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Abstract

Mechanical failure is a critical phenomenon affecting the electrical performances of
monocrystalline silicon, which is commonly used for solar cells and microelectromechan-
ical systems. The main cause behind the catastrophic failure of such Si components is dy-
namic crack propagation. Numerous studies were conducted to apprehend this cleavage
failure both at the initiation of the crack and along its propagation. Interestingly, it was
found that crack propagation in monocrystalline silicon can reach up to 80% of Rayleigh
wave speed. This threshold value has made us question whether some micro-processes or
dissipation phenomena are taking place in the vicinity of the crack.

As part of the efforts made to shed light on the kinetic aspects of cracks, a numerical
study is carried out to predict its propagation velocity and evolution. The inertial effects
are accounted for using an explicit integration scheme. An exhaustive study was con-
ducted to determine the numerical parameters that could control or influence the onset
and the evolution of rapid crack propagation. Since we initially aimed at reproducing
experimental bending tests, a three-dimensional model was necessary. The fracture ap-
proach XFEM was used and the explicit 3D model was implemented on the open-source
code Cast3m.

A series of fracture experiments employing the potential drop technique were per-
formed to characterize the crack velocities precisely. The samples were thin monocrys-
talline wafers onto which a thin chrome layer and gold electrodes are deposited. To con-
trol the crack path, a notch was made by hand on each wafer. The electrical circuit is a
battery-feed Wheatstone bridge with our silicon wafer replacing one of the resistances.
Crack propagation engenders a change in the voltage measurement. A relationship be-
tween the voltage across the wafer and the crack front position enables us to derive the
crack velocity. This high-resolution experimental set-up is then validated by simultane-
ously performing the same measures using a high-speed camera.

KEYWORDS: eXtended Finite Element Method, dynamic fracture, explicit integra-
tion scheme, 3D crack propagation, potential drop technique, crack velocity, high-speed
camera.
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Résumé

La défaillance mécanique est un phénomène critique affectant les performances élec-
triques du silicium monocristallin, couramment utilisé dans les cellules photovoltaïques
et les systèmes micro électromécaniques. La rupture fragile dynamique des composants
Si est principalement causée par la présence de fissures. De nombreuses études ont été
menées pour appréhender les tendances d’une rupture fragile par clivage. D’un point de
vue expérimental, il s’avère que la propagation des fissures dans le silicium monocristallin
peut atteindre jusqu’à 80% de la vitesse des ondes de Rayleigh. Cette vitesse limite a
soulevé de nombreuses questions quant à sa dépendance vis-à-vis de la microstructure et
des phénomènes dissipatifs survenant en pointe de fissure.

Dans le cadre des efforts déployés pour élucider le caractère dynamique des fissures,
une étude numérique est réalisée afin de prédire leur vitesse de propagation et son évo-
lution au cours du temps. Les effets inertiels sont pris en compte à l’aide d’un schéma
d’intégration explicite. Une étude préliminaire a d’abord été menée dans le but de définir
tous les paramètres numériques qui pourraient intervenir et influer sur l’apparition et
l’évolution de la discontinuité mobile. Initialement, nous avions pour objectif de repro-
duire les essais expérimentaux, ainsi un modèle tridimensionnel s’avérait indispensable.
L’approche XFEM a été utilisée afin de simuler les fissures et le modèle 3D explicite a
été implémenté sur le code open source Cast3m.

Vu la rapidité du phénomène et la géométrie de nos échantillons, la caractérisation
fine de la vitesse des fissures représente un enjeu de taille. Pour ce faire, une série de
mesure par couches minces a été effectuée. Les échantillons sont des wafers en sili-
cium monocristallin préparés préalablement en déposant sur leurs surfaces une mince
couche de chrome et des électrodes en or. Afin de contrôler la trajectoire de la fissure,
une pré-entaille a été faite à la main sur chaque wafer. Le circuit électrique est un pont de
Wheatstone constitué de 4 résistances, où l’une est remplacée par un wafer et d’une pile
alimentant l’ensemble. L’extension de la fissure entraîne un changement notable dans la
mesure de tension. Une relation entre la tension et la position du front de fissure nous per-
met de déduire la vitesse de propagation. Cette configuration expérimentale à très haute
fréquence est ensuite validée en effectuant simultanément les mêmes mesures à l’aide
d’une caméra rapide.

MOTS CLÉS: XFEM, rupture fragile, dynamique, fissuration 3D, méthode de mesure
par couches minces, vitesse de propagation, caméra rapide.
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Introduction

Fracture mechanics has always been considered one of the most challenging fields of
mechanics and structural engineering. The existence of defects within a given material
may compromise the structural integrity of the industrial component, thus making it
more prone to catastrophic failure. Many recent studies were conducted to elucidate the
driving mechanisms of cracks and the overall material response. Based on a thorough
theoretical characterization of what is occurring in the vicinity of cracks, the general
concepts of fracture have been established. However, an extensive understanding of the
physics behind some of the fracture mechanisms has not been achieved yet and is subject
to several ongoing investigations.

In fracture analysis, brittle failure has been regarded as one of the most critical,
yet complex types of fracture. In such cases, failure occurs instantly and at a relatively
high crack velocity. The irreversibility and the suddenness of this phenomenon are all
the more difficult to prevent from happening. As for the dynamic features of fracture,
they are especially outlined in two main configurations: for stationary cracks under a
dynamic loading such as impact and for rapidly moving cracks subjected to a quasi-static
loading. Since the inertial effects are quite substantial, addressing either problem requires
their integration within the crack description: from its initiation and along its propagation.

Nowadays, with all the climate change issues such as the lack of natural resources
and the constantly increasing levels of pollution, it has become urgent to advocate the
use of a higher share of renewable energy. Therefore, many developments are carried out
to improve their performance and efficiency. As part of its missions, the French National
Research Agency (ANR) invested in multi-scientific platforms to test the durability of so-
lar systems (Equipex DURASOL). One among which has been installed in the laboratory
LaMCoS. Its main objective is to characterize solar cells’ mechanical properties, most
importantly the monocrystalline and multicrystalline silicon wafers. While dwelling
on the environmental factors that prevent solar cells from achieving higher electrical
efficiency, it has been observed that their performance is inherently dependent on the
integrity of their components. Besides the brittleness of crystalline silicon, the small
thickness of wafers makes them easily breakable throughout the manufacturing process
and during usage. This major drawback hinders photovoltaic systems from improving
the energy return on investment. In the work of Carton [CAR 20], a probabilistic study
has been thoroughly conducted to assess the reasons behind the onset of failure.
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The work carried out by Lv Zhao and Wang Meng [ZHA 16, WAN 19b] aimed at
characterizing the cleavage fracture of monocrystalline wafers provided by CEA-INES.
One key aspect has particularly drawn our attention. The measured crack velocities
in pre-notched specimens approach the Rayleigh wave velocity Cr, which is a few
kilometers per second. This renders the failure process instantaneous. However, it is
intriguing how the cracks would never attain this terminal velocity, but rather end up
propagating at a limiting speed representing 80% of Cr. To apprehend the physical
mechanisms associated with such accelerating cracks, a series of experiments were
carried out on monocrystalline wafers [WAN 19b]. The crack velocities were quantified
using a high-speed camera, yet few measurement points were reported due to the rapid
crack growth rate. Overall, it appears that cracks propagate at a steady state. As for
the crack speed values, they may vary from hundreds of meters to a few kilometers per
second. The main cause behind this variation is the fracture stress of the specimen, hence
its notch length [WAN 19b]. Furthermore, a meticulous fractographic examination of
the cracked surfaces was formerly performed to investigate any arising feature or surface
mark that may shed some light on dissipation processes or wave interaction. Besides,
finite element simulations have been carried out on multicrystalline silicon and were able
to predict the crack trajectory throughout various grains [ZHA 16].

Given the industrial need to overcome and avoid cracking problems, many ap-
proaches have been developed to predict crack initiation and trajectory. The scientific
community has also put effort into seeking a deeper knowledge of failure mechanisms
such as crack velocity or crack instabilities. The present study comes as a complementary
work to the two previous doctoral theses. It aims to further explore the numerical aspect
of the problem, in particular crack speed. By choosing the adequate approach capable
of simulating dynamic crack propagation, we intend to recover the variation of crack
speed along its path numerically. Also, the initiation and propagation criteria will be
examined so as their relevance towards predicting crack velocity without any calibration.
In this thesis, we focus on implementing the Extended finite elements (XFEM) in the
open-source software Cast3m of the CEA to simulate dynamic crack propagation on
monocrystalline silicon.

In the first chapter, a brief introduction to the history of fracture mechanics is
presented. Herein, we recall the scientific breakthroughs that shaped the actual fracture
mechanics field. Then, the general concepts of linear elastic fracture mechanics (LEFM)
are introduced. Within, we recollect the advances made toward a better understanding
of dynamic fracture and their fundamental assumptions. Eventually, different cracking
criteria are reviewed.

In the second chapter, a state of the art of the numerous numerical methods, their
advantages and limitations are discussed. As part of our work, the use of an explicit
time integration solver and a three-dimensional model has been crucial for our algorithm.
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Introduction

Therefore, a detailed analysis has been performed to assess which approach would
be appropriate for our problem. The same goes for the software, which needed to be
open-source.

The third chapter is devoted to the implementation of an explicit XFEM model of
dynamic crack propagation in 3D structures. This study has first focused on reviewing
the missing procedures to be implemented in Cast3m. The simulation assumptions are
explained, the key steps of the algorithm and the developed procedures are detailed.
Furthermore, a parametric study of the 3D crack problem is presented. Initially, the
intended objectives were to compare numerical results with experiments. Due to the high
computational cost, all the simulations are performed on a simplified model to check and
validate the correct functioning of the code. Therefore, crack velocities are computed but
can not be compared nor verified experimentally.

In the fourth chapter, it was important to follow up on the experimental work that
has been done before. A higher-resolution acquisition method for crack velocity mea-
surements has been installed. The potential drop technique and its different settings
are discussed. The first series of experiments were conducted on notched specimens
of monocrystalline silicon. From the measured electrical signal, the crack velocity and
its profile are depicted. Nevertheless, no data was available to compare and validate our
electrical setup. In view of the existing methods, it seemed more reliable to combine this
newly implemented technique with the high-speed camera. For a given test, the crack
average and instantaneous velocities of both methods are compared and the measurement
uncertainties are commented on.
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1. Fracture Mechanics: State of the Art

1.1 Introduction

This chapter presents the basics and the theoretical notions of fracture mechanics. The
history of this mechanical field will be recalled to provide an insight into the developments
it went through and how it became one of the most sought-after and crucial domains in
materials engineering. In light of our studied material, monocrystalline silicon, we will
mainly focus on brittle failure and its various mechanisms. Eventually, an exhaustive
review of some of the most notorious fracture criteria will be provided.

1.2 Historical background

Inglis [ING 13] was the first to investigate stress concentrations in the vicinity of a crack
tip. For a linear elastic material, he considered a plate with an elliptical hole subjected
to a uniform loading. He found that when the radius of curvature at the crack tip tends
to zero, thus an ideal sharp crack, the stresses tend to infinity. His findings are the
foundation of the asymptotic solution of the crack-tip stress fields.

Years later, Griffith observations [GRI 21] on glass fibers brought him to attempt an
energetic approach based on thermodynamic equilibrium to solve the fracture problem.
This approach was mainly motivated by the conflicting facts noted while testing the fore-
going assumption. He noticed that the stress needed to reach the complete failure of glass
fibers can be quantified and is not as infinite as it had been presumed. As a result of his
theoretical analysis, Griffith stated that crack propagation results from the conversion of
elastic strain energy into fracture surface energy. This theory is only limited to the range
of linear elastic materials undergoing brittle fracture. Griffith criterion can be formulated
as follows:

G = 2γ (1.1)

where G is the elastic strain energy and γ is the surface energy.

1.3 Linear elastic fracture mechanics

Linear Elastic Fracture Mechanics (LEFM) is the branch of fracture mechanics where the
size of the plastic zone ahead of the crack tip is negligible with respect to crack length.
Therefore, all the nonlinear processes of the process zone are disregarded. Fracture in
brittle materials is usually addressed using this analysis.

Based on the applied load, different fracture modes can be identified (cf. FIG.1.1):
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Linear elastic fracture mechanics

Mode I Mode II Mode III

Opening Sliding Tearing 

Figure 1.1: The three fracture modes.

— Mode I, denoted opening mode, is characterized by a normal displacement of the
crack surfaces with respect to the plane of the crack and is caused by a tensile stress.

— Mode II, denoted sliding mode, is the result of an in-plane shear stress. Herein, the
crack surface tends to move in the plane of the crack and perpendicular to the crack
front.

— Mode III, denoted tearing mode when an out-of-plane shear stress is applied. This
fracture mode is marked by an in-plane crack surface displacement which is parallel
to the crack front.

Structures are often subjected to complex load patterns, where a combination of these
three modes is expected.

1.3.1 Asymptotic approach

Using polar coordinates (r, θ) with the origin at the crack tip (cf. FIG.1.2), Irwin [IRW 21]
quantified the stress field in the vicinity of a crack as:

σi j =
KI√
2πr

f I
i j(θ)+

KII√
2πr

f II
i j (θ)+

KIII√
2πr

f III
i j (θ)+o(

√
r), (1.2)

where the contribution of each fracture mode is taken into account by introducing the
stress intensity factors, denoted as Ki and where the subscript i refers to the type of fracture
(i = I, II, III), fi j(θ) are the Westergaard functions [WES 21] that only depends on the
angle θ and σi j the stress field components at the crack tip. The singularity of the stress
field is outlined by the term 1√

r , which tends to infinity once at the crack tip (r = 0). For a
linear static analysis, the static stress intensity factors are defined as :
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1. Fracture Mechanics: State of the Art

crack surfaces x 

y 

θ

r 

Figure 1.2: Coordinate system around a crack tip.

KI = lim
r→0

√
2πrσ22(θ = 0) = lim

r→0

µ
k+1

√
2π

r
Ju2(θ = π)K

KII = lim
r→0

√
2πrσ12(θ = 0) = lim

r→0

µ
k+1

√
2π

r
Ju1(θ = π)K

KIII = lim
r→0

√
2πrσ23(θ = 0) = lim

r→0

µ
4

√
2π

r
Ju3(θ = π)K

(1.3)

where the operator J.K describes the limiting values of a given quantity on both edges of
the discontinuity, µ = E

1+ν
and k the Kolosov constant, given by:

k =
{

3−4ν for plane strain
3−ν

1+ν
for plane stress (1.4)

The asymptotic crack tip solutions have been revealed to be quite accurate and suffi-
cient to describe fracture processes in linear elastic materials. For a better understanding
of the amount of energy released during crack propagation, the energetic approach is
adopted.

1.3.2 Energetic approach
As its name may suggest, the energetic approach is based on the energy balance of a
cracked system. This global formulation represents the foundation of fracture mechanics
and has been introduced by Griffith [GRI 21]. He postulated that when creating new
cracked surfaces, energy is consumed. For slow crack growth, the decrease in the total
potential energy of the structure due to an increase of the fracture surface area corresponds
to the energy release rate G:

G =−dΠ

dA
(1.5)

where
Π = Eelas −Φ (1.6)
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Linear elastic fracture mechanics

Π is the potential energy, Eelas the strain energy and Φ represents the potential energy of
external forces.

A relation between the stress intensity factors and the strain energy release rate has
been established. For a crack subjected to mixed mode loading, the energy G is defined:

G =
1

E∗ (K
2
I +K2

II)+
1+ν

E
K2

III (1.7)

where E∗ is related to the Young modulus and Poisson ratio:

E∗ =

{ E
1−ν2 for 3D and 2D plane strain
E for 2D plane stress

(1.8)

That same energy can also be evaluated using the J-integral. This new strain energy
release rate concept and its pertaining equation were developed in the work of Cherepanov
[CHE 67] and Rice [RIC 68]. Besides its application in LEFM, it can also be employed in
the nonlinear elastic analysis, as long as the structure is subjected to a static or quasi-static
loading.

