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Abstract
Nanoelectromechanical systems (NEMS) have been the focus of recent applied and funda-
mental research. With critical dimensions down to a few tens of nm, most NEMS are used
working in resonance. In this size regime, they display high fundamental resonance frequen-
cies, diminished active masses, tolerable force constants and relatively high quality factors in
the range of 102 − 104. These attributes collectively make NEMS suitable for a multitude of
technological applications such as ultrasensitive force and mass sensing, narrow band filtering,
and time keeping. So as to fulfill their full promises, that is, to begin to come out of industrial
foundries, a certain number of challenges are yet to be addressed: in particular, their frequency
stability, i.e. their output carrier power has to be improved. Mechanical transduction gain of
the devices has been thoroughly studied, but the drive power has always been a priori limited to
the onset of nonlinearities. Besides, the smaller the structures, the sooner nonlinearities occur,
reducing their dynamic range and even making extremely difficult to detect their oscillation,
as the abundant literature about characterization techniques proves.

In this thesis, this limitation is reconsidered, i.e. the behavior of NEMS at large amplitude
through the nonlinear dynamics of NEMS-based resonant sensors is investigated. A review of
inertial, mass and gas sensors is carried out. Particularly, the design issues of resonant sensors
are addressed and the sources of nonlinearities in clamped-clamped resonators and cantilevers
are exposed. A review of nonlinear methods is also presented in order to define a model-
ing strategy for the dynamics of resonant accelerometers, gyroscopes and mass/gas sensors.
Close-form solutions of the critical amplitudes were provided for several devices and the im-
portance of the fifth order nonlinearities has been demonstrated through the mixed behavior
identification. Several analytical design rules are provided in order to enhance the dynamic
range of NEMS resonators and the detection limit of NEMS-based resonant sensors. These
rules essentially include hysteresis suppression by nonlinearity cancellation as well as mixed
behavior and pull-in retarding under superharmonic resonance and simultaneous resonances
leading to the possibility of driving the resonator linearly at high oscillations compared to the
critical amplitude. The experimental validation of the model has been performed in the case
of resonant capacitive (4µm SOI) MEMS and (2µm MEMS level/500nm NEMS level) SOI
M&NEMS accelerometers and gyroscopes as well as capacitive (fabricated using nanostencil
lithography) and piezoresistive (160nm SOI NEMS) gas/mass sensors.

Keywords
Nonlinear dynamics, resonator, MEMS and NEMS, dynamics range, detection limit, reso-
nant sensors, accelerometer, gyroscope, gas and mass sensors, design rules, superharmonic
resonance, simultaneous resonances, mixed behavior, pull-in, critical amplitude



Résumé
Les systèmes nano-électromécaniques (NEMS) sont au centre de la recherche appliquée et
fondamentale. Avec des dimensions critiques de quelques dizaines de nanomètres, la plupart
des NEMS fonctionnent en mode résonant. A cette échelle, leur fréquence fondamentale est
rejetée à plusieurs MHz, et ils bénéficient d’une masse faible, d’une raideur active et de fac-
teurs de qualité dans la gamme de 100 à 10000. Ces attributs rendent collectivement les NEMS
appropriés à une multitude d’applications technologiques telles que les capteurs ultrasensibles
d’accélération, de force et de masse, les filtres et les oscillateurs pour base de temps. Afin
que les résonateurs NEMS tiennent leurs promesses et répondent aux attentes sociétales, un
certain nombre de défis et verrous technologiques restent à lever. En particulier, la stabilité
en fréquence, cest à dire la puissance de porteuse, doit être améliorée. Le gain mécanique de
transduction des NEMS a été analysé avec grand intérêt mais la sensibilité a toujours été a
priori limitée par lapparition des non-linéarités. En outre, la miniaturisation des structures de-
scend les seuils d’apparition des non-linéarités, réduit donc la gamme dynamique et complique
la détection de leur oscillation.

La thèse reconsidère la limitation de détection des NEMS. Le comportement de NEMS ré-
sonants en grands déplacements est analysé en déployant les techniques de la dynamique non
linéaire et validé grâce à des méthodes de caractérisation électrique du domaine des NEMS. Tout
d’abord il est établi un état de lart de certaines catégories de capteurs. Suit une présentation
des problèmes de conception des capteurs résonants puis des sources de non linéarités. L’état de
lart des méthodes non linéaires permet de dégager une stratégie de modélisation des capteurs
résonants M&NEMS, inertiels, de gaz et de masse. Les expressions analytiques des amplitudes
critiques sont données pour plusieurs dispositifs et l’importance des non-linéarités d’ordre cinq
a été démontrée par l’identification analytique et l’analyse expérimentale du comportement non
linéaire mixte, combinant raidissement et assouplissement, indiquée par la réponse harmonique.
Enfin la thèse préconise plusieurs règles de conception analytique afin doptimiser la gamme dy-
namique des résonateurs NEMS et la limite de détection des capteurs résonant M&NEMS. Pour
cela il s’agit de supprimer tout phénomène d’hystérésis par l’annulation des non-linéarités dor-
dre trois, de retarder le comportement mixte et le pull-in (collage du résonateur sur l’électrode)
en déclenchant des résonances super harmoniques et des résonances simultanées garantissant le
comportement linéaire du résonateur au delà de l’amplitude critique. La validation expérimen-
tale des modèles a été effectuée sur des capteurs inertiels MEMS et M&NEMS à transduction
capacitive résonante ainsi que sur des nano capteurs de gaz et de masse à transduction capac-
itive avec cointégration CMOS et piézorésistive.

Mots-clés
Dynamique non-linéaire, résonateur, MEMS et NEMS, gamme dynamique, limite de détec-
tion, capteurs résonnants, accéléromètres, gyromètres, capteurs de gaz et de masse, règles de
conception, résonance superharmonique, résonances simultanées, comportement non-linéaire
mixte, pull-in, amplitude critique
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1.1 Motivations

Micro and nanoelectromechanical (MEMS/NEMS) devices have been the subject of extensive research
for a number of years and have generated much excitement as their use in commercial applications
has increased. Indeed, MEMS technology has opened up a wide variety of potential applications
not only in the inertial measurement sector, but also spanning areas such as communications (filters,
relays, oscillators, LC passives, optical switches), biomedicine (point-of-care medical instrumentation,
microarrays for DNA detection and high throughput screening of drug targets, immunoassays, in-
vitro characterization of molecular interactions), computer peripherals (memory, new I/O interfaces,
read-write heads for magnetic disks) and other miscellaneous areas such as in projection displays, gas
detection and mass flow detection.

NEMS are the natural successor to MEMS as the size of the devices is scaled down to the submicron
domain. This transition is well adapted with the resonant sensing technique for a large panel of
applications. One reason of down scaling resonant sensors to the NEMS size is the ability to detect
very small physical quantities by increasing their sensitivity [Ekinci 2005]. In particular, NEMS have
been proposed for use in ultrasensitive mass detection [Ekinci 2004a, Jensen 2008], radio frequency
(RF) signal processing [Nguyen 1999b, Nguyen 1999a], and as a model system for exploring quantum
phenomena in macroscopic systems [Cho 2003, LaHaye 2004].

Unfortunately, the nonlinear regime for nanomechanical resonators is easily reachable, so that
the useful linear dynamic range of the smallest NEMS devices is severely limited. In fact, many
applications we are hoping for in the near future will involve operation in the nonlinear regime, where
the response to the stimulus is suppressed and frequency is pulled away from the original resonant
frequency.

Actually, it is a challenge to achieve large-amplitude motion of NEMS resonators without deterio-
rating their frequency stability [Feng 2007]. The relative frequency noise spectral density [Robins 1984]
of a NEMS resonator is given by:

Sf =

(
1

2Q

)2 Sx
P0

(1.1)

where Sx is the displacement spectral density and P0 is the displacement carrier power, ie the RMS
drive amplitude of the resonator 1

2A
2. Remarkably, driving the resonator at large oscillation amplitude

leads to better SNR and, thus, simplifies the design of the electronic feedback loop. However, doing so
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in the nonlinear regime reduces the sensor performances since the frequency instability of a nonlinear
resonator is proportional to its oscillation amplitude. Moreover, even when NEMS resonators are
used as oscillators in closed-loop, a large part of noise mixing [Roessig 1997a, Kaajakari 2005a] due to
nonlinearities drastically reduces their dynamic range and alters their detection limit.

This thesis is about overcoming such limitations between operating in the nonlinear regime and
noise mixing issue [Roessig 1997a, Kaajakari 2005a]. Based on the nonlinear dynamics of nanomechan-
ical resonators, the main idea is to provide simple analytical tools for MEMS and NEMS designers in
order to optimize resonant sensors designs and enhance their performances for precision measurement
applications.

1.2 Overview

Part I entitled "M&NEMS resonant sensors capabilities and nonlinear dynamics limitations" includes
two chapters:

• Chapter 2 presents a short state of art of M&NEMS sensors focused on inertial and gas/mass
sensors. In order to justify our design choices and within the framework of the transition from
MEMS to NEMS, the capabilities of the resonant sensing technique are demonstrated compared
to other detection techniques. Indeed, a linear study of the resonant sensing is developed to
quantify its specifications, its advantages and its limitations when sensors are scaled down to the
NEMS size. In particular, the physical nonlinearities are briefly introduced and the noise mixing
issue is explained.

• Chapter 3 starts with a presentation of nonlinearity sources in clamped-clamped beams as well
as cantilevers electrostatically actuated. The nonlinear equations of motion of these resonators
are introduced. Then, several methods for solving nonlinear differential equations analytically
as well as numerically are presented. The goal is to define a strategy to solve the nonlinear
equations of NEMS resonators under electrostatic actuation.

Part II entitled "Strategies for performance enhancement of resonant accelerometers" includes three
chapters:

• Chapter 4 describes two resonant accelerometers (MEMS and M&NEMS) as well as their fabri-
cation process. A complete analytical model for the nonlinear dynamics of MEMS and NEMS
resonators including all main sources of nonlinearities is presented and validated numerically as
well as experimentally.

• Chapter 5 provides several design rules for M&NEMS resonant sensors, based on the analytical
model developed in chapter 4. The model ability to enhance the dynamic range of resonant
accelerometer and its detection limit by hysteresis suppression is demonstrated. Also, the pos-
sibility to obtain a complex nonlinear behavior strongly unstable is shown and a way to retard
it by design or by using the dynamic effect of nonlinear resonances is demonstrated.

• Chapter 6 presents the experimental validation of several nonlinear dynamics effects as well as the
design rules provided in chapter 5. An original capacitive down-mixing set up is described and its
high measurement performances are presented on designed high frequency M&NEMS resonators.
The potential of the hysteresis suppression by nonlinearity cancellation is demonstrated under
simultaneous resonances.
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Part III entitled "Extension to other resonant sensors: gyroscopes and mass/gas sensors" is the ex-
tension of part II to more complicated sensors such as gyroscopes and gass/mass sensors. It includes
two chapters:

• Chapter 7 deals with the nonlinear dynamics of resonant M&NEMS gyroscopes. A complete
analytical model is developed NEMS Mathieu-Duffing resonators. The model concerns only pe-
riodic motions and permits the identification of some rules of resonant angular rate sensors. The
partial validation of the model was achieved thanks to the design and fabrication of M&NEMS
gyroscope.

• Chapter 8 concerns the nonlinear dynamics of NEMS cantilevers. The nonlinear problem is
solved analytically by including main sources of nonlinearity. A first experimental validation is
demonstrated on nanocantilevers electrostatically actuated in plane, fabricated by nanostencil
lithography and electrically characterized at CNM-IMB in Barcelona. Then, the model is adapted
for a NEMS piezoresistive mass sensor. Several design rules are provided and experimentally
validated demonstrating a large potential of performance enhancement for resonant gass/mass
nanosensors.
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2.1 Introduction

MEMS/NEMS (Micro/Nano Electro-Mechanical Systems) is a rapidly growing field building upon
the existing silicon processing infrastructure to create micron/nano-scale machines. These devices are
widely used in aerospace, automotive, biotechnology, instrumentation, robotics, manufacturing and
other applications and our gateway into coming nanotechnology devices and systems. Unlike conven-
tional integrated circuits, these devices can have many functions, including sensing, communication,
and actuation. Just like microelectronics, MEMS/NEMS technology will permeate our everyday lives
in the coming decades.



8 Chapter 2. MEMS and NEMS sensors

2.1.1 What is MEMS?

Micro-Electro-Mechanical Systems (MEMS) is the integration of a number of microcomponents on
a single chip which allows the microsystem to both sense and control the environment (see Figure
2.1). The components typically include microelectronic integrated circuits (the "brains"), sensors (the
"senses" and "nervous system"), and actuators (the "hands" and "arms").

Figure 2.1: Micro-sized Multiple gear speed reduction.

2.1.2 Materials for MEMS manufacturing

2.1.2.1 Silicon

Silicon is the material used to create most integrated circuits used in consumer electronics in the
modern world. The economies of scale, ready availability of cheap high-quality materials and ability
to incorporate electronic functionality make silicon attractive for a wide variety of MEMS applications.
Silicon also has significant advantages engendered through its material properties. In single crystal
form, silicon is an almost perfect Hookean material, meaning that when it is flexed there is virtually no
hysteresis and hence almost no energy dissipation. Its mechanical properties (Table 2.1) are anisotropic
and hence are dependent on the orientation to the crystal axis. As well as making for highly repeatable
motion, this also makes silicon very reliable as it suffers very little fatigue and can have service lifetimes
in the range of billions to trillions of cycles without breaking. Silicon itself exists in three forms:
crystalline, amorphous, and polycrystalline (polysilicon). High purity, crystalline silicon substrates are
readily available as circular wafers with typical diameters of 100mm, 150mm, 200mm, or 300mm

in a variety of thicknesses. The basic techniques for producing all silicon based MEMS devices are
deposition of material layers, patterning of these layers by photolithography and then etching to
produce the required shapes.

2.1.2.2 Polymers

Even though the electronics industry provides an economy of scale for the silicon industry, crystalline
silicon is still a complex and relatively expensive material to produce. Polymers on the other hand
can be produced in huge volumes, with a great variety of material characteristics. MEMS devices can



2.1. Introduction 9

Table 2.1: Mechanical properties of silicon (1 dyn = 10µN).

be made from polymers by processes such as injection molding, embossing or stereolithography and
are especially well suited to microfluidic applications such as disposable blood testing cartridges.

2.1.2.3 Metals

Metals can also be used to create MEMS elements. While metals do not have some of the advantages
displayed by silicon in terms of mechanical properties, when used within their limitations, metals
can exhibit very high degrees of reliability. Commonly used metals include gold, nickel, aluminium,
chromium, titanium, tungsten, platinum, and silver.

2.1.3 MEMS basic processes

MEMS are fabricated in one of two ways: either through surface micromachining (see Figure 2.2), in
which successive layers of material are deposited on a surface and then etched to shape, or through
bulk micromachining, where the substrate itself is etched to produce a final product. Surface micro-
machining is most common because it builds on the advances of integrated circuits. Unique to MEMS,
deposition techniques sometimes leave behind "sacrificial layers", layers of material meant to be dis-
solved and washed away at the end of the fabrication process, leaving a remaining structure. This
process allows a MEMS device to have complex structure in 3 dimensions. Various microscale gears,
pumps, sensors, pipes, and actuators have been fabricated and some of them are already integrated
into everyday commercial products.

Globally, there are three principal steps in surface micromachining:

• Deposition processes: thin films of material are placed on a substrate (Chemical Vapor Deposi-
tion (CVD), Electrodeposition, Epitaxy, Thermal oxidation, Physical Vapor Deposition (PVD),
Casting).

• Lithography: a patterned mask is applied on top of the films.

• Etching processes: the films are etched selectively to provide relief following the mask outlines
(Wet etching, dry etching).
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Figure 2.2: The principal steps in surface micromachining.

2.1.4 MEMS applications and market

From one viewpoint MEMS application is categorized by type of use (sensor, actuator and structure).
Examples of modern-day MEMS use include inkjet printers, accelerometers in automobiles, pressure
sensors, high-precision optics, microfluidics, monitoring of individual neurons, control systems, and
microscopy. There is currently no such thing as a productive microscale machine system on the order
of productive macroscale assembly lines, but it seems that the invention of such a device is only a
matter of time. The prospect of manufacturing with MEMS is exciting because arrays of such systems
working in tangent could be substantially more productive than macroscale systems occupying the
same volume and consuming the same amount of energy. One prominent limitation, however, would
be that macroscale products built by microscale machine systems would need to be composed primarily
of prefabricated microscale building blocks.

The MEMS technology is growing very rapidly as shown in Figure 2.3. While estimates for MEMS
markets vary considerably, they all show significant present and future growth, reaching total volumes
in the many billions of dollars by 2012. The expected growth stems from technical innovations and
acceptance of the technology by an increasing number of end users and customers and especially after
taking into the consideration that MEMS technology emphasis in the next few years on the "systems"
not only the components and subsystems.

2.1.5 From MEMS to NEMS

NanoElectroMechanical Systems (NEMS) have critical structural elements at or below 100nm. This
distinguishes them from MicroElectroMechancial Systems (MEMS), where the critical structural ele-
ments are on the micrometer length scale. Compared to MEMS, NEMS combine smaller mass with
higher surface area to volume ratio and are therefore most interesting for applications regarding high
frequency resonators and ultrasensitive sensors. Because of the scale on which they can function,
NEMS are expected to significantly impact many areas of technology and science and eventually
replace MEMS.

As noted by Richard Feynman in his famous talk in the 60s, There’s Plenty of Room at the
Bottom, there are a lot of potential applications of machines at smaller and smaller sizes; by building
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Figure 2.3: Market overview and forecast for MEMS by device type (Source: Yole Développement-
2008-).

and controlling devices at smaller scales, all technology benefits. Among the expected benefits include
greater efficiencies and reduced size, decreased power consumption and lower costs of production in
electromechanical systems.

In 2000, the first Very Large Scale Integration (VLSI) NEMS device was demonstrated by re-
searchers from IBM [Despont 2000]. Its premise was an array of AFM tips which can heat/sense a
deformable substrate in order to function as a memory device. In 2007, the International Techni-
cal Roadmap for Semiconductors (ITRS) contains NEMS Memory as a new entry for the Emerging
Research Devices section.

In this chapter, an overview of MEMS inertial sensors and NEMS gas and mass sensors is presented.
These applications are well adapted for resonant sensing technique which offers the opportunity to
combine NEMS and MEMS in a single structure for inertial sensors. The area of this thesis is resonant
MEMS and NEMS sensors and the motivation of this choice comes from the recent tendency of scaling
sensors down to NEMS which brings the classical displacement sensing techniques to their limits.

2.2 Inertial sensors

2.2.1 Introduction

A sensor is a device, which responds to an input quantity by generating a functionally related output
usually in the form of an electrical or optical signal. Motion sensing devices are not new. They
have been used since the 1950s in the aerospace and defense fields to perform navigation functions.
MEMS versions of accelerometers and gyroscopes have been developed more recently, bringing the
key advantages of cost and size reduction. While not as accurate as the devices used for military
applications, MEMS-type accelerometers and gyroscopes are well adapted to be integrated into cars
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and many consumer electronic products. Most commonly, MEMS accelerometers have been used
extensively since the 1990s in light vehicle airbags as crash sensors. Since then, many other devices
have benefited from the use of motion sensors. The latest and most striking examples are their use in
Nintendo Wii game controllers and Apple iPhone and iPod devices.

MEMS inertial sensors, consisting of accelerometers and gyroscopes, are one of the most important
types of silicon-based sensors and represent a significant business: 859 million MEMS accelerometers
(Figure 2.4) and gyroscopes were produced worldwide in 2008, corresponding to a 1.85 B$ market.
The majority of this market still comes from automotive applications; however, consumer applications
should overtake automotive by 2012. This is not only due to the current downturn that is impacting
the automotive world, but massive use of these sensors is likely to remain limited to established
applications such as airbag, brake pressure (ESC) and tire-pressure monitoring systems (TPMS).

Figure 2.4: Three axis linear accelerometer from ST

Inertial sensors have seen a steady improvement in their performance and their fabrication technol-
ogy, and today, microaccelerometers are among the highest volume MEMS sensors for the automotive.
While the performance of gyroscopes has improved by a factor of 10 every two years, their costs have
not dropped as was originally predicted. The initial drive for lower cost, greater functionality, higher
levels of integration, and higher volume had slowed down during the optical bubble, when the sensor
market was over taken with high potential returns promised by the telecom market. Although the
telecom boom had slowed the wide spread development in gyroscopes, it poured billions of dollars
into development of next generation MEMS technologies, equipment, modeling tools, foundries, and
micromachine experts.

The medical and industrial fields increasingly use inertial sensors, but in a more fragmented way.
Seismic detection, the major application for motion sensors, is suffering greatly because of low oil
prices. However, plenty of other applications will benefit from MEMS inertial sensors in coming years.
Defense and aerospace applications are likely to remain a minor market for MEMS sensors because of
the low volumes involved. But the increasing performance of MEMS accelerometers and gyroscopes is
leading to a revolution in selected applications such as rockets, munitions and soldier equipment.

There are a large number of relevant operational parameters for a micromechanical inertial sensor,
especially a gyroscope. We will describe a partial set of the more important parameters. A complete list
of gyroscope parameters can be found in the published IEEE standard for inertial sensor terminology
[IEE 2001]. Some of the key parameters for consideration in inertial sensor design are listed overleaf:
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• Sensitivity (Scale Factor): The sensitivity of the device is the constant of proportionality relating
the input and output, assuming a linear response. In general terms, it is the sensitivity of the
output to the input.

• Noise floor/resolution: Random energy dissipation in the sensor results in noise. This limits the
minimum detectable signal of the sensor.

• Sensitivity to extrinsic parameters: ∂O
∂X where O is the output and X is the variable of interest.

When X is the input this is usually the same as the scale factor for a linear relationship between
input and output. However, what is also of importance is the gyroscope sensitivity to parame-
ters other than angular motion. These parameters include temperature, pressure and external
accelerations (including shock and environmental vibrations). The sensitivity of the sensor to
these other variables should be low.

• Bias stability: This variable provides a measure of the drift of the output offset value over time.
The drift can be measured in several ways (one method is to measure the root allan variance of
the output over fixed time intervals).

• Bandwidth: The range of input frequencies for which the output-input relation is preserved.
Traditionally, a 3− dB variation in the scale is tolerated at the edge of the bandwidth.

• Response time: The time the output takes to settle to within a certain range of the expected
value for a step function input.

• Startup time: The time between turning on the power supply to the sensor to the time when a
reliable output can be obtained from the device.

• Linearity: For an ideally linear relation between output and input, this parameter measures the
extent of deviation from the norm.

• Dynamic Range: The range of input values over which the output is detectable and the input-
output relation is preserved.

• Maximum input rate: The maximum input rate that can be detected under operational condi-
tions preserving linearity and bandwidth considerations for the device.

• Shock limit: The maximum shock that the device can tolerate while operating.

2.2.2 Accelerometers

The application of micro-accelerometers (Table 2.2) covers a wide range of fields due to their small
size, high performance and low cost. This clearly confirms its second largest sensor market share after
pressure sensors. Microaccelerometers are commonly used tools in automotive, biomedical, industrial,
military and numerous consumer applications since it is crucial for safety, measurement and control.
Many types of micromachined accelerometers have been developed and are reported in the literature;
however, the vast majority has in common that their mechanical sensing element consists of a proof
mass that is attached by a mechanical suspension system to a reference frame, as shown in Figure 2.5.
Any inertial force due to acceleration will deflect the proof mass according to Newtons second law.
Ideally, such a system can be described mathematically in the Laplace domain by

x(s)

a(s)
=

1

s2 + b
ms+ k

m

=
1

s2 + ωn
Q s+ ω2

n

(2.1)
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Application Bandwidth Resolution Dynamic Range
Automotive
Airbag release 0-0.5kHz < 500mG ±100G

Stability and active 0-0.5kHz < 10mG ±2G

control systems dc-1kHz < 10mG 100G

Active suspension
Inertial navigation 0-100Hz <5µG ±1G

Seismic activity
Shipping of fragile goods 0-1kHz < 100mG ±1kG

Space microgravity 0-10Hz <1µG ±1G

measurements
Medical applications 0-100Hz <10mG ±100G

Vibration monitoring 1-100kHz <100mG ±10kG

Virtual reality 0-100Hz <1mG ±10G

Smart ammunition 10Hz to 100kHz 1G ±100kG

Table 2.2: Typical Applications for Micromachined Accelerometers

where x is the displacement of the proof mass from its rest position with respect to a reference frame,
a is the acceleration to be measured, b is the damping coefficient, m is the mass of the proof mass,
k is the mechanical spring constant of the suspension system, s is the Laplace operator, Q = ωnm

b

is the quality factor and ωn =
√

k
m is the natural resonant frequency of the undamped system. As

an accelerometer can typically be used at a frequency below its resonant frequency, an important
design trade-off becomes apparent here since sensitivity and resonant frequency increase and decrease
with m/k, respectively. This trade-off can be partly overcome by including the sensing element in a
closed loop, force-feedback control system. A common factor for all micromachined accelerometers
is that the displacement of the proof mass has to be measured by a position-measuring interface
circuit, and it is then converted into an electrical signal. Many types of sensing mechanisms have been
reported, such as capacitive, piezoresistive, piezoelectric, optical, tunneling current, and resonant. The
characteristic and performance of any accelerometer is greatly influenced by the position measurement
interface, and the main requirements are low noise, high linearity, good dynamic response, and low
power consumption. Ideally, the interface circuit should be represented by an ideal gain block, relating
the displacement of the proof mass to an electrical signal (see Figure 2.6).

2.2.2.1 Capacitive Accelerometers

The physical structures of capacitive sensors are relatively simple. The technique nevertheless provides
a precise way of sensing the movement of an object. Essentially the devices comprise a set of one (or
more) fixed electrode and one (or more) moving electrode. They are generally characterized by the
inherent nonlinearity and temperature cross-sensitivity, but the ability to integrate signal conditioning
circuitry close to the sensor allows highly sensitive, compensated devices to be produced. Figure
2.7 illustrates three configurations for a simple parallel plate capacitor structure. Measuring the
displacement of the proof mass capacitively has some inherent advantages. It provides a large output
signal, good steady-state response, and better sensitivity due to low noise performance. The main
drawback is that capacitive sensors are susceptible to electromagnetic fields from their surroundings;
hence, they have to be shielded carefully. It is also unavoidable that parasitic capacitances at the
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Figure 2.5: Lumped parameter model of an accelerometer consisting of a proof (or seismic) mass, a
spring, and a damping element.

Figure 2.6: Open loop accelerometer.

input to the interface amplifiers will degrade the signal. Usually, a differential change in capacitance is
detected. As the proof mass moves away from an electrode, the capacitance decreases, and as it moves
towards the electrodes, the capacitance increases. Neglecting the fringing field effects, the change in
capacitance is given by

∆C = ε0εrA

(
1

d0 − x
− 1

d0 + x

)
= 2ε0εrA

x

d2
0

+O(x2) (2.2)

where ε0 is the permittivity of free space, εr is the relative permittivity of the separation material. A
and d0 are respectively, the area of overlap and the gap between the proof mass and the electrode.

∆C is proportional to the deflection caused by the input acceleration only if the assumption of small
deflections is made (x << d0). For precision accelerometers this assumption may be not justifiable,
and hence, closed loop control can be used to keep the proof mass deflections small.

One of the highest performance capacitive accelerometers created was developed by Yazdi and
Najafi [Yazdi 2000]. It uses a combination of bulk and surface micromachining that allows the fab-
rication of the sensing element on a single wafer, thereby avoiding the need to bond several wafers
together, but nevertheless having the advantage of a wafer-thick proof mass. The latter is compliant
to acceleration in the z-direction and moves between electrodes fabricated from polysilicon, which
was deposited on a thin sacrificial silicon dioxide layer on the top and bottom wafer surface. Low
cross-axis sensitivity of the sensor was achieved by a fully symmetrical suspension system consisting
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Figure 2.7: Examples of simple capacitance displacement sensors.

of eight beams, two on each side of the proof mass. The sensing element is shown in Figure 2.8. This
results in a high-precision accelerometer with a measured sensitivity of 219.4 pF/G for a proof mass
area of 2 × 1mm and 4 × 1mm, respectively. The reported noise floor was around 0.2µG/

√
Hz.

Parasitic capacitance between the structural layer to the substrate can be around 50 pF for a typical

Figure 2.8: High-performance capacitive accelerometer using a combination of surface and bulk-
micromachining techniques [Yazdi 2000].

capacitive accelerometer. Interconnection between microstructures and electronics is implemented by
the polysilicon layer or by diffusion with large resistance and parasitic capacitance to substrate, which
result in large wiring noise and signal attenuation. Extra micromachining process steps usually involve
performance and yield compromises, and are in compatible with standard IC technology.

2.2.2.2 Piezoresistive Accelerometers

The piezoresistive effect describes the changing electrical resistance of a material due to applied me-
chanical stress. The piezoresistive effect differs from the piezoelectric effect. In contrast to the piezo-
electric effect, the piezoresistive effect only causes a change in resistance; it does not produce an
electric potential. The change of resistance of metal devices due to an applied mechanical load was
first discovered in 1856 by Lord Kelvin. With single crystal silicon becoming the material of choice for
the design of analog and digital circuits, the large piezoresistive effect in silicon and germanium was
first discovered in 1954 (Smith 1954). The sensitivity of piezoresistive devices is characterized by the
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gauge factor:

K =
dR
R

εL
(2.3)

where dR is the change in resistance due to deformation εL, R is the undeformed resistance and is the
strain.

A silicon piezoresistor (see Figure 2.9) is generally placed at the edge of the rim and proof mass
where stress variation is maximum. This causes change in the resistivity as the beam changes its
mechanical state. The first micromachined, batch-fabricated accelerometer was reported by Roylance

Figure 2.9: A pieozoresistor generates a voltage when deformed (the output voltage is proportional to
the resistivity change).

and Angell [Roylance 1979] at Stanford University in 1979. Examples of early devices are described
in [Barth 1988, Allen 1989a]. They typically consist of a multiwafer assembly with the central wafer
comprising the bulk-micromachined proof mass and suspension system and either silicon or Pyrex
glass wafers on top and bottom to provide over-range protection and near critical damping due to
squeeze film effects. The disadvantages of piezoresistive signal pick-off can be partially overcome by
integrating the read-out electronics on the same chip. A good example is the accelerometer presented
by Seidel et al. [Seidel 1995]. The sensing element consists of a bulkmicromachined proof mass, which
is attached to the substrate by three cantilever beams. On the main cantilever four piezoresistors
are implanted and form a full Wheatstone bridge. A cross-section of the sensor is shown in Figure
2.10. The sensing element is encapsulated by top and bottom wafers, which are bonded to the middle

Figure 2.10: Cross-sectional view of the piezoresistive accelerometer [Seidel 1995].

layer at wafer level. The reported performance of this device was a full-scale measurement range up
to ±20G, a resonance frequency of 1.2 KHz, a sensitivity of 0.4mV/V/G with a sensitivity drift of
1.8 0/00/K and an offset drift of 8 /V/K.
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The structure, fabrication process and circuitry of these devices are simple. However, a serious
drawback, is that the output signal tends to have a strong temperature dependency because the
piezoresistors inherently produce thermal noise and the output signal is relatively small [Allen 1989b].

2.2.2.3 Tunneling Accelerometers

The tunneling current from a sharp tip to an electrode is an exponential function of the tip-electrode
distance and hence can be used for position measurement of a proof mass. The tunneling current is
given by

I = I0 exp
(
−β
√
φz
)

(2.4)

where I0 is a scaling current dependent on material and tip shape (a typical value is 1.410−6A), β
is a conversion factor with a typical value of 10.25 eV −

1
2 /nm, φ is the tunnel barrier height with

a typical value of 0.5 eV , and z is the tip/electrode distance. The distance between the tunneling
tip and the electrode has to be precisely controlled; hence, these sensors have to be used in closed
loop operation. Electrostatic force-feedback is employed for the majority of research devices and this
keeps the separation distance approximately constant. The acceleration can then be inferred from the
voltage required to produce the necessary electrostatic force.

Micromachined tunneling accelerometers (Figure 2.11) were first introduced by researchers with
the Jet Propulsion Laboratory (JPL), Pasadena, CA [Kenny 1992, Rockstad 1996]. One of their
devices provided a bandwidth of several kilohertz, with a noise floor of less than 10 g/Hz in the 10200

Hz frequency range [Rockstad 1996]. However, a high supply voltage (tens to hundreds of volts) is
required for these devices, thus limiting their application. Theoretically, this is the most sensitive

Figure 2.11: Tunneling current accelerometer [Rockstad 1996].

detection mechanism. Several other accelerometers based on this principle have been reported, but no
commercial device has been developed. One unresolved problem is the long-term drift of the tunneling
current as material from the tip is removed by the high electric fields.

2.2.2.4 Resonant Accelerometers

The main advantage of resonant sensors is their direct digital output. As shown in Figure 2.12, silicon
resonant accelerometers are generally based on transferring the proof-mass inertial force to axial force
on the resonant beams and hence shifting their frequency. To cancel device thermal mismatches
and nonlinearities, a differential matched resonator configuration can be used. A fully integrated,
surface-micromachined resonant accelerometer was reported by Roessig et al. [Roessig 1997b]. The
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device consists of a proof mass attached to two double-ended tuning fork (DETF) resonators via a
force amplifier such as a mechanical lever. Resonance is sustained by embedding each DETF in the
feedback loop of an oscillator circuit. An external acceleration that is applied to the proof mass along
the sensitive axis of the device, results in a force communicated axially onto the double-ended tuning
fork sensors. The applied axial force results in a shift in the resonant frequency of the DETF resonant
sensors due to a change in the nominal stored potential energy of the system. This effect is identical
to that of tuning a guitar string to resonate at different frequencies by varying the tension in the
string. The output of the device is the difference in the output frequency of the two oscillators. The
nominal frequency of the double-ended tuning fork resonator was 68 KHz, and the scale factor of
the sensor was measured to be 45Hz/G. The resonator beams had comb drives attached to sense
their motion via a capacitance change and to excite them into resonance using electrostatic forces.
This is achieved by incorporating them into an oscillation loop. The coupling of the mechanical force
caused by motion of the proof mass into the resonators was achieved by a novel mechanical leverage
system that amplifies the force. A range of other resonant devices has been reported in the literature
[Roszhart 1995, Burrer 1995].

Figure 2.12: Schematic of a resonant accelerometer [Roessig 1997b].

2.2.2.5 Other Accelerometers

In addition to the above mentioned accelerometers types, there are other devices based on optical
[Uttamchandani 1992], electromagnetic [Abbaspour-Sani 1994], thermal [Leung 1998] and piezoelec-
tric [DeVoe 1997] principles. The reason behind is to use advantages of both micro-machined and
physical principle like optics which are immune to noise and linear.

2.2.3 Gyroscopes

Micromachined gyroscopes (Figure 2.13a) for measuring rate or angle of rotation have also attracted
a lot of attention during the past few years for several applications. They can be used either as
a low-cost miniature companion with micromachined accelerometers to provide heading information
for inertial navigation purposes or in other areas (Table 2.3), including automotive applications for
ride stabilization and rollover detection; some consumer electronic applications, such as video-camera
stabilization, virtual reality, and inertial mouse for computers; robotics applications; and a wide range
of military applications.

Micromachined gyroscopes typically rely on the coupling of an excited vibration mode into a
secondary mode due to the Coriolis acceleration (see Figure 2.13b). The magnitude of oscillation in
the sense mode provides a measure of the input angular velocity. These devices require no rotational
parts which would need bearings and hence can be relatively easily miniaturized. Gyroscopes are much
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Figure 2.13: A complete family of single-axis (yaw) and two-axis (pitch-and-roll, pitch-and-yaw)
MEMS gyroscope from ST. (b): Lumped parameter model of a vibratory gyroscope.

Application Bandwidth Resolution Dynamic Range
Automotive
Rollover protection 0-100Hz < 1◦/sec ±100◦/sec

Stability and active 0-100Hz < 0.1◦/sec ±100◦/sec

control systems
Inertial navigation 0-10Hz << 104◦/sec ±10◦/sec

Platform stabilization (video camera)) 0-100Hz ±100◦/sec

Virtual reality dc-10Hz << 0.1◦/sec ±100◦/sec

Pointing devices for computer control dc–10Hz < 0.1◦/sec ±100◦/sec

Robotics dc–100Hz < 0.01◦/sec ±10◦/sec

Table 2.3: Typical Applications for Micromachined Gyroscopes

more challenging devices and most of them are still under development. Currently, it is not clear which
approach will be dominant for future commercial devices. One difficulty is that the sensing element
must be able to move and hence be controlled in two degrees of freedom, one for the excited or driven
mode, the other for the sense mode. One way of describing a micromachined gyroscope is that it acts
as a resonator in the drive direction and as an accelerometer in the sense direction. Since the Coriolis
acceleration is proportional to the velocity of the driven mode, it is desirable to make the amplitude
and the frequency of the drive oscillation as large as possible. At the same time it has to be ensured
that the frequency and amplitude remain constant since even very small variations can swamp the
Coriolis acceleration. For amplitude control typically an automatic gain control loop is used, frequency
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stability can be ensured by a phase locked loop.
As already mentioned the coupling from the sense to the drive mode by the Coriolis force is very

weak, therefore often mechanical amplification is employed. Both the drive and sense mode can be
described by a second order transfer function (mass-damper-spring system). The dominating damping
mechanism is due to the proof mass moving in air. If the proof mass is operated in vacuum, systems
with very high Q (several 10000) can be realized. If the resonant frequencies of the drive and sense
mode are matched, the coupling is effectively amplified by Q. The difficulty is to design the two
resonance frequencies to match precisely (better than 1 Hz) over the operating temperature range
and other environmental influences. The tolerances in the mechanical fabrication process are far too
high hence active tuning is normally used. This relies on applying electrostatic forces on the proof
mass which effectively act as a negative spring constant, hence can be used to lower the overall spring
constant of either the drive or sense mode. Even with this active tuning method it is still challenging
to maintain precise tuning over the operating range of a gyroscope and considerable research effort
is made to solve this problem. Another problem is so-called quadrature error which originates from
an unavoidable misalignment of the drive mode from the ideal direction. This produces a signal in
the sense mode which can be orders of magnitudes larger than the Coriolis signal. It can be shown
that these two signals are usually 90◦ out of phase and consequently can be distinguished by further
signal processing. This assumes that all building blocks operate in linear region, however, even for
small misalignments quadrature error can cause the sense electronics to saturate. Consequently, it is
desirable to suppress quadrature error at its origin which can be achieved by applying electrostatic
forces to the proof mass [Clark 1996].

2.2.3.1 Single-Axis Gyroscopes

Choice of topology is a critical step in gyroscope design. Vibrating gyroscopes may be categorized
into single or dual spring mass or gimbaled mass. A single mass-spring system shares the same
flexure for both the drive and sense modes, and thus suppressing mode coupling is a design issue.
Dual mass structures can be arranged to form tuning fork resonators to reject translational vibration.
Single-gimbaled structures have an advantage of decoupling the drive and sense modes, but may have
poor linear acceleration rejection and temperature performance. The dual-gimbaled structure can be
employed in order to improve the linear acceleration rejection and stability at the price of increased
structural complexity.
Translational Vibration:
Most vibrating microgyroscopes use translational actuation. HSG-IMIT reported in 2002 a gyroscope
with excellent structural decoupling of drive and sense modes. The gyroscope [Geiger 2002] is shown
in Figure 2.14. It was fabricated in the standard Bosch fabrication process. The device demonstrated
a resolution of 0.005◦/s in a bandwidth of 50 Hz, a scale-factor of 10mV/◦/s in a dynamic range of
±100 ◦/s and a nonlinearity < 0.1%.

Rotational Vibration:
Rotational vibration around the z-axis makes it possible to detect lateral-axis angular rate with out-
of-plane Coriolis acceleration sensing. Geiger et al. [Geiger 1999, Geiger 2000] presented a rotational
surface-micromachined gyroscope manufactured using the Bosch foundry process, which features a
polycrystalline structural layer with a thickness of 10.3µm. This relatively large thickness for a surface-
micromachined process is achieved by epitaxial deposition of silicon. Under the freestanding structures
a second thinner layer of polycrystalline silicon is used for electrodes and as interconnects. The sensing
element, shown in Figure 2.15, has two decoupled rotary oscillation modes. The primary driven mode
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Figure 2.14: A decoupled translational gyroscope from Bosch [Geiger 2002].

is around the z-axis and is excited with electrostatic forces using the inner spoke electrodes of the
inner wheel. Attached to the inner wheel, by torsional springs, is a rectangular structure, which, in
response to rotation about the sensitive axis (x-axis), will exhibit a secondary rotary oscillation about
the y-axis. Owing to the high stiffness of the suspension beam in this direction, the oscillation of
the inner wheel is suppressed and only the rectangular structure can move due to a Coriolis force.
With this approach the primary and secondary modes are mechanically decoupled, which suppresses
mechanical cross-coupling effects such as quadrature error. The oscillation of the secondary mode is
detected capacitively by electrodes on the substrate. The sensor reported a dynamic range of 200 ◦/sec,
a scale factor of 10mV/(◦/sec), and a RMS noise of 0.05 ◦/sec in a 50 Hz bandwidth, which makes it
suitable for most automotive applications.

Figure 2.15: Surface-micromachined gyroscope with decoupled drive and sense mode. The drive mode
is excited by an electrostatic comb drive and is rotational about the z-axis (out-of-plane) [Geiger 2000].

Vibrating Ring Gyroscope:
In a vibrating ring gyroscope [Putty 1994, Sparks 1999], the ring structure is driven into resonance
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in the plane of the chip. The vibration of the ring forms an elliptically shaped pattern. In the
absence of an external rotation, the four nodal points at ±45◦ from the drive axis on the ring remain
stationary (Figure 2.16a). An external rotation about the z-axis generates a Coriolis force that excites
the resonant mode along the 45◦ axes. The resulting displacement is sensed capacitively by a series of
electrodes around the ring. The symmetry of the structure provides identical drive and sense resonance
if manufacturing is perfect. Delphi reported a vibratory ring gyroscope using electroplated metal to

Figure 2.16: (a): Operational principle of a ring gyroscope. (b): Delphi metal ring gyroscope
[Sparks 1999].

form a ring structure on top of CMOS chips [Sparks 1999]. As shown in Figure 2.16b, semicircular
springs support the ring and store the vibration energy. The springs are attached to the substrate
with a symmetric post. The post/spring design greatly reduces the effect of packaging stresses on the
sensor. Electrodes with a small gap to the ring are placed along the circumference of the ring with
equal intervals. These electrodes, forming capacitors with the ring, are used to drive, sense, balance,
and control the ring vibration. During operation, an ac voltage signal is applied to the drive electrodes
to excite the ring electrostatically into resonant oscillation. A dc bias voltage is applied to the ring.
The sense electrodes are 45◦ apart from the corresponding drive electrodes and are connected to on-
chip lowinput-capacitance CMOS buffer amplifiers. Another ASIC chip that includes four independent
control loops is used to maintain the ring in resonance at a constant amplitude, to obtain the rate
signal, and to correct for mechanical imbalance in the ring. The sensor has a measured noise floor of
0.1 ◦/s/

√
Hz and a bandwidth of 25 Hz.

2.2.3.2 Dual-Axis Gyroscopes

It is also possible to design micromachined gyroscopes that are capable of sensing angular motion
about two axes simultaneously. These devices are based on a rotorlike structure that is driven into
a rotary oscillation by electrostatic comb-drives. Angular motion about the x-axis causes a Coriolis
acceleration about the y-axis, which, in turn, results in a tilting oscillation of the rotor. Similarly, any
rotation of the sensor about the y-axis causes the rotor to tilt about the x-axis. Conceptually, this is
shown in Figure 2.17(a).

An implementation of such a dual-axis gyroscope was reported by Junneau et al. [Juneau 1997].
This gyroscope shown in Figure 2.17(b) was designed at the Berkeley Sensors and Actuators Center
and manufactured in a surface-micromachining process with a 2µm thick proof mass. The interface
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Figure 2.17: (a): Schematic design concept for Berkeley dual-axis gyroscope. (b): Polysilicon
surface-micromachined dual-axis gyroscopes designed at the Berkeley Sensors and Actuators Center
[Juneau 1997].

and control electronics were integrated on the same chip. Underlying pie-shaped electrodes capacitively
detect the tilting motion. To distinguish the two different output modes, a different voltage modulation
frequency (200 and 300 KHz) is used for each sense electrode pair. The reported performance was
1 ◦/sec in a 25 Hz bandwidth. The natural driving frequency of the rotor is about 25 KHz. Electrostatic
tuning of the different resonant frequencies can be used. Cross-coupling between the two output modes
is a major problem and was measured to be as high as 15%. This implies that for a commercially
viable version more research has to be done for such a dual-axis gyroscope.

2.2.3.3 Resonant Gyroscopes

Seshia et al. [Seshia 2002a] reported an integrated MEMS gyroscope based on resonant sensing. A
schematic of this gyroscope design is shown in Figure 2.18. The polysilicon sensor is about 1.2mm

by 1.2mm in size and 2.25µm thick. The device consists of a proof mass suspended by flexures
attached to a rigid frame. The proof mass is driven relative to the outer frame in the x direction
using embedded lateral comb drive actuators. When there is an external rotation along the z axis,
a Coriolis force induced by the vibration of the center proof mass acts in the y direction on one end
of a lever mechanism. The force is amplified by the lever and transmitted to a double-ended tuning
fork (DETF) along the axial direction of the DETF. The resonant frequency of the DETF is sensitive
to axial stress. Therefore, the DETF self-oscillation frequency is a measure of the external rotation
rate. There is one DETF on each side of the structure to form a differential output. The output of
the gyroscope is a frequency-modulated signal that can be easily converted to a digital signal. The
measured noise floor is 0.3 ◦/s/

√
Hz, limited by electronic noise of the oscillator circuit.

2.2.4 Conclusion

The recent transition from MEMS to NEMS makes the resonant sensing one of the best alternatives
for inertial sensors in order to overcome the physical limitations of classical detection techniques such



2.3. Gas and Mass Sensors 25

Figure 2.18: Schematic of the mechanical structure of the resonant output gyroscope [Seshia 2002a].

as the capacitive sensing. Moreover, the resonant sensing technique is known to be highly sensitive
and well adapted for M&NEMS inertial sensors (device including MEMS and NEMS parts). It can
also overcome several of the problems associated with displacement sensing gyroscopes and simplifies
the control implementation as well (see chapter 7). For all these reasons, we made the choice to use
the resonant sensing technique for small MEMS and M&NEMS inertial sensors applications.

2.3 Gas and Mass Sensors

2.3.1 Gas Sensors

Gas sensors are increasingly used in the growing markets of automotive [Moos 2002, McGeehin 2000],
aerospace [Moos 2002, McGeehin 2000, Kallergis 2001, Kohl 2001], and logistic [Abad 2007] applica-
tions. Within these domains, gas sensors play important roles in providing comfort and safety or in
enabling process control or smart maintenance functionalities. Future important markets are likely to
emerge in the fields of safety and security [Gardner 2004]. Two important groups of applications are
the detection of single gases (as NOx, NH3, O3, CO, CH4, H2, SO2, etc.) and the discrimination of
odours or generally the monitoring of changes in the ambient. Single gas sensors can, for examples,
be used as fire detectors, leakage detectors, controllers of ventilation in cars and planes, alarm devices
warning the overcoming of threshold concentration values of hazardous gases in the work places. The
detection of volatile organic compounds (VOCs) or smells generated from food or household products
has also become increasingly important in food industry and in indoor air quality, and multisensor
systems (often referred to as electronic noses) are the modern gas sensing devices designed to anal-
yse such complex environmental mixtures [Gardner 2004, Gardner 1999, Mielle 2000]. Examples of
application for gas sensors and electronic noses are reported in Table 2.4.

Solid state gas sensors, based on a variety of principles and materials, are the best candidates
to the development of commercial gas sensors for a wide range of such applications [Moseley 1987,
Madou 1989, Mandelis 1993, Moseley 1997, Lundström 1996]. The great interest of industrial and
scientific world on solid state gas sensors comes from their numerous advantages, like small sizes, high
sensitivities in detecting very low concentrations (at level of ppm or even ppb) of a wide range of
gaseous chemical compounds, possibility of on-line operation and, due to possible bench production,
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Table 2.4: Application for gas sensors and electronic noses.

low cost. On the contrary, traditional analytical instruments such as mass spectrometer, NMR, and
chromatography are expensive, complex, and large in size. In addition, most analysis requires sample
preparation, so that on-line, real-time analysis is difficult. However, recent advances in nanotechnology,
i.e. in the cluster of technologies related to the synthesis of materials with new properties by means
of the controlled manipulation of their microstructure on a nanometer scale, produce novel classes of
nanostructured materials with enhanced gas sensing properties providing in such a way the opportunity
to dramatically increase the performances of solid state gas sensors.

Several physical effects are used to achieve the detection of gases in solid state gas sensors. A
characteristic of such devices is the reversible interaction of the gas with the surface of a solid-state
material. In addition to the conductivity change of gas-sensing material, the detection of this reac-
tion can be performed by measuring the change of capacitance, work function, mass, optical charac-
teristics or reaction energy released by the gas/solid interaction. Organic (as conducting polymers
[Harsányi 2000], porphyrins and phtalocyanines [Hu 1999]) or inorganic (as semiconducting metal ox-
ides [Meixner 1996]) materials, deposited in the form of thick or thin films, are used as active layers
in such gas sensing devices. The read-out of the measured value is performed via electrodes, diode
arrangements, transistors, surface wave components, thickness-mode transducers or optical arrange-
ments. Indeed, although the basic principles behind solid state gas sensors are similar for all the
devices, a multitude of different technologies have been developed. An incomplete list of solid state
gas sensors is reported in Table 2.5.

Since we are just interested on resonant sensors, only the last line of Table 2.5 based on mass
changes is detailed in the following sections.

2.3.1.1 Acoustic wave devices

Acoustic wave devices are based on high-frequency mechanical vibrations. Originally developed for
precision radio frequency (rf) signal-processing applications, they are widely utilized in mobile and
wireless communications, and are routinely found in most modern day electronics [Campbell 1998].
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Table 2.5: Incomplete list of solid state gas sensors

As pointed out by Ballantine and Wohltjen [Ballantine 1989], their inherent sensitivity to ambient
environmental effects, which requires hermetic shielding or isolation in signal processing applications,
has ironically become a windfall in the field of chemical and physical sensing.

Acoustic-wave based sensors offer a simple, direct and sensitive method for probing the chemical
and physical properties of materials. The term acoustic is commonly used in the literature, even when
referring to frequencies which are well above the audible range. Acoustic waves cover a frequency
range of 14 orders of magnitude from 10−2Hz (seismic waves) and extending to 1012Hz (thermo-
elastic excited phonons) [Janshoff 2000]. Acoustic wave devices such as those mentioned in this chapter
operate in a narrow frequency range between 106-109Hz. In this chapter the discussion is concentrated
on acoustic wave devices employed for measuring concentrations of gas- or vapor-phase analytes. The
utilization of acoustic wave devices for gas-phase sensing applications relies on their sensitivity towards
small changes (perturbations) occurring at the active surface. In order to monitor a specific gas
or vapor, a sensitive layer is generally employed. In the presence of an analyte species, the waves
properties become perturbed in a measurable way that can be correlated to the analyte concentration.

Virtually all acoustic-wave-based devices use a piezoelectric material to generate the acoustic wave
which propagates along the surface or throughout the bulk of the structure. Piezoelectricity is the
ability of certain crystals to couple mechanical strain to electrical polarization, and will only occur
in crystals that lack a center of inversion symmetry [Ballantine 1996]. By applying a time-varying
electrical field, a synchronous mechanical deformation of the piezoelectric material will arise, resulting
in the coincident generation of an acoustic wave in the material, and vice versa [Wohltjen 1979].
Acoustic wave devices come in a number of configurations (Figure 2.19), each with their own distinct
acoustic and electrical characteristics.

Two different groups of acoustic wave devices that are commonly employed for gas sensing will
be discussed herein. The first are bulk acoustic wave (BAW) devices, which concern acoustic wave
propagation through the bulk of the structure. This category of devices includes the quartz crystal
microbalance (QCM) and thin-film resonators (TFRs), the latter encapsulating thin-film bulk acoustic
resonator (TFBAR) and solidly mounted resonator (SMR) structures. The second type utilize acoustic
waves confined to the surface of the piezoelectric material, and are known as surface acoustic wave
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Figure 2.19: Acoustic wave devices configurations

(SAW) devices. Unlike the electrode structures found on QCM, TFBAR and SMR structures, SAW
devices use patterned thin-film interdigital transducers (IDTs) to generate and detect the acoustic
waves. Both QCM and TFRs are single port devices, whereas SAW devices can be configured as two-
port delay line or as one-port resonator structures. All of these devices are mass sensitive, while SAW
devices can be specifically designed to be highly sensitive towards sheet conductivity deviations at the
active surface of the device. It should be noted that there are other members of the acoustic wave
device family, such as thin-film flexural-plate-wave (FPW) delay lines and shear horizontal acoustic
plate mode (SH-APM) devices [Ballantine 1996], however they are not commonly used for gas or
vapor-sensing applications.

The interactions between an analyte gas and the active surface of the device perturb the phase
velocity of the propagating wave. The most commonly measured properties of acoustic modes are
resonant frequency, phase shift or attenuation [Powell 2006]. However, for single port devices such as
QCMs and TFRs, direct measurements of impedance can be made. In any case, the measured change
serves to quantify the analyte concentration. The perturbations affecting acoustic phase velocity can
be attributed to by many factors, each of which represents a potential sensor response [Ricco 1991].

