of Cowper [128], shear effects are accounted for by using a shear coefficient K which,
for a hollow circular cross-section, reads:

6(1+v)(1+m?)?

K=
(7+6v)(1 +m?)? + (20 + 12v)m?

where v is Poisson’s ratio of the shaft material and m is the ratio of inner to outer radius.

s %

Lz
— =
IS

Figure A-1: Conical shaft element — Degrees of freedom and local frame

Average and ratio of the radii:
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T T
&) R,
Yen TR

Cross-section areas :
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Cross-section inertias:

RY —1rl R} — 1}
I = 1~ N L= 2
4 4
_ R{-rf _ Ry-1
]1 - 2 ) ]2 - 2
Ri(e -1 —r{(y—-1) Ri(o—1)? =iy — 1)?
61 =4 R _ 4 ; 6,=6 7 _ 4
1~ Ry —1ny
Ri(o —1)° —r{(y —1)3 Ri(o — D* =iy - D*
63 =4 RF ;04 = 4 _ 4
1~ Ry —n
Shear modulus:
G = E
T2+ 2v
Shear factor:
12 L+1,
“Tosriz 2

The shaft element includes the effect of shear on flexure stiffness (Timoshenko beam element).
The global mass and stiffness matrices can be expressed as:

K=K, +Ki,w+K, ; M=M,, +M,,, + M,
with:

a) Traction / compression :

Ky, = [_AA _AA - (Z;) ;o Moy = [i; ii] - (Z;)

with:
EAy
A = T(6+ 3(11 + 2(12)

A;1pL A;1pL A;1pL

Ly =20P2 00 4 5a, + 2ay) ; Ly = 2222 (10 + 5a, + 3ay) ; Ly = 222220 + 150, + 12a,)
60 60 60
b) Torsion
_[B -B 01\ _[h T, (91
Kior = -B B - (92) » Meor = [Tz T3] ” 92)
with:
Gy
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AjpL?
E, = —25201(1 T a)? (78 + 36a; + 19a, + 21a(5 + 2a; + ;) + 3a(63 + 27a; + 14a,))
_A'1,DL3
F, = —5040(11 o2 (24 + 12a; + 10a, + 3a(14 + 7a; + 4ay) + 6a(14 + 7a; + 4ay))
Ay = %(468 +360a; + 290a, + 21a%(20 + 15a, + 12a;)
1260(1 + a)?
+6a(147 + 112a; + 90a;))
Ay pl?

B, = 2520011 02 (132 + 90a; + 65a, + 21a%(5 + 3a; + 2a,) + 3a(77 + 50a, + 35a;))

Aj pL3
C, = S(MOL(Ta)ZMS +30a; + 20a, + 3a?(14 + 7a; + 4a,) + 6a(14 + 8a; + 5a,))
AilpLZ 2
E, (78 + 42ay + 25a, + 21a%(5 + 3a; + 2a,) + 3a(63 + 36a; + 23a,))

= 2520(1 + a)?
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B. GEARCONTROL CHARTS

1 Pitch errors on spur gears
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2 Pitch errors on helical gears

20
15

10

Amplitude (um)

-10

-15
0 20 40 60 80 100 120 140 160
Tooth number

e Pinion Wheel

187
Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI133/these.pdf
© [N. Sainte-Marie], [2016], INSA Lyon, tous droits réservés



Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2016LY SEI133/these.pdf
© [N. Sainte-Marie], [2016], INSA Lyon, tous droits réservés



Résumé étendu en francais

RESUME ETENDU EN FRANCAIS

Ce manuscrit de these ayant été rédigé en anglais, un résumé étendu des travaux et des
principaux résultats est proposé en francais dans cette annexe. Les références bibliographiques
correspondent a celles du manuscrit.

1 INTRODUCTION

Des mesures de bruits réalisées par le service Acoustique Interne et Externe d”Airbus
Helicopters ont montré que la boite de transmission principale des hélicopteres contribue
fortement au bruit percu par les passagers en cabine. Elle génere en effet plusieurs raies
émergeant fortement du bruit large bande et dont les fréquences se situent dans la plage de
sensibilité maximale de I'oreille humaine (entre 1 000 et 5 000 Hz). Les engrenages composant
la boite de transmission, soumis a de fortes vitesses de rotation, génerent des vibrations qui se
propagent a travers les arbres jusqu’aux roulements. Les efforts dynamiques induits aux
roulements sont une source d’excitation pour le carter, lequel devient a son tour une source de
bruit rayonné.

