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remercie pour son implication, sa rigueur et ses conseils toujours très pertinents. Je
remercie également les professeurs David Dureisseix et Régis Dufour pour s’être penché
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puissent pas se dérouler comme prévu. Merci pour le support technique et humain, mon
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dans laquelle je remercie Quentin Thoret-Bauchet et François Besson pour leur aide, leur
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années m’auront énormément apporté tant intellectuellement qu’humainement grâce à
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Résumé

Les roulements à billes à contact oblique sont particulièrement utilisés dans l’industrie
aérospatiale pour leurs capacités de fonctionnement à grandes vitesses et fortes charges.
Sous certaines conditions de fonctionnement, le comportement cinématique et la dy-
namique de billes sont particulièrement complexes et l’optimisation du roulement essen-
tielle. C’est pourquoi cette étude vise à poursuivre le modèle quasi-statique avec billes et
bagues, initialement développé par Leblanc et Nélias. Une des principales difficultés réside
dans le fait qu’un à quatre points de contact bille-piste soient considérés. Également, tous
les degrés de liberté de billes sont calculés sans avoir recours à des hypothèses cinématiques
simplificatrices. Ainsi, l’un des objectifs de cette thèse est d’améliorer les méthodes de
calcul d’efforts, de lubrification et la cinématique de billes calculée en chaque point de
l’ellipse de contact. Ce modèle est aussi uniformisé pour ne considérer qu’un seul système
d’équations permettant de limiter les discontinuités numériques liées aux changements de
contacts. Des solutions sont proposées pour étendre les conditions de fonctionnement à
de plus petites vitesses et de plus grands chargements radiaux et mésalignements.

Par ailleurs, l’industrie aéronautique développe actuellement des roulements à billes
avec des matériaux de cage plus légers mais aussi plus souples. De tels roulements sont
sujets à d’importantes déformations et concentrations de contraintes dues aux chocs billes-
alvéoles. Ceux-ci ont lieu lors des phases d’accélérations ou de décélérations, voir en régime
de croisière lorsque le roulement est soumis à des efforts axiaux et radiaux combinés. Cette
thèse a donc également pour objectif d’ajouter la cage au modèle quasi-statique initial.
Les interactions billes-alvéoles et cage-piste sont modélisées, tout comme l’élasticité de
cage globale et locale en 3 dimensions. In fine, l’ensemble du système est transposé en
dynamique pour être résolu temporellement et prendre en compte les accélérations.

Pour différentes conditions de fonctionnement, la cinématique de billes, les interactions
billes-pistes, le mouvement du centre de cage et les déformations de cage locales et globales
sont étudiés. Le modèle est validé par comparaison à des modèles existants ainsi qu’à des
résultats expérimentaux issus de la littérature.

Mots-clés: Roulement à billes à contact oblique, Modélisation, Quasi-statique, Dy-
namique, Cage, Flexible, Mécanique des contacts, Lubrification.





Abstract

Angular Contact Ball Bearings are widely used in aerospace industry because of their
ability to work at high-speed and to support important loads. Depending on operating
conditions, kinematic and dynamic behaviours are complex and bearing design optimisa-
tion is essential. That is why this study aims at continuing Leblanc and Nelias’ quasi-static
model with balls and rings. Difficulty of this model lies in the fact that up to four ball-race
contact points are considered. As well, all balls degrees of freedom are calculated without
making any kinematic assumption. Then, one of the purpose of this thesis is to improve
computation of friction forces, EHD lubrication and kinematics at each point of contact
ellipse. The model is also harmonized in order to get a single system of equations that
better deals with numerical discontinuities due to contact changes. Solutions are proposed
to extend operating conditions at lower speeds and higher radial loads or misalignments.

Besides, aeronautical industry is currently developing ball bearings with cages made
of lighter but softer materials. Such bearings experience cage deformation and stress
concentration due to ball-to-pocket impacts. These are produced during acceleration and
deceleration phases or during cruise when operating with combined thrust and radial load.
That is why this study aims, in a second time, at adding cage into the quasi-static model.
Ball-to-pocket and cage-race interactions are considered as well as global and local cage
elasticity in three dimensions. Finally, the whole system is transposed in dynamics in
order to be solved over time and to consider acceleration components.

For various operating conditions, ball kinematics, ball-race interactions, cage center
motion, cage local and global deformations are analysed. Model validation is done by
comparison with existing models or with experimental results found in literature.

Keywords: Angular Contact Ball Bearing, Modelling, Quasi-static, Dynamic, Cage,
Flexible, Contact mechanics, Lubrication.
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Nomenclature
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km, b

j
km : Contact ellipse semi-major and semi-minor axis.