2.3.1.2 Resonant Cantilevers

Micromachined cantilevers commonly employed in atomic force microscopy (AFM) constitute a promis-
ing type of gas-sensitive transducer for chemical sensors [Thundat 1995a, Maute 1999, Jensenius 2000,
Fritz 2000, Berger 1997]. The microcantilever surfaces represent the platform to sense adsorption of
molecules. Such processes involve generation of surface stress, resulting in bending of the microcan-
tilever, provided adsorption preferentially occurs on one cantilever surface. Selective adsorption on
one surface only is controlled by coating typically the upper surface with a thin layer showing affinity
to the molecules in the environment to be detected. This surface will be called sensor surface or
functionalized surface of the microcantilever (see Figure 2.20). The other surface, typically the lower
surface, may be left uncoated or be coated with a passivation layer being inert or not exhibiting sub-
stantial affinity to the molecules that are to be detected. To establish functionalized surfaces, often
a metal layer is evaporated onto the surface designed as sensor surface. Metal surfaces, such as gold,
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are frequently used to covalently bind a monolayer representing the actual detection layer, e.g., a thiol
monolayer with defined surface chemistry. The molecules to be detected bind then to the thiol layer.
The underlying gold coating also serves as reflection layer for optical readout of the cantilever.

Figure 2.20: An array of microcantilevers with their lower surfaces passivated and their upper surfaces
functionalized for recognition of target molecules.

By oscillating a microcantilever at its eigenfrequency, information on the amount of molecules
adsorbed can be obtained. However, the surface coverage is basically not known. Furthermore,
molecules on the surface might be exchanged with molecules from the environment in a dynamic
equilibrium. In contrast, mass changes can be determined accurately by tracking the eigenfrequency
of the microcantilever during mass adsorption or desorption. The eigenfrequency equals the resonance
frequency of an oscillating rectangular microcantilever of length l, thickness t, and width w, if its
elastic properties remain unchanged during the molecule adsorption/desorption process and damping
effects are negligible. This operation mode is called the dynamic mode. The cantilever is used as a
resonator. A shift of the resonant frequency induced by mass adsorbate is read out as the sensing signal
[Thundat 1995b, Ilic 2001a, Gupta 2004, Ono 2003, Ekinci 2004a]. This shift in resonance frequency,
∆fres, for a homogeneously distributed adsorbed mass is given by the following equation:

∆fres ≈ −f0
∆m

2m0
(2.5)

where ∆m is the mass of the adsorbents and m0 is the initial mass of the cantilever. The pioneer
investigation by Thundat et al demonstrated the mass-sensing capability of micromechanical resonant
cantilevers [Thundat 1995b]. With precise optical detection of an AFM (atomic force microscopy)
mode, a single cell or a virus has been sensed in an air environment [Ilic 2001a, Gupta 2004]. In an
ultrahigh vacuum, the resonant cantilevers even showed the mass resolution as high as an attogram
level [Ono 2003, Ekinci 2004a]. Indeed, MEMS and NEMS resonant cantilevers offer sensitivities
more than two orders of magnitude better than quartz crystal microbalances [Janata 1989], flexural
plate wave oscillators [Cunningham 2001], and surface acoustic wave devices [Bodenhöfer 1996]. This
increase in sensitivity can be attributed largely to the extremely small size of the sensing element.
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Recently, a 100 zeptogram resolution has been demonstrated using a resonant nanoelectromechanical
cantilever [Mo 2007].

2.3.2 Mass Sensors

A biosensing approach in which MEMS technologies are now playing an increasingly important role
is mass sensing. A key strength of mass-based biosensing is its "label-free" character, i.e., the inertial
mass of the analyte molecules provides the detector response, hence no fluorophore or electroactive
tag need to be attached. Mass detection does not, however, obviate specific interfacial biochemical
recognition; analyte molecules must be selectively recognized and bound in preference to all other
species. Herein lies a key limitation of label-free detection: nonspecific adsorption. This problem can
be avoided by precoating the surface with a material that is resistant to protein adsorption. Polymers
such as poly(vinyl alcohol), poly(acrylamide), dextran, and poly(ethylene glycol) (PEG) have been
used as coating materials to prevent nonspecific adsorption [Amanda 2001, Park 2000, Holland 1998,
Masson 2005]. Mass-sensitive micro- and nanodevices can be divided into two broad categories:

• 1. piezoelectric crystal-based devices, those utilizing a small "slab" or film of piezoelectric ma-
terial (quartz, zinc oxide, lithium tantalate, lithium niobate, gallium arsenide) to generate, by
application of the appropriate time and spatially varying electrical signal, traveling or stand-
ing acoustic waves whose propagation characteristics are perturbed by changes in the mass or
mechanical properties of matter on the moving device surface [Ballantine 1997]

• 2. silicon MEMS-based devices, those relying on thermal, electromagnetic, or direct mechanical
means to periodically or statically deflect a micro(nano)fabricated beam, cantilever, or mem-
brane from some nonpiezoelectric material, most often silicon [Yang 2003, Subramanian 2002,
Tamayo 2003, Liu 2003, Su 2003, Cleland 2002, Arntz 2003], with the oscillation characteristics
or extent of bending being a measure of the mass of sorbed analytes.

Figure 2.21: The Caltech cantilevers are just 400 nm wide by 80 nm thick (M Roukes)

2.3.2.1 Piezoelectric Crystal-Based Devices

The best known of the piezoelectric devices are those that utilize surface acoustic waves (SAWs) or
thickness-shear modes (TSMs); resonators based on the latter mode are popularly known as "quartz
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(crystal) microbalances" (QCMs or QMBs). A principal limitation of both types of oscillating mechan-
ical device when used in biosensing is the potential for intolerable levels of damping of the acoustic
wave by the liquid. A "classic" SAW (a Rayleigh wave), while an excellent basis for a gas sensor, is
ill-suited to liquid-phase detection applications, as the surface-normal component of its motion leads to
excessive damping by the contacting liquid. Close relatives of the SAW, including the shear-horizontal
acoustic plate mode (SH-APM), the Love wave, the surface transverse wave (STW) and the leaky SAW
(LSAW) carry much or all of their energy (as do TSM resonators) in modes that cause in-plane motion
of the device surface, leading to manageable attenuation of the wave. The flexural plate wave (FPW)
has significant surface-normal displacement, but unlike the other modes described above, its velocity is
slower than that of sound in water, so that energy transfer from wave to liquid is relatively inefficient,
and damping is therefore quite manageable. One important trend noted by the WTEC team in TSM
resonators and other acoustic wave biosensing devices is operation at ever-higher frequencies, leading
to enhanced sensitivity and, in some cases, lower limits of detection provided the associated circuitry
is carefully designed so as not introduce additional noise, which can offset the gains in sensitivity as
frequencies go higher. Where TSM resonators running at 5 and 9 MHz were the rule a number of
years ago, devices over the 5 − 30 MHz range are now commercially available and widely in use (for
example, at International Crystal Manufacturing Co., Inc.), and devices up to 100 MHz are being
evaluated in research labs. Note, however, that the thickness of the crystal is inversely proportional
to the fundamental frequency and, in practice, quartz TSM devices above about 30 MHz are quite
fragile. Improving the stability of the oscillator circuitry and sample temperature control system to
provide, for example, 0.1 Hz short-term stability rather than the more typical 1 Hz is often a more
effective means to improve the limit of detection. MEMS methods have also been used to provide
a localized thin, "energy trapping" region within a quartz substrate that is thick elsewhere to main-
tain mechanical robustness [Smith 1995b]. Notably, many of the other acoustic modes, though less
widely used than TSMs, are either independent of substrate thickness or depend in a way that allows
realization of higher sensitivities without unreasonably thin substrates. A second general finding of
the WTEC team with regard to piezoelectric crystal-based devices is the relatively mature state of
the technology. For these transducers, the fundamental biosensing advances are predominantly in the
interfacial chemistry, while the basic platform is static, save for a gradual increase in operating fre-
quencies. A growing number of commercial operations supply complete TSM resonator-based systems,
in some cases including oscillator circuitry, temperature control apparatus (critical for highsensitivity
measurements), and integral flow cells [Handley 2001, Gizeli 2002].

2.3.2.2 Silicon MEMS-Based Devices

Among academic and national laboratory researchers, silicon MEMS-based micro/nano cantilevers
and beams are receiving an increasing share of the visibility formerly focused on piezoelectric devices
(cantilever review). Being silicon themselves, the new MEMS mass-sensitive devices are simpler to
integrate with control and measurement electronics. These devices operate in two principal modes:

• 1. by vibrating, where the drive can be electrothermal (e.g., using resistors incorporated in the
silicon chip as heaters), electromagnetic (using the force of an external magnetic field acting
upon a current passing along the structure) [Hagleitner 2001], or even piezoelectric, using an
added-on transduction material.

• 2. by bending, where a biomechanical transduction layer deposited on one side of the cantilever
creates a mechanical bimorph that bends in response to binding of the target species.
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In the case of the vibrating structures, changes in the mass on the cantilever tip lead to changes in
resonant frequency that are readily measured with integrated circuitry, typically resistive or capac-
itive. Smaller cantilever effective mass leads to better sensitivity and, noise and background issues
being appropriately addressed, to improved limits of detection. The fact that GHz frequencies are now
routinely achieved in microprocessors and other silicon microelectronics means that high frequencies
no longer preclude complete integration of drive and measurement electronics. For bimorph measure-
ments, readout can be optical, using angular or interferometric changes of light reflected from the
cantilever tip; or capacitive, if a plate-to-plate gap varies with bio-target-induced mechanical stress; or
based upon integrated resistive measurement of variation in the strain over some portion of the can-
tilever. Though it is not piezoelectric, silicon is piezoresistive, and therefore provides the opportunity
to include a convenient means of direct electrical readout. The manufacturing advantages described
above for MEMS device types makes it much simpler to fabricate arrays of mass sensing devices that
include diverse sets of sensing materials in addition to redundant, control, and reference devices. Such
integration of multiple sensors and controls has yet to be fully exploited, offering an important op-
portunity for chip-level integrated design to positively impact system performance. While the record
for the lowest limits of detection on a mass-per-area basis is arguably still held by highfrequency
piezoelectric SAW resonators, which are pushing from the hundreds of MHz into the GHz regime (in
synchrony with wireless communications of various types, for which they are used as filtering and
frequency-control elements), the limit-of-detection gap is closing quickly between the piezoelectric and
the MEMS technology families. The power of integrated control electronics combined with sophisti-
cated temperature-control strategies is beginning to be developed for integrated silicon mass-sensing
systems; this area is ripe for further advances.

Progress has been made on another front that offers unique challenges to micro/nano mechanical
biosensing devices: the tasks of reproducibly depositing selective, fully viable biointerface materials
onto one surface or the tip of a cantilever whose dimensions are measured in micrometers or nanometers.
Advances in ink-jet, pin-based, and similar dispensing technologies are being driven by the needs of
the burgeoning DNA microarray industry, as well as the nascent field of protein microarrays. The
needs of such spot-based biomaterial arrays have provided impetus for improved hardware as well as
solution matrices specifically designed to place a micrometer or smaller "spot" of material in a precise
location. Funding is significant for such technologies; in many cases, they should be directly applicable
to the needs of micro/nanomechanical biosensors.

2.4 Resonant sensors

Resonant sensing technique has been implemented in numerous devices for the measurement of pressure
[Esashi 1996], humidity [Boltshauser 1992], temperature [Burns 1996b], acceleration [Burns 1996a,
Seshia 2002b], mass flow [Enoksson 1997], specific gas [Hagleitner 2002], biological detection (im-
munosensors [Florin 1995], cytometers [Ilic 2001b]), force (AFM cantilevers [Albrecht 1991]) and mag-
netic field [Kádár 1998], and angular rate (vibratory gyroscopes [Seshia 2002a]). The resonator sensor
element is often built into a larger device that transmits the effect of the parameter to be measured
as a variation in either the mass or spring constant or some other parameter of the resonant sensor
element. As shown in Figure 2.22, the resonant sensor element can take a number of forms such as
a cantilever (mass and gas sensors), a double-ended tuning fork or a singly clamped-clamped beam
(inertial sensors).
There are various ways in which the resonant characteristics of this system can be changed. However,
the most common technique is to modulate either the spring constant (resonant inertial sensors) or
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Figure 2.22: Three simple implementations of resonant sensors: a cantilever beam (a), a clamped-
clamped beam (b) and a double-ended tuning fork (c)

the mass (resonant gas and mass sensors) of the resonating element (see Figure 2.23). The change in
either of these quantities can be monitored as a shift in the resonant frequency of the system. While
changing the damping coefficient results in a change in the amplitude of the displacement, changing
the proof mass or spring constant changes the frequency of the system.

Figure 2.23: A schematic of a resonator subject to different inputs. These inputs could be direct
or coupled through a secondary transducer that responds to the measurand. The micromechanical
structure itself might take on a number of different forms.

Detection of frequency shift is more advantageous as compared to detecting changes in amplitude,
as it is less sensitive to effects such as feedthrough coupling from undesired sources and parasitic pas-
sive elements. Other mechanisms of varying the resonant characteristics include variation of rigidity
[Tabata 1999], material parameters, changes in the drive forces and applied torques. A compari-
son of resonant sensing with other sensing mechanisms can be found in several sources in literature
[Brand 1998, Prak 1993].

2.4.1 Frequency measurement

2.4.1.1 Direct counting

The simplest way to measure frequency of a periodic signal is to count zero crossings of the amplitude
of the signal to be measured. A precise (low frequency) reference oscillator is used to gate the counting
scheme as shown in Figure 2.24.
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Figure 2.24: Schematic of a simple zero crossing counting scheme for frequency (or period) measure-
ment.

If T0 is the period of the reference oscillator, the frequency of the input signal can be calculated in
terms of the number of zero crossings (Nx) and the period of the reference oscillator (T0):

fx =
Nx

T0
(2.6)

The quantization error introduced by the counting scheme can be written as:

∆q = ± 1

fxT0
(2.7)

In other words, it is clear that the longer the interval for which the counting scheme is continued, the
better is the resolution. However, there is a trade-off in terms of the bandwidth (BW ) of the counting
scheme.

BW ∼=
1

2T0
(2.8)

Indirectly, this imposes a limitation on the drive frequency of the proof mass for resonant gyroscopes.

2.4.1.2 Indirect counting

The other common method for frequency measurement is to measure the frequency of the input signal
in terms of a precise high frequency reference signal. In this case, the bandwidth of the measurement
is again based on the averaging time. The frequency of the input signal can be calculated as:

fx = n
fr
Nx

(2.9)

The quantization error is given as [Kirianaki 2002]:

∆q = ± 1√
3nNxfr

(2.10)

As shown in Figure 2.25, this error has its roots in phase synchronization between the reference and
input signals.
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Figure 2.25: Diagram showing the problem of phase synchronization for indirect counting. Note that
the quantization error is some fraction of the period of the higher frequency reference signal.

Figure 2.26: Block Diagram of a phase-locked loop.

2.4.1.3 Phase-Locked Loop (PLL)

A phase-locked loop can be used for several applications ranging from frequency and phase demodu-
lation and frequency synthesis. A block diagram of a PLL is shown in Figure 2.26.

The Linear PLL consists of three components: a phase detector, a VCO and a Loop Filter. The
phase of the input and output signals is compared and the difference is converted to a voltage input to
a voltage-controlled oscillator whose output frequency tracks the input voltage. An analog multiplier
may be used as a phase detector for instance. A Loop Filter is added for bandwidth selection. The
loop filter is a low-pass (active or passive) implementation. The PLL may also comprise of a frequency
divider and/or a phase-shifter. A complete analysis of the PLL is beyond the scope of this dissertation
and the reader is referred to several excellent sources [Wolaver 1991, Stephens 2002].

2.4.2 Mechanical analysis

Here, we investigate the mechanics of the resonator (the sensitive part of a resonant sensor). This is an
important step towards the determination of the resonance frequency and the sensitivity expressions.
Moreover, through the resonator dynamic response, the transfer function is deduced which will be
used later for the noise analysis.

2.4.2.1 Resonance frequency

Assuming that the nonlinear terms are negligible, the equation of motion of a beam in bending (the
resonator) subjected to an axial tensile force (F ) can be written as:

EI
∂4w̃

∂x̃4
+ ξ

∂w̃

∂t̃
− F ∂

2w̃

∂x̃2
+ ρA

∂2w̃

∂t̃2
= 0 (2.11)

where E is the Young’s modulus, I is the bending moment of inertia, ξ is the viscous damping
coefficient, ρ is the material density and A is the beam section. The solution w̃(x̃, t̃) can be solved by
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the method of speration of variables where:

w̃(x̃, t̃) = φ(x̃).a(t̃) (2.12)

The equation for the modes shape of the beam as a function of position coordinate can be written as:

φ(x̃) = C1 cos

(
λx̃

L

)
+ C2 sin

(
λx̃

L

)
+ C3 cosh

(
λx̃

L

)
+ C4 sinh

(
λx̃

L

)
(2.13)

Constants C1-C4 can be evaluated depending on the boundary conditions of the resonator. λ is a
dimensionless parameter related to the wavelength. λ depends on the mode shape and the resonator
boundary conditions. It can be evaluated numerically as listed in Table 2.6 for several bending modes
of cantilevers as well as clamped-clamped beams resonators. Using the Galerkin method, the time

mode/λ cantilever beam clamped-clamped beam
mode1 1.875 4.730
mode2 4.694 7.854
mode3 7.855 11.00
mode4 10.995 14.14

Table 2.6: Coefficients for the first four eigenfrequencies of cantilevers and clamped-clamped beams.

dependence can be cast in the form of a mass-spring-damper equation:

Meff ä+Beff ȧ+Keffa = 0 (2.14)

where expressions for Meff and Keff can be written as [Roessig 1998]:

Meff =

∫ L

0
ρAφ2(x̃)dx̃ (2.15)

Keff =
EI

L3

∫ L

0

(
∂2φ

∂x̃2

)2

dx̃+
F

L

∫ L

0

(
∂φ

∂x̃

)2

dx̃ (2.16)

Thus, for a null axial force, the natural frequency of the mechanical resonator is:

f0 =
1

2π

√
Keff (F = 0)

Meff
(2.17)

2.4.2.2 Sensitivity

For a resonator vibrating in its fundamental mode, the natural frequency for a constant axial force (F)
along the length of the beam can be written in terms of the nominal resonant frequency by evaluating
the integrals in Equations (2.15) and (2.16).

f = f0

√
1 + F.S (2.18)

S =
ρAL2

∫ L
0 φ2(x̃)dx̃

∫ L
0

(
∂φ
∂x̃

)2
dx̃

EI
∫ L

0

(
∂2φ
∂x̃2

)2
dx̃

(2.19)
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Thus the resonator sensitivity to axial loads (mechanical scale factor) can be written as

SFf =
S

2
f0 (2.20)

In the same way, the resonator mechanical mass sensitivity can be deduced as

SFm =
1

2Meff
f0 (2.21)

2.4.2.3 Dynamic response

The starting point for the simplest dynamic analysis is once again the characteristic differential equa-
tion describing the evolution of the displacement of the resonating element subjected to a linear
time-varying drive force Fd.

Meff ä+Beff ȧ+Keffa = Fd cos
(
Ωt̃
)

(2.22)

where Ω is the drive frequency. Equation (2.22) can be written in its canonical form as

ä+
ω0

Q
ȧ+ ω2

0a =
Fd
Meff

cos
(
Ωt̃
)

(2.23)

where ω0 = 2πf0 and Q is the resonator quality factor that can be estimated by evaluating the different
system losses. Using the Fourier transform, the resonator transfer function can be deduced as follow

H(Ω) =

1
Meff

Ω2 − ω2
0 + jΩω0

Q

(2.24)

The previous analysis is not valid for a nonlinear differential equation when the nonlinearities are not
negligible (Duffing resonator) or in the case of resonant gyroscopes for Coriolis acceleration sensing
with time-varying axial load (Mathieu resonator).

For MEMS and NEMS resonant sensors designers, the quality factor is an important parameter,
since it defines the sensor bandwidth. Also, as we can see in Equation (2.24), the resonator transfer
function depends in Q. Hence, the importance of estimating the quality factor which is detailed below.

2.4.3 Quality factor

The mechanical quality factor Q is a measure for the energy losses of a resonator or in other words,
a measure for the mechanical damping. The Q-factor is defined as the ratio between the total energy
stored in the vibration and the energy loss per cycle:

Q ≈ 2π
total energy stored in vibration

dissipated energy per period
(2.25)

Low energy losses imply a high Q-factor. The Q-factor cannot be determined directly, but instead can
be deduced from the response characteristics of the resonator. One common method of determining
Q is from the steady-state frequency plot of a resonator excited by a harmonic force with constant
amplitude:

Q ≈ ωres
∆ω−3db

(2.26)

where ωres is the frequency with maximum frequency response and ∆ω−3db is the half-power bandwidth
of the frequency response. Equation (2.26) indicates that Q is a measure of the sharpness of the
frequency selectivity of the resonator. A high Q-factor means a sharp resonance peak and has several
advantages:
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• The energy required to maintain the vibration is low.

• Minimal effect of the electronic circuitry on the oscillation frequency.

• Low sensitivity to mechanical disturbances.

In nanomechanical resonators, there are numerous possible sources of dissipation which may broadly
be classified as either intrinsic or extrinsic. Intrinsic sources of dissipation, such as phonon-phonon
and phonon-electron interactions, result from properties of the resonating material, whereas extrin-
sic sources, such as gas friction, clamping loss, and surface loss, result from interactions with the
environment. Obviously, little can be done to control dissipation from intrinsic sources other than
careful choice of resonator material. Theoretical calculations have shown that these intrinsic sources
of dissipation are small compared to the dissipation currently exhibited by nanomechanical resonators.

There are many extrinsic mechanisms of dissipation in naomechanical resonators. They can be
listed by their origin as follow:

2.4.3.1 Gas friction

At pressures above approximately 1 torr, viscous damping of a resonator by the surrounding gas is the
dominant form of dissipation [Ekinci 2005]. Here the energy is radiated as sound. Fortunately, it is
easy to achieve lower pressures where viscous damping no longer dominates. At these lower pressures,
where the mean free path of the gas molecules is much larger than the relevant sound wavelength,
energy may still be dissipated through momentum transfer to individual molecules. In this case the
dissipation is calculated to be:

Q−1
gas =

pA

meffωrν
(2.27)

where p is the pressure, A is the surface area, Meff is the effective mass of the resonator, ωr is the
resonator angular frequency, and ν is the thermal velocity of the gas. According to Equation (2.27)
and multiple experiments, gas friction is not a significant source of dissipation below 10mTorr.

2.4.3.2 Surface losses

Surface losses are caused by adsorbed molecules, dangling or broken bonds, an amorphous oxide layer,
or other metastable systems that occur at a resonator’s surface. These systems absorb energy from
the fundamental resonant mode and irreversibly transfer it other modes and thermal energy. For
resonating beams, the energy of a resonator is stored in the elastic strain throughout its volume and
thus is proportional to its volume, V . If we assume that energy is predominately dissipated at the
surface, then we would expect that the energy lost per cycle would be proportional to the surface area
S, and thus:

Q−1
surface ∝

S

V
∝ L−1 (2.28)

Fortunately, it may be possible to control surface losses [Jensen 2006] in NEMS resonators, through
careful experimental techniques and the proper choice of resonator material.

2.4.3.3 Clamping loss

Clamping loss refers to mechanical energy dissipated through a resonators supports. Typically, this
is theoretically modeled as elastic radiation of energy through the supports. There is still some
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contention as to the appropriate description of elastic clamping loss; though the most recent theoretical
calculations predict a loss for a rectangular beam of:

Q−1
clamping ∝

wt4

l5
(2.29)

where w is the beam width in the direction of vibration, t is the beam thickness, l is the beam length,
and the proportionality constant is dependent upon material properties [Geller 2005]. Clearly, to
reduce clamping loss, a beam with a high aspect ratio is desirable. However, according to Equation
(2.29), clamping loss should be negligible for current resonator designs, including nanotube resonators
with their extremely high aspect ratio.

Despite these model-based constraints, researchers have had some success increasing quality factors
through creative clamping geometries [Wang 2000]. Thus, it is clear that the theory behind clamping
loss is not fully developed, and that this may still prove to have been a significant form of dissipation
for existing NEMS resonators.

2.4.3.4 Thermoelastic loss

Thermoelastic damping is the result of the transformation of elastic energy into thermal energy via
thermal currents flowing between compressed and expanded regions of a deformed resonator. Zener
[Zener 1938] first studied the phenomenon for a beam in flexure, giving the damping as :

Q−1
Zener =

Eα2T

CP

ωτ0

1 + ω2τ2
0

(2.30)

where E is Youngs modulus, α is the thermal expansion coefficient, Cp is the constant-stress heat
capacity, ω is the angular frequency of vibration, T is temperature, and τ0 =

h2Cp
π2K

is the thermal
relaxation time, with K the thermal conductivity and h the beam thickness. More realistically, for
nanomechanical resonators the quality factors will likely be limited by thermoelastic dissipation. In this
mode of dissipation, strain in the resonator generates local temperature differences via the materials
thermal-expansion coefficient. Heat then flows irreversibly along local temperature gradients leading
to dissipation. However, even in this case, quality factors on the order of 104 are still obtainable at
low temperatures [Lifshitz 2000].

2.4.3.5 Ohmic loss

Another type of dissipation associated with electrostatic actuation is ohmic losses from the electrons
moving on and off the resonator due to capacitive coupling to a nearby gate. Following Sazonova
[Sazonova 2006], the system can be represented as a variable capacitor in series with a resistor to
which a voltage V is applied. If the time scales for the electrons to flow on the resonator and the time
for one oscillation are matched perfectly, all of the charge flows through a resistor, dissipating energy
through Joule heating. Thus, the ohmic losses are given by:

Q−1
ohmic =

1

πω

R(C ′V )2

meff
(2.31)

where ω is the angular frequency of vibration, C ′ is the gradient of the capacitance, R is the output
resistor and meff is the effective mass of the considered mode. The smaller the resonator, the smaller
the mass, the higher this contribution, hence NEMS are very sensitive to this effect.
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2.4.3.6 Loss due to dislocations

Internal friction due to intrinsic dislocations [Seeger 1981] present in the resonators induce losses.
This mechanism of dissipation is related to the density of defects of the micro/nanostructure. These
defects are dislocations or impurities like the doping agents used in micro-electronics. At nanoscale,
dislocation-induced internal friction is extremely low and the structure is rather pure. Thus, these
losses are negligible in NEMS resonators.

In nanomechanical resonators, there are other extrinsic loss mechanisms such as anharmonic mode
coupling and extrinsic noise [Mohanty 2002] which can be neglected compared to the other sources of
dissipation already cited.

2.4.4 Noise analysis

In resonant sensors, the dominating noise sources originate from the sensing part (the resonator).
Therefore, the following noise analysis concerns only MEMS and NEMS resonators.

2.4.4.1 Thermomechanical noise

Thanks to the fluctuation-dissipation theorem, it can be written that the force noise spectral density
due to thermomechanical fluctuations of the mass is [Postma 2005].

Sf (ω) =
2

π
KBT

Meffω0

Q
(2.32)

where Meff is the effective mass of the resonator, ω0 is the angular frequency of vibration, Q is the
quality factor, kB is Boltzmanns constant and T is the resonator temperature.

It may be assumed without loss of generality that the bandwidth BW used by the phase locked loop
(PLL) readout is very narrow compared with the -3dB bandwidth of the resonator. Then, following
Equation (2.24), the transfer function of the resonator at resonance giving the displacement versus a
constant force per unit length is

Hfx(ω) =
Q

Keff
=

Q

meffω
2
0

(2.33)

The displacement spectral density is then

Sx(ω0) = ||Hfx(ω)||2Sf (ω) =
2

π
KBT

Q

Meffω
3
0

(2.34)

Following Robins [Robins 1984], for a PLL-based readout technique, the frequency noise spectral
density is

Sω(ω) =

(
ω0

2Q

)2 Sx(ω0)

P0
(2.35)

where P0 is the displacement carrier power, ie the RMS drive amplitude of the resonator P0 = 1
2a

2
d.

The latter should be driven below the hysteretic limit due to the mechanical non-linearity. Even
though this one will be higher when using a PLL based technique, the open loop value may be used
to stay on the safe side. It is assumed here that the resonator (clamped-clamped beam) is driven at
its open-loop stability limit [Cleland 2002]:

ad ∝ w.Q−
1
2 (2.36)
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2.4.4.2 Temperature fluctuations

Given its small heat capacity, a nanomechanical resonator can be subject to rather large temperature
fluctuations. Its susceptibility to such fluctuations depends upon the strength of its thermal contact
to the environment. Since the resonators dimensions and material parameters are both tempera-
ture dependent, temperature fluctuations will generate frequency fluctuations. Cleland and Roukes
[Cleland 2002] have evaluated the spectral density of frequency fluctuations arising from temperature
fluctuations of a NEMS clamped-clamped resonator. They find that:

Sω(ω) =

(
−22.4C2

s

ω2
0l

2
αT +

2

Cs

∂Cs
∂T

)2
ω2

0kBT
2

πg ( 1 + (ω − ω0)2 τ2
T )

(2.37)

where Cs =
√

E
ρ is the temperature dependent speed of sound, l is the beam length αT = 1

l
∂l
∂T is the

linear thermal expansion coefficient, and g and τT are the thermal conductance and the thermal time
constant for the nanostructure, respectively.

2.4.4.3 Adsorption-desorption noise

This noise could be critical for resonant gas sensors applications, operating in air. Gas molecules in
the vicinity of a resonator can adsorb upon the resonators surface, mass load the device, and thereby
change its resonant frequency. Random, thermally driven adsorption and desorption of molecules will
therefore induce fluctuations in the resonance frequency.

This so-called adsorption-desorption noise has been discussed in detail by Yong and Vig [Yong 1989,
Yong 1990] and Cleland and Roukes [Cleland 2002]. Adsorption-desorption noise becomes most sig-
nificant in the temperature regime where the adsorption and desorption rates are comparable; hence,
for a given device configuration, it can be minimized by judicious choice of operating temperature.
Surface passivation to reduce the binding energy between the molecule and the surface should also be
effective in this regard.

2.4.4.4 Momentum exchange noise

For mass and gas sensing applications, the resonator can undergo gas damping due to impingement
and momentum exchange of gas molecules on its surface [Cleland 2003, Ekinci 2004b].

Palasantzas [Palasantzas 2008] investigated the simultaneous influence of thermomechanical and
momentum exchange noise on the limit to mass sensitivity for nanoresonators. He found With in-
creasing surface roughness, the limit to mass sensitivity increases significantly if the quality factor
due to gas collisions is comparable to or smaller than the intrinsic quality factor associated with
thermomechanical noise.

2.4.5 Resolution

The resolution is the lower limit of the dynamic range. It is set by the incoherent sum of all stochastic
processes driving the resonator [Cleland 2002], such as thermomechanical fluctuations, quantum noise,
noise from adsorption and desorption of gaseous species [Ekinci 2004b], and extrinsic sources such as
vibrational and instrumental (read-out) noise. For simplicity, we solely consider thermomechanical
noise in the case of a clamped-clamped resonator driven at its critical amplitude (open-loop stability
limit).
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2.4.5.1 Inertial resonant sensors

The resonator sensitivity to axial loads (Equation (2.20)) is computed by evaluating the integrals in
Equations (2.15) and (2.16).

SFf =
S

2
f0 ∝ w−2.t−1 (2.38)

For a resonant accelerometer, since the axial load is proportional to the seismic mass MS and to the
acceleration γ, the sensitivity to acceleration is:

SFγ ∝MS .w
−2.t−1 (2.39)

For a resonant gyroscope, since the axial load is proportional to the seismic mass MS , its velocity VS
and to the angular rate ΩR, the sensitivity to angular rate is:

SFΩR ∝ FS .QS .ω
−1
S .w−2.t−1 (2.40)

where FS is the seismic mass actuation force, ωS is its angular resonance frequency and QS is its
quality factor.
The frequency variance is computed as

σω =

√∫ BW

0
Sω(ω)dω (2.41)

Performing this integration for the case where Q >> 1 and BW << ω0
Q , we obtain

σω =
√
Sω(ω).BW ∝ w−2.l

1
2 .t−

1
2 (2.42)

Thus, the accelerometer and gyroscope resolutions are respectively:

δγ =
σω
SFγ

∝M−1
S .l

1
2 .t

1
2 (2.43)

δΩR =
σω

SFΩR

∝ F−1
S .Q−1

S .ωS .l
1
2 .t

1
2 (2.44)

2.4.5.2 Gas and mass resonant sensors

The resonator mass sensitivity (Equation (2.21)) is

SFm =
1

2Meff
f0 ∝ l−3.t−1 (2.45)

Thus, the mass sensor resolution is given by:

δm =
σω
SFm

∝ w−2.l
7
2 .t

1
2 (2.46)

At equilibrium, the concentration resolution for gas sensors is given by:

δC =
δm

KPVPρg
∝ w−3.l

5
2 .t

1
2 (2.47)

where KP is the partition coefficient depending on the couple polymer-gas combination, VP is the
polymer layer volume and ρg is the density of the gas analyte.
Equations (2.43), (2.44), (2.46) and (2.47) demand some important comments:
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• One surprising thing here is that the minimum detectable acceleration and angular rate are
independent on the quality factor. This, of course is true if the PLL does not induce any error in
the readout, ie if it can ideally lock in phase with the signal, and also if the resonator is driven at
a quality factor-dependent amplitude, like the open loop stability limit, which sets the dynamic
range of the resonator. But in terms of noise, the quality factor does not influence the result.

• The second surprising result concerning resonant accelerometers and gyroscopes is that the
resolution is independent on the width of the resonator w. This is again not trivial, as one would
think that the smaller the cross-section area, the more sensitive the resonator, which is true as
the sensitivity scales like w−2. But one would have also thought that the narrower the resonator,
the more resolved the measure, which proves wrong as the frequency noise also scales like w−2.

• In the case of resonant accelerometers and gyroscopes and for a fixed seismic mass design,
if the resonator dimensions are proportionally scaled down with respect to a given scale factor
Nsf << 1, the resolution is proportionally improved with respect to Nsf . Therefore, for resonant
inertial sensors, M&NEMS design that involves MEMS parts (seismic Mass, anchors) and NEMS
parts (resonators) is a great alternative to improve the performances of such sensors.

δγ(M&NEMS)

δγ(MEMS)
=
δΩR(M&NEMS)

δΩR(MEMS)
= Nsf (2.48)

• In the case of resonant mass sensors, if the resonator dimensions are proportionally scaled down
with respect to a given scale factor Nsf << 1, the resolution is proportionally improved with
respect to N2

sf . It proves that nanomechanical resonators, with their high fundamental resonance
frequencies, diminished active masses and tolerable force constants, are extremely sensitive to
mass changes. Therefore, for resonant mass sensors, NEMS resonators are a great alternative to
improve the performances of such sensors.

δm(NEMS)

δm(MEMS)
= N2

sf (2.49)

• For resonant gas sensors, for a constant resonator width, if the resonator length and thickness
are proportionally scaled down with respect to a given scale factor Nsf << 1 while keeping an
acceptable slenderness ratio for Euler-Bernoulli beam model validity, the concentration resolution
is proportionally improved with respect to N3

sf . It proves that nanomechanical resonators are a
great alternative for ultimate gas measurements.

2.4.6 Linearity and Dynamic Range

Tables 2.2 and 2.3 show the importance of the dynamic range accelerometers and gyroscopes for
several applications. Here, only resonant inertial sensors are considered (similar analysis can be done
for resonant mass and gas sensors).

The limiting factor on the resonator full scale is the output nonlinearity. The latter, for a single
resonant sensor, can be analyzed in several ways. Since this nonlinearity is due to the natural frequency
behavior of the resonator (Equation (2.18)), let us examine the case when the higher order terms in
the output-input expression become important. To do so, Equation (2.18) can be analyzed by taking
a Taylors series expansion about the point F.S=0:

F = f0

(
1 +

1

2
FS − 1

8
F 2S2 +

1

16
F 3S3 + . . .

)
(2.50)
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A full scale linearity condition can be placed on the output such that the square term remains within
a certain fraction of the linear term. If this fraction is denoted α, the condition can be written as:

F.S

4
≤ α (2.51)

Which means that for a given nonlinearity α, the sensor full scale is given by:

Fmax =
4α

S
l−2.w3.t (2.52)

In order to enhance the dynamic range, a differential resonant sensing topology can be used. It consists
of two resonators with common-mode effects and respectively strained in tension and compression.
This topology permits the cancellation of the quadratic nonlinearities in the output-input expression
as well as the temperature variations in frequency. Therefore, the dynamic range becomes limited by
the cubic term.

Fmax =
2
√

2α

S
∝ l−2.w3.t (2.53)

The ratio between the dynamic ranges of both topologies is then:

FDiffmax

F 1R
max

=
1√
2α

(2.54)

In inertial sensors specifications, the nonlinearity α is typically ≤ 1%. Thus:

FDiffmax

F 1R
max

≥ 5
√

2 (2.55)

2.4.7 Physical Nonlinearities

The validity of Equation (2.11) is limited by the resonator physical nonlinearities. The mechanical
nonlinearities are considered as a fundamental limit of the linear lower bound of the resonant sensor dy-
namic range [Cleland 2002]. Furthermore, the actuation force can bring additional nonlinearities into
the resonator dynamics. Electrostatic actuation is a good example for spring softening nonlinearities
(see chapter 3 for details).

Nanoscale mechanical resonant sensors offer a greatly enhanced performance that is unattainable
with microscale devices. However, scaling down resonators from MEMS to NEMS makes nonlinearities
quickly reachable [Cleland 2002] and drastically restrict the sensor resolution.

To underline this fact, let us write Equations (2.43), (2.44), (2.46) and (2.47) without restrictions
on the displacement carrier power.

δγ =
σω
SFγ

∝M−1
S .l

1
2 .t

1
2 .w.a−1

d .Q−
1
2 (2.56)

δΩR =
σω

SFΩR

∝ F−1
S .Q−1

S .ωS .l
1
2 .t

1
2 .w.a−1

d .Q−
1
2 (2.57)

δm =
σω
SFm

∝ w−1.l
7
2 .t

1
2 .a−1

d .Q−
1
2 (2.58)

δC =
δm

KPVPρg
∝ w−2.l

5
2 .t

1
2 .a−1

d .Q−
1
2 (2.59)

To simplify the analysis of Equations (2.56), (2.57), (2.58) and (2.59) when the resonator dimensions
are scaled down, we suppose that the quality factor Q is constant. Then, it is clear that nanomechan-
ical resonators resolution depends on the drive oscillation. The latter is limited by the mechanical
nonlinearity for thin clamped-clamped resonators.
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Under this limit, Equations (2.43) and (2.44) show that proportionally scaling down the resonator
improves the inertial sensor resolution. As the latter does not depend on the beam width for in-
plane actuation, one can reduce only the beam length l and thickness t while keeping an acceptable
slenderness ratio for the validity of the Euler-Bernoulli model.

For inertial, mass and gas resonant sensors, using this design rule permits the enhancement of
the resolution device as explained in the section 2.4.5. Ultimate optimization depends on the drive
amplitude of the resonator. Ideally, the resonator should be actuated to oscillate at the highest possible
amplitude (below the pull-in for an electrostatic actuation). In open loop, the resonator is classically
driven below its critical amplitude in order to ensure the stability of its dynamic response. This
fundamental limit is set by the nonlinear dynamics of the resonator (details are in chapters 5 and 7).

However, when used as a practical sensor, the resonator is most of the time used as an oscillator,
embedded in a feedback loop, or a PLL. In such closed loop operation, the phase is the control
parameter of the system (the frequency is now an output) and hence stabilizes its dynamics: even in
the non-linear regime, the frequency is a single valued function of the phase [Yurke 1995, Juillard 2008].
In other words, the steady state solution in the closed loop case is always stable.

Now, the question is: what is the most important issue when the resonator is driven beyond its
critical amplitude in either open or closed loop? The answer is detailed below.

2.4.8 Nonlinearities and noise mixing

In a capacitive resonator, mechanical and electrostatic nonlinearities are analytically combined to show
that low-frequency voltage drift in the sustaining amplifier is directly converted into a frequency shift
in the oscillator output. Experimental evidence of this effect is presented in [Roessig 1997a], and it is
shown that this is the dominant source of near-carrier frequency instability in tuning fork oscillators.

Besides, a significant near-carrier noise source is the aliasing of 1
f -noise to carrier side-bands due

to the mixing of low-frequency noise and carrier signal in the active circuit elements. Kaajakari et
al [Kaajakari 2005a] showed that, in addition to amplifier nonlinearities, the electrostatic transduc-
tion commonly used for coupling to silicon resonators is inherently nonlinear and leads to aliasing of
noise. This process is illustrated in Figure 2.27 that shows a schematic representation of an oscillator
comprised of a resonator and sustaining amplifier. In addition to amplifying oscillation signal uac, the
amplifier output may present a significant amount of low-frequency 1

f -noise to the resonator input. A
linear resonator element would effectively filter out this low-frequency noise, but nonlinearities in the
resonator will lead to unwanted aliasing of the low-frequency noise to carrier side-bands. Thus, the
capacitive coupling is expected to be intrinsically more prone to noise aliasing. A detailed analysis of
the noise-mixing mechanisms can be found in [Kaajakari 2005a] where the capacitive force nonlinearity
was found to be the dominant up-mixing mechanism in electrostatic transduction.

Since the capacitive transduction will be used in our devices, any source of frequency instability
in the oscillator is detrimental to the noise behavior of the transducer, so it is important that these
sources be understood and minimized or cancelled.

Practically, in order to avoid most of noise which reduces the resonant sensor performances, the
resonator should be driven linearly beyond its fundamental critical amplitude. Therefore, for ultimate
optimizations, one should investigate the open loop nonlinear dynamics of the resonator.

2.5 Summary

In this chapter, a short review of MEMS/NEMS inertial sensors as well as gas and mass sensors was
presented. It has been shown that the resonant sensing technique benefits from being highly sensitive,
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Figure 2.27: Schematic representation of noise aliasing in micro-oscillator. A linear resonator would
filter out the amplifier low-frequency 1

f noise present at the resonator input, but nonlinear filtering
element will result in noise aliasing [Kaajakari 2005a].

has the potential for large dynamic range, good linearity, low noise and potentially low power.
Particularly, for resonant gyroscopes, it simplifies the control implementation. For these reasons as

well as to overcome the limitations of some detection techniques (such as the capacitive sensing) when
sensors are scaled down from MEMS to NEMS, the resonant sensing technique was chosen among
many other detection techniques.

A detailed analysis of resonant sensors has been presented in order to investigate the variation of
the sensor performances when the resonator dimensions are scaled down from MEMS to NEMS. A
discussion on resonant sensors resolution, showed the importance of adopting M&NEMS designs for
resonant inertial sensors and the use of nanomechanical resonators for resonant gas and mass sensors.
The case of clamped-clamped resonator was considered in order to give some design rules based on
the analysis of the sensor resolution when the resonator is driven at its open loop stability limit. At
this amplitude (few nanometres for NEMS resonators), it proves difficult to detect the output signal.
Moreover, if the resonator is driven beyond its critical amplitude its frequency stability proportional
to its oscillation amplitude in the nonlinear regime is significantly deteriorated.

Furthermore, for ultimate resonant measurements (mass spectrometry), we showed the importance
of highly driving the resonator beyond its critical amplitude. However, when the resonator is used
in the nonlinear regime in either open-loop or closed-loop, the physical nonlinearities mix the low-
frequency noise and the carrier signal in the active circuit and lead to a significant near-carrier noise
source called the aliasing of 1

f -noise to carrier side-bands [Kaajakari 2005a]. Consequently, the resonant
sensor performances are drastically reduced.

Being easily reachable for NEMS resonators, the nonlinear regime limits the performances of reso-
nant sensors due to the noise mixing issue and alters the frequency stability of the sensor. Therefore,
for ultimate sensing applications, the nonlinear dynamics of nanomechnical resonators [Lifshitz 2008]
should be modelled using nonlinear methods which are the subject of chapter 3.
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3.1 Introduction

Nonlinearities in NEMS silicon resonators are caused by different effects. Depending on the resonator
layout, different nonlinearities may be dominant in the resonator response. The nonlinearities can be of
either mechanical or electrical origin. In this chapter, the sources of nonlinearities in NEMS resonators
are sorted in cantilevers as well as clamped-clamped beams. These nonlinearities add complexity
in the dynamic analysis of resonant sensors. Thus, the equations of motion become nonlinear and
traditional methods are no more useful for such problems. The second part of this chapter is a review
of quasianalytical methods (perturbation techniques) and numerical methods for nonlinear differential
equations which are important for nonlinear modelling of resonant sensors.

3.2 Sources of nonlinearities

3.2.1 Beams

We consider the clamped-clamped Bernoulli beam shown in Figure 3.1 subjected to a viscous damping
and actuated by an electric load V (t) = Vdc + Vac cos(Ωt), where Vdc is the DC polarization voltage,
Vac is the amplitude of the applied AC voltage, and Ω is the excitation frequency.

3.2.1.1 Mechanical nonlinearity

The mechanical nonlinearity in the resonator can be illustrated using a simple clamped-clamped beam
resonator. As shown in Figure 3.1, the beam is forced to extend under the large vibration amplitude.
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Figure 3.1: A schematic of an electrostatically actuated beam

The axial extension T (w) depends on the transverse displacement w. It introduces additional stress to
the beam, adding to the effective stiffness in the structure. As the vibration amplitude grows, the re-
sponse peak moves up in the frequency due to the spring hardening effect [Mestrom 2008, Michon 2008].
T (w) can be written as:

T (w) = Ebh
∆l

l
(3.1)

where E is the silicon Young modulus, b, h and l are the beam thickness, width and length respectively.
Moreover, after extension, the beam length becomes:

S = l + ∆l =

∫ l

0

√
1 +

[
∂w(x, t)

∂x

]2

dx (3.2)

Hence:

T (w) =
Ebh

l


∫ l

0

√
1 +

[
∂w(x, t)

∂x

]2

dx− l

 (3.3)

3.2.1.2 Electrostatic nonlinearity

By contrary with the mechanical hardening effect, the electrostatic nonlinearity usually makes the
effective stiffness of the device smaller under the large vibration amplitude (it adds a negative elec-
trostatic stiffness), leading to a frequency response that bends toward the lower frequency side as the
driving force is increased.
Considering the clamped-clamped beam resonator shown in Figure 3.1, the net electrostatic force on
the resonator is given by:

fe =
1

2
ε0

bV (t)2

(g − w(x, t))2
(3.4)

where ε0 is the dielectric constant of the capacitor gap medium, b is the beam thickness and g is the
gap thickness.

3.2.1.3 Equation of motion

We consider the following variables:

• The transverse displacement: w(x, t)

• The cross section rotation : θ(x, t) = ∂w
∂x

• the curvature : χf = ∂θ
∂x

• The bending moment Mb = EI
∂χf
∂x
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• The shear force Ts

• The viscous damping force fd = −c̃∂w∂t

• The mechanical nonlinear force fm = (Ñ + T (w))∂
2w
∂x2

• The electrostatic nonlinear force fe = 1
2ε0

bV 2

(g−w)2

The equations of local equilibrium are:
ρbh∂

2w
∂t2

= ∂Ts
∂x + fd + fm + fe

∂Mb
∂x + Ts = 0

 (3.5)

where ρ is the material density. Substituting the shear force expression into the first local equilibrium
equation, we obtain the nonlinear Euler-Bernoulli equation, which is the commonly used approximate
equation of motion for a thin beam [Landau 1986]:

EI
∂4w(x, t)

∂x4
+ ρbh

∂2w(x, t)

∂t2
+ c̃

∂w(x, t)

∂t
−
{
Ñ + T (w(x, t))

} ∂2w(x, t)

∂x2
=

1

2
ε0

bV (t)2

(g − w(x, t))2
(3.6)

where V (t) = Vdc + Vac cos(Ω̃t) and the boudary conditions are:

w(0, t) = w(l, t) =
∂w

∂x
(0, t) =

∂w

∂x
(l, t) = 0 (3.7)

3.2.2 Cantilevers

We consider a cantilever beam (Figure 3.2) subjected to viscous dampings cw and cv and actuated
by an electric load V (t) = Vdc + Vac cos(Ωt), where Vdc is the DC polarization voltage, Vac is the
amplitude of the applied AC voltage, and Ω is the excitation frequency.

3.2.2.1 Electrostatic nonlinearity

The electrostatic force is nonlinear with respect to the gap thickness which depends on two variables
(the time t and the position along the cantilever beam s). In other words, the electrostatic nonlinearity
in the case of the cantilever has the same origins as the clamped-clamped beam case [Shao 2008b].
Considering the cantilever beam resonator shown in Figure 3.2, the net electrostatic force on the
resonator is given by:

fe =
1

2
ε0

bV (t)2

(g − w(s, t))2
(3.8)

where s is the arclength and w(s, t) is the transverse displacement of the cantilever.

3.2.2.2 Mechanical nonlinearity

A large deformation of a structure does not necessarily mean the presence of large strains. Under large
rigid-body rotations, structures like cantilever beams undergo large deformations but small strains.
Even when the rigid-body rotations are small, deformations will still be large for long structures. With
respect to a coordinate system co-rotated with the rigid-body movement, the relative displacements
are small and the problem becomes linearly elastic. But the large deformations give rise to geometric
nonlinearities due to nonlinear curvature and/or midplane stretching, leading to nonlinear strain-
displacement relations. In other words, for cantilever beams, nonlinearity results from a geometric
effect: as the cantilever deflects its local stiffness and effective mass increase.
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Figure 3.2: (a): A schematic of an electrostatically actuated cantilever beam. (b): Flexural-flexural
motions of a fixed-free beam.

3.2.2.3 Equation of motion

In order to develop a model for the microcantilever beam, a slender uniform flexible beam is considered
as shown in Figure 3.2. The beam is initially straight and it is clamped at one end and free at the
other end. In addition, the beam follows the Euler-Bernoulli beam theory, where shear deformation
and rotary inertia terms are negligible.

We follow a variational approach, based on the extended Hamilton principle. This approach has
been used by Crespo da Silva and Glynn [Silva 1978a, Silva 1978b] and Crespo da Silva [Silva 1988a,
Silva 1988b] in order to derive the nonlinear equations of motion describing the flexural-flexural vi-
brations of a cantilever beam as follow:

mẅ + cwẇ +Dζw
′′′′ = (Dν −Dζ)

[
v′′
∫ s

1
w′′v′′ds− v′′′
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0
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(3.9)

mv̈ + cvv̇ +Dνv
′′′′ = − (Dν −Dζ)

[
w′′
∫ s

l
v′′w′′ds− w′′′

∫ s

0
v”w′ds

]′
+

(Dν −Dζ)
2

Dξ

(
w′′
∫ s

0

∫ s

l
v′′w′′dsds

)′′
−Dν

{
v′
(
v′v′′ + w′w′′

)′}′
−1

2
m

{
v′
∫ s

l

∂2

∂t2

[∫ s

0

(
v′2 + w′2

)
ds

]
ds

}′
(3.10)
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where Dξ, Dν and Dζ are the principal stiffnesses of the beam (Dξ is the torsional stiffness, while Dζ

and Dν are the flexural stiffnesses). Primes and dots denote respectively the partial differentiation
with respect to the arclength s and to the time t. The first three terms in the right-hand side of
each equation are due to nonlinear expressions for the curvatures of the beam including the nonlinear
coupling between the lateral displacements and torsion, while the fourth term, which involves a double
time derivative, is the nonlinear inertial term.

The boundary conditions are given as

w(0, t) = v(0, t) = w′(0, t) = v′(0, t) = 0 (3.11)

w′′(l, t) = v′′(l, t) = w′′′(l, t) = v′′′(l, t) = 0 (3.12)

3.3 Nonlinear methods

As shown in section 3.2, the equation of motion of a resonator electrostatically actuated involves
several nonlinear terms in both cases (clamped-clamped beams or cantilevers) due to the mechanical
as well as electrostatic nonlinearities. The obtained PDE is highly nonlinear and in order to solve
it, one possible method is the modal decomposition for which the linear undamped mode shapes are
identified. These functions are used as a basis on which the nonlinear PDE is projected using the so
called "Galerkin method" (details are in section 4.3). It permits the transformation of a nonlinear
PDE into a system of coupled nonlinear ODE. Depending on the strength of the nonlinearities, the
obtained nonlinear equations can be solved using analytical methods such as perturbation techniques
or numerical methods such as shooting and continuation techniques.

3.3.1 Perturbation techniques

3.3.1.1 Introduction

Perturbation theory [Murdock 1991] comprises mathematical methods that are used to find an ap-
proximate solution to a problem which cannot be solved exactly, by starting from the exact solution
of a related problem. Perturbation theory is applicable if the problem at hand can be formulated by
adding a "small" term to the mathematical description of the exactly solvable problem.