Dans un contexte d’amélioration permanente du confort acoustique des usagers et pour
répondre aux nouvelles directives environnementales qui régissent I’exposition au bruit, il est
nécessaire d’optimiser le comportement vibro-acoustique de ces boites. Les travaux de
recherche présentés dans ce manuscrit se concentrent donc sur le développement d"un modele
numérique permettant de prédire le comportement dynamique de transmissions composées
de plusieurs étages d’engrenages de différents types (cylindriques et spiro-coniques).

2 ETATDEL'ART

2.1 Sources d’'excitations et erreurs de transmission

Différentes stratégies de modélisation ont été développées pour prédire le comportement
dynamique de transmissions par engrenages. En revanche, I'ensemble des auteurs semble
s’accorder sur les sources d’excitations a I'origine des vibrations des engrenages. Ces sources
peuvent étre classées en deux catégories distinctes.

En premier lieu, on considere les déformations élastiques qui surviennent des lors que les
dentures en prise transmettent de la charge. Ces déformations sont caractérisées par le concept
de raideur d’engrenement, qui représente la rigidité de la liaison entre un pignon et une roue
en prise. Cette raideur varie naturellement au cours de 1'engrenement car le nombre de dents
en contact n’est pas constant au cours d"un cycle. Les fluctuations de la raideur d’engrenement
sont donc considérées comme source d’excitation dans la grande majorité des modeles
existants. Sa définition et sa quantification restent toutefois sujets a débat et ont été traitées par
de nombreux auteurs. De nombreux modeles distinguent les différentes déformations qui
contribuent a la raideur d’engrénement globale (flexion de la dent, déformation du contact,
rotation de la base...) et se basent sur des méthodes analytiques pour caractériser chacune
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d’elles. D’autres approches permettent de déterminer directement la raideur globale, par
utilisation des éléments finis par exemple.

La seconde source d’excitation provient des écarts de forme. La plupart des engrenages
présentent des profils en développante de cercle qui ont 'avantage d’étre conjugués et de
permettre un transfert uniforme des vitesses. Toute déviation par rapport a ces profils parfaits
conjugués entraine une perturbation des conditions de contact et devient une source
d’excitation. Ces déviations sont parfois involontaires (erreurs liées au procédé de fabrication
ou au montage) mais peuvent aussi avoir été introduites de maniere intentionnelle (corrections
de profil ou bombé par exemple).

Cette seconde source d’excitation est trés communément caractérisée par le concept
d’erreur de transmission. Cette notion a initialement été introduite par Harris en 1958 [33] et
est définie comme “pour toute position angulaire instantanée d’une roue menante, la déviation
angulaire de la roue menée par rapport a la position qu’elle aurait occupée si les dentures
étaient rigides et non corrigées” [9] (Illustration 1).

(TEXR, /‘—1 I‘\
A 2

PINION (DRIVING)

WHEEL (DRIVEN)

PINION WHEEL

NUMBER OF TEETH z Z

1 2
BASE RADIUS R, R,
THEORETICAL ANGULAR Al A= AT /T,
POSITION
ACTUAL ANGULAR A A+ (TEXMR,
POSITION
ACTUAL POSITION IN AR AR, + (TED
LINEAR TERMS = AR+ (TED

lllustration 1 : Définition de l'erreur de transmission, d’aprés Munro [34]

L’erreur de transmission se définit dans trois conditions de fonctionnement différentes :

e L’erreur de transmission cinématique se mesure lorsque les engrenages en prise ne
transmettent pas de charge et a faible vitesse de rotation. On I'appelle aussi erreur de
transmission a vide. Elle correspond a I’écart maximal aux flancs de dents parfaits
lorsque 'on considére tous les points de contact du plan d’action a un instant donné.
Elle traduit donc les erreurs d’assemblage, erreurs de pas et certains types de
corrections et est ainsi nulle pour des engrenages parfaits non corrigés.
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e L’erreur de transmission quasi-statique est obtenue sous charge et a faible vitesse de
rotation. Elle tient donc compte des déflections que les dentures subissent sous !’effet
dela charge. Elle varie en fonction du nombre de dents en prise, ou longueur de contact
et de maniere opposée par rapport a la raideur d’engrénement. Une corrélation a été
expérimentalement démontrée entre les variations temporelles de l'erreur de
transmission quasi-statique et la réponse dynamique des engrenages (bruit et
vibrations). L’erreur de transmission est donc reconnue comme représentative des
excitations liées a l'engrenement et est utilisée dans de nombreuses études
dynamiques, soit comme critere d’optimisation soit directement comme terme
d’excitation.

e L’erreur de transmission dynamique est souvent utilisée comme indicateur de la
réponse dynamique des engrenages. Elle est I'équivalent de I'erreur de transmission
quasi-statique mais tient compte des effets dynamiques lorsque ceux-ci ne peuvent étre
ignorés (vitesses de rotation importantes).