αj
km : Ball-race contact angle.
βj : Ball pitch, attitude angle.
β′j : Ball yaw angle.
Cj

b ,C
j
p : Ball and pocket friction torques due to short journal bearing effect.

Cd : Drag coefficient.
C1km,C2km : Cage and race friction torques due to short journal bearing effect.
Cj

km : Pocket friction torque due to short journal bearing effect of race.
δ : Translation.
δj

km : Ball-race contact deformation (if positive) or gap (if negative).
∆j

pb : Projection of δjpb in (P j ,xj
p,z

j
p) plan.

δj
pb : Ball-to-pocket displacement.
δx, δy, δz : Inner ring translations.
e : Eccentricity.
ϵ : Relative eccentricity.
F j

BP ,M
j
BP : Ball-to-pocket forces and momentums in (Gj

p,y
j
p,z

j
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F j
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F j

dr : Drag force on ball j.
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hj
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bz.
LMCCj : Number defining a combination of ball-race contacts.
M j

GY , M j
GZ : Gyroscopic momentums on ball j.

M j
Rkm,M

j
Skm,M

j
Zkm: Ball-race friction momentums due to rolling, spinning and gyroscopic effects.

MY , MZ : External momentums on inner ring.
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Nomenclature

Ω, ω : Rotational speed.
ωj

i : Ball-inner race relative speed.
ωj
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ωj
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Nomenclature

Bearing data

αf : Free contact angle.
cIR, cOR : Cage-race clearances.
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cp : Pocket clearance.
D : Ball diameter.
Dci,Dco : Inner and outer diameters of cage.
dekm : Race shoulders diameters.
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Ec : Cage Young’s modulus.
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hc : Cage thickness.
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µ : Friction coefficient or dynamic viscosity.
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Indices, exponents
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Introduction

Aircraft engines bearings
Bearing is a common mechanism used in many applications like bikes, cars, washing
machines, tower cranes or wind turbines. In this thesis, we are interesting in Angular
Contact Ball Bearings (ACBB) present on aircraft engines. As illustrated in Figure 1,
turbojet engine is a cutting-edge technology with different stages designed to catch and
accelerate airflow. This generates a thrust force that propel the airplane according to
Newton’s law of action-reaction.

Figure 1 : LEAP-1A engine designed by CFM International, a joint-venture gathering
Safran Aircraft Engines and General Electric Aviation [80]

During operation, as represented on Figure 2, streamlined blades of the fan contin-
uously aspirate air into the engine. The airflow enters the compressor that increases
its pressure in order to get optimum pressure and temperature for combustion. Then,
high-pressure airflow is mixed with kerosene before entering combustion chamber where
combustion of the mixture generates air acceleration. At the last stage, energy arising
from pressure and speed of hot gazes, drives a rotating turbine that drives itself fan and
compressor at the entrance. Is this way, a continuous movement of the engine is ensured.
Finally, high-speed airflow is ejected at the exit to propel the aircraft.
In simple flow turbojet engines, all the flow takes this path. Such engines are mainly
used in military applications because of their high efficiency above Mach 1. For civilian
applications, double flow turbojet engines are preferred because of their low fuel consump-
tion and noise reduction. In this technology, 20% of the flow passes by the core with its
compression and depression stages, whereas 80% bypasses it and is only accelerated by
the fan and directly ejected in outlet [19].
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Figure 2 : Aerodynamic functioning of double flow turbojet engines [268]

Regarding bearings, they are mounted between rotors and stator at different levels of
the engine. They ensure axial shaft rotation, transfer forces from the shaft to the outside
and reduce friction. Ball bearings 1 and 3 and cylindrical bearings 2 and 5 schematized
in Figure 3, are always present in engines. In order to gain weight, inter-shaft bearing 4
can be added between high-pressure and low-pressure rotors. However, it can generate
vibrational issues since energy is transferred between both shafts [63].

Figure 3 : Bearings present at each stage of aircraft engines [63]
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Bearing designs
Angular Contact Ball Bearings are made of an inner ring (IR) that rotates with shaft
and that is in contact with balls. These last ones have an orbital motion around shaft
and 3D self-rotations. They transfer forces from IR to outer ring (OR). This last one is
bound to stator, the fixed part of the engine. Ball-ring contacts occur on races where
balls can slide, roll and spin, resulting in complex kinematics. A cage is also present to
distribute balls around the bearing and to avoid their collision. Besides, aircraft engines
work under high-speeds and high-temperatures that is why lubricant circulates between
each element. Purpose is to reduce scuffing, friction, heating and to transfer energy
outside. Grease lubricated bearings are limited in speed and fatigue-life because grease
tends to heat-up and to leak outside the bearing. That is why, this study focuses on
oil-lubricated ACBB, more appropriated to high-speed applications.