Perturbation theory leads to an expression for the desired solution in terms of a power series in
some "small" parameter that quantifies the deviation from the exactly solvable problem. The leading
term in this power series is the analytical solution of the exactly solvable problem, while further terms
describe the deviation of the solution from the linear problem. Formally, we have for the approximation
to the full solution A, a series in the small parameter (here called ε), like the following:

A = ε0A0 + ε1A1 + ε2A2 + · · · (3.13)

In this example, A0 would be the known solution to the exactly solvable initial problem and A1, A2, · · ·
represent the "higher orders" which are found iteratively by some systematic procedure. For small ε
these higher orders are presumed to become successively less important. An approximate "perturbation
solution" is obtained by truncating the series, usually by keeping only the first two terms, A0 + εA1,
the initial solution and the "first order" perturbation correction.
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3.3.1.2 Direct method

Formalism:
The asymptotic solution of the weakly-nonlinear scalar second-order differential equation

d2y(t)

dt2
+ y(t) + εf

{
y(t),

dy(t)

dt

}
= 0 (3.14)

for f smooth and ε small and positive is a classical problem of nonlinear oscillations [Minorsky 1947].
Using the initial conditions : y(0) = 1 and dy(0)

dt = 0

It is natural to seek an approximate solution as a truncation of the unique formal power series

yε(t) =
n∑
i=0

εiyi(t) (3.15)

The expansion for y(t) directly implies those for dy(t)
dt and d2y(t)

dt2
, while the implied Maclaurin expansion

for f{y(t), dy(t)
dt } has the form :

f

{
yε(t),

dyε(t)

dt

}
= f

{
y0(t),

dy0(t)

dt

}
+ ε

∂f

∂y

{
y0(t),

dy0(t)

dt

}
y1(t)

+ε
∂f

∂ dydt

{
y0(t),

dy0(t)

dt

}
dy1(t)

dt
+ ε2(· · · ) (3.16)

From the coefficients of εi for i = 0, 1 and 2, we thereby obtain the linear initial value problems

d2y0(t)

dt2
+ y0(t) = 0, y0(0) = 1,

dy0(0)

dt
= 0 (3.17)

d2y1(t)

dt2
+ y1(t) + f{y0(t),

dy0(t)

dt
} = 0, y1(0) = 0,

dy1(0)

dt
= 0 (3.18)

d2y2(t)

dt2
+ y2(t) + fy

{
y0(t),

dy0(t)

dt

}
y1(t) + f dy

dt

{
y0(t),

dy0(t)

dt

}
dy1(t)

dt
= 0, y2(0) = 0,

dy2(0)

dt
= 0

(3.19)
More generally, the coefficient yi(t) for each i ≥ 1 will satisfy an initial value problem of the form
d2yi(t)
dt2

+ yi(t) = gi−1

{
y0(t), dy0(t)

dt , ..., yi−1(t), dyi−1(t)
dt

}
with trivial initial conditions at t = 0 and with

the forcing gi−1 being known successively. Variation of parameters immediately implies the unique
coefficients :

yi(t) =

∫ t

0
sin(t− s)gi−1

{
y0(s),

dy0(s)

ds
, ..., yi−1(s),

dyi−1(s)

ds

}
ds (3.20)

Thus

y0(t) = cos(t) (3.21)

y1(t) = −
∫ t

0
sin(t− s)f (cos(s),− sin(s)) ds (3.22)

y2(t) = −
∫ t

0
sin(t− s)


fy (cos(s),− sin(s))

∫ s
0 sin(t− r)f (cos(r),− sin(r))

+f dy
dt

(cos(s),− sin(s))
∫ s

0 cos(t− r)f (cos(r),− sin(r))

 ds (3.23)



3.3. Nonlinear methods 53

Using Gronwall inequality estimates, it is quite simple to show that the series obtained (as well as those
for its derivatives) converges on any finite t interval for ε sufficiently small [Murdock 1991, Smith 1985].
The stated conclusions also apply, without significant change, for nonautonomous equations :

d2y(t)

dt2
+ y(t) + εf

{
t, y(t),

dy(t)

dt
, ε

}
= 0 (3.24)

Limitations:

• The linear example
d2y(t)

dt2
+ y(t)− ε sin(t) = 0 (3.25)

has the exact two-term solution

yε(t) = cos(t) +
ε

2
(sin(t)− t cos(t)) (3.26)

It is well-defined for all bounded values of t, but the solution obviously becomes unbounded when
εt→∞. One says a singular perturbation problem arises when the regular perturbation method
is no longer uniformly valid. The technique might, for example, break down (as in equation) for
large t values or in the presence of boundary or interior layers [OMalley 1991]. One generally
solves such problems using asymptotic series [Hardy 1949, Copson 1965, Ramis 1991] for which
one typically uses only a few terms of the series and insists that the successive approximations
so defined improve in the ε→ 0 limit. For equation , we would readily conclude that asymptotic
convergence no longer holds when t becomes unbounded, since the second term dominates the
first when t >> O(1

ε ): One calls the second term secular, intending no negative connotation
since it accurately reflects the needed correction to cos t and the limited time interval of the
solution existence. More often in what follows, encountering secular terms will indicate the
inappropriateness of a regular power series expansion when t becomes large.

• The Duffing equation
d2y(t)

dt2
+ y(t) + 2εy(t)3 = 0 (3.27)

The Duffing equation [Struble 1964] describes the motion of a slightly nonlinear spring. It can
be solved in terms of elliptic integrals, or more simply, one can integrate once to get a conserved
energy and then separate variables to get the bounded implicit solution. Using the first order
direct method, the solution of the Duffing equation can be written as

yε(t) = cos(t)− ε

8
sin(t) (6t− t sin(2t)) (3.28)

For the Duffing equation, the regular perturbation method breaks down when εt → ∞, due to
the appearance of false or spurious (i.e., misleading) secular terms. Because the exact solution
is bounded, one must find a way of exorcising them from the regular perturbation series (if it is
to retain its value as an asymptotic expansion as t increases without bound).

3.3.1.3 Poincaré-Lindstedt method

Correction of the direct technique:
To break the limitations of the direct technique, when the resolution reveals secular terms which re-
strict the existence of the solution to finished time intervals T, Lindstedt proposed in 1882 a method,
which for certain differential equations, allows the elimination of these secular terms.
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It is called Lindstedt-Poincaré method, Poincaré had demonstrated that Lindstedt series should be
interpreted as asymptotic expressions. Lindstedt (1882) cleverly introduced the natural strained co-
ordinate τ = ωt and expanded ω in asymptotic series of ε.

ω(ε) =

n∑
i=0

εiωi (3.29)

To highlight the performance of this method, it is used to solve the Duffing equation (3.27).
By applying the method of Lindstedt-Poincaré [Hu 2004] up to the third order, one obtains the fol-
lowing differential system:

y0(τ) + ω2
0

d2y0(τ)

dτ2
= 0, y0(0) = 1,

dy0(0)

dτ
= 0 (3.30)

2y0(τ)3 + y1(τ) + 2ω0ω1
d2y0(τ)

dτ2
+ ω2

0

d2y1(τ)

dτ2
= 0, y1(0) = 0,

dy1(0)

dτ
= 0 (3.31)


6y0(τ)2y1(τ) + y2(τ) + (ω2

1 + 2ω0ω2)d
2y0(τ)
dτ2

+2ω0ω1
d2y1(τ)
dτ2

+ ω2
0
d2y2(τ)
dτ2

= 0, y2(0) = dy2(0)
dτ = 0

 (3.32)


6y0(τ)

{
y1(τ)2 + y0(τ)y2(τ)

}
+ y3(τ) + 2(ω1ω2 + ω0ω3)d

2y0(τ)
dτ2

+(ω2
1 + 2ω0ω2)d

2y1(τ)
dτ2

+ 2ω0ω1
d2y2(τ)
dτ2

+ ω2
0
d2y3(τ)
dτ2

) = 0, y3(0) = dy3(0)
dτ = 0

 (3.33)

The solution of this system can be built in a recursive way. For each order i (i ≥ 1), the elimination
of the secular terms permits the identification of the component ωi of the series ω(ε).

Order 0 (solution of Equation (3.30)):
y0(τ) = cos(

τ

ω0
) (3.34)

y0(τ) and its second derivative are substituted into the differential equation of the first order expansion.
After linearization of the trigonometric functions, Equation (3.31) becomes:

(
3

2
− 2ω1

ω0
) cos(

τ

ω0
) +

1

2
cos(

3τ

ω0
) + y1(τ) + ω2

0

d2y1(τ)

dτ2
= 0 (3.35)

Equation (3.35) contains secular terms that should be eliminated, which corresponds to conditioning
the component ω1 of the frequency asymptotic series.

(
3

2
− 2ω1

ω0
) cos(

τ

ω0
) = 0 =⇒ ω1 =

3ω0

4
(3.36)

First order (solution of Equation (3.35)):

y1(τ) =
1

16

{
cos(

3τ

ω0
)− cos(

τ

ω0
)

}
(3.37)
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Then, y0(τ), y1(τ), their second derivative as well as ω1 are substituted into the differential equation
of the second order expansion. After linearization of the trigonometric functions, Equation (3.32)
becomes:

−(
21

32
+

2ω2

ω0
) cos(

τ

ω0
)− 3

4
cos(

3τ

ω0
) +

3

32
cos(

5τ

ω0
) + y2(τ) + ω2

0

d2y2(τ)

dτ2
= 0 (3.38)

The elimination of the secular terms, permits the identification of ω2

(
21

32
+

2ω2

ω0
) cos(

τ

ω0
) = 0 =⇒ ω2 =

−21ω0

64
(3.39)

Second order (solution of Equation (3.38)):

y2(τ) =
1

256

{
23 cos(

τ

ω0
)− 24 cos(

3τ

ω0
) + cos(

5τ

ω0
)

}
(3.40)

y0(τ), y1(τ), y2(τ), their second derivative as well as ω1 andω2 are substituted into the differential
equation of the third order expansion. After linearization of the trigonometric functions, Equation
(3.33) becomes:

(
81

128
+

2ω3

ω0
) cos(

τ

ω0
) +

549

512
cos(

3τ

ω0
)− 69

256
cos(

5τ

ω0
) +

3

256
cos(

7τ

ω0
) + y3(τ) + ω2

0

d2y3(τ)

dτ2
= 0 (3.41)

The elimination of the secular terms, permits the identification of ω3

(
81

128
+

2ω3

ω0
) cos(

τ

ω0
) = 0 =⇒ ω3 =

81ω0

256
(3.42)

Third order (solution of Equation (3.41)):

y3(τ) =
1

4096

{
549 cos(

3τ

ω0
)− 504 cos(

τ

ω0
)− 46 cos(

5τ

ω0
) + cos(

7τ

ω0
)

}
(3.43)

ω0 is the frequency of the dynamic system modeled by the differential Equation (3.27) when ε = 0. In
our case : ω0 = 1. The Lindstedt-Poincaré method gives a third order general solution of Equation
(3.27) in the form: 

yε(t) = y0(τ) + εy1(τ) + ε2y2(τ) + ε3y3(τ) +O(ε4)

τ = (1 + 3ε
4 −

21ε2

64 + 81ε3

256 )t+O(ε4t)

 (3.44)

Inspecting Equation (3.44), the error is O(1) when t = O(ε−4) which is the same order than the first
term. Thus, Equation (3.44) is not valid for t ≥ (ε−4). Moreover, if t = O(ε−3), the error is O(ε), and
hence, the order of the second term.
Indeed, to determine an asymptotic expansion of the solution of Equation (3.27) up to the nth order
by using Lindstedt-Poincaré method, there is no need for the particular solution of the nth differential
equation. However, one should eliminate the secular terms up to the nth order.

yε =

n−1∑
i=0

εiyi

{
t

n∑
i=0

εiωi

}
+O(εn) (3.45)
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Then, a valid asymptotic expansion for t ≤ O(ε−3) is :

yε =



cos[
{

1 + 3
4ε−

15ε2

64 + 123ε3

1024

}
t]

+ ε
16 cos[3

{
1 + 3

4ε−
15ε2

64 + 123ε3

1024

}
t]

+ ε2

256


cos[5

{
1 + 3

4ε−
15ε2

64 + 123ε3

1024

}
t]

−21 cos[3
{

1 + 3
4ε−

15ε2

64 + 123ε3

1024

}
t]

+O(ε3)


(3.46)

Damped systems:
To illustrate the validity limits of Lindstedt-Poincaré method, a slightly damped linear oscillator
described by the following equation is considered:

d2y(t)

dt2
+ y(t) + 2ε

dy(t)

dt
= 0 (3.47)

The second order differential system obtained is:

y0(τ) + ω2
0

d2y0(τ)

dτ2
= 0, y0(0) = 1,

dy0(0)

dτ
= 0 (3.48)

y1(τ) + 2ω0
dy0(τ)

dτ
+ 2ω0ω1

d2y0(τ)

dτ2
+ ω2

0

d2y1(τ)

dτ2
= 0, y1(0) = 0,

dy1(0)

dτ
= 0 (3.49)


y2(τ) + 2ω1

dy0(τ)
dτ +

[
2ω0ω2 + ω2

1

] d2y0(τ)
dτ2

+ω0

[
2dy1(τ)

dτ + 2ω1
d2y1(τ)
dτ2

+ ω0
dy2(0)
dτ

]
= 0, y2(0) = 0, dy2(0)

dτ = 0

 (3.50)

y0(τ) is the solution of Equation (3.48):

y0(τ) = cos(
τ

ω0
) (3.51)

dy0(τ)
dτ ,d

2y0(τ)
dτ2

are substituted into the differential equation of the first order expansion. Equation 3.49
becomes :

−2

[
sin(

τ

ω0
) +

cos( τ
ω0

)ω1

ω0

]
+ y1(τ) + ω2

0

d2y1(τ)

dτ2
= 0 (3.52)

One obtains an equation which presents secular terms. A priori, it is impossible to conditionate the
frequency components in order to cancel out the two resonating terms sin( τ

ω0
) and cos( τ

ω0
) knowing

that ω0 = 1 as well as ω1 are independent of t. Thus, the Lindstedt-Poincaré method validity is limited
to conservative systems because secular terms cannot be eliminated due to damping.

3.3.1.4 Multiple time scales

Time scales dependency:
The solution of Equation (3.27) given by the Lindstedt-Poincaré method up to the third order can be
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written as:

yε =



cos[t+ 3
4εt−

15ε2t
64 + 123ε3t

1024 ]

+ ε
16 cos[3t+ 9

4εt−
45ε2t

64 + 369ε3t
1024 ]

+ ε2

256


cos[5t+ 15

4 εt−
75ε2t

64 + 615ε3t
1024 ]

−21 cos[3t+ 9
4εt−

45ε2t
64 + 369ε3t

1024 ]

+O(ε3)


(3.53)

Thus yε(t) = y(t, ε) = y(t, εt, ε2t, ε)

By carrying out the expansion to higher order, we find that y(t), besides the individual ε and t,
depends on the combinations εt,ε2t,ε3t,ε4t,. Hence:

yε(t) = ỹ(t, εt, ε2t, ε3t, ε4t, ..., ε) = ỹ(T0, T1, T2, T3, T4, ..., ε) (3.54)

The Tn are defined as: T0 = t T1 = εt ... Tn = εnt

We note that the Tn represents different time scales because ε is a small parameter. For illustration,
the watch example is considered: if ε = 1

60 , variations on the scale T0 can be observed on the second
arm, variations on the scale T1 can be observed on the minute arm, and T2 can be observed on the
hour arm. Thus, T0 represents a fast scale, T1 represents a slower scale, T2 represents an even slower
scale and so on.
Now, instead of determining yε(t) as a function of t, we determine yε(t) as a function of T0, T1, T2, ....
To this end, we change the independent variable in the original equation from t to T0, T1, T2, .... Using
the chain rule, we have:

d

dt
=

∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ ... (3.55)

d2

dt2
=

∂2

∂T 2
0

+ 2ε
∂2

∂T0∂T1
+ ε2

[
2

∂2

∂T0∂T2
+

∂2

∂T 2
1

]
+ ... (3.56)

Damped nonlinear system:
We considerer the equation of a slightly damped Duffing oscillator:

d2y(t)

dt2
+ y(t) + ε

{
αy(t)3 + 2µ

dy(t)

dt

}
= 0 (3.57)

For convenience and equations simplicity, we use the following notation:

yi(T0, T1, T2, . . . , Tn) = yi

∂kyi(T0,T1,T2,...,Tj ,...,Tn)

∂Tkj
= yi

(0,0,0,...,k,...,0) where k is located at the place j ∈ [0, n] ∩ N

∂kyi(T0,T1,T2,...,Tj ,...,Tn)
∂T0∂T1...∂Tk

= yi
(1,1,1,...,1,0,...,0) where k is the length of the colored part.

∂kyi(T0,T1,T2,...,Tj ,...,Tn)

∂T
p0
0 ∂T

p1
1 ∂T

p2
2 ...∂T

pj
j ...∂T pnn

= yi
(p0,p1,p2,...,pj ,...,pn) where

∑
pi = k

If we use the multiple time scales method [Sanchez 1996] and expand the asymptotic series up to
the nth order (yε(t) =

∑n
i=0 ε

iyi(T0, T1, T2, ...)), the ordinary differential Equation (3.57) can be
transformed into a system of n partial differential equations. Up to the third order, the obtained
system

y0 + y0
(2,0,0,0) = 0 (3.58)
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αu0
3 + y1 + 2µy0

(1,0,0,0) + 2y0
(1,1,0,0) + y1

(2,0,0,0) = 0 (3.59)

3αy0
2y1 + y2 + 2µy0

(0,1,0,0) + y0
(0,2,0,0) + 2µy1

(1,0,0,0)

+2y0
(1,0,1,0) + 2y1

(1,1,0,0) + y2
(2,0,0,0) = 0 (3.60)

3αy0y1
2 + 3αy0

2y2 + y3 + 2µy0
(0,0,1,0) + 2µy1

(0,1,0,0) + 2y0
(0,1,1,0) + y1

(0,2,0,0)

+2µy2
(1,0,0,0) + 2y0

(1,0,0,1) + 2y1
(1,0,1,0) + 2y2

(1,1,0,0) + y3
(2,0,0,0) = 0 (3.61)

is solved in a recursive manner by substituting the solution of the ith order equation into the i + 1th

order equation. The secular terms elimination at each order conditionates the phase and the amplitude
of the system.
Order ε0:
The solution of the first Equation (3.58) can be written as:

y0 = A cos(Θ) avec A = A[T1, T2, T3] et Θ = Θ[T0, T1, T2, T3] (3.62)

The expression of y0 is substituted into Equation (3.58) in order to determinate the forms of A et Θ.
Thus, we obtain:

cos[Θ]

{
A

(
1−

[
Θ(1,0,0,0)

]2
)

+A(2,0,0,0)

}
− sin[Θ]

{
2A(1,0,0,0)Θ(1,0,0,0) +AΘ(2,0,0,0)

}
= 0 (3.63)

A(1,0,0,0) = 0 and Θ(1,0,0,0) = ±1. we chose Θ(1,0,0,0) = 1.Up to this order, y0 can be written as :

y0 = A cos(Θ) avec A = A[T1, T2, T3] et Θ = T0 + Φ[T1, T2, T3] (3.64)

Order ε1:
Now, knowing y0, we substitute it into the differential Equation (3.59). Then, we linearize the trigono-
metric functions in order to identify the secular terms and obtain:

cos[Θ]

4

{
3αA3 − 8AΦ(1,0,0)

}
− 2 sin[Θ]

{
µA+A(1,0,0)

}
+

1

4
αA3 cos[3Θ] + y1 + y

(2,0,0,0)
1 = 0 (3.65)

In order to keep a bounded solution, the two first secular terms are eliminated, which conditionates
the amplitude A and the phase Φ as follow: 3αA3 − 8AΦ(1,0,0) = 0⇒ Φ(1,0,0) = 3

8αA
2

µA+A(1,0,0) = 0⇒ A(1,0,0) = −µA

 (3.66)

Then, a particular solution of Equation (3.59) without secular terms is determinated as:

y1 =
1

32
αA3 cos[3Θ] (3.67)

Ordre ε2:
Following the same algorithm, the differential Equation (3.60) becomes:

cos[Θ]
{

3
128A

5α2 + 2µA(1,0,0) −A
(

2Φ(0,1,0) +
[
Φ(1,0,0)

]2)
+A(2,0,0)

}
−2 sin[Θ]

{
A(0,1,0) +A

(
µΦ(1,0,0) + 1

2Φ(2,0,0)
)

+A(1,0,0)Φ(1,0,0)
}

+ 3
64A

3α cos[3Θ]
{
A2α− 12Φ(1,0,0)

}
− 3

16A
2α sin[3Θ]

{
Aµ+ 3A(1,0,0)

}
+ 3

128A
5α2 cos[5Θ] + y2 + y2

(2,0,0,0) = 0


(3.68)
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The partial derivatives of the amplitude A and the phase Φ with respect to the time scale T1 are used
in order to simplify Equation (3.68). Up to the order ε1, the first derivative of A and Φ with respect to
T1(Equations (3.66)) have already been determinated. The second derivatives are deduced as follow:

Φ(1,0,0) = 3
8αA

2

A(1,0,0) = −µA

 =⇒


Φ(2,0,0) = 3

4αAA
(1,0,0)

A(2,0,0) = −µA(1,0,0)

 =⇒


Φ(2,0,0) = −3

4αµA
2

A(2,0,0) = µ2A

 (3.69)

Equation (3.68) is simplified as follow:
2 sin[Θ]

(
3
8A

3αµ−A(0,1,0)
)
− cos[Θ]

(
A
[

15
128A

4α2 + µ2 + 2Φ(0,1,0)
])

− 21
128A

5α2 cos[3Θ] + 3
8A

3αµ sin[3Θ] + 3
128A

5α2 cos[5Θ]

+y2 + y2
(2,0,0,0) = 0

 (3.70)

The elimination of the secular terms conditionate the partial derivatives of A and φ with respect to
T2 in order to keep a bounded solution.

A(0,1,0) = 3
8αµA

3

Φ(0,1,0) = −1
2µ

2 − 15
256α

2A4

 (3.71)

Then, a particular solution of Equation (3.70) is determinated.

y2 =
1

1024
α2A5 {cos[5Θ]− 21 cos[3Θ]}+

3

64
αµA3 sin[3Θ] (3.72)

Ordre ε3:
Knowing y0, y1, y2 and their derivatives, the differential Equation (3.61) becomes:

cos[Θ]
{

2A(1,1,0) − 57
4096A

7α3 − 2AΦ(0,0,1) + 2µA(0,1,0) − 2AΦ(0,1,0)Φ(1,0,0)
}

+ sin[Θ]


9

256A
5α2µ− 2

(
A(0,0,1) +AµΦ(0,1,0)

)
−2
(
Φ(0,1,0)A(1,0,0) +A(0,1,0)Φ(1,0,0) +AΦ(1,1,0)

)


+ cos[3Θ]


3
32AαA

(1,0,0)
(
11Aµ+ 2A(1,0,0)

)
+ 9

512A
3αΦ(1,0,0)

(
21A2α− 16Φ(1,0,0)

)
− 3

4096A
2α
(
41A5α2 − 384Aµ2 + 768AΦ(0,1,0) − 128A(2,0,0)

)


+ sin[3Θ]


99
512A

5α2µ− 9
16A

2αA(0,1,0) + 315
512A

4α2A(1,0,0)

− 3
32A

2αΦ(1,0,0)
(
11Aµ+ 6A(1,0,0)

)
− 3

32A
3αΦ(2,0,0)


−A5α2

2048 cos[5Θ]
{

27A2α+ 100Φ(1,0,0)
}

+ 1
512A

4α2 sin[5Θ]
{

13Aµ− 25A(1,0,0)
}

+ 3
2048A

7α3 cos[7Θ] + y3 + y3
(2,0,0,0) = 0



(3.73)

In order to simplify Equation (3.73), we need the partial derivatives of the amplitude A and the phase
Φ with respect to the time scales T1 and T2. The previous expansions of order ε1 and ε2 gave the
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partial derivatives of A and Φ with respect to T1 and T2(Equations (3.66) and (3.71)). The mixed
derivatives are deduced as follow:



A(1,0,0) = −µA

Φ(1,0,0) = 3
8αA

2

A(0,1,0) = 3
8αµA

3

Φ(0,1,0) = −1
2µ

2 − 15
256α

2A4


⇒



A(1,1,0) =
[
A(1,0,0)

](0,1,0)
= [−µA](0,1,0)

A(1,1,0) = −3
8αµ

2A3

Φ(1,1,0) =
[
Φ(1,0,0)

](0,1,0)
=
[

3
8αA

2
](0,1,0)

Φ(1,1,0) = 9
32α

2µA4




(3.74)

Then, Equation (3.73) is simplified:

cos[Θ]
{
A[ 123

4096A
6α3 + 3

8A
2αµ2 − 2Φ(0,0,1)]

}
− sin[Θ]

{
207
256A

5α2µ+ 2A(0,0,1)
}

+
{

417
4096A

7α3 − 3
16A

3αµ2
}

cos[3Θ]− 189
256A

5α2µ sin[3Θ]

− 129
4096A

7α3 cos[5Θ] + 19
256A

5α2µ sin[5Θ]

+ 3
2048A

7α3 cos[7Θ] + y2 + y2
(2,0,0,0) = 0


(3.75)

The elimination of the secular terms permits the identification of the partial derivatives of A and Φ

with respect to T3 as follow: 
A(0,0,1) = −207

512α
2µA5

Φ(0,0,1) = 123
8192A

6α3 + 3
16A

2αµ2

 (3.76)

After secular term elimination, a particular solution of Equation (3.75) is:

y3 =
αA3

98304


(
1251A4α2 − 2304µ2

)
cos[3Θ]− 129A4α2 cos[5Θ]

+3A4α2 cos[7Θ]− 9072A2αµ sin[3Θ] + 304A2αµ sin[5Θ]

 (3.77)

Using the multiple time scales method, the complete solution of (3.57) up to the third order can be
written as:

yε = y0 + εy1 + ε2y2 + ε3y3 + +O
(
ε4
)

(3.78)

Hence:

yε =



A cos(Θ) + ε
32αA

3 cos[3Θ]+

ε2
{

1
1024α

2A5 {cos[5Θ]− 21 cos[3Θ]}+ 3
64αµA

3 sin[3Θ]
}

+ ε3

98304αA
3


(
1251A4α2 − 2304µ2

)
cos[3Θ]− 129A4α2 cos[5Θ]

+3A4α2 cos[7Θ]− 9072A2αµ sin[3Θ] + 304A2αµ sin[5Θ]

+O
(
ε4
)
(3.79)
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where: 
dA
dt = εA(1,0,0) + ε2A(0,1,0) + ε3A(0,0,1) +O

(
ε4
)

dΘ
dt = 1 + εΦ(1,0,0) + ε2Φ(0,1,0) + ε3Φ(0,0,1) +O

(
ε4
)


⇓
dA
dt = −εµA+ 3

8ε
2αµA3 − 207

512ε
3α2 µA5 +O

(
ε4
)

dΘ
dt = 1 + 3

8εα A
2 + ε2

256

(
−128µ2 − 15α2A4

)
+ 3ε3

8192

(
512αµ2A2 + 41α3A6

)
+O

(
ε4
)


(3.80)

In the case µ = 0 (conservative system) and α = 2 (the Equation (3.57) becomes the same as Equation
(3.27) already solved using second order Lindstedt-Poincaré method), the solution of Equation (3.57)
up to the third order of the multiple time scales method is:

yε =


A cos(Θ) + ε

16A
3 cos[3Θ] + ε2

256A
5 {cos[5Θ]− 21 cos[3Θ]}

+ ε3

12288A
7 {1251 cos[3Θ]− 129 cos[5Θ] + 3 cos[7Θ]}+O

(
ε4
)
 (3.81)

where: 
dA
dt = O

(
ε4
)

dΘ
dt = 1 + 3

4ε A
2 − 15ε2

64 A
4 + 123ε3

1024 A
6 +O

(
ε4
)
 (3.82)

Using the initial conditions A(0) = 1 and Θ(0) = 0, the solution of Equation (3.57) can be written as:

yε =



cos[
{

1 + 3
4ε−

15ε2

64 + 123ε3

1024

}
t]

+ ε
16 cos[3

{
1 + 3

4ε−
15ε2

64 + 123ε3

1024

}
t]

+ ε2

256


cos[5

{
1 + 3

4ε−
15ε2

64 + 123ε3

1024

}
t]

−21 cos[3
{

1 + 3
4ε−

15ε2

64 + 123ε3

1024

}
t]



+ ε3

12288



1251 cos[3
{

1 + 3
4ε−

15ε2

64 + 123ε3

1024

}
t]

−129 cos[5
{

1 + 3
4ε−

15ε2

64 + 123ε3

1024

}
t]

+3 cos[7
{

1 + 3
4ε−

15ε2

64 + 123ε3

1024

}
t]


+O

(
ε4t
)



(3.83)

The same error analysis already done for Lindstedt-Poincaré method, permits the elimination of the
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last term to get exactly the same asymptotic expansion of the solution as in Equation (3.46).

yε =



cos[
{

1 + 3
4ε−

15ε2

64 + 123ε3

1024

}
t]

+ ε
16 cos[3

{
1 + 3

4ε−
15ε2

64 + 123ε3

1024

}
t]

+ ε2

256


cos[5

{
1 + 3

4ε−
15ε2

64 + 123ε3

1024

}
t]

−21 cos[3
{

1 + 3
4ε−

15ε2

64 + 123ε3

1024

}
t]

+O(ε3)


(3.84)

3.3.1.5 The averaging method

It is supposed here that the fast effects are oscillating. A long time ago, the averaging method was used
in celestial mechanics in order to determine the evolution of the planetary orbits under the influence
of the mutual disturbances between planets and to study the stability of the solar system.
The parameter variation method:
Let us consider again the slightly damped nonlinear Duffing oscillator described in Equation (3.57).
When ε = 0, the solution of Equation (3.57) is:

y(t) = A cos(t+ β) (3.85)

A and β are integration constants that could be considered as parameters. The derivative of y(t) with
respect to the time t is immediately deduced.

dy(t)

dt
= −A sin(t+ β) (3.86)

When ε 6= 0, we assume that the solution of Equation (3.57) keeps the same form given by Equation
(3.85), where the amplitude A and the phase β are time-varying functions. In other words, we consider
Equation (3.85) as a transformation from y(t) to A(t) and β(t). This is why this approach is called the
method of variation of parameters. Using this approach, we note that we have two Equations (3.57)
et (3.85) for the three unknowns y(t), A(t) and β(t). Hence, we have the freedom to impose a third
condition that must be independent of Equations (3.57) and (3.85). This arbitrariness can be used to
advantage, namely to produce a simple and convenient transformation. Out of all possible conditions,
we choose to impose the Equation (3.86), thereby assuming that y(t) as well as dy(t)

dt have the same
form as the linear case. This condition leads to a convenient transformation because it gives two sets
of first-order differential equations for A and β.
Differentiating Equation (3.85) with respect to t and recalling that A and β are functions of t, we
obtain:

dy(t)

dt
= −A(t) sin(t+ β(t)) +

dA(t)

dt
cos(t+ β(t))−A(t)

dβ(t)

dt
sin(t+ β(t)) (3.87)

Comparing Equations (3.87) and (3.86), we conclude that:

dA(t)

dt
cos(t+ β(t))−A(t)

dβ(t)

dt
sin(t+ β(t)) = 0 (3.88)

Differentiating Equation (3.86) with respect to t, we have:

d2y(t)

dt2
= −A(t) cos(t+ β(t))− dA(t)

dt
sin(t+ β(t))−A(t)

dβ(t)

dt
cos(t+ β(t)) (3.89)
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Substituting y(t) and d2y(t)
dt2

from Equations (3.85) and (3.89) into Equation (3.57), we obtain:

dA(t)

dt
sin(t+ β(t)) +A(t)

dβ(t)

dt
cos(t+ β(t)) = ε

{
αA3 cos3(t+ β(t))− 2µA sin(t+ β(t))

}
(3.90)

We note that Equations (3.88) and (3.90) constitute a system of two first order differential equations for
dA(t)
dt and dβ

dt . They can be simplified if we multiply Equation (3.88) by cos(t+β(t)) and equation(3.90)
by sin(t+ β(t)), then, add the results in order to determine dA(t)

dt as follow:

dA(t)

dt
= ε sin(t+ β(t))

{
αA3 cos3(t+ β(t))− 2µA sin(t+ β(t))

}
(3.91)

Substituting dA(t)
dt into Equation (3.88) and solving, we determine dβ

dt .

dβ(t)

dt
= ε cos(t+ β(t))

{
αA2 cos3(t+ β(t))− 2µ sin(t+ β(t))

}
(3.92)

If A 6= 0. Thus, the original second order Equation (3.57) for y(t) has been replaced by two first order
Equations (3.91) and (3.92) for A(t) and β(t). It is notable that no approximations have been made
in deriving Equations (3.91) and (3.92). The latter are more nonlinear than the original Equation
(3.57). Nevertheless, if ε is small, the major parts of A(t) and β(t) vary more slowly than y(t) with
respect to t. Thus, the analytical advantage of the variation of parameters approach can be used in a
perturbation method such as the averaging method.
The first order averaging:
Using the following trigonometric identities,

sinφ cosφ =
1

2
sin 2φ (3.93)

sin2 φ =
1

2
− 1

2
cos 2φ (3.94)

sinφ cos3 φ =
1

4
sin 2φ+

1

8
sin 4φ (3.95)

cos4 φ =
3

8
+

1

2
cos 2φ+

1

8
cos 4φ (3.96)

Equations (3.91) and (3.92) become:

dA(t)

dt
=

1

8
εA
{
−8µ+ 8µ cos 2φ+ 2αA2 sin 2φ+ αA2 sin 4φ

}
(3.97)

dβ(t)

dt
=

1

8
ε
{

3αA2 + 4αA2 cos 2φ− 8µ sin 2φ+ αA2 cos 4φ
}

(3.98)

where φ = t + β. Since −1 ≤ sinnφ ≤ 1 and −1 ≤ cosnφ ≤ 1 , dA(t)
dt = O(ε) and dβ(t)

dt = O(ε) if the
amplitude A is bounded. Thus, the major parts of A and β are slowly time-varying functions if ε is
small. Then, the amplitude A and the phase β change very little during the time interval [0, π] and,
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as a first approximation, they can be considered constant in the interval [0, π].
We average the right-hand sides of Equations (3.97) and (3.98) over the interval [0, π] and obtain:

dA(t)

dt
=

1

π

∫ π

0

[
1

8
εA
{
−8µ+ 8µ cos 2φ+ 2αA2 sin 2φ+ αA2 sin 4φ

}]
dφ (3.99)

dβ(t)

dt
=

1

π

∫ π

0

[
1

8
ε
{

3αA2 + 4αA2 cos 2φ− 8µ sin 2φ+ αA2 cos 4φ
}]
dφ (3.100)

Hence:
dA(t)

dt
= −εµA (3.101)

dβ(t)

dt
=

3

8
εαA2 (3.102)

Sinceφ = t+ β, then

dA(t)

dt
= −εµA (3.103)

dφ(t)

dt
= 1 +

dβ(t)

dt
= 1 +

3

8
εαA2 (3.104)

We found exactly the same results as those obtained with the method of multiple time scales up to
order ε1(see Equation (3.66)).

Assuming the initial conditions


A(0) = 1

φ(0) = 0

 , we obtain :


A(t) = e−εµt

φ(t) = t+ 3α
16µ

{
1− e−2εµt

}


The amplitude A decreases exponentially with respect to the damping µ, while the phase φ grows
quasi-linearly. The averaging method is a fast and simple perturbation technique, commonly used
in nonlinear dynamics when a first order approximate solution is sought. This method assumes that
the damping, the excitation in the case of a nonautonomous system as well as all the nonlinearities
are synchronized (they occur at the same and unique time scale). If the nonlinearities of the system
appear on different time scales, some terms which come from the interactions between the different
scales will not be taken into account by the first order averaging method. For this type of system,
one can use a generalized method of averaging [Nayfeh 2005a] which takes into account the multiscale
aspect of the nonlinearities in the same way as the multiple time scales method.
The generalized averaging method:
Let the solutions of Equations (3.97) and (3.98) have the following forms:

A(t) = A0(t) +
n∑
i=1

εiAi(A0, φ0) +O(εn) (3.105)

φ(t) = φ0(t) +

n∑
i=1

εiφi(A0, φ0) +O(εn) (3.106)

Ȧ0 =
n∑
i=1

εi∆i(A0) +O(εn) (3.107)

φ̇0 = 1 +

n∑
i=1

εiΨi(A0) +O(εn) (3.108)



3.3. Nonlinear methods 65

The functions Ai and φi are fast time-varying functions of φ0, while it follows from Equations (3.107)
and (3.108), A0 as well as ∆i and Ψi are slowly time-varying functions.
The use of the chain rule leads to the first derivative of Equations (3.105) and (3.106) as follow:

dA(t)

dt
= Ȧ0 +

n∑
i=1

εi
{
∂Ai
∂A0

Ȧ0 +
∂Ai
∂φ0

φ̇0

}
+O(εn) (3.109)

dφ(t)

dt
= φ̇0 +

n∑
i=1

εi
{
∂φi
∂A0

Ȧ0 +
∂φi
∂φ0

φ̇0

}
+O(εn) (3.110)

Substituting Equations (3.107) and (3.108), into Equations (3.109) and (3.110) and keeping terms up
to O(ε2), yield:

dA(t)

dt
= ε

{
∆1 +

∂A1

∂φ0

}
+ ε2

{
∆2 +

∂A2

∂φ0
+ ∆1

∂A1

∂A0
+ Ψ1

∂A1

∂φ0

}
+O(ε2) (3.111)

dφ(t)

dt
= 1 + ε

{
Ψ1 +

∂φ1

∂φ0

}
+ ε2

{
Ψ2 +

∂φ2

∂φ0
+ ∆1

∂φ1

∂A0
+ Ψ1

∂φ1

∂φ0

}
+O(ε2) (3.112)

Next, we substitute Equations (3.105) and (3.106) into Equations (3.97) and (3.98). We expand the
right-hand sides for small ε keeping terms up to O(ε2).

dA(t)

dt
=



ε
[
−µA0 + µA0cos2φ0 + 1

4αA0
3sin2φ0 + 1

8αA0
3sin4φ0

]

+ε2

 −µA1 + µA1cos2φ0 + 3
4αA0

2A1sin2φ0 + 3
8αA0

2A1sin4φ0

+1
2αA

3
0φ1cos2φ0 + 1

2αA
3
0φ1cos4φ0 − 2µφ1A0sin2φ0




+O(ε2) (3.113)

dφ(t)

dt
=



1 + ε
[

3
8αA0

2 − µ sin 2φ0 + 1
2αA0

2cos2φ0 + 1
8αA0

2cos4φ0

]

+ε2

 3
4αA0A1 + αA0A1cos2φ0 + 1

4αA0A1 cos 4φ0

−2µφ1 cos 2φ0 − αA2
0φ1 sin 2φ0 − 1

2αA
2
0φ1 sin 4φ0




+O(ε2) (3.114)

The use of Equations (3.113) and (3.111) as well as Equations (3.114) and (3.112) leads to the identi-
fication of the terms of order ε1 and ε2. It permits to write the four following equations:

∆1 +
∂A1

∂φ0
= −µA0 + µA0cos2φ0 +

1

4
αA0

3sin2φ0 +
1

8
αA0

3sin4φ0 (3.115)

∆2 +
∂A2

∂φ0
+ ∆1

∂A1

∂A0
+ Ψ1

∂A1

∂φ0
=


−µA1 + µA1cos2φ0 + 3

4αA0
2A1sin2φ0 + 3

8αA0
2A1sin4φ0

+1
2αA

3
0φ1cos2φ0 + 1

2αA
3
0φ1cos4φ0 − 2µφ1A0sin2φ0


(3.116)

Ψ1 +
∂φ1

∂φ0
=

3

8
αA0

2 − µ sin 2φ0 +
1

2
αA0

2cos2φ0 +
1

8
αA0

2cos4φ0 (3.117)

Ψ2 +
∂φ2

∂φ0
+ ∆1

∂φ1

∂A0
+ Ψ1

∂φ1

∂φ0
=


3
4αA0A1 + αA0A1cos2φ0 + 1

4αA0A1 cos 4φ0

−2µφ1 cos 2φ0 − αA2
0φ1 sin 2φ0 − 1

2αA
2
0φ1 sin 4φ0

 (3.118)
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Then, we use the method of separation of variables to separate the fast and slowly varying terms of
Equations (3.115), (3.116), (3.117) and (3.118). The slowly varying parts of Equations (3.115) and
(3.117) yield: 

∆1 = −µA0

Ψ1 = 3
8αA0

2

 (3.119)

We find exactly the same relation as those obtained by the method of first order averaging (Equations
(3.101) and (3.102)). The fast varying parts of Equations (3.115) and (3.117) yield:

∂A1

∂φ0
= µA0cos2φ0 +

1

4
αA0

3sin2φ0 +
1

8
αA0

3sin4φ0 (3.120)

∂φ1

∂φ0
= −µ sin 2φ0 +

1

2
αA0

2cos2φ0 +
1

8
αA0

2cos4φ0 (3.121)

Particular solutions for Equations (3.120) and (3.121) have the following expressions:

A1 =
1

2
µA0sin2φ0 −

1

8
αA0

3cos2φ0 −
1

32
αA0

3cos4φ0 (3.122)

φ1 =
1

2
µ cos 2φ0 +

1

4
αA0

2sin2φ0 +
1

32
αA0

2sin4φ0 (3.123)

Then, Equations (3.119), (3.122) and (3.123) are replaced into Equations (3.116) and (3.118).

∆2 +
∂A2

∂φ0
=


−1

4µ
2A0 sin 4φ0 − 29

64αµA
3
0 cos 2φ0 + 1

16αµA
3
0 cos 4φ0 + 3

64αµA
3
0 cos 6φ0

− 41
256α

2A5
0 sin 2φ0 − 1

32α
2A5

0 sin 4φ0 + 9
256α

2A5
0 sin 6φ0 + 1

512α
2A5

0 sin 8φ0

 (3.124)

Ψ2 +
∂φ2

∂φ0
=



−1
2µ

2 − 51
256α

2A4
0

−1
2µ

2 cos 4φ0 + 33
32αµA

2
0 sin 2φ0 − 3

16αµA
2
0 sin 4φ0 − 3

32αµA
2
0 sin 6φ0

−25
64α

2A4
0 cos 2φ0 − 1

128α
2A4

0 cos 4φ0 + 3
64α

2A4
0 cos 6φ0 + 1

256α
2A4

0 cos 8φ0


(3.125)

An approximate solution up to order O(ε2), does not require A2 and φ2. Indeed, only the slowly
varying terms ∆2 and Ψ2 have to be identified.

∆2 = 0

Ψ2 = −1
2µ

2 − 51
256α

2A4
0

 (3.126)

Substituting Equations (3.122-3.123) into Equations (3.105-3.106) as well as Equations (3.119) and
(3.126) into Equations (3.107-3.108), yield:

A(t) = A0 + ε

[
1

2
µA0sin2φ0 −

1

8
αA0

3cos2φ0 −
1

32
αA0

3cos4φ0

]
(3.127)

φ(t) = φ0 + ε

[
1

2
µ cos 2φ0 +

1

4
αA0

2sin2φ0 +
1

32
αA0

2sin4φ0

]
(3.128)

Ȧ0 = −εµA0 (3.129)

φ̇0 = 1 +
3

8
εαA0

2 − 1

2
ε2µ2 − 51

256
ε2α2A4

0 (3.130)
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Equations (3.105) and (3.106) are used in order to obtain the following expansion of Equation (3.85)
for small ε.

y(t) = A0 cosφ0 + ε [A1 cosφ0 −A0φ1 sinφ0] (3.131)

Finally, the expressions of A1 and φ1 in Equations (3.122) and (3.123) are replaced into Equation
(3.131) in order to obtain the following solution:

y(t) = A0 cos(t+ β) + ε

[
1

2
µA0 sin(t+ β)− 3

16
αA3

0 cos(t+ β) +
1

32
αA3

0 cos(3t+ 3β)

]
(3.132)

3.3.1.6 Krylov-Bogoliubov-Mitropolsky technique

Krylov-Bogoliubov-Mitropolsky technique [Yuste 1992] is an asymptotic method considered as a vari-
ant of the multiscale averaging method. We consider Equation (3.85) to be the first term in an
approximate solution of (3.57) where A and β are slowly varying variables. Moreover, we introduce
the fast scale φ = t+ β and we use A to represent the slow variations. Thus, we seek an approximate
solution in the form:

y(t) = A cosφ+
n∑
i=1

εiyi(A, φ) (3.133)

Since A and β are slowly time-varying variables, their power series expansions of ε in terms of A are:

Ȧ =
n∑
i=1

εi∆i(A) (3.134)

φ̇ = 1 +
n∑
i=1

εiΨi(A) (3.135)

Thus, this method can be viewed as a multiscale procedure with A and φ being the scales. Using the
chain rule, the derivatives with respect to t in terms of the new independent variables A and φ are:

d

dt
= Ȧ

∂

∂A
+ φ̇

∂

∂φ
(3.136)

d2

dt2
= Ȧ2 ∂2

∂A2
+ Ä

∂

∂A
+ 2Ȧφ̇

∂2

∂A∂φ
+ φ̇2 ∂

2

∂φ2
+ φ̈

∂

∂φ
(3.137)

Differentiating (3.134) and (3.135) with respect to t and using the notation ∂Xi(A)
∂A = X ′i, we obtain:

Ä = Ȧ
n∑
i=1

εi∆′i (3.138)

φ̈ = Ȧ
n∑
i=1

εiΨ′i (3.139)

We substitute Equation (3.134) into Equation (3.138) as well as Equation (3.135) into Equation (3.139)
up to the order O(ε2).

Ä = ε2∆1∆′1 +O(ε2) (3.140)

φ̈ = ε2∆1Ψ′1 +O(ε2) (3.141)
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By using Equations (3.140), (3.141), (3.136) and (3.137), we rewrite Equations (3.134) and (3.135).

d

dt
=

∂

∂φ
+ ε

[
∆1

∂

∂A
+ Ψ1

∂

∂φ

]
+ ε2

[
∆2

∂

∂A
+ Ψ2

∂

∂φ

]
(3.142)

d2

dt2
=


∂2

∂φ2
+ 2ε

[
Ψ1

∂2

∂φ2
+ ∆1

∂2

∂A∂φ

]
+ε2

[(
Ψ2

1 + 2Ψ2

)
∂2

∂φ2
+ 2 (∆2 + ∆1Ψ1) ∂2

∂A∂φ + ∆2
1
∂2

∂A2 + ∆1∆′1
∂
∂A + ∆1Ψ′1

∂
∂φ

]
 (3.143)

Thus, Equation (3.57) becomes:

y +
∂2y

∂φ2
+



2ε
[
Ψ1

∂2y
∂φ2

+ ∆1
∂2y
∂A∂φ + µ ∂y∂φ + 1

2αy
3
]

+ε2


(
Ψ2

1 + 2Ψ2

) ∂2y
∂φ2

+ 2 (∆2 + ∆1Ψ1) ∂2y
∂A∂φ

+∆2
1
∂2y
∂A2 + (∆1∆′1 + 2µ∆1) ∂y

∂A + (∆1Ψ′1 + 2µΨ1) ∂y∂φ




= 0 (3.144)

The substitution of Equation (3.133) into Equation (3.144) and the trigonometric linearization, up to
the order O(ε2), yields the following differential system.

(
3
4αA

3 − 2A Ψ1

)
cosφ− 2 (Aµ+ ∆1) sinφ+ 1

4αA
3 cos 3φ+ y1 + ∂2y1

∂φ2
= 0

(
2µ∆1 + ∆1∆′1 −AΨ2

1 − 2AΨ2

)
cosφ− (2∆2 + 2AµΨ1 + 2∆1Ψ1 +A∆1Ψ′1) sinφ

+3
2A

2α(1 + cos 2φ)y1 + 2µ∂y1∂φ + 2Ψ1
∂2y1
∂φ2

+ 2∆1
∂2y1
∂A∂φ + y2 + ∂2y2

∂φ2
= 0


(3.145)

The elimination of the secular terms of the first equation of the differential system (3.145) constraints
∆1 and Ψ1 in order to keep the approximate solution bounded.

∆1 = −µA

Ψ1 = 3
8αA

2

(3.146)

Let a particular solution of the differential equation for y1 be:

y1 =
1

32
αA3 cos 3φ (3.147)

which is introduced into Equation (3.145). Thus, the differential equation for y2 becomes:
[

3
128α

2A5 + (2µ+ ∆′1)∆1 −A(Ψ2
1 + 2Ψ2)

]
cosφ− [2∆2 + 2Ψ1(µA+ ∆1) +A∆1Ψ′1] sinφ

+ 3
128

[
αA3

(
2αA2 − 24Ψ1

)
cos 3φ− 4αA2 (2µA+ 6∆1) sin 3φ+A5α2 cos 5φ

]
= 0

(3.148)
The elimination of secular terms of order O(ε2) constraints ∆2 and Ψ2.

∆2 = −AµΨ1 −∆1Ψ1 − 1
2A∆1Ψ′1 = 3

8αµA
3

Ψ2 = 1
2A

(
2µ∆1 + ∆1∆′1 + 3

128α
2A5 −AΨ2

1

)
= −1

2µ
2 − 15

256α
2A4

(3.149)
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The results are the same as those already found by the multiple time scales method. The approximate
solution of Equation (3.57) up to the order O(ε2) can be written as:

y(t) = A cosφ+ ε
32 cos 3φ

dA
dt = −εµA+ 3

8ε
2αµA3

dφ
dt = 3

8εαA
2 − 1

2ε
2µ2 − 15

256ε
2α2A4

φ = t+ β

(3.150)

3.3.1.7 Conclusion

The principal disadvantage of the perturbation theory is the necessity, from the beginning, to have a
precise idea about the solution we are looking for: it is convenient to find a small parameter ε and to
isolate the fast part of the system. At this level, the physical intuition plays an important role.

To conclude, we clearly showed on examples that the dynamics of nonlinear systems with primarily
periodic behavior was accessible by various perturbation methods. The choice of the method will
be justified firstly by the conservative aspect of the system and secondly by the reliability of the
assumption concerning the synchronization of the system nonlinearities.

Typically, in the case of the resonator which is a dissipative nonlinear system (equations), the
multiple time scales, the averaging method or the Krylov-Bogoliubov-Mitropolsky technique are well
adapted in order to model the nonlinear dynamics of resonant MEMS and NEMS sensors.

The use of these perturbation methods concerns weakly nonlinear systems (ε << 1 in the case of
normalized nonlinearities). Nevertheless, the classical perturbation methods have been modified by
several researchers [He 2002, Yang 2004] in order to adapt them to the strongly nonlinear systems.

3.3.2 Numerical methods for periodic solutions

3.3.2.1 Direct integration

The following forced nonlinear Duffing equation is considered.

m
d2x

dt2
+ c

dx

dt
+ kx+ knlx

3 = f̃ cos(Ωt) (3.151)

Its normalized form can be written as

d2x

dt2
+ 2µ

dx

dt
+ ω2

0x+ αx3 = f cos(Ωt) (3.152)

which can be transformed into a system of two first-order-ordinary differential equations as follows:{
dx
dt = y
dy
dt = −2µy − ω2

0x− αx3 + f cos(Ωt)
(3.153)

which is equivalent to:
dz

dt
= g(z, t) (3.154)

where z(t) = (x(t), y(t))t. The next step consists in finding stationary solutions to Equation (3.154).
To do so, it is solved numerically for a set of initial conditions using a time-difference method (Runge-
Kutta, Adams, etc...) until until motion settles down onto a steady oscillation (periodic motion). The
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process is described in Figure 3.3 for the following set of parameters (µ = 0.05, ω0 = 1, α = 0.25,
f = 0.5, Ω = 1). The periodic solutions are governed by the following equation:

z(z0, t+ T ) = z(z0, t) (3.155)

where z0 = z(t = 0) defines the initials conditions and T is the period of the solution. It corresponds
to a periodic orbit in the phase plane as shown in Figure 3.3.

Figure 3.3: (a): Long time integration. (b): Phase plane portrait. (c): Periodic solution. (d): Phase
plane portrait of the periodic solution.

For a given period T i.e. for a given forcing frequency Ω, once the motion settles down onto a
steady oscillation, the maximal amplitude gives a point (Ω, xMax) in the frequency response curve,
as described in Figure 3.4. The process is then repeated several times for different values of Ω in
order to describe the complete nonlinear frequency response. However, this is applicable only to stable
solutions. Close to the bifurcation points 1 and 2, jump phenomena occur and the unstable branch
between points 1 and 2 cannot be obtained using the direct integration.

The main drawback of this method lies in its high computational time since it is extremely long to
reach the steady state motion especially for ordinary differential equations which are strongly nonlinear
or contain high order nonlinearities.

3.3.2.2 The shooting method

Motivation When periodic solutions are of interest, the shooting method is much more efficient
than the direct integration method. With the shooting method, the transient motion preceeding the
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Figure 3.4: a): time integration over a period T . (b): Forced nonlinear frequency response.

steady state is not computed, thus leading to high computational time saving. It consists in directly
computing periodic solutions by considering the boundary value problem made of the motion Equations
(3.154) and the periodicity condition (3.155){

dz
dt = g(z, t)

z(z0, T ) = z0

(3.156)

Compared to the direct integration method, the implementation of the shooting method in computa-
tional software is more complex, but it has the advantage of fast convergence since the time integration
is only performed over a period T .

Implementation This boundary value problem can be transformed into an initial value problem by
considering the periodicity equation

H(zO, T ) = z(z0, T )− z0 = 0 (3.157)

H is not an analytical function. It is evaluated through the time integration of Equation (3.154). For
a given period T , let z0 be an approximate initial solution of Equation (3.157). Since z0 is not an
exact solution, an iterative Newton-Raphson correction procedure is used, i.e. we search ∆z such as
z0 + ∆z is a solution of Equation (3.157). The correction phase at iteration k is

zk+1
0 = zk0 + ∆z (3.158)

The increment ∆z is solution of the linear system

J(zk0 , T ) ∆z = −H(zk0 , T ) (3.159)

where J is the Jacobian matrix defined by

J(zk0 , T ) =
∂H

∂z0

∣∣∣∣
(zk0 ,T )

(3.160)
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The iterations are repeated until a user-defined accuracy ε is obtained by the test function

‖∆z‖∥∥∥zk+1
0

∥∥∥ ≤ ε (3.161)

This method is illustrated in Figure 3.5 for the Duffing equation (3.153) with the same parameters
as in section 3.3.2.1 and ε = 10−5. Only five Newton-Raphson iterations are needed to obtain the
periodic solution, i.e. a closed loop in the phase plane.

Figure 3.5: Consecutive iterations of the shooting method in the phase plane

Natural parameter continuation Nonlinear dynamical systems can exhibit a very complex be-
havior within a range of parameters or even become unstable. The evolution of the solution with
respect to a system parameter is thus of prime interest. To this end, continuation methods can be
used. The simplest of these methods is the natural parameter continuation which is implemented as
follows. After convergence, T is incremented such as T = T + ∆T , the solution at T is used as the
initial guess for the solution at T = T+∆T and the Newton-Raphson procedure is repeated in order to
find the corresponding solution z0. With ∆T sufficiently small the iteration applied to the initial guess
should converge. The overall algorithm is given in Figure 3.6. One advantage of natural parameter
continuation is that it uses the solution method for the problem as a black box. All that is required is
that an initial solution can be given. However, natural parameter continuation fails at turning points
[Nayfeh 1995], where the branch of solutions turns round. So for problems with turning points, a more
sophisticated method such as pseudo-arclength continuation must be used.