C(s)

e1

e2

e3

n

Figure 1.3: The J-contour integral C(s)

For a 3D crack front (cf. FIG.1.3), the general form of the J-integral near the crack
tip is expressed as:

J(s) = lim
C→0

∫
C(s)

(Wδ1i −σi ju j,1)nidΓ (1.9)

where W =
∫ εi j

0 σi jdεi j is the strain energy density, σi j are the components of the Cauchy
stress tensor, εi j the components of the strain tensor and ui the displacement vector
components. n j is the normal vector to the J-integral contour C(s).
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1. Fracture Mechanics: State of the Art

The J-integral is extensively used in numerical models, to evaluate the energy release
rate around the crack tip. Furthermore, many cracking criteria rely upon this integral value
to predict crack initiation.

1.3.3 Dynamic fracture mechanics

Dynamic fracture mechanics deal with fracture processes for which the material inertia
is substantial. These inertial effects originate either from an impact loading on a cracked
structure or from rapidly moving cracks.

Mott [MOT 48] was the first physicist to investigate fast cracks. He ascertained
that for such dynamic crack propagation, the kinetic energy is to be accounted for
on the energy balance equation. Later on, many studies emerged to review and
formulate the exact and general concepts of the recent dynamic fracture mechanics
[ATK 68, FRE 72, KAN 88]. One major purpose of these analytical developments is
to determine the maximum crack speed. While Mott has found it to be equal to one-half
of the shear wave speed, the analysis conducted by Freund disclosed a limiting speed of
none other than the Rayleigh wave speed. In light of the established equation of motion,
it has been postulated that the dynamic energy release rate is:

Gdyn = (1− v
Cr

)G (1.10)

where v is the crack velocity, Cr the Rayleigh wave speed and G the static energy release
rate.

Similarly, dynamic stress intensity factors can be deduced from the static ones using
the equations developed by Bui [BUI 77]:

K j = f j(ȧ)K
dyn
j (1.11)

For each fracture mode, f j is defined as below:

fi(ȧ) =
4αi
(
1−α2

2
)

(k+1)D(ȧ)
with i ∈ {I, II}

fIII(ȧ) =
1

α2

αi =

√
1−
(

ȧ
Ci

)2

D(ȧ) = 4α1α2 −
(
1+α

2
2
)2

(1.12)

where C1 and C2 are respectively the longitudinal and the shear wave velocity. D is the
function whose zero verifies the Rayleigh wave velocity Cr.
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Linear elastic fracture mechanics

1.3.4 Fracture criteria

For some materials, the complexity of the stress and the strain field ahead of the crack
hinders researchers from an accurate estimation of the crack growth rate. In order to
overcome the lack of knowledge of the overall physical mechanisms occurring in the
process zone, many fracture criteria have been put forth. They are mainly based on the
concept of the stress intensity factor and the energy release rate. The suitability of one
or the inadequacy of the other is intrinsically reliant on some of the processes observed
experimentally. According to the type of the problem, static or dynamic, crack initiation
occurs once the stress intensity factors or the energy release rate attains a critical value:

K = Kc or G = Gc (1.13)

In this section, we outline the most common criteria used for linear elastic materials. The
same criterion is considered for both crack initiation and propagation.

— The maximum tangential stress criteria [ERD 63]: it applies for cracks under
mixed-mode loading and where mode III is assumed to have no influence on its
propagation. Herein, the near-crack-tip stress field is evaluated using polar coordi-
nates:

σθθ =
1√
2πr

cos
1
2

θ[KI cos2 1
2

θ− 3
2

KII sinθ]

τrθ =
1√
2πr

cos
1
2

θ[KI sinθ+KII(3cosθ−1)].
(1.14)

The direction of propagation is deduced by solving either for the maximum circum-
ferential stress ∂σθθ

∂θ

∣∣∣
θ=θc

= 0 or for a null shear stress τrθ = 0. The propagation angle

denoted θc, is found as a function of the stress intensity factors:

θc = 2arctan

KI −
√

K2
1 +8K2

II

4KII

 . (1.15)

— The minimum strain energy density criteria [SIH 74]: using this local criterion
implies that cracks will grow in the region of the least strain energy density factor
S(θ). This strain energy is evaluated in the vicinity of the crack and can be defined
as follows:

S(θ) = a11K2
I +2a12KIKII +a22K2

II +a33K2
III (1.16)

with
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a11 =
1√

16πµ(3−4ν− cosθ)(1+ cosθ)

a12 =
1√
8πµ sinθ(cosθ−1+2ν)

a22 =
1√

16πµ [4(1−ν)(1− cosθ)+(3cosθ−1)(1+ cosθ)]

a33 =
1

4πµ

The angle of propagation θc is obtained by satisfying the conditions:

∂S(θ)
∂θ

∣∣∣
θ=θc

= 0 and
∂2S(θ)

∂θ2

∣∣∣
θ=θc

> 0. (1.17)

— The maximum energy release rate criteria [WU 78]: this criterion relies on Grif-
fith principle but it can also be viewed as its extension since it enables the prediction
of the crack growth directions. Its gist postulates that the crack will propagate in
the direction that maximizes its energy. Based on Irwin formulation of the energy
release rate as a function of the stress intensity factors (1.7), the crack angle θc is
determined by fulfilling the two conditions:

∂G
∂θ

∣∣∣
θ=θc

= 0 and
∂2G
∂θ2

∣∣∣
θ=θc

< 0 (1.18)

— The local symmetry KII = 0 criteria [GOL 74]: it asserts that cracks will
propagate in the direction where the condition KII = 0 is satisfied.

1.4 Conclusion
This chapter outlined the general concepts of fracture mechanics, more particularly the
linear elastic dynamic fracture. It also presented a survey of the main crack propagation
criteria, which are much broader given the numerous loading configurations. The
asymptotic fields and the energy release rate are well identified and provide satisfactory
results when used for slow crack motions. However, in dynamics, they are set to depend
on the crack velocity whose variation remains uncertain. For the most part, numerical
models constrain crack speeds to propagate below Cr. Such observations should be
recovered numerically as the studied material response to the applied loading.

Monocrystalline silicon undergoes cleavage fracture, which is the most brittle form
of failure. Furthermore, cracks propagating on the cleavage plane grow at a rate close to
the Rayleigh wave speed. For such crystalline materials, an appropriate criterion that con-
siders the material anisotropy would be more accurate in predicting the crystallographic
cracking plane and the crack velocity.
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2. Overview of explicit computational methods for dynamic brittle fracture

2.1 Introduction

In this chapter, an overview of different Finite Element (FE) models as well as non-FE
models for dynamic crack propagation is considered. The prediction of fracture in brittle
materials has been the subject of many analytical, experimental and numerical studies.
On this basis, numerous numerical methods have been developed to tackle this issue and
provide an insight into the physical processes that govern the rapidly moving cracks.
The main focus of our study is to recall the most prevailing numerical approaches to
solve fracture problems using an explicit time integration algorithm. Throughout this
review, some of their models are introduced and their latest developments and limitations
are discussed. Among the different methods, we distinguish those relying on a discrete
representation of the crack namely, the eXtended Finite Element Method (XFEM)
and the remeshing method. Others involve regularization techniques and a smeared
representation of the crack such as phase field and cohesive zone models. Besides,
there exist other techniques such as peridynamics, which alter the classical theory of
continuum mechanics, and molecular dynamics that operate in the nano-scale domain.

2.2 Remeshing method

Since FE analysis is widely used to characterize structural components and simulate phys-
ical phenomena, modeling discontinuities using these standard finite elements seems con-
venient yet onerous. Researchers tried to adjust the continuous formulation of FE to apply
it to a discrete problem. The remeshing technique [TRÄ 98] was among the first methods
to be introduced in order to track moving cracks. In this chapter, we will give an insight
into the two main categories of this technique. The first one is identified as the station-
ary mesh, it encompasses the node decoupling or the node splitting method [ALS 20].
This technique separates the elements that have reached a stress threshold. The nodes
belonging to the split boundary are duplicated to create new free surfaces (cf. Fig. 2.1).

L
𝑐rack

 L
𝑐rack

 
Figure 2.1: Nodes-splitting along crack propagation
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Remeshing method

However, it can be inferred from its principle that the crack is constrained to
propagate only along the elements boundaries, thus entailing a prior knowledge of its
path. Another method was suggested by Ingraffea et al. [ING 77], called node grafting,
which essence relies on borrowing nodes from adjacent elements and grafting them near
the new crack tip position, thus creating a discrete crack increment. For a moving mesh,
once the criterion evaluated at the crack front is met, the structure mesh is altered by an
extension da perceived as the crack advance. This technique was used by Bazant et al.
[BAŽ 78] for elastodynamic problems.

Since these methods are embedded in the traditional finite element framework,
combining them with an explicit time integration algorithm is straightforward and
generally performed to account for dynamic fracture processes.

2.2.1 Explicit remeshing models
For stationary mesh procedures using explicit time integration schemes, it has been
shown in the work of [ATL 85], that a sudden crack extension over a short period
of time induces high-frequency oscillations. To remedy this issue, Keegstra et al.
[KEE 76] and Yagawa et al. [YAG 77] have proposed models where the nodal decoupling
occurring along crack propagation is performed gradually. This relaxation mechanism
is characterized by its type, either linear or non-linear, and its release rate. While
developing those methods [ATL 85], the strain energy release rate and the stress inten-
sity factor have been evaluated, but the crack velocity has not been computed nor reported.

In the work of Song et al. [SON 09], a new cracking node method has been pro-
posed where both node decoupling and XFEM are combined. To distinguish broken from
unbroken elements, the discontinuous enrichment of XFEM is incorporated within the
model (See Section 2.3). This method, embedded in an explicit time integration scheme,
enables to track complex crack paths and has demonstrated good results in terms of frac-
ture energy convergence. Also, for cracks subjected to high loading rates, their paths
and velocities are consistent with those found experimentally. Nevertheless, this method
has not been employed to quantify the velocities of accelerating cracks under quasi-static
loading.

2.2.2 Advantages and limitations
While using this approach, it is conspicuous that the crack front and its propagation
are inherently mesh-dependent. Remeshing after each propagation step can be tedious
and time-consuming for large 3D structures. Therefore, automatic mesh generating was
implemented to avoid performing this task manually [SHE 85, WAW 89]. It is also
noteworthy that the more refined the mesh, the more accurate the crack geometry is
depicted. To overcome this issue while avoiding massive models, the mesh can be locally
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2. Overview of explicit computational methods for dynamic brittle fracture

refined around the crack, so that the elements enduring failure are split into smaller ones.
However, the changes affecting the finite element grid can be problematic when it comes
to reassigning the previous stress and strain field to the newly generated mesh. Many
studies have been performed to address this issue. For further details, refer to [DEB 96].

2.3 Extended Finite Element Method
In dynamic fracture modeling, the evolution of discontinuities in time has proven to be
cumbersome when using a continuous representation of the physical parameters. To
tackle this issue, several numerical methods have been developed within the FE analy-
sis framework, among which the eXtended Finite Element Method (XFEM) is a highly
evolved method. The XFEM was first introduced by Belytschko [BEL 99] and Moës
[MOË 99] and stemmed from the partition of unity method developed by Melenk and
Babuŝka [MEL 96]. The basic idea of this approach is to represent the local discontinu-
ities by introducing new enriched shape functions in the standard displacement approx-
imation (cf. Eq. (2.1)). Hence, an explicit representation of cracks can be performed
independently of the structure (cf. Fig. 2.2). The approximate displacement field u(x) is
expressed as :

u(x) = ∑
i∈N

uiφi(x)+ ∑
j∈NH

H(x)φ j(x)au j + ∑
k∈Nψ

φk(x)
4

∑
l=1

ψαbl
k (2.1)

Figure 2.2: Representation of cracks using XFEM.

where N is the set of all the nodes contained in the mesh, Φi is the standard finite element
shape function associated with node i and ui are the standard degrees of freedom for the
same node. As for the enriched part, au j describes the enriched degrees of freedom for
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node j and is related to the discontinuous function H, whereas bl
k are the enriched degrees

of freedom for node k and associated to the singular function ψα.

Crack 

Discontinuous enrichment 

Singular enrichment 

Both discontinuous and singular enrichment 

Figure 2.3: Enriched nodes in XFEM.

As introduced in the work of Belytschko et al. [BEL 01], the enriched functions include
the Heaviside function H also referred to as the discontinuous field:

H(x) =
{

+1 if x > 0
−1 if x < 0 (2.2)

This function can either solely or jointly be used with the near-tip asymptotic field or the
singular field (cf. Fig. 2.3) whose function is described as:

ψα(x) =
√

r[sin(
θ

2
),cos(

θ

2
),sin(

θ

2
)sin(θ),cos(

θ

2
)sin(θ)] (2.3)

where (r,θ) are polar coordinates centered at the crack tip. To portray an interface
and follow its motion, Sethian et al. [SET 99, OSH 88] first proposed the level-sets
technique. This method was subsequently used in XFEM, by Stolarska and Sukumar
[STO 01, SUK 01] to represent crack paths along the structure. Its principle relies
on defining a function over the calculation domain, whose value becomes zero at the
interface intended to be described.
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Figure 2.4: Level sets Φ and Ψ.

In the work of Moës et al. and Gravouil et al. [GRA 02], the use of level-sets was
extended to three-dimensional structures. The combination of the two level-sets Φ(x) and
Ψ(x) has proved to be an efficient tool, able to define the crack front and its surface (cf.
Fig. 2.4). For moving discontinuities, these latter are updated on the basis of a failure
criterion without remeshing the structure. The level-set Φ(x) represents the signed dis-
tance function normal to the crack surface, while the level-set Ψ(x) measures the signed
distance function tangential to the crack surface and normal to the crack front. When
combining the two, the crack front and the crack surface are located as follows:

crack surface = {Φ(x) = 0 and Ψ(x)< 0}
crack front = {Φ(x) = 0 and Ψ(x) = 0}

(2.4)

And the two level-sets are assumed to be orthogonal:

∇Φ(x) ·∇Ψ(x) = 0 (2.5)

2.3.1 Explicit time integration with XFEM
Recently, problems involving very rapid crack growth have compelled researchers to use
explicit time integration schemes and account for physical phenomena occurring along
crack propagation. In XFEM, many studies were conducted to associate the fracture
approach with the dynamic analysis, yet few have used explicit integration schemes.
Belytschko et al. [BEL 03] were the first to raise the issue of the critical time step,
inherent to explicit integration schemes. In fact, when the discontinuity approaches the
element boundaries, the singular mass matrix terms can reach very small values hence
generating critical time steps approaching zero. To overcome this issue, Hughes et al.
[HUG 79] have proposed a quasi-explicit solver where the region containing the crack
is solved by an implicit scheme while the rest of the structure was evaluated using an
explicit analysis. This method was implemented in Abaqus [SMI 09] to remedy the
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Extended Finite Element Method

inability of the software to combine Abaqus Explicit and XFEM.

When using explicit schemes, a stability analysis should always be checked to
avoid the growth of round-off errors that might impact the final answer. In some explicit
numerical simulations, the stability is constrained by the value of the time step that should
not exceed a critical value [COU 28]. Since this latter can be very small, it is common
to go through a very large number of time steps to simulate a given phenomenon. In
XFEM, this problem is overstated by the existence of cracked elements. The critical
time step tends to zero once the crack reaches the element node. To prevent this issue,
Menouillard et al. [MEN 08, MEN 06] have proposed an energy-based technique for
lumping the mass matrix using discontinuous enrichment only. It prevents the time step
from reaching null values, thus dealing with reasonable time steps during the numerical
simulation. It was shown in his work, that the optimized critical time step in XFEM is
of the same order of magnitude as the one computed for a standard finite element problem.