Figure 4 : Ball Bearing components [155]

Currently, major part of ball bearings are Deep Groove Ball Bearings (DGBB). They
do not present ring truncations, then they have two contact points (one on IR and another
one on OR). They are mainly designed to support radial load but can withstand small
axial load or misalignment.
ACBB carries higher thrust load but only in one direction. Mounting two ACBB back-
to-back allows to handle thrust load in two directions. Like DGBB, they only support
small axial misalignment. Some of them only have one truncation, generally on the
inner ring. Then, under combined axial and radial load, 1, 2 or 3 contact points can
be present. To be able to support higher radial loads, ACBB can have two truncations
(one on each ring), then they can have up to 4 contact points. Some SAE engines are
made of these 4 contact points ball bearings, also called FCPBB. Because of operating
conditions, in practice, SAE FCPBB mainly works under 2 contact-points. Contrary to
ordinary ACBB, they are able to support axial load in two directions. Races are not
portions of spheres anymore but arches as shown in Figure 5. These arches give space at
the top to better drain lubricant and to set up holes on OR to evacuate it. Advantage
of working with further contact points is that centrifugal forces are better distributed,
then ball-race normal loads are less concentrated, fatigue life is significantly increased.
However, many studies have shown that working under more than two contact points
complicates kinematics, increases skidding, scuffing risk or friction [111], [157].
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To limit the number of contact points, a solution is to reduce radial load. That is why
in turbo-machineries, ACBB are coupled with cylindrical roller bearings (CRB) that take
over radial forces. Indeed, CRB supports important radial load but limited axial load
and misalignment. As a matter of fact, thrust load induces friction at roller end-to-race
flange contact that creates problematic roller skewing.
Other applications like landing systems, use tapered roller bearings (TRB). With their
conical rollers, they can handle high radial load, high thrust load in one direction but
limited misalignment. Like ACBB, axial load in two directions can be carried by arranging
two TRB back-to-back.
Spherical roller bearings (SRB) are designed with a spherical outer race and one or two
sets of rollers with barrel shapes. With such design, rollers conform closely to races.
Cage, IR and rollers can rotate in an additional direction. Then, high radial load, axial
misalignment and some axial load can be handled [210].
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Motivations and objectives
Initially ball bearings were entirely made of steel. Thereafter, for high-speed applica-
tions, hybrid bearings with ceramic balls were developed in order to reduce mass, inertial
forces, then contact loads. As well, cages with lighter materials like aluminium, S-Monek,
graphite, nylon or cast iron were designed [122]. These recent years, polymeric cages are
getting more and more attention because of their low density, manufacturing and assem-
bly assets, good chemical resistance, low friction, low coefficient of thermal expansion
and quiet running. Especially, Safran Aircraft Engines (SAE) is interesting in polymeric
cages made of PEEK (polyetheretherketone) which has a density six times lower than steel.
However, such material is also softer and results in large stresses under ring misalignment
or in radial cage deformation, under high-speeds, because of centrifugal forces. Expe-
riences have particularly shown local ball-to-pocket deformations and three-dimensional
cage ovalisation during acceleration and deceleration phases or during cruise when the
bearing is submitted to combined load, misalignment or unbalanced defects. For these
reasons, 3D cage flexibility should be considered while designing bearings. However, be-
fore 2019 and the beginning of this thesis, no model considering 3D cage elasticity existed
in literature. And, recent models developed are not open access which explains SAE
interest in this subject.

Besides, SAE bearing design department is currently using ADORE computer code
[91] to develop and improve their bearings. Even if this dynamic model is very achieved,
it does not consider cage flexibility or ACBB with rings truncations. User does not have
control on the whole model and few modelling details stays unclear. That is why in 2007,
SAE in collaboration with LaMCoS laboratory, started to develop BB20: a quasi-static
ball bearing code. It considers balls and rings with lubrication, inertial forces, drag forces,
external shaft forces, ball-race normal and friction forces for ACBB with 1 to 4 contact
points [157], [158]. Rings deformations were also added in 2014 [156]. If this computer
code has proven its efficiency for many years, few limitations have been noticed. Indeed,
it is mainly adapted to high-speed and high axial-to-radial load ratios. Few results are
unexpected and indicates problems like in stiffness matrix computation, in PV product
(contact pressure time sliding speeds) or in certain friction forces.