Pseudo-arclength Continuation This method, which was proposed by H.B. Keller [Keller 1977]
in the late 1970’s, is based on the observation that the "ideal" parameterization of a curve is arclength.
Pseudo-arclength is an approximation of the arclength in the tangent space of the curve. With this
method, the parameter dependent nonlinear equation H(zO, T ) = 0 is solved by introducing a new
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Figure 3.6: Algorithm of the shooting method with natural parameter continuation.

parameter s, which approximates arclength, and viewing the vector x = (zO, T ) as a function of s. The
resulting modified natural continuation method makes a step in the new pseudo-arclength parameter
s (rather than T ). The iterative Newton-Raphson procedure is required to find a point at the given
pseudo-arclength, which requires appending an additional constraint (the pseudo-arclength constraint)
to the n by n+1 Jacobian in order to produce a square Jacobian. The algorithm is a predictor-corrector

Figure 3.7: Pseudo-arclength Continuation Technique

method. The prediction step finds the point which is a step ∆s along the tangent vector at the current
pointer and the corrections are usually computed with Newton-Raphson method (Figure 3.7).
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Predictor step Let (i−1z0,
i−1T ) be the converged solution at the end of the previous step. The

tangent vector i~t = (∆z1
0 ,∆T

1)t is obtained from a first order Taylor development of Equation (3.157)
in the neighborhood of this solution, combined with a normalization condition

∂H

∂z0

∣∣∣∣
(i−1z0,i−1T )

∆z1
0 +

∂H

∂T

∣∣∣∣
(i−1z0,i−1T )

∆T 1 = 0

‖i~t‖2 = ∆z1
0
t
∆z1

0 + (∆T 1)2 = 1

(3.162)

The end point (iz1
0 ,
iT 1) of the predictor step of length ∆s is then given by(

iz1
0

iT 1

)
=

(
i−1z0
i−1T

)
+ ∆s i~t =

(
i−1z0
i−1T

)
+ ∆s

(
∆z1

0

∆T 1

)
(3.163)

The sign of ∆s (positive or negative) is chosen such that the direction of continuation is conserved,
i.e. such that

i−1~t
T · i~t > 0 (3.164)

Corrections The corrections are performed in the direction orthogonal to the tangent step by
imposing the orthogonality condition

∆z1
0
T ·∆zk+1

0 + ∆T 1∆T k+1 = 0 (3.165)

The correction at iteration k is (
izk+1

0
iT k+1

)
=

(
izk0
iT k

)
+

(
∆zk+1

0

∆T k+1

)
(3.166)

with ∆zk+1
0 and ∆T k+1 solutions of the bordered system Jz JT

∆z1
0
T

∆T 1

[ ∆zk+1
0

∆T k+1

]
=

[
−H(izk0 ,

iT k)

0

]
(3.167)

The iterations are repeated until the user-defined accuracy ε is reached∥∥∥∆zk+1
0

∥∥∥∥∥∥izk+1
0

∥∥∥ ≤ ε (3.168)

The right-hand side term of Equation (3.167) is computed by means of Equation (3.157), in which
z(izk0 ,

iT k) is obtained by time integration of Equation (3.154) with initial condition (izk0 ,
iT k). The

expression of the Jacobian matrix Jz is deduced from Equation (3.157)

Jz =
∂H

∂z0

∣∣∣∣
(izk0 ,

iTk)

= Mk − Id (3.169)

where
Mk =

∂z

∂z0

∣∣∣∣
(izk0 ,

iTk)

(3.170)

is the so-called Monodromy matrix. Mk can be efficiently computed by integrating[
Ṁk
]

=

[
∂g

∂z

] [
Mk
]

(3.171)
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with Mk(t = 0) = Id as initial conditions.
The expression of the Jacobian matrix JT is deduced from Equation (3.157)

JT =
∂H

∂T

∣∣∣∣
(izk0 ,

iTk)

=
∂z

∂T

∣∣∣∣
(izk0 ,

iTk)

(3.172)

Stability analysis a stability analysis can be conducted at each step of the continuation method
by studying the (complex) eigenvalues of the Monodromy matrix (3.170), which are called the Floquet
multipliers. The periodic solution is stable if all the multipliers lie inside the complex unit circle. It is
unstable otherwise.

The shooting method with arc-length continuation and stability has been programmed under Mat-
lab. In order to use it, the user must program the function g of Equation (3.152).

3.3.2.3 Harmonic Balance Method + Asymptotic Numerical Method

The Harmonic Balance Method (HBM) is commonly used for computing periodic solutions. It consists
in assuming a time solution in the form of a Fourier series and comparing/balancing the coefficients of
the same harmonic components. In this way, non linear differential equations in the space variables and
time are transformed into a nonlinear algebraic system in the space variables and frequency. However,
when nonlinearities are complex, the derivation of the algebraic system become very cumbersome.
Alternative methods have been proposed to overcome these shortcomings, such as the incremental
harmonic balance method (IHBM) [Lau 1981] or the alternating frequency/time domain harmonic
balance method (AFT) [Nacivet 2003], but they are very demanding from a computational point of
view.

Recently, Cochelin et al. [Cochelin 2009] have proposed another strategy for applying the classical
HBM with a large number of harmonics. The basic idea consists in recasting the original system (4.29)
into a new system where nonlinearities are at most quadratic polynomials by introducing as many new
variables as needed. This leads to an augmented, but quadratic only, nonlinear system for which the
application of the HBM is quite straightforward. Furthermore, this quadratic framework makes it
possible to use the so-called Asymptotic Numerical Method (ANM) for the continuation of solutions.
The ANM consists in computing power series expansions of solution branches and presents several
advantages : it provides continuous solutions, the continuation is very robust and the control of the
step length is automatic and always optimal [Azrar 1993, Cochelin 1994, Baguet 2003, Cochelin 2007].

This method is detailled in [Cochelin 2009]. Its application to our nonlinear differential system
(4.29) is detailled hereafter.

Quadratic recast The key point of this method consists in operating a quadratic recast of Equation
(3.154) by introducing auxiliary variables. This transformation leads to the following quadratic system

m(Ẋ) = c(Ω) + l(X) + q(X,X) (3.173)

where X is the unknown vector of size Neq, which contains the auxiliary variables, c is a constant
vector with respect to X, l(·) and m(·) are linear vector valued operators with respect to X, and
q(·, ·) is a quadratic vector valued operator. The expressions of the operators c , l, m and q are
problem-dependant.
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Application of the HBM The HBM consists in decomposing X(t) into a truncated Fourier series

X(t) = X0 +
H∑
k=1

Xc
k cos (kΩt) +

H∑
k=1

Xs
k sin (kΩt) (3.174)

and inserting this expansion in the nonlinear differential system (4.36). By balancing the first 2H + 1

harmonic terms and neglecting higher order harmonics, the following nonlinear algebraic system of
size (2H + 1)×Neq is obtained

ΩM(U) = C + L(U) +Q(U,U) (3.175)

where U = [X0,X
c
1
T ,Xs

1
T , . . . ,Xc

H
T ,Xs

H
T ]T contains the components of the Fourier series (3.174).

The new operators C, M(·), L(·) and Q(·, ·) depend only on the operators c, m(·), l(·) and q(·, ·).
Their explicit expressions can be found in Cochelin et al. [Cochelin 2009].

Continuation by the ANM In order to apply the Asymptotic Numerical Method (ANM), (3.175)
is rewritten as

R(U,Ω) = C + L(U) +Q(U,U)− ΩM(U) = 0 (3.176)

Assuming that a regular solution (U0,Ω0) of (3.175) is known, the branch of solution starting at
(U0,Ω0) is represented as a power series expansion (truncated at order N) with respect to the path-
parameter a [Cochelin 2007]

U(a) = U0 + aU1 + a2U2 + . . .+ aNUN

Ω(a) = Ω0 + aΩ1 + a2Ω2 + . . .+ aNΩN

(3.177)

If the pseudo-arclength definition is chosen, the path-parameter a can be expressed as [Cochelin 1994]

a = U1.(U−U0)T + Ω1(Ω− Ω0) (3.178)

where (U1,Ω1) is the tangent vector at (U0,Ω0). Introducing the series expansions (3.177) into (3.176)
and (3.178) and keeping the power terms up to order N leads to

R(a) = R0 + aR1 + a2R2 + . . .+ aNRN = 0 (3.179)

Equating the terms Ri (1≤i≤N) to zero permits to transform the nonlinear system (3.176) into a suc-
cession of N linear systems of Neq equations, that are then solved recursively in order to provide Ui

and Ωi (1 ≤ i ≤ N) . This is very efficient from a computational point of view since all the linear
systems share the same matrix which corresponds to the Jacobian of R evaluated at (U0,Ω0). Only
the right-hand side vector changes with the order. Moreover, the range of validity amax of the series
can be approximated a-priori by

amax =

(
ε

RN+1

) 1
N+1

(3.180)

where ε is a user-defined tolerance parameter. Thus a part of the solution branch is obtained by
following (3.177) until a = amax. This end point is then used as a new starting point (U0,Ω0) and the
next part of the solution branch is obtained by restarting the continuation process. As a consequence,
the step length is naturally adaptative and optimal [Baguet 2003] and the continuation is very robust.
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MANlab software This continuation method has been implemented in Matlab by Cochelin et al.
[Cochelin 2009], resulting in the interactive software MANlab1. In order to use it, the user must
program the operators c, m(·), l(·) and q(·, ·). The resulting operators C, M(·), L(·) and Q(·, ·) are
then automatically computed and the continuation procedure is launched.

3.4 Summary

In this chapter, the main sources of nonlinearities in resonators electrostatically actuated have been
identified in both clamped-clamped beam and cantilever cases. These nonlinearities are mechanical as
well as electrostatic. The equation of motions have been set by extending the Euler-Bernoulli model to
the nonlinear case for clamped-clamped beams and by following a variational approach, based on the
extended Hamilton principle [Silva 1978a, Silva 1978b] for cantilevers. The next step was the review
of some analytical as well as numerical nonlinear methods in order to solve the equation of motions
of the considered resonators. These methods have been applied to the nonlinear Duffing equation in
order to check their abilities to solve nonlinear problems. Among the perturbation techniques, the
averaging method and the multiple time scales are very useful and commonly used in the modern
science to solve analytically several nonlinear problems. They have the advantage to be relatively
simple and easily implementable in Mathematica. Hence, they can be used as quick nonlinear design
methods for MEMS and NEMS designers. Nevertheless, their validity which depends on the strength
of the nonlinearities has to be checked via numerical nonlinear methods and particularly, the shooting
coupled with a continuation technique as well as the harmonic balance method coupled with the so
called "asymptotic numerical method (ANM)".

1MANlab can be downloaded at http://manlab.lma.cnrs-mrs.fr/
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4.1 Introduction

In this chapter, the motivations behind the choice of resonant sensing for M&NEMS accelerometers
are detailed. The general mechanical structure of the resonant accelerometer, the fabricated devices as
well as their process flows are presented. The path towards the nonlinear dynamic modeling of NEMS
resonator is demonstrated. This leads to the main idea of this chapter which is the development of a
simple and robust analytical model for the nonlinear dynamics of NEMS resonators. To do so, a first
analytical model is performed on a 1-port resonator and validated thanks to the harmonic balance
method coupled with an asymptotic numerical method. This numerical approach (HBM+ANM), fast
and robust too, is validated with respect to a reference solution built by a classical shooting method.
Finally, the analytical approach is extended to more realistic 2-port resonator and validated experi-
mentally thanks to the electrical characterization of the sensing elements of the fabricated resonant
accelerometers.

4.2 Choices and motivations

An accelerometer is a device that measures acceleration forces. These forces may be static, like
the constant force of gravity pulling at our feet, or they could be dynamic - caused by moving or
vibrating the accelerometer. Accelerometers are used for a variety of motion sensing applications
ranging from inertial navigation to vibration monitoring. A wide variety of accelerometers have been
designed and implemented based on a number of different techniques (see chapter 2). These techniques
can be categorized as force sensing and displacement sensing based on the principle used to detect
accelerations. Displacement sensing accelerometers operate by transducing the acceleration to be
measured into a displacement of movable mass. This displacement can then be picked up by optical,
capacitive, piezoresistive or tunnelling principles.

The first micro machined accelerometer was designed in 1979 at Stanford University, but it took
over 15 years before such devices became accepted mainstream products for large volume applications.
In the 1990s MEMS accelerometers revolutionised the automotive-airbag system industry. Since then
they have enabled unique features and applications ranging from hard-disk protection on laptops to
game controllers. More recently, people tried to develop something smaller, that could increase applica-
bility and started searching in the fields of NEMS and nanotechnology. Small "MEMS" accelerometers
or more specifically devices which combine MEMS and NEMS parts (M&NEMS) are the best alter-
native to follow the emerging tendency of scaling down MEMS sensors and the need of compatibility
with IC technology. This implies a large reduction in delectability for most devices using displacement
sensing. Consequently, the force sensing technique is inescapable.

Accelerometers based on force sensing operate by directly detecting the force applied on a proof
mass as a result of the measurand. Resonant sensing of accelerations can be classified under the
category of an accelerometer based on force sensing. Here, the input acceleration is detected in
terms of a shift in the resonant characteristics of a sensing device coupled to the proof mass. In this
chapter, we focus on the application of the resonant sensing technique for detection of accelerations on
small devices which combine micro and nanotechnologies. As described in chapter 2, resonant sensing
benefits from a direct frequency output, high resolution and large dynamic range. MEMS resonant
accelerometers have been previously demonstrated [Burns 1996a, Roessig 1997b]. Single-crystal silicon
resonant accelerometers with scale factors of greater than 1KHz/g [Kim 1997] and noise floors of 2µg

have been reported [Roszhart 1995].
Many of the applications for resonant accelerometers have been for sensing accelerations that are

slowly time varying. One of the primary reasons for this limitation is related to the main advantage of
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the resonant sensing principle in lending itself to a quasi-digital output. This allows for the acceleration
signal to be easily demodulated by period-measuring techniques based on counting zero crossings.

4.2.1 Studied resonant accelerometer structure

The studied structure is shown in Figure 4.1a. It consists in a mass M , suspended on the substrate
by anchors (made of narrow beams), and a resonator placed at a distance d from the intersection of
the anchors. The used resonator is a clamped-clamped micro/nanobeam electrostatically driven by
electrode 1. Electrode 2 is used for sensing which allows 2 ports measurements. Resonance is sustained
by embedding the resonator in the feedback loop of an oscillator circuit. An external acceleration γ that
is applied to the proof mass along the sensitive X-axis of the device, results in a force communicated
axially onto the resonator. The applied axial force results in a shift in the resonator frequency due
to a change in the nominal stored potential energy of the system. Thus, by evaluating the frequency
shift, the acceleration applied to the device can be estimated. For the sake of generality, the resonator

Figure 4.1: (a): Studied resonant accelerometer structure. (b): Model of the resonant accelerometer.

thickness eR could be different from the mass and anchors thickness eM in the resonant accelerometer.
The proof mass M is assumed to be rigid, the resonator is assumed to work in compression-tension
and to undergo no parasitic bending moment. Moreover, the suspension axial stiffness is assumed to
be much higher than its bending stiffness. This leads to the model shown Figure 4.1b.

Assuming that under a constant acceleration γ = γx, the rotation angle of the mass is θ; one can
write the moment equilibrium of the mass at the point O:

kSθ + kRd
2θ =

(∫
M
OM∇ργdV

)
.y (4.1)

from where one obtains

θ =
MLgγ

kS + d2kR
(4.2)

The axial force applied on the resonator is then

N = kRdθ =
MLg
d

1

1 + kS
d2kR

γ (4.3)
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One can also write kR = ESR
LR

, E being the < 110 > silicon Young’s modulus, SR the cross section area
of the resonator and LR its length, as well as kS = 2EIS

LS
, IS being the suspension quadratic modulus

and LS their length. Thus we have

kS
d2kR

=
1

6d2

LR
LS

eM
eR

l3S
lR

(4.4)

Considering that the lengths of the resonator and of the suspensions are of the same order of magnitude,
as well as their width lR and lS and their thicknesses eM and eR, but lS << d, one has

kS
d2kR

∝
(
lS
d

)2

<< 1 (4.5)

Hence
N ≈ MLg

d
γ (4.6)

Let us define Γ =
Lg
d = the amplification factor. The very basic but specific structure presented here

may be seen as a generic structure consisting of a mass undergoing some acceleration and applying an
factor Γ-amplified force on a resonator N = ΓMγ.

4.2.2 MEMS accelerometer

Within the framework of the European MNT project (project leader V. Nguyen), small MEMS ac-
celerometers have been designed and fabricated in the clean rooms of LETI using a developed process
flow. For this first fabricated accelerometer, all parts are made at the same level eM = eR = 4µm.
These MEMS resonant accelerometer (Figure 4.2) have been micromachined as a first step for the
transition from MEMS to NEMS. They were not designed to display high inertial performances, but
rather is a way to validate process, characterization as well as to test the sensing parts (in plane
clamped-clamped resonators electrostatically actuated).

Figure 4.2: (a): Interferometric image showing the topography of the fabricated MEMS accelerometer.
(b): SEM image of the micromachined resonant accelerometer (after mass release).
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The fabrication starts with 200mm SOI wafers (4µm Si, 1µm SiO2). The use of DUV lithography
combined with deep RIE process has allowed 500nm wide gaps and lines. Some low stiffness beams
have been designed, so HF-vapor technique had to be improved to enable the release and protection
against in-plane sticking. The simplified flow is shown in Figure 4.3.

Figure 4.3: Process flow of a MEMS resonant accelerometer

4.2.3 M&NEMS accelerometer

Within the framework of the European M&NEMS project (project leader V. Nguyen), resonant ac-
celerometers have been designed and fabricated in the clean rooms of LETI using a developed process
flow. As discussed in section 2.4 and in order to improve the performances of micromachined resonant
accelerometers, the idea consists in using on the same device MEMS and NEMS technologies. The
MEMS part is used for the mass to keep sufficient inertial force, and the NEMS is used as a very
sensitive sub-µm suspended resonator. As opposed to MNT MEMS accelerometers, these state-of-art
devices were designed in order to display high performances.

The M&NEMS technology is based on SOI substrate, with a silicon top layer thickness equal to the
NEMS resonator thickness. The main process steps are summarized on Figure 4.4. It starts with the
lithography and etching of the NEMS resonator and of the bulk contact. Then a 0.3µm thick oxide
deposition followed by a lithography and etching of the nanoresonator protection are proceeded. In
the same step, an over etching of the oxide is led to open the silicon bulk contact. A few microns thick
silicon epitaxial growth (or a polysilicon deposition) is done to realize the MEMS part. Depending
on the silicon doping level of the MEMS part, an implantation step can be added for the electrical
contact pads. Contacts are defined by a 0.5µm metal deposition followed by a lithography and etching
of pads. A last lithography step and a DRIE of silicon thick layer is proceeded to make the MEMS
structure, to isolate the bulk contact, and to open the SiO2 protective layer of the NEMS. The release
of the sensor then is achieved by HF-vapor etching. Using the previous process flow, with the 6

mask levels of the M&NEMS technology, a first high-g accelerometer was designed and fabricated in
the 8” silicon platform of the LETI. For that proof of concept device, the resonator was limited to
0.25 × 0.5µm2 section, and the MEMS thickness was reduced to 2µm thick. The total area of the
accelerometer is less than 0.1mm2. SEM photograph of an in-plane M&NEMS accelerometer is shown
below in Figure 4.5. Table 4.1 shows the geometrical parameters of an accelerometer being fabricated
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Figure 4.4: M&NEMS accelerometer process flow

Figure 4.5: (a): SEM view of an in-plane M&NEMS accelerometer. (b): A focus on the gauge lets
clearly appear the MEMS inertial mass of 2µm thick, and the sub-µm resonator that has a section of
0.25× 0.5µm2.
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in the LETI clean rooms. We have assumed Qm = 50000 from empirical values obtained, NF = 10

which is consistent for the typical motional resistances considered here, and we have used a bandwidth
BW = 100Hz. While the resonator is actuated to oscillate around its critical amplitude (see section
6.23), the M&NEMS accelerometer displays the performances summarized in Table 4.2. As observed,
the noise coming from the thermomechanical fluctuations of the mass is negligible compared with the
other sources.

eM (µm) eR(µm) LM (µm) lM (µm) d(µm) Lr(µm) lr(µm)

2 0.5 150 120 3 25 0.25

Table 4.1: Geometrical parameters of the accelerometer

f0 = ω0
2π Slin γfull Smω Srω Saω R R

γfull

3.5Mhz 5 kHz.g−1 30 g 6.7 ∗ 10−4Hz2.Hz−1 0.23Hz2.Hz−1 2Hz2.Hz−1 1.4mg 5 ∗ 10−5

Table 4.2: Performances computed for the accelerometer presented in Table 4.1

The device is highly sensitive in comparison with the resonant accelerometer designed and fabri-
cated in the Sandia National Laboratories Integrated MEMS process [Smith 1995a]. The latter has
a better noise-limited acceleration level is 40µg/

√
Hz which gives a resolution of 0.4mg in 100Hz

bandwidth. However, the product resolution per mechanical surface of the M&NEMS accelerome-
ter is far better which demonstrates that such accelerometers are promising low cost candidates for
consumer applications, since the price is quasi-proportional to the surface of the device. For inertial
navigation-grade performance, further improvements are possible based on the nonlinear dynamics of
the sensor’s sensitive part (the resonator) which is explained below.

4.2.4 Path towards the nonlinear dynamic modeling of NEMS resonators

The resolution of a resonant accelerometer may be given by its frequency noise spectral density
[Robins 1984]:

Sω(ω) =

(
ωn
2Q

)2 Sx(ω)

P0
(4.7)

where Sx(ω) is the displacement spectral density and P0 is the displacement carrier power, ie the
RMS drive amplitude of the resonator 1

2A
2. Following Postma & Roukes [Postma 2005], the resonator

critical amplitude is Ac ∝ h
Q where h is the resonator thickness in the direction of vibration and Q is

its quality factor. It corresponds to the hysteretic limit below which the resonator is classically driven
due to the mechanical nonlinearity. It is easy to see how drastic the performance degradation may
be in the case of a NEMS with small h. It has been shown that closed-loop control allows operation
beyond the critical amplitude [Juillard 2008], eventually up to the pull-in amplitude in the case of
capacitive transduction. But to do so, it is necessary -first, to precisely know up to which amplitude the
resonator may be driven, and -second, to avoid the noise mixing issue [Kaajakari 2005a, Roessig 1997a],
so as not to degrade the amplitude noise density. To this end, the nonlinear behavior of resonators
remains yet to be explored, and numerous models have been presented. Some of them are purely
analytical [Tilmans 1994, Gui 1995, Kozinsky 2006] but they include coarse assumptions concerning
nonlinearities. For example, Kozinsky et al. [Kozinsky 2006] use a nonlinear model with a 3rd order
Taylor series expansion of the electrostatic forcing applied to a nanoresonator in order to tune the
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effective Duffing coefficient using an external electrostatic potential. However, this approximation is
limited by the beam displacement (no more than 20% of the gap). Moreover, the static displacement is
used for tuning, which stays limited for practical designs of resonators with high quality factors because
of the very small ratio between the static and the dynamic displacement which makes the nonlinear
coupling between both components negligible. Other models are more complicated and use numerical
integrations such as differential quadrature method in [Najar 2006] and shooting in [Nayfeh 2007].
These methods are computationally more demanding, which makes them less interesting for M/NEMS
designers. Osterberg and Senturia [Osterberg 1997] use the finite difference method to determine the
static pull-in parameters and provide approximate empirical formulas. In [Abdel-Rahman 2002], the
pull-in instability is studied using the shooting method and in [Younis 2003a], reduced-order models
and perturbation techniques are used to analyze the pull-in behavior without giving closed form
solution.

In this chapter, we first model the nonlinear dynamics of a 1-port resonator for acceleration sensing.
This leads to establish our solving strategy, to justify the analytical reduced model via the modes
properties as well as by numerical simulations. The second step is an extension of the analytical model
to practical 2-port resonators experimentally validated thanks to the electrical characterization of the
sensing elements of the fabricated MEMS resonant accelerometers described in Figure 4.2.

4.3 Model of a nonlinear 1-port resonator

A clamped-clamped microbeam is considered (Figure 4.6) subject to a viscous damping with coefficient
c̃ per unit length and actuated by an electric load v(t) = V dc + V ac cos(Ω̃t̃), where Vdc is the DC
polarization voltage, Vac is the amplitude of the applied AC voltage, and Ω̃ is the excitation frequency.

Figure 4.6: Schema of an electrostatically actuated clamped-clamped microbeam
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4.3.1 Equation of motion

As previously constructed in section 3.2 (Equation (3.6)), the equation of motion that governs the
transverse deflection w(x, t) is written as:

EI
∂4w̃(x̃, t̃)

∂x̃4
+ ρbh

∂2w̃(x̃, t̃)

∂t̃2
+ c̃

∂w̃(x̃, t̃)

∂t̃
−

[
Ñ +

Ebh

2l

∫ l

0

[
∂w̃(x̃, t̃)

∂x̃

]2

dx̃

]
∂2w̃(x̃, t̃)

∂x̃2
=

1

2
ε0

bCn

[
V dc+ V ac cos(Ω̃t̃)

]2

(g − w̃(x̃, t̃))2
(4.8)

where x̃ is the position along the microbeam length, E and I are the Young’s modulus and moment
of inertia of the cross section. Ñ is the applied tensile axial force due to the residual stress on the
silicon or the effect of the measurand, t̃ is time, ρ is the material density, h is the microbeam thickness,
g is the capacitor gap width, and ε0 is the dielectric constant of the gap medium. The last term in
Equation (4.8) represents an approximation of the electric force assuming a complete overlap of the
area of the microbeam and the stationary electrode including the fringing field effect through the
coefficient Cn computed analytically by using the analytical expressions provided in [Nishiyama 1990]
and which has been validated by 3D FE Comsol Multiphysics simulations (details are in Appendix
A.1). The boundary conditions of Equation (4.8) are:

w̃(0, t̃) = w̃(l, t̃) =
∂w̃

∂x̃
(0, t̃) =

∂w̃

∂x̃
(l, t̃) = 0 (4.9)

4.3.2 Normalization

For convenience and equations simplicity, we introduce the nondimensional variables:

w =
w̃

g
, x =

x̃

l
, t =

t̃

τ
(4.10)

where τ =
2l2

h

√
3ρ

E
. The substitution of Equation (4.10) into Equations (4.8) and (4.9) leads to:

∂4w

∂x4
+
∂2w

∂t2
+ c

∂w

∂t
−

[
N + α1

∫ 1

0

[
∂w

∂x

]2

dx

]
∂2w

∂x2
= α2

[V dc+ V ac cos(Ωt)]2

(1− w)2
(4.11)

w(0, t) = w(1, t) =
∂w

∂x
(0, t) =

∂w

∂x
(1, t) = 0 (4.12)

The parameters appearing in Equation (4.11) are:

c =
c̃l4

EIτ
N =

Ñ l2

EI
α1 = 6

[g
h

]2
α2 = 6Cn

ε0l
4

Eh3g3
Ω = Ω̃τ (4.13)

4.3.3 Solving

The total beam displacement w(x, t) is a sum of a static dc displacement ws(x) and a time-varying ac
displacement wd(x, t). However, for our devices, it is easy to check that the static deflexion is negligible.
Typically, the measured quality factors Q are in the range of 104−5.104 and the V dc ≤ 200V ac. Thus,
the ratio between the static and the dynamic deflection is:

ws(x)

wd(x, t)
≈ V dc

2Q.V ac
≤ 1% (4.14)



90 Chapter 4. Nonlinear dynamics modeling of resonant accelerometers

4.3.3.1 Modal decomposition

A reduced-order model is generated by modal decomposition transforming Equation (4.11) into a finite-
degree-of-freedom system consisting of ordinary differential equations in time. We use the undamped
linear mode shapes of the straight microbeam as basis functions in the Galerkin procedure. To this
end, we express the deflection as :

w(x, t) =

Nm∑
k=1

ak(t)φk(x) (4.15)

where Nm is the number of modes retained in the solution, ak(t) is the kth generalized coordinate and
φk(x) is the kth linear undamped mode shape (Figure 4.7) of the straight microbeam, normalized such

that
∫ 1

0
φkφj = δkj where δkj = 0 if k 6= j and δkj = 1 if k = j.

4.3.3.2 Modal basis

The modal basis is formed of the eigenmodes of a linear undamped straight microbeam. The latter
are the solutions of the following equation:

d4φk(x)

dx4
= λ4

kφk(x) (4.16)

The solutions of Equation (4.16) are:

φk(x) = A cosλkx+B sinλkx+ C coshλkx+D sinhλkx (4.17)

with φk(x) verifying the following boundary conditions,

φk(0) = φk(1) = φ′k(0) = φ′k(1) (4.18)

Thus, the 4 constants A, B, C and D are solutions of the following equations :

A+ C = 0 (4.19)

B +D = 0 (4.20)

A cosλk +B sinλk + C coshλk +D sinhλk = 0 (4.21)

−A sinλk +B cosλk + C sinhλk +D coshλk = 0 (4.22)

The non trivial solution of Equations (4.19), (4.20), (4.21) and (4.22) is :

det


1 0 1 0

0 1 0 1

cosλk sinλk coshλk sinhλk
− sinλk cosλk sinhλk sinλk

 = 0 (4.23)

1− cosλk coshλk = 0 (4.24)

The λk, solutions of the transcendantal Equation (4.24), are listed in Table 1:
Thus, the mathematical form of the eigenmodes is given by :

φk(x) = Ak

{
cosλkx− coshλkx+

[
coshλk − cosλk
sinλk − sinhλk

]
[sinλkx− sinhλkx]

}
(4.25)
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Mode k λk
1 4.730
2 7.853
3 10.996
4 14.137

Table 4.3: Approximate solutions of cos(λk) cosh(λk) = 1

These functions are a modal basis for the scalar product :

〈u, v〉 =

∫ 1

0
u(x)v(x)dx (4.26)

In order to normalize this basis, we chose:

Ak =

[∫ 1

0

[
φk(x)

Ak

]2

dx

]− 1
2

(4.27)

Figure 4.7: the first four linear undamped mode shapes of a clamped-clamped microbeam.

4.3.3.3 Galerkin procedure

In many models in the literature, the electrostatic nonlinear forcing term is approximated by means of
a Taylor development in order to simplify the Galerkin procedure [Xie 2003, Younis 2003a]. However,
when vibration amplitudes become large, such a development is no longer valid. Here, the complete
contribution of the nonlinear electrostatic forces is included in the resonator dynamics without approx-
imation. The modal projection consists in substituting Equation (4.15) in Equation (4.11), multiplying
by φi(x)(1 − w)2, using Equation (4.16) to eliminate d4φk(x)/dx4 and integrating the outcome from
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x = 0 to 1. Doing so, Equation (4.11) becomes

äi − 2

Nm∑
j=1

Nm∑
k=1

(∫ 1

0
φkφjφidx

)
akäj +

Nm∑
j=1

Nm∑
k=1

Nm∑
l=1

(∫ 1

0
φlφkφjφidx

)
alakäj

+ciȧi − 2

Nm∑
j=1

Nm∑
k=1

(∫ 1

0
φkφjφidx

)
cjakȧj +

Nm∑
j=1

Nm∑
k=1

Nm∑
l=1

(∫ 1

0
φlφkφjφidx

)
cjalakȧj

+λ4
i ai − 2

Nm∑
j=1

Nm∑
k=1

(∫ 1

0
φkφjφidx

)
λ4
jakaj +

Nm∑
j=1

Nm∑
k=1

Nm∑
l=1

(∫ 1

0
φlφkφjφidx

)
λ4
jalakaj (4.28)

−

[
N + α1

(
Nm∑
m=1

Nm∑
n=1

(∫ 1

0
φ′nφ

′
mdx

)
anam

)]
Nm∑
j=1

(∫ 1

0
φ′′jφidx

)
aj − 2

Nm∑
j=1

Nm∑
k=1

(∫ 1

0
φkφ

′′
jφidx

)
akaj +

Nm∑
j=1

Nm∑
k=1

Nm∑
l=1

(∫ 1

0
φlφkφ

′′
jφidx

)
alakaj


= α2 (Vdc + VaccosΩt)

2

(∫ 1

0
φidx

)
for i = 1, 2, . . . , Nm

Equation (4.28) can be written in matrix-vector form as

[M0 + M1(a) + M2(a)] ä + [C0 + C1(a) + C2(a)] ȧ + [K0 + K1(a) + K2(a)]a

− [N + α1T2(a)] [KT + KT1(a) + KT2(a)]a = α2 (Vdc + VaccosΩt)
2 F (4.29)

where a(t) = [a1(t), a2(t), . . . , aNm(t)]T . The entries of matrices M0, M1 ,M2, C0, C1 ,C2, K0, K1

,K2, KT , KT1 and KT2 are respectively Mij , M1ij , M2ij , Cij , C1ij , C2ij , Kij , K1ij , K2ij , KT ij , KT1ij ,
KT2ij with

M0ij = δij

M1ij = −2

Nm∑
k=1

(∫ 1

0
φkφjφidx

)
ak

M2ij =

Nm∑
k=1

Nm∑
l=1

(∫ 1

0
φlφkφjφidx

)
alak

C0ij = ciδij C1ij = cjM1ij C2ij = cjM2ij

K0ij = λ4
i δij K1ij = λ4

jM1ij K2ij = λ4
jM2ij

KT ij =

∫ 1

0
φ′′jφidx

KT1ij = −2

Nm∑
k=1

(∫ 1

0
φkφ

′′
jφidx

)
ak

KT2ij =

Nm∑
k=1

Nm∑
l=1

(∫ 1

0
φlφkφ

′′
jφidx

)
alak

(4.30)
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The scalar T2(a) and the entries of vector F are respectively

T2(a) =

Nm∑
m=1

Nm∑
n=1

(∫ 1

0
φ′nφ

′
mdx

)
anam

Fi =

∫ 1

0
φidx

(4.31)

Indices 1 and 2 for matrices M, C, K, KT and for T2 denote nonlinearities of order 1 and 2 with
respect to a.

4.3.4 Numerical solutions

4.3.4.1 Shooting

The shooting method with arc-length continuation is described in section 3.3.2.2. The first step consists
in writing Equation (4.29) under the same form as Equation (3.152)

dz

dt
= g(z, t) (4.32)

so that the shooting method can be applied. This is done through the introduction of the state variable
y(t) = ȧ(t) and the vector z(t) = (a(t),y(t))t, and (4.29) becomes


ȧ = y

ẏ =
[
M̃
]−1 (

− [C0 + C1(a) + C2(a)] ȧ− [K0 + K1(a) + K2(a)]a

+ [N + α1T2(a)] [KT + KT1(a) + KT2(a)]a + α2 (Vdc + VaccosΩt)
2 F
) (4.33)

with M̃ = M0 +M1(a) +M2(a). The next step consists in programming the function g in the home-
made shooting procedure implemented in Matlab, which follows the solution curve automatically.

4.3.4.2 HBM + ANM

This numerical method is described in section 3.3.2.3. Its application to our nonlinear differential
system (4.29) is detailed here. After introducing the following set of auxiliary variables,

y = ȧ (size Nm)

z = ä = ẏ (size Nm)

Mtot = M1(a) + M2(a) (size N2
m) (4.34)

KTtot = KT1(a) + KT2(a) (size N2
m)

S = KTtot a (size Nm)

T = T2(a) (size 1)
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system (4.29) can be rewritten as

Size

ȧ = y Nm

ẏ = z Nm

0 = Mtot −M1(a) −M2(a) N2
m

0 = KTtot −KT1(a) −KT2(a) N2
m

0 = S −KTtot a Nm

0 = T −T2(a) 1

0 = −α2(Vdc +M0 z + C0 y + K0 a +Mtot (z + C0 y + K0 a) Nm

+VaccosΩt)
2F −N KT a−N S −N KTtota− α1Ta− α1TS Nm

(4.35)

︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
m(Ẋ) = c(Ω) + l(X) + q(X,X) (4.36)

where X = (a,y, z,Mtot,KTtot,S, T )T is the unknown vector of size Neq = 2N2
m + 4Nm + 1, in which

matrices Mtot and KTtot are reshaped as vectors. c is a constant vector with respect to X, l(·) and
m(·) are linear vector valued operators with respect to X, and q(·, ·) is a quadratic vector valued
operator. The next step consists in programming these operators in MANlab software (see section
3.3.2.3) which computes the solution by the Harmonic Balance combined with continuation with the
Asymptotic Numerical Method.

4.3.5 Simplified analytical model

In view of enhancing the performances of resonant sensing and since an analytical approach is more
convenient and simple for MEMS and NEMS designers, the perturbation techniques described in
section 3.3 can potentially be used to solve the nonlinear equations of motion that govern the resonator
dynamics.

4.3.5.1 Mode properties

Using the change of variable z = x − 1
2 for all the eigenmodes, it is easy to check that ∆ : z = 0

represents an axis of symmetry for all the odd modes and an axis of antisymmetry for all the even
modes. Thus, the odd modes are even functions and the even modes are odd functions ∀ z ∈

[
−1

2 ,
1
2

]
.

Consequently:

∀ k ∈ N∗ , ∀ i ∈ N∗ et ∀ z ∈
[
−1

2
,
1

2

]
∫ 1

0
Φ2idx =

∫ 1

0
Φ2iΦk

2dx =

∫ 1

0
Φ2iΦ

3
2k−1dx = 0 (4.37)∫ 1

0
Φ2i−1Φ3

2kdx =

∫ 1

0
Φ2iΦkΦ

′′
kdx = 0 (4.38)∫ 1

0
Φ′2iΦ

′
2k−1dx =

∫ 1

0
Φ′2i−1Φ′2kdx = 0 (4.39)∫ 1

0
Φ2iΦ

2
2k−1Φ′′2k−1dx =

∫ 1

0
Φ2i−1Φ2

2kΦ
′′
2kdx = 0 (4.40)
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4.3.5.2 Approximate integrals

As a first approximation, the eigenvalues λk which are solutions of the transcendental Equation (4.24),
can be written as:

∀k ≥ 1 λk '
[2k + 1]π

2
(4.41)

Consequently:

∀k ≥ 1



cos [λk] ' 0

sin [λk] ' [−1]k

cos [2λk] ' −1

sin [2λk] ' 0


(4.42)

Moreover, cosh [λk] ∼ sinh [λk] in [λ1,+∞]. One can check that the validity of this equivalence starts
from the first mode. In fact, for k = 1, λk ' 4.73 and cosh [λ1] ' sinh [λ1] ' 56.65.
In order to simplify the different integrals in Equation (4.28), Equations (4.41) and (4.42) are used
combined with the equivalence cosh [λk] ∼ sinh [λk]. Then, these integrals are approximated as equiva-
lent to their limit when the unbounded function cosh [λk]→ +∞. Thus, approximate analytical forms
of the different integrals are obtained with respect to the mode number. All the analytical close-forms
of these integrals are listed in Appendix A.3.

4.3.5.3 Reduced order model

Assuming that the first mode should be the dominant mode of the system and the other modes are
neglected (assumption discussed later: see section 4.4), it suffices to consider the case n = 1. Equation
(4.29) becomes:

ä1 + (500.564 + 12.3N)a1 + (927 + 28N + 151α1) a1
3 + 347α1a1

5

+(1330.9 + 38.3N)a1
2 + 471α1a1

4 + 2.66c1a1ȧ1 + 1.85c1a1
2ȧ1

+c1ȧ1 + 2.66a1ä1 + 1.85a1
2ä1 = − 8

3π
α2 [V dc+ V ac cos(Ωt)]2 (4.43)

To analyse the equation of motion (4.43), it proves convenient to invoke perturbation techniques
which work well with the assumptions of "small" excitation and damping, typically valid in MEMS
resonators. Since we are interested on the resonator dynamics around its primary resonance, the
first order averaging method is sufficient especially that this method is very simple to implement in
computational software compared to the multiple time scales method (see section 3.3.1.5). To facilitate
the perturbation approach, in this case the method of averaging [Nayfeh 1981], a standard constrained
coordinate transformation is introduced, as given by:

a1 = A(t) cos [Ωt+ β(t)] (4.44)

ȧ1 = −A(t)Ω sin [Ωt+ β(t)] (4.45)

ä1 = −A(t)Ω2 cos [Ωt+ β(t)] (4.46)

In addition, since near-resonant behavior is the principal operating regime of the proposed system, a
detuning parameter, σ is introduced, as given by:

Ω = ωn + εσ (4.47)
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Separating the resulting equations and averaging them over the period 2π
Ω in the t-domain results in

the system’s averaged equations, in terms of amplitude and phase, which are given by:

Ȧ = −1

2
εξ0A−

1

8
εξ2A

3 +
1

2
ε
κ

ωn
sinβ +O(ε2) (4.48)

Aβ̇ = −Aσε+
3

8
ε
χ3

ωn
A3 +

5

16
ε
χ5

ωn
A5 − 7

10
εωnA

3 +
1

2
ε
κ

ωn
cosβ +O(ε2) (4.49)

where ωn =
√

500.564 + 12.3N , ξ0 = c1, ξ2 = 1.85c1, χ3 = 927 + 28N + 151α1, χ5 = 347α1 and
κ = 16

3πα2V acV dc.

The steady-state motions occur when Ȧ = β̇ = 0, which corresponds to the singular points of Equa-
tions (4.48) and (4.49). Thus, the frequency-response equation can be written in its implicit form
as: (

3χ3

4ωn
A2 +

5χ5

8ωn
A4 − 7ωn

5
A2 − 2σ

)2

+

(
ξ0 +

ξ2

4
A2

)2

=

(
κ

Aωn

)2

(4.50)

The normalized displacement Wmax with respect to the gap at the middle of the beam and the drive
frequency Ω can be expressed in function of the phase β. Thus, the frequency response curve can be
plotted parametrically with respect to the phase.

4.4 Confrontation and reduced order model validation

The goal of this section is to check the validity of the analytical model. First, the HBM+ANM is
compared to the shooting method on a particular resonator design. Once the HBM+ANM model is
validated with respect to a reference solution built by shooting, the analytical model is then compared
to the HBM+ANM model. Indeed, the shooting method is computationally time-demanding and
except for validation of other models, it is not a convenient tool for MEMS and NEMS designers. The
investigated designs are listed in Table 4.4 and the ratio between the AC and DC voltages is set at
Vac = 0.1Vdc.

Resonator L(µm) b(µm) h(µm) g(µm) Q

Design 1 400 10 10 2 10000

Design 2 50 1 1 0.4 1000

Table 4.4: Design parameters of investigated resonators.

4.4.1 Shooting/HBM

The confrontation is shown in Figures 4.8-4.10 on the first design of Table 4.4 using several modes for
the shooting method and several configurations for the HBM+ANM (1, 2, 3 and 4 modes combined
with 3, 5 and 7 harmonics) without including the antisymmetric modes. Indeed, these modes do not
change the global dynamics of the resonator which has been shown analytically (see subsection 4.3.5)
as well as numerically. Hence, the only symmetric modes were considered. In other words, when n

modes are used, their numbers are the integers i∈ [1, 2n− 1].

The results on the first mode are in good agreements between both methods. Moreover, 3 harmonics
are sufficient to obtain the convergence of the HBM+ANM. A small difference between the curves for
1 mode and 2, 3 or 4 modes is noticeable. It is less than 0.1% with respect to the peak frequency,
which is negligible compared to the frequency shifts induced by the fabrication tolerances. The slight
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difference between the curves obtained by shooting and those obtained by HBM+ANM is due to the
numerical precision as well as the error accumulation caused by the time-integration scheme.
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4.4.2 HBM/Analytical model

The HBM+ANM model being validated, one can check easily the analytical model validation. First,
as already demonstrated during the confrontation HBM+ANM/Shooting, the error made using only
the first mode instead of the first three odd modes is negligible with respect to errors due to others
constraints such as fabrication, temperature, pressure. . . . Consequently, the first mode is sufficient for
the precision needed in our applications.
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Figure 4.10: Second confrontation Shooting/HBM+ANM on a strongly nonlinear behavior (Design
1/Vdc = 9V /Vac = 0.9V ). Ω is the normalized drive frequency and Wmax is the displacement of the
beam normalized by the gap g at its middle point l

2 .

Figure 4.11 shows first comparisons between both methods on the first design of Table 4.4 at a
slight nonlinear regime for a DC voltage Vdc = 5V . Analytical and numerical results are in good
agreement. Particularly, at this nonlinear level, no notable difference exists between using one, two
or three modes for the HBM+ANM model. Obviously, the coupling between the different modes is
extremely low in this case and the influence of higher modes is negligible.

Then, the polarization voltage is increased up to 8V then 9V . Consequently, the dynamic behavior
of the resonator becomes strongly nonlinear as shown in Figures 4.12 and 4.13 for peak amplitudes
between 20% and 35% of the gap. In these configurations, the coupling between the modes is strongly
amplified. Nevertheless, the error between the analytical model and the HBM/ANM model is still
negligible, even with respect to the computational solution with 3 modes (frequency shift< 0.1%).

Finally, for confirmation, the same investigations have been made on a smaller resonator with
a different geometry described in Table 4.4 (design 2) . Figure 4.14 displays the confrontation of
both models at a high nonlinear regime for a polarization voltage Vdc = 5V and a drive voltage
Vac = 0.5V . The same conclusions as the previous case are reached, which completes the analytical
model validation.

It is important to underline that the HBM/ANM model is an interesting computational tool for
nonlinear multimodal design. Indeed, it proves to be faster and more robust than the shooting method.
However, we focus on the analytical model for the following reasons listed hereafter:

• The analytical model has the advantage to be fast and accurate. In fact, the committed error
compared to a multimodal model is negligible with respect to other constraint errors (at least at
this level).

• Its ability for performing analytical parametric investigations with respect to the phase of the
resonator oscillation. Hence, it is possible to build analytical expressions that can be used as
design rules for MEMS and NEMS designers in order to enhance the performances of resonant
sensors.
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Figure 4.11: Confrontation HBM+ANM/Analytical model on a slightly nonlinear behavior (Design
1/Vdc = 5V /Vac = 0.5V ). Ω is the normalized drive frequency and Wmax is the displacement of the
beam normalized by the gap g at its middle point l

2 .

Figure 4.12: First confrontation HBM+ANM/Analytical model on a strongly nonlinear behavior (De-
sign 1/Vdc = 8V /Vac = 0.8V ). Ω is the normalized drive frequency and Wmax is the displacement of
the beam normalized by the gap g at its middle point l

2 .
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Figure 4.13: Second confrontation HBM+ANM/Analytical model on a strongly nonlinear behavior
(Design 1 /Vdc = 9V /Vac = 0.9V ). Ω is the normalized drive frequency and Wmax is the displacement
of the beam normalized by the gap g at its middle point l

2 .

Figure 4.14: Confrontation HBM+ANM/Analytical model on a strongly nonlinear behavior (Design
2/Vdc = 5V /Vac = 0.5V ). Ω is the normalized drive frequency and Wmax is the displacement of the
beam normalized by the gap g at its middle point l

2 .
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4.5 Model of a nonlinear 2-port resonator

Existing models [Najar 2006, Nayfeh 2007] for the nonlinear dynamics of MEMS resonators with rel-
atively high capacitive variations concern designs with only one electrode for both actuation and
sensing. NEMS resonators though, have low capacitive variations, and it is almost necessary to use
a two port measurement, i.e. to separate detection and actuation electrodes in order to enhance the
signal to background ratio. Moreover, the use of different gaps (gd < ga) enables the maximization of
the detection signal. Below, we detail the equation of motion showing the complexity of the PDE to
be solved and this is actually the case of the real designs described in Figure 4.15.

A clamped-clamped microbeam is considered (Figure 4.15) subject to a viscous damping with
coefficient c̃ per unit length and actuated by an electric load v(t) = −Vdc + Vac cos(Ω̃t̃), where Vdc is
the DC polarization voltage, Vac is the amplitude of the applied AC voltage, and Ω̃ is the excitation
frequency.

Figure 4.15: Schema of a 2-port resonator.

4.5.1 Equation of motion

The transverse deflection of the microbeam w̃(x, t) is governed by the following nonlinear Euler-
Bernoulli equation

EI
∂4w̃(x̃, t̃)

∂x̃4
+ ρbh

∂2w̃(x̃, t̃)

∂t̃2
+ c̃

∂w̃(x̃, t̃)

∂t̃
−

[
Ñ +

Ebh

2l

∫ l

0

[
∂w̃(x̃, t̃)

∂x̃

]2

dx̃

]
∂2w̃(x̃, t̃)

∂x̃2

=
1

2
ε0

bCn1

[
Vac cos(Ω̃t̃)− Vdc

]2

(ga − w̃(x̃, t̃))2
H1(x̃)− 1

2
ε0
bCn2 [V s− Vdc]2

(gd + w̃(x̃, t̃))2
H2(x̃) (4.51)

H1(x̃) = H(x̃− l + la
2

)−H(x̃− l − la
2

) (4.52)

H2(x̃) = H(x̃− l + ld
2

)−H(x̃− l − ld
2

) (4.53)

where ga and gd are respectively the actuation and the sensing capacitor gap width. The last term
in Equation (4.51) represents an approximation of the electric force assuming a resonator design with
2 stationary electrodes : electrode 1 for the actuation and electrode 2 for the sensing including the
fringing field effect [Nishiyama 1990] using the coefficients Cni (see Appendix A.1). H(x̃) are Heaviside
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functions modeling the electrostatic forces distributions. The boundary conditions are:

w̃(0, t̃) = w̃(l, t̃) =
∂w̃

∂x̃
(0, t̃) =

∂w̃

∂x̃
(l, t̃) = 0 (4.54)

4.5.2 Normalization

For convenience and equations simplicity, we introduce the nondimensional variables:

w =
w̃

gd
, x =

x̃

l
, t =

t̃

τ
(4.55)

where τ =
2l2

h

√
3ρ

E
. Substituting Equation (4.55) into Equations (4.51), (4.52), (4.53) and (4.54), we

obtain:

∂4w

∂x4
+
∂2w

∂t2
+ c

∂w

∂t
−

[
N + α1

∫ 1

0

[
∂w

∂x

]2

dx

]
∂2w

∂x2
+ α2Cn2

[V s− Vdc]2

(1 + w)2
H2(x)

= α2Cn1
[Vac cos(Ωt)− Vdc]2

(Rg − w)2
H1(x) (4.56)

w(0, t) = w(1, t) =
∂w

∂x
(0, t) =

∂w

∂x
(1, t) = 0 (4.57)

The parameters appearing in Equation (4.56) are:

H2(x) = H(x− l + la
2l

)−H(x− l − la
2l

) (4.58)

H2(x) = H(x− l + ld
2l

)−H(x− l − ld
2l

) (4.59)

c =
c̃l4

EIτ
, N =

Ñ l2

EI
, α1 = 6

[ga
h

]2
(4.60)

Rg =
ga
gd
, α2 = 6

ε0l
4

Eh3g3
a

, Ω = Ω̃τ (4.61)

4.5.3 Solving

Similarly to the one port resonator model (Section 4.3), the static deflection is negligible with respect to
the dynamic deflection. Then, a reduced-order model is generated by modal decomposition (Equation
(4.15)) transforming Equation (4.56) into a finite-degree-of-freedom system consisting in ordinary
differential equations in time. We use the undamped linear mode shapes of the straight microbeam as
basis functions in the Galerkin procedure.

We multiply Equation (4.56) by φk(x) [(1 + w)(Rg − w)]2 in order to include the complete contri-
bution of the nonlinear electrostatic forces in the resonator dynamics without approximation. This
particular step is similar to what Nayfeh et al. [Nayfeh 2007] used for a one port resonator. It is
adapted here for a two ports resonator. This method has some disadvantages like the non orthogo-
nality of the operator w4 ∂4w

∂x4
with respect to the undamped linear mode shapes of the resonator, the

increase of the nonlinearity level in the normalized equation of motion (4.56) as well as the incorpo-
ration of new nonlinear terms such as the Vander Pool damping. Nevertheless, the resulting equation
contains less parametric terms than if the nonlinear electrostatic forces were expanded in Taylor series
and the solution of nonlinear problem is valid for large displacements of the beam up to the sensing
gap thickness.
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Next, we substitute Equation (4.15) into the resulting equation, use Equation (4.16) to eliminate
d4φk(x)

dx4
, integrate the outcome from x = 0 to 1, and obtain a system of coupled ordinary differential

equations in time.
Since the first mode is the dominant mode of the system and the higher modes are negligible (See

section 4.4), it is enough to consider n = 1 and obtain:

ä1 + cȧ1 + ωn
2a1 + µ1a1ä1 + µ2a1

2ä1 + µ3a1
3ä1 + µ4a1

4ä1 + cµ1a1ȧ1 + cµ2a1
2ȧ1

+cµ3a1
3ȧ1 + cµ4a1

4ȧ1 + χ2a1
2 + χ3a1

3 + χ4a1
4 + χ5a1

5 + χ6a1
6 + χ7a1

7 + ν

+ζ0 cos(Ωt) + ζ1a1 cos(Ωt) + ζ2a1
2 cos(Ωt) + ζ3 cos(2Ωt)

+ζ4a1 cos(2Ωt) + ζ5a1
2 cos(2Ωt) = 0 (4.62)

We recognize in the Equation (4.62) some canonical nonlinear terms such as the cubic stiffness term
(Duffing nonlinearity), the nonlinear Van der Pol damping (cµ2a1

2a′1) as well as the parametric excita-
tion (Mathieu term). However, the presence of other high-level nonlinearities in Equation (4.62) makes
the described system in Figure 4.15 as a forced nonlinear resonator under multifrequency parametric
excitation. This kind of equation is not so frequently used in the literature and includes terms coming
from the coupling between the mechanical and the electrostatic nonlinearities as well as the nonlinear
coupling between both electrostatic forces. In the appendix A.3, we show the expressions of all the
integration parameters presented in Equation (4.62) which can be easily computed with any compu-
tational software. To analyze this equation of motion, we use perturbation techniques well adapted to
"small" excitation and damping (Q > 10), typically valid in NEMS resonators [Husain 2003].