In the work conducted by Nistor et al. [NIS 06], an explicit analysis of bi-
dimensional discontinuous structures under dynamic loading using XFEM, was
implemented in a home-made code [NIS 05]. This 2D analysis was mainly conducted to
evaluate the path-independent integral and has not been tested for propagating cracks.
For 3D structures, Menouillard [MEN 07] implemented the XFEM formulation in the
explicit code Europlexus to track crack propagation in split Hopkinson Pressure Bar.
His approach focuses on using only one enrichment, the discontinuous enrichment, and
has been revealed to be sufficient to guarantee a crack path close to the observed one
experimentally. However, it is important to highlight that the aforementioned models
were specially developed to simulate fracture problems involving dynamic loading.
Consequently, the crack speeds are not evaluated since they are perceived as initial
parameters that should be predefined when generating the model.

2.3.2 Advantages and limitations

XFEM overcomes the remeshing technique issues and enables the analysis of mov-
ing discontinuities within the finite element framework. Without altering the struc-
ture mesh, this approach is able to describe the crack paths with no prior knowledge.
However, mass lumping remains an impediment to achieving a dynamic brittle frac-
ture model using explicit XFEM. Many previous studies have addressed this matter
[MEN 08, MEN 06, ROZ 08], yet the developed strategies only take into account the dis-
continuous enrichment, i.e. omitting the singular one. The absence of this latter compels
the crack front to propagate inside an element, hence it is only detected when located on
an element boundary. Such propagation may affect the velocity of the crack and constrain
the model to an element-to-element propagation. Reducing the mesh size, might help
overcome this issue in 2D structures, but remains an obstacle for cracks in 3D structures.

19

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0015/these.pdf 
© [Z. Boulaajaj], [2023], INSA Lyon, tous droits réservés



2. Overview of explicit computational methods for dynamic brittle fracture

2.4 Cohesive Zone Model
The cohesive zone model (CZM) is a commonly used method to model crack propa-
gation. It was first proposed by Dugdale [DUG 60] and Barenblatt [BAR 62] and its
principle relies on defining a region along and ahead of the crack tip with interfacial
cohesive surface elements. To characterize the interfacial fracture, two cohesive zone
formulations might be used, either a potential-based model [NEE 87, FRE 08, PAR 09] or
a non-potential-based model [ZHA 08, BOS 06]. The former model originated from the
relationship between energies and the atomic separation of bimetallic interfaces [ROS 81]
while the latter is an alternative model developed to account for the mixed-mode de-
cohesion process. For both model types, a traction-separation law (TSL) is required to
represent the softening behavior. This law dictates that the opening displacement will
increase until the traction across the interface reaches a maximum cohesive strength σc,
then it will diminish gradually up to a null cohesive strength to create traction-free crack
surfaces. Numerous investigations have been carried out on shaping this law and among
the prevailing ones, we distinguish the exponential form [XU 94, BOS 08], polynomial
form [FRE 08, NEE 87], bilinear [YAH 18] and trilinear form [MOR 19], depicted
schematically in FIG.2.5.
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Figure 2.5: Traction-separation laws.
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The opening of a bilinear cohesive zone model is illustrated in FIG.2.6 and the dam-
age phases are delimited by the initial δi and the critical δc openings.

𝛿i  𝛿c  

Cohesive interfacial 
surface element  

ε=0 

Damage 
initiation 

phase 

Damage 
propagation 

phase 

Cohesive zone

Figure 2.6: Schematic illustration of the cohesive zone model approach.

In structural mechanics, the CZM approach is associated with finite element analysis.
The elements are governed by the traction-separation law, which links the cohesive trac-
tion vector to the displacement separation vector acting across the cohesive surfaces. For
any type of TSL, CZM can either be described as intrinsic or extrinsic [ZHA 08, KUB 03]
(cf. Fig. 2.7). With intrinsic models, the TSL curve comprises two parts: an elastic part
(from the origin to the maximum cohesive strength) which denotes an increasing resis-
tance of the cohesive surface to separation and a softening part (from maximum cohesive
strength to zero) describing the failure process. For their numerical implementation, in-
trinsic CZM is initially incorporated before the simulation. The integration of the cohe-
sive interfaces within the structure can be performed partially (in a particular zone of the
studied mesh) or completely (inserting CZM over all the meshes interfaces). Such mod-
els are used in many industrial software such as Abaqus [SMI 09] or Castem [HOF 78]
where cohesive elements are only inserted over selected zones (assumed to be the zones
where damage and crack will occur). When the crack path is not known a priori, the
intrinsic CZM can be pre-inserted over all the finite elements interfaces as implemented
in Zebulon [MIS 11], LMGC90 [DUB 13] or Xper [PER 10] so that the crack path will
emerge according to the loading intensity and history. However, the global elasticity of
the structure is pathologically affected by the presence of the initial cohesive stiffness
in the elastic part (the so-called inherent artificial compliance denoted C0). One has so
to suitably calibrate the cohesive stiffness following an adequate criterion [BLA 12]. As
regards extrinsic CZM, the failure process is solely described. Therefore, the cohesive
zone elements are adaptively incorporated on-the-fly once the elements along the crack
path attain the cohesive strength. Contrary to intrinsic CZM, pathological stiffness loss is
not met for extrinsic models. However, the numerical implementation of extrinsic CZM
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can become highly cumbersome. Apart from needing special treatment, particularly for
parallelization, such models can suffer from the time discontinuity issue when computing
the stress fields.
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Figure 2.7: Intrinsic and extrinsic models of cohesive fracture

2.4.1 Explicit Cohesive Zone Models
Initially, the CZM was applied to study the yielding of steel sheets [DUG 60] and was
later developed to evaluate brittle fracture in beams made of concrete [HIL 76]. Over the
years, this model was expanded to cover a wider range of materials and it has also been im-
proved to address different types of failure. For the dynamic brittle fracture phenomenon,
a rate-dependent cohesive model able to reproduce experimental crack velocities was es-
tablished [SAM 02]. Zhou et al. [ZHO 05] introduced a microscopic rate-dependent
cohesive law along the crack tip process zone :

teff = teff(δeff, δ̇eff) (2.6)

where the cohesive strength teff is related to the effective displacement of cohesive sur-
faces δeff and the opening speed δ̇eff. The generalized equation defining the critical crack
opening displacement is given by :

δc = δco

[
1+

(
δ̇eff

δ̇0

)n]
(2.7)

where δ̇0 is the scaling crack opening rate, n the index of rate-dependency and δco the
static value of critical crack opening distance. This cohesive law was implemented within
an explicit dynamic FE framework, where the equation of motion is integrated using
an explicit Newmark scheme. A suitable choice of the cohesive settings such as the
index of rate-dependency n and the scaling crack opening rate δ̇0 showed that this law
can accurately assess the crack velocity, thus reproducing the experimental observations
[FIN 99].
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In that same context, Doyen et al. [DOY 13] proposed a quasi-explicit time-
integration scheme with a rate-dependent CZM to predict the velocity of rapidly mov-
ing cracks in brittle materials. In this model, the displacement of the nodes outside of
the cohesive region was computed using a finite difference method (explicit) whereas the
displacement of the nodes within the cohesive zone was solved by an implicit scheme.
Although the computed crack tip speed is in accordance with the values obtained using
other established cohesive zone models, the three-dimensional mechanisms have been
disregarded and are to be taken into account in the future.

2.4.2 Advantages and limitations

The cohesive zone model has always been used as a predictive approach to fracture. It
has been shown in the work of Elices et al. [ELI 02] that the outcomes of CZM compu-
tations match those observed or measured experimentally for numerous materials, ductile
or brittle as well as for cracked or uncracked structures. Nevertheless, the CZM approach
has proved to be mesh dependent [TIJ 00], i.e. the size of the elements within the cohe-
sive region can influence the FEM results. To overcome the mesh density dependency,
an artificial compliance was introduced in the traction-separation law for intrinsic mod-
els, without altering the overall elastic response [BLA 12]. Besides, the CZM inherently
exhibits instabilities, also called solution jumps. It arises from the system storing more
energy than what can be released through the cohesive zone. Chaboche et al. [CHA 01]
circumvented this problem by using CZM that incorporates a viscous regularisation. For
dynamic brittle fracture, it has been observed that most CZM utilize rate-dependent TSL
to take into account the complicated mechanisms occurring in the process zone. Further-
more, the shape of the TSL is shown to have an impact on the material response [SCH 03].
Hence, one must select the TSL law according to convenience. Many other parameters,
mentioned above, are to be chosen so that the numerical model achieves the best fit pos-
sible with experimental measures [RIC 12].

2.5 Phase Field

Phase-field (PF) is a widely used approach that can address fracture problems when com-
bined with the finite element computational method. More broadly, it belongs to the
extensive family of non-local damage models. The PF technique for dynamic brittle frac-
ture is based on the variational formulation of Francfort, Marigo and Bourdin [BOU 08].
The PH approach overcomes some of Griffith theory limitations by enabling the depiction
of complex crack geometries and crack branching. The key point of this technique is to
use a smeared representation of the discontinuity. The PF models, sometimes referred
to as smeared crack models, are governed by a continuous field variable, s, associated
with a regularization length, l, which describes the smooth transition from an undamaged
material state to a fully broken state [BOU 00] (cf. Fig. 2.8).
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Figure 2.8: Phase-field representation of a crack topology.

To describe the fracture surface Γ, a phase-field function is introduced :

Γ(s) =
∫

Ω

(
s2

2l
+

l
2

∇s ·∇s)dV =
∫

Ω

γ(s,∇s)dV (2.8)

where γ is the fracture surface density. In this approach, two partial differential equations
are solved: one related to the displacement field and the other one to the damage problem
referred to as the crack phase-field. For dynamic brittle fracture, the phase-field governing
equations for both problems are stated as below:

ρü = ∇ ·σ+ f (2.9)

gc(s2 − l2
∇

2s) = 2l(1− s) (2.10)

where gc the surface energy needed to create a unit fracture surface. Using a non-linear
elastic constitutive model, either quasi-static or dynamic, the displacement field is com-
puted using the minimization problem of the energy functional [FRA 98]. This energy
involves the Lagrangian of the two fields [MOL 20] and is defined as below:

L = D(u̇)−Π(u,s) (2.11)
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where D(u̇) is the kinetic energy and Π(u,s) the potential energy. This latter consists of
the elastic strain energy E(u,s) and the fracture energy W (s):

Π(u,s) = E(u,s)+W (s) (2.12)

The preceding evolution equations, (2.9) and (2.10), are solved using one of the two
existing solver techniques: the monolithic algorithm [MIE 10] where the displacement
and the damage field are computed simultaneously, or the staggered algorithm [MOL 17]
where they are computed independently.

2.5.1 Explicit phase-field
In most of the phase-field developments, the damage problem is solved using implicit
schemes for phase field governing equation (cf. Eq. (2.10)). In the work of Miehe et al.
[MIE 10], a time-regularized viscous crack propagation model has been proposed. The
main objective behind adding this artificial regularization term η is to ensure the viscous
dissipation of the PF. In the available literature, most of the explicit PF models solve the
crack problem using this evolution equation as an explicit PF governing equation:

ṡ− 1
η

〈
β− gc

l
s
〉
+
= 0 (2.13)

where β is the local driving force field and η the viscous artificial regularization term.
Through this equation, Miehe et al. [MIE 10] asserted that the evolution of the damage
variable depends on the difference between the local driving force field and the geometric
crack resistance. Other works were recently carried out to derive an equation of motion
for the phase-field variable. In [KUH 08], Kuhn and Muller suggested an equation similar
to the time-dependent Ginzburg-Landau equation:

1
M

ṡ+2sW (ε)−gc

(
2ε∆s+

1− s
2ε

)
= 0 (2.14)

where s is the PF damage variable, M is a parameter controlling the rate at which local
damage information diffuses into the bulk material, ε is a length scale over which cracks
are smoothed, gc is the fracture energy, W the undamaged strain energy functional and
ε is the linearized strain. From a mathematical point of view, this latter equation was
optimized in the work of Kamensky et al. [KAM 18] by adding a second time derivative
of the damage field, referred to as the microscopic inertia term, into the equation:

1
M

ṡ+
2gcε

c2 s̈+2sW (ε)−gc

(
2ε∆s+

1− s
2ε

)
= 0 (2.15)

This additional term comprises the parameter c which is the speed limit on the propagation
of the phase field through the undamaged material. For further details, refer to [KAM 18].
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Explicit solvers of PF models have been applied partially [REN 19] or thoroughly
[ZHA 21b, WAN 19c, ZHA 21a, WAN 20]. In the work of Ren et al. [REN 19], the
model uses a staggered algorithm where the displacement field is solved explicitly
using the Verlet-velocity integration scheme while the PF damage variable is solved
implicitly. Other models [ZHA 21b, WAN 19c, ZHA 21a, WAN 20] employ an explicit
time integration procedure for both the displacement and the PF problem. They are
solved using explicit finite difference methods: central difference scheme and forward
difference scheme, respectively. The latter models were mainly used to investigate failure
in composite materials [ZHA 21b, ZHA 21a], thermo-elastic materials [WAN 20] or
materials with compressive-shear failure behavior [WAN 19c].

2.5.2 Advantages and limitations

Recently, the phase-field model has been increasingly used due to its various advantages.
Several works were able to capture some of the brittle fracture attributes such as crack
branching. Dynamic PF models were also capable of achieving crack velocities up to
60% of Rayleigh wave speed Cr. The challenge behind the use of an explicit form of
the crack PF and solving it explicitly, is the computational expense associated with small
critical time steps. Hu et al. [HU 21] suggested a precise integration scheme (PIS) using
higher time intervals than the ones used with finite difference method. This modification
could overcome high computational costs without inducing divergence and numerical
discrepancies. In the model developed by Wang [WAN 20], the dynamic processes such as
crack branching are being captured and the crack speed (not greater than 20% of Rayleigh
wave speed Cr) demonstrates good consistency with his experimental data. However, the
method has not yet been employed for configurations and materials exhibiting rapidly
moving cracks, approaching 80% of Cr. Besides, the need for a viscosity parameter to
achieve convergence still raises a lot of questions. Since this parameter has no direct
physical meaning, a parametric study is required to select its optimal values.

2.6 Peridynamics
Peridynamics (PD) is a continuum theory developed by Silling [SIL 00]. It consists in re-
placing the partial differential equations with integral equations. The overriding concern
behind its development was to overcome the issues encountered in the classical contin-
uum formulation when handling strong material discontinuities such as fracture. As an
attempt to address brittle dynamic fracture problems, different numerical methods within
the PD theory were developed. The most prevalent approach is the use of the meshfree
scheme (EMU code) [SIL 05]. Other studies were conducted to incorporate this theory
within the standard Finite Element framework since it is widely used for structural analy-
sis [MAC 07]. As its name suggests, peridynamics is governed by a non-local interaction
zone called horizon (Peri in Greek). As depicted in Fig. 2.9, the model is treated as a set
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of material points separated by a finite distance ξ. The length parameter, H(X), specifies
the region inside which the material points interact and influence each other. A uniform
grid spacing specifies the resolution of the network, whether it is coarse or refined.
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Ω

Horizon H(X) 

X 

Material particles 

Figure 2.9: Schematic illustration of the peridynamic material particles.

Also, for each pair of points, an elastic bond either linear or non-linear is introduced
to account for their connection and mutual interaction while ensuring the material con-
sistency. The singular feature of those elastic bonds is their critical relative elongation,
denoted η, beyond which the bond is considered broken and its contribution to the inter-
action becomes null (cf. Fig. 2.10). This parameter depends on the studied material and
its energy release rate [SIL 05].