Consequently, in this study, BB20 quasi-static code will first be pursued to under-
stand unexpected results, to fix problems and to extend working conditions. In a second
time, cage will be added and its flexibility will be considered both locally and globally in
three dimensions. In a third time, reflection on dynamical modelling will be conducted.
Developed model should solve bearing equilibrium under low or high speeds and small or
important axial, radial loads and misalignment. Cage center motions, cage deformations,
ball-to-pocket interactions and cage centering forces should be calculated. With this com-
puter code we should be able, for given working conditions, to estimate optimal geometry
and materials that ensure effective bearing behaviour and long lifetime. Before starting
this code development, a bibliographic study about ACBB modelling is led in order to
better understand possibilities, limits and novelties that can be brought.
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modelling

1 Time independent models

1.1 First reference models
In this section, quasi-static and quasi-dynamic models that are time independents are ad-
dressed. Usually, they can be solved by a basic Newton-Raphson algorithm. A quasi-static
model consists in solving the static equilibrium of a mechanism but by considering iner-
tial effects (centrifugal forces and gyroscopic moments). Generally, such model only takes
into accounts balls, rings and lubricant interactions since the cage mostly contributes in
dynamics. A quasi-dynamic model consists in solving the dynamic equilibrium of a mech-
anism by considering first derivatives of rotational speed vectors and second derivatives of
element position vectors as a function of position instead of time. For example, ball rota-
tional accelerations ω̇ are computed from azimuth angle ψj and orbital velocity ωjm such
that dωj

dt = ωjm
dωj

dψj . Is this way, the system of equations is simplified and computational
time is saved compared to the full dynamic resolution. Generally, steady state conditions
are applied, cage motion is considered and ball precession velocity ωjm is differentiated
from cage rotational velocity ωc. Nevertheless, the distinction between quasi-static and
quasi-dynamic models can differ depending on authors since difference is thin.

1.1.1 Quasi-static

In 1959, Jones [144] developed a quasi-static model for high-speed ACBB. This model
considers one point of contact between ball and inner ring and one between ball and
outer ring. At each contact, the Hertzian pressure resulting from elastic deformations
creates slippage. The resulting friction forces are calculated using Coulomb’s model and
integrating shear stress over the pressure ellipse. Ball centrifugal forces and gyroscopic
moments are present and auxiliary relations enable to consider ball-races spinning, slipping
and rolling velocities. Then, the problem consists in solving eight equations:

- Two geometrical constraints defining locations of ball center relative to raceway
curvature center as schematized on Figure 1.1.

- Two equilibrium equations on forces on each ring.
- Two equilibrium equations on forces and two on momentums on each ball.
The associated unknowns are βj , β′j the pitch and yaw angles that defines ball rotation

directions, r′j
i ,r′j

o the effective rolling radius that locates the position of pure rolling,
P ji ,P jo the contact pressures, and αji , αjo the contact angles between balls and inner or
outer races as represented on Figure 1.2. However, the analytical closed form solution
of this system cannot be found directly. So, to avoid the use of iterative methods and
high-speed computer, Jones assumed that the ball rolls without spin on one race called
the “controlling” one, and rolls and spin on the other race. Then, motional resistance
to gyroscopic moment only occurs at the controlling raceway whereas gyroscopic slippage
occurs at the other one. As represented on Figure 1.2, coefficients λi and λo are introduced
to model gyroscopic moment distribution. To define the type of control, Jones introduced
criterion (1.1) that postulates that outer raceway control (ORC) applies if the inequality is
satisfied (λo = 2,λi = 0) and that inner raceway control (IRC) applies otherwise (λo = 0,
λi = 2). Such hypothesis highly simplifies the problem and enables to obtain explicit
formulas on pitch angle βj such as summarised in two first columns of Table 1.3.
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Note that in expression (1.1), Qi,Qo are ball-race normal load, ai,ao are ellipse major
semi-axis, αi,αo are contact angles and Ei,Eo are complete elliptic integral of the second
kind.

QoaoEo cos(αi−αo)>QiaiEi (1.1)

Figure 1.1 : Geometric constraints on the bearing

However, such hypothesis has been rapidly questioned by experimental studies. For
example, Shevchenko and Bolan [234] found different results when comparing Jones’ ana-
lytic model to contact angle measurements. Poplawski and Mauriello [208] restricted ORC
to light-loads conditions, because they observed that increasing thrust load decreases skid-
ding and makes slide-to-roll (S/R) ratio at the outer race approaching S/R at the inner
race. Kingsbury [151], by investigating experimental slip, pivoting, spin and precession
of ACBB, deduced that races control slipping motion at ball-race contact whereas cage
controls spinning.