Thus, as previously, the averaging method is used in order to obtain the two first order nonlinear
ordinary differential equations that modulate the amplitude A and the phase β.

Ȧ = ε
sin[β]ζ0

2ωn
+ ε

A2 sin[β]ζ2

8ωn
− εAc

2
− εA

3cµ2

8
− εA

5cµ4

16
+O(ε2) (4.63)

β̇ = εσ − ε3A2χ3

8ωn
− ε5A4χ5

16ωn
− ε35A6χ7

128ωn
− εcos[β]ζ0

2Aωn

−ε3A cos[β]ζ2

8ωn
+ ε

3

8
A2ωnµ2 + ε

5

16
A4ωnµ4 +O(ε2) (4.64)

The steady-state motions occur when Ȧ = β̇ = 0, which corresponds to the singular points of Equa-
tions (4.63) and (4.64).Thus, the frequency-response equation can be written in its parametric form
{A = K1(β), Ω = K2(β)} in function of the phase β as a set of 2 equations easy to introduce in Matlab
or Mathematica. This ability makes the model suitable for NEMS designers as a quick tool of resonant
sensor performance optimization.
For the sake of clarity, the frequency-response equation can be written in its implicit form as:

A2 {Λ1(A)− 8ωn (16Ω + Λ2(A))} 2

256 (4ζ0 + 3A2ζ2) 2
+

(
8cA+ 2A3cµ2 +A5cµ4

)
2ω2

n

4 (4ζ0 +A2ζ2) 2
= 1 (4.65)

Λ1(A) = 48A2χ3 + 40A4χ5 + 35A6χ7 (4.66)

Λ2(A) =
(
6A2µ2 + 5A4µ4 − 16

)
ωn (4.67)

4.6 Experimental validation

4.6.1 Resonance frequency localization

This first step towards the electrical characterization of NEMS resonators at LETI was performed with
the help of Herve Fontaine during his internship.



104 Chapter 4. Nonlinear dynamics modeling of resonant accelerometers

The fabricated resonators are electrostatically actuated in-plane. These resonators are described
in Figure 5.1a and Figure 4.16 and their measured quality factors are very high (104 − 5.105). As
a consequence, the critical amplitude is around 15nm and thus, the capacitance variation is around
2 aF . Considering the low capacitance variations and the high motional resistance combined with
the important parasitic capacitances, tracking the resonance peak purely electrically is really difficult.
Being at the limit of electric direct measurement, a SEM set-up was developed as a first step, coupled
with a real-time in-situ electrical measurement using an external low noise lock-in amplifier (Figure
4.17). This set-up allows the simultaneous visualization of the resonance by SEM imaging (Figure

Figure 4.16: (a): SEM image of the resonator resonance. (b): SEM image of the resonator at rest.
Dimensions: 200µm× 2µm× 4µm. The gap: around 750nm.

4.16) and the motional current frequency response measurement. However, it is not recommended for
NEMS devices, since the SEM changes significantly their electric proprieties.

4.6.2 Lock-in modes

Operation of a lock-in amplifier relies on the orthogonality of sinusoidal functions. Specifically, when
a sinusoidal function of frequency f1 is multiplied by another sinusoidal function of frequency f2 not
equal to f1 and integrated over a time much longer than the period of the two functions, the result is
zero. In the case when f2 is equal to f1, and the two functions are in phase, the average value is equal
to half of the product of the amplitudes.

In essence, a lock-in amplifier takes the input signal, multiplies it by the reference signal (either
provided from the internal oscillator or an external source), and integrates it over a specified time,
usually on the order of milliseconds to a few seconds. The resulting signal is an essentially DC signal,
where the contribution from any signal that is not at the same frequency as the reference signal is
attenuated essentially to zero, as well as the out-of-phase component of the signal that has the same
frequency as the reference signal (because sine functions are orthogonal to the cosine functions of the
same frequency), and this is also why a lock-in is a phase sensitive detector.

4.6.2.1 1f mode

A schematic of the lock-in amplifier when used in 1f mode is show in Figure 4.18. Here the generator
signal which serves for the resonator actuation and the reference signal have the same frequency.
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Figure 4.17: Connection layout for the electrical characterization.

4.6.2.2 2f mode

As show in Figure 4.19., the 2f reference is generated between the phase shifter and the multiplier
input by doubling the output from the Sine Generator. At the output of the frequency doubler, the 2f

reference is by default set to be "in phase" with the 1f signal input and to have the same amplitude.
The actuation and detection signals are not at the same frequency which ensures a better decoupling
and avoid most of parasitic capacitances.

For a sine reference signal and an input waveform Uin(t), the DC output signal Uout(t) can be
calculated for an analog lock-in amplifier by:

Uout(t) =
1

T

∫ t

t−T
sin[2πfrefs+ φ]Uin(s)ds (4.68)

where φ is a phase that can be set on the lock-in (set to zero by default). Practically, many applications
of the lock-in only require recovering the signal amplitude rather than relative phase to the reference
signal; a lock-in usually measures both in-phase (X) and out-of-phase (Y ) components of the signal
and can calculate the magnitude (R) from that.

4.6.3 Experimental characterization

As a second step, once the resonance frequency was found, the SEM setup was not used to allow
for precise measurements and the device was placed in a vacuum chamber and measurements were

performed at room temperature. The residual stress (
Ñ

bh
) calculated knowing the frequency shift

between the natural frequency and the measured frequency is around 15MPa and the fringing field
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Figure 4.18: Lock-In Schematic / 1f Mode

Figure 4.19: Lock-In Schematic / 2f Mode

effect coefficients are Cn1 = 1.6 and Cn2 = 1.5. As shown in Figure 4.20, the raw signal given by
the lock-in amplifier shows a weak resonance peak drowned in a large background, followed by an
antiresonance, both due to a large feedthrough capacitance. To get rid of this effect, a measurement is
carried out with null DC voltage. In this case, the beam does not resonate and thus, no motional signal
is measured. The vectorial subtraction of the two signals gives the signal purely due to the motional
current which is compared with the model results. Considering the equivalent electrical scheme of the
measurement chain (See Figure 4.21), the output voltage generated by this system can be expressed
as follows:

Vout(t) = Zt (Vdc − V s)
dCres
dt

(4.69)

dCres
dt

=

∫ l+ld
2l

l−ld
2l

bCn2ε0φ1(x)a′1(t)

(1− a1(t)φ1(x)) 2
dx (4.70)

Zt =
ZcableZLockin
Zcable + ZLockin

(4.71)
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Figure 4.20: The raw signal given by the lock-in amplifier.

where Vs is the DC voltage applied to the sensing electrode, ZLockin is the internal impedance of
the lock-in amplifier and Zcable is the impedance of the parasitic capacitances due to the connection
cables. The derivative of the resonator capacitance with respect to the dimensionless time t has been

Figure 4.21: Equivalent electric circuit.

expanded in a fifth order Taylor series which enables the analytical computation of the integral in
Equation (4.70). Then, Equation (4.44) and (4.45) are substituted into the outcome equation and
the trigonometric functions are linearized. Since the electrical measurement filters out all frequency
components of the readout signal except which of the drive frequency, the first harmonic of the Fourier
transform of Equation (4.70) gives the motional current frequency response including the coupling
between the dynamics of the resonator and the read-out voltage (Equation (4.44)). Although this
coupling brings extra nonlinear terms, their contribution happens to be negligible and the read-out
voltage is proportional to the dynamic deflection.

All results shown below were obtained with the same device described in Figure 4.22 using the
same experimental conditions, and in particular at a pressure low enough so that the quality factor
has reached saturation. Only the bias and drive voltages may vary as indicated on the graphs.
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Figure 4.22: Dimensions of a typical fabricated resonator.

4.6.4 Linear case (A < Ac)

The vibration amplitude of the resonator is lower than the critical amplitude (Ac is the highest ampli-
tude below bistability). It is paradoxically a difficult condition to obtain, as it demands a low drive,
and thus the signals are very weak. A great effort has been needed on the noise and output capac-
itances reduction to get the peaks out of the background. It is important to underline that all the
inputs of the model are known physical parameters including the fringing field coefficients computed
using the analytical formulas [Nishiyama 1990], except the quality factor Q measured experimentally.
So as to evaluate the model, Q has been fitted using linear curves. But for NEMS design optimization,
the quality factor will be computed analytically using existing models taking into account the ther-
moelastic damping [Lifshitz 2000], the support loss [Hao 2003] and the surface loss [Yang 2002] and
which actually give results in good agreement with experimental measurements. Figure 4.23 shows
3 linear peaks obtained for different values of the bias voltage Vdc (1V − 3V − 5V ) and same drive
voltage. The reader will note that the loaded quality factor changes (5.104 − 23.103 − 11.103) accord-
ingly [Sazonova 2006]. The resonance frequency also decreases from 493KHz (black curve) down to
490.5KHz (green curve) due to the negative stiffness, phenomenon very well displayed by the model.
Precisely, the effect of the negative electrostatic stiffness gives frequency shifts of 0.8KHz between
the green and the red curves and 1.6KHz between the red and the black curve. Moreover, the shape
of the peaks and their predicted amplitudes using the model are in excellent correlation with the
experimental measured points. Both red and black linear peaks are in the same range of oscillation
amplitude (1.8µV for the red peak and 2.4µV for the black curve). However, the red peak with high
quality factor (Q = 23000) is very close to the critical amplitude (Vout = 1.9µV ), which is well in
agreement with Equations (5.6) and (5.10) (details are in section 5.3).

4.6.5 Nonlinear case (A > Ac)

The vibration amplitude of the resonator is higher than the critical amplitude. The actuation voltage
Vac is increased from 5mV used for linear peaks to 20mV here. Figure 4.24 shows 3 nonlinear peaks,
again obtained for different values of Vdc (1V −3V −5V ). The use of the same resonator, same vacuum
conditions and same bias values as in the linear case allows for the identification of the quality factors
from the measurements in Figure 4.23, assuming that no extra damping mechanism takes place. The
predicted curves using the model are in very good correlation in shape and frequency shift (negative
stiffness) with the measured points, although the model displays slightly higher amplitudes; the un-
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Figure 4.23: Measured and predicted frequency responses.

stable jumps make it awkward to obtain precise comparison of high quality factor peaks. Indeed, it is
easy to fit perfectly the experimental curves with slightly different values of width, quality factor and
residual stress. This is confirmed by the fact that the ratio between the critical amplitude calculated

using the model and the peak amplitude measured experimentally
Vout
Vc

is around 5 for the red curve

(for which the discrepancy is highest) and 3 for the green and the black curves. Consequently, the red
peak is more nonlinear than the two other peaks which is clearly shown in Figure 4.24 from the cur-
vature of each peak. Also, this validates the close form expression of the critical amplitude (Equation
(5.10)) (details are in section 5.3).

Figure 4.24: Measured and predicted frequency responses.
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4.7 Summary

In this chapter, the nonlinear dynamics of MEMS and NEMS clamped-clamped beam resonators
electrostatically actuated was modeled including all main sources of nonlinearities as well as the fringing
field effects. The modal decomposition method was used in order to transform the nonlinear Euler-
Bernoulli PDE that governs the resonator motion into a system of a coupled nonlinear ODE.

First, a multimodal approach was developed by using the harmonic balance method coupled with
a continuation technique (asymptotic numerical method (ANM)) on a 1-port resonator. The method
was validated with respect to a reference solution built by shooting.

Then, the mode properties were investigated in order to simplify the matrices of the nonlinear
system to solve. It has been shown that the effect of the even modes is negligible due to their
antisymmetry with respect to the X axis. Also, simplified analytical expressions for the integration
constants have been set based on the modes functions and their properties.

The coupling between the odd modes was investigated around the resonator primary resonance of its
first linear undamped mode shape. Then, a reduced order model was developed based on the averaging
method and validated numerically with respect to the HBM+ANM. Once it was numerically validated,
the reduced order model was adapted for a 2-port resonator and validated experimentally on fabricated
in-plane resonators (sensing parts of MEMS resonant accelerometers) electrically characterized using
a direct synchronic detection via a lock-in amplifier in 1f mode.

This model has the advantage to be a simple and fast tool for the prediction of the nonlinear
behavior of MEMS and NEMS resonators. Moreover, being purely analytical, the model permits
parametric investigations with respect to the phase of the resonator oscillation. Indeed, the principal
advantage of the reduced order model consists on its ability to build close-form expressions which
can be used as design rules for MEMS and NEMS designers in order to enhance the performances of
resonant sensors.
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5.1 Introduction

In the previous chapter, it has been experimentally shown on a 2-port resonator model (more realistic
for MEMS and NEMS designers) the low output signal beyond which bistability occurs on a hardening
behavior (see section 4.5). This can have important consequences on the resonant accelerometer in
term of performance reduction and detection complexity. Therefore, a particular attention is given to
this resonator category in term of nonlinear dynamics, potential of performance enhancement based
on the analytical model developed in chapter 4, but first several nonlinear phenomena based on the
analytical model of a 2-port resonator are identified including bistability in the case of purely hardening
or softening behavior as well as multistability in the case of a mixed behavior (details are listed below).
The idea is to provide several design rules that can potentially enhance the detection limit of resonant
M&NEMS accelerometers.

5.2 Nonlinear phenomena: behavior and physical limitations

As previously shown in chapter 4, the singular points of Equations (4.63) and (4.64) permit the identifi-
cation of a 2-port resonator frequency response written in its parametric form {A = K1(β), Ω = K2(β)}
in function of the phase β. Particularly, for one of our devices (Figure 5.1a), the frequency response
curve can be plotted parametrically as shown in Figure 5.1b. Figure 5.1 contains most important
informations delivered by the analytical model. From these informations, some rules of design can be
established in order to enhance the performances of resonant M&NEMS accelerometers.

5.2.1 Hardening behavior

At the micro and nanoscale, the spring hardening is the most classical effect observed in clamped-
clamped resonators electrostatically actuated [Gui 1995, Shao 2008a]. Besides, the mechanical non-
linearities due to mid-plane stretching dominate the resonator dynamics and the frequency response
peak is hysteretic and shifted to the high frequencies which is the case of the green curve in Figure
5.1b. Furthermore, when the mechanical nonlinearities are preponderant, the dynamics of one and
two ports resonators are equivalent.

5.2.2 Mechanical critical amplitude

The critical amplitude is the oscillation amplitude Ac above which bistability occurs. Thus, Ac is the
transition amplitude from the linear to the nonlinear behavior (see Figure 5.2). At the critical drive, the
resonance curve exhibits a point of infinite slope, called the critical point. Moreover, at the same point,
the phase curve also exhibits an infinite slope at the same detuning as the resonance curve itself. Nayfeh
studied the stability of an excited Duffing oscillator [Nayfeh 1979] and deduced its critical amplitude.
Kaajakari [Kaajakari 2005b] provided close form expression for the critical amplitude using a reduced
order model including the crystalline direction of beam resonators. However, they do not incorporate
in their models the complete contribution of the electrostatic nonlinearities. In other words, they
simply provide the mechanical critical amplitude. For the primary resonance of a clamped-clamped

microbeam, Ac is defined as the oscillation amplitude for which the equation
dσ

dβ
= 0 has a unique

solution. In order to explain how to deduce the mechanical critical amplitude from Equation (4.50)
written in its parametric form, we assume the simplified case of neglected nonlinear electrostatic effects
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Figure 5.1: (a): Dimensions of a typical fabricated resonator. (b): Predicted forced frequency re-
sponses. Wmax is the displacement of the beam normalized by the gap gd at its middle point l

2 , σr
is the axial residual stress on the beam material, Ac is the critical amplitude above which bistability
occurs, {1, 2, 3, 4, 5, 6, 7, P} are the different bifurcation points, Ap is the pull-in domain initiation
amplitude and P is the third bifurcation point characterizing the initiation of the mixed behavior.

(
h

g
<< 1). The parametric form of the frequency response can be written as:

σ =
1

8

(
3κ2χ3

ξ2
0ω

3
n

sin2 β − 4ξ0 cotβ

)
(5.1)

A =
κ

ξ0ωn
sinβ (5.2)

Using Equation (5.1), the derivative of the detuning parameter σ with respect to the phase β is directly
deduced:

dσ

dβ
=

6χ3κ
2 sin 2β − 3χ3κ

2 sin 4β + 16ξ3
0ω

3
n

32ξ2
0ω

3
n sin2 β

(5.3)

One can search the condition for which the equation 6χ3κ
2 sin 2β − 3χ3κ

2 sin 4β + 16ξ3
0ω

3
n = 0 has

solutions. This equation can be written as ∆(2 sin 2β − sin 4β) + 1 = 0 where ∆ = 3κ2χ3

16ξ30ω
3
n
.

When one solves this equation which can be transformed to a fourth order polynomial equation by
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Figure 5.2: Forced frequency responses of the typical resonator described in Figure 4.6. fa is the
dimensionless frequency and Wmax is the displacement of the beam normalized by the gap g at its
middle point l

2 . Ac is the mechanical critical amplitude and {B1, B2} are the two bifurcation points
of a typical hardening behavior.

using the change of variable X = sin 2β, one obtains:

If ∆ < 2
3
√

3
=⇒ No solutions Linear behavior

If ∆ = 2
3
√

3
=⇒ A unique solution βc = 2π

3 Critical behavior

If ∆ > 2
3
√

3
=⇒ 2 distinct solutions β1 et β2 Nonlinear behavior

The condition ∆ = 2
3
√

3
implies the following relation

κc =
4
√

2ξ
3/2
0 ω

3/2
n

3 4
√

3
√
χ3

(5.4)

The mechanical critical amplitude is the value of Equation (5.2) at the phase β = π
2 (for a critical

behavior) multiplied by 1.588 which correspond to the amplification coefficient of the first mode at
the middle of the clamped-clamped beam x = 1

2 (See Figure 4.7). Substituting Equation (5.4) in the
resulting equation and mutiplying by the gap g to obtain the dimensional value, yields:

Acm =
2.275g

√
ξ0
√
ωn√

χ3
(5.5)

Substituting ωn, ξ0 and χ3 expressions in Equation (5.5), yields:

Acm = 1.685
h√
Q

(5.6)
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Q is the quality factor of a resonant clamped-clamped beam under its first bending vibration mode.
Using the reduced order model and the first order averaging method, the mechanical critical am-
plitude was easily deduced and the obtained close-form solution is comparable to those defined in
[Kaajakari 2005b, Shao 2008a].

5.2.3 Bifurcation points

In the nonlinear case, the Ferrari method [Martin 1997] can be used in order to determinate the two
bifurcations points β1 and β2.

β1 =
1

2

π − arcsin

 3
1
3 (Ψ1 + 4Ψ2)

421/6∆
(

231/3∆2+21/3Θ2

∆2Θ

) 1
2


 (5.7)
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∆2Θ

) 1
2


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where:
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(
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√

3
√
−4∆6 + 27∆8

) 1
3
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∆
(

231/3∆2+21/3Θ2

∆2Θ

) 1
2

61/3


1
2

Thus, the frequency interval of the unstable branche in the resonator frequency response can be de-
treminated.

Iinstable =

[
ωn + σ(β1)

2π
,
ωn + σ(β2)

2π

]
(5.9)

One can verify easily that if ∆ = 3κ2χ3

16ξ30ω
3
n

= 2
3
√

3
, β1 = β2 = 2π

3 .

5.2.4 Softening behavior

In order to increase the softening electrostatic nonlinearities, the resonator designs have to involve very
narrow gaps with respect to the beam width which is of great difficulty with Top-Down technology for
NEMS. Therefore the softening behavior is difficult to obtain in clamped-clamped NEMS resonators
electrostatically actuated. For the considered resonator of Figure 5.1a, the softening behavior is
possible for a sensing gap gd = 400nm (red curve). The frequency response curve is hysteretic and
shifted to the low frequencies. In this case, the critical amplitude given by Equation (5.6) is no more
valid.
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5.2.5 Global critical amplitude

The close-form expression of the mechanical critical amplitude Acm has been provided using the one
port nonlinear resonator model (see section 4.3). Equation (5.6) represents the classical form of the
critical amplitude for a Duffing resonator (only mechanical nonlinearity) [Osterberg 1997] and still
valid for a two port nonlinear resonator. It shows that the critical amplitude is only determined by
the beam thickness in the direction of vibration h and the quality factor Q and does not depend on
the beam length l. This information has been observed experimentally by Shao et al. [Shao 2008a]
for micromechanical clamped-clamped beam resonators using stroboscopic SEM. Our model allows
the computation of the critical amplitude when all sources of nonlinearities are included: it can be
deduced in the same way as explained in the simplified case above.

Ac =

√√√√θ1h2 − θ2 +

√
θ3 − θ4h2 + θ5h4 +

θ6h2

Q
(5.10)

θ1 = 0.003632757220621099 (5.11)

θ2 =
19328gd

2

43375
(5.12)

θ3 = 0.19856141464508456gd
4 (5.13)

θ4 = 0.0032375299854832426gd
2 (5.14)

θ5 = 0.000013196925023975936 (5.15)

θ6 = 2.56831390855867gd
2 (5.16)

We can easily check that lim
gd→∞

Ac = Acm .

For example, the critical amplitude of a resonator having a quality factor of 104 designed with 100nm

of thickness in the direction of vibration and a sensing gap thickness of 200nm, is about 1.68nm.
0.84% of the gap thickness is thus the restrictive amplitude in order to stay linear which leads to a
very weak signal to noise ratio and thus a low resolution.

5.2.6 Mixed behavior

Both mechanical and electrostatic nonlinearities are always operating into the system. However, in
some configurations one kind of nonlinearity is negligible with respect to the second one. Practically,

when
h

gd
<< 1, then the dynamics is dominated by the hardening nonlinearities and in the opposite

case (
h

gd
>> 1), the frequency response is nonlinearly softening. Between these two configurations and

for the typical fabricated resonator described in Figure 5.1a, a mixed hardening-softening behavior is
inescapable except for one the optimal gap gd = 500nm for which both nonlinearities are perfectly
equilibrated (black curve of Figure 5.1b). The mixed behavior is characterized by a four-bifurcation
points frequency response and up to 5 amplitude for a given frequency. It is highly unstable, dangerous
and thus undesirable for MEMS and NEMS designers. Analytical and experimental investigation of
this particular behavior are detailed in section 5.4.

5.2.7 Pull-in

As it can be observed in equation 4.8, the electrostatic force is inversely proportional to the gap
between the beam and the electrode. As the gap decreases, the generated attractive force increases
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quadratically. The only opposing force to the electrostatic loading is the mechanical restoring force.
If the voltage is increased, the gap decreases generating an incremented force. At some point the
mechanical forces defined by the spring cannot balance this force anymore. Once reached this state,
the beam snaps against the electrode, and in most cases, the system would be permanently disabled.
Consequently, the electrostatic loading has an upper limit beyond which the mechanical force can no
longer resist the opposing electrostatic force, thereby leading to the collapse of the structure. This
actuation instability phenomenon is known as pull-in, and the associated critical voltage is called the
Pull-in Voltage.

5.2.7.1 Static pull-in

To derive the expression for pull-in, let us consider the one port resonator described in Figure 4.6.
Neglecting the mechanical nonlinearities, the total potential energy in the system can be written as
follows:

Ep = −1

2

ε0bl

g − w̃
V 2
dc +

1

2
kw̃2 (5.17)

where the first term is the electrostatic potential of the deformable capacitor (the resonator) and the
second term is due to the mechanical energy stored in the spring (k is the effective spring constant of
the resonator). The force acting on the movable beam is obtained by deriving Equation (5.17):

F = −∂Ep
∂w̃

=
1

2

ε0bl

(g − w̃)2
V 2
dc − kw̃ (5.18)

At equilibrium, the electrostatic force and spring force cancels (F = 0) and Equation (5.18) gives:

kw̃ =
1

2

ε0bl

(g − w̃)2
V 2
dc (5.19)

Equation (5.19) can be solved for the equilibrium beam position w̃ as a function of applied voltage Vdc.
Above the pull-in voltage VP , Equation (5.19) has no solutions. A simple expression for the pull-in
point is deduced by deriving Equation (5.18) to obtain the stiffness of the system:

∂F

∂w̃
=

ε0bl

(g − w̃)3
V 2
dc − k (5.20)

Substituting Equation (5.19) gives the stiffness around the equilibrium point:

∂F

∂w̃
=

2kw̃

g − w̃
− k (5.21)

With no applied voltage Equation (5.21) is simply ∂F
∂w̃ = −k; a small positive movement δw̃ result

in negative restoring force ∂F
∂w̃ δw̃ = −kδw̃. Increasing the bias voltage Vdc makes the stiffness less

negative. The unstable point is given by ∂F
∂w̃ = 0 giving

w̃ =
1

3
g (5.22)

Beyond this point the stiffness becomes positive and the system is unstable: a small positive movement
δw̃ result in positive force that increases w̃. Substituting Equation (5.22) into Equation (5.19) gives
the pull-in voltage at which the system becomes unstable

VP =

√
8kg3

27ε0bl
(5.23)
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5.2.7.2 Dynamic pull-in

The pull-in amplitude is the oscillation amplitude above which the resonator position becomes unstable
and collapses. The dynamic pull-in is the collapse of the beam subjected to a time-varying electrostatic
force completely different from the static pull-in [Osterberg 1997] where the electrostatic force depends
only on the gap. In the general case, pull-in can occur for hardening and softening behavior even at
amplitudes lower than Ap [Nayfeh 2007]. Nevertheless, this study here is restricted to practical cases
of nanoresonators which are designed with gaps and width in the direction of vibration of the same
order of magnitude. In the softening domain, the existence of an inevitable escape band (band where
no other possible solution exists except pull-in [Thompson 2001, Ouakad 2008]) is very likely (even
for small AC voltage) and consequently it is not wished to work in this domain. Anyway, this would
mean being able to fabricate a much smaller gap than the beam width, which is of great difficulty
with Top-Down technology for NEMS (small cross-sections). In the other hand, hardening behavior
has been easily observed in our experiments like in many others [Gui 1995, Shao 2008a], without pull-
in occurrence, although it is theoretically possible in the general case for initial conditions outside
the homoclinic manifold associated with the system. This may be explained by two facts: for our
typical designs, basins of attraction of upper and lower stable branches are much larger than pull-in
attractors at points 5, 6 and 7. Secondly, the ensemble of possible initial conditions in practical cases
of electrical characterization is rather limited (small static displacement vs dynamic on section 4.3,
slow change of frequency. . . ). Finally, in the mixed regime (See section 5.4 for details), the P point,
being highly unstable, can lead to a high sensitivity to initial conditions or the unpredictability of
motion [Nayfeh 2007], which is undesirable for NEMS designers. In particular, the pull-in instability
may occur at the bifurcation point P , where the effect of the nonlinear electrostatic stiffness becomes
significantly important, and where the domain of attraction of stable branches are small, making the
jump of the system to these stable branches quite hard physically [Nayfeh 2007]. Consequently, and like
other studies [Ouakad 2008], we define the P point as the initiation of an unstability domain and thus
an upper bound of possible drive (Vp = (VacVdc)p), beyond which dynamic pull-in (characterized by
a Floquet multiplier approaching unity) is likely to occur. Consequently the pull-in domain initiation
amplitude is defined as Ap = A(π2 , Vp). Using this criterion, we situate the initiation of the dynamic
pull-in domain using the model via the transition from two to three bifurcation points as shown in
Figure 5.1b. The third bifurcation point is situated at the phase β = π

2 which corresponds to the
initiation of the mixed behavior. The latter is characterized by a slope approaching infinity at the

point P as shown in Figure 5.1b. Therefore, the pull-in can occur when
dΩ(π2 )

dβ
=
d2Ω(π2 )

dβ2
= 0 and the

Vp voltage is directly deduced.
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In the particular case of Vs = Vdc, the electrostatic force due to the second electrode is null and the
model is similar with a resonator comprising only one electrode. For the resonator described in Figure
5.1a (la = ld = 200µm), dynamic pull-in voltage has been computed using published formula based on
an energetic analysis and validated experimentally [Fargas-Marques 2007] which actually gives results
in good agreement with Equation (5.24).
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5.3 Hysteresis suppression by nonlinearity cancellation

Up to now, it is the first time that closed-form expressions of the critical amplitude and the pull-in
domain initiation amplitude with full mechanical and electrostatic nonlinearities have been deduced
thanks to the model (Figure 5.3) in the complicated but typical case of the resonator design described
in Figure 4.15. Hence, it constitutes an interesting tool to set the highest drive possible of the resonator

Figure 5.3: Predicted forced frequency responses. Wmax is the displacement of the beam normalized by
the gap gd at its middle point l

2 , σr is the axial residual stress on the beam material, Ac is the critical
amplitude above which bistability occurs, {1, 2, 3, 4, 5, 6, 7, P} are the different bifurcation points, Ap
is the pull-in domain initiation amplitude and P is the third bifurcation point characterizing the
initiation of the mixed behavior.

while keeping its behavior linear. The hysteresis suppression [Kacem 2008] is based on the tuning of

the parameter
h

gd
which permits the enhancement of resonant sensor resolution. Thus, the rate of

enhancement can be written as:

Πenh =
Ap
Ac

(5.26)

In the particular case of Figure 5.1a, the critical amplitude is Ac = 0.02gd = 15nm. Using the model,

the hysteresis suppression is possible for a
h

gd
≈ 4 and the pull-in domain initiation amplitude is

Ap ≈ 0.6gd. Therefore, the enhancement rate of the sensor performance Πenh is around 30.

5.4 Mixed behavior retarding by design optimization

5.4.1 Introduction

In the previous section, we theoretically showed the possibility to cancel out the resonator nonlinearities
by maximising the global critical amplitude which significantly enhances the resonant accelerometer
resolution. Since the hysteresis suppression is based on equilibrating the cubic mechanical and elec-
trostatic nonlinearities, the domain of validity of such operation is limited by an upper amplitude for
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which the quintic nonlinear terms are no more negligible (the P point). Thus, the compensation of the
nonlinearities is limited by the mixed behavior initiation. In other words, the hysteresis suppression is
potentially sensitive to the mixed behavior and ideally the initiation of this behavior must be retarded
as far as possible. Therefore, the analytical and experimental investigation of the mixed behavior
as well as its bifurcation topology is an important step towards the control of the resonator and the
optimization of its performances.

5.4.2 Experimental identification of the mixed behavior

The device was placed in a vacuum chamber (down to 1 mTorr), and the 2-port electrical measurements
were performed at room temperature using a low noise lock-in amplifier (Signal Recovery 7280). The
drive voltage is Vac = 0.5V and the beam is polarized with Vdc = 10V . Figure 5.4 shows the frequency
response of the device, with up- and down- sweeps. The quality factor obtained with this polarization
voltage and in a linear regime is 4000. The critical amplitude is then Ac = 53nm, i.e. Vc = 25µV .
The peak obtained is then far beyond Ac, up to 75% of the gap. The frequency response shows 4
bifurcation points noted P, 1, 2 and 3, at which jumps Ji occur to destination points di on stable
branches, according to the direction of the sweep : as the frequency is swept up from f0, the output
voltage follows the path labelled f0 − P − d1 − 2− d2 − f1, and as it is swept down from f1, the path
f1−1−d3−3−d4−f0 is followed. When in the presence of the 3 other bifurcation points, the P point
may be called the mixed behavior initiation point. It is highly unstable [Kacem 2009b], as will be seen
later: it is located at relatively high amplitude (i.e. in a state of high potential energy) as opposed
to point 1 or as opposed to a typical softening behavior, and the state variables have to jump to a
destination stable branch at even higher amplitude. The parametric analytical frequency response
is superposed to the experimental points in Figure 5.4. As it takes into account the electrostatic
fringing field and the measured parasitic capacitances, the only fitting parameter is the quality factor,
measured in the linear regime. The model shows an excellent agreement: the 4 bifurcation points
exist and are well located, and the stable branches coincide very well with the measurement. This
confirms the performance and the accuracy of the model at high amplitude in the nonlinear regime.
The mixed behavior takes its roots from the competition between hardening and softening behaviors
all along the covered amplitude range. One can think of tuning its bifurcation topology by changing
the relative proportions of the softening versus hardening behavior for a given design. One way to
achieve this is to make the DC polarization applied to the beam vary. This has several effects: firstly,
the initial static deflection changes, but we keep it in the regime where it is negligible compared
to the displacement on resonance. Secondly, the electrostatic spring softening produces a resonance
frequency shift proportional to V 2

dc. Thirdly, the displacement on resonance, proportional to the
product VdcVac, increases, which slightly enlarge the softening domain. The fourth effect is that the
overall quality factor decreases when Vdc increases because of the ohmic losses from the electrons
moving on and off the resonator due to capacitive coupling to a nearby electrode [Sazonova 2006].
This ohmic contribution adds up to the other sources of dissipation (thermomechanical, anchor losses,
adsorption/desorption[Lifshitz 2000], . . . ) like Q−1

total = Q−1
thermo + Q−1

anchor + ... + Q−1
ohmic and may be

expressed as
(
Q−1
ohmic = 1

πω
R(C′Vdc)

2

meff

)
[Sazonova 2006] where C ′ is the gradient of the capacitance, R is

the output resistor and meff is the effective mass of the considered mode. The smaller the resonator,
the smaller the mass, the higher this contribution, hence NEMS are very sensitive to this effect.
The critical amplitude being

(
Ac = 1.68 h√

Q

)
[Kacem 2009b], it varies then with Vdc, which makes the

hardening regime to appear sooner or later in amplitude compared with the softening behavior.
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Figure 5.4: Analytical and experimental frequency curves showing a mixed behavior and the followed
paths respectively in a sweep up frequency f0 − P − d1 − 2 − d2 − f1 and a sweep down frequency
f1 − 1 − d3 − 3 − d4 − f0. {J1, J2, J3, J4} are the four jumps cauterizing a typical mixed behavior of
MEMS and NEMS resonators, {1, 2, 3, P} are the different bifurcation points and {d1, d2, d3, d4} are
the destination points after jumps. The two branches [3, P ] and [1, 2] in dashed lines are unstable.

5.4.3 Bifurcation topology tuning

The bifurcation topology is the number and location of the bifurcation points defining the stability
of the device (stable and unstable branches of the force response) and how it evolves with respect to
design parameters.

5.4.3.1 Analytical results

The various effects are illustrated in Figure 5.5, showing analytical frequency responses for V ac = 0.6V ,
three different polarization voltages from 6.5 to 10V, and then three different quality factors computed
from the ohmic contribution above, from 9500 to 4500. It is interesting to note in particular that the
relative frequencies of the bifurcation points 1 and P can be tuned by varying the polarization voltage,
and how the bifurcation topology evolves while doing so. The first case is that of Figure 5.4, where the
frequency of P is lower than that of point 1: the polarization voltage is high, the quality factor is low,
the hardening domain is reduced, the branch [d1, 3] is stable and accessible when sweeping down. The
critical case is that of the extreme left curve of Figure 5.5: points 1 and P have the same frequency,
d1 and d3 have the same location. When Vdc is still decreased (two right curves of Figure 5.5), the
hardening regime is dominant, the frequency of point 1 is lowest and d3 is on the branch below P. The
branch [d1, 3] loses stability and the bifurcation point 3 cannot be reached anymore.
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Figure 5.5: Analytical frequency responses showing mixed behaviors, the location of the different
bifurcation points and the effect of the DC voltage on the stability of the different branches and the
P point location.

5.4.3.2 Experimental results

This bifurcation tuning mechanism is experimentally demonstrated in Figure 5.6: we show three pri-
mary resonance response curves (1f mode) for a constant drive voltage Vac = 0.5V and different
polarization voltages. At the P point, the first jump to the upper branch is preceded by some os-
cillations down and up as shown in Figure 5.6 which confirms the instability of this point where the
basins of attractions of the stable upper branch are not sufficiently large. The quality factor decreases
as explained from 10000 at Vdc = 6V to 5600 at Vdc = 9V . This decrease also reduces the hardening
domain (HD) measured between the bifurcation point 1 and the P point. Consequently, the softening
domain which is measured between the bifurcation point 2 and the bifurcation point 3 is highly ex-
tended. Unlike the other two curves, the extreme left curve shows the critical case, and as expected,
the bifurcation point 3 exists, and the branch 2-3 is stable while sweeping down. This provides for a
dramatic enlargement of the possible drive amplitude (factor of 3), and hence of the output carrier
power despite the decrease in Q. On the other hand, and depending on the particular design, this point
3 amplitude may be close or beyond the dynamic pull-in, and the noise may increase because of mixing.
Further work is required to investigate this point. The output signal in Figure 5.6 is expressed in the
dimensionless quantity Ṽ = Vout

Vdc
. The output voltage being proportional to Vdc at a given mechanical

displacement, Ṽ is also proportional to this displacement. As can be seen on the different curves, the
P point vertical location is invariant with respect to the drive amplitude, the polarization voltage and
the quality factor. This is also a feature displayed by the model when the curves of Figure 5.5 are
plotted vs Ṽ . This is an interesting result when it comes to designing, as the P point amplitude is set
only by the geometry of the device (ratio gap/width of the beam). The polarization voltage allows
for the tuning of the relative proportion of the hardening and softening domains and the bifurcation
topology around this P point.
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Figure 5.6: Resonance frequency responses showing measured mixed behaviors, the location of the
bifurcation points, the effect of the DC voltage on the stability of the different branches and the P
point vertical position. HD and SD are respectively the hardening and the softening domains. The
point 3 is the highest bifurcation point in the softening domain.

5.4.4 Conclusion

An experimental observation of the mixed behavior in NEMS resonators, its bifurcation points and
branch stability were presented. We also demonstrate an electrostatic mechanism to tune the bifurca-
tion topology with the polarization voltage, whereas, we show that the onset of the mixed behavior is
set by the geometry of the device. These mechanisms and their analysis provided here are helpful for
any applications requiring adjustable stable branches, frequency, bandwidth, or dynamic range. Bifur-
cation tuning will allow applications of small and sensitive devices by either suppressing the undesired
branch in the softening domain, or obtaining a very large amplitude with a given design by decreasing
the quality factor, which is counterintuitive.

5.5 Pull-in retarding by superharmonic resonance

5.5.1 Introduction

Nonlinear resonators do not oscillate sinusoidal. Their oscillation is a sum of harmonic (i.e., sinusoidal)
oscillations with frequencies which are integer multiples of the fundamental frequency (i.e., the inverse
of the period of the nonlinear oscillation). This is the well-known theorem of Jean Baptiste Joseph
Fourier (1768-1830) which says that periodic functions can be written as (infinite) sums (so-called
Fourier series) of sinus and cosinus functions. Superharmonic resonance is simply the resonance with
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one of this higher harmonics of a nonlinear oscillation. In a plot of oscillation amplitude versus driving
frequency, you can, therefore, expect additional resonance peaks. In general, they appear at driving
frequencies which are integer fractions of the fundamental frequency.

Jin and Wang [Jin 1998] showed that driving a microbeam of a resonant microsensor by a super-
harmonic excitation of order one-half increases the signal-to-crosstalk ratio as compared to driving it
at primary resonance.

The dynamic behavior of MEMS resonators under secondary resonances has been investigated by
many authors. Turner et al [Turner 1998] studied the response of a comb-drive device to a parametric
excitation that offers interesting behavior, and a possibility for novel applications such as paramet-
ric amplification [Rugar 1991, Carr 2000, Carr 1999] and noise squeezing [Rugar 1991]. Kenig et al
[Kenig 2009a, Kenig 2009b] and Lifshitz and Cross [Lifshitz 2003] investigated the dynamics of para-
metrically driven coupled NEMS resonators. Younis and Nayfeh [Younis 2003b] and Abdel-Rahman
and Nayfeh [Abdel-Rahman 2003] used the method of multiple scales to study the response of an elec-
trostatically deflected microbeam based resonator to a primary-resonance excitation, a superharmonic-
resonance excitation of order two, and a subharmonic-resonance excitation of order one-half. Younis
et al [Younis 2004] and Nayfeh and Younis [Nayfeh 2005b] studied the global dynamics of MEMS res-
onators under superharmonic excitation and showed that the dynamic pull-in phenomenon can occur
for a superharmonic excitation at an electric load much lower than that predicted by a static analysis.

This section is an extension to the previous sections of chapter 4 which dealt with primary resonance
excitation of an electrostatically actuated micro/nanoresonator. Here, secondary resonance excitations
are considered. The dynamics of microbeams excited near half their fundamental natural frequencies
(superharmonic excitation) is simulated and it is shown that the dynamic pull-in phenomenon can be
retarded by decreasing the ratio of the AC voltage with respect to the DC polarization.

5.5.2 Model

Let us consider the resonator of Figure 4.15. After Galerkin projection on the first linear undamped
mode shape, the obtained reduced order model is described in equation 4.62. The second harmonic
terms are neglected and the method of multiple scales [Nayfeh 1981] is used to attack the resulting
equation in order to determine a uniformly valid approximate solution. To this end, we seek a first-
order uniform solution in the form

a1(t, ε) = a10(T0, T1) + εa11(T0, T1) + · · · (5.27)

where ε is the small nondimensional bookkeeping parameter, T0 = t and T1 = εt. Since we analyze
the non linear response to a superharmonic resonance excitation of order two, we express the nearness
of Ω to ωn

2 by introducing the detuning parameter σ according to

2Ω = ωn + εσ (5.28)

Substituting Equation (5.27) into Equation (4.62) and equating coefficients of like powers of ε yields
Order ε0

cos

(
σT1 +

T0ωn
2

)
ζ0 + ω2

na10 + a10
(2,0) = 0 (5.29)
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Order ε1

cos

(
σT1 +

T0ωn
2

)
a10ζ1 + cos

(
σT1 +

T0ωn
2

)
a2

10ζ2 + cos (σT1 + T0ωn) ζ3

+ cos (σT1 + T0ωn) a10ζ4 + cos (σT1 + T0ωn) a2
10ζ5 + a2

10χ2 + a3
10χ3 + a4

10χ4

+a5
10χ5 + a6

10χ6 + a7
10χ7 + a11ω

2
n + ca10

(1,0) + a10cµ1a10
(1,0)

+a2
10cµ2a10

(1,0) + a3
10cµ3a10

(1,0) + a4
10cµ4a10

(1,0)

+a10µ1a10
(2,0) + a2

10µ2a10
(2,0) + a3

10µ3a10
(2,0)

+2a10
(1,1) + a4

10µ4a10
(2,0) + a11

(2,0) = 0 (5.30)

where a(j,k)
i =

∂k

∂T k1

(
∂j

∂T j0

)
.

The general solution of Equation (5.29) can be written as

a01 = A cos (ωnT0 + Φ)− 4ζ0

3ω2
n

cos

(
ωnT0

2
+ σT1

)
(5.31)

Equation (5.31) is then substituted in Equation (5.30) and the trigonometric functions are expanded.
The elimination of the secular terms yields two first order non-linear ordinary-differential equations
which describe the amplitude and phase modulation of the response and permit a stability analysis

Ȧ = f1(ε,A, β) +O(ε2)

β̇ = f2(ε,A, β) +O(ε2)

(5.32)

where β = 2σT1 − Φ. The steady-state motions occur when Ȧ = β̇ = 0, which corresponds to the sin-
gular points of Equation (5.32).Thus, the frequency-response equation can be written in its parametric
form with respect to the phase β as a set of two equations{

A = K1(β)

Ω = K2(β)
(5.33)

This analytic expression makes the model suitable for MEMS and NEMS designers as a fast and
efficient tool for resonant sensor performances optimisation. All the analytical computations were
carried out with the following set of parameters : l = 50µm, b = 0.5µm, la = 40µm, ga = 500nm,
ld = 48µm, gd = 300nm, Vs = 0V . h, Vac and Vdc were used for parametric studies.

As shown in Figure 5.7, the analytical model enables the capture of the competition between
the hardening and the softening behaviors. Remarkably, when the resonator is under superharmonic
excitation of order half its primary resonance, the analytical model did not capture any mixed behavior.
It is due to the contribution of the nonlinearities into the secular terms completely different from the
primary resonance case. Consequently, this ensures the cancellation of the nonlinearities ( hgd = 1)
without any sensitivity to the mixed behavior. Nevertheless, the upper bound limit of the obtained
linear peak is set by the pull-in. Then, to enlarge the validity domain of the hysteresis suppression, it
is important to control the dynamic pull-in which is demonstrated below.

5.5.3 Critical amplitude

Under primary resonance, the mechanical critical amplitude of a nanoresonator is only determined by
the beam vibrating thickness h and the quality factor Q (see section 4.3).

Ac = 1.65
h√
Q

(5.34)
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Figure 5.7: Competition between hardening and softening behaviors for several values of the ratio h
gd

(Wmax is the normalized displacement at the middle of the beam)

In order to check the validity of Equation (5.34) for NEMS resonator under superharmonic resonance,
the AC voltage and the beam vibrating width are respectively fixed at Vac = 0.6V and h = 1µm.
Then, for 3 values of DC voltage, dΩ

dβ is calculated at the phase βc = 2π
3 and plotted with respect to the

quality factor Q as shown in Figure 5.8(b). The critical quality factor Qc is determinated graphically

as the intersection between the curve dΩ( 2π
3

)

dβ [Q] and the Q-axis.
For the sake of clarity, these values are reported above each corresponding curve in Figure 5.8(a).
This permits to conclude that the critical amplitude Ac decreases when the quality factor increases.
Moreover, Equation (5.34) gives the same critical amplitudes as those deduced graphically.
Figure 5.8(c) shows the variation of the critical vibrating width hc for different DC polarizations Vdc.
The fixed values of the AC voltage and the quality factor Q are Vac = 0.6V and Q = 4900. hc is
determinated graphically in the same way as Qc. Then, these values are reported in Figure 5.8(d)
which clearly indicates the linear dependence of the critical amplitude Ac on the vibrating width of
the resonator. Again, Equation (5.34) gives the same critical amplitudes as those deduced graphically.
In the same way, using the model and assuming that the mechanical nonlinearities are preponderant,
we can show that the critical amplitude Ac has no dependencies on any other physical parameter.

5.5.4 pull-in

The pull-in amplitude is the oscillation amplitude Ap above which the resonator position becomes
unstable and collapses. Mathematically, for a doubly clamped NEMS resonator under superharmonic
resonance, it can be shown that the pull-in occurs when the amplitude reaches an infinite slope at the
phase βp = π

2 .
Figure 5.9 shows some predicted frequency curves. For Vdc = 20V , the resonator becomes instable

and goes to pull-in (Red curve) at the amplitude of the point PI. At this level of oscillation, the res-
onator dynamics reaches a saturation similar to the separation of branches reported in [Nayfeh 2005b].
Unlike the primary resonance case for which the dynamic-pull-in was defined by a domain starting at
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Figure 5.8: (a): Dependency of the critical amplitude on the quality factor (Here Ac is the peak of
Wmax). (b): Critical quality factor determination for several DC voltage. (c): Dependency of the
critical amplitude on the vibrating width. (d): Critical vibrating width determination for several DC
voltage

the initiation of the mixed behavior (point P ), the solution under superharmonic resonance follows a
pull-in attractor at the point PI. Figure 5.10 shows the variation of the pull-in amplitude with respect
to AC voltage Vac. For NEMS resonators under superharmonic resonance, it is possible to shift up
the pull-in amplitude by applying a low AC voltage. It is important to underline that this ability to
control the pull-in amplitude with only two physical parameters which are the driving AC and the
DC polarization voltages is not possible under primary resonance. However, in order to compensate
the loss of performance, the resonator must be actuated with higher DC polarizations.

5.5.5 Conclusion

A global approach to model and simulate the nonlinear dynamics of NEMS resonators under super-
harmonic excitation of order-two was presented. Compared to the primary resonance, the results show
that the critical amplitude of the resonator does not change and keep the same dependencies on the
quality factor Q and the vibrating width h. We demonstrated the existence and mechanism of the dy-
namic pull-in phenomenon under superharmonic excitation. Moreover, close-form expressions for the
pull-in amplitude and the pull-in voltage can be provided using the model which constitutes a quick
tool for NEMS designers to choose the appropriate DC voltage and the amplitude and frequency of
the AC load to shift up or retard pull-in.
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Figure 5.9: Predicted frequency curves for several DC voltage

Figure 5.10: (a): Predicted frequency curves (up to pull-in) for several AC and DC polarizations. (b):
Dependency of the pull-in amplitude on the AC voltage
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5.6 Mixed behavior retarding by simultaneous resonances

5.6.1 Introduction

Although it is possible to retard the pull-in phenomena under superharmonic resonance, it demands
extremely high DC voltage which is sometimes unrealistic. Nevertheless, the superharmonic resonance
seems to be with a great benefit for the bifurcation topology control of the resonator dynamics. The
question is: what if we combine both dynamics (primary and superharmonic resonances)? In other
words, what is the effect of the superharmonic resonance on the primary one in the case of simultaneous
resonances?

Obviously, if we are asking such questions, we know exactly how we can simply excite the resonator
simultaneously under primary and superharmonic resonance using a lock-in amplifier. In fact, since the
electrostatic force is proportional to the square of the drive voltage (DC polarization+AC voltage),
two harmonics excite the system: the first one proportional to VacVdc at the frequency Ω and the
second one proportional to V 2

ac at the frequency 2Ω. Consequently, the simultaneous resonance is
intrinsic to the electrostatic excitation for a nonlinear resonator. Several configurations are presented
in table 5.1 with respect to the actuation and references frequencies as well as the lock-in mode.

Table 5.1: Lock-in amplifier configurations with respect to the actuation and references fre-
quencies (SIR=simultaneous resonances, PR= primary resonance, SR= superharmonic resonance,
PaR=parametric resonance). f0 is the natural frequency of the resonator.

Remarkably, even when the 1f mode of the lock-in amplifier is used in the third configuration of
the first part in Table 5.1, simultaneous primary and parametric resonances occur. However, since the
AC voltage is very low with respect to the DC polarization (see sections 4.3 and 4.5), the effect of the
parametric resonance on the primary one is negligible.

Our previous investigations of the mixed behavior in nonlinear micromechanical resonators (see
sections 4.5 and 5.4) have led to the discovery of an invariant bifurcation point (see section 5.4) cor-
responding to the initiation of the mixed behavior which can typically be set by design. Nevertheless,



130 Chapter 5. Design rules and performance enhancement

since the hysteresis suppression is set for a given design by the gap and the width in the direction
of vibration h (see section 5.3) and furthermore, the length and the thickness are set to optimize the
sensitivity of the resonator (see section 2.4), the design is completely determined and the P point
location is consequently set. In other words, when it comes to design, the hysteresis suppression and
the resonator sensitivity are privileged and thus we can not retard anymore the initiation of the mixed
behavior for a primary resonance excitation.

In this section, unlike previous schemes under primary resonance excitation, the resonator is ex-
cited simultaneously under primary and superharmonic resonances. We investigate experimentally the
energy transfer in a single nonlinear system (the resonator) through simultaneous resonances. The su-
perharmonic dynamics, twice as slow as the primary one, pumps energy from the system and modifies
the bifurcation topology highly sensitive with respect to the secondary excitation. Experimentally,
the 2f mode driven via a lock-in amplifier, has been used to excite simultaneously the primary res-
onance and the superharmonic resonance of order half the resonator natural frequency. For this first
illustration of energy pumping through a simultaneous resonances in a micromechanical resonator,
high drive voltages have been applied in order to reach the mixed behavior and then the amplitude
of the superhamonic excitation has been increased gradually, indicating a significant modification on
the bifurcation topology, and precisely providing a practical tool for mixed behaviour retarding in
nonlinear MEMS and NEMS resonators.

5.6.2 Model

To understand simultaneous resonance, consider a single generic resonator - in our case a microme-
chanical clamped-clamped beam electrostatically actuated and vibrating in its fundamental transverse
mode - and assume it undergoes weak damping and possesses quadratic, cubic and quintic nonlineari-
ties. The electrostatic force proportional to the square of the drive voltage -basically involves a static
DC voltage and a time varying AC voltage- possesses two harmonics, the first one twice as slow as the
second one. To be quantitative, this generic resonator can be described approximately by the equation
of motion

ẍ+ µẋ+ ωnx+ α2x
2 + α3x

3

+α5x
5 = ζ1 cos Ω + ζ2 cos (2Ω) (5.35)

where x represents the deviation of the resonator from its equilibrium. The normal frequency of the
resonator is ωn. α2, α3 and α5 are respectively the nonlinear quadratic, cubic and quintic spring
constants and µ is the linear damping rate. ζ1 and ζ2 are respectively the drive amplitudes of the first
and the second harmonic. Ω is the drive frequency.

One can immediately see that when the frequency drive Ω is tuned around the resonator normal
frequency ωn, only the primary resonance given by the first harmonic is excited. Experimentally, it
corresponds to the "1f mode" classically used via a lock-in amplifier in NEMS and MEMS electrical
characterizations. For this case, the bifurcation topology of a mixed behavior has been investigated
experimentally in nonlinear micromechanical resonators (see section 5.4) and we showed the invariance
of the mixed behavior initiation domain for a fixed resonator design.

Now, when using the "2f mode" for the electrical characterization of the primary resonance us-
ing the second harmonic, simultaneously, the first harmonic excites the system at its superharmonic
resonance of order half its natural frequency. In this configuration and in order to analyse the nonlin-
ear equation of motion (5.35) which involves simultaneous resonances, the method of multiple scales
was used in order to take into account the contribution of each dynamics in the resonator frequency
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response. To this end, we seek a first-order uniform solution in the form

x(t, ε) = x0(T0, T1) + εx1(T0, T1) + · · · (5.36)

where ε is the small nondimensional bookkeeping parameter, T0 = t and T1 = εt.
Since both harmonics are linked by the drive frequency Ω, in order to analyze the nonlinear response

under simultaneous primary and superharmonic resonances, we express the nearness of Ω to ωn
2 by

introducing the detuning parameter σ according to

2Ω = ωn + εσ (5.37)

Substituting Equation (5.36) into Equation (5.35) and equating coefficients of like powers of ε yields
Order ε0

ζ1 cos

(
σT1 +

T0ωn
2

)
+ ω2

nx0 + x0
(2,0) = 0 (5.38)

Order ε1

ζ2 cos (σT1 + T0ωn) + x2
0α2 + x3

0α3 + x5
0α5

+x1ω
2
n + cx0

(1,0) + 2x0
(1,1) + x1

(2,0) = 0

(5.39)

where x(j,k)
i =

∂k

∂T k1

(
∂jxi

∂T j0

)
.

