
In order to predict the rotordynamics of a high speed induction motor in bending, an optimization procedure is proposed for identifying the constitutive 
properties especially those of the magnetic core.  Modal parameters predicted by a finite element model based mainly on beam elements, and measured 
on an induction motor are included in modal error functions contained in a functional.  The minimization of this functional by using the Levenberg-
Marquardt algorithm permits extracting the constitutive properties along the magnetic core.

Figure 5. Experimental Setup.

Table 1 
First four bending measured and predicted natural frequencies 
obtained with 7 sub-domains.

0.640.472.681.05Error (%)

231517051263847Predicted (Hz)

233017131230856Measured (Hz)
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Figure 8. Normalized Young’s modulus distributions. Figure 9. Normalized Coulomb’s modulus distributions.

Figure 7. Evolution of the global error norm versus the number of 
sub-domains. 

Figure 6. The dashed and solid line represent measured and 
predicted mode shapes respectively.  Predicted mode shapes were 
obtained with 7 sub-domains. 

Figure 2. Short-circuiting rod in bending - Kinematic assumption. 
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Optimization Procedure for Identifying Constitutive 
Properties of High Speed Induction Motor

� Optimization procedure tested on an industrial rotor with complex design.
� Constitutive property distributions depend on the number of sub-domains
used in the finite element (FE) modeling of the magnetic core.  
� Distributions tend toward a particular shape versus the number of sub-
domains:  Constant values in the middle (55% of the magnetic core length) 
and Low values at its ends.  
� The low level permits probably to consider the shear effect located close 
to the ends. 
� This procedure is very useful for establishing an FE model based mainly 
on beam elements and therefore containing few degrees of freedom.
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Multi-Objective Function

� Efficient Convergence.

� Less CPU-time Consuming.

Figure 4. Finite element model. Blue points represent measurement points. 

Constitutive Property Distributions
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Figure 1.  Diagram of a squirrel cage induction motor.

� Assembly Structure: 

� Tie rods, Short-circuiting rods, Laminated stack.

� Prestressed Structure.

� Laminations without central hole.

� Short-circuiting rods are modeled as beams, of 
diameter DCC (Fig. 3), whose neutral axes coincide 
with the neutral axis of the magnetic core.

� Tie rods  can be seen as external tendons. 

� Laminated stack is modeled as a distributed 
orthotropic material.

� Young’s and Coulomb’s modulus distributions tend to stabilize if h > 7 sub-domains.

� Distributions have constant values in the middle (55 % of the magnetic core length) of the 
magnetic core and decrease at its ends.� The global error norm decreases with the 

number of sub-domains.

� The global error norm obtained with h = 7
is height times lower (Fig. 6) than this one 
obtained with an isotropic assumption.   

� The proposed method is more accurate
than classical identification methods 
considering restrictive assumptions such as 
homogenous or isotropic material.

Kinetic 
Assumptions

���� Nelson’s Method
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� Tie rods stiffness matrix at clamping 
nodes A0 and B0 (Fig. 2):

The kth eigenvector derivative 
requires only the kth eigenvector.

where K and M are the stiffness and mass matrices respectively.

� Distributions                           , considered by splitting the stack 
into h sub-domains      such as

Figure 3. Cross section of the 
magnetic core. 

� Optimization strategy consists in minimizing the 
difference between the measured and predicted modal
data, at each iteration i:
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� The difference between measured and predicted natural 
frequencies and mode shapes is quantified by four modal error 
functions, for each mode k, k = 1…m:

����Modal Testing

����Weight coefficients based on 
the initial mean value, i = 0.
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� The difference is defined as a non-linear least squares 
functional, a global error norm:
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���� Great advantage for predicting the rotordynamics, i.e.
unbalance responses and transient responses.
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