Consequently, Harris [120] further worked on Jones’ analytical model and confirmed
its accuracy, but also its complexity which explains the use of raceway control hypothesis
(RCH). However, he showed that such simplification was not appropriate to predict S/R,
friction torque and frictional heat generation. He modified the later system [119] to get
rid of this assumption and to consider resistance to gyroscopic slippage at both raceways,
simple drag forces, inertia forces and three-dimensional ball motion with precession, pitch
and yaw angles. Above all, Harris implemented EHD lubrication by considering the film
thickness of an isothermal Newtonian lubricant.
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Figure 1.2 : Bearing kinematic parameters

Such study gave results closer to experiments and confirmed that RCH does not hold
under certain operating conditions, particularly under EHD lubrication or when traction
coefficient is not high enough to prevent gyroscopic slip. Mauriello [178] also developed
a general model that only considers 5-DOF on balls in order to avoid the use of raceway
control hypothesis. Retainer is also introduced with corresponding normal and traction
forces, but without ball-to-retainer impacts since same orbital speed is assumed. With
this method, RCH is verified under low axial-loads where skidding occurs, but it appears
to be less correct for higher thrust loads.

In 1973, Hamrock and Anderson developed a simplified thrust loaded arched outer-race
ball bearing model (ARBB) [111] which was mainly based on geometrical considerations.
It was the first model dedicated to an ARBB, here with three contact points. Later,
Hamrock [110] improved this model by following Jones’ theory [144] and by considering
gyroscopic moments and sliding friction. These modifications have shown that the amount
of spinning on the outer race of arched bearing is an order of magnitude greater than
conventional ones. To get the initial conditions for its dynamic resolution, Gupta [87],

14



Time independent models

[88], [89], [90] also developed a quasi-static model without cage but particularly complete
with consideration of centrifugal forces, EHD lubrication and thermal effects. If gyroscopic
momentums were not considered and if Jones RCH [144] was made, these assumptions
were abandoned later in dynamics.

1.1.2 Quasi-dynamic

First ACBB quasi-dynamic models date back to the 1970’s with Boness [23], Poplawski
[206] or Rumbarger [220] for roller bearings that especially focused on lubrication, thermal
effects and cage slip. Regarding ball bearings, Harris and Mindel [123] pursued Harris’
quasi-static model [119]. They considered cage-to-pocket normal and friction forces and
cage-ring normal forces or cage rail-to-raceway HD friction forces, depending on cage rid-
ing type and interaction intensity. Crecelius developed SHABERTH code [46] on the same
principle but with a different parametrisation of orthoradial ball-to-pocket displacements,
and a different method to compute ball-to-pocket and cage-ring interactions depending if
dry, HD or EHD contacts are present. A thermal resolution was also introduced. Gentle
and Boness [25], [77] set up an EHL traction formulation in a quasi-dynamic DGBB and
ACBB model in order to understand more accurately ball bearing kinematics and skidding
motion. Dominy [59] also developed a simplified dynamical model that focuses on cage
motion, friction forces (drag), traction forces and spinning power to investigate the nature
and causes of slip in lightly loaded BB under axial load. As well, to compute ACBB fric-
tional losses and evaluate silicon nitride BB, Aramaki [6] and Shoda [238] reused Harris
and Mindel’s [123] approach. They added modifications such as different cage interac-
tions formulations or the implementation of centrifugal and thermal expansions. In all of
these quasi-dynamic models one of the most important issue was to represent accurately
cage motion, traction forces, lubrication with thermal effects and to ensure numerical
continuity while contact changes.

1.2 Lubrication modeling
1.2.1 Film thickness

At the beginning, bearing models considered dry contacts by neglecting film thickness.
Ertel [67] and Grubin [82] were the first one to introduce a formulation of film thickness
for a stationary line contact, as a function of relative speeds, load and lubricant parame-
ters. Later, Dowson and Higginson [62] also proposed an isothermal EHD lubricant film
thickness for a line contact. Boness [23] used this theory to model fully lubricated roller
bearings and showed that a reduction in oil supply decreases cage slip significantly. Harris
[119] also modelled EHD lubricated ACBB under purely axial load, but he assumed that
all balls presented same film thickness and rolling speed. Then, Poplawski [206] developed
a model for full film lubricated rolling bearings under axial and radial loads. It differ-
entiates each roller parameters (load, speed, film thickness) and considers cage friction
and drag forces (pushing, unbalance and churning effects) in order to study their influ-
ence on skidding. This work marked the beginning of the bearing code COBRA that has
now become a reference among bearing computation codes. In 1967, in order to consider
film thickness reduction due to temperature, Cheng [40], [41] introduced a coefficient on
Dowson’s formulation to include thermal effects and side leakage. Rumbarger [220] con-
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sidered this improvement with Poplawski’s [206] novelties in its rolling bearing model. He
also computed drag torque on rolling elements, thermal and centrifugal expansions and
conducted a thermal analysis. Always based on Dowson’s study, Allen, Townsend and
Zaretsky [2], [3], [4] developed an EHD theory with a new lubricant rheological model to
predict spinning friction in non-conforming grooves. They introduced it into a fully lubri-
cated ACBB model [246] that considers friction torque due to spinning, rolling resistance,
drag and material hysteresis.