2.2 Modeéles dynamiques

La littérature compte un grand nombre de modéles dédiés a la prédiction du
comportement dynamique de systémes simple-étage a axes paralleles (dentures droites ou
hélicoidales). Les premiers modeles mathématiques datent des années 1950 et sont pour la
plupart réduits a un ou deux degrés de liberté. Ces modeles integrent uniquement la souplesse
de la denture et sont largement inspirés des modeles de type masse-ressort.

Des la fin des années 1960, ces modeles ont été étendus pour prendre en compte les
couplages qui s’operent entre les engrenages et leurs éléments de support (arbres et
roulements). Dans un certain nombre de ces modéles, I'engrenement est représenté par des
fonctions périodiques d’excitations définies en amont de I'analyse dynamique (généralement
l'erreur de transmission et la raideur d’engrénement) [71,73]. Une autre catégorie de modeles
repose sur la résolution simultanée des équations du mouvement et des conditions de contact
et s’affranchit ainsi de la caractérisation préliminaire des fonctions d’excitation [18,60,76].

Plus récemment encore, certains modeles ont été proposés qui intégrent les contributions
du carter en plus de celles des arbres et des roulements [80,83-85]. Ces développements
s’appuient sur la méthode des éléments finis qui permet une représentation précise de la
géomeétrie du carter. Dans la grande majorité de ces modeles, I’ensemble engrenages-arbres-
roulements est modélisé par une des approches citées au paragraphe précédent.

Outre les engrenages a axes paralléeles, les engrenages coniques sont aussi largement
utilisés dans les transmissions mécaniques pour leur fonction de renvoi d’angle. Pourtant, les
modeles dédiés a ’analyse de leur comportement dynamique semblent remonter seulement a
la fin des années 1990. La plupart de ces modeles reposent sur une définition préliminaire des
conditions de contact, via une analyse quasi-statique qui permet de définir les fonctions
d’excitations liées a I’engrénement [92,94,98,105]. Teixeira, Wang et al. [101,102] ont comparé
une approche de ce type avec un modele dans lequel les conditions de contact et les équations
du mouvement sont résolues simultanément. Les auteurs ont montré que les deux techniques
de modélisation conduisent a des résultats concordants.
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Finalement, aprés que des résultats expérimentaux aient montré des couplages entre les
différents engrenages d'une transmission [105], des modéles ont été spécialement développés
pour la prédiction du comportement dynamique des systemes multi-engrénements. Les
modeles les plus simples sont limités a deux degrés de liberté pour deux étages de réduction
[107] et les plus complexes permettent d'inclure un nombre multiple d’engrenements [122] et
reposent sur une résolution simultanée des conditions de contact et des équations du
mouvement [114]. Différentes architectures ont été étudiées, avec des engrenements décalés
[115,120] ou en cascade [111,118,119] mais il semble qu’aucun n’ait encore permis d’intégrer
des assemblages d’engrenages de différents types (cylindriques et coniques).

3 MODELISATION DU COMPORTEMENT DYNAMIQUE DE SYSTEMES
A ENGRENAGES PAR L'ERREUR DE TRANSMISSION

La revue de littérature a mis en évidence une méthodologie en trois étapes,
communément utilisée pour la simulation du comportement vibro-acoustique de
transmissions par engrenages [85,125], et adoptée dans le cadre de ces travaux :

a) Caractérisation des sources d’excitations principales (reposant principalement sur la
raideur d’engrénement et I’erreur de transmission),

b) Calcul de la réponse dynamique du systeme soumis aux excitations causées par
I'engrenement et détermination des efforts dynamiques résultants aux roulements,

c) Simulation du rayonnement acoustique du carter soumis aux efforts dynamiques aux
roulements.

L’étape a) consiste en une analyse cinématique et quasi-statique de chaque engrénement
qui permet de définir les conditions de contact et de déterminer les variations temporelles des
fonctions d’excitation. L'étape b) repose sur la résolution dynamique des équations du
mouvement pour le systéeme engrenages-arbres-roulements et 1'étape c) consiste a simuler le
comportement vibro-acoustique de la boite de transmission, carter inclus.