ξ 

X' 

𝛺0  

Horizon H(X) 

X 

ξ + η Y' 

Y 

u'

u

𝛺𝑑  

Figure 2.10: Peridynamic model: undeformed and deformed configurations

Upon the PD principle, it can be inferred that the predefined limit η governs the
damage evolution. This bond-failure criteria is then self-sufficient to handle the dynamics
behind crack propagation. Therefore, it goes without saying that no additional criteria is
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2. Overview of explicit computational methods for dynamic brittle fracture

needed to regulate cracks speeds or crack branching.
Among the PD theory, it is noteworthy to distinguish two different approaches. Based
on the definition of the interaction forces, there exists a bond-based and a state-based
peridynamics. In the first approach [HA 10], the interaction forces between two material
points are solely determined by their relative displacements, while in the second [SIL 07],
they are function of the deformations of all the materials points within the horizon and
sometimes they do depend on other variables.

2.6.1 Explicit Peridynamic formulation
The PD equation of motion based on the original formulation [SIL 00] is solved for ma-
terial points belonging to the horizon and is given by:

ρü(x, t) =
∫

H
f
(
u
(
x′, t
)
−u(x, t),x′−x

)
dVx′ +b(x, t) (2.16)

where f is the pairwise force function that the particle x′ exerts on the particle x, u the
displacement field and b is the body force. The integral is evaluated over a region H
denoting the horizon.

The solution process is computed by means of a numerical technique implementing
the PD problem. Although the meshfree method is frequently used, we will be focusing
on the recent developments entailing the finite element analysis. In [MAC 07], the
grid nodal points are assimilated to an assembly of truss elements, where their stiffness
properties characterize the PD bonds. To depict the dynamic processes arising from
brittle fracture and the system response upon the sequential breaking of bonds, we will
outline the PD models using an explicit time integration scheme.

The most used time integration scheme is the Velocity-verlet algorithms also known
as the mid-point integration. For each step, the acceleration is solved directly from the
equation of motion defined in (2.16) and its value is used to assess the future state of
the system. Through the application of the governing PD equation, the damage law is
checked for each bond to determine the current state of damage.

To study the dynamic crack branching in brittle materials, Ha et al. [HA 10] per-
formed a 2D PD simulation. For his numerical model, the meshfree method was used
and the convergence of the method was checked regarding the size of the horizon and
the grid spacing. The obtained results demonstrate a crack speed and branching patterns
in great agreement with the experimental observations reported in [BOW 67]. However,
when combining PD to finite element analysis, few works have been performed on dy-
namic brittle fracture. A state-based PD analysis was recently developed within the finite
element framework [MAD 18], where the solution is achieved by conducting an implicit
integration until crack initiation and then proceeding with an explicit algorithm. The
crack propagation behavior in 3D fiber-reinforced composite (FRC) structures was inves-
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Molecular Dynamics

tigated in the work of [ROK 18] and has shown that upon the loading conditions and the
pre-existing defects, PD has prevailed in predicting crack paths.

2.6.2 Advantages and limitations

On numerous occasions, PD has proved to be efficient in terms of describing the com-
plex dynamic patterns of cracks such as its branching. In addition to the main branches,
this method is also capable of providing information about small branches. Therefore it
fully recovers the crack features observed experimentally on some materials such as glass.
However, some parameters within this formulation remain numerical and no physical ex-
planation can be provided to vindicate their values. For instance, the horizon, which in
reality is boundless, must be assigned a finite value. Quantifying its value can be cum-
bersome since it is believed to depend upon an intrinsic material length, characterizing
the physics of interactions between particles [HA 10]. Consequently, the crack features,
namely its speed and path, may vary significantly if different horizons are considered. In
the work of Bobaru et al. [BOB 09], an adaptive refinement algorithm of the grid spac-
ing and horizon was proposed. For 1D problems, this method has showed to achieve
convergence to the classical solutions in the limit of the horizon going to zero [SIL 08].

2.7 Molecular Dynamics

Apprehending the features of dynamic brittle fracture has always been an abiding chal-
lenge. As mentioned before, many theories have arised to elucidate the discrepancy be-
tween theoretical and experimental results. One of the established observations is that the
cracks will accelerate up to a critical speed lower than the Rayleigh wave speed. This
out-of-reach speed has been proved to be the theoretical limit [STR 57, KAN 88]. To ex-
plain this phenomenon, an assumption based on the existence of micro-scale dissipation
mechanisms was made. Therefore, many molecular dynamics (MD) simulations have
been employed to explore the movement of atoms and molecules and their behaviour af-
ter their bonds breakage. By introducing the lattice model, Slepyan [SLE 10] had shown
the existence of waves originating from the micro-structural scale, which should be ac-
counted for when treating fracture. Capturing this wave radiation should give a deep
insight into the energy release process for a propagating crack, thus shedding some light
on the macro-level phenomena observed. These 2D lattice models can be described as
a set of particles connected to the nearest neighbors with linear elastic bonds that break
after undergoing a given extension (cf. Fig. 2.11).
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2. Overview of explicit computational methods for dynamic brittle fracture

Atoms 

Crack 

Figure 2.11: Schematic illustration of molecular dynamics simulation of crack growth.

When performing the computational analysis, MD simulations require the determi-
nation of the inter-atomic potentials. Those mathematical functions are derived from
quantum mechanics described by Schrodinger equation [SCH 26]. For a given ma-
terial, many approximations are needed and selecting one among others will depend
on the level of quantum chemistry calculations and the experimental data. For struc-
tural analysis involving covalent systems, it is appropriate to use bound order potentials
[ALB 02, PET 99] such as Tersoff potential [TER 88, TER 89, FAN 19] or EDIP potential
[BAZ 97]. As regards single crystal silicon, a Stillinger-Weber (SW) potential is deemed
more suitable [STI 85].

2.7.1 Applications to silicon fracture

In [HOL 98], Marder and Holland performed an MD simulation on single-crystal silicon
to investigate the dynamics of crack propagation. In their work, they adopted an infinite
strip geometry where a notch is inserted. For initiation, the two boundaries of the strip
are pulled apart to store enough elastic energy ahead of the crack tip and initiate its prop-
agation. The inter-atomic potential used in this case is the SW potential [STI 85]. The
calculations were carried out in view of solving the equation of motion for all particles
and Verlet algorithm was used for the time integration. The order of magnitude of the
time step is few femtoseconds. Crack velocities were not evaluated in this study.
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Conclusion

2.7.2 Advantages and limitations
From a qualitative point of view, MD portrays many microscopic processes such as lattice
trapping and its effects on crack propagation. In the case of single-crystal silicon, it also
allows a representation of crystallographic planes highlighting the anisotropy dependence
of crack propagation. However, the high computational cost hinders us from considering
3D structures. Also, the strip geometry only represents a small portion of the matter.
Its underlying parameters such as the periodic boundary conditions and the absorbing
regions may bring us closer to reality yet disregard many key aspects. To illustrate this
issue, we recall the assumptions that were made to justify the experimental observations
and which involve scales of the size of the entire structure. The most relevant one asserts
that the propagation of elastic waves and their reflection from the boundaries might have
an impact on the crack velocity and its dynamics. Unfortunately, such hypothesis cannot
be tested in MD simulations. Furthermore, it was observed in [HOL 98] that the used
inter-atomic potential will not yield fracture along the experimentally preferred fracture
planes of silicon. Since those potentials are perceived as approximations, they might omit
some materials characteristics thus ensuing inconsistent results.

2.8 Conclusion
In this chapter, we provided a concise overview of some numerical approaches for dy-
namic brittle fracture. A detailed study of the modeling parameters has been performed
to provide an insight on the requirements needed to capture the dynamic behavior of ac-
celerating cracks. The majority of the aforementioned computational methods has shown
promising results in terms of predicting singular crack paths. However, when handling
complex geometries such as crack branching, some of the methods, namely peridynam-
ics and phase-field, recovered the observed experimental patterns naturally, while others
such as XFEM or the remeshing technique, relied upon a branching criterion to trigger
this phenomena.

In view of crack speeds, very few studies were found to be addressing this matter.
Mostly because its evolution along the crack path is intricately dependent upon micro-
scale and macro-scale processes. Therefore, reproducing a realistic numerical model will
utterly require a multi-scale approach.

Besides, it appears that many computational methods have introduced some numer-
ical settings or length scales among their models, others have regulated their numerical
parameters to experimental results in order to achieve great agreement with the measured
data. As opposed to such models, we believe that an accurate estimation of the crack ve-
locity should be recovered as a "natural" outcome of the numerical analysis or by giving
a physical meaning to those parameters and linking them to the studied material intrinsic
parameters.
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Chapter 3

An XFEM model for dynamic crack
propagation
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3. An XFEM model for dynamic crack propagation

3.1 Introduction

This chapter presents the step-by-step implementation plan of the explicit extended fi-
nite element method in Cast3m [CAS 21]. Although the alleged software is originally
implicit, it consists of a toolbox that offers great freedom in terms of development and
access to various modeling features. When simulating the dynamic behavior of cracks
evolving in brittle materials, many numerical parameters are to be determined. Therefore,
an exhaustive study was first conducted to establish the adequate numerical approach
and its inherent settings. In the first part, the algorithm and procedures implemented in
Cast3M are reported and the calculation methodology is outlined. In the second part,
an example to predict dynamic crack propagation is presented. Eventually, the effect of
some numerical parameters on the outcome and the performance of the computations is
appraised.

3.2 Cast3m implementation of explicit extended finite el-
ement method

The strategy adopted by Cast3m consists in defining the model parameters such as mesh,
loading type and XFEM settings. Thereafter, a temporal integration scheme is used to
solve the mechanical problem. In fracture mechanics encompassing crack growth, an
initiation criterion is constantly evaluated along the resolution process to account for the
discontinuity movement. The general purpose of the following analysis is mainly to assess
the newly implemented procedures and validate their suitability, robustness and adequacy
once applied to our model. Also, this chapter is committed to providing short guidance
on how to use and adapt this code for further applications.

3.2.1 Spatial discretization: Model parameters

In the experimental part of our study, we use pre-notched wafers of dimension 50mm
x 50mm x 190µm and subjected to a quasi-static bending load (cf. FIG.3.1(a)). The
post-mortem inspection of the crack surfaces has revealed that the front is elliptical
and its shape evolves for different crack velocities (cf. FIG.3.1(b)). For the sake
of comparison, it can be inferred that one of our model undeniable attributes is its
three-dimensional configuration. It is of particular interest since we want our algorithm
to cover a broad range of applications. Hence, be extended to problems with internal and
through-thickness propagating cracks.
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Cast3m implementation of explicit extended finite element method
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Figure 3.1: (a) Four-line bending test and (b) crack front shapes for different crack
steady-state velocities [WAN 19b].

However, the small width of our wafers, compared to their other dimensions, can be
cumbersome to represent numerically using a 3D model. If considering many elements
through the thickness while preserving the quality of the mesh, our algorithm is bound
to generate hundreds of thousands of elements. Such meshes would engender heavy
computational costs. Furthermore, the small elements will strongly reduce the critical
time step of the explicit integration scheme, which will be computed at a later stage.

3.2.1.1 Mesh model

To overcome the aforementioned issues, all the subsequent computations are performed
on a simplified 3D model, roughly representative of the wafers geometry. The model is of
dimension 6mm x 7mm x 1mm and is regularly meshed using linear hexahedral elements,
referred to as CUB8 in Cast3m. As depicted in FIG.3.2, the structure is coarsely dis-
cretized, with 6 elements along the thickness and 30 elements along the crack trajectory.
Additionally, two parts can be distinguished. A central zone, where the crack is intended
to propagate, and whose elements are assigned the enrichment properties. It enables to
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3. An XFEM model for dynamic crack propagation

locate the elements cut by the crack, thus activating their additional degrees of freedom.
As for the peripherals zones, they only include standard elements. A discrete represen-
tation of a sharp notch, which length is approximately 1.2 mm, is obtained using XFEM
functions. Many conditions are to be fulfilled when including this discontinuity. The use
of crack criteria based upon the J-integral requires specifying a domain or the elements
layers along which it will be computed. Therefore, this compels the notch to go through
at least 4 elements. Among the available enrichments (discontinuous and singular), only
the discontinuous enrichment is considered. For crack tracking, level sets phi Φ and psi
Ψ are used and updated after each crack extension to locate the new front.

Enriched region 

Notch

Figure 3.2: Extended Finite Element model for crack growth.

3.2.1.2 Material properties

Once the geometry is defined, the mechanical parameters have to be clearly stated to
capture the brittle or ductile fracture behavior. In the course of our work, monocrystalline
silicon, which is a very brittle material (cf. TAB.3.1), is considered. It is noteworthy
to mention that it is an elastic material renowned for exhibiting orthotropic properties.
Nevertheless, this feature is discarded in our calculations, which are carried on an
isotropic material. This simplifying assumption avoids the complexity that would result
from combining explicit XFEM with an orthotropic model.
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Cast3m implementation of explicit extended finite element method

Material properties Units Monocrystalline silicon (Si)
Density γ tons/mm2 2,33.10−9

Young modulus E MPa 130000
Poisson ratio − 0,28

Fracture energy mJ/mm2 1,73.10−3

Rayleigh wave speed m/s 4600

Table 3.1: Mechanical and fracture properties in single-crystal silicon [MAS 13]

3.2.1.3 Mechanical loading

To underline the dynamic features of cracks in brittle solids, a constant force is applied
and maintained constant along its propagation. Therefore, the impact of the loading type
and its rate is neglected when evaluating crack dynamics. However, when considering
the original undeformed mesh, progressive loading is to be applied in order to reach
a constrained state, where cracks are about to initiate. Consequently, two mechanical
loads are exerted alternatively: a linear load followed by a constant one (cf. FIG.3.3).
The value of the latter is defined by the outcome of the former one. In Cast3m, for each
loading type, an analysis is conducted. The formerly drawn distinction between the two
applied loads will then lead to two separate analyses.

(a) (b)

Figure 3.3: (a) The progressive linear loading (first analysis) and (b) the constant loading
(second analysis).

A linear quasi-static tensile loading is applied. As depicted in FIG.3.4, one edge
of the sample undergoes a displacement of a few millimeters along x while the other
extremity is maintained fixed by imposing a null displacement along x and no constraint
along y and z. To replicate our experimental configuration, a bending test would have
been more representative. However, given the shape of our wafers and the use of linear
elements, it is more straightforward to go with a uniaxial tension configuration and avoid
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3. An XFEM model for dynamic crack propagation

any issue that may arise from bending non-linearities when implementing our algorithm.
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Figure 3.4: Finite element analysis of a plate subjected to a tensile loading (Mode I).

3.2.2 Temporal discretization
The main aim of our work is to shed light on dynamic processes associated with
crack propagation on monocrystalline silicon. This dynamic fracture behavior stems
from the rapidly moving cracks, reaching velocities close to the Rayleigh wave speed
[FIN 99, WAN 19b]. Since failure occurs in a very short time, it is reasonable to
approach this problem using an explicit time integration scheme. In the course of our
work, dynamic calculations are performed simultaneously along crack propagation.
Hence, the initiation criterion (either J-integral or stress intensity factors) is strongly
conditional upon the computed fields ahead of the moving crack front.

For the purpose of reducing the computational cost, the first analysis (before the
failure criterion is reached) is carried out using an implicit integration scheme. Only the
second analysis involving crack propagation (once the crack onset criterion is verified) is
solved explicitly.

3.2.2.1 Implicit calculations

Since it is a linear static analysis, an implicit solver in Cast3m, referred to as the procedure
’PASAPAS’, is used. During each time step, the fracture parameter (J-integral in our
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case) is computed and constantly compared to the crack initiation criteria. This threshold
is chosen to be the critical energy release rate here. As long as the criterion is not met,
the computations are pursued until reaching or slightly exceeding it. Then, the arguments
of interest such as the displacement and the stress field are stored to be used for the
subsequent analysis. We also recover the last loading value, which will be kept constant
afterward.

3.2.2.2 Explicit calculations

To model our dynamic system, the time integration of the elastodynamic equation below
is carried out using the Newmark method [NEW 59]:

MÜ+KU− fext = 0 (3.1)

where M is the mass matrix, K the stiffness matrix, Ü and U are the acceleration and the
displacement vectors, respectively, and the system is subjected to external efforts denoted
as fext .