Later, Hamrock and Dowson [112], [113], [114], [115], [116] proposed film thickness
expressions for circular and elliptical EHL contact either fully lubricated or starved. This
formulation relies on three parameters on material, speed and load. This theory is today
the reference for film thickness computation. Other authors proposed similar formulas as
Chittenden [42] for punctual contacts or Archard and Cowking [8] for elliptic contacts.
Moes and Venner [248] also introduced solutions for line contact and 2D circular contact
problems with a set of two parameters that regroups Hamrock and Dowson parameters.
Nijenbanning [191] extended this model to elliptic contact by introducing an ellipticity
parameter. All of these models present the advantage to propose a single and continuous
solution to represent the EHL film thickness under any lubrication regime (rigid isoviscous,
elastic isoviscous, rigid piezoviscous or elastic piezoviscous).

To compute correctly these EHD film thicknesses, it is essential to consider lubricant
rheology and properties under high pressure and temperature [250]. First rheological
parameter to compute is dynamic viscosity µ, the simplest expression was given by Barus’
[17] where µ is an exponential function of pressure. Gupta [103] modified it to consider
temperature. However, this law is very inaccurate under high pressure. Then, Roelands
[219] proposed a law for mineral or synthetic lubricants. Prat [209] also developed a power
low, however it does not account for temperature and it is not suitable under very high
pressure. Finally, an appropriate model for aeroengine lubricants is the modified W.L.F
for William, Landel and Ferry model [250] resulting from Winer’s previous work [275].
It is based on free volume dependence on temperature and pressure. Another parameter
essential to compute film thickness is α∗, the reciprocal asymptotic isoviscous pressure as
explained by Bair [12] and expressed by Blok [21].

1.2.2 Traction forces

Traction forces are computed by integration of shear stress or traction coefficient over the
ellipse of contact between two bodies. Different models exist to express traction coefficient
as a function of the slip velocity between two bodies. They can be divided into three types
such as presented in Table 1.1. The first one, expressed in Eq. (1.2), is simplified and
consists in a Newtonian behaviour with linear evolution of traction coefficient with slip
at low sliding and a constant traction coefficient otherwise. Another traction model was
proposed by Kragelskii [154] to represent more accurately traction variation with slip. In
Eq. (1.3), coefficients A, B, C and D are empirical constants derived from experimental
traction tests. Gupta [92], [103] with DREB (Dynamics of Roller Element Bearing) or
Crecelius [46] with SHABERTH code were among the first to promote such EHL semi-
empirical traction model. They implemented them in their computer code and considered
lubricant drag forces and churning moments due to ball motion in surrounding lubricant.
Then, they underlined the need to consider EHL lubrication, traction and both cage and
thermal effects to investigate bearing motion and particularly skidding.
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Simple-type Kragelskii-type Maxwell-type


τ = η∆u

h , if u < uL

τ = τLif u≥ uL

(1.2)

τ = (A+B∆u)e−C∆u+D
(1.3)
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)
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Table 1.1 : Traction coefficient expressions

Because of inaccuracy in previous EHD traction lubricant models, Gentle and Boness
[25], [77] developed their own model for DGBB and ACBB. They formulated an expression
of traction forces as a function of pressure, S/R ratio and lubricant coefficients determined
experimentally. They also understood the need to add an elastic force that acts when
lubricant is not too viscous and that is proportional to shear modulus and inversely
proportional to film thickness. Then, such model anticipated the need of a Maxwell-type
one. Results were very close to experiment and showed the importance of EHD traction
modelling. This model also enabled to understand better ball bearing kinematics and
particularly skidding motion.

Subsequently, a complex Maxwell type traction model [190] was developed, as formu-
lated in (1.4). It express shear rate γ̇ by summing an elastic part (γ̇E) with a viscous
component ( ˙γV ) developed by Johnson and Tevaarwerk [143]. For a Newtonian fluid, i.e.,
for low shear stress, the shear behaviour is linear, only made of the elastic component
(γ̇E). On the contrary, for a non-Newtonian fluid, or for high shear stress, different non-
linear forms F of the viscous term have been proposed by Ree and Eyring [217], [218],
Bair and Winer [14], [15], Gecim and Winer [76] or by Elsharkawy and Hamrock [66].
Such shear rates can be defined in two directions according to sliding motion. Note also
that, depending on the model, reference shear stress τref becomes characteristic stress τo
or limiting shear stress τL. As well, shear stress τ and shear modulus G are pressure and
temperature dependant as expressed by Gupta [101]. Thereafter, this Maxwell traction
model was widely used. For example, Chittenden [43] employed it with Gecim and Winer
shear stress formulation [76] to compute rolling, sliding and spinning power losses in an
EHD lubricated ball bearing in dynamics. Nélias [186] also used this Maxwell traction
model with Ree-Eyring shear stress formulation [217], [218], to compute quasi-static mo-
tion of a ball bearing submitted to axial and radial loads. Features of Nélias’ model are
the consideration of EHD lubrication and a planar cage with cage-ring interaction repre-
sented by HD short journal bearing theory and ball-to-pocket interactions by barrel-plan
theory in one direction and short journal bearing in another direction. Such model shows
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good correlation with experimental results, it especially appears that ball-ring sliding mo-
tion increases by decreasing axial or radial loads [188]. Later, this model was reused to
compute and locate power losses due to friction forces and sliding speeds in an ACBB
[189]. Such study proves the important role of cage-slip, rotational shaft speed and oil
flow in power losses.