L’avantage principal de cette approche est de permettre des études paramétriques et
phases d’optimisation a chacune des étapes. Elle permet aussi de réduire les temps de calcul
par rapport a une résolution simultanée en dynamique des équations du mouvement et des
conditions de contact. Enfin, il est attendu que cette approche permette de modéliser
simultanément et de maniere identique des engrenages a axes paralléles et des engrenages
coniques.

3.1 Equations du mouvement

En considérant les corps des engrenages comme rigides, une approche de type mécanique
des solides indéformables est adoptée pour écrire le torseur des efforts d’engrenement. Le
frottement entre les dentures est négligé et la normale est supposée identique en tous points
de contact, ce qui permet d’écrire aprés développement le torseur sous une forme compacte :

Frnesn = —Fnvg (z)
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F,, est 'effort normal d’engrenement et v; est dénommé le vecteur structure de 1’'engrenage.
Il dépend de la géométrie des dentures.

Six degrés de liberté sont attribués au pignon et a la roue afin de tenir compte des
déformées de traction/compression, flexion et torsion. Ils représentent des déplacements
infinitésimaux qui se superposent aux rotations de corps rigides de chacun des membres. Ils
sont écrits sous la forme du vecteur q de dimension 12. Le torseur des efforts d’engrénement
peut étre réécrit a partir de ces degrés de liberté comme :

Fresn = —k(t, q)[vag]q + f(t. 86(M))17G (2)

k(t,q) est la raideur d’engrénement, dépendante du temps et possiblement non-linéaire.
f (t, 5e(M)) est une fonction scalaire, variable au cours du temps et dépendante des écarts
initiaux aux points de contact potentiels M.

Le concept d’erreur de transmission est introduit a ce stade. Projetée dans le plan de base,
'erreur de transmission quasi-statique est définie comme suit :

TE; = WTXg + NLTE (3)

W est un vecteur de projection, non spécifié a ce stade et NLTE désigne l'erreur de
transmission a vide, définie a partir du méme vecteur de projection W et des rotations de
corps-rigides des engrenages Xy en présence des éventuelles erreurs et corrections :

NLTE = WTX, (4)

En utilisant ces deux définitions, le terme d’excitations lié aux écarts initiaux peut étre
exprimé en fonction de l'erreur de transmission quasi-statique TEs et de l'erreur de
transmission a vide NLTE. On peut alors réécrire le torseur des efforts d’engrenement lié a
chaque étage d’engrenages en fonction :

e delaraideur d’engrénement,

e del'erreur de transmission quasi-statique,
e del'erreur de transmission a vide,

e du vecteur structure.

En supposant que les conditions de contact sont identiques en dynamique et en conditions
quasi-statiques, les équations du mouvement pour un systeme a N engrénements s’écrivent :

N
1 1 1 ! (L)
—MX" + —CX" +| K5 + K:'(v) | X

T2 T L
N —~
o AD (D) (TEL — NLTE® — w®' (X, — XP)
= Fy+ Z FP |1+ =4 T 1
L k& w®' X

+ Fy(7)

(5)

vy

F;(7) est un terme d’excitations lié aux possibles fluctuations des vitesses de corps rigides
(causées par des erreurs ou des corrections).

Ces équations integrent les contributions des éléments de support (arbres, accouplements
élastiques et roulements). Des éléments a parametres concentrés sont utilisés pour représenter
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les accouplements et les roulements tandis que les éléments d’arbre se basent sur la théorie
des poutres de Timoshenko.
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3.2 Analyse quasi-statique

Comme présenté plus haut, la premiere étape de la méthode mise en application est la
résolution des conditions de contact en quasi-statique, qui permet de déterminer les fonctions
d’excitations liées au phénoméne d’engrenement. Des logiciels dédiés sont utilisés pour
I’étude des engrenages cylindriques d"une part, et des engrenages spiro-coniques d’autre part.

Pour les engrenages cylindriques, I'étude est réalisée a partir du logiciel Load Distribution
Program (LDP) développé par le GearLab a I'Université de 1'Ohio [131]. Le modele prend en
compte 1'élasticité des dentures, ainsi que les potentielles erreurs ou corrections. Dans le cas
des dentures droites et hélicoidales, la normale au contact est considérée constante au cours
du temps et déterminée a partir des parametres géométriques de l'engrenage. L’effort
d’engrenement est appliqué au centre de la fenétre d’engrenement et cette position est elle
aussi constante au cours du temps. Les excitations générées par un engrenage cylindrique sont
donc caractérisées par trois fonctions du temps :

¢ laraideur d’engrenement,
e lerreur de transmission quasi-statique TEs,
e l'erreur de transmission a vide NLTE.