Newmark method

The main focus of this part relies on implementing the explicit Newmark algorithm within
Cast3m. Therefore, a thorough insight into its approximations and structure is outlined
below. This numerical approach approximates the temporal functions, displacement and
velocity by means of Taylor expansion, to solve differential equations. Their develop-
ments lead to a third-order term assumed proportional to the acceleration, introducing the
parameters γ and β. The displacement and its first-time derivative are solved as:

Un+1 =Un +∆tU̇n +
∆t2

2 Ün +
∆t3

3

(
3β

Ün+1−Ün
∆t

)
U̇n+1 = U̇n +∆tÜn +

∆t2

2

(
2γ

Ün+1−Ün
∆t

) (3.2)

Eventually, the simplification of (3.2) leads to (3.3):

 Un+1 =Un +∆tU̇n +∆t2 (1
2 −β

)
Ün +∆t2βÜn+1

U̇n+1 = U̇n +∆t(1− γ)Ün + γ∆tÜn+1

(3.3)

In the Newmark family algorithms, two types can be distinguished (cf. TAB.3.2), either
implicit or explicit. This characteristic is defined by the values of γ and β. Explicit solvers
describe the solution at a subsequent time tn+1 using the current state only. Whereas
implicit methods employ both the currently known state tn and the future one tn+1 in the
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3. An XFEM model for dynamic crack propagation

approximation.

Integration method γ β Type Stability
Finite difference method 1/2 0 explicit conditionally stable

Linear acceleration 1/2 1/6 implicit conditionally stable
Average acceleration 1/2 1/4 implicit unconditionally stable

Table 3.2: Properties of some Newmark computational schemes.

Taking into account our model requirements, a central finite difference method is chosen
to describe the discretized fields U̇n+1 and Un+1 (3.4): Un+1 =Un +∆tU̇n +

∆t2

2 Ün

U̇n+1 = U̇n +
∆t
2 Ün +

∆t
2 Ün+1

(3.4)

Stability of explicit finite difference method

At time tn, the discretized structural equation of motion (3.1) becomes:

MÜn +KUn −Fn = 0 (3.5)

The use of a time integration scheme requires the study of its convergence, stability and
consistency. In the following analysis, the stability of the central finite difference method
is checked and a sufficient condition is developed to ensure accurate results.

For any given quantity V , the average and the difference between V at time n and n+ 1
are denoted as:

[V ] =Vn+1 −Vn ⟨V ⟩= Vn+1 +Vn

2
(3.6)

Using the above notations in (3.4), we obtain: [U ] = ∆t⟨U̇⟩− ∆t2

4 [Ü ]

[U̇ ] = ∆t⟨Ü⟩
(3.7)

The stability of the method is not influenced by the existence of external efforts. There-
fore, we rewrite our equation (3.5) at time tn and tn+1 so that Fn and Fn+1 are null. Their
difference is expressed as:

M[Ü ]+K[U ] = 0 (3.8)

Then, we multiply (3.8) by [U̇ ]T and we replace [U ] by its expression in (3.7) [HUG 87]:
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Cast3m implementation of explicit extended finite element method

⟨Ü⟩T (M− ∆t2

4
K)[Ü ]+ [U̇ ]TK⟨U̇⟩= 0 (3.9)

This equation proves that the explicit method is stable only if (M− ∆t2

4 K) is a positive
definite matrix. Given its definition, the stability condition is then deduced when solving
(3.11) and considering the eigenvalue analysis in vibration det(K−ω2M) = 0, where X
is the eigenvector associated with the eigenvalue ω2:

KX = ω
2MX (3.10)

XT (M− ∆t2

4
K)X = XTMX − ∆t2

4
XTKX

= (1− ∆t2

4
ω

2)XTMX
(3.11)

From this equation, it can be inferred that the stability condition depends on 1− ∆t2

4 ω2

being positive. Hence, for a fixed mesh size, the choice of the time step ∆t is defined as:

∆t ≤ ∆tc =
1

ωmax

√
1
4

(3.12)

where ωmax is the greatest eigenvalue of the meshed structure, associated with the
smallest element.

3.2.3 Mass lumping strategies
Defining the mass matrix remains one of the major impediments that hindered researchers
from developing a fully explicit enriched model. As detailed in the previous section,
the use of an explicit algorithm requires specifying the critical time step and constantly
checking its relevance as the crack propagates. It has also been demonstrated that this
time step is strongly contingent on the highest eigenvalue of the discretized structure.
Along its extension, the crack tends to go through the element, reaching its edges or even
altering its size. In such cases, the mesh size is no longer fixed. For distorted elements
with very small segments, we obtain huge values of ωmax, thus a critical time step tending
to zero, rendering the computations unfeasible.

Many works have been conducted to lump the mass matrix. Asareh et al. [ASA 20]
have proposed a technique where null or negative masses are assigned to the enriched
degrees of freedom. The main advantage of this method is its independence from the
enrichment functions. However, the crack domain is only solved using an implicit
algorithm. Menouillard lumping strategy [MEN 08], treats the broken elements explicitly
but has only considered the discontinuous enrichment. His technique aims at preserving
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3. An XFEM model for dynamic crack propagation

the critical time step of a free-crack structure while conserving the kinetic energy for
rigid body motions. It constructs a block diagonal matrix, where each enriched node is
assigned its enriched degrees of freedom (dof) within the mass matrix. The appointed
value is the same as the one computed for standard elements.

In Cast3m, the discontinuous enrichment introduces 3 dofs, namely Ax, Ay and
Az while the singular enrichment generates 24 dofs: Bi j, Ci j, Di j and Ei j. The index
i ∈ {1,2} stands for the number of crack fronts (two fronts for internal cracks). The
index j represents the dimension of our model where in 3D, j ∈ {x,y,z}. These degrees
of freedom are associated with the singular function defined in (2.3). So far, no lumping
technique has been developed to take into account these singular dofs explicitly. In
this first approach, it is more straightforward to adapt our algorithm to discontinuous
enrichment, hence the pertinence of Menouillard approach.

As the crack advances, new elements are continuously enriched. To account for
these changes, we developed two Cast3M procedures that are executed simultaneously
(cf. Appendix A). The first procedure, named MASS3D, modifies the mass matrix, by
adding the dofs associated with the enriched elements. The second procedure MESHXF
identifies the newly enriched elements and forward the information to the first one. At
each time step, the elements crossed by the discontinuity are compared to those detected
at the previous time step. If newly enriched elements are spotted, the first procedure
proceeds to a modification of the mass matrix, otherwise, it remains the same.

3.2.4 Crack initiation criteria
In our configuration, where the crack path is already known, two features are to be
determined to reproduce crack propagation: the initiation and propagation criteria. The
major goal of our numerical model is to outline the reasons behind the crack terminal
velocity. Hence, it is chosen to avoid any parameter or variable that may directly control
the crack velocity. This implies that our algorithm defines an initiation criterion that is
also expected to control crack extension.

Using the energy-based approach for crack initiation, we evaluate the strain energy
release rate, or work per unit fracture surface area, denoted as the J-integral [RIC 68].
Our criterion stems from Griffith theory [GRI 21] stating that the crack will propagate if:

J ≥ Gc where Gc = 2γ (3.13)

where Gc is the critical energy release rate and γ the surface energy.

As aforementioned in Section 3.2.1.2, we disregard the orthotropic property of
monocrystalline silicon. Therefore, the material features (isotropic, brittle and linear
elastic) enable to employ an already implemented procedure GT HETA in Cast3M. This
procedure requires the definition of several numerical parameters. The most prevalent
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Cast3m implementation of explicit extended finite element method

ones are the crack front location, the number of element layers around it and the
displacement field, necessary to calculate the J-integral (cf. Appendix B).

Figure 3.5: J-domain: element layers around the crack front.

According to the model, the crack front is discretized into several 2D linear
triangular elements, namely TRI3. We specify a fixed number of element layers along
which J-integral will be evaluated. For each front node, the procedure returns its proper J
value. The blue elements layer associated with the red central nodes of the crack front is
illustrated in FIG.3.5. However, for the other crack front nodes, there are fewer elements
above or below than the layer thickness. Therefore, the J values computed herein are not
valid.

In our case, we assume that the crack front is straight. If we were to consider the
computed J values for each node, some will attain the criteria while others not, resulting
in a blunt crack shape. To simplify and overcome this issue, only the J value computed
at the central node is considered. It is then assigned to all the front nodes, thus ensuring
an even propagation.

For each time step, in both static and dynamic analysis, the J-integral is computed
and compared to the surface energy, which is a material property. If J is greater, our
initiation criterion is met. The propagation rate is then governed by the excess of en-
ergy computed at this instant, which is converted to newly created crack surfaces Acreated .
Given the straight front and its rectilinear propagation, the crack increment lcrack is de-
duced from the geometric parameters of our model:
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3. An XFEM model for dynamic crack propagation

2Acreated ⇐⇒ J−Gc

Gc

lcrack =
Acreated

e

(3.14)

where e is our structure thickness and Acreated the crack surfaces area.

The first calculations revealed that small crack increments are created within the
same element. This leads to substantial evanescent waves that impact the J-values and
hinder the crack from going further than two elements. As a matter of fact, the use of
discontinuous enrichment while omitting the singular one enables detection of the crack
front only when it reaches an element edge. Therefore, it is not possible to follow its
propagation inside an element. If the amount of energy transformed into crack surfaces
is not high enough for the crack to go through a whole element, the crack grows by
an extension da but can not be detected when evaluating the mechanical fields and the
J-integral.

This issue prompts us to review and modify our propagation algorithm. As described
in FIG.3.6, the propagation is constrained to an element-to-element propagation. The
crack is set to propagate only if the amount of energy calculated is sufficient to break a
whole number of elements. The front location is governed by a lower limit defined as the
length of the element.
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Figure 3.6: Crack propagation algorithm.

3.2.5 Cast3m algorithm
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3. An XFEM model for dynamic crack propagation

Quasi-static analysis - Procedure PASAPAS

— An increasing displacement is applied.

— The amount of energy required to break an element according to (3.14) is
computed. This value is defined as Glim.

— For each step of the procedure PASAPAS, the J-integral distribution along the
crack front is evaluated.

— The J value of the central node is compared with Glim:

• If J ≥ Glim: we exit the quasi-static analysis. For that given state, we
extract and store the associated displacement and stress field. The value
of the applied displacement is also saved to be used later.

• If J < Glim: we keep on increasing the displacement until storing
enough energy within the structure to trigger crack propagation.

Dynamic analysis - Central Finite Difference Scheme

— The time step ∆t is computed.
— The fields of interest such as the displacements and stresses are initialized

according to the quasi-static analysis.
— The loading is maintained constant throughout this analysis.
— The displacement dn+1 is computed:

dn+1 = dn +∆tvn +
∆t2

2
an (3.15)

— The J-integral is computed by the procedure GT HETA (where dn+1 is used as
an input) and compared to Glim or a multiple thereof.

— Activation of the propagation procedure: the fields are updated by adding the
enriched degrees of freedom denoted as Ax, Ay and Az in Cast3m. The level
sets are updated so as to identify the position of the new crack front.

— The mass matrix is updated using the lumping strategy (See Section 3.2.3 for
more details).

— The internal and external efforts denoted Fn+1 are evaluated.
— The acceleration an+1 is computed:

an+1 =M−1Fn+1 (3.16)

— The velocity vn+1 is computed:

vn+1 = vn +
∆t
2
(an +an+1) (3.17)
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Results and discussions

3.3 Results and discussions

The results presented below resume all the foregoing model parameters and propa-
gation criteria. A parametric study is carried out to evaluate the influence of several
parameters on the J-integral and the crack velocity. The results are then discussed using
the post-processing and visualization software Paraview [AHR 01] and Matlab [MAT 21].

The variable u1phy represents the displacement field of the structure. At each time
step, the displacement fields ucrck1u and ucrck1d are computed for the upper and lower
crack surfaces, respectively, using the operator XFEM. FIG.3.7 and FIG.3.8 illustrate the
broken wafer with different amplification factors.

At the end of the dynamic analysis, we retrieve the crack length evolution with
time. In the first simulation, two elements layers are used to compute the J-integral. As
illustrated in FIG.3.7, the crack stops propagating nearly before reaching the end of the
wafer. This occurs once the number of element layers ahead of the crack front becomes
less than the number used by the GT HETA procedure. Besides, the J-integral values
decrease considerably once the crack reaches the end of the plate, thus becoming lower
than the crack initiation threshold.
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Figure 3.7: Numerical simulation of crack propagation - Amplification 200.
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Figure 3.8: Numerical simulation of crack propagation - Amplification 1000.

3.3.1 J-integral along crack propagation

The first crack extension occurs at the first step of the explicit analysis. This explains
the sudden drop in the J values observed in FIG.3.9. Throughout the computations, the
J-integral is constantly checked until enough energy is stored to initiate another crack
growth. The vertical red dashed line indicates the instants of crack propagation. It is
observed that once propagation occurs, the J-integral values do not decrease immediately.
As a matter of fact, if the crack extension is triggered at instant tn, the actualization of the
displacement field is performed at the same time step and concerns the newly enriched
elements. This update is carried out by adding the degrees of freedom Ax, Ay and Az and
assigning them the null value. At this point, the crack had grown virtually but no structural
physical quantity had been notified by its new position. It will then take two time steps,
hence at tn+2, so that the enrichment dofs of the displacement are filled with non-zero
values representing the opening of the crack surfaces. Following these changes, the J
value drops suddenly and throughout the calculations, it increases again up to the critical
value. This pattern is repeated several times until reaching the other extremity of the plate.

Towards the edge of the plate, the J values do not exhibit the same pattern as before.
More oscillations and an abrupt decrease in their values are observed. At this stage, if
calculations are pursued, J can even attain negative values. The related crack surfaces
are then subjected to extreme deformation. In Paraview, we can clearly visualize the
amplification of the evanescent waves and their interaction with the crack, once reflected
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from the free surfaces. Since many waves have accumulated during the propagation and
possible edge effect, the computation of the J-integral and the crack velocity will not be
considered valid near the end of the plate.
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Figure 3.9: Evolution of J-integral and crack length.

3.3.2 Crack velocity

The aim of our study is to numerically estimate the crack speed in monocrystalline
silicon and to identify the reasons behind its limiting velocity. With no propagation
criteria, this value is assumed to be recovered as a direct result of the simulation. It also
goes without saying that these results are quantitative since our numerical model and the
applied loading are different from those used in experiments.

As illustrated in FIG.3.8, the velocity of the crack front oscillates. Therefore, the
velocity evolution is smoothed (red line).
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Figure 3.10: Evolution of the crack velocity.

The computed terminal velocity is slightly above the Rayleigh wave speed ≈ 4700
m/s. Furthermore, the instantaneous crack velocity and its profile are consistent with
those recovered experimentally [WAN 19b]. Rapid acceleration is followed by a station-
ary phase where the attained velocity is the Rayleigh wave speed Cr. In FIG.3.10, the
amplitude of the velocity oscillations is more important at the onset of the propagation. It
is mainly due to the sudden change of the analysis type: from static to dynamic. Unlike
the measured speed values, no limiting speed has been reported in these simulations. For
this model, it can be inferred that with no condition on the crack speed, this latter is meant
to reach its maximum value Cr.

3.3.3 Influence of the modeling parameters

Each numerical model implies the use of many parameters. Also, many assumptions and
conditions are established for calibration purposes. Herein, two of the most important pa-
rameters are discussed. First, the computation of the J-integral depends upon the number
of element layers around the front. Since these J values govern the crack propagation, it
is only evident that the crack speed is in turn, influenced. Second, it has been shown in
the work of [WAN 19b], that the crack speed is closely affected by the notch length. The
crack exhibits higher velocities for smaller notches.