We should precise that there does not only exists these three types of traction models,
but they are the most frequently used for ACBB modelling. For more details, in Tables
A.1 to A.6, for each ACBB model presented in this review, we have associated the corre-
sponding traction model used at ball-race interaction. But in any case, analytical traction
models developed are always based on the same principle that is to say that they depend
on sliding, temperature and contact pressure. They are always based on experimental
results because lubricant coefficients are needed. This is particularly a limit raised by
Gupta [99] because traction experiments require specialized test rigs and the amount of
lubricant traction data available is few, especially for solid lubricants. Then a limited
amount of lubricant can be modelled in traction.

1.2.3 Thermal effects

If film thicknesses presented previously were isothermal, for high rolling or sliding ve-
locities, energy is dissipated by shearing, then lubricant temperature increases which
decreases oil viscosity and film thickness. That is why a thermal reduction factor ϕT was
first introduced by Cheng [40], then modified by Wilson, Sheu and Murch [185], [269] and
finally improved by Gupta [101]. Such coefficient is a function of contact pressure and
surfaces velocities. Another formulation of thermal reduction factor ϕT adapted to linear
contact was also introduced by Hsu and Lee [135].

As well, thermal effects can be considered in shear stress computation on the basis
of Johnson and Tevaarwerk work [143], [243] improved by Houpert [132], [133], [127],
[126]. As for that, Maxwell shear rate equation is coupled with an energy equation
integrated along the film thickness and with an equation giving temperature rise along
contact surface. To solve this system Houpert [126] proposed fast and accurate procedures
for nonlinear viscoelastic sliding traction force in one or two directions. In this model, it
is confirmed that elastic effects are needed to compute lateral traction forces when spin
occurs in ACBB.

Let’s note again that DREB [92], [103] and SHABERTH codes [46] were pioneers
in bearings thermal modelling. Especially, Gupta solved three thermal equations on
shear rate to compute EHL thermal lubrication and Crecelius solved an entire system of
heat transfer equations to map temperatures over the bearing. Later, Poplawski [207]
adapted SHABERTH into SHABHYB for hybrid ACBB with grease oil. As for that,
ball-race contact model was adapted, thermal and lubrication models were modified after
benchmarking and experimental measuring and skidding criteria were improved to include
a peak traction coefficient at ball/race contacts. RBL4 code designed by Legrand [159] is
another example of quasi-static ACBB model that considers accurately thermal lubricant
effects. It considers arched-races with two, three or four contact points, centrifugal forces,
gyroscopic moments, normal and tangential forces, spinning, rolling, sliding motions,
tangential elastic deformations and thermal effects in EHD film thickness and in lubricant
shearing computation but with a procedure a bit different than Houpert’s [126].
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Authors Criterion Parameters
Jones [145]

0.06> 2MGY

QD
(1.5)

MGY : Gyroscopic momentum
Poplawski and Q : Ball-race contact load
Mauriello [208] D : Ball diameter

Hirano [124] NFc
Qa

> 0.1 (1.6)
N : Number of balls

Fc : Centrifugal force on a ball
Qa : Thrust load acting on the bearing

Kliman [153] NFc
Qa

> cos(αo−αi) (1.7) αo,αi : Outer and inner ring contact angles

Boness [24]
σmax = 0.00733(N2

i dm)0.22

(dmNη)−0.175GPa
(1.8)

Ni : Shaft speed (rev/min)
dm : Mean diameter (mm)
η : Lubricant viscosity (Pa.s)

Table 1.2 : Relations that implies ball skidding

1.3 Skidding issues

High speed ACBB are subjected to skidding which is gross sliding motion at ball-inner
race contact that creates important surface shear stresses and unstable cage speed. It also
increases lubricant and bearing temperatures, accelerates wear and reduces bearing life
and reliability. It occurs when applied load is too low to develop sufficient EHD tractive
force to overcome cage drag, then slips occur at the contact. As well, forces are not
enough to prevent gyroscopic spin that is to say to keep the ball rotational axis aligned
with rolling axis, then spinning motion also contributes to skidding.