Dans le cas des engrenages spiro-coniques, le logiciel ASLAN est utilisé pour résoudre les
conditions de contact. Ce logiciel est développé au sein du LaMCoS, INSA de Lyon par
Teixeira et al. [101,134,135]. 1l repose sur une modélisation par éléments finis du pignon et de
la roue et utilise la méthode des coefficients d’influence pour le calcul de la répartition de
charge. Contrairement aux engrenages cylindriques, la direction et le point d’application de
I'effort normal sont recalculés a chaque pas de temps. Les excitations générées par un
engrenage spiro-conique sont donc représentées par cinq fonctions du temps :

e laraideur d’engrenement,

e lerreur de transmission quasi-statique TE,

e l’erreur de transmission a vide NLTE,

¢ la position du barycentre de la distribution des efforts,
e l'orientation de l'effort d’engrenement.

3.3 Analyse dynamique

Apres l'analyse quasi-statique, les équations du mouvement (5) sont résolues pas-a-pas
dans le temps a partir de I’algorithme de Newmark. La matrice de raideur globale et les termes
au second membre sont recalculés a chaque pas de temps pour tenir compte des valeurs
instantanées de la raideur d’engrenement, des erreurs de transmission et des vecteurs
structure. Afin d’accélérer la convergence de la solution, la déformée statique du systeme est

utilisée comme condition initiale du probleme.

L’erreur de transmission dynamique est calculée sur le méme modele que l'erreur de
transmission quasi-statique a partir de la solution globale aux équations du mouvement X.
Pour chaque étage d’engrénement (L), ona:

TEY = w®'X + NLTE® ()
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W est le méme vecteur de projection que celui utilisé pour la définition des erreurs de
transmission quasi-statique et a vide.

Les variations temporelles de I’erreur de transmission dynamique sont reconnues comme
un indicateur pertinent du comportement dynamique des engrenages. On fera donc par la
suite référence au créte-a-créte ou au RMS de I'erreur de transmission dynamique.

L’effort d’engrenement dynamique F; est un autre parametre caractéristique de la
dynamique des engrenages. Pour chaque étage d’engrenage (L) (cylindrique comme spiro-
coniques), il s’écrit :

k®@ TE® — NLTEW — w®' (XO - )?(()L))

T
FéL) — k(L)(t)VéL) X — F;,(L -1 (7)

kr(;f) W(L) Tj\((()L)

Le maximum de l'effort dynamique en régime stationnaire est représentatif des
surcharges dynamiques a la denture. Ce parametre est communément représenté sont une
forme adimensionnée comme le rapport maximum effort dynamique / effort statique
(coefficient dynamique) :

max (Fé]“))

8)
P;(L)

@) _
DF) =

4 ELEMENTS DE VALIDATION

Afin de confirmer la pertinence du modele proposé, divers résultats numériques et
expérimentaux de la littérature sont utilisés. Les différents cas de comparaison portent sur des
systemes simple étage a axes paralléles ou concourants ainsi que sur des systemes a deux
étages d’engrenages droits.

4.1 Systeme simple-étage a axes paralléles

Pour ce premier cas de validation, les résultats expérimentaux obtenus par Baud et Velex
[74] sont utilisés. Le banc d’essai (Illustration 2) est un systeme en boucle ouverte comprenant
un étage d’engrenages a denture droite ou hélicoidale. Des jauges uni-axiales sont disposées
en pieds de dent sur trois dents successives du pignon et de la roue.

La vitesse de rotation du pignon est successivement incrémentée de 100 a 6000 tr/min et
a chaque vitesse, le moment de flexion dynamique en pied de dent est calculé. Sa valeur
maximale est adimensionnée par le moment maximal en conditions statiques et ce résultat est
comparé aux relevés de jauges. Une bonne corrélation est obtenue dans le cas d’un engrenage
a dentures droites (Illustration 3), tant en termes de positions des vitesses critiques qu’en
termes d’amplitude des pics. Des comparaisons similaires ont été réalisées en faisant varier la
distance entre les paliers supportant les arbres du pignon et de la roue, ainsi que pour une
denture hélicoidale. Dans chacun des cas étudiés, les résultats numériques sont en bon accord
avec les relevés expérimentaux.
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lllustration 2 : Schéma du banc d’essai, d’aprés Baud et Velex [74]
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lllustration 3 : Systéme a axes paralléles — Comparaison du moment de flexion simulé avec les relevés de jauge de
Baud et Velex [74]