The general solution of Equation (5.38) can be written as

x0 = X cos (ωnT0 + Φ)− 4ζ1

3ω2
n

cos

(
ωnT0

2
+ σT1

)
(5.40)

Equation (5.40) is then substituted into Equation (5.39) and the trigonometric functions are expanded.
The elimination of the secular terms yields two first order non-linear ordinary-differential equations
which describe the amplitude and phase modulation of the response and permit a stability analysis

Ȧ = −
4εζ2

1 sinβ
(
20Xα5ζ

2
1 cosβ + 9α2ω

4
n

)
81ω9

n

−εµX
2

+O(ε2) (5.41)

β̇ = 2σ − 40εα5ζ
4
1{6 + cos(2β)}

81ω9
n

− 6εα3X
2 + 5εα5X

4

16ωn

−
2εζ2

1

(
2α2 cosβ + 6α3X + 15α5X

3
)

9ω5
nX

+O(ε2) (5.42)

where β = 2σT1 − Φ. The steady-state motions occur when Ẋ = β̇ = 0, which corresponds to the
singular points of Equations (5.41) and (5.42).Thus, the frequency-response equation can be written
in its parametric form with respect to the phase β as a set of two equations{

X = K1(β)

Ω = K2(β)
(5.43)

The parametric form of the system frequency response under simultaneous primary and superharmonic
excitation (Equation (5.43)) is a practical tool for the parametric plot of the resonance curves with



132 Chapter 5. Design rules and performance enhancement

respect to the phase β.
More generally, this approach has been applied to the projected nonlinear Euler-Bernoulli partial
differential equation on the first bending undamped linear mode shape of clamped-clamped microbeam.
This ensures that all nonlinear terms are included in the studied equation of motion even if Equation
(5.35) contains most significant non linear terms for a clamped-clamped resonator under simultaneous
resonances. Thus, qualitative explanations of physical phenomena can be based on the solution of
Equation (5.35).

5.6.3 Analytical results

5.6.3.1 Critical amplitude

The critical amplitude has been calculated analytically for the response of a clamped-clamped resonator
to simultaneous primary and superharmonic excitations. The same close form expressions has been
obtained as those determinated in sections 4.3 and 4.5 for the case of primary resonance. Indeed, the
superharmonic contribution in the resonator dynamics has no effect on the critical bifurcation point at
the transition from the linear to the nonlinear behavior. Around this limit, some parametric studies
have been performed using the model. They showed that the nonlinear terms are negligible and the
coupling between the slow dynamics due to the superharmonic resonance and the fast dynamics due
to the primary resonance is very low. Consequently, the critical amplitude is invariant.

5.6.3.2 Bifurcation topology tuning and mixed behavior retarding

The resonator design considered for analytical simulations is described in Figures 5.11(a) and 5.11(b).
Figure 5.11(c) shows 3 nonlinear resonance peaks predicted analytically using the model of the res-
onator under combined primary and superharmonic excitations. The applied DC voltage is 10V ,
combined with high Vac which ensures a mixed behavior. Then, the P bifurcation point is tracked
analytically while keeping a mixed behavior and increasing the AC voltage from 0.6V to 1V .

As opposed to the actuation under primary resonance where the dynamic position of the P point is
vertically fixed (see section 5.4), here, the contribution of the superharmonic resonance on the vertical
location of the P point is very interesting. As shown in Figure 5.11, the increase of the AC voltage
permits to shift up the P point which retards the apparition of the mixed behavior and then the pull-in
domain is reduced.

If we take a look at Equations (5.41) and (5.42) that modulate the amplitude X and the phase β of
the system, we can identify that their modulations depend on the fast the fast dynamic proportional to
the quintic nonlinear stiffness term α5 enabling the capture of the mixed behavior and coming from the
primary resonance (terms proportional to cos 2β or sin 2β), as well as the slow dynamics proportional
to the quadratic nonlinear stiffness term α2 enabling the capture the superharmonic resonance effect
(terms proportional to cosβ or sinβ).

Obviously, the increase of the AC voltage corresponds simultaneously to the amplification of both
primary and superharmonic excitations. Nevertheless, knowing that the primary excitation has no ef-
fects on the mixed behavior initiation domain which has been also demonstrated using Equations (5.41)
and (5.42), the alteration of the bifurcation topology in this configuration (simultaneous resonances)
is due to the increase of the superharmonic excitation.
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Figure 5.11: (a) Dimensions of a typical fabricated resonator. (b): SEM image of the device. (c):
Resonance frequency responses showing mixed behaviors analytically Predicted under combined pri-
mary and superharmonic excitations, the location of the different bifurcation points and the effect of
the AC voltage on the P point vertical position. P is the mixed behavior domain initiation point and
the point 3 is the highest bifurcation point in the softening domain.

5.6.4 Experimental validation

The device was placed in a vacuum chamber and measurements were performed at room temperature.
The residual stress calculated by knowing the frequency shift between the natural frequency and the
measured frequency is around 15MPa and the fringing field effect coefficients calculated using an
analytical model [Nishiyama 1990] are Cn1 = 1.6 and Cn2 = 1.5. As shown in Figure 4.17, a lock-in
amplifier has been used to track experimentally the resonance peak. Moreover, for combined primary
and superhamonic excitation, the 2f mode has been used which allows the direct measurement of the
output voltage due to the motional capacitance and thus no vectorial substraction with measurement
at a null DC is required as the case of the 1f mode.

Figure 5.12 shows 6 nonlinear mixed behavior peaks: the 3 dashed curves obtained using the
1f mode and the 3 others were obtained under primary and superharmonic excitations (2f mode).
The output signal in Figure 5.12 is expressed in the dimensionless quantity Ṽ = Vout

Vdc
. The output

voltage being proportional to Vdc at a given mechanical displacement, Ṽ is also proportional to this
displacement. As it can be seen on the different dashed curves where the AC voltage has been fixed
around 0.5V , the P point vertical location is invariant with respect to the drive amplitude, the bias
voltage and the quality factor (which vary due to the ohmic losses [Sazonova 2006] increase). In this
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Figure 5.12: Resonance frequency responses showing measured mixed behaviors under primary res-
onance as well as under simultaneous primary and superharmonic excitations, the location of the
different bifurcation points and the effect of the DC voltage on the P point vertical position.

configuration (resonator under primary resonance: 1f mode), the P point amplitude is set only by the
geometry of the device (ratio gap/width of the beam). This interesting result will add an other criterion
for MEMS and NEMS designers in order to retard the onset of the mixed behavior. This criterion, not
usually compatible with the resonator sensitivity enhancement and the hysteresis suppression, could
not be satisfied.

For the 3 other peaks, the 2 f mode has been used and the applied AC voltage has been fixed
around 1V . The DC voltage has been increased from 6 to 10 and consequently the amplitude of the
superhamonic excitation has been amplified.

This increases significantly the quadratic stiffness α2 proportional to V 2
dc+

V 2
ac
2 . Since α2 is the term

that produces internal resonance into the system (precisely superharmonic resonance of order half the
system natural frequency), the slow dynamics involved into the phase modulation (Equation (5.42))
pumps energy from the global dynamic due to the nonlinear interaction between the two harmonics
(the phase of the system depends on both dynamics). Thus, the bifurcation topology is modified, and
particularly the initiation of the mixed behavior can be retarded as shown in Figure 5.12 and can
be tuned using a superharmonic excitation. Unlike the first configuration, where no superharmonic
resonance exists, the simultaneous resonance shows the fast effect of a slow nonlinear resonance on
the resonator bifurcation topology around the mixed behavior and broke the invariance of the P point
vertical location with respect to the drive voltages which offers a better alternative for MEMS and
NEMS designers to avoid the onset of the mixed behavior and reduce the domain of possible pull-in.
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5.7 Summary

In this chapter the nonlinear model developed in chapter 4 was used to provide several design rules
for the performance enhancement of NEMS resonators for resonant accelerometers applications. In
particular, it has been shown how it is possible to tune some design parameters (like the ratio between
the beam thickness in the direction of vibration h and the detection gap thickness gd) in order to keep
a linear behavior up to the pull-in domain initiation. The consequence of this may be a great gain
in sensors’ resolution, as the resonator’s carrier power is largely increased while keeping linear may
prevent most of noise aliasing [Roessig 1997a, Kaajakari 2005a].

Since the hysteresis suppression is potentially limited by the mixed behavior initiation amplitude
(the fifth order nonlinear terms become no more negligible), the next step was the analytical and
experimental investigations of the mixed behavior in NEMS resonators. We essentially demonstrate
an electrostatic mechanism to tune the bifurcation topology with the polarization voltage, whereas we
show that the onset of the mixed behavior is set by the geometry of the device. Consequently, such
undesirable behavior can be retarded by design. Nevertheless, we showed that the resonator geometry
is fully set to enhance the device sensitivity (small length and small thickness) as well as to enable the
hysteresis suppression depending on the width h and the gap g. This makes quite difficult to satisfy
the cancellation of nonlinearities and the mixed behavior retarding only by design.

That is why the next step consisted of using nonlinear resonances such as the superharmonic
resonance of order half the fundamental frequency of the resonator in order to retard the pull-in
and furthermore the use of simultaneous resonances (primary+superharmonic) for mixed behavior
retarding while keeping possible the compensation of the nonlinearities by design.
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6.1 Designs and motivations

Within the framework of the European M&NEMS project, several resonators electrostatically actuated
in plane have been designed and fabricated in order to complete the validation of the nonlinear model
described in section 4.5 as well as the design rules provided in chapter 5. They have been designed
with two electrodes allowing 2 ports electric measurements (See Figure 6.1).
These devices were fabricated using the M&NEMS process flow (See Figure 4.4) enabling designers to
obtain both MEMS (2µm thick) and NEMS (500nm thick) resonators. Tables 6.1 and 6.2 present the
geometry parameters and some characteristics of each resonator. The predicted dynamic behaviors
beyond the critical amplitude of these resonators are described in Table 6.3. Besides, these devices
were designed in order to cover all possible linear and nonlinear behaviors described by the model in
Figure 5.1 as well as to display a high acceleration sensitivity when they are used as sensitive parts in
resonant accelerometers.

6.2 Experimental set-up

6.2.1 Capacitive down-mixing principle

Among the devices listed in Tabless 6.1 and 6.2, many resonators were designed with high frequencies
(in the MHz range) which makes the direct synchronic detection via a lock-in amplifier quite difficult.
Indeed, the electrical read-out at high frequency is complicated by parasitic capacitances which changes
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Figure 6.1: (a): M&NEMS mask showing the structure of a typical designed resonator, the disposition
of the pads and their polarization. (b): A SEM image of a designed resonator.

RM1 RM2 RM3 RM4 RM5 RM6 RM7

l 100µm 200µm 200µm 15µm 30µm 50µm 75µm

h 5µm 5µm 10µm 250nm 500nm 300nm 500nm

la 80µm 160µm 160µm 10µm 25µm 45µm 70µm

ld 90µm 180µm 180µm 12µm 28µm 48µm 72µm

ga 1µm 1µm 1µm 1µm 2µm 4µm 2µm

gd 300nm 300nm 300nm 250nm 500nm 500nm 750nm

C0a 1.42 fF 2.83 fF 2.83 fF 0.18 fF 0.22 fF 0.2 fF 0.62 fF

C0d 5.31 fF 10.62 fF 10.62 fF 0.85 fF 0.99 fF 1.7 fF 1.7 fF

f0 4.37MHz 1.09MHz 2.18MHz 9.7MHz 4.86MHz 1.05MHz 0.77MHz

Table 6.1: Physical parameters of MEMS resonators. C0a and C0d are actuation and detection static
capacitances. f0 is the resonance frequency of the first in-plane bending mode.

the expected behavior of the electrical circuit. In order to avoid parasitic impedances and cross-
talk problem, the down-mixing technique has been used in several configurations to read-out the
capacitance variation at a lower frequency ∆ω [Bargatin 2005]. A working principle schematic is
shown in Figure 6.2. The down-mixing technique has been widely used in NEMS read-out to avoid
high frequency problems by making measurements at a lower frequency through synchronous lock-in
methods [Bargatin 2005, Sazonova 2006]. Important investigations concerning the capacitive down-
mixing possibilities were done in LETI with the help of Marc Sworowski during his postdoctoral period.
The capacitive down-mixing principle is explained below.

A periodic electrostatic force is generated between the actuation electrode and the clamped-
clamped beam in order to enable the oscillation of the resonator at its first bending mode shape
which corresponds to the first harmonic (the primary resonance at the frequency ω). Moreover, the
beam is polarized using a periodic voltage which corresponds to the second harmonic at the frequency
ω+∆ω. Consequently and due to the NEMS mixing, a capacitance variation is generated between the
beam and the detection electrode at a low frequency harmonic ∆ω. Thus, the created low motional
current at the frequency ∆ω is detected using a lock-in amplifier (LIA). The latter needs a reference
signal, which is created thanks to an RF mixer as shown in Figure 6.2 in order to track the resonance
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RN1 RN2 RN3 RN4 RN5 RN6 RN7

l 100µm 200µm 150µm 15µm 30µm 50µm 75µm

h 250nm 500nm 400nm 400nm 750nm 250nm 300nm

la 80µm 160µm 140µm 10µm 25µm 45µm 70µm

ld 90µm 180µm 145µm 12µm 28µm 48µm 72µm

ga 1µm 1µm 1µm 1µm 2µm 4µm 2µm

gd 300nm 300nm 300nm 250nm 500nm 500nm 750nm

C0a 0.35 fF 0.71 fF 0.71 fF 0.04 fF 0.06 fF 0.05 fF 0.15 fF

C0d 1.33 fF 2.66 fF 2.66 fF 0.21 fF 0.25 fF 0.42 fF 0.42 fF

f0 0.22MHz 0.11MHz 0.16MHz 15.6MHz 7.3MHz 0.88MHz 0.47KHz

Table 6.2: Physical parameters of NEMS resonators. C0a and C0d are actuation and detection static
capacitances. f0 is the resonance frequency of the first in-plane bending mode.

Hardening behavior Sofetening behavior Mixed and linear compensated behavior
RMi/RNi i ∈ {4, 5, 6, 7} RM3/RN3 RM1/RN1/RM2/RN2

Table 6.3: Predicted dynamic behaviors of the designed MEMS and NEMS resonators.

Figure 6.2: A working principle schematic of a downmixing setup.

peak at the low frequency ∆ω.
The current Iout between the resonator and the detection electrode is converted into the tension

Vout due to an equivalent impedance that corresponds to the cable capacitance (≈ 100pF ) in parallel
with the lock-in input impedance (a capacitance of 25pF // a resistance of 10MΩ). For a frequency
> 1KHz, the equivalent impedance is reduced to the capacitance due to the cables and the lock-in
input Zload ≈ Cload ≈ 125pF . Under the effect of the electrostatic forces applied to the beam, we
consider that the resonator vibrates on its first mode at the frequency ω close to its primary resonance
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ω0. We consider also the phase ϕ which can exist between the vibration of the beam and the harmonic
ω of the force of actuation. At resonance, the beam displacement is w(t) and the capacitance between
the beam and the detection electrode is assumed to be:

Cd(ωt) ≈ C0d (1 + w(t). cos(ωt+ ϕ)) (6.1)

The current Iout is then:

Iout =
dQ

dt
= (Ub − Us)

dCd
dt

+ Cd
d (Ub − Us)

dt
(6.2)

We admit that Vb >> Vs, hence:

Iout(t) = Ub
dCd
dt

+ Cd
dUb
dt

=
∆ω

2
C0d.w(t).Vb sin (∆ωt+ ϕ)

+ (ω −∆ω) .C0d.Vb sin (ωt−∆ωt) +

(
ω − ∆ω

2

)
.C0d.w(t).Vb sin (2ωt−∆ωt+ ϕ) (6.3)

The measured voltage via the LIA is then:

Uout = Zload.Iout =
Rload.Iout

1 + jRloadCloadω
(6.4)

For ω >> ωload =
1

RloadCload
, Uout ≈

Iout
jCloadω

(6.5)

U∆ω
out ≈

I∆ω
out

jCload∆ω
≈

∆ω
2 C0d.w.Vb sin (∆ωt+ ϕ)

jCload∆ω
≈ j C0d

2Cload
.w(t).Vb. sin (∆ωt+ ϕ) (6.6)

||U∆ω
out || ≈ j

C0d

2Cload
.w.Vb = Vout (6.7)

6.2.2 Capacitive down-mixing configurations

The beam displacement w depends on the electrostatic forces (in actuation and detection). In order to
simplify the following analysis, only the actuation forces are considered. Then, the electrostatic force
can be written as:

||Felec||ω =
Cn
2
ε0.b.l

∣∣∣∣∣
∣∣∣∣∣(Ua − Ub)2

(ga − w)2

∣∣∣∣∣
∣∣∣∣∣ (6.8)

This electrostatic force depends on the actuation voltage. Therefore, three different configurations can
be distinguished.

6.2.2.1 ω configuration

In this configuration, as shown in Figure 6.3:

Ua = Vdc + Va cos(ωt) (6.9)

Ub = Vb cos(ωt−∆ωt) (6.10)
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Hence:

(Ua − Ub)2 = 2Va.Vdc cos(ωt) + V 2
dc − Va.Vb cos(∆ωt)− 2Vb.Vdc cos(ωt−∆ωt)

+
1

2
V 2
a +

1

2
V 2
b +

1

2
V 2
a cos(2ωt) +

1

2
V 2
b cos(2ωt− 2∆ωt)− Va.Vb cos(2ωt−∆ωt) (6.11)

The first term on the right hand side of Equation (6.11) is the excitatory harmonic. Then:

||(Ua − Ub)2||ω = 2Va.Vdc (6.12)

Figure 6.3: ω configuration of a capacitive downmixing technique.

6.2.2.2 2ω configuration

In this configuration, as shown in Figure 6.4:

Ua = Va cos(
ω

2
t) (6.13)

Ub = Vb cos(ωt−∆ωt) (6.14)

Hence:

(Ua − Ub)2 =
1

2
V 2
a cos(ωt) +

1

2
V 2
a +

1

2
V 2
b − Va.Vb cos(

ω

2
t−∆ωt)

−Va.Vb cos(
3ω

2
t−∆ωt) +

1

2
V 2
b cos(2ωt− 2δωt) (6.15)
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The first term on the right hand side of Equation (6.15) is the excitatory harmonic. Then:

||(Ua − Ub)2||ω =
1

2
V 2
a (6.16)

Figure 6.4: 2ω configuration of a capacitive downmixing technique.

6.2.2.3 Va.Vb configuration

In this configuration, as shown in Figure 6.5:

Ua = Va cos(2ωt−∆ωt) (6.17)

Ub = Vb cos(ωt−∆ωt) (6.18)

Hence:

(Ua − Ub)2 = −Va.Vb cos(ωt) +
1

2
V 2
a +

1

2
V 2
b − Va.Vb cos(3ωt− 2∆ωt)

+
1

2
V 2
a cos(

4ω

2
t− 2∆ωt) +

1

2
V 2
b cos(2ωt− 2δωt) (6.19)

The first term on the right hand side of Equation (6.19) is the excitatory harmonic. Then:

||(Ua − Ub)2||ω = Va.Vb (6.20)

After some experimental investigations, the last configuration (Va.Vb) has been chosen for the elec-
trical characterization of the high frequency MEMS and NEMS resonators. Compared to ω and 2ω

configurations, the last capacitive downmixing configuration gives the highest background to signal
ratio (SBR) (low Va and high Vb) while it keeps a low noise level (20− 30nV ).
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Figure 6.5: Va.Vb configuration of a capacitive downmixing technique.

6.2.3 Nonlinear down-mixing model

Following section 4.5, the transverse deflection of the resonator w̃(x, t) is governed by the nonlinear
Euler-Bernoulli equation.

EI
∂4w̃(x̃, t̃)

∂x̃4
+ ρbh

∂2w̃(x̃, t̃)

∂t̃2
+ c̃

∂w̃(x̃, t̃)

∂t̃
−

[
Ñ +

Ebh

2l

∫ l

0

[
∂w̃(x̃, t̃)

∂x̃

]2

dx̃

]
∂2w̃(x̃, t̃)

∂x̃2

=
1

2
ε0

bCn1

[
Va cos(2ω̃t̃− ∆̃ωt̃)− Vb cos(ω̃t̃− ∆̃ωt̃)

]2

(ga − w̃(x̃, t̃))2
H1(x̃)

−1

2
ε0
bCn2V

2
b cos(ω̃t̃− ∆̃ωt̃)2

(gd + w̃(x̃, t̃))2
H2(x̃) (6.21)

H1(x̃) = H(x̃− l + la
2

)−H(x̃− l − la
2

) (6.22)

H2(x̃) = H(x̃− l + ld
2

)−H(x̃− l − ld
2

) (6.23)

The nonlinear partial differential equation is then solved in the same way as section 4.5 using the
Galerkin method coupled with a perturbation technique. Then, the steady-state motion equations are
used in order to write the frequency response around the primary resonance in its parametric form in
function of the phase ϕ.
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6.3 Experimental validation

6.3.1 High capabilities set-up

Figure 6.6 shows two linear resonance peaks obtained by down-mixing (Va.Vb configuration) for the
smallest NEMS resonator RN4 (see Figure 6.7) at an actuation voltage of 50mv. The experimental
resonance frequency is around 13.5MHz.

Figure 6.6: Measured linear resonance peaks of resonator RN4 using the Va.Vb capacitive down-mixing
technique.

Figure 6.7: SEM images of the resonator RN4.
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This negative frequency shift with respect to the theoretical frequency (15.6MHz) is due to the
compression residual stress combined with the fabrication defects and the variation of the Young
modulus for silicon nanostructure. Moreover, the computed fringing field coefficients for this resonator
design are Cn1 = 4.5 and Cn2 = 2.1. Remarkably, The experimental setup enables the detection of
very low capacitance variations (C0a = 40aF and C0d = 210aF ) as demonstrated by the right blue
curve where the output voltage is below 100nV for a bias voltage Vb = 5V and the measured quality
factor is around 7.103. When the bias voltage is increased from 5V to 7.5V , the frequency is shifted
by 14KHz due to the negative electrostatic stiffness proportional to V 2

b (for Va << Vb). The dynamic
bending deflection of the beam w(x, t) is proportional to Vb, Va as well as the quality factor. Moreover,
the output voltage Vout is proportional to Vb and w(x, t). Therefore, for a given drive voltage, the
output voltage is proportional to the product Q.V 2

b . Obviously, for a bias voltage of 7.5V , the ohmic
losses significantly increase and consequently, the quality factor decreases from to 7.103 to 6.103. The
ratio between the two peaks amplitudes is around 1.9 which is approximately equal to Q2.V 2

b2

Q1.V 2
b1
. It shows

the accuracy of the model concerning the proportionality of the output voltage to the product Q.V 2
b .

6.3.2 First validation (design for hardening behavior)

Figure 6.8 shows two nonlinear hardening resonance peaks for the NEMS resonatorRN4 at an actuation
voltage of 100mv. The right curve (in blue) is close to the critical amplitude Ac, even if the output
voltage is about 200nV which is close to the amplitude of the left linear peak (in red) of Figure
6.6. Actually, since the dynamic bending deflection of the beam w(x, t) is proportional to, Va and

Figure 6.8: Measured hardening resonance peaks of resonator RN4 using the Va.Vb capacitive down-
mixing technique.

the quality factor, the increase of the drive voltage (for a given bias voltage), amplify proportionally
purely mechanically the output voltage Vout. However, for a given drive voltage, the increase of the
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bias voltage amplify mechanically and electrically the output signal. Hence, in order to maximise
the output voltage while keeping a linear behavior, the use of very high bias voltage with respect to
the drive voltage is recommended. The analytical critical amplitude for RN4 is around 10nm which
corresponds approximately to the oscillation amplitude of the beam in the right curve of Figure 6.8.
Consequently, the resonator oscillation is below 5nm for the measured blue peak of Figure 6.6 which
confirms the high sensitivity of the experimental setup for the capacitive detection of few nanometres
of motion. As predicted using the nonlinear down-mixing model, the red curve of Figure 6.8 displays
a hardening behavior beyond the critical mechanical amplitude of the resonator for a bias voltage of
7.5V . The frequency shift of 14KHz due to the negative stiffness is maintained like in the linear case.

6.3.3 Design for nonlinearities compensation

6.3.3.1 Softening behavior

The MEMS resonator RM2 (see Figure 6.9) has been designed with a high ratio h
gd

(> 16) which
should enable the compensation of the mechanical and the electrostatic nonlinearities. The theoretical
resonance frequency of RM2 is around 1.09MHz which is below the cutoff frequency of the available
lock-in amplifier. Figure 6.10 presents two nonlinear softening resonance peaks obtained by direct

Figure 6.9: SEM images of the resonator RM2.
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electric measurements performed using the 2ω mode of a lock-in amplifier. Obviously, the mechanical
nonlinearities are very low due to the resonator geometry (high width in the direction of vibration)
combined with a low quality factor (between 2000 and 3200). Moreover, the use of high DC voltages
increases significantly the electrostatic nonlinear cubic stiffness with respect to the hardening Duffing
nonlinearities. Thus, in this configuration the resonator dynamics is dominated by the softening non-
linearities which are not frequently observed in clamped-clamped resonators electrostatically actuated.
First, a sweep up frequency is used in order to catch the first bifurcation point. The second bifurcation

Figure 6.10: Measured softening resonance peaks of resonator RM2 using 2ω direct characterization.

point in the softening domain is situated by a sweep down frequency. As shown in Figure 6.10, since
the negative nonlinear stiffness is proportional to the square of Vdc (for Vdc >> Vac), the second peak
(left curve) obtained at a DC voltage of 10V is strongly nonlinear with respect to the first one (right
curve) obtained at a DC voltage of 7V . The frequency shift between both curves due to the negative
stiffness is about 50KHz. The critical behavior in this configuration can be computed using Equation
(5.10) and it is around 100nm.

6.3.3.2 Hardening behavior

The resonator RM2 has also been electrically characterized using a lock-in amplifier in ω mode. We
already showed in Figure 6.10, that the design RM2 could display a softening behavior. Now, as shown
in Figure 6.11, a hardening behavior is also possible when the mechanical nonlinearities are much
higher than the electrostatic nonlinearities. For a DC voltage of 1V , the nonlinear negative Duffing
nonlinearity is very low. Combined with low ohmic losses, this implies a quality factor much higher
than the previous softening resonance curves of Figure 6.10 (Q ≈ 104). Hence, in this configuration,
the mechanical critical amplitude is smaller than the electrostatic one (Ac ≈ 80nm). The hardening
peak of Figure 6.11 has been obtained in sweep up and down frequency which displays a critical
behavior at an output voltage of 7µV .



148 Chapter 6. Experimental investigations

Figure 6.11: Measured critical hardening resonance peak of resonator RM2 using ω direct characteri-
zation.

6.3.3.3 Hysteresis suppression ability

On the same device, both nonlinear dynamics (hardening and softening) have been demonstrated.
Consequently, the resonator RM2 can potentially display a linear compensated behavior when both
electrostatic and mechanical nonlinearities are balanced.

In order to approach this operating point (hysteresis suppression) and starting from the previous
hardening behavior, the DC voltage has been increased to 3V and 5V as shown in Figure 6.12 where
the resonance curves of RM2 have been performed in sweep up and down frequency. The first peak
measured at Vdc = 3V displays a quality factor Q = 6000 which has been measured on a linear curve at
a low AC voltage and the same DC voltage. The resonance curve, in this case, is strangely nonlinear
(hardening behavior). The third bifurcation is the highest one in the hardening domain obtained
in sweep up frequency where the red curve displays two regimes: a first fast in amplitude variation
and a second slow with a slope approaching zero. The first bifurcation is obtained in sweep down
frequency (green curve) and intercepts the red curve in a small part of the slow regime and the entire
fast regime of amplitude variation. The strange nonlinear hardening behavior obtained experimentally
can be explained by a strong dynamic perturbation due to the increase of the softening nonlinearities
(increase in the DC voltage and decrease of the quality factor Q).

6.3.3.4 Sensitivity of the compensation to the mixed behavior

In Figure 6.12 (on the left), the resonance curve measured at Vdc = 5V displays a quality factor
Q = 4000. Using the analytical model of a 2 ports nonlinear resonator (see section 4.5), for these
parameters, the resonator should display a linear resonance peak obtained by the compensation of
the mechanical and the electrostatic nonlinearities. Unlike the mixed behavior (hardening-softening)
discussed in section 5.4, the experimental peak of Figure 6.12 measured at Vdc = 5V displays clearly
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Figure 6.12: Measured strange hardening and mixed resonance peaks of resonator RM2 using ω direct
characterization. P is the mixed behavior initiation point and the third bifurcation is the highest
bifurcation in the hardening domain.

a mixed behavior starting by a softening behavior and ending by a hardening one where the peak
amplitude is around three times the critical amplitude displayed in Figure 6.11. Particularly, in this
mixed behavior, the P point and the first bifurcation have the same frequency and the hardening
domain is reduced in comparison with the first resonance curve of Figure 6.12.

Actually, for the resonator RM2, the fifth order nonlinear terms are no more negligible when it is
used to operate close to the hysteresis suppression point. Indeed, the compensation of the nonlinearities
is sensitive to the highly unstable mixed behavior.

6.3.3.5 Mixed behavior retarding by simultaneous resonance

In order to retard the onset of the mixed behavior, the resonator RM2 has been actuated at its primary
and secondary resonances simultaneously (see section 5.6). In practice, the use of the 2ω mode of a
lock-in amplifier leads to an actuation under superharmonic resonance of order half the fundamental
frequency combined with the primary resonance. The resonator is polarized with a DC voltage of
3V , combined with an AC voltage of 1V , this should ensure a compensated linear behavior predicted
using the analytical model described in section 5.6. Figure 6.13 shows a linear peak obtained by
nonlinearity cancellation for Vdc = 3V , Vac = 1V and Q = 6000. No bistability has been detected
which is confirmed by the superposition of the frequency curves obtained in sweep up and down
frequency. The ratio between the critical amplitude and the peak amplitude is around 5.7 which
corresponds to the resolution enhancement rate of the resonant accelerometer.

Remarkably, the compensated linear resonance curve of Figure 6.13 has the particularity to display
a clipped peak at a relatively high amplitude with respect to the detection gap (around 250nm). The
peak clipping can be explained by a possible slight variation of the quality factor with respect to the
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Figure 6.13: Measured linear compensated resonance peak of resonator RM2 using 2ω direct charac-
terization.

frequency at large amplitudes.

6.3.4 Strange attraction and transition to the softening behavior

Here, the ω mode of a lock-in amplifier is used again for a purely primary resonance excitation. Once
the mixed behavior was reached, we continue the increase of the DC voltage in order to track the
transition from a mixed to a softening behavior. The first curve of Figure 6.14 has been measured
using a lock-in amplifier in ω mode at a DC voltage of 7.5V which decreases the quality factor due to
the ohmic losses (Q=3000). The black part of the curve is obtained in sweep down frequency enabling
the capture of the P point which is the initiation of the mixed behavior bifurcation point and then the
second bifurcation point (the highest bifurcation point in the softening domain). Now, in sweep up
frequency, the output voltage Vout follows the blue curve. When the frequency of the first bifurcation
point is reached, the amplitude jumps strangely to the upper branch in the hardening domain instead
of following the black curve (jump to the downer branch) which should be physically easier where
the basins of attraction are quite larger. Indeed, a strange attractor brings the resonator oscillation
to the upper branch of the hardening domain till the third bifurcation point (jump down) where the
solution follows the black curve. Unlike the mixed hardening-softening behavior, where no strange
attractor has been observed (see section 5.4), the mixed softening-hardening behavior could display a
mechanical strange attraction which makes complicated the bifurcation control in such configurations.
This is another reason behind the use of simultaneous resonances instead of primary resonance (retard
the mixed behavior i.e. its strange attractions).

In order to suppress the mixed behavior, the effect of the hardening nonlinearities is reduced
in the second peak of Figure 6.14 for Vdc = 10V and an estimated quality factor Q = 2000. The
electrostatic nonlinearities are amplified with respect to the mechanical nonlinearities which brings
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Figure 6.14: Measured mixed and softening resonance peaks of resonator RM2 using ω direct charac-
terization. The mixed behavior displays a strange mechanical attraction.

the third bifurcation point at the same frequency as the first bifurcation point.

6.4 Summary

In this chapter, high frequency M&NEMS resonators have been designed, fabricated and electrically
characterized using a very sensitive capacitive down-mixing set-up allowing the detection of resonator
motions below 5nm. All dynamic behaviors captured by the model have been found experimentally
(hardening, softening, mixed and linear compensated). A strange mechanical attraction has been also
demonstrated in a mixed softening-hardening behavior. The sensitivity of the compensation to the
mixed behavior has been presented. Finally, a superharmonic resonance superposed to the primary one
permitted to obtain a linear compensated resonance peak by retarding the mixed behavior which can
enhance the resonant accelerometer resolution by a factor 5.7. Thus, the main design rules presented
in chapter 5 have been experimentally validated.

Finally, concerning future work, a principal step consists on the confirmation of the detection limit
enhancement by measuring Allan variance in open-loop as well as in closed loop for linear, nonlinear
and compensated behaviors.
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7.1 Introduction

Gyroscopes are expected to become the next "killer" application for the MEMS industry in the coming
years. A multitude of applications already have been developed for consumer and automotive markets.
Some of the more well known automotive applications such as vehicle stability control, navigation
assist, roll over detection are only used in high-end cars, where cost is not a major factor. Examples
of consumer applications are 3D input devices, robotics, platform stability, camcorder stabilization,
virtual reality, and more. Primarily due to cost and the size most of these applications have not reached
any significant volume. MEMS gyroscope industry plans a high growth potential of the defense and
low end automotive applications. The MEMS gyroscope market is expected to generate in the range
of 800M$ value in 2010. The operation principle of the vast majority of all existing micromachined
vibratory gyroscopes relies on the generation of a sinusoidal Coriolis force due to the combination of
vibration of a proof-mass and an orthogonal angular-rate input. The proof mass is generally suspended
above the substrate by a suspension system consisting of flexible beams. The overall dynamical system
is typically a two degrees-of-freedom (2-DOF) mass-spring-damper system, where the rotation-induced
Coriolis force causes energy transfer to the sense-mode proportional to the angular rate input. In most
of the reported micromachined vibratory rate gyroscopes, the proof mass is driven into resonance in
the drive direction by an external sinusoidal electrostatic or electromagnetic force. As shown in Figure
7.1, when the gyroscope is subjected to an angular rotation, a sinusoidal Coriolis force is induced in
the direction orthogonal to the drive-mode oscillation at the driving frequency.

Figure 7.1: Lumped parameter model of a vibratory gyroscope.
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To achieve high sensitivity in conventional micro rate gyroscopes based on harmonic oscillators,
the drive and the sense resonant frequencies are typically designed and tuned to match, and the
device is controlled to operate at or near the peak of the response curve (where amplitude is defined
by the Q-factor) [Clark 1997]. However, current micro fabrication processes produce asymmetries
causing frequency mismatching between modes, translating to drastic loss of sensitivity [Yazdi 1998].
Although solutions to overcome frequency mismatching have been pursued [Park 2003, Shkel 1999],
many of them involve adding complexity to the system by including additional controllers, additional
degrees of freedom [Acar 2003] or utilizing multiple drive mode oscillators [Acar 2005]. Besides, the
requirement for closed loop control is driven by several considerations:

• Identification and control of the magnitude and the phase of the displacement of the device along
the drive and sense directions.

• Calibration of the device requires identification of system parameters such as the natural fre-
quencies along drive and sense directions. In the case of a device operating under the condition
of perfectly matched modes, the quality factor of the system in the sense mode must be identified
as well.

• Actuator and sensor linearity and stability have to be maintained. This may be achieved by
preventing the proof mass from displacing along the sense direction using force feedback.

• It is important to accurately measure the phase of the output relative to the drive, as mismatches
in the phase could lead to significant driven motion being coupled to the output.

• Compensation of defects: Mismatches in suspension and proof mass dimensions, electrode gaps,
asymmetries in fluidic damping can all result in significant variations in both scale factor and
output offset, result in feedthrough of the driven motion onto the sense axis and might also result
in instability of the system for the desired operating voltages.

The complexity of closed loop control is evident from the number of variables that need to be si-
multaneously controlled and identified to ensure device operation. In this case, we are dealing with
multi-dimensional dynamics in a poorly identified environment. Hence the control scheme must not
only compensate for defects and maintain the evolution of the proof mass motion but also identify
system parameters and drive them to desired values. We can identify the control complexity in terms
of a combination of the number of states that must be simultaneously identified and controlled and
the parameters that need to be identified for system definition (see table 7.1).

In view of the complexity of the proposed control schemes [Park 2003, Shkel 1999], alternate ap-
proaches were considered that would minimize the requirement for control and at the same time allow
for accurate measurement of the rotation rate. One proposed approach to achieve this goal is to use
resonant sensing [Seshia 2002a] of the Coriolis force instead of displacement sensing, which has been
employed in most conventional microgyroscopes. Profiting from the high sensitivity of the resonant
detection, the matching of the drive and the sense frequencies is not mandatory to achieve a high
resolution. Consequently, the number of states that have to be simultaneously controlled and the
number of variables that require identification are much smaller and the dynamics is simplified from a
minimally two-dimensional system to a series of coupled one-dimensional mass-spring-damper systems.

7.2 The Resonant Gyroscope

The resonant gyroscope, as its name implies, utilizes resonant sensing as the basis for Coriolis force
detection. In its simplest form, the device consists of three resonating elements, a proof mass vibrating
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Table 7.1: Primary system parameters required to be simultaneously identified and controlled for a
modematched gyroscope. In addition to the above, for defects and error compensation due to fabrica-
tion tolerances or other asymmetries, additional variables will require to be identified as described in
[Shkel 1999].

in the tens of kilohertz and two resonating sense elements, with a designed resonant frequency, gener-
ally, an order of magnitude higher than that of the proof mass in order to avoid possible parametric
instabilities in detection.

Although the principle is general enough to accommodate devices that sense rotation rate about
in-plane axes with minor modifications (such as driving the proof mass perpendicular to the substrate),
the focus of this chapter concerns gyroscopes that sense rotation rate about a single axis orthogonal
to the plane of the device substrate. In addition, gyroscope topologies for a dual-mass to cancel
common-mode acceleration signals and gyroscope suspensions to reduce quadrature error carry over
for a resonant gyroscope. A schematic of the z-axis resonant gyroscope is shown in Figure 7.2.

The device consists of a proof mass suspended by flexures attached to lever mechanisms [Roessig 1998]
for Coriolis force amplification. The proof mass is driven about the Y axis using embedded lateral
comb drive actuators. Specialized combs can be employed for self-test and for quadrature error can-
cellation [Clark 1996]. If an external rotation is applied to the chip about the z-axis, the Coriolis
forces acting on the proof mass is transmitted to the lever mechanisms that amplify these forces prior
to its being communicated axially onto two resonators placed on either side of the proof mass for a
differential output. The two resonators vibrate anti-phase to each other and parallel to the direction
of motion of the proof mass. The periodic compression and tension of the resonators by the Coriolis
force at the proof mass drive frequency modulates the resonant frequency of these force sensors. Each
force sensor comprises mechanical resonator electrostatically actuated and embedded in the feedback
loop of an oscillator circuit. Thus, by demodulating the oscillation frequency, the rotation rate applied
to the device can be estimated.

7.3 Device Analysis

The dynamics of the device (Figure 7.2) can be described by a series of coupled differential equations.
The proof mass dynamics can be described for most part by a classical spring-mass-damper equation.
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Figure 7.2: Schema of a simple mass resonant gyroscope.

The dynamics of the resonator subjected to an axial time-varying Coriolis force is described by a
nonlinear Mathieu partial differential equation. The respective equations can be written as:

d2Y (t̃)

dt̃2
+
δ̃

Q

dY (t̃)

dt̃
+ δ̃2Y (t̃) =

Fe
M

cos δ̃t̃ (7.1)
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∂t̃
− 1

2
ε0

bCn

[
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]2

(g − w̃(x̃, t̃))2
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Ñ +AlF̃c cos δ̃t̃+
Ebh
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∫ l

0

[
∂w̃(x̃, t̃)

∂x̃

]2

dx̃

]
∂2w̃(x̃, t̃)

∂x̃2
(7.2)

F̃c = 2Mθ
dY (t̃)

dt̃
(7.3)

where x̃ is the position along the resonator length, E and I are the Young’s modulus and moment
of inertia of the cross section. Ñ is the applied tensile axial force due to the residual stress on the
silicon, t̃ is time, ρ is the material density, h is the microbeam thickness, g is the capacitor gap
width, and ε0 is the dielectric constant of the gap medium. The last term on the left-hand side of
Equation (7.2) represents an approximation of the electric force assuming a complete overlap of the
area of the microbeam and the stationary electrode including the edge effects by the coefficient Cn
[Nishiyama 1990].

Furthermore, Ỹ is the mass displacement along the vertical axis, M is the mass of the drive
part of the resonant gyroscope, δ is its resonance frequency, Q the drive quality factor, Fe is the
electrostatic force induced by the lateral comb drive actuators, Al is the amplification coefficient of
the Coriolis Fc force due to the lever mechanism. The perturbation term AlF̃c cos δ̃t̃ , which represents
a modulation of the spring constant of the resonant sensor at the gyroscope drive frequency ( δ̃2π ),
is directly contributed by the amplified Coriolis force impinging axially on the resonator. Thus, the
Coriolis force (F̃c) modulates the spring constant of the resonator system.
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Clearly, the Equation (7.2) governing the resonator dynamics is similar to the equation of motion
(4.8) in the case of the resonant accelerometer. The only difference is the time-varying term pro-
portional to the Coriolis force that modulates the spring constant of the resonator. Obviously, for a
very low actuation frequency δ̃ with respect to the resonator natural frequency, the Coriolis force is
quasi-static and then equations (7.2) and (4.8) become equivalent.

Note that the two resonators placed on each side of the structure experience an equal and opposite
axial force. The output of the device is the resonant frequency shift difference (∆f = ∆f1 − ∆f2)
between the two resonators, measured at the gyroscope proof mass drive frequency.

7.3.1 Actuation part

The details about the dimensions (proof mass+spring) are described in Figure 7.3.

Figure 7.3: Proof mass and spring designs for a resonant gyroscope.

An equivalent mechanical model was used in order to compute analytically the stiffness Km of the
spring-mass-damper system as follow:

Km =
8EeMbs

3Ls1 + Ls2
(7.4)

where eM is the MEMS level thickness (the resonator thickness could be smaller than the proof mass,
springs and lever mechanisms thickness which is the case of a M&NEMS gyroscope). The natural
frequency of the actuation system is then:

δ̃ =

√
8Ebs

ρL2
m

(
3L3

s1 + L3
s2

) (7.5)

The electrostatic force generated by the comb drive actuators is:

Fe =
∂U

∂gc
=

⌊
2Lm + gc −Wc

gc +Wc

⌋ ε0eM

(
V mdc + V mac cos δ̃t̃

)2

gc
(7.6)



7.3. Device Analysis 161

where bc denotes the floor function, U is the energy associated with the applied electric potential (a
drive voltage V mac and a polarization V mdc), Wc is the width of a finger, gc is the gap between two
fingers as shown in Figure 7.3.

The quality factor of the mass-spring-damper system being very high (104 < Qm < 106), the
static displacement is negligible with respect to the dynamic displacement and then the proof mass
displacement at resonance can be computed as follows:

YM =
QmFe

ρδ̃2L2
meM

=

⌊
2Lm + gc −Wc

gc +Wc

⌋
ε0QmV mdcV mac

(
3L3

s1 + L3
s2

)
8Egcb3s

(7.7)

As the proof mass is actuated using a lateral comb drive topology and is allowed to displace along the
sense direction as well, then it becomes susceptible to a pull-in like phenomenon since the actuator
topology looks more like a parallel-plate capacitor along the sense direction. As a result, motion along
the sense direction due to non-idealities or asymmetries in the electromechanical structure place an
upper limit on the actuation voltage and the displacement that can be allowed along the sense axis.
As it depends on the resonator stiffness along the X axis, this issue is negligible for our designs of
resonant gyroscope. If an external rotation θ(◦/s) is applied to the chip about the z-axis, the Coriolis
force acting on the proof mass is:

F̃c =
2π

180
L2
meMρθδ̃YM (7.8)

7.3.2 Lever mechanism

Since a high scale factor is required for a low noise sensor, a lever mechanism suitable for surface
micromachined technology is used in order to amplify the Coriolis force acting on the proof mass as
shown in Figure 7.4. It is made of flexural pivots for leverage and to link to the input (Fc) and output
(Fca) forces (true pivots are unavailable in the fabrication processes). As long as the torsional stiffness
of the flexures is not too high, the structure will effectively approximate a lever, magnifying the input
force and increasing the scale factor of the sensor by applying the magnified force to the resonators.

Figure 7.4: Lever mechanism.

The model for determining the actual amount of magnification provided by the lever is shown
in Figure 7.5. The behavior of the system must be solved by simultaneously solving for the vertical
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Figure 7.5: Model used to predict leverage force magnification.

deflection and rotation of the system which gives the following equations:

X =
1

kpiv

(
1− krLa1La2

kΦ + krL2
a2

)
F̃c (7.9)

Φ =
La1

kΦ + krL2
a2

F̃c (7.10)

F̃ca =
krLa1La2

kΦ + krL2
a2

F̃c (7.11)

where X is the deflection of the structure, Φ is the rotation of the structure, F̃ca is the output force
(the amplified Coriolis force), kpiv is the vertical stiffness of the pivot beam, kr is the stiffness of the
output structure (the resonator), kΦ is the sum of the link rotational stiffnesses kr,Φ and kpiv,Φ, La2

is the distance from the pivot to the output, La1 is the distance from the pivot to the input and F̃c is
the input force (the Coriolis force acting on the proof mass).

In the ideal case, the torsional stiffness of the flexures is zero and the vertical stiffness of the pivot
is infinite, and above equations to:

X = 0 (7.12)

Φ =
La1

krL2
a2

F̃c (7.13)

F̃ca =
La1

La2
F̃c (7.14)

In order to obtain the maximum possible amplification, the position of the resonator with respect to
the lever mechanism structure has been optimized by FE simulations.
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7.3.3 Sensing part

Several 2-port resonators (see Figure 7.6) have been designed as sensitive parts of our M&NEMS
resonant gyroscopes in order to decouple the actuation and the detection which makes easier the
characterization of such force sensors. Moreover, since the stiffness of these sensing parts is modulated
periodically by a time-varying Coriolis force at the proof mass frequency δ̃, we are dealing with 2-port
Mathieu resonator.

Figure 7.6: Schema of a 2-port Mathieu resonator.

7.4 Model

For simplicity, as a first step, only the 1-port Mathieu resonator dynamics is investigated. Thus, the
nonlinear partial differential equation (7.2) is considered with the following boundary conditions:

w̃(0, t̃) = w̃(l, t̃) =
∂w̃

∂x̃
(0, t̃) =

∂w̃

∂x̃
(l, t̃) = 0 (7.15)

The Mathieu equation has been widely studied in the context of parametric resonance. Newman et
al [Newman 1999] investigated the dynamics of a parametrically excited partial differential equation
and particularly the dependence of the steady state behavior on parameter values and initial condi-
tions. In [Abraham 2003], a new technique derived from [Chatterjee 2003] based on an approximate
realization of the method of averaging has been used to tackle weakly nonlinear Mathieu equations
whose unperturbed dynamics is close to points corresponding to simple resonances between response
and parametric forcing. Rand et al [Rand 2003] constructed analytical expressions for the transition
curves of the quasiperiodic Mathieu equation in the vicinity of the resonance 2 : 2 : 1 using a double-
perturbation procedure. In [Zounes 2002], the interaction of subharmonic resonances in the nonlinear
quasiperiodic Mathieu equation has been investigated. Belhaq and fahsi [Belhaq 2007] showed that in
the vicinity of the 2 : 1 and 1 : 1 resonances in a fast harmonically excited Van Der Pol-Mathieu-Duffing
oscillator, fast harmonic excitation can change the nonlinear characteristic spring behavior from soft-
ening to hardening and causes the entrainment regions to shift. In [Michon 2008], the motion of a
sample automotive belt-pulley system subjected to tension fluctuations governed by a Mathieu-Duffing
equation was theoretically and experimentally investigated.

Note that the transition curves of a linear Mathieu equation (Figure 7.7) can be approximately
plotted using a perturbation technique. The number of tongues of instability corresponds to the trun-
cation order of the asymptotic expansion. Figure 7.7 displays three instability tongues that correspond
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to a third order expansion of the perturbation technique. The curves are determined analytically using
the Floquet theory for small Coriolis forces. Here, ∆ is the ratio between the proof mass frequency
and the resonator frequency and Fca is the dimensionless input time-varying force axially applied to
the resonator. These instability tongues emanate from the points 1

∆ = n
2 on the 1

∆ axis. Dufour and
Berlioz [Dufour 1998] showed that the dynamic stability of parametrically exited beams depends on
the type of parametric excitation, the forcing frequencies and the boundary conditions and demon-
strated that the existence of the instability zone is in relationship with the topology of the modal
geometric stiffness matrices due to axial force and torque.

Figure 7.7 shows that inside the tongue, the resonator displacement grows exponentially in time.
Outside the tongue, the displacement becomes the sum of terms each of which is the product of two
periodic (sinusoidal) functions with generally incommensurate frequencies, that is, the displacement
is a quasiperiodic function of time. Also, the resonator is very weakly damped (high quality factors)

Figure 7.7: Transition curves in a linear autonomous Mathieu equation. S denotes stable quasiperiodic
domains and U denotes the unstable domains.

which makes these transition curves approximately valid for a damped linear Mathieu equation. Figure
7.7 shows unbounded solutions to Mathieus equation which can result from resonances between the
forcing frequency and the oscillators unforced natural frequency. However, real physical systems do
not exhibit unbounded behavior.

The difference lies in the fact that the Mathieu equation is linear. The effects of nonlinearity can
be explained as follows: as the resonance causes the amplitude of the motion to increase, the relation
between period and amplitude (which is a characteristic effect of nonlinearity) causes the resonance
to detune, decreasing its tendency to produce large motions.

The equation that governs the Mathieu resonator is a nonlinear partial differential equation under
parametric and external excitation and consequently, further complicated than those already studied
in literature. In addition, the structure of the stability regions of the quasiperiodic Mathieu equation
is much more complicated than for the Mathieu equation.

Belhaq et al. [Belhaq 2002] and Guennoun et al. [Guennoun 2002] consider a homogeneous Math-
ieu equation with quasiperiodic linear coefficients and a constant nonlinear coefficient. The small
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parameter technique of multiple scales is applied twice to the system to obtain an approximate
time-invariant system. In another study (see Belhaq and Houssni, [Belhaq 1999] the system under
investigation contains quadratic and cubic nonlinearities as well as parametric (linear terms) and
external excitations of incommensurate frequencies. The small parameter techniques of generalized
averaging and multiple-scale perturbation are employed to obtain a solution. Rand and his associates
[Rand 2005, Zounes 2002, Zounes 1998] analyze a linear homogeneous quasiperiodic Mathieu equation
via several methods such as numerical integration, Lyapunov exponents, regular perturbation, Lie
transform perturbation and harmonic balance.

Note that the aim of this work is to provide practical rules for MEMS designers in order to enhance
the performances of resonant microgyroscopes rather than developing complex models or tracking the
quasiperiodicity in MEMS and NEMS Mathieu resonators.

For all these reasons, we restrict our studies to the periodic motions of the forced nonlinear Mathieu
equation. Following Rand and Morrison [Rand 2005], in our case for an external excitation tuned
around the resonator primary resonance and by analogy, the Mathieu equation is quasiperiodic when
∆ 6= 2−m

n for ∆ ∈ [0, 1], m ∈ Z and n ∈ N.
Consequently, the quasiperiodic domains in the (∆, Fca) plan are very limited for low frequencies

actuation (δ̃) with respect to the periodic motions. This ensures the generality of our parametric
analysis of the gyroscope sensitivity out of quasiperiodicity. However, a first order averaging method
is valid only for low Coriolis forces which ensure a negligible effect of the superharmonic resonances
at each ∆ < 1. Otherwise, high order averaging is required. For simplicity, all these conditions are
assumed to be satisfied.

7.4.1 Normalization

For convenience and equations simplicity, the following nondimensional variables are introduced:

w =
w̃

g
, x =

x̃

l
, t =

t̃

τ
(7.16)

where τ =
2l2

h

√
3ρ

E
. Substituting Equation (7.16) into equations (7.2) and (7.15), yields:
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w(0, t) = w(1, t) =
∂w

∂x
(0, t) =

∂w

∂x
(1, t) = 0 (7.18)

The parameters appearing in Equation (7.17) are:

c =
c̃l4

EIτ
, N =

Ñ l2

EI
, Fc = Al

F̃cl
2

EI
, δ = δ̃τ

α1 = 6
[g
h

]2
, α2 = 6Cn

ε0l
4

Eh3g3
, Ω = Ω̃τ

(7.19)

7.4.2 Solving

The quality factors Q of the designed resonators are in the range of 103−5.104 which makes the static
displacement negligible with respect to the dynamic displacement of the microbeam. A reduced-order
model is generated by modal decomposition transforming equations (7.2) into a finite-degree-of-freedom
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system consisting of nonlinear Mathieu ordinary differential equations in time. The undamped linear
mode shapes of the straight microbeam are used as basis functions in the Galerkin procedure. To this
end, the deflection is expressed as:

w(x, t) =

n∑
k=1

ak(t)φk(x) (7.20)

where ak(t) is the kth generalized coordinate and φk(x) is the kth linear undamped mode shape of the

straight microbeam, normalized such that
∫ 1

0
φkφj = δkj where δkj = 0 if k 6= j and δkj = 1 if k = j.