3.3.3.1 Number of element layers

In order to highlight the influence of the number of element layers on crack propagation,
some values of this parameter are analyzed: 2, 3 and 4.
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Figure 3.11: Evolution of J-integral for different number of element layers.

In FIG.3.11, the use of more than two element layers reduces the discrepancies of
the J values following each propagation. Although the J field is more uniform in this
case, the crack arrest is reported way before the structure complete failure. Nevertheless,
FIG.3.12 demonstrates that the effect of the number of layers on the J values does not
lead to a significant change in crack velocity. For the rest of the parametric analysis, we
chose to keep two element layers.
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Figure 3.12: Crack propagation for a different number of element layers.
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3. An XFEM model for dynamic crack propagation

3.3.3.2 Notch length

For each notch length, a different static analysis is conducted beforehand to identify the
loading for which the crack initiation criterion is met. We define three cases: lnotch = 1.2,
1.8 and 2.6 mm. The table below summarizes the average velocity for each case.

(a)

(b)

Figure 3.13: (a) Fracture stress σ f as a function of notch length a (b) Fracture stress
versus crack steady-state velocity [WAN 19b]

In the work of Wang et al. [WAN 19b], it has been demonstrated that the fracture
stress decreases for an increasing notch length (cf. FIG.3.13(a)). Additionally, when
velocities were measured, FIG.3.13(b) showed that for high fracture stresses, the maximal
attainable velocity was 85% of Cr.
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Figure 3.14: Crack propagation for different notch lengths.

In our work, the crack average velocity is deduced from FIG.3.14. As expected,
TAB.3.3 shows that our model is broadly in line with the trend of speed measurements
conducted on monocrystalline silicon (cf. FIG.3.13). The shortest the notch, the higher
its velocity. Nevertheless, no limiting velocity has been reported. In fact, these values
cannot be compared directly to the measured ones, since our reference model is different
from the experimental configuration.

Notch length (mm) Crack average speed (m/s)
1.2 4746
1.8 4499
2.6 4220

Table 3.3: Crack average velocity for different notch lengths.

3.4 Conclusion
It was shown in this chapter that the implementation of an explicit XFEM in Cast3m
has proven capable of simulating crack propagation on monocrystalline silicon. Despite
the limited crack description and the imposed conditions, the obtained results are in
accordance with the theoretical work conducted by Freund [FRE 90]. As a matter of
fact, the maximum speed acquired by the crack is the Rayleigh wave velocity. Also, the
crack instantaneous speed exhibits the same pattern as portrayed in the work of Wang
et al. [WAN 19b]: a rapid acceleration phase followed by a steady-state velocity. For
a simplified 3D model, we outlined the solutions and limitations we had come across
while constructing our algorithm. Although it provides an insight into the dynamics
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3. An XFEM model for dynamic crack propagation

of a rapidly moving crack, it remains inconclusive regarding the processes behind the
limiting velocity observed in experiments. Clearly, numerical errors prior to some inputs,
for instance, the J-domain, can play a significant role in preventing a more realistic
representation of the propagation.

All the above analysis remains purely qualitative and has not been the subject of a
quantitative study yet. First of all, the model dimensions do not reflect the geometry of
our wafers and secondly, the loading type is different (tension vs. bending). A major
impediment in reproducing the experiments relies on the approach adopted by Cast3m
to evaluate the initiation criterion. Under a bending test, the elliptical front shape can
be particularly problematic to track, when evolving along the plate thickness. The front
nodes beside the tensile surface are meant to fulfill the crack initiation criteria before
those located at the compressed surface. Unfortunately, the J calculations around these
nodes are inaccurate and the elliptical front shape can not be recovered. Another issue
raised was the formulation of the J-integral. So far, we evaluated the static strain energy
release rate. However, since the propagation is characterized as dynamic, the kinetic
energy is significant and could be taken into account when assessing crack extension
based on a dynamic J-integral.

To conclude, the use of the eXtended Finite Element Method in explicit dynamics
has shown encouraging results. The numerical validation of the implemented Cast3m
algorithm is considered as an important early step in achieving a fully realistic and viable
model. More importantly, the identification of our model shortcomings provides a clear
basis for further development in this field.
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Chapter 4

Experimental study of dynamic crack
propagation

Contents
4.1 Crack velocity measurement methods . . . . . . . . . . . . . . . . . . . 56

4.1.1 High-speed camera . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.2 Potential drop technique . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Material and experimental set-up . . . . . . . . . . . . . . . . . . . . . 57
4.2.1 Monocrystalline silicon . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Multicrystalline silicon . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.3 Mechanical set-up: four-line bending test . . . . . . . . . . . . . . 60

4.3 Potential drop technique . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.1 Deposition method and sample preparation . . . . . . . . . . . . . 61
4.3.2 Electrical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.3 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 High-speed camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Crack velocity measurements on monocrystalline silicon . . . . . . 75
4.4.3 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

55

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0015/these.pdf 
© [Z. Boulaajaj], [2023], INSA Lyon, tous droits réservés



4. Experimental study of dynamic crack propagation

4.1 Crack velocity measurement methods
Many techniques have been developed to monitor crack growth and assess its velocity
[SCH 59]. Among common methods, we find the high-speed camera and the potential
drop technique. These measurement methods have proven capable of capturing the high-
velocity cracks observed in brittle materials, thus shedding some light on the physical
phenomena governing the fracture processes. In this section, we will first recall the prin-
ciple of each method and its recent developments. In the second stage, all the crack
velocity measurements conducted on crystalline silicon will be reviewed and discussed.

4.1.1 High-speed camera
A high-speed camera is a well-known apparatus used in many fields to track and record
rapid physical phenomena. For several decades, this imaging technique has utterly
evolved in terms of spatial and temporal resolution and has been extended to a wider
range of materials. Initially, only transparent materials were considered. Nowadays, even
non-transparent materials can be examined using the light reflected from a plane surface.
In fracture, it has been extensively used to measure crack growth rate while observing its
path and the associated fracture processes. For brittle materials, where crack speeds are
nearing the Rayleigh wave velocity, this technique was revealed to be quite efficient and
accurate [WAN 19b, KIM 12, ?].

Basically, during a phenomenon that we want to observe, the camera takes a series
of images and stores them as sequential frames. If any variation can be detected along
the occurrence of the phenomenon, it can be used to trigger the camera. Some examples
of detectable signs are the sound, a luminosity variation, or a force drop.

In photography, one other major setting to achieve accuracy and good quality frames
is the shutter speed also known as the exposure time. During the frame time interval,
a fraction of a second is dedicated to exposing camera sensors to a certain amount of
light. Defining the shutter speed is crucial to obtain a good exposure of the frame and
also to reduce errors when measuring short-time varying quantities. This controls the
motion blur while achieving the righteous lighting for the grabbed frame. As regards fast
phenomenon, lightning can be very challenging when increasing the camera frequency.

4.1.2 Potential drop technique
The potential drop technique was first introduced by [BAR 57] to measure crack growth
kinetics of specimens containing high hydrogen concentration. Nowadays, it is a widely
used method to measure crack extension. As its name implies, the measured electrical
potential of a given sample will vary once this latter undergoes a change of state. This
allows us to explore and quantify the variations in the material structure, thus the crack
position within the specimen. Originally, only conductive materials were entitled to this
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Material and experimental set-up

method. Subsequently, adjustments were made to study insulators by depositing very
thin conductive layers over their surface. Their fracture properties should be similar to
those of the investigated material.

The potential methods can be classified into two main categories: the direct cur-
rent potential drop method (DCPDM) and the alternating current potential drop method
(ACPDM). The first technique enables to monitor crack length whereas the second tech-
nique is characterized by its skin effect and it is mainly used to detect small cracks beside
the surface and evaluate their depth [RAJ 10, LI 16].

4.2 Material and experimental set-up
Widely used in solar panels, mono and multi-crystalline silicon are the two most common
materials used for the production of wafers. Aside from their crystalline structure, they
both serve the same purpose of converting renewable solar energy into electricity. Given
the astounding properties of cleavage dynamic fracture exhibited by crystalline silicon,
all the ensuing experiments will be performed on this material. In the course of this work,
monocrystalline silicon will be studied. The crack paths and velocities will be disclosed
and measured using the aforementioned methods.

4.2.1 Monocrystalline silicon
As its name may suggest, monocrystalline silicon is composed of one homogeneous and
continuous single crystal and is characterized by its diamond structure (cf. FIG.4.1). This
atomic arrangement is inherent in semiconductors such as silicon or germanium. It can
be compared to two intersecting face-centered cubic lattices where atoms form covalent
bonds.

(a) (b)

Figure 4.1: (a) Crystalline structure of silicon and (b) monocrystalline silicon wafer.

Within a silicon crystal lattice, the mechanical, thermal and electrical properties will
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differ from one crystal plane to another. These planes (cf. FIG.4.2) and their crystallo-
graphic directions are defined using Miller indices (hkl) and [hkl], respectively.

y

z z z

xxx

y y

(100) (110) (111)

Figure 4.2: Crystal planes in silicon cubic lattice.

In cleavage fracture, cracks propagate along certain atomic planes, also referred to as
preferential cleavage planes. For silicon, it mainly takes place along the (110) and (111)
planes, which display low surface energies, as revealed in the work of [ZHA 18, LI 05,
PÉR 00] (cf. TAB.4.1).

Crystal plane Surface energy (J/m2)
(100) 1.99
(110) 1.41
(111) 1.15

Table 4.1: Surface energies of various silicon crystal planes [HES 93].

The monocrystalline wafers are obtained using the Czochralski growth process
[CZO 18]. It consists in immersing one single crystal named seed into a molten bath
of silicon. The existing atoms will then get affixed to the seed as it is being pulled up
from the liquid bath (cf. FIG.4.3(a)). The single crystal ingot is then cut and sliced up
into wafers using the diamond wire technique. Various chemical and texturization treat-
ments are then applied to the wafers before the final electrical circuits are printed (cf.
FIG.4.3(b)).
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(a) (b)

Figure 4.3: (a) Czochralski Crystal Growth Process [AKS 12] and (b) monocrystalline
silicon solar cell.

4.2.2 Multicrystalline silicon

The multicrystalline form of silicon is achieved by melting together multiple pure silicon
fragments. Under a well-controlled temperature mold, the mixture is cooled to obtain a
solidified ingot that is, at a later stage, cut to obtain wafers. As shown in FIG.4.4, these
wafers display numerous small crystals, each characterized by its own grain size and
orientation.

When compared to monocrystalline, multicrystalline wafers have a lower manufac-
turing cost since they undergo rapid solidification. However, they are less efficient when
used in photovoltaic panels. The presence of grain boundaries prevents electrons from
moving freely throughout the solar cells, thus impacting their performance and quality.

(a) (b)

Figure 4.4: (a) Multicrystalline silicon wafer and (b) multicrystalline silicon solar cell.
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4.2.3 Mechanical set-up: four-line bending test
The specimens used in our tests are small samples of dimensions 50mm x 50mm x 190µm,
obtained by cleaving the wire-sawn (001) silicon wafers (cf. FIG.4.5). They are oriented
so that the surface is perpendicular to the [001] direction. To control the position of the
crack initiation (and propagation), a centered notch is created manually using a sharp
instrument. Therefore, the notch length, measured by optical microscopy on post-mortem
samples, can not be controlled and varies from one sample to another. This prevents us
from doing perfectly replicated tests. Nevertheless, it enables to investigate many crack
velocities (cf. FIG.3.13(b)).

(110)

50 mm

50 mm

0.19 mm

[001]

[110]

[110]

50 mm

(001)

50 mm

notch

Figure 4.5: Geometry of monocrystalline silicon samples.

The silicon samples are subjected to a four-line bending test (cf. FIG.3.1(a)) using
the MTS Criterion Series 40 tensile machine. The geometry of the experimental set-up,
depicted in FIG.4.6, has been manufactured to match the specimen [ZHA 16].

Figure 4.6: Four line bending mechanical test.
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Potential drop technique

The operational mode within the TW Elite software consists in defining the test type
and the procedure variables. Once launched, it dictates the commands to the machine
which executes the experiment. For further details, please refer to the well-described
manuscript of the apparatus [MTS 14]. To ensure a quasi-static loading, a small displace-
ment rate (≈ 0.02mm/s) is applied. The force is measured continuously during testing,
and the peak force (just before failure) is used to compute the failure stress for each broken
sample using the four-line bending formula :

σ f =
3F(L−a)

bh2
(4.1)

where F is the loading force at failure, b the sample width, L the distance between the
two lower rollers and a the distance between the two upper rollers(cf. FIG.3.1(a)).

Since the load applied to the sample is rather low, a force sensor with a low force
range is added along the mobile extremity of the machine to obtain a more accurate mea-
sure than the one acquired using the machine force sensor.

4.3 Potential drop technique
In our laboratory, many tests were previously conducted to operate the potential drop
method on silicon wafers, which are semiconductors. In this section, an overview of the
sample preparation and the electrical configurations is presented. Ultimately, the obtained
results are compared to the existing data and further developments are considered.

4.3.1 Deposition method and sample preparation

Ultrasonic cleaning
To ensure a flawless deposition of chrome and gold layers onto the silicon samples, we
start by cleaning our specimens. A batch of 25 samples is arranged in an open container.
The first step consists in immersing them in an isopropyl alcohol solution. Once soaked
for several minutes, they are placed in the ultrasound cleaning machine for 5 minutes.
This equipment uses high-intensity sound waves to agitate the submerging liquid, hence
removing the intricate contaminants and impurities of the sample surface.

EVA300 machine
This thermal vacuum evaporation machine was developed both for batch production and
for research and development (cf. FIG.4.7). It is also renowned for its robustness, adapt-
ability and efficiency when depositing thin films on the substrates. The thermal evapora-
tion technology comprises a vacuum chamber. Therein, a metal or nonmetal pure material
is heated until reaching the evaporation state. Then, this vapor stream is deposited onto the
substrate to form a coating whose thickness is falling within a range of several angstroms
to a few microns.
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4. Experimental study of dynamic crack propagation

In our configuration, we chose chrome for the conductive layer and gold for the elec-
trodes. After cleaning, the samples are carefully fixed to the machine rotating disk. Onto
them, a stencil delineating the surface area of the conductive layer or the electrodes is
placed. We then attach the assembly to the upper part of the apparatus and the deposition
procedure is initiated.

Figure 4.7: EVA300 vacuum evaporation machine.

Deposition of chrome and gold layers
Two distinct depositions are performed. The first conductive layer is a deposit of a 60nm
of chrome, illustrated in light grey in FIG.4.8(a). Therefore, the samples are retrieved
and the stencil is changed to proceed with the second deposition of the sensing electrodes
made of gold. However, when performing a straightforward deposition of gold onto the
previous chrome layer, adhesion was not good enough. In fact, the uppermost surface of
the chrome layer oxidizes once the samples are taken out of the machine. To avoid this
issue, during the second deposition with electrode stencil, we carry out a deposition of
10nm of chrome first, before starting the deposition of 150nm of gold.
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Figure 4.8: Silicon sample with conductive layers: (a) illustration with layers dimensions
and (b) sample picture.

4.3.2 Electrical setup

4.3.2.1 Wheastone bridge

Our first configuration is a traditional Wheatstone bridge where the resistance R4 is
replaced by our pre-notched silicon sample. The resistances of the Wheatstone bridge R1,
R2 and R3 are chosen equal to 100Ω, and the sample resistance will vary from approx-
imately 30Ω (before failure) to thousands of ohms (when totally failed). According to
this variation, the electric potential Vout will change when the crack propagates through
the wafer. This potential drop is measured using a Tektronix oscilloscope of bandwidth
50Hz. For each analog channel (cf. FIG.4.9), the oscilloscope will add an impedance to
the circuit. Ideally, an infinite impedance would minimize the effect of the measurement
device and would not alter the studied system. However, a relatively small impedance
is chosen for our scope internal resistances (50Ω mode) because it is connected to an
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4. Experimental study of dynamic crack propagation

equivalent small output impedance.