4.2 Systeme simple-étage a axes concourants

Pour cette étude, des résultats obtenus a partir d'un modele dynamique local développé
par Wang et al. [102] sont utilisés. Le coefficient dynamique est calculé pour plusieurs vitesses
de rotation et les résultats obtenus a partir des deux modeles sont comparés. Une tres bonne
corrélation est observée, validant la pertinence du modéle basé sur I'erreur de transmission
pour la simulation du comportement dynamique d’engrenages spiro-coniques.
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Illustration 4 : Systéeme a axes concourants — Comparaison du modele basé sur l'erreur de transmission avec le
modeéle local de Wang [102]

4.3 Systeme double-étage a axes paralléles

Le systeme reproduit ici a initialement été étudié par Raclot [114]. Il se compose de deux
étages d’engrenages a dentures droites séparés par un arbre intermédiaire (Illustration 5). Les
axes des trois arbres sont contenus dans un méme plan. Un couple constant de 1 500 N.m est
appliqué sur le pignon et un balayage en vitesses est réalisé entre 100 et 30 000 tr/min. A
chaque vitesse de rotation, l'erreur de transmission dynamique locale associée a chaque
engrénement est calculée a partir du vecteur solution X ainsi que le facteur de forme associé
(RMS des fluctuations temporelles).

Gear
1 '11 11 [ ] 12 1
10 12 ‘ Output
4 Gear
2nd stage e MNode g
51 7 9
FE Bt L Bearing I
i g
Pinion 4 lst stage
1 ) K]
Input 1 2 3
2 4
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Hlustration 5 : Systéme double étage a axes paralléles — Modéle éléments finis du systeme d’apres Raclot [114]
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Les résultats obtenus sont présentés en Illustration 6 (étage 1) et Illustration 7 (étage 2)
pour trois configurations : (a) dentures non corrigées, (b) corrections de profil courtes, et (c)
corrections de profil longues. Les résultats du modéle basé sur I'erreur de transmission sont
en bon accord avec le modele local de Raclot. Des observations similaires ont été obtenues a
I'issue de I'étude d'un systéme composé de trois pignons en cascade. On peut donc conclure
que la formulation proposée est adaptée aux systémes double-étage et qu’elle permet de tenir
compte des corrections de profil.

%1073 Raclot «10° TE formulation
127 127
—=+— No modification
—— Short relief
1L 1 Long relief

e
%0
T
e
%0

TE shape factor (m)
= =
= =

TE shape factor (m)
=
=

%

02f 02t
0 : : - 0 : : -
0 10000 20000 30000 0 10000 20000 30000

Input speed (rpm) Input speed (rpm)

Illustration 6 : Systéme double étage a axes paralléles — Comparaison du modéle local et du modeéle baseé sur
l'erreur de transmission (Etage 1)

%107 Raclot «10° TE formulation
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B2t E12
g 8
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Illustration 7 : Systéeme double étage a axes paralléles — Comparaison du modéle local et du modéle basé sur
l'erreur de transmission (Etage 2)
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5 ETUDE DYNAMIQUE DE SYSTEMES SIMPLE ET DOUBLE-ETAGE

5.1 Influence des erreurs de pas

L’influence des erreurs de pas sur le comportement dynamique des transmissions par
engrenages est étudiée a partir du modele du banc d’essai exploité par Baud [74]. Les erreurs
relevées sur les engrenages testés ont été introduites dans le modele. Elles entrainent des
variations du facteur dynamique d’une paire de dents a la suivante, en fonction des erreurs
combinées. Pour chaque vitesse de rotation, on calcule donc le maximum et le minimum du
facteur dynamique. On observe sur I'Illustration 8 que les erreurs de pas ne modifient pas la
position des vitesses critiques mais font apparaitre une dispersion autour de la solution sans
erreur. On note que la largeur de la plage simulée est proche de celle de I'enveloppe
expérimentale (surface grisée), confirmant la capacité du modele a prendre en compte ce type
d’erreurs.

Cette étude a par ailleurs permis de montrer que I'influence des erreurs de pas est plus
importante pour une denture hélicoidale que pour une denture droite, et finalement que cette
influence tend a diminuer lorsque la charge augmente.