The linear undamped mode shapes φk(x) are governed by:

d4φk(x)

dx4
= λ2

kφk(x) (7.21)

φk(0) = φ′k(0) = φ′k(1) = φ′′k(1) (7.22)

Here, λk is the kth natural frequency of the resonator. The electrostatic force in Equation (7.17)
is expanded in a fifth order Taylor series to enable the capture of 5 possible amplitudes for a given
frequency in the mixed behavior [Kacem 2009a]. Then, Equation (7.20) is substituted into the resulting

equation, Equation (7.21) is used to eliminate
d4φk(x)

dx4
, and the outcome is integrated from x = 0 to

1. Thus, a system of coupled nonlinear Mathieu ordinary differential equations in time is obtained.
The DC voltage, which is generally at least ten times higher than the AC voltage, makes the second
harmonic negligible. Also, the first mode should be the dominant mode of the system. According to
this assumption, the study can be restricted to the case n = 1. then, it gives:

ä1 + cȧ1 + (500.564− 2α2ξ0 + 12.3(N + Fc cos δt)) a1 + (151.354α1 − 7.403α2ξ0) a3
1

+α2ξ0

(
0.831 + 4a1

2 + 13.255a1
4 − 23.17a1

5
)

= 0 (7.23)

where ξ0 = V 2
dc + Vac cos Ωt. To analyse the equation of motion (7.23), it proves convenient to in-

voke perturbation techniques which work well with the assumptions of "small" excitation and damp-
ing, typically valid in MEMS resonators. Nevertheless, in order to avoid quasiperiodicity, we chose
δ

ωn
∈ Q ∩ [0, 1] and we assume that the Coriolis forces are weak enough to make the possible super-

harmonic resonances negligible with respect to the fundamental primary resonance. To facilitate the
perturbation approach, in this case the method of averaging [Nayfeh 1981], a standard constrained
coordinate transformation is introduced, as given by:

a1 = A(t) cos [Ωt+ β(t)]

ȧ1 = −A(t)Ω sin [Ωt+ β(t)]

ä1 = −A(t)Ω2 cos [Ωt+ β(t)]

(7.24)

In addition, since near-resonant behavior is the principal operating regime of the proposed system, a
detuning parameter, σ is introduced, as given by:

Ω = ωn + εσ (7.25)

where ωn =
√

500.564 + 12.3N − 2V 2
dcα2. Separating the resulting equations and averaging them over

the period 2π
Ω in the t-domain results in the system’s averaged equations, in terms of amplitude and
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phase, which are given by:

Ȧ = ε
c

2
A− εAFc
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(7.26)
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+O
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ε2
)

(7.27)

where ξ1 = VdcVac and ∆ = δ
ωn

. The steady-state motions occur when Ȧ = β̇ = 0, which corresponds
to the singular points of Equations (7.26) and (7.27). Thus, the frequency-response can be written in
its parametric form for β ∈ [0, π] and ∆ ∈ Q ∩ [0, 1].

Ω = f1(β,∆) (7.28)

A = f2(β,∆) (7.29)

This analytic expression (set of two equations) makes the model suitable for MEMS and NEMS
designers as a fast and efficient tool for resonant gyroscope performances optimisation.

7.5 Analytical results and device specifications

All the numerical simulations were carried out with the following set of parameters:

• Proof mass: Lm = 100µm, eM = 2µm, lc = 6µm, gc = 2µm, dc = 4µm and Wc = 1µm.

• Resonator: l = 100µm, b = 2µm, h = 5µm, g = 300nm, Q = 1000.

The quality factor of the system mass-spring damper is assumed to be Q = 105. The proof mass
displacement at resonance is assumed to be 2.5µm. The proof mass frequency (via ∆) as well as Vac
and Vdc were used for parametric studies.

7.5.1 Proof mass frequency effect

Figure 7.8 shows four nonlinear hardening frequency responses at a proof mass frequency ten times
smaller than the resonator frequency (∆ = 0.1) and for several angular rates 0 − 900◦/s. The DC
polarization of the resonator is low enough (Vdc = 1V ) to keep the global nonlinear stiffness dominated
by the mechanical nonlinearities. Hence, the predicted hardening behavior. In this configuration, the
Coriolis force that modulates the resonator stiffness at the proof mass frequency represents a slow
dynamic with respect to the resonator dynamic ten times faster. Therefore, the frequency effect is
negligible and only the resulting stress is considered which implies a positive frequency shift propor-
tional to the external rotation rate θ. Then, for ∆ = 0.1 and for several angular rates going from 0◦/s

up to 900◦/s, the DC voltage applied to the resonator is increased from 1V up to 9V while decreasing
the AC voltage from 0.2V down to 30mV (see Figure 7.9). This increases significantly the negative
nonlinear stiffness due to the electrostatic force that dominates in this case the global stiffness of the
resonator. Hence, the predicted softening behavior.
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Figure 7.8: Predicted forced frequency responses displaying a hardening behavior for ∆ = 0.1. Wmax is
the displacement of the beam normalized by the gap g at its middle point l

2 , {1, 2} are the bifurcation
points. The frequency shift is due to the variation of the external angular rate θ.

Figure 7.9: Predicted forced frequency responses displaying a softening behavior for ∆ = 0.1. Wmax is
the displacement of the beam normalized by the gap g at its middle point l

2 , {1, 2} are the bifurcation
points. The frequency shift is due to the variation of the external angular rate θ.
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For low actuation frequency with respect to the sensing frequency, the microgyroscope behaves as
a resonant accelerometer. Indeed, the Coriolis force is seen by the resonator as a quasi-static force.
Consequently, the close-form solutions of the critical amplitude and the mixed behavior initiation am-
plitude established in chapter 5 can be used here in order to improve the performances of the resonant
gyroscope. Particularly, the compensation of the nonlinearities is possible when the mechanical and
electrostatic critical amplitudes are equilibrated. This results on an optimal DC voltage for which the
obtained frequency resonance peak is linear beyond the critical amplitude.

Afterwards, the frequency of the proof mass in increased up to a quarter the resonator frequency. In
the same way, for this configuration, figures 7.10 and 7.11 show respectively several nonlinear hardening
and softening forced frequency curves for several rotation rates. Thus, the compensation for the
nonlinearities is possible for specific DC voltage. However, the apparition of additional bifurcation
points {3, 4} is notable and for rotation rates (θ) beyond 600◦/s. The maximum is close to the
bifurcation point 4 and no more situated at β = π

2 . This strange behavior can be explained by
an important contribution of the superharmonic resonance of order quarter the resonator primary
resonance for θ beyond 600◦/s. Therefore, even out of quasiperiodicity, the averaging method is not
valid except at a higher order defined by the transition curve at the corresponding superharmonic
resonance. Indeed, at this level the full scale here is limited by the proof mass frequency (for a valid
first order averaging).

Referring to Table 2.3, the classical specifications of current MEMS gyroscopes include a dynamic
range at best around 100◦/s which ensures the validity of the first averaging.

Figure 7.10: Predicted forced frequency responses displaying a hardening behavior for ∆ = 0.25.
Wmax is the displacement of the beam normalized by the gap g at its middle point l

2 , {1, 2, 3, 4} are
the bifurcation points. The frequency shift is due to the variation of the external angular rate θ.

The curves in Figure 7.12 display the variation of the Mathieu resonator displacement at its middle
point and at resonance when the phase β = π

2 for several values of angular rates θ. Remarkably, it
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Figure 7.11: Predicted forced frequency responses displaying a softening behavior for ∆ = 0.25. Wmax

is the displacement of the beam normalized by the gap g at its middle point l
2 , {1, 2, 3, 4} are the

bifurcation points. The frequency shift is due to the variation of the external angular rate θ.

appears that the symmetry can be broken between negative and positive Coriolis stress effect when
the resonator dynamic becomes strongly nonlinear for high angular rates and high frequencies. This
corresponds to a strong nonlinear parametric spring softening effect for which the resonator displace-
ment averaged over the period 2π

ωn
is amplified (parametric perturbation) and then a high instability

such as the pull-in could be suddenly reached. Since the sensitivity of the resonant gyroscope could be
extremely reduced for a large dynamic range, working at ∆ < 0.25 is essential for high grade resonant
gyroscopes.

7.5.2 Resonant gyroscope scale factor

The scale factor of the sensor, SF that relates the output frequency shift difference (δf) between the
two resonators to the external input rotation rate (θ) is given by:

SF =
df

dθ

[
Π

2
, θ ∈ DR

]
(7.30)

Note that the scale factor corresponds to the derivate of equation (7.28) at the phase β = π
2 with respect

to the rotation rate θ for a dynamic range (DR) that ensures stable motions out of quasiperiodicity
and negligible superharmonic resonances effects. The expression can be also written in terms of a
ratio of some drive and sense parameters multiplied by a lever gain and a constant dependent on the
mode shape of the resonating element. The scale factor is only dependent on material and geometrical
parameters and the displacement of the gyroscope proof mass at resonance (YM ). Consequently
and unlike classical gyroscopes, the goal of the control scheme is now simplified to the requirement
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Figure 7.12: Variation of the Mathieu resonator displacement at its middle point and at resonance
when the phase β = π

2 for several values of angular rates θ.

of maintaining constant amplitude motion for the gyroscope proof mass and the resonator-sensing
elements at their respective resonant frequencies.

Figure 7.13 shows the variation of the resonant gyroscope scale factor with respect to the frequency
ratio between the actuation and the sensing parts (∆) for a resonator driven in the linear regime.
Obviously, to use this curve, one should exclude the non-rational values of ∆ (quasiperiodic regime).
Remarkably, the maximum of sensitivity is located at ∆ = 0.25 which corresponds to a superharmonic
resonance in the nonlinear regime as shown in Figures 7.10 and 7.11. Moreover the scale factor is
approaching zero for 3 cases:

• ∆ = 0 which is obvious since the Coriolis force is proportional to the proof mass frequency.

• ∆ = 0.5. It corresponds to a simultaneous superharmonic and primary resonances in the non-
linear regime. In this configuration, the performances of the Mathieu resonator are drastically
reduced in the linear regime and furthermore, in the nonlinear regime, the secular terms coming
from the secondary resonance should be taken into account for analytical investigation in a large
dynamic range.

• ∆ = 1. It corresponds to a simultaneous parametric and primary resonance in the nonlinear
regime. We arrive to the same conclusions as the case ∆ = 0.5.

When the resonator is driven beyond its critical amplitude (in the nonlinear regime), unlike the linear
case where the scale factor is constant for a given ∆ and θ inside the dynamic range, the resonant
gyroscope sensitivity highly depends on the external rotation rates for a frequency ratio δ > 0.1.
Remarkably, the scale factor is drastically reduced if we assume a negligible secondary resonance effect
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Figure 7.13: Scale factor variation with respect to the proof mass frequency in the resonator linear
regime and inside the dynamic range of the resonant gyroscope. SR and PR are superharmonic and
parametric resonances.

which is valid up to ∆ = 0.25 as shown in Figure 7.13. Furthermore, for an admissible scale factor
nonlinearity when the Mathieu resonator is driven in the nonlinear regime, the resonant gyroscope
must be designed with ∆ < 0.05.

This drastic limit could be avoided by the compensation of the nonlinearities out of quasiperiodicity
for ∆ = 0.25 which gives the maximum of sensitivity.

7.5.3 Resonant gyroscope resolution

To evaluate the minimum acceleration detectable by the sensor, all noise sources have to be taken into
account. The resonator frequency shift is assumed to be measured via a PLL based technique, with
the use of a readout amplifier. The noise sources are:

• Thermomechanical fluctuations of the proof mass

• Thermomechanical fluctuations of the resonator

• Readout amplifier’s noise

Here, temperature fluctuation, adsorption-desorption as well as defect motion noises are neglected,
which is a fair approximation at our scales [Postma 2005]. Also, the Brownian noise of the proof mass
is negligible with respect to the thermomechanical fluctuations of the resonator. Therefore, one can
restrict the resolution analysis to the resonator and electronic noises.
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Figure 7.14: Scale factor variation curves with respect to the proof mass frequency for a nonlinear
resonator and several rotation rates.

7.5.3.1 Resonator thermomechanical fluctuations

Referring to [Robins 1984], for a PLL-based readout technique, the frequency noise spectral density
is:

Srω(ω) =

(
ω0

2Q

)2 Sx(ω0)

P0
(7.31)

where P0 is the displacement carrier power (P0 = 1
2W

2
maxg

2), i.e. the RMS drive amplitude of the
resonator. The latter is classically driven below the hysteretic limit due to the mechanical nonlinearity.

7.5.3.2 Readout amplifier noise

In a very general way, the readout amplifiers noise referred to its input will be evaluated thanks to its
noise figure NF . By definition,

NF = 10 log
SNRat input

SNRat output
= 10 log

output noise power referred to its input

noise power at input
(7.32)

The displacement noise spectral density brought by the amplifier is then:

Sax(ω) =
(

10
NF
10 − 1

)
Srx(ω) (7.33)

and written in frequency noise spectral density:

Saω(ω) =

(
ωn
2Q

)2 Sax(ωn)

P0
=

(
ωn
2Q

)2 2Sax(ωn)

W 2
maxg

2
(7.34)
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Then, an image of the resonant gyroscope resolution may be chosen as:

θmin = 3

√∫ BW
0 [Srω(ω) + Saω(ω)] dω

SF
(7.35)

where SF is the resonant gyroscope scale factor and BW is the sensor bandwidth.

7.5.4 Scale factor sensitivity to environmental variables

As previously established, the scale factor SF is dependent only on geometrical design parameters and
material constants. However, the scale factor could vary with respect to the fabrication tolerances as
well as temperature, this dependence is much smaller as compared to variations of parameters such as
the Young’s modulus and quality factor that are typically an order of magnitude or more higher. The
smaller variation could be further compensated by an amplitude gain control strategy applied to the
gyroscope proof mass motion.

7.5.5 Quadrature error

The quadrature error comes from a coupling of the comb actuated drive mode into the sense signal even
if no angular rate is applied to the sensor. There are various sources of quadrature like comb levitation
forces, surface curvature and asymmetric side wall angles in the proof mass suspensions. This would
result in a displacement along the sense direction whose amplitude is not directly correlated to the
Coriolis force. Specialized combs can be employed for self-test and for quadrature error cancellation.

7.5.6 Bias stability

Long-term random drift has a number of potential sources. One source is low frequency noise such as
1/f noise, that is coupled to the frequency modulated input by a combination of transduction coeffi-
cients due to nonlinearities in the system. Hence, the idea of designing resonant gyroscopes including
actuation parts at relatively high frequencies in comparison with the classical commercial devices. A
mismatch in the resonators resonant frequencies due to lithographic errors can cause a second-order
effect that can degrade the rejection of the effects of environmental parameters. Fabrication tolerances
associated with electrode and suspension geometries such as line widths, line spacing, and lithographic
alignment could result in portions of the proof mass actuation force and/or displacement coupling
along the sense direction, resulting in quadrature error or Coriolis offset. Further investigation into
these potential coupling mechanisms is required, but it is possible to conjecture that these coupling
mechanisms might result in an offset or quadrature output that might vary as a function of time and
environmental parameters.

7.5.7 Common mode acceleration

Cancellation of effects such as common mode acceleration can be achieved through two mechanically
coupled masses vibrating anti-phase to each other. The Coriolis force acts along opposite directions for
each of the two masses, however the effect of an external acceleration is the same, enabling first-order
cancellation of the acceleration and other common mode effects. A fully symmetric dual mass resonant
gyroscope that can potentially suppress undesirable acceleration effect is shown in Figure 7.15.
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Figure 7.15: Fully symmetric dual mass resonant gyroscope.

7.5.8 Decoupled resonant gyroscope

Furthermore, in order to minimize the mechanical crosstalk, the resonant gyroscope can be designed
with a complete decoupling between drive and sense modes thanks to an intermediate mass (inner
frame). For a dual-mass decoupled resonant gyroscope, the fully symmetric structure helps to lower
the bias of the sensor.

A schematic of a decoupled z-axis resonant gyroscope is shown in Figure 7.16. The device consists
of an inner frame suspended by flexures attached to an outer frame and a sense frame which includes
a lever mechanism. The outer frame is driven relative to the sense frame using embedded lateral comb
drive actuators. If an external rotation is applied to the chip about the Z-axis, the Coriolis force acting
on the inner and outer frames is transmitted to the sense frame. Unlike the first structure described
in Figure 7.2, the drive part oscillates only in the Y direction and the inner frame is used here to
transmit the Coriolis force to the sense frame. This ensures a perfect decoupling between the drive
and the sense modes. A lever mechanism amplifies this force prior to its being communicated axially
onto two resonators placed on either side of the sense frame for a differential output. The periodic
compression and tension of resonators by the Coriolis force at the drive part frequency modulates the
resonant frequency of these force sensors. Each force sensor comprises of the tuning fork mechanical
structure embedded in the feedback loop of an oscillator circuit. Thus, by demodulating the oscillation
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Figure 7.16: Decoupled z-axis resonant gyroscope.

frequency, the rotation rate applied to the device can be estimated.

7.6 Electronics and Signal Processing

Control, detection and signal conditioning electronics are essential for gyroscope operation. The goal
of the control electronics is to maintain constant amplitude resonant oscillation in the resonators and
the gyroscope proof mass. In the case of the resonant gyroscope, the detection and control electronics
are coupled as the frequency output differential between the two output oscillators, measured at the
gyroscope drive frequency, serves as the device output. The task of the signal processing electronics
is the frequency demodulation of the respective sensing oscillator outputs followed by an amplitude
demodulation with the proof mass oscillator output. To obtain a voltage output proportional to
rotation rate, a low pass filter is added after the amplitude demodulation.

The above signal processing strategy could be implemented in either the analogical or digital
domains. A functional schematic of the gyroscope electronics is shown in Figure 7.17.
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Figure 7.17: Functional block diagram schematic of the resonant gyroscope electronics.

7.7 Designs

Within the framework of the European M&NEMS project, several resonant gyroscopes have been
designed and fabricated. The devices involve proof masses with relatively high frequencies compared
to the state of art of resonant gyroscopes (δ̃ ∈[90 KHz, 190 KHz]). The designed devices can be
classified into the following categories:

• MEMS gyroscope: all the parts of the structure including the resonators have the same thickness
corresponding to the MEMS level (2µm) on the M&NEMS mask as shown in Figure 7.18.

• M&NEMS gyroscope: the device includes MEMS parts (proof mass, comb drives, lever, springs. . . )
and NEMS parts (resonators, electrodes) which potentially increase the gyroscope sensitivity and
so enhances its resolution.

• Simple mass gyroscope: it corresponds to the simplest form of the resonant gyroscope. Fully
MEMS or M&NEMS, these devices are limited by the common mode acceleration. Nevertheless,
they can be simply used for testing important specifications such as the sensitivity and the
resolution.



178 Chapter 7. Resonant gyroscope

Figure 7.18: M&NEMS mask showing the MEMS (2µm) and NEMS (500nm) levels on a dual-mass
resonant gyroscope structure. On the right a zoom on the NEMS protected zone.

• Dual mass gyroscope: these devices permit to overcome the common mode acceleration issue. As
opposed to a simple mass structure, a dual mass gyroscope benefits from a differential read-out
and then the output due to an acceleration applied to the chip about the sense axis can be
suppressed

• Coupled gyroscope: the proof mass undergoes both drive and sense motions. This implies a
quadrature error which can be significantly large and alters the device performances.

• Decoupled gyroscope: the device is detailed in subsection 7.5.8.

• Gyroscope with mismatched frequencies: The drive and sense modes are not matched in fre-
quency. Consequently, the device does not benefit from an additional quality factor in the
sensing mode.

• Gyroscope with matched frequencies: Under an external angular rate, the proof mass oscillates
at resonance in the drive as well as the sense directions. The sensitivity of such devices can
potentially be increased due to the amplification of the Coriolis force by the sensing mode quality
factor. Nevertheless, the frequency matching often leads to a complex closed loop control.

Furthermore, the sensing parts of the designed gyroscopes were chosen among the several resonators
experimentally tested in chapter 6. This ensures different case studies going from a very low frequency
ratio (∆) to a ∆ approaching unity. Consequently, parametric instabilities and the sensitivity variation
of the device with respect to ∆ can be experimentally investigated. Moreover, the designed resonators
have not the same dynamic behavior as explained in chapter 6 which can permit the evaluation of the
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hysteresis suppression potential on a Mathieu resonator. Besides, not all the devices were designed to
exhibit high performances. Many structures concern the only analytical model validation.

The resonant gyroscopes were designed analytically in order to evaluate the sensor performances
and investigate the nonlinear dynamics of the resonators, as well as using ANSYS finite elements
simulations in order to check the frequency matching and the robustness of the devices to undergo
high out of plane accelerations.

Figure 7.19 shows a particular design of a dual mass resonant gyroscope in which the frequencies
in the actuation and sensing axis have been matched around 90 KHz using FE simulations. The
resonator frequency is very high (10MHz) compared to the proof mass frequency (∆ > 11) which
ensure the stability of the periodic Mathieu resonator for a dynamic range DR = ±200 ◦/s. The
predicted resolution of the device is about 6.10−4 ◦/s when the resonators are driven at their critical
amplitude (Ac = 6nm) which demonstrate the high sensitivity of the resonant sensing. Note that the
whole device here is supposed to be at the same thickness (2µm). Then, further optimization can
be done using the M&NEMS concept including resonators much thinner than the other parts of the
resonant gyroscope.

Ultimate improvements could be reached by driving the resonators beyond their critical amplitudes
while keeping a linear behaviour. Hence, the importance of designing resonant gyroscope for which
the nonlinearities can be balanced via an electrostatic mechanism (Optimal polarization voltage).

Figure 7.19: Design and specifications of a dual mass resonant gyroscope.
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The analytical studies performed to design the resonant gyroscope described in Figure 7.15 showed
that the sensor can reach an impressive resolution about 2.10−5 ◦/s < 0.1 ◦/hr when its sensing parts
(the resonators) are thinner than the drive parts (proof masses, comb drive actuators, springs. . . )
combined with a possible hysteresis suppression allowing the resonators to vibrate linearly at large
amplitudes. This can potentially unlock some limitations with current technology in micro gyroscope
for typical high performance applications such as tactical weapon guidance as shown in table 7.2.

Table 7.2: Resolution requirement of gyroscope for typical high performance application
[Giessibl 2003].

7.8 Fabrication

The M&NEMS process flow with the 6 mask levels (see subsection 4.2.3 for details) was used in the
8 silicon platform of the LETI in order to fabricate several resonant gyroscope structures including
simple mass, dual-mass and decoupled gyroscopes. For that proof of concept device, the resonator
was limited to 0.25× 0.5µm2 section, and the MEMS thickness was reduced to 2µm thick. The total
area of the dual-mass gyroscope is less than 0.15mm2. SEM images of z-axis M&NEMS resonant
gyroscopes are shown in figures 7.20 and 7.21.

Some fabricated resonant gyroscope involve self-test comb drive actuators in order to simulate
a Coriolis force which can be used also for electrostatic trimming in order to control the frequency
matching between the drive and the sense mode. Dual mass resonant gyroscopes fully symmetric were
fabricated for testing the cancellation of the common mode acceleration. For these structures, the
flexural pivot is located at the center in order to reduce the sensor bias.

7.9 Experimental validation

7.9.1 Low axial load frequency

The ratio between the actuation and the sensing frequencies is assumed to be ∆ < 0.25. In this
configuration, the resonant gyroscope behaves as a resonant accelerometer, since the periodic axial
load due to the Coriolis force can be considered quasi-static with respect to the resonator dynamic.

The resonators described in tables 6.1 and 6.2 are then used for the qualitative as well as quantita-
tive validation of the model. Indeed, a 2-port Mathieu resonator in this case is equivalent to a 2-port
normal resonator. Therefore, the model expanded in the previous chapter (see section 4.5) still valid
for a resonant gyroscope when ∆ < 0.25 and out of quasiperiodicity.
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Figure 7.20: SEM images of a M&NEMS simple mass resonant gyroscope. In (a), the lever mechanism
and self-test comb drive actuators to simulate a Coriolis force which can be used also for electrostatic
trimming in order to control the frequency matching between the drive and the sense mode. In (b)
MEMS level: actuation part (proof mass + flexures). (c): Flexural pivot of the lever mechanism. (d)
NEMS level: resonator. (e). Self-test comb drive actuators.
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Figure 7.21: SEM images of a M&NEMS dual mass resonant gyroscope. (a): The dual mass fully
symmetric structure (the flexural pivot is located at the center of the gyroscope in order to reduce
the sensor bias). The two masses are actuated anti-phase to each others for the cancellation of the
common mode acceleration. (b): Zoom on the actuation part (proof mass + flexures). (c): Zoom on
the sensing part (the resonator). (d): Comb drive actuators for the proof mass actuation. (e): Zoom
on the comb drive actuators showing a 0.5µm gap between the fingers.
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7.9.2 High axial load frequency

Now, we consider the case for which the frequency ratio ∆ > 0.25. In this configuration, although the
stiffness of the resonator is varying slowly with respect to the global dynamic due to the time varying
axial load, the Coriolis force can not be considered as quasi-static. Indeed, the natural frequency
of the Mathieu resonator can be modulated by an axial load at a comparable frequency which can
significantly limit the dynamic range of the resonant gyroscope.

For experimental investigations of gyroscope performances, the device must be tested on a rate
table in a portable vacuum chamber. Nevertheless, one can use the test self electrodes (see Figure
7.20) to simulate a Coriolis force and its equivalent in rotation rate for the considered device. This
implies the use of a vacuum chamber containing at least six probes.

For simplicity and as a first we chose the use of the superharmonic excitation of order half the
natural frequency of the sensing part to simulate Mathieu resonator for which ∆ = 0.5. This implies
the use of a 2f measurement set-up. Moreover, the sensitive parts of the different fabricated gyroscopes
correspond to the resonators of table 6.1 and 6.2. Their natural frequency, being very high, down-
mixing technique has been then used in order to avoid the parasitic impedance issue. Note that
the multiple time scales method has been used in order to incorporate the superharmonic resonance
effect in the fast dynamics, since the Mathieu resonator is actuated simultaneously under primary and
secondary resonances.

Unlike the 2ω down-mixing set-up that has been used in the previous experiments (see section
6.2), here, the actuation voltage of the resonator includes a polarization voltage in order to generate a
parametric excitation at the frequency ωn

2 . A schematic of the downmixing setup used for the electrical
characterization is described in Figure 7.22.

Figure 7.22: Schematic of a downmixing setup.
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The resonator RN5 was placed in a vacuum chamber and the experiments were at room tempera-
ture. The bias voltage is fixed around 500mV , then we vary the DC voltage while keeping Vac = Vdc.
This ensures a parametric stiffness much higher than the negative linear stiffness and then the effect
a time-varying load is not covered by the static spring softening effect.

Figure 7.23 shows the variation of the resonator (RN5) frequency response with respect to the DC
voltage. Remarkably, the resonator displays a hardening behavior which corresponds to the predicted
dynamics using the analytical model. More specifically, when the DC voltage is increased for an
equivalent AC voltage, the parametric linear negative stiffness due to the electrostatic nonlinearities
becomes higher.

Furthermore, the quality factor decreases due to the ohmic losses [Sazonova 2006]. Therefore,
one waits a relaxation of the hardening behavior as the nonlinear negative stiffness increases and the
quality factor too (referring to the critical amplitude close-form solution in Equation (5.10)) which
is not the case. This can be explained by the fact that the static negative stiffness is always less
important than the time-varying one for the chosen configuration. The parametric perturbation is
strong enough and equivalent to a negative rotation rate which amplifies significantly the amplitude.
Indeed, the symmetry between negative and positive stress due to the Coriolis load is certainly broken
for Vdc = 5V (see Figure 7.12) as the corresponding Coriolis force is about −1µN equivalent to
θ = −400◦/s for the simple mass resonant gyroscope with the parameters that have been used for the
analytical analysis.

Figure 7.23: Measured hardening nonlinear resonance peaks of resonator RN5 using 2ω downmixing
characterization for several actuation voltages.
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7.10 Summary

An implementation of a microelectromechanical resonant gyroscope has been described. Particularly,
the nonlinear dynamics of the sensitive part (Mathieu resonator) has been modeled using the Galerkin
method coupled with a perturbation technique and under few assumptions that lead to steady-state
periodic motions. The relatively simple dynamic model of the nonlinear Mathieu resonator utilized
here, is able to predict the measured resonator response for various parameter settings qualitatively
and in many cases even quantitatively. Characteristic nonlinear dynamic steady-state behavior is very
well predicted by the model. Therefore, it represents a good first step in the modeling process and a
suitable starting point for understanding and predicting the dynamic behavior of resonant M&NEMS
gyroscopes. The resulting benefits include nonlinear dynamics control, improved scale factor stability
over micromechanical gyroscopes utilizing open-loop displacement sensing, large dynamic range and
high resolution.

In order to provide some design rules, the variation of the gyroscope sensitivity with respect to
the ratio between the proof mass and the resonator frequencies was investigated. The analytical
parametric studies showed that in the resonator linear or slightly nonlinear regimes, a frequency ratio
∆ = 0.25 provides the greatest scale factor. However, once the resonator dynamics becomes strongly
nonlinear (large oscillations beyond the critical amplitude), the sensitivity is significantly reduced if
the resonator frequency is not at least an order of magnitude higher than that of the proof mass
(∆ ≤ 0.1).

Moreover, The M&NEMS technology showed a great potential of performance optimization for
angular rate sensors due to the maximization of the resonator sensitivity when it is scaled down
to NEMS size while the drive parts of the sensor are set at the MEMS level in order to conserve
large Coriolis forces. Besides, several resonant M&NEMS gyroscope were designed and fabricated in
order to validate the analytical model as well as the technological choices. An impressive resolution <
0.1 ◦/hr analytically predicted for a particular dual mass M&NEMS gyroscope fully symmetric with its
sensing resonators driven linearly at large amplitudes beyond their open-loop stability limit. If reached
experimentally, such a performance could break down the limitation of the current conventional MEMS
gyroscopes for typical high performances applications such as tactical weapon guidance. Nevertheless,
this demands that all the other parameters (temperature, frequencies, pressure. . . ) are well controlled
when the resonators are embedded in the feedback loops of oscillator circuits which can potentially
complexify the sensor electronics.

Due to the unavailability of specific test equipments at LETI for a complete gyroscope characteri-
zation which is quite complex, further experimental measurements have not been performed. This will
be the goal of future work which will also incorporate improvement and extension of the numerical
model in order to obtain better predictions. Furthermore, oscillator design aspects and the effect
of different resonator layouts will be addressed, since the long-term goal of these investigations is to
derive guidelines for optimal resonator layout and to predict the performance of Mathieu resonators
in oscillator circuits, based on more enhanced analytical or numerical models.
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8.1 Introduction

Mass and gas sensors employing micro/nanoscale cantilevers have been studied for applications in
various research fields such as biochemistry, environment, and biomedicine due to their extreme sensi-
tivity [Gupta 2004, Battiston 2001, Ilic 2001a, Jensenius 2000, Lavrik 2003, Ono 2003, Ekinci 2004a,
Forsen 2005, Yang 2006]. In a simple harmonic resonance mode, these sensors operate on the ba-
sis of the fundamental resonance frequency shifts in response to mass changes. A strong motivation
for scaling down cantilevers is to reduce the effect of thermomechanical noise [Rugar 1991], thereby
improving the resolution of resonant sensors and also enhancing their response time. This devel-
opment has increased the sensitivity limit up to the extent that researchers can now visualize the
counting of molecules [Feng 2008, Jensen 2008]. With the ability of high throughput analysis of an-
alytes and ultra sensitive detection, NEMS cantilevers potentially hold tremendous promise for the
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next generation of miniaturized and highly sensitive sensors. Recent accomplishments obtained by
these mass sensors are that femtogram order mass detection has been achieved under ambient pres-
sure and temperature using a bimetal silicon cantilever [Lavrik 2003] and higher mass resolutions of
10−18− 10−21 g have been achieved in vacuum and in ultrahigh-vacuum pressure at cryogenic temper-
ature [Ono 2003, Ekinci 2004a, Yang 2006].

However scaling the dimensions of a resonator down to the NEMS range makes nonlinearities
quickly reachable and consequently the linear dynamic range is extremely reduced [Postma 2005]. In
chapter 5, we demonstrate the drastic fundamental limit of the dynamic range due to the mechanical
nonlinearities in clamped-clamped NEMS resonators and we provided a way to enhance the dynamic
range of these resonators by hysteresis.

NEMS cantilevers are promising candidates for the new generation of physical, chemical and bio-
logical sensing. One reason for this is that they are commonly said to have a very large linear dynamic
range compared to clamped-clamped nanoresonators, without any formal proof, quantitative compar-
ison, or thorough study. Models previously used in chapter 4 for doubly clamped beams cannot be
easily adapted to cantilevers: indeed, their real specificity comes from their complex nonlinear dynam-
ics including geometric and inertial nonlinearities. This partly explains why so little has been done
about nonlinear dynamics of electrostatically actuated cantilevers.

In the past, the non linear dynamics of cantilevers was analytically modelled [Mahmoodi 2007,
Alhazza 2008] using perturbation techniques and numerically simulated using nonlinear shooting method
[Banerjee 2008] for a piezoelectric actuation. Chowdhury et al [Chowdhury 2005] provided a close-form
model for the static pull-in voltage of electrostatically actuated cantilevers without including the ge-
ometric nonlinearities. Ahmadian et al [Ahmadian 2009] employed a finite element formulation for
the dynamic analysis of nonlinear Euler cantilevers electrostatically actuated including main sources
of nonlinearities, but the resonant case has not been considered. Liu et al [Liu 2004] simulated an
electrostatically controlled cantilever microbeam and qualitatively showed period-doubling bifurca-
tion, chaos, Hopf bifurcation and strange attractors using the Poincaré map method which are hardly
exploitable by MEMS and NEMS designers.

In this chapter, the nonlinear dynamics of nanocantilever beams is modeled including both geo-
metric nonlinearities and nonlinear electrostatic terms up to the fifth order enabling the capture of
the mixed behavior (see section 5.4). Close-form solutions of the critical amplitude, respectively under
mechanical nonlinearities and electrostatic nonlinearities are deduced in order to compare the dynamic
ranges of nanocantilevers and clamped-clamped nanobeams. Moreover, the optimal DC driving volt-
age expression in function of the design parameters, is provided. It is a quick tool for NEMS designers
that can be used for the enhancement of resonant sensors performances based on the compensation of
nonlinearities.

The model is purely analytical based on the Galerkin discretization method coupled with a per-
turbation technique; the resonant case under primary excitation has been considered. The model is
compared with the experimentally measured frequency responses of electrostatically actuated nanocan-
tilevers that were driven beyond their linear dynamic range and they show good agreement.

8.2 Resonant nanocantilever based on electrostatic detection

In order to develop a model for micro/nanocantilever beams, a slender uniform flexible beam is consid-
ered as shown in Figure 8.1. The beam is initially straight and it is clamped at one end and free at the
other end, subject to viscous damping with a coefficient c̃ per unit length and actuated by an electric
load v(t) = V dc + V ac cos(Ω̃t̃), where V dc is the DC polarization voltage, V ac is the amplitude of
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the applied AC voltage, t̃ is time and Ω̃ is the excitation frequency. In addition, the beam follows the
Euler-Bernoulli beam theory, where shear deformation and rotary inertia terms are negligible.

Figure 8.1: Schema of an electrostatically actuated nanocantilever

8.2.1 Equation of motion

We follow a variational approach, based on the extended Hamilton principle and used by Crespo da
Silva and Glynn [Silva 1978a, Silva 1978b] and Crespo da Silva [Silva 1988a, Silva 1988b]. In order
to derive the nonlinear equation of motion describing the flexural vibration of a cantilever beam
electrostatically actuated, Equations (3.9) and (refCSG2) in chapter 3 are reduced to:

EI

{
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′′′′

+

[
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′
(
w̃
′
w̃
′′
)′]′}

+ ρbh ¨̃w + c̃ ˙̃w =
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2
ε
Cnb

[
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(8.1)

where primes and dots denote respectively the partial differentiation with respect to the arclength s
and to the time t̃. w̃ is the beam bending deflection, E and I are the Young’s modulus and geometrical
moment of inertia of the cross section. l and b are the length and width of the nanobeam, ρ is the
material density, h is the nanobeam thickness in the direction of vibration, g is the capacitor gap
width, and ε is the dielectric constant of the gap medium.

The first term in the left-hand side of Equation (8.1) is due to the nonlinear expression for the
curvature of the beam, while the first term in the right-hand side, which involves a double time deriva-
tive, is the nonlinear inertial term. The last term in Equation (8.1) represents an approximation
of the electrostatic force assuming a complete overlap of the area of the nanobeam and the station-
ary electrode where Cn is the fringing field coefficient computed using an existing analytical model
[Nishiyama 1990]. The boundary conditions are:

w̃(0, t̃) = w̃
′
(0, t̃) = w̃

′′
(l, t̃) = w̃

′′′
(l, t̃) = 0 (8.2)
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8.2.2 Normalization

For convenience and equation simplicity, we introduce the nondimensional variables:
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g
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l
, t =
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τ
(8.3)

where τ =
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h
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E
. Substituting Equation (8.3) into Equations (8.1) and (8.2), we obtain:
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w(0, t) = w
′
(0, t) = w

′′
(1, t) = w

′′′
(1, t) = 0 (8.5)

where primes and dots denote respectively the partial differentiation with respect to the dimensionless
arclength x and to the dimensionless time t. The parameters appearing in Equations (8.4) are:
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]2
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εl4
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(8.6)

8.2.3 Solving

The beam total displacement w(x, t) can be written as a sum of a static dc displacement ws(x) and a
time-varying ac displacement wd(x, t). However, for our devices and under low pressure, the measured
quality factors Q are in the range of 103−104 which makes the static deflection negligible with respect
to the dynamic deflection.

A reduced-order model is generated by modal decomposition transforming Equations (8.4) into
a multi-degree-of-freedom system consisting of ordinary differential equations in time. We use the
undamped linear mode shapes of the cantilever as basis functions in the Galerkin procedure. To this
end, we express the deflection as :

w(x, t) =

n∑
k=1

ak(t)φk(x) (8.7)

where ak(t) is the kth generalized coordinate and φk(x) is the kth linear undamped mode shape of the

straight microbeam, normalized such that
∫ 1

0
φkφj = δkj where δkj = 0 if k 6= j and δkj = 1 if k = j.

The linear undamped mode shapes φk(x) are governed by:

d4φk(x)

dx4
= λ2

kφk(x) (8.8)

φk(0) = φ′k(0) = φ′′k(1) = φ′′′k (1) (8.9)
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Here, λk is the kth natural frequency of the cantilever. The electrostatic force in Equation (8.4) is
expanded in a fifth order Taylor series, again, to capture 5 possible amplitudes for a given frequency
in the mixed behavior [Kacem 2009a]. Then, Equation (8.7) is substituted into the resulting equation,

Equation (8.8) is used to eliminate
d4φk(x)

dx4
, and the outcome is multiplied by φk and integrated from

x = 0 to 1 for k ∈ [1, n] ∩ N. Thus, a system of coupled ordinary differential equations in time is
obtained.

We did not multiply Equation (8.4) by the denominator of the electrostatic force as previously
done in the case of clamped-clamped beam resonators (see chapter 4) for the following reasons:

• A nonlinear operator such as w2 ∂4w
∂x4

is not artificially created and consequently the orthogonally
with respect to the linear undamped mode shapes is not lost. Moreover, this ensures a low
nonlinear coupling between the different modes.

• The mixed behavior is less pronounced in resonant cantilevers compared to clamped-clamped
resonators since its initiation amplitude is relatively high and close to pull-in. Consequently, the
nonlinearities higher than the fifth order are not physically interesting in the case of electrostat-
ically actuated cantilevers.

The DC voltage, which is generally at least ten times higher than the AC voltage, makes the second
harmonic cos(2Ωt) negligible with respect to the first harmonic cos(Ωt). Also, assuming that the first
mode is the dominant mode of the system, the study can be restricted to the case n = 1. Then, we
obtain:
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We recognize in the Equation (8.10) some canonical nonlinear terms such as the Duffing nonlinearity
as well as the parametric excitation (Mathieu term). However, the presence of other high order nonlin-
earities makes the described system in Figure 8.1 as a forced nonlinear cantilever under multifrequency
parametric excitation. This kind of equation is not so frequently treated in the literature: it includes
terms coming from mechanical and electrostatic nonlinearities.

To analyse the equation of motion (8.10), it is convenient to invoke perturbation techniques which
work well with the assumptions of "small" excitation and damping, typically valid in NEMS resonators.
To simplify the perturbation approach, in this case the averaging method, a standard constrained
coordinate transformation is introduced, as given by:

a1 = A(t) cos [Ωt+ β(t)] (8.11)

ȧ1 = −A(t)Ω sin [Ωt+ β(t)] (8.12)

ä1 = −A(t)Ω2 cos [Ωt+ β(t)] (8.13)
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A(t) and β(t) are slowly time-varying functions. In addition, since near-resonant behavior is the
principal operating regime of the proposed system, a detuning parameter σ is introduced, as given by:

Ω = ω1 + ξσ (8.14)

where ω1 =
√
λ2

1 −
Vac
Vdc
δ3 − 2VdcVac

δ3 and ξ is the small nondimensional bookkeeping parameter. Sepa-

rating the resulting equations and averaging them over the period 2π
Ω in the t-domain results in the

system’s averaged equations in terms of amplitude A and phase β given by:
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The steady-state motions occur when Ȧ = β̇ = 0, which corresponds to the singular points of Equations
(8.15) and (8.16).Thus, the frequency response equation can be written in its parametric form A =

K1(β),Ω = K2(β) as a function of the phase β. This set of two equations is easily implementable in
Matlab or Mathematica. This ability makes the model suitable for NEMS designers as a quick tool to
optimize the resonant sensors performance.

For a sake of clarity, using Equations (8.15) and (8.16), the frequency response equation can be
written in its implicit form as

1−
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where Λ1(A) and Λ2(A,Ω) are given by:
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The plots of Figure 8.2 were carried out with the following set of parameters: l = 12.5µm, h = 300nm,
b = 500nm and Vdc = 50Vac. g and Vac were used for parametric studies. This analytical model enables
the capture of all the nonlinear regimes in the resonator dynamics and describes the competition
between the mechanical hardening and the electrostatic softening behaviors. In addition, the model
permits the optimization of the resonator design by tuning the geometrical parameters in order to
cancel out nonlinearities as shown in Figure 8.2 for g = 1.8µm, Vdc = 5V and Q = ρbhl

ω1

τ c̃
= 104

(black curve). The obtained linear behavior enhances the detection limit of NEMS resonant sensors.

8.2.4 Critical amplitude

The critical amplitude is the oscillation amplitude Ac above which bistability occurs. Thus, Ac is the
transition amplitude from the linear to the nonlinear behavior.
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Figure 8.2: Analytical forced frequency responses for Q = 104 and several values of g and Vac. Wmax is
the beam displacement at its free end normalized by the gap g, Ac is the critical amplitude above which
bistability occurs, the different bifurcation points are {1, 2, 3, 4, 5, 6, 7, P}, the P point characterizes
the initiation of the mixed behavior.

8.2.4.1 The mechanical critical amplitude

By using Equations (8.15) and (8.16) when the mechanical nonlinearities (terms proportional to δ1

or δ2) are dominating the cantilever dynamics, the parametric form of the frequency response can be
written as:

Ω = 1 + ζ0 cotβ + 0.077δ1ζ
2
1 sin2 β (8.20)

A = 2ζ1 sinβ (8.21)

where ζ0 = 0.142206c and ζ1 =
0.445δ3

c

Mathematically, Acm is defined as the oscillation amplitude for which the equation
dΩ

dβ
= 0 (infinite

slope) has a unique solution βcm =
π

3
.Thus, the critical electrostatic force is deduced as ζ1c =

4.456
√
ζ0√

δ1
.

The critical amplitude Acm is obtained by substituting the critical electrostatic force into Equation
(8.21) at the point β =

π

2
and multiplying by the gap g and the value of the first linear undamped

mode shape function φ1 at the free point of the beam. Finally, we obtain the following close-form
solution:

Acm = 6.3
l√
Q

(8.22)

Remarkably, the mechanical critical amplitude of a resonant cantilever depends only on its length
and its quality factor. However, for a clamped-clamped resonator, the mechanical critical amplitude
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is Acm = 1.68
h√
Q

(details are in chapter 5); it depends only on the resonator width in the direc-

tion of vibration and its quality factor. For a given quality factor, the ratio between both critical

amplitudes is Rc =
Ac−fcm

Ac−ccm
= 3.75

l

h
= 3.75λe, where λe is the slenderness ratio of the beam. While

the resonator is sufficiently slender to validate the Euler-Bernoulli theory, the dynamic range ratio
between cantilevers and clamped-clamped beams is very high (> 20) which makes nanocantilevers an
advantageous candidate for NEMS resonators-based applications.

8.2.4.2 The electrostatic critical amplitude

In this case, the electrostatic nonlinearities in Equations (8.15) and (8.16) are supposed to be dominat-
ing the cantilever dynamics. Considering only nonlinear terms up to the third order, while neglecting
the parametric terms and the terms proportional to V 2

ac, the form of the frequency response can be
written as:
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A =
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cω1
sinβ (8.24)

Mathematically, Ace is defined as the oscillation amplitude for which the equation
dΩ

dβ
= 0 has a unique

solution βce = −π
3
.Thus, the critical electrostatic AC voltage is deduced as:

Vacc = 11.2Vdc
δ3

3

c3ω3
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(8.25)

The electrostatic critical amplitude Ace is obtained by substituting Equation (8.25) into Equation
(8.24) at the point β =

π

2
and multiplying by the gap g and the value of the first linear undamped

mode shape function φ1 at the free point of the beam.
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Unlike the mechanical critical amplitude (Equation (8.22)), the electrostatic critical amplitude of a
resonant cantilever depends on its length l, its width in the direction of vibration h, the gap g, the
DC voltage as well as the quality factor Q.

8.2.4.3 Engineering optimization:

It is the first time that close-form expressions of the mechanical and electrostatic critical amplitudes
are provided in the case of electrostatically actuated cantilevers. Hence, it constitutes an interesting
tool to set the optimal DC drive voltage in order to keep a linear behavior up to and beyond the critical
amplitude. The hysteresis suppression is based on the counterbalance between hardening geometric
nonlinearities and softening electrostatic nonlinearities.

The mixed behaviour, captured by including the fifth order nonlinear electrostatic terms, is less
pronounced than in electrostatically driven clamped-clamped beams. Therefore, while neglecting the
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fifth order terms, the compensation of cantilevers nonlinearities based on the critical amplitude ex-
pressions can be written as

Acm = Ace (8.27)

Thus, assuming a constant quality factor Q, the optimal DC drive voltage is

VdcOP =

√
1

2

√
1.65 ∗ 1039g14h6

l16
+

3.2 ∗ 1042g10h6

l12
− 8.1 ∗ 1019g7h3

l8
(8.28)

In reality, the overall quality factor may decrease when Vdc increases because of the ohmic losses
from the electrons moving on and off the resonator due to capacitive coupling to a nearby electrode
[Sazonova 2006]. This ohmic contribution adds up to the other sources of dissipation (thermomechan-
ical, anchor losses, adsorption/desorption . . . ) like Q−1

total = Q−1
thermo +Q−1

anchor + ...+Q−1
ohmic and may

be expressed as
(
Q−1
ohmic = 1

πω
R(C′Vdc)

2

meff

)
[Sazonova 2006] where C ′ is the gradient of the capacitance,

R is the output resistor and meff is the effective mass of the considered mode.
Then, the quality factor should be changed to 1

Q−1+Q−1
ohmic

, for the electrostatic critical amplitude

and thus, the optimal DC drive voltage can be deduced using the same Equation (8.27).
In the particular case of Figure 8.2, the mechanical critical amplitude is Acm = 0.2g.When g =

1.8µm and for a quality factor of Q = 104, the optimal DC drive voltage taking into account the ohmic
losses, is around 5V . At this voltage, as shown by the black curve of Figure 8.2, the peak amplitude
is linear and beyond the critical amplitude (Apeak = 0.8g). Therefore, the enhancement rate of the

sensor performance
(
Apeak
Ac

)
is around 4.

Remarkably, the electrostatic critical amplitude is independent on the AC voltage. This is due to
the use of a low AC voltage compared to the DC voltage for the cantilever actuation which makes
the contribution of Vac in the electrostatic Duffing term negligible. Hence, in this configuration,
the compensation of the nonlinearities is independent on the AC voltage. This interesting result
makes possible the enhancement of the nanocantilever performances up to very high displacements
comparable to the gap in the case of an electrostatic actuation by increasing the AC voltage, and
limited by an upper bound instability such as the pull-in [Nayfeh 2007].

The aim of this model is to provide practical analytical rules for MEMS and NEMS designers in
order to optimize resonant sensor performances. Hence, it is important to check its validity experi-
mentally on nanocantilever electrostatically actuated.

8.2.5 Fabrication: Monolithic integration of nanocantilevers with CMOS

Practical applications of nanocantilever beams benefit much from on-chip signal processing, whereby
optimal performance is achieved in case of monolithic integration with CMOS [Verd 2006, Verd 2008,
Arcamone 2008, Arcamone 2007]. Such NEMS/CMOS made of silicon combine unique sensing at-
tributes, thanks to the high resonance frequency mobile mechanical part, with the possibility to elec-
trically detect the output signal in enhanced conditions. For those reasons, the nanobeams that are
experimentally studied in this work have been monolithically integrated with a dedicated CMOS cir-
cuit to enhance the capacitive readout of their resonance (’motional’) current. This heterogeneous
integration has required a very specific fabrication process described hereafter. More details about
the process and the functionality of this NEMS/CMOS system can be found in [Arcamone 2008] and
[Arcamone 2007].
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Figure 8.3: Optical picture of the [NEMS resonator / CMOS readout circuit] system. The scanning
electron micrograph zooms the cantilever beam itself and its driving electrode.

The cantilevers fabrication process used here has been performed at CNM-IMB (CSIC) in Barcelona
(Spain) and at EPFL in Lausanne (Switzerland). It is based on a post-processing approach in which
CMOS circuits are first fabricated according to a standard CMOS technology, then NEMS resonators
are subsequently patterned by nanostencil lithography (nSL) [van den Boogaart 2004] and fully fab-
ricated. nSL is a shadow-mask based, full-wafer and parallel nanopatterning technique providing a
resolution down to 200nm and a high fabrication throughput.

After concluding the fabrication of the CMOS circuits, dedicated areas (located close to each
circuit, 1 per circuit) are selectively patterned with an 80nm thick aluminum layer by nSL. The
following step is a reactive ion etching (RIE) of silicon that transfers the aluminum patterns to the
polysilicon structural layer of the resonators. The last step consists in releasing the resonators and
removing the Al mask by a local wet etching based on HF acid. The circuit is robustly protected
during this etching by an adequately annealed photoresist layer. This entire process is described in
[Arcamone 2008].

CMOS wafers containing each 2000 fully fabricated nanomechanical devices of diverse types have
been obtained with that process; all connected to dedicated CMOS circuits for signal interfacing
and amplification. Figure 8.3 depicts a fully fabricated nanocantilever beam (optimized for in-plane
motion) which is monolithically integrated with its dedicated CMOS readout circuit.
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8.2.6 Electrical characterization of nanocantilever beams

Electrostatic actuation and capacitive detection are used for detecting in-plane oscillations (in the
MHz range) of those Si nanocantilever resonators. When the resonator is electrostatically driven by
a DC + AC voltage, the readout electrode (i.e. the cantilever itself in our case, see Figure 8.3), elec-
trically connected to the closely located CMOS circuit input, collects a capacitive current in enhanced
conditions since parasitic capacitances at the NEMS output are drastically reduced to the few fF

range. The motional current IM , which is a fraction of the total NEMS output current IMEMS , is
specifically generated by the variation of electrode/resonator capacitance due to the mechanical motion
itself. The other part, the background current IBG, is related to the capacitive feedthrough between
the NEMS input and output electrodes, one part of it being the ’static’ capacitance between the can-
tilever and the in-front electrode, the other part being the parasitic fringing capacitance between both.

Figure 8.4: Electrical scheme of the monolithic NEMS/CMOS system.

The dedicated CMOS readout circuit ensures a constant voltage biasing at the resonator output,
while it amplifies the readout current by a factor 100 and converts it to an output voltage according
to an external load resistor RLOAD (see Figure 8.4). The articles [Arcamone 2008, Arcamone 2007]
give more details on the circuitry and the readout scheme.

The mechanical frequency response of those nanocantilevers has been electrically characterized
with a network analyzer (AGILENT E5100A) in air (with a probe station) and vacuum (with wire-
bonded samples). In both configurations, the capacitive detection scheme including the CMOS circuit
successfully transduced into an electrical signal the mechanical motion corresponding to the funda-
mental in-plane flexural resonance mode of vibrating cantilevers. The data collected by the network
analyzer, in terms of magnitude and phase, are under the form:

RNA(f) = 20 log
VOUTAC
VINAC

(8.29)

The NEMS resonator total current (at the cantilever output, not at the circuit output) being:

IBG + IM = IMEMS =
VINAC

100RLOAD
10

RNA
20 (8.30)
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The modulus and argument of the NEMS resonator electrical admittance Y can be calculated based
on the circuit characteristics and the network analyzer response as follows:

|Y | ≈ IMEMS

VINAC
=

10
RNA
20

100RLOAD
(8.31)

arg(Y ) = P −∆ϕ (8.32)

where P is the phase signal as measured by the network analyzer and ∆ϕ is the phase delay introduced
by the circuit; in our case ∆ϕ ≈ π

4 . In the 2-port configuration of these measurements, a NEMS
cantilever can be modeled as two parallel branches (see Figure 8.4):

• a capacitive branch (of capacitance CP ), of admittance YBG, corresponding to the background
signal, in which IBG flows. YBG is given by: YBG = sCP with s = jω.