The circuit is powered by an external battery. To detect any changes in its voltage
and how it may impact our measurements, two other oscilloscope channels (CH2 and
CH3) are used. They will be measuring the tension going through the battery positive and
negative ends. A math operation of these two measures will be performed to check the
voltage stability throughout the experiment.

R2 R1 R2 R1

R3 R4

Es

Vout

CH2CH3

CH1

R3 R4

Es

Vout

Req Req

R3 R4

Es

Vout
RdRd

Rd Rd

Figure 4.9: Wheatstone bridge circuits.

To link the silicon sample to the electrical circuit portrayed in FIG.4.10, two probes
are welded onto the golden layers. This allows a proper flow of the current through the
sample since it is a more conductive material compared to silicon and chrome.
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Figure 4.10: The Wheatstone bridge circuit (up) and close up on silicon sample welded.

Since we included the oscilloscope internal resistance Rd , the Wheatstone bridge
formula is computed as follows:

Vout = EsRd[
R4Req −ReqR3

Rd(Req +Req)(R3 +R4)+ReqR3(Req +R4)+ReqR4(Req +R3)
] (4.2)

where Req = RRd
R+Rd

and R = R1 = R2. The resistance of the silicon sample is deduced
from the previous equation:

R4 =
R3[EsRdReq −VoutReqReq −VoutRd(Req +Req)]

VoutRd(Req +Req)+VoutReq(Req +R3)+VoutReqR3 +EsRdReq
(4.3)

xcrack = Lwa f er −
Lwa f erR40

R4
(4.4)

When loading the specimen, the crack will propagate straight ahead (without branch-
ing) along the weakest plane, and the notch ensures that it is located approximately in the
middle of the specimen. During bending tests, the lower surface is subjected to tension,
while the upper side undergoes compression. It has been shown in the work of [SHE 04],
that under such loading conditions, the elliptical crack front will display a certain delay
when propagating through the sample free surfaces. As logical as it sounds, tensile forces
tend to tear up the concerned regions before incurring failure in the compressed areas.
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4. Experimental study of dynamic crack propagation

In FIG.4.11, the specimen is placed so that its conductive layers are subjected to tensile
loading. We, therefore, follow the crack evolution of the tensile side of the sample.

Figure 4.11: Silicon sample positioned on the 4-line bending apparatus before testing.

Once the crack reaches the conductive layer, a sudden change of the potential is
perceived on the screen of the oscilloscope. Clearly, a temporal and quantitative trigger
are previously defined. We set a threshold of a few voltages above the lower limit for the
quantitative trigger. As for the temporal one, it is positioned in the middle of the monitor
screen range. Therefore, it outlines the two portions of the signal before and after crack
propagation on the conductive layer. It is noteworthy to mention that the conductive layer
is not printed at the edge of the sample. Therefore, it will not capture the real onset of the
crack but rather its entrance within the conductive layer.

4.3.2.2 Linearized Wheatstone bridge

With the presented configuration, it is observed that the wafer resistance changes
promptly from a few ohms to thousands of ohms. While approaching the broken
state, the achieved terminal resistivities are by far greater than those of the Wheat-
stone bridge components. Consequently, the electrical circuit is unbalanced and it is
directly reflected in the output voltage. To ’balance’ the circuit and obtain accurate
measures of the tension across the wafer, operational amplifiers are used and the
circuit is then qualified as ’linearized’. The new circuit arrangement is described in
FIG.4.12, where R1 = R2 = R3 = 120Ω and R5 = 1000Ω. The silicon sample R4 and R5
are connected in parallel. The equivalent resistance of this parallel circuit is denoted as Rc.

66

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0015/these.pdf 
© [Z. Boulaajaj], [2023], INSA Lyon, tous droits réservés



Potential drop technique

Es

R2

R3

R5 R4

R1 -15 V

+15 V

Vout

Figure 4.12: Linearized Wheatstone bridge circuit.

The expression for the equivalent resistance Rc as a function of the other parameters
is:

Rc = R1(1−
2Vout

Es
) (4.5)

The sample resistance R4 is then computed using the following equation :

R4 =
RcR5

R5 −Rc
(4.6)

4.3.3 Results and discussions
Wheatstone bridge

The main purpose behind using the potential drop technique is its high resolution.
The measured signal covers a large period of time: before, during and after crack
propagation (cf. FIG.4.13(a) for test n°1) with up to 500 000 measurement points.
However, what matters to us is the transient phase corresponding to crack growth. For
instance, with an average crack velocity of 150 m/s, 3176 measurement points cover the
propagation process, while the high-speed camera only returned 13 measurement points.

The initiation of crack propagation is chosen based on the average initial resistance
computed by the oscilloscope before crack propagation. The two dotted red lines on
FIG.4.16 represent the minimum and maximum voltage values corresponding to the
sample before and after complete failure, respectively. Crack propagation is assumed to
start at the last recorded value equal to the initial wafer resistance (cf. FIG.4.13(b)). All
the ensuing results stem from the cropped voltage signal, whose measuring range has
been selected manually. This is why comparing these results with other experimental
methods will allow more detailed conclusions to be drawn regarding crack speeds.
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Figure 4.13: (a) Oscilloscope measurement of the wafer voltage and (b) zoom on the
measured signal during crack propagation for test n°1.

FIG.4.14 shows the variation of the sample resistance using the output voltage and
equation (4.3). From the computed resistance, the crack length x f iss within the conductive
layer can be computed using the following equation:

x f iss =
(R4 −R0)L

R4
(4.7)

where R0 is the initial value of the sample resistance R4. In the test n°1, the value R0 is
47Ω. The eq.(4.7) is obtained assuming the electrical field is homogeneous inside the
uncracked conductive layer. Since this layer is very thin compared to the silicon sample
and that border effects may arise, we have checked whether this assumption was valid
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using finite element simulations. In Cast3m, we developed an electrical model to evaluate
the wafer resistance for different crack positions. To some extent, the numerical results
fit the analytical approximation of the crack position with respect to the wafer resistance.
At the beginning of crack growth, the two curves overlay perfectly. When the crack
reaches the end of the sample, some discrepancy is observed and is due to edge effects in
the electrical field.

-40 -30 -20 -10 0 10 20
0
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2000

2500
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Figure 4.14: Silicon sample resistance computed using eq. (4.3).

In FIG.4.15(a), we use the above results and equations to plot the crack length.
As observed on the electrical signal, the crack length signal exhibits some oscillations.
Since we need to derive this latter to obtain the crack velocity, we need to smooth the
crack position curve prior to derivation. The crack instantaneous velocity is presented in
FIG.4.15(b) and is provided as a function of crack length.
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Figure 4.15: (a) Crack length computed using eq. (4.7) and (b) crack instantaneous
velocity versus crack length for test n°1.

FIG.4.15(b) shows that the instantaneous crack velocity tends to rise when attaining
the end of the conductive coating. Comparing this velocity profile with what has been
reported as a crack steady-state velocity highlight some measure inconsistencies. As a
matter of fact, the electrical quantities are directly collected onto the chrome layer and
it is assumed that both materials (silicon and chrome) behave similarly. Nevertheless, it
appears that despite the chrome brittleness, its fracture toughness under a thin film geom-
etry is quite different and may be lower than that of the substrate. Many techniques such
as micro indentation have been developed to appraise the fracture toughness of thin films
[XIA 04]. Additionally, the crack position values are the results of an approximation,
hence it is considered as an indirect measurement quantity that may behave differently
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from one specimen to another and depending on the employed experimental conditions.

Besides, given the dimensions of the conductive chrome layer (cf. FIG.4.8(a)),
the crack length is only assessed along a distance of 44mm. Therefore, one of the
shortcomings of this method is the lack of information on the onset of the crack. It is
inferred that the signal will vary once the crack enters the chrome layer. However, it
is noteworthy to mention that monocrystalline silicon is a semiconductor, thereby the
voltage variation might occur way ahead, before reaching the region of interest. Due to
the complexity of the problem, some edge effects might arise and the produced effect may
lead us astray when correlating the electrical signal to the crack position. To tackle this
issue, a 3D numerical simulation of our specimen was performed to assess the electrical
current behavior across the different layers and for various crack lengths. A thorough
analysis of the results was conducted and it was observed that the current intensity in
silicon remains negligible in comparison with the one going through the chrome or the
gold layer. For all the reasons above, care should be taken when using the instantaneous
velocity computation and when comparing it with the high-speed camera data.

Also, the average velocity along the chrome layer is around 974 m/s. By means of
an optical microscope, we measured a notch length of approximately 520µm for this test.
The dependency between pre-notch size and crack velocity in monocrystalline silicon
was reported in the work of Wang et al. [WAN 19b]. Using the potential drop technique,
the test presented herein reveals a crack velocity lower than expected in the literature.
The difference can be attributed to either the effect of the conductive layer (that was
supposed to be negligible), the approximation of the pre-notch measurement with optical
microscopy, or the statistical nature of the brittle failure itself.

Linearized Wheatstone bridge

The same post-processing was carried out for test n°2 realized with a modified configu-
ration of the Wheatstone bridge. We notice that the measured voltage undergoes a slow
variation before swiftly reaching the failure state, in few µs. Additionally, we observe
that the terminal voltage values and the wafer resistance are less disrupted (cf. FIG.4.16)
than for test n°1. This linearized version of the Wheatstone bridge is more appropriate to
capture the crack position once this latter reaches the end of the thin film zone. For this
second test, the initial resistance is nearly 46Ω.
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Figure 4.16: (a) Oscilloscope measurement of the wafer voltage and (b) Silicon sample
resistance computed using eq. (4.3) for test n°2.

Again, the crack length versus time (cf. FIG.4.17(a)) is obtained from the resistance
using Eq. 4.7 and the instantaneous crack velocity can be derived from its length (cf.
FIG.4.17(b)). The crack instantaneous velocity exhibits larger variations in test n°2 than
in test n°1, especially at the beginning and end of the crack propagation. The average
crack speed is around 3090m/s, still beneath the Rayleigh wave velocity. Nevertheless,
this value should be taken with care since the velocity varies greatly during crack
propagation.
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Figure 4.17: (a) Crack length versus time and (b) crack instantaneous velocity versus
crack length for test n°2.

These experimental tests, using both configurations of the Wheatstone bridge, have
met with ambivalent results. This outcome has motivated us to delve deeper and combine
this method with the high-speed camera for a more reliable measurement of the crack
speed and a more realistic correlation.
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4. Experimental study of dynamic crack propagation

4.4 High-speed camera
While carrying on the aforementioned method, a high-speed camera was installed to
record the fracture process. The ensuing video will be analyzed and its data will be
post-processed via Fiji [SCH 12] and Matlab [MAT 21] software. Thereafter, the crack
growth rate will be jointly compared to the one deduced from the potential drop. The main
objective, herein, is to ascertain the measuring accuracy of the newly developed method.
We also sought to highlight the relevance of this approach in the endeavor of detecting
the two phases of crack propagation: the accelerating phase and the steady-state phase
described in the work of Wang et al. [WAN 19b].

4.4.1 Experimental set-up
The bending setup is positioned in a way where the crack propagates along the down-
ward part of the wafer. Placing the Phantom V710 camera below the specimen to record
fracture mechanisms is unfeasible. Therefore, an inclined flat mirror of angle 45◦ is set
beneath the wafer and between the two rollers of the bending assembly. The reflection of
the fracture area is then grabbed by the camera located right ahead (cf. FIG.4.18).

Figure 4.18: Experimental 4-line bending set-up (left) and high-speed Phantom V710
camera (right).

The continuous lighting is guaranteed by two high-intensity LEDs (MultiLED G300)
positioned right in front of the camera lens and facing the sample. Additional lighting
can be added beside the experimental setup. The acquisition frequency of the recorded
frames is 390804 Hz and the image resolution is of 128x64 pixels. This resolution is
only appointed in the case of monocrystalline silicon since it is a rectilinear propagation.
Consequently, only a small region behind the notch is to be investigated. The exposure
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High-speed camera

time is 1.7 µs. Any modification of the settings is simultaneously performed via the
Phantom Camera Control (PCC) software and is evaluated by judging the quality of the
displayed image. It is preferable, to secure a relatively bright image before starting the
test. This allows better a visualization of the crack path later on.

4.4.2 Crack velocity measurements on monocrystalline silicon
The recorded video comprises more than a hundred thousand frames. To avoid having
a large file size, we visually select the set of frames covering the crack propagation
phenomenon. Then, the video is unbundled and saved as a group of images under the
Tiff 16 bits format. This is quite useful since this format retains most of the raw data
contained in the original camera file (saved under the file extension ’.cine’). It also offers
a higher degree of latitude for post-processing. The images are arranged and named in
ascending order according to their occurrences.

The fracture occurs along a straight line and at the onset of the centered pre-notch.
Hence, only the middle part of the wafer is considered. In Fiji, all the images are cropped
so as to focus on this region of interest. For this test n°3, we obtain an image resolution
of 96x16.
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(a)

(b)

(c)

(d)

Figure 4.19: Post-processing of pictures: (a) first frame, (b) last frame, (c) last frame
with crack trajectory and (d) last frame with vertical lines to locate the crack tip.

Using Matlab, we load the previously saved images. To clearly distinguish the crack
path, the last frame is studied. By means of a luminosity variation, the path is visually dis-
tinguished from the rest of the picture components. As depicted in FIG.4.19(c), a straight
horizontal or slightly tilted line is plotted above the crack trajectory. Then, an assortment
of vertical lines is defined along the previously outlined path FIG.4.19(d). Each line cov-
ers a certain range of pixels. Their main purpose is to assess the change in the pixel values
beneath them. The onset of the pixels variation is associated with the crack tip location
and the corresponding frame invokes the time at which the crack has attained this position.

To obtain an accurate estimate of the crack tip position, we chose to define a spacing
of 1 pixel between the vertical lines. Their length is fixed according to the lighting of
the specimen. In our case, we chose to cover at least 5 pixels vertically. The pixel mean
value is computed for each line and stored in a matrix.
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For a given image, each vertical line is characterized by a fixed position along the
crack path, referred to as the horizontal pixel coordinates. We also compute the mean
value of the pixels above which it is drawn. Throughout all the selected frames, we
plot the pixel value associated with each vertical line as a function of their position (cf.
FIG.4.21). A threshold of 2500 is defined to locate the onset of the signal disturbances
which describes the crack tip position.

By adopting this approach and post-processing camera data with Fiji and Matlab, we
were able to evaluate the crack instantaneous velocity with 15 points instead of approxi-
mately 5 points as reported in the literature [WAN 19a].
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Figure 4.20: Average pixel values along the sample at two different times and crack
position identification (red line).
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4.4.3 Results and discussions

In order to compare the crack velocity obtained using the high-speed camera and the
potential drop technique, we conduct our experiment so that both methods are performed
simultaneously. Many tests were carried out but due to the brittleness of our sample and
the complexity of our setup (the entanglement of the wires welded onto the plate), few
were deemed successful.
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Figure 4.21: (a) Voltage across the wafer and (b) the corresponding resistance versus
time for test n°3.
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Figure 4.22: Crack length versus time with potential drop technique
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Figure 4.23: Crack length versus time obtained with both techniques.

The evolution of the crack length as a function of time is presented in FIG.4.23.
With both methods, we obtain a relatively linear crack length and approximately the same
average crack velocity: 150m/s with the potential drop technique and 138m/s with the
high-speed camera.
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Figure 4.24: Crack instantaneous velocity versus crack propagation obtained with both
techniques.

For test N°3, the instantaneous crack velocity is plotted for both methods and com-
pared in FIG.4.24. As for the camera, the crack speed curve reveals a central steady state
where the velocity is around 150m/s but both extremities are associated with either a slight
acceleration or deceleration of the crack growth rate. Regarding the potential drop, the
measured crack speed displays strong oscillations but remains within the same range as
the one delineated by the camera. The last portion of the signal that covers the end of the
propagation has been disregarded since the relationship linking crack length to the wafer
resistance is not accurate and the associated velocity is flawed.