1.8 T I 1 I |

Envelope of experimental results
L7 Simulation - No error ]
B I oo Simulation - With spacing errors (Max)

Simulation - With spacing errors (Min)

Bending moment dynamic factor
- - - - - -
- [®) w S th o

-

0.9

0.8 =

0. T l | 1 | |
0 1000 2000 3000 4000 5000 6000
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Illustration 8 : Systéeme simple-étage a axes paralléles — Influence des erreurs de pas
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5.2 Corrélation entre |'erreur de transmission dynamique et les charges
dynamiques a la denture

L’erreur de transmission dynamique est couramment utilisée pour caractériser le
comportement vibratoire des engrenages tandis que les efforts dynamiques a la denture sont
un critere plus pertinent dans le cadre des études de résistance. Plusieurs études ont donc été
conduites afin de déterminer dans quelle mesure ces deux parametres peuvent étre reliés.
Certaines observations expérimentales semblent indiquer une relation de proportionnalité
entre le RMS ou créte-a-créte de I’erreur de transmission dynamique et les efforts a la denture,
ou contraintes en pied de dent [51,61]. Cependant, la seule démonstration théorique d"une
relation linéaire entre ces deux critéres reste limitée aux seuls modeles torsionnels [62].

Cette étude se propose d’étendre ces investigations a des systemes pour lesquels les effets
de flexion d’arbre ne peuvent étre négligés, ainsi qu’a des engrenages a denture hélicoidale.
Pour cela, deux modeles du banc d’essai présenté dans la Section 4.1 sont exploités : a) un
modele tridimensionnel tenant compte de la paire d’engrenages ainsi que des arbres,
roulements et accouplements et b) un modéle réduit torsionnel incluant uniquement le pignon
et la roue. Dans ce qui suit, le coefficient d’effort dynamique est défini tel que :

max(F,
DFpy = % (9)

Les Illustrations 9 et 10 présentent les variations de l'effort a la denture (coefficient
dynamique défini en (9) ou créte-a-créte) en fonction de I'erreur de transmission dynamique.
Deux séries de points sont utilisées afin de distinguer les vitesses faibles (cercles) des vitesses
supérieures a la seconde vitesse critique principale (triangles).

L'Illustration 9 montre les résultats obtenus dans le cadre d’une denture droite et
I'Illustration 10 correspond a une denture hélicoidale. Dans chaque illustration, les figures (a)
et (b) ont été obtenues a partir du modeéle tridimensionnel complet, tandis que les figures (c)
et (d) sont issues du modele réduit torsionnel.

L’abscisse des figures (a) et (c) est basée sur les développements théoriques proposés en
[62] qui indiquent que, dans le cas d'un modele purement torsionnel, une relation linéaire peut
étre établie entre I'effort dynamique a la denture et I'amplitude zéro-a-créte de I'erreur de
transmission dynamique, sous la forme :

DF, =1 Fm 0-p
mf = + ?5 (TEd — TES) (10)

Les figures (b) et (d) correspondent a la relation proposée dans [51] sur la base de résultats
expérimentaux qui relie I'effort dynamique a la denture a I’erreur de transmission dynamique

par:
F,P  TEJ?
FE 2

(11)

ou A = mean(TEs) — mean(NLTE)
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Illustration 10 : Engrenages a denture hélicoidale — (a) et (b) : modéle tridimensionnel complet, (c) et (d) : modele
réduit torsionnel

Les conclusions suivantes sont tirées des résultats des différentes simulations :

e les relations linéaires proposées dans les références [51,61,62] ne sont pas

complétement satisfaisantes dans le cas d"un systéme tridimensionnel (figures (a)
et (b)) et une importante dispersion est observée, qui semble plus marquée dans
le cas des dentures hélicoidales (Illustration 10),

e une relation linéaire est en revanche clairement identifiable sur les résultats
obtenus a partir des modeles torsionnels (figures (c) et (d)),

¢ la vitesse semble jouer un réle important et une bifurcation est observée a partir

d’un certain régime de vitesses (tendance mentionnée par Dai et al. [63]).
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5.3 Systéme double-étage a axes concourants

Dans le but de reproduire une architecture similaire a celle d'une boite de transmission
d’hélicoptére, un nouveau systéeme est étudié qui se compose d’un engrenage cylindrique
(denture droite ou hélicoidale) et d'un engrenage spiro-conique (Illustration 11).