• an RLC branch of admittance YM , corresponding to the resonating part, in which IM flows. YM
is given by: YM = Cs

LCs2+RCs+1

The total admittance is then Y = YBG+YM . The theoretical model described in this paper is expressed
in terms of YM only, i.e. the term describing the oscillations. Therefore it is required to apply a simple
data treatment to extract the motional admittance YM from the measured admittance Y , YM being
given by: YM = Y − YBG = Y − sCP . Hence, its modulus is given by:

|YM | =
√

[|Y | cos(arg(Y ))]2 + [|Y | sin(arg(Y ))− ωCP ]2 (8.33)

CP can be estimated by considering the electrical response RNA−OOR at a given frequency fOOR that
is out of resonance, then CP is given by:

CP =
1

2πfOOR

10
RNA−OOR

20

100RLOAD
(8.34)

Figure 8.5(a) shows the raw electrical response RNA around the mechanical resonance of cantilever
A (l = 14.5µm, b = 460nm, h = 400nm, g = 600nm) as directly measured by the network analyzer.
Figure 8.5(b) shows the motional admittance YM extracted from the data of Figure 8.5(a) according
to Equation (8.33). Using the developed model, the motional admittance can be computed as follows:

IM = YMVac =
dCres
dt

Vdc (8.35)

dCres
dt

=

∫ 1

0

bCnε0φ1(x)ȧ1(t)

(1− a1(t)φ1(x)) 2
dx (8.36)

The derivative of the resonator capacitance with respect to the dimensionless time t has been expanded
in a fifth order Taylor series which enables the analytical computation of the integral in Equation (8.36).
Then, Equation (8.11) and (8.12) are substituted into the outcome equation and the trigonometric
functions are linearized. Since the electrical measurement filters out all frequency components of
the readout signal except which of the drive frequency, the first harmonic of the Fourier transform
of Equation (8.35) gives the motional current frequency response including the coupling between
the dynamics of the resonator and the read-out voltage (Equation (8.36)). Although this coupling
brings extra nonlinear terms, their contribution happens to be negligible and the read-out voltage is
proportional to the dynamic deflection.
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Figure 8.5: (a): Raw electrical response RNA around the mechanical resonance of a nanocantilever.
This is the response as measured by the NA of the full NEMS-CMOS system. (b): Motional admittance
frequency response extracted from the data of Figure 8.5(a) according to Equation (8.33)

8.2.6.1 Measurements in air

It is important to underline that all the inputs of the model are known physical parameters including
the fringing field coefficients computed using the analytical formulae [Nishiyama 1990], except the
measured quality factor Q and the parasitic capacitance CP . So as to evaluate the model, Q has
been fitted using linear curves. For a fully analytical prediction, the quality factor may be computed
using existing models taking into account the thermoelastic damping [Lifshitz 2000], the support loss
[Hao 2003] and the surface loss [Yang 2002]. Such a computation gives results in good agreement with
experimental measurements.

Figure 8.6 shows the characteristic responses analytically computed and electrically measured of
cantilever A (l = 14.5µm, b = 460nm, h = 400nm, g = 600nm) operated in air for several DC
voltages. Due to some mass that has been deposited at the free end of the cantilever, its resonance
frequency was shifted from 2MHz down to 1.5MHz. The first linear curve (Vdc = 16V ) is fitted by
adjusting the parasitic capacitance CP and the quality factor Q. Then, the same value of CP has been
used for the three other curves while adjusting the Q factor for each one.

Figure 8.6 shows that the resonance frequency of the cantilever can be tuned by varying the applied
DC voltage and a clear spring-softening effect is seen with increasing Vdc. The analytical curves are
in good agreement with experimental results and the critical amplitude predicted analytically for a
21V DC voltage has been experimentally confirmed as shown in Figure 8.6 which demonstrates the
accuracy and performance of the model. Out of resonance, the experimental curves slightly increase
which is due to the variation of ∆ϕ during the measurements.

When experiments are performed in air, in order to reach detectable signals, the applied DC

voltage has to be high (Vdc > 10V ). As the quality factor is low (15 < Q < 20), the dynamic behavior
of the nanocantilever is dominated by the nonlinear softening electrostatic forces which significantly
increases the critical amplitude (Equation 8.26).

8.2.6.2 Measurements in vacuum

The chip containing cantilever B (l = 14.5µm, b = 570nm, h = 260nm, g = 820nm) has been wire
bonded and it has been measured in a vacuum chamber under a pressure of 10−2mBar. The fits have
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Figure 8.6: Analytical and measured motional admittance frequency curves (in air) of cantilever A.
Wmax is the cantilever displacement at the its free end normalized by the gap.

been made in the same way as for the experimental curves measured in air. Figure 8.7 shows two
measured frequency responses and their predicted analytical curves.

Due to the high quality factors obtained in vacuum, low drive voltages are enough to polarize
the device: 1 or 2V DC added to a 0.092V AC. A 2V DC polarization is sufficient to provoke a
nonlinear behavior yielding almost vertical slopes both in magnitude and in phase. The extracted
Q factor decreases from 9150 down to 6650 for 1 and 2V DC polarization due to the ohmic losses
[Sazonova 2006].

The high quality factors reduce the critical amplitude Ac as shown in Figure 8.7 which confirms
the accuracy of the model beyond the critical amplitude (second curve with 2V DC). The effect
of the spring softening is also present due to the electrostatic negative stiffness. Even with high
quality factors, the cantilever B displays a softening behavior. This can be explained by the fact
that the nonlinearities coming from the electrostatic force are stronger than the mechanical hardening
nonlinearities due to the length of the beam and the small gap thickness.

In air, NEMS cantilever have a large critical amplitude (75% of the gap as shown in Figure 8.6 for
cantilever A) which implies a large dynamic range compared to clamped-clamped NEMS resonators
(their critical amplitude could be lower than 1% of the gap). In addition, even in vacuum with high
quality factors, the critical amplitude of nanocantilevers still interestingly large (50% of the gap as
shown in Figure 8.7 for cantilever B). This important property makes cantilevers the best candidates
for resonant mass and gas sensing devices.

The electric characterization of the NEMS/CMOS devices earlier described was an important
step towards the validation of the nonlinear model for NEMS cantilevers. As previously shown, the
competition between both behaviors (softening and hardening) is controlled by the design parameters,
the quality factor as well as the DC voltage. The model shows that for appropriate values of those
parameters, it is possible to suppress the hysteresis and to obtain an optimal design for which the
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Figure 8.7: Analytical and measured motional admittance frequency curves (in vacuum) of cantilever
B. Wmax is the cantilever displacement at the its free end normalized by the gap.

mechanical and the electrostatic nonlinearities would be equilibrated. The next step is the complete
validation of the model through the compensation of the nonlinearities which is the subject of the next
section.

8.3 Resonant nanocantilever based on piezoresistive detection

Within the framework of the project CARNOT NEMS financed by the CARNOT institute, resonant
NEMS gas and mass sensors have been designed by PhD student Sébastien Labarthe. The process flow
was developed by Carine Marcoux and the fabrication was done in the clean rooms of LETI. Among
these fabricated devices, a particular resonant nanocantilever based on piezoresistive detection is the
scope of this section.

8.3.1 Device description

The device is composed of a fixed-free lever beam and two piezoresistive gauges connected to the
cantilever at a distance d = 0.15l from its fixed end. This value was chosen to maximize the stress
inside the gauges due to the cantilever motion (Figure 8.8). The gauges have been etched along
the < 110 > direction in order to benefit from the high gauge factor associated with p++ doped
silicon. A driving electrode was patterned along one side of the resonant cantilever for electrostatic
actuation. The NEMS cantilever is actuated electrostatically at the primary resonance of its first
linear undamped mode shape. The cantilever oscillation induces stress inside the piezoresistive gauges
and the collected strain is transduced into a resistance variation due to the piezoresistive effect. Thus,
the sensor frequency response is obtained via a piezoresistive read-out perfectly decoupled from the
capacitive actuation of the resonator. The amount of molecules absorbed by the functionalized surface
of the cantilever changes its effective mass which lowers its frequency resonance. By evaluating the
frequency shift, the mass of the added species can be estimated. Thus, the studied device can be used
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either as a mass or a gas sensor.

Figure 8.8: Resonant nanocantilever based on piezoresistive detection.

8.3.2 Transduction

The cantilever motion is detected by using the piezoresistive transduction principle [Mo 2007]. The
piezoresistive transducers consist on semiconducting silicon p++ (boron) doped suspended nanogauges.
The rationale for using piezoresistive doped silicon nanogauges is related to the giant piezoresistance
effect of these materials appearing for sub-100nm dimensions [He 2006]. They are suitable for in-
tegrated transducers and for self-sensing devices [L 2006]. The figure of merit characterising these
materials is the piezoresistive gauge factor γ defined as:

γ = (1 + ν) +
1

εl

∆ρ

ρ
(8.37)

where ρ is the resistivity, εl the gauge elongation and ν the Poisson ratio. The gauge factor relates
the mechanical strain applied on the gauges to its relative resistance change. The resistance change
depends on two effects. The first term in Equation (8.37) is a geometrical consequence and is associated
with elastic deformation, while the latter is related to the modification of the energy bands inside a
crystal and thus altering its resistivity. In metals only the first term participates which ranges from
1-2 and is the way chosen by Roukes et al [Yang 2006]. In semiconductors, the second term provides
a significant contribution which was shown to be more than 3 orders of magnitude higher [He 2006].
The force applied to the lever is amplified by the appropriate design and transferred to the gauges.
This design makes possible to exploit a first order piezoresistance effect with the suspended gauges
acting as strain collectors instead of second order one [He 2008]. We should notice that there is no
need for further metallization layers which lead to additional damping and energy dissipation. The
strain collected by the gauges is transduced into a resistance variation due to the piezoresistance effect
proportional to:

∆R(Ω)

R
= γεl(Ω) (8.38)
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8.3.3 Equation of motion

We follow a variational approach, based on the extended Hamilton principle [Silva 1978a, Silva 1978b,
Silva 1988a, Silva 1988b] in order to derive the nonlinear equations of motion describing the flexural
vibration of the device described in Figure 8.8. The cantilever bending deflection w̃j is decomposed
into w̃0 for s̃ ∈ [0, d] and w̃1 for s̃ ∈ [d, l].

EcIc

{
w̃j
′′′′

+

[
w̃j
′
(
w̃j
′
w̃j
′′
)′]′}

+ ρbh ¨̃wj + c̃ ˙̃wj =

−1

2
ρbh

{
w̃j
′
∫ s

(1−j)d+jl

[
∂2

∂t̃2

∫ s1

jd
(w̃j

′
)2ds2

]
ds1

}′

+
j

2
ε
Cnb

[
V dc+ V ac cos(Ω̃t̃)

]2

(g − w̃j)2
H(s+ a− l) (8.39)

where s is the arclength, Ec and Ic are the Young’s modulus and moment of inertia of the nanocantilever
cross section. l and h are the length and width of the nanobeam. b is the device thickness, ρ is the
material density, g is the capacitor gap width, and ε is the dielectric constant of the gap medium.
The last term in Equation (8.39) represents an approximation of the electrostatic force assuming a
partial distribution along the nanobeam length. H is a Heaviside function and Cn is the fringing field
coefficient. The boundary conditions are:

w̃0(0, t̃) = w̃0
′
(0, t̃) = w̃1

′′
(l, t̃) = w̃1

′′′
(l, t̃) = 0 (8.40)

w̃0(d, t̃)− w̃1(d, t̃) = w̃0
′
(d, t̃)− w̃1

′
(d, t̃) = 0 (8.41)

w̃0
′′
(d, t̃)− w̃1

′′
(d, t̃) = − Ig

Iclg
w̃0
′
(d, t̃) (8.42)

w̃0
′′′

(d, t̃)− w̃1
′′′

(d, t̃) = −2hgb

Iclg
w̃0(d, t̃) (8.43)

where t̃ is time, hg and Ig are the width and the moment of inertia of the gauge cross section. Equations
(8.42) and (8.43) are obtained by writing the force and torque moment equilibrium equations at the
point s = d.

Tsc|d + 2Tag|d = −∂Mbc

∂s
|d + 2Ebhgεg|d = EIc

[
w̃0
′′′

(d, t̃)− w̃1
′′′

(d, t̃)
]

+2Ebhg
w̃0(d, t̃)

lg
= 0 (8.44)

Mbc|d +Mg|d = EIc

[
w̃0
′′
(d, t̃)− w̃1

′′
(d, t̃)

]
− EIg

w̃0
′
(d, t̃)

lg
= 0 (8.45)

where Tsc is the shear force applied to the cantilever, Mbc is its bending moment, Tag is the axial force
applied to the gauges and Mg is its corresponding torque moment.

8.3.4 Normalization

We introduce the nondimensional variables:

wj =
w̃j
g
, x =

s

l
, t =

t̃

τ
(8.46)
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where τ =
2l2

h

√
3ρ

Ec
. Substituting Equation (8.46) into Equations (8.39-8.43), gives:

wivj + ẅj + cẇj + δ1

[
w
′
j

(
w
′
jw
′′
j

)′]′
=

−δ2

{
w
′
j

∫ x

(1−j) d
l
+j

[
∂2

∂t2

∫ x1

j d
l

(w
′
j)

2dx2

]
dx1

}′

+jδ3
Vdc
Vac

[
1 + Vac

Vdc
cos(Ωt)

]2

(1− wj)2
H(x+

a

l
− 1) (8.47)

w0(0, t) = w
′
0(0, t) = w

′′
1 (1, t) = w

′′′
1 (1, t) = 0 (8.48)

w0(
d

l
, t)− w1(

d

l
, t) = w

′
0(
d

l
, t)− w′1(

d

l
, t) = 0 (8.49)

w
′′
0 (
d

l
, t)− w′′1 (

d

l
, t) = − Igl

Iclg
w
′
0(
d

l
, t) (8.50)

w
′′′
0 (
d

l
, t)− w′′′1 (

d

l
, t) = −2hgbl

3

Iclg
w0(

d

l
, t) (8.51)

The parameters appearing in Equation (8.47) are:

c =
c̃l4

EcIcτ
, δ1 =

[g
l

]2
, δ2 =

1

2

[g
l

]2

δ3 = 6VacVdc
εl4

Ech3g3
, Ω = Ω̃τ

(8.52)

8.3.5 Solving

Similarly to the cantilever model presented in section 8.2, the static deflection is negligible with
respect to the dynamic deflection. Then, a reduced-order model is generated by modal decomposition
(Equation (8.7)) transforming Equation (8.47) into a multi-degree-of-freedom system consisting in
ordinary differential equations in time. We use the undamped linear mode shapes of the device
described in Figure 8.9 as basis functions in the Galerkin procedure.

To do so, first we determine the linear bending modes φk of the mechanical structure. By analogy to
the cantilever deflection, the linear undamped bending modes of the device φk are defined as piecewise
functions:

x ∈
[
0,
d

l

]
φ0k(x) = A0k cos

√
λkx+B0k sin

√
λkx+ C0k cosh

√
λkx+D0k sinh

√
λkx (8.53)

x ∈
[
d

l
, 1

]
φ1k(x) = A1k cos

√
λkx+B1k sin

√
λkx+ C1k cosh

√
λkx+D1k sinh

√
λkx (8.54)

Here, λk is the kth natural frequency of the mechanical structure. φ0k and φ1k satisfy the boundary
conditions defined in Equations (8.48-8.51). Thus, the constants Ajk, Bjk, Cjk and Djk are solutions
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of the following algebraic system {S}:

A0k + C0k = 0 (8.55)

B0k +D0k = 0 (8.56)
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The non trivial solution of the algebraic system {S} is:

det [S] = 0 (8.63)

The λk which are solutions of the transcendental Equation (8.63) are listed in table 8.1.

Mode k λk
1 4.866
2 30.496
3 85.389
4 167.328

Table 8.1: Approximate solutions of det {S} = 0

Then, seven equations from the algebraic system {S} are used in order to determine the seven
constants (A1k, B0k, C0k, D0k, B1k, C1k, D1k) in function of A0k. Thus, the mathematical form of the
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eigenvectors is given by:

φ0k(x) = A0k cos
√
λkx+ f1 (A0k) sin

√
λkx+ f2 (A0k) cosh

√
λkx+ f3 (A0k) sinh
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√
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These functions are a modal basis for the scalar product:

〈u, v〉 =

∫ 1

0
u(x)v(x)dx (8.66)

In order to normalize this basis, A0k is computed as follows:
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[∫ d
l

0

[
φ0k(x)

A0k

]2

dx+

∫ 1

d
l

[
φ1k(x)

A0k

]2
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]− 1
2

(8.67)

For the studied mechanical structure, the first mode is then:

Figure 8.9: The first four linear undamped mode shapes of the device described in Figure 8.8.

φ01(x) = 0.00038 cos (2.21x)− 0.0035 sin (2.21x)− 0.00038 cosh (2.21x) + 0.0035 sinh (2.21x) (8.68)

φ11(x) = −1.284 cos (2.21x) + 0.401 sin (2.21x) + 1.413 cosh (2.21x)− 1.206 sinh (2.21x) (8.69)
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The electrostatic force in Equation (8.47) is expanded in a fifth order Taylor series, and Equation (8.7)

is substituted into the resulting equation. Then, Equation (8.8) is used to eliminate
d4φk(x)

dx4
, and the

outcome is multiplied by φk and integrated from x = 0 to 1 for k ∈ [1, n] ∩ N. Thus, a system of
coupled ordinary differential equations in time is obtained.

Figure 8.9 shows that between the clamped end of the cantilever and the gauges, the vibrations
of the sensor are relatively negligible with respect to its dynamics between the gauges and the free
end of the cantilever for the first four modes. Consequently, the nonlinear coupling between the mode
shapes is negligible for x ∈ [0, d] and when the sensor is actuated on its first mode, its dynamics can be
approximated by the dynamics of a cantilever of length l−d. Hence, the expansion of the electrostatic
force in a fifth order Taylor series as previously explained in section 8.2.

Assuming that the first mode is the dominant mode of the system, the study can be restricted to
the case n = 1. Then, we obtain:
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The averaging method is used in order to solve the nonlinear Mathieu-Duffing Equation (8.70). It
permits the transformation of the reduced order nonlinear second order Equation (8.70) into two first
order nonlinear ordinary differential equation that describe the amplitude and phase modulation of
the system frequency response.

For Vac << Vdc, the second harmonic terms are neglected. The resulting phase and amplitude
averaged equations over the period 2π

Ω and around the primary resonance (Ω = λ1 + ξσ) are:

Ȧ = ξ

[
− c

2
A− δ3 sinβ

λ1

(
0.716 + 1.2A2 + 3.11A4

)]
+O(ξ2) (8.71)
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2
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− Vdcδ3
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2
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2
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+ε

[
δ3 cosβ
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− 3.61A− 15.55A3

)]
+O(ξ2) (8.72)

The steady-state motions occur when Ȧ = β̇ = 0, which corresponds to the singular points of Equations
(8.71) and (8.72). Thus, the frequency-response equation can be written in its implicit form as:

(
A
(

11.84 + 47.3A2δ1 + Vdc
Vac

(
−1− 4.14A2 − 17.32A4

)
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1
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1
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((0.72 + 3.61A2 + 15.55A4) δ3)

2

+

[
cAλ1

2 (0.72 + 3.61A2 + 15.55A4) δ3

]2

= 1 (8.73)
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The normalized displacement Wmax with respect to the gap at the middle of the beam and the drive
frequency Ω can be expressed in function of the phase β. Thus, the frequency response curve can be
plotted parametrically as shown in Figure 8.10 for the following parameters: l = 5µm, b = 160nm,
h = 300nm, lg = 500nm, hg = 80nm, a = 350nm and Vac = 0.1Vdc. The gap g and the DC voltage
Vdc were used for parametric studies.
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Figure 8.10: Analytical forced frequency responses of the resonant piezoresistive device presented in
Figures 8.8 and 8.11 for a quality factor Q = 104. Wmax is the displacement of the beam normalized
by the gap g at its free end.

8.3.6 The critical amplitude

The critical amplitude is the oscillation amplitude Ac above which bistability occurs. Thus, Ac is the
transition amplitude from the linear to the nonlinear behavior.

8.3.6.1 The critical mechanical amplitude

Here, the mechanical nonlinearities are assumed to dominate the NEMS dynamics. Moreover the
nonlinearities acting between the fixed end of the cantilever and the nanogauges are negligible since
the sensor vibrations in this part are close to zero for the first linear undamped mode shape as shown
in Figure 8.9. Therefore, the NEMS dynamics is equivalent to a resonant nanocantilever of length
l − d. Hence, using Equation (8.22), the critical mechanical amplitude can be written as:

Acm = 6.3
l − d√
Q

(8.74)
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8.3.6.2 The critical electrostatic amplitude

In this case, the mechanical nonlinearities are neglected. Also, the electrostatic nonlinearities are acting
only on the sensor part comprised between the gauges and cantilever the free end. By considering
only nonlinear terms up to the third order, while neglecting the parametric terms and the terms
proportional to V 2

ac, the critical electrostatic amplitude is deduced from Equation (8.26).:

Ace = 2 ∗ 109g
5
2

h

(l − d)
√
QVdc

(
7.5 ∗ 107h2

(l − d)4
−

3.8 ∗ 10−15V 2
dc

g3h

) 1
4

(8.75)

8.3.6.3 Engineering optimization

As shown in Figure 8.10, when g << h, the mechanical nonlinearities are negligible with respect to
the electrostatic nonlinearities. Then, The NEMS forced frequency curve displays a softening behavior
(red curve of Figure 8.10) and the critical amplitude is given by Equation (8.75) which depends on
the quality factor Q, the cantilever width h, the gap g, the DC voltage Vdc and the distance between
the piezoresistive nanogauges and the cantilever free end l− d. In this case, the open-loop stability of
the NEMS resonant sensor is limited by an oscillation amplitude around 60nm.

If g >> h, the electrostatic nonlinearities are negligible with respect to the mechanical nonlinear-
ities. Then, The NEMS forced frequency curve displays a hardening behavior (blue curve of Figure
8.10) and the critical amplitude is given by Equation (8.74) which only depends on the quality factor Q
and the distance between the piezoresistive nanogauges and the cantilever free end l− d. In this case,
the open-loop stability of the NEMS resonant sensor is limited by an oscillation amplitude around
270nm: more than four times higher than the previous case. Thus the resolution is enhanced by a
factor Πenh = 4 compared to the first case.

Hence, designing NEMS cantilevers displaying softening behaviors is disadvantageous and can
significantly alter the sensor resolution especially when this supposes that we are able to fabricate
structures with very small gaps which is rather awkward. Indeed, assuming that the upper bound
limit which is the pull-in occurs at an amplitude of the gap order, even if the cantilever can vibrate
linearly up to very high amplitudes comparable to the gap, the sensor performances can be altered due
to its small dimensional amplitude limited by the gap. In other words, enhancing the dimensionless
critical amplitude (red curve of Figure 8.10) is not important when the gap is significantly reduced.

The optimal gap is gp = 600nm for which the mechanical and the electrostatic nonlinearities
are balanced which permits the linearization of the frequency response as shown in Figure 8.10 (black
curve). For this design which is technologically feasible, the resolution is enhanced by a factor Πenh = 9,
compared to first case.

8.3.7 Fabrication

The NEMS device presented in Figure 8.11 was fabricated using CMOS compatible materials with
nano-electronics state-of-the-art lithography and etching techniques. We used a 200mm silicon-on-
insulator (SOI) wafer of < 100 > orientation with a 160nm thick top silicon structural layer (resistivity
≈ 10 Ωcm) and a 400nm thick sacrificial oxide layer. The top silicon layer was implanted with
boron ions (p-type) through a thin layer of thermal oxide. Homogenous doping (3.1019 cm−3) in
the whole thickness of the top silicon was obtained through specific annealing step (for material
reconstruction and doping activation), resulting in top layer resistivity of approximately 6mΩcm. A
hybrid e-beam/DUV lithography technique [Colinet 2009] was used to define the nano-resonators and
electrode pads, respectively. Top silicon layer was etched by anisotropic reactive ion etching (RIE). In
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order to decrease the lead resistances, the interconnecting leads have been thickened with a 650nm

thick AlSi layer, a typical metal for CMOS interconnections process. Finally, the nanoresonators have
been released using a vapor HF isotropic etching to remove the sacrificial layer oxide beneath the
structures. The main process steps are summarized in Figure 8.12.

Figure 8.11: SEM image of the in-plane piezoresistive structure.

8.3.8 Electrical characterization

The strain collected by the gauges is transduced into a resistance variation due to the piezoresistance
effect proportional to:

∆R(Ω)

R
= γεl(Ω) = γ

1

24
l3h2

ggE
[
φ′′′11(d)− φ′′′01(d)

]
a1(Ω) (8.76)

where R is the gauge resistance and E the Young’s modulus. The displacement frequency response
a1(Ω) can be written in its parametric form in order to plot parametrically the resistance frequency
response with respect to the phase β.

8.3.8.1 ω down-mixing technique

The devices under test were connected to a radio frequency (RF) circuit board through wire bonding
and loaded to a RF vacuum chamber for room temperature measurements. The beam is actuated
electrostatically through capacitive coupling and detected through piezoresistive displacement trans-
duction. The electrical read-out at high frequency is complicated by parasitic capacitances which
change the expected behavior of the electrical circuit. In order to avoid parasitic impedances and to
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Figure 8.12: In-plane piezoresistive structure process flow

easily reach the nonlinear regime, an ω down-mixing technique has been used to read-out the resistance
variation at a lower frequency ∆ω [Bargatin 2005] (a schematic of the setup is shown in Figure 8.13).
The change in resistance ∆R(ω) is read by applying a proper bias Ib(ω−∆ω) to the gauges which are
acting as signal mixers and measuring the potential at the bridge center. The output voltage at low
frequency is proportional to:

Vout(∆ω) ∝ ∆R cos(ωt).Ib cos ((ω −∆ω)t) =
1

2
Ib.∆R. cos(∆ωt) (8.77)

The two gauges situated on opposite sides of the lever work in tensile and compressive strain alterna-
tively offering a double advantage. Firstly they allow making a differential measurement at the centre,
working both at the same time, thus contributing twice on the output signal. Second this flexible
design constitutes a balanced bridge configuration which permits suppression of the background at
the middle point by applying two 180◦ out of phase voltage signal to the gauges extremities. The
adequate decoupling of actuation and detection by using orthogonal principles as well as separating
them in frequency has a direct consequence on the background reduction. As shown in Figure 8.14, a
huge signal of the order of 2− 3mV at resonance and a very low background was obtained with these
devices giving rise to a signal to background ratio of more than 60 dB.

Several measurements were performed on the device for a fixed bias voltage (Vbias = 1.56V peak-
peak). The cantilever displacement depends on the applied electrostatic force which is proportional
to F = 1

2C (Vdc + V ac cos(ωt))2. This force will have an AC (Fac(ω)) and a static (Fdc) component
proportional to V 2

dc for Vdc >> Vac. The first will have a direct consequence on the displacement
amplitude while the latter affects the lever stiffness thus changing the resonance frequency. This is
confirmed by the experimental results where the resonance frequency curve shifts to the low frequencies
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Figure 8.13: Test-bench for motion detection of piezoresistive resonant NEMS based on an ω down-
mixing technique. PS, LPF are power splitter and phase shifter, respectively.

Figure 8.14: Linear resonance frequency responses measured using an ω down-mixing technique. The
effect of the DC voltage on the resonance frequency is presented.
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due to the electrostatic negative stiffness (Figure 8.14).
Figure 8.14 shows three linear resonance peaks obtained for Vac = 150mV and DC voltages going

from 1V to 3V . The analytical resonance frequency is around 21MHz which is close to the result found
by FE analysis made using the software ANSYS. Experimentally, the measured resonance frequency
of the device is around 19MHz which can be due to many factors such as silicon residual stress,
size effect on Youngs modulus as well as micro and nanofabrication tolerances. The measured quality
factor of the first linear curve (Vdc = 1V ) is around 5000. Remarkably, increasing the DC voltage
did not degrade the quality factor. In fact, in these devices, since the detection is piezoresistive, there
is no correlation between the electrical resistance of the device and the measured quality factor. The
expected dissipation from this mechanism (ohmic losses) is thus negligible. The last resonance curve
of Figure 8.14 (Red curve) is close to the critical amplitude that has been analytically computed using
the nonlinear model (Equation (8.75) for a softening behavior) which gives a value around 90nm.

Then, in order to reach the nonlinear regime, the cantilever has been actuated using high DC

voltages. Moreover, the frequency response has been tracked experimentally using a lock-in amplifier
in sweep-up and down frequency in order to obtain a full characterization of the resonator bifurcation
topology. No extra-mechanism loss has been observed due to the nonlinear dynamics of the cantilever
and therefore the same quality factor has been conserved (Q = 5000). Figure 8.15 shows two nonlinear
resonance peaks:

• The first resonance curve (in dashed line) was obtained for Vac = 150mV and Vdc = 5V . It
displays a softening behavior characterized by a jump-up frequency at the bifurcation point B2

and a jump-down frequency at the bifurcation point B3 where the cantilever oscillation amplitude
is around 75% of the gap (150nm).

• The second resonance curve was obtained for Vac = 75mV and Vdc = 8V . Remarkably, in sweep
down frequency, two jumps have been observed: a jump-up at the bifurcation point B1 and a
jump down at the highest bifurcation point in the softening domain B3 where the cantilever os-
cillation amplitude is around 150nm. This characterizes a particular mixed hardening-softening
behavior (see section 5.4 for more details) which is not the logical expected result since the
increase in the DC voltage, amplifies the nonlinear negative stifness due to the electrostatic
forces. Combined with an oscillation amplitude below the first softening curve, this should en-
sure negligible mechanical nonlinearities with respect to the electrostatic nonlinearities. Hence,
the dynamic behavior should be purely softening.

Nevertheless, in sweep up frequency, only a jump-up has been identified at the bifurcation point
B2. Then, the resonance response follows a softening branch. In this configuration, the nonlinear
dynamic behavior of the cantilever is uncertain (between a softening and a mixed behavior)
which leads to an unpredictability of the frequency response as well as a sensitivity to the initial
conditions.

8.3.8.2 Optimal DC voltage

For this piezoresistive resonant NEMS, the quality factor Q is constant with respect to the DC and
AC voltage. Then, using equations (8.74) and (8.75), the optimal DC drive voltage is:

VdcOP =

√√√√1

2

√
1.65 ∗ 1039g14h6

(l − d)16 +
3.2 ∗ 1042g10h6

(l − d)12 − 8.1 ∗ 1019g7h3

(l − d)8 (8.78)
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Figure 8.15: Nonlinear resonance frequency responses measured using an ω down-mixing technique
and showing the location of the different bifurcation points {B1, B2 and B3}. Wmax is the cantilever
displacement at the its free end normalized by the gap.

The computed DC voltage that permits the compensation of the nonlinearities is then computed using
Equation (8.78) which gives a value around 1V . Hence, a high AC voltage is needed in order to validate
the compensation for such a low DC voltage. As shown in Figure 8.14, the AC voltage should be
higher than 0.5V . Unfortunately, for Vac > V dc

2 , the assumption of neglected second harmonic terms
is no more valid and the used model should be corrected by including the missing terms which could
not guarantee a simple and quick analytical tool with practical rules of optimization for MEMS and
NEMS designers.

Moreover, for the studied device, the optimal DC voltage being low, one can use a 2ω configuration
in order to enable the compensation of the nonlinearities as well as to investigate experimentally the
effect of the superharmonic resonance on the nonlinear dynamic behavior of a cantilever around the
primary resonance. Particularly, as the unpredictability of the sensor behavior is undesirable for
MEMS and NEMS designers, the superharmonic resonance could be with a great benefit for retarding
dangerous nonlinear behaviors which was demonstrated for clamped-clamped beam resonators (see
section 5.6 for more details).

8.3.8.3 2ω down-mixing technique

In order to actuate the cantilever at its primary and super harmonic resonances simultaneously, a
2ω down-mixing technique has been used enabling a read-out of the resistance variation at a lower
frequency ∆ω (a schematic of the setup is shown in Figure 8.16).

Several measurements were performed on the device for a fixed bias voltage (Vbias = 1.56V peak-
peak). The cantilever displacement depends on the applied electrostatic force which is proportional
to F = 1

2C
(
Vdc + V ac cos(ω2 t)

)2. This force will have an AC (Fac(ω)) and a static (Fdc) component
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proportional to V 2
dc + 1

2V
2
ac. The first will have a direct consequence on the displacement amplitude

while the latter affects the lever stiffness thus changing the resonance frequency.

Figure 8.16: Test-bench for motion detection of piezoresistive resonant NEMS based on a 2ω down-
mixing technique. PS, LPF are power splitter and phase shifter, respectively. Wmax is the cantilever
displacement at the its free end normalized by the gap.

Figure 8.17 shows two linear peaks obtained using a 2ω down-mixing technique for Vac = 2V .
The measured quality factor is about 5000 which confirms the independance of Q on the DC and AC
voltages. When, theDC voltage has been increased from 0.2V up to 0.3V , the variation of the negative
stifness is negligible and consequently, no remarkable frequency shift has been observed. Remarkably,
the measured output signal of the second linear peak is close to 3mV for a low DC voltage which was
not reachable linearly in the ω down-mixing configuration.

We previously demonstrated in section 5.6 that the superharmonic resonance has no effect on the
critical amplitude of the resonator. By analogy, the mechanical critical amplitude of a cantilever under
simultaneous resonance is then Acm = 6.3 l√

Q
. However, in the electrostatic critical amplitude, one

must add the contribution of the AC voltage in the nonlinear electrostatic stiffness which changes
substantially the close-form solution of the optimal drive DC voltage. The latter has been estimated
using the model for Vac = 2V which gives a Vdc about 0.5V .

The resonance peak of Figure 8.18 displays a slightly softening behavior close to the critical am-
plitude. The measured peak has been obtained using a 2ω down-mixing configuration for Vac = 2V

and Vdc = 0.5V . Analytically, for this set of parameters the nonlinear electrostatic and mechanical
stifnesses are equilibrated and the oscillation amplitude of the cantilever is close to 200nm at its free
end. Indeed, the maximum of induced stress into the piezoresistive gauges is reached, as the free
end of cantilever touched the electrode without a damageable pull-in for which the cantilever become
unstable and collapses. In order to verify that the pull-in amplitude has been reached, the DC voltage
has been increased successively from 0.5V till 2V . Consequently, the cantilever nonlinearity becomes
potentially softening which should increase the oscillation amplitude of the NEMS sensor.

Figure 8.19 shows a softening resonance curve obtained for Vdc = 2V . The increase of the elec-
trostatic softening nonlinear stiffness is presented clearly by the distance between the two bifurcation
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Figure 8.17: Linear resonance frequency responses measured using a 2ω down-mixing technique. The
effect of the DC voltage on the resonance frequency is negligeable. Wmax is the cantilever displacement
at its free end normalized by the gap.

Figure 8.18: Slightly softening resonance frequency response measured using a 2ω down-mixing tech-
nique at the optimal DC voltage. The peak is close to the critical amplitude. Wmax is the cantilever
displacement at the its free end normalized by the gap.
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points (softening domain) significantly enlarged in comparison with the frequency response in Figure
8.17. Remarkably, the output signal at the peak is around 5.4V which is the same value Vout at
Vdc = 0.5V . Moreover, the slope of the softening branch between the two bifurcation points is close to
zero which confirms that the pull-in amplitude is reached which gives the maximum of stress variation
into the piezoresistive gauges.

Figure 8.19: Softening frequency response measured using a 2ω down-mixing technique at Vdc = 2V .
The maximal stress on the piezoresistive gauges is reached for the pull-in amplitude. Wmax is the
cantilever displacement at the its free end normalized by the gap.

8.3.9 Mass resolution enhancement

Usually NEMS is embedded in a phase locked loop (PLL) or a self-excited loop in order to monitor
time evolution of their resonant frequency. The frequency stability of the overall system (e.g. of the
NEMS and the supporting electronics) is characterized by the Allan deviation, defined as [Mo 2007]:

δω0

ω0
=

√√√√ 1

N − 1

N∑
1

(
ω̄i+1 − ω̄i

ω0

)2

(8.79)

where ω̄i is the average angular frequency in the ith time interval, N is the number of independent
frequency measurements, which is assumed to be a sufficiently large number. The mass resolution δm is
then

√
2Meff

δω0
ω0

for 1 s-integration time. At the linear regime and for a cantilever oscillation amplitude
around 65nm, the dynamic range (DR) experimentally measured was about 100 dB [Mile 2010]. This

would lead to a theoretical ultimate Allan deviation δω0
ω0
|th = 10−

DR
20√

2Q
of around 10−9 [Ekinci 2004b].

For an effective mass of 200 fg and a Q-factor of 6500, this would result in a potential mass resolution
of δm =

Meff

Q 10−
DR
20 ≈ 0.3 zg at room temperature and at relatively low frequency (20 MHz).
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Figure 8.20: The next generation of NEMS resonant mass/gas sensor currently in fabrication in the
clean rooms of LETI.

Using the drive conditions of Figure 8.18, at an extremely enhanced critical amplitude of the
gap order, the mass sensor dynamic range can be potentially enhanced to reach the level of 110 dB.
Consequently, a resolution around 100Da (0.1 zg) is achievable. However, to reach this performance,
the temperature fluctuation should be controlled at least below 10−2K [Giessibl 2003]. Actually, the
experimental Allan deviation leads to a mass resolution of approximately 105 zg at room temperature
[Mile 2010].

Once the noise contributions from the actuation voltage and the thermal bath issue is solved at
low temperature, the ultimate resolution is then 100 . At this level, the cantilever probably touches
the electrode as explained in Figure 8.19. Consequently, no further optimizations are possible and one
should think about a next generation of the studied device where the gap is quite larger than 200.
Nevertheless, the more we enlarge the gap, the more the applied drives voltage must be significantly
increased to achieve very high oscillations. Practically, one of the best solutions for the next generation
of the NEMS resonant mass sensor is to move the actuation electrode closer to the piezoresistive gauges
so that the free end of the cantilever is allowed to oscillate at amplitudes larger than the gap g. As
shown in Figure 8.20, the cantilever can potentially undergo oscillations of the order H2

H1
g at its free

end. Combined with the use of an advanced top-down nanowire fabrication techniques [Ernst 2008]
with expected giant gauge factors, as well as a possible compensation of nonlinearities, this should
greatly decrease the resolution down to one single Dalton.
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8.4 Summary

In this chapter, the development of an analytical model and its validation to quantitatively assess
the nonlinear dynamics of nanocantilever have been presented. This model includes the main sources
of nonlinearities (mechanical and electrostatic) and is based on the modal decomposition using the
Galerkin procedure combined with a perturbation technique (the averaging method).

As a first step, the experimental validation of the model has been performed on NEMS cantilevers
fabricated using wafer-scale nanostencil lithography (nSL) enabling the definition of very low critical
dimension devices. These cantilevers were monolithically integrated with CMOS circuits, which made
possible the electrical characterization of their frequency responses. The NEMS devices have been
driven in different conditions (in air and in vacuum). All parameters of the model, except the quality
factor and the parasitic capacitance, are set prior to the comparison, which shows an excellent agree-
ment in resonance frequency, peak shape and amplitude. Hence, it proves the efficiency of the model
as a predictive tool.

The effects of some design parameters on the nonlinear behavior of nanocantilevers have been an-
alytically investigated and close-form solutions of the critical amplitude under dominating mechanical
nonlinearities and electrostatic nonlinearities, respectively, have been provided which demonstrates the
large dynamic range of NEMS cantilevers compared to doubly clamped nanobeams. The mechanical

critical amplitude of a cantilever is then Acm = 6.3
l√
Q

[Kacem 2010]. More specifically, the analytical

expression of the optimal DC drive voltage has been extracted which is an interesting tool for resonant
sensors designers. Theoretically, it allows for the cancellation of the nonlinearities in order to drive
the NEMS cantilever linearly beyond its critical amplitude. Consequently, this may be a great gain in
sensors’ sensitivity, as the resonator’s carrier power is largely increased while keeping a linear behavior;
this may prevent most of noise mixing [Kaajakari 2005a].

In a second step the model has been validated on a high frequency NEMS device electrostati-
cally actuated based on piezoresistive detection (160nm thick) fabricated using a hybrid e-beam/DUV
lithography technique. The nanomechanical sensor has been characterized using a down-mixing tech-
nique. The ω configuration is first used in order to easily reach the nonlinear regime. Then, the
optimal DC voltage being very low, a 2ω down-mixing configuration has been used in order to enable
the compensation of the nonlinearities as predicted using the model.

The experimental results show an excellent agreement with the predicted dynamic behaviors. Par-
ticularly, the compensation of the nonlinearities has been validated for cantilever displacements up to
the gap. Consequently and in a stable linear fashion, the optimal stress variation into the piezoresis-
tive gauges has been reached using the 2ω down-mixing technique. Moreover, in this configuration the
mixed behavior has not been observed up to the pull-in amplitude due to the effect of the superhar-
monic resonance in retarding and suppressing undesirable behaviors. An impressive ultimate resolution
about 100Da is achievable at low temperature and linearly at an oscillation amplitude comparable to
the gap for which the maximum of strain collected by the piezoresistive gauges is reached. In order to
overcome the gap limitation for the cantilever oscillations, the next generation of the studied device
involves an actuation electrode shifted to the gauges side.

Very Large Scale Integration (VLSI) of such devices (Figure 8.20) will potentially enable a wide
range of new sensors, such as massive arrays of oscillating NEMS and sensitive multigas sensors.
Indeed, the analytical rules provided in this chapter are applicable for resonant chemical and biological
nanosensors in order to ensure the optimal mass resolution. Hence, these nonlinear analyses could be
very interesting for many nanotechnology challenges such as sub-single-atom resolution in NEMS mass
spectrometry [Boisen 2009].
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9.1 Summary

This thesis has detailed the development of several analytical models and their validations to quan-
titatively assess the nonlinear dynamics of M/NEMS resonators. These models include all sources of
nonlinearities, in particular of the electrostatic ones comprising the fringing field effects and are based
on the modal decomposition by using the Galerkin procedure combined with perturbation techniques
such as the averaging method or the multiple time scales method.

Firstly, this approach has been used to investigate the nonlinear dynamics of clamped-clamped
beams for resonant M&NEMS accelerometers. A multimodal approach on a 1-port non linear resonator
was performed using the harmonic balance method coupled with a continuation technique (ANM). It
has been validated with respect to a reference solution built by shooting. Then, a reduced order model
was developed based on the averaging method. This analytical model has been numerically validated
by HBM+ANM.

Remarkably, the antisymmetric modes do not change the global dynamics of the resonator and
the first mode was enough in order to capture all possible behaviors including the mixed one. Once
it was numerically validated, the analytical model has been extended to the 2-port resonators. Also,
experimental validation has been performed thanks to the fabrication and electrical measurements of
M/NEMS resonators, driven at different (linear and nonlinear) operating conditions.

The shape of the model output (two parametric equations) has the advantage to be simple and
easy to implement for M/NEMS designers. The study has notably provided close-form solutions of
the critical amplitude including full orders of nonlinearities, as well as the mixed behavior initiation
amplitude. It has also shown how it is possible to tune some design parameters (like the ratio between
the beam thickness in the direction of vibration h and the detection gap gd) to keep a linear behavior
up to the pull-in point. The consequence of this may be a great gain in sensors’ resolution, as the
resonator’s carrier power is largely increased while keeping a linear behavior may prevent most of noise
mixing [Kaajakari 2005a].

Moreover, the importance of the fifth order nonlinearities has been demonstrated through the
analytical as well as experimental identification of the mixed behavior. Then, since the hysteresis
suppression by nonlinearity cancellation can potentially be sensitive to the fifth order nonlinearities,
analytical and experimental investigations were performed to track the onset of the mixed behavior
as well as the evolution of its bifurcation topology [Kacem 2009a]. It has been demonstrated that
the initiation amplitude of the mixed behavior can be set by design. However, this implies another
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constraint on the resonator geometry which is not always compatible with sensitivity enhancement
(resonator with small length and thickness) as well as with hysteresis suppression (particular ratio
between the width and the gap).

In order to overcome in another way the sensitivity of the hysteresis suppression to the mixed
behavior issue, the excitation of the resonator at its superharmonic resonance of order-two was an-
alytically investigated. As opposed to the primary resonance case, no mixed behavior has captured
and a mechanism to shift up the pull-in has been demonstrated. The principal disadvantage of such
excitation is the high polarization voltages that should be applied to the resonator in order to retard
the pull-in and conserve a high sensitivity. That is why the next step was the combination of both
excitations in simultaneous resonances (primary+superharmonic) and without adding any complexity
to the system, since such operation is intrinsic to the electrostatic forces (2f mode of a lock-in ampli-
fier). In this configuration, the analytical results supported by the experimental investigations showed
a very interesting mechanism of mixed behavior retarding by superharmonic resonance.

The complete validation of the model was achieved thanks to the fabrication and electrical char-
acterization of several M&NEMS resonators. In particular, a very sensitive capacitive down-mixing
set-up allowing the detection of resonator motions bellow 5nm was developed. All dynamic behaviors
captured by the model have been found experimentally (hardening, softening, mixed and linear com-
pensated). The sensitivity of the compensation to the mixed behavior has been demonstrated as well
as the optimization potential of the simultaneous resonances leading to a linear compensated frequency
curve by retarding the mixed behavior which can enhance the resonant accelerometer resolution by a
factor 5.7.

Secondly, the developed nonlinear modeling approach was extended to the resonant gyroscope.
Compared to the resonant accelerometer case, the main change in the equation of motion is the added
parametric term due to the time-varying Coriolis force that modulates the resonator stiffness at the
proof mass frequency. Nevertheless, this makes the nonlinear partial differential equation quite complex
to solve without losing the generality due to possible quasiperiodic motions. Indeed, the developed
model was restricted to periodic nonlinear Mathieu resonators and partially validated experimentally.
This relatively simple dynamic model is able to predict the measured resonator response for various
parameter settings qualitatively and in many cases even quantitatively. A complete parametric study
was performed in order to investigate the effect of the proof mass frequency on the resonant gyroscope
sensitivity. It has been shown that the maximum of sensitivity is reached when the resonator is
driven in the linear regime for a ratio of 25% between the proof mass and the resonator frequencies.
Moreover, at a drive frequency higher than 10% the resonator frequency, the angular rate sensor
sensitivity decreases significantly in the nonlinear regime. Consequently, the nonlinearity cancellation
is needed for ultrasensitive resonant gyroscopes

Besides, a resolution < 0.1 ◦/hr was analytically predicted for a particular dual mass M&NEMS
gyroscope fully symmetric with its sensing resonators driven linearly beyond their critical amplitude
(hysteresis suppression). Such device could overcome the limitations of MEMS vibratory gyroscopes
for typical high performances applications such as tactical weapon guidance. Nevertheless, this could
potentially imply the use of drastic controllers i.e. complexify the sensor electronics.

Finally, the same analytical approach (Galerkin+perturbation technique) used for resonant in-
ertial sensors has been extended to the nonlinear modelling of nanocantilevers for NEMS gas and
mass resonant sensors. Unlike the clamped-clamped beam resonators case, the equation of motion
of cantilevers is more complicated and includes nonlinear geometric as well as inertial terms. The
large dynamic range of cantilevers was demonstrated via the close form expressions of the critical
amplitudes. Also, the potential of nonlinearity cancellation was analytically investigated and a close
form expression of the optimal DC drive voltage has been extracted which is an interesting tool of
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optimization for resonant sensors designers. A first validation of the model has been performed on
NEMS cantilevers coupled with CMOS circuits, fabricated using wafer-scale nanostencil lithography
(nSL) and electrically characterized in different conditions (in air and in vacuum)

The complete validation of the model was achieved on a high frequency NEMS device electrostat-
ically actuated based on piezoresistive detection (160nm thick), fabricated in the LETI clean rooms
using a hybrid e-beam/DUV lithography technique and electrically characterized by a piezoresisitive
down-mixing technique. Indeed, the model was adapted to the mechanical structure of the sensor in
order to extract the close form solutions of the mechanical and electrostatic critical amplitudes as well
as the optimal polarization voltage expression.

Particularly, the cancellation of the nonlinearities has been validated for cantilever displacements
up to the gap and under simultaneous resonances. An impressive ultimate resolution about 100Da

is achievable at low temperature and linearly at an oscillation amplitude comparable to the gap for
which the maximum of strain collected by the piezoresistive gauges was reached.

9.2 Future work

In this thesis, it has been shown that nonlinear design is crucial at the nanoscale, but one still must
face all the considerations inherent in device design, such as fabrication tolerances, robustness and
reliability.

Anyway, the potential of enhancing the performances of several resonant MEMS and NEMS sensors
when the resonators are operating in open-loop was demonstrated. The confirmation by measuring
Allan variance in open-loop as well as in closed loop for linear, nonlinear and compensated behaviors
will be the next step. Indeed, this can show the influence of noise mixing in the sensor device and
evaluate the possible level of enhancement by nonlinear design. Moreover, there are many other steps
to accomplish concerning the resonant gyroscope such as the complete numerical and experimental
validation of the nonlinear Mathieu resonator model and its extension to quasiperiodic motions as well
as the complete characterization of the sensor under angular rate.

Concerning the gas and mass sensors, the next generation of the piezoresistive resonant device has
been designed to enable the compensation of nonlinearities at very high oscillations and frequencies in
order to exhibit ultrasensitive performances. Indeed, these sensors are good challengers for the single
Dalton mass spectroscopy application. Nevertheless, in order to avoid most of temperature fluctuation
noise, these devices could ideally operate at low temperature (> 10mK) which can limit the classical
mechanics used for modeling by the quantum effects [Naik 2006, Schwab 2005].

Furthermore, many other applications of the nonlinear dynamics in NEMS are conceivable for our
designs. Among these applications, the parametric resonance [Turner 1998, Rugar 1991, Carr 2000,
Alhazza 2008] has been widely used in micro and nanotechnology for signal amplification and noise
squeezing [Rugar 1991]. Since a resonator electrostatically actuated is intrinsically a parametrically
excited nonlinear system, the combination of many resonances could be used to control undesirable
behaviors while amplifying the output signal. Also, the high gain achieved when operating close to a
bifurcation can also be used in the so called "bifurcation amplifier" applications [Siddiqi 2004].





Appendix A

Appendices

A.1 The fringing field effect

To compute the actuation and detection capacitances, it has been taken into account the fact that
the geometry is far from semi-infinite plate capacitors. For weak ratios

g

b
, the fringing field effects are

negligible. In our typical cases of ratios
g

b
, higher than 0.05, they can significantly increase the value

of the capacitance compared to that of the parallel plates model.

Figure A.1: Fringing field effect: distribution of the electric potential in a cross section of the resonator
in the plane (W,Z) under 5V of DC voltage.

The fringing field coefficients Cn1 and Cn2 values have been calculated using an analytical model(
Cn = 1 + 1.9861

(g
b

)0.8258
)

[Nishiyama 1990]. In our case, Cn1 = 1.6 and Cn2 = 1.5. These values

have been validated using a 3D COMSOL MULTIPHYSICS FE simulations. Figure A.1 shows the
electric potential in a cross section of the resonator described in Figure 4.22 parallel to the beam motion
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where the inner white rectangle represents the beam and the coloured part represents the air box and
the silicon bulk box respectively placed up and down from the mid-plane of the beam. In addition,
the silicon oxide between the electrodes and the silicon bulk was incorporated in the 3D FE model.
The quantities of electric charges Q1 and Q2 have been integrated numerically at each electrode in
order to estimate the real capacitances C1 and C2 and thus, the fringing field coefficients are directly

deduced Cni =
Ci
C0i

=
2Qig

2
i

ε0blV 3
where gi is the gap thickness and V is the DC voltage applied to the

beam as a boundary condition in the 3D FE simulations.

A.2 The integration parameters of Equation (4.62)
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Abstract
Nanoelectromechanical systems (NEMS) have been the focus of recent applied and funda-
mental research. With critical dimensions down to a few tens of nm, most NEMS are used
working in resonance. In this size regime, they display high fundamental resonance frequen-
cies, diminished active masses, tolerable force constants and relatively high quality factors in
the range of 102 − 104. These attributes collectively make NEMS suitable for a multitude of
technological applications such as ultrasensitive force and mass sensing, narrow band filtering,
and time keeping. So as to fulfill their full promises, that is, to begin to come out of industrial
foundries, a certain number of challenges are yet to be addressed: in particular, their frequency
stability, i.e. their output carrier power has to be improved. Mechanical transduction gain of
the devices has been thoroughly studied, but the drive power has always been a priori limited to
the onset of nonlinearities. Besides, the smaller the structures, the sooner nonlinearities occur,
reducing their dynamic range and even making extremely difficult to detect their oscillation,
as the abundant literature about characterization techniques proves.

In this thesis, this limitation is reconsidered, i.e. the behavior of NEMS at large amplitude
through the nonlinear dynamics of NEMS-based resonant sensors is investigated. A review of
inertial, mass and gas sensors is carried out. Particularly, the design issues of resonant sensors
are addressed and the sources of nonlinearities in clamped-clamped resonators and cantilevers
are exposed. A review of nonlinear methods is also presented in order to define a model-
ing strategy for the dynamics of resonant accelerometers, gyroscopes and mass/gas sensors.
Close-form solutions of the critical amplitudes were provided for several devices and the im-
portance of the fifth order nonlinearities has been demonstrated through the mixed behavior
identification. Several analytical design rules are provided in order to enhance the dynamic
range of NEMS resonators and the detection limit of NEMS-based resonant sensors. These
rules essentially include hysteresis suppression by nonlinearity cancellation as well as mixed
behavior and pull-in retarding under superharmonic resonance and simultaneous resonances
leading to the possibility of driving the resonator linearly at high oscillations compared to the
critical amplitude. The experimental validation of the model has been performed in the case
of resonant capacitive (4µm SOI) MEMS and (2µm MEMS level/500nm NEMS level) SOI
M&NEMS accelerometers and gyroscopes as well as capacitive (fabricated using nanostencil
lithography) and piezoresistive (160nm SOI NEMS) gas/mass sensors.

Keywords
Nonlinear dynamics, resonator, MEMS and NEMS, dynamics range, detection limit, reso-
nant sensors, accelerometer, gyroscope, gas and mass sensors, design rules, superharmonic
resonance, simultaneous resonances, mixed behavior, pull-in, critical amplitude
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