4.5 Conclusion
The disparities in results observed for both the high-speed camera and the potential drop
technique can be explained in many ways. On one hand, it can be assumed that the
camera measurements are more accurate and reliable. In fact, it captures several thousand
images that enable crack visualization and brings a greater understanding of the physical
phenomena. The image post-processing on the other hand might generate some errors
according to the user viewpoint and methodology. When it comes to the electrical signal
obtained using the potential drop method, interference or other environmental factors
can alter the system response. Also, the existence of many cables linked to the electrical
setup is liable to disturb the signal. As the wafer undergoes compression, it has been
observed in some cases that by fixing the welded cables on the two electrode layers of
the specimen, the wafer tends to break completely while its two parts remain in contact.
Herein, the current is likely to pass by, making the endpoint of the signal undetectable.
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4. Experimental study of dynamic crack propagation

Therefore, the previously identified inconsistencies of the crack position or velocity at
the onset and the end of propagation may spring from the uncertainties brought on by the
manual selection of the signal boundaries.

The work covered in this chapter focused on developing a new experimental setup for
a more precise and continuous evaluation of the crack propagation speed on monocrys-
talline silicon. It should be pointed out that his technique proceed to a modification of our
specimen surface by depositing a thin layer of a conductive material. Its material proper-
ties might be slightly modified from those of pure silicon. Since the available data omits
those surface treatments, it seems incoherent to carry on a comparative analysis of our
findings with the literature. Aside from the crack average velocity that was found to be
comparable to the velocity obtained with a high-speed camera, the evolution of the crack
growth rate remains complex to evaluate quantitatively.
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Conclusion

Recent advances in numerical simulation have made it possible to predict crack initiation
and its path within the structure. These findings have contributed to improving the
structural performance of different systems and preventing catastrophic failures from
happening. However, when it comes to crack propagation velocity, this characteristic
is often perceived as less relevant to the structural engineering field. Indeed, knowing
the crack speed does not provide any information on how to improve the material
design or how to stop it once initiated. Even if this crack feature does not directly meet
industry concerns, it has raised great interest within the scientific community. From
the theoretical predictions of Freund, it was presumed that the crack will attain the
Rayleigh wave speed Cr. However, in brittle failure, many studies have discovered a
rather interesting property of rapidly moving cracks: the crack maximum speed only
represents a substantial portion of the Rayleigh wave velocity and for said portion, it
will differ from one material to another. Monocrystalline silicon undergoes cleavage
fracture, which is the most extreme form of brittle failure. Its limiting velocity was
found to be nearing 80% of Cr. Besides, other materials such as polymethylmetacrylate
(PMMA) or glass have displayed velocities in the range of 40% to 50% of Cr. These
speed measurements revealed a recurring pattern that has compelled researchers to delve
deeper into the small-scale phenomena occurring in the process zone. Undoubtedly, a
dissipation mechanism is preventing the crack from achieving its maximum theoreti-
cal speed value. But the question remains as to whether it stems for instance from the
microstructure of the material or the interaction of the elastic waves with the moving front.

The main objective of this study was to shed light on the effects of inertia on
crack growth, thus its speed. An explicit XFEM model for dynamic crack propagation
was developed. The complexity of the problem and its dependence on many numerical
settings has compelled us to make numerous simplifying assumptions. An analysis
of the mandatory and optional model features has been carried out beforehand. The
major requirements consisted in respecting the 3D aspect of our sample, computing
the dynamic response of the structure using an explicit time integration scheme and
eventually representing the crack using the XFEM approach.

In conjunction with the numerical developments, many experimental tests were
carried out. The pre-notched monocrystalline wafers were subjected to pure bending
conditions. Once the fracture stress was attained, the crack started propagating straight-
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Conclusion

forwardly in the extension of the notch. Using either the high-speed camera or the
potential drop technique (PDT), the crack length has been retrieved so we were able
to characterize its speed. While the potential drop technique relies on an electrical
measurement of the wafer resistance to deduce the crack front position, the high-speed
camera captures a series of frames where the front location can be perceived by a change
in the pixel values along the crack trajectory.

Experimental study:

On the course of this work, many experimental tests were carried out using the potential
drop technique and among which only a few were deemed workable. Herein, three
crack velocity measurements were presented and analyzed. To validate the accuracy
and precision of the method, the last measurement was performed concurrently with the
high-speed camera. Post-mortem samples were observed using optical microscopy and
the pre-notch size was evaluated. For the potential drop technique, the velocity is an
indirect quantity that ensues from the electrical signal, thus the voltage variation across
the wafer. Using the analytical relationship between the voltage or resistance and the
crack length, the velocity can be deduced. A numerical model was established to test the
accuracy of this relationship. It was observed that once the crack reaches the end of the
plate, both numerical and analytical values are quite disparate. This discrepancy mainly
stems from edge effects that arise toward the end of the silicon sample. To correlate the
pre-notch length to the measured velocity, the PDT results were compared to the ones
relayed in the literature [WAN 19b]. The velocity values were of the same order (between
150 and 3000 m/s) with a difference of +/-200m/s with literature. In this regard, using the
high-speed camera measurement in parallel with the PDT is necessary for a more reliable
velocity measurement. The third test, which was conceived to fulfill this purpose, has
shown promising results since both methods displayed a crack velocity of the same order
(140-150m/s).

Besides, the PDT technique has been carried out with conductive layers on both
sides of the silicon samples in order to highlight the cracking time lag between the
upper and bottom faces of the wafer described in the literature [SHE 04]. However,
post-processing the electrical signal was not possible due to the electrical interaction
between the two circuits and the semi-conductive properties of the silicon. An outlook
would be to perform a 3D simulation using finite element software to describe the crack
length/voltage relationship and to quantitatively characterize the crack delay between the
two free surfaces.

Numerical study:

Representing our real wafer samples using 3D elements was very cumbersome
since their width are extremely small compared to their other dimensions. For the
sake of assessing the accuracy and precision of the implemented codes and procedures
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that govern crack propagation, all the calculations were performed on a small silicon
plate of dimensions 6x7x1 mm3 under uniaxial tension. In the course of this work, the
monocrystalline silicon orthotropy has been disregarded since the crack path is already
known. It grows in a straight line on the (110) plane. Griffith principle is used as
the initiation criterion, where the value of the J-integral is constantly compared to the
energy release rate. Once the J-integral is greater than the threshold, the excess energy
is converted to newly created surfaces associated with a crack extension. To solve our
dynamic problem, many explicit solvers could be used, among which the finite difference
scheme has been selected. At an early stage, it has become evident that the use of both
XFEM enrichment functions, singular and discontinuous, would be a daunting task when
lumping the mass matrix. Hence, only the discontinuous enrichment was considered.
Therefore, the crack front had to be located on the edge of the elements. This assumption
alone implied that crack propagation initiates only when enough energy is stored to break
the entire element. To alleviate the computational cost of the model, two successive
analyses were performed. Firstly, a static implicit analysis where an increasing loading is
applied. Its purpose resides in predicting the stress and strain fields of the silicon wafer
under uniaxial tension, right before crack initiation. Then a dynamic analysis is solved
under a constant loading, using the implemented explicit scheme and follows each crack
extension and the variation of the J-integral.

The velocity is a natural outcome of the simulation since no propagation criterion
has been defined. The obtained results showed a crack velocity of the same order as the
Rayleigh wave speed. Additionally, the computed crack instantaneous speeds show a
steady-state velocity preceded by a short acceleration phase, the same trend as the one
depicted in the work of Wang et. al [WAN 19b]. However, the presented work remains
purely qualitative and can not be directly compared to the conducted experiments due
to the different loading conditions and the specimen geometries. Moreover, it has been
notified that the computed crack velocity strongly depends on the initiation criterion.
Hence it could be of interest to use the dynamic J-integral instead of the static one.

Since it is an element-to-element propagation, crack growth was discrete. Indeed,
it has been observed that after each crack extension, the energy release rate decreases.
Meanwhile, the crack stops since the initiation criterion is no longer fulfilled. A few
steps later, it rises again to resume crack propagation. Overall, the J-integral exhibits
oscillations stemming from the discrete representation of the discontinuity and the
omission of the singular enrichment.

Although the presented work was purpose-built, its development relied on combin-
ing the XFEM approach with an explicit solver for three-dimensional structures. These
models can be very helpful for future usage since all the procedures and operators are
adjusted to address 3D crack problems. The implemented numerical model has brought
promising results regarding the simulation of rapidly-moving cracks. We aimed to reveal
that no propagation criterion is needed to achieve such high velocities. The use of an ex-
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Conclusion

plicit algorithm that takes into account the rapid variation of the physical quantities along
elastic wave propagation has been revealed to be a crucial requirement to capture such dy-
namic behavior. However, for a more quantitative comparison, thus shedding light on the
limiting velocity, several aspects are to be further developed. Firstly, the wafer geometry
and the loading could correspond to the experimental conditions. Therefore, the numeri-
cal crack velocity could be directly compared to the measured one. Secondly, the material
orthotropy could also be considered. Apart from the elastic orthotropy, the fracture crite-
rion is also to be modified regarding the fracture orthotropic behavior of monocrystalline
silicon. Finally, adding the singular enrichment within the XFEM formulation would
improve the initial model by allowing crack propagation inside the elements. A mesh re-
finement (without the singular enrichment) has been performed in an attempt to overcome
this issue. Unfortunately, multiple evanescent waves have arisen and their interaction with
the crack front has prevented the crack from propagating until the end of the specimen.
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Appendix A

Appendix A

1 *******************************************************
2 *******************************************************
3 **** PROCEDURE MASSC3D - Z.BOULAAJAJ 04/05/21 ****
4 *******************************************************
5 *******************************************************
6
7 *----------------------------------------------------------------------
8 *----------------------------------------------------------------------
9 * Notes :

10 *
11 * - Calcul de la matrice de masse et sa diagonalisation en utilisant
12 * la méthode de Menouillard
13 *
14 *----------------------------------------------------------------------
15 *---------------------------------------------------------------------
16
17 $$$$ MASSC3D
18
19 'DEBPROC' MASSC3D MO10*MMODEL MO21*MMODEL su_xfem0*MAILLAGE;
20
21 *************************************************************
22 *********** DEFINITION DE LA MATRICE DE MASSE **************
23
24
25 *-------------- Matrice masse : Zone standard
26
27 MAIL1 = 'EXTR' MO10 'MAIL' ;
28 * Calcul de la matrice de masse standard
29 T_MAS1 = 'MASSE' MO10 MA10;
30 * Lumping de la matrice standard pour le maillage entier
31 T_Lump1 = 'LUMP' MO10 MA10;
32
33
34 *-------------- Matrice masse : Zone enrichi
35
36 MAIL2 = 'EXTR' MO21 'MAIL' ;
37 * Calcul de la matrice de masse standard
38 T_MAS2 = 'MASSE' MO21 MA21;
39 * Lumping de la matrice standard pour le maillage entier
40 T_Lump2 = 'LUMP' MO21 MA21;
41
42 NBEL00 = NBEL su_xfem0;
43
44 SI ( NBEL00 'NEG' 0);
45
46 *------------- Rajout des ddl enrichis en plus de T_lump2
47
48 * Extraire les valeurs de la diagonale / Creation
49 * d'un CHPOINT contenant les valeurs de la diag
50 val0 = 'EXTR' T_Lump2 'DIAG' ;
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73
74 REPETER bouc1 NN;
75
76 it0 = it0 + 1;
77 REMPLACER val2 it0 val;
78
79 evol1= evol1 ET val2;
80 val2 = PROG n * 0.;
81
82 FIN bouc1;
83
84 * Construction de la matrice elementaire de l'element enrichi
85
86 * Cas 3d
87 lmot0 = 'MOTS' 'AX' 'AY' 'AZ';
88
89 * Cas 2D
90 *lmot0 = 'MOTS' 'AX' 'AY';
91
92 xfem_lump = MANU 'RIGIDITE' 'TYPE' 'MASSE' su_xfem0 lmot0 evol1;
93
94 * La matrice de rigidité totale
95
96 MASS_lump2 = T_Lump2 ET xfem_lump;
97
98 MASS_TOT = MAss_lump2 ET T_Lump1;
99

100 SINON;
101
102 MASS_TOT = T_Lump2 ET T_Lump1;
103
104 FINSI;

52 * Extraire la valeur de la diagonale type réel
53 val = extr (extr (exco val0 'UX')'VALE' 'SCAL') 1;
54
55 * Definition de la dim des matrices élementaires
56 * 3D et 8 noeuds pour un element standard
57
58 * Cas 3D
59 n = 3*8;
60
61 val2 = PROG n * 0.;
62
63 NN = n - 1;
64
65 * Creer une liste de reel avec val en position diag
66
67 REMPLACER val2 1 val;
68 evol1 = val2;
69
70 val2 = PROG n * 0.;
71
72 it0 = 1;
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1 *******************************************************
2 *******************************************************
3 **** PROCEDURE MESHXF - Z.BOULAAJAJ 04/05/21 ****
4 *******************************************************
5 *******************************************************
6 *----------------------------------------------------------------------
7 *----------------------------------------------------------------------
8 * Notes :
9 *

10 * - Extraction du maillage enrichi ( Que les éléménts contenant la
11 * Fissure en se basant sur la valeur des fonctions de niveaux
12 *
13 *----------------------------------------------------------------------
14 *---------------------------------------------------------------------
15
16 $$$$ MESHXF
17
18 'DEBPROC' MESHXF VTOT*MAILLAGE psi1*CHPOINT phi1*CHPOINT;
19
20 *################ MAILLAGE ENRICHIS/STANDARDS ##############*
21
22 * La condition doit porter sur les valeurs des level sets phi et psi
23 * Changement des level-sets CHPOIN en CHMAL
24
25 phi_ch = CHAN 'CHAM' phi1 VTOT 'NOEUDS';
26 psi_ch = CHAN 'CHAM' psi1 VTOT 'NOEUDS';
27
28 *------------------- Extraction des valeurs de psi
29
30 Y1 = MINI psi1;
31 Y2 = 1.e-15;
32
33 * il faut obligatoirement rajouter le terme STRI
34 * Pour ne considérer que les éléments avant
35
36 GEO_Y = psi_ch 'ELEM' 'COMPRIS' Y1 Y2 'STRI';
37
38 *------------------- Extraction des valeurs de phi
39
40 X1 = 0. ;
41 X2 = MAXI phi1;
42
43 GEO_X1 = phi_ch 'ELEM' 'COMPRIS' X1 X2;
44
45 X12 = 0.;
46 X22 = MINI phi1;
47
48 GEO_X2 = phi_ch 'ELEM' 'COMPRIS' X22 X12;
49
50 GEO_X = GEO_X1 INTER GEO_X2;
51
52 *------------------- Maillage enrichi
53
54 GEO3 = GEO_X INTER GEO_Y;
55
56 'FINPROC'GEO3;
57
58 *FINP GEO3;
59
60 $$$$
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Procedure PASAPAS - Cast3M

1 nb_couches = 2;
2
3 GTAB = tabl;
4 GTAB .'OBJECTIF' = MOT 'J';
5 GTAB .'COUCHE' = nb_couches;
6 GTAB .'PSI' = psi1;
7 GTAB .'PHI' = phi1;
8 GTAB .'FRONT_FISSURE' = front1 . it ;
9 GTAB .'MODELE' = MODTOT;
10 GTAB .'CARACTERISTIQUES' = MATOT;
11 GTAB .'SOLUTION_RESO' = DEPLA_N;
12 GTAB .'CHARGEMENTS_MECANIQUES' = F1;
13 G_THETA GTAB;

Psi1 & phi1 = level sets of the actual crack front

Front1 . it = the crack front at time t

MODTOT = the mechanical isotropic model

MATOT = the model mechanical properties

DEPLAN = the displacement field at time t

F1 = The mechanical loading
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