I Output

Spur / Helical gear

Spiral bevel gear

Input -

Bearings

Hllustration 11 : Modéle du systeme double-étage a axes concourants

Les Illustrations 12 et 13 montrent les erreurs de transmission dynamiques locales
calculées dans le cas ot le premier étage de réduction est un engrenage a denture hélicoidale.
Un balayage est réalisé sur la vitesse de rotation du pignon d’entrée et la FFT des signaux
d’erreurs de transmission dynamiques est calculée a chaque vitesse de rotation. Le résultat est
présenté sous forme de spectrogramme sur lequel on peut identifier les différentes fréquences
caractéristiques du systeme. f,,, désigne la fréquence d’engrenement de I'engrenage
cylindrique et f;,, celle de I'engrenage spiro-conique. L'Illustration 12 montre que I'engrenage
spiro-conique a une forte influence sur la réponse dynamique de I'engrenage cylindrique,
entrainant une amplification de la réponse dynamique (vitesse critique), autour de
31 000 tr/min.

L’étude de la réponse aux niveaux des différents roulements du systéme a aussi permis
de mettre en avant une forte influence de l'engrenage spiro-conique sur l'ensemble du
systéme, témoignant d’importants phénomeénes entre les deux engrenages. Ces phénomenes
peuvent étre atténués en réduisant la raideur de connexion entre les deux étages de réduction,
soit par une augmentation de la longueur de I'arbre intermédiaire dans le cas d"une denture
droite, soit par lintroduction d'un accouplement élastique dans le cas d'une denture
hélicoidale.
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6 CONCLUSION

Les transmissions par engrenages sont sources de vibrations et de bruit. De nombreux
modeles sont proposés dans la littérature pour prédire le comportement dynamique de ces
systemes, mais la plupart concernent des transmissions a un seul étage de réduction (avec axes
paralleles ou concourants), qui ne sont plus applicables dés lors que de forts couplages
interviennent entre les engrenages successifs d’une boite (comme c’est le cas dans les BTP).
Par ailleurs, les modéles développés pour des systemes a plusieurs étages semblent
exclusivement dédiés aux systemes a axes paralléles et ne permettent donc pas d’intégrer de
renvoi d’angle.

Les travaux présentés dans ce manuscrit portent donc sur le développement d'un modele
numérique dédié a la simulation du comportement dynamique des boites de transmission
principales (BTP) d"hélicoptéres. Ce modele permet de représenter des systemes comportant
plusieurs étages d’engrenages de différents types (cylindriques et spiro-coniques) par une
approche similaire. Il repose sur une caractérisation des excitations liées a I'engrénement par
des fonctions périodiques, principalement : (a) la raideur d’engrénement, et (b) les erreurs de
transmission. Le modéle inclut la contribution des éléments de supports (arbres, roulements,
accouplements élastiques) et permet donc de déterminer la réponse dynamique au niveau des
roulements. Une analyse vibro-acoustique du carter peut étre réalisée ultérieurement en
utilisant les efforts dynamiques aux roulements issus de 1’analyse dynamique du systeme
engrenages-arbres-roulements.

La validité du modele est vérifiée en reproduisant des études numériques et
expérimentales de la littérature. Les différentes comparaisons réalisées permettent de
démontrer la pertinence de la formulation proposée pour des engrenages cylindriques et
spiro-coniques, avec ou sans corrections et erreurs, ainsi que pour des systemes a deux étages
de réduction.

Le modeéle est appliqué pour plusieurs études portant sur des systémes simple- et double-
étage. Celles-ci traitent : (i) de I'influence des erreurs de pas sur la dynamique des engrenages,
(ii) de la relation entre l'erreur de transmission dynamique et les efforts dynamiques a la
denture, et (iii) des phénomeénes de couplage intervenant dans des systémes a plusieurs étages
de réduction. La derniere application porte sur une architecture plus proche d’une boite de
transmission d’hélicoptere, combinant un engrenage cylindrique et un engrenage spiro-
conique. Les résultats numériques témoignent des effets de couplage qui interviennent entre
les deux étages de réduction, et de la forte influence des excitations générées par I'engrenage
spiro-conique sur le reste du systeme.

Plusieurs perspectives de développement peuvent étre identifiées a I'issue de ces travaux.
La premiére concerne I'introduction des trains épicycloidaux, qui constituent le dernier étage
de réduction de la BTP dans la plupart des hélicopteres lourds. Plus d’attention pourrait aussi
étre accordée a la modélisation des éléments de roulements, ainsi qu’a la représentation de
I'amortissement. Un autre axe de recherche concerne l'influence de la prise en compte du
frottement a la denture sur la réponse dynamique du systeme, notamment au niveau des
roulements. Enfin, I'introduction de géomeétries de type voile mince, couramment utilisées en
aéronautique mérite certainement d’étre étudiée.
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