1.3.1 Skidding criteria

For thrust loaded bearings, several authors developed criteria to evaluate the threshold
over which skidding occurs. The four majors ones are summarised in Table 1.2. Based on
raceway control hypothesis, Jones [145] proposed equation (1.5) on gyroscopic momen-
tum at the controlling ball-race contact. Poplawski and Mauriello [208] extended it for
distributed gyroscopic effects at inner and outer race contacts. Hirano [124], based on
axially loaded ACBB experiences, underlined that skidding occurred when relation (1.6)
was satisfied. Kliman proposed the similar expression (1.7), but different in amplitude,
that suggests that skidding can be limited by minimizing the difference between inner and
outer ring contact angles. From his previous model [25], Boness [24] ran several computa-
tions for different bearing characteristics, lubricants and operating conditions to establish
the empirical equation (1.8). It relates maximum Hertzian pressure at inner race contact
that predicts minimum thrust load over which skidding does not occur. Nevertheless,
many parameters are involved in skidding, then these criterion are not sufficient to esti-
mate its occurrence. As a consequence, more refined models were developed in order to
investigate qualitatively skidding in details.
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1.3.2 Parameters to limit skidding

Harris [119] is considered as a pioneer in investigating skidding in quasi-static models,
especially with lubrication and without raceway control hypothesis. However, first ACBB
skidding models were only considering thrust external load and constant contact angles
over the bearing. Liao and Lin [163] developed a different parametrization than Jones
to compute contact forces and angles by assuming that osculation of inner and outer
raceways was the same and that inner ring displacements were known. This study proved
that contact angle variation is not influenced by axial but only by radial load. Increasing
this load increases maximum contact load for balls located near the application point,
but decreases those of balls at the opposite side. Bearings submitted to combined load
also experiences ball slip at ball-race contact. Subsequently, to differentiate inner and
outer ring contact angles, authors added centrifugal forces [164] but assumed the same
one for every ball. Results analysis shows that increasing ωc, increases inner-race contact
angles αi, decreases outer-race contact angles αo, and that maximal αi and minimal αo are
located at the opposite of the radial load application point. Above all, this study shows
that limiting cage rotational speed ωc is the first criterion to apply to reduce skidding.
Increasing axial load can be another solution. Skidding is inevitable when combining
axial and radial deformations. However, for a given cage rotational speed, depending
on these deformations, the authors found refined functions defining skidding threshold.
Later, they also added misalignment [165] and validated the model by a comparison with
Jones’ model. They proved its computational time improvement, its efficiency and showed
that increasing angular misalignment lowered axial and radial load capacities. They also
took over the model without misalignment [164] to add thermal effects. As for that,
they implemented Hamrock Dowson film thickness and traction forces due to frictional
heat created by shear stress formulated by Kannel and Walowit relation [149]. With this
thermal model [166], sliding velocities and friction forces at ball-to-inner race contact are
increased. Wang [256] also continued the isothermal model [164] and considered different
centrifugal force and gyroscopic moment for each ball for an ACBB under combined radial,
axial and moment loads. To improve skidding prediction, Yoshida [278] added in Jones’
theory, one equation on cage with cage-race HD interactions. He also represented fluid as
non-Newtonian with Eyring theory [217], [218]. He solved energy equations to compute
ball-race film thickness, ball, inner and outer ring temperatures in order to estimate the
temperature rise induced by ball slip. As well, Xu [271] used Harris’ [119] and Jones’
theory and Hirano’s criterion [124] to estimate the optimum preload to limit skidding and
heat generation for given bearing parameters and running speed in a high-speed ACBB.

In 2018, Oktaviana [199] used De Mul‘s model [56] and Hirano’s criterion [124] to
evaluate the influence of external loading, rotational speed and angular misalignment on
bearing skidding. They observed that under purely axial load, increasing misalignment
increases skidding. However, for given bearing conditions, it exists an optimal misalign-
ment angle to avoid skidding. For bearing submitted to axial and radial loads, increasing
misalignment will develop two skidding regions instead of one. And, increasing radial load
will increase these areas. Besides, the initial contact angle does not influence skidding for
axially loaded bearings whereas for bearings under combined loads, increasing this angle
will enlarge skidding area.
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Outer Race Inner Race Equal
Hybrid theory

Control (ORC) Control (IRC) distribution

λi 0 2 1 2C
1+C

λo 2 0 1 2
1+C

β tanβ = esinαo
ecosαo+r′

o
tanβ = esinαi

ecosαi−r′
i

β = αo+αi
2

tanβ = C(S+1)sinαi+2sinαo

C(S+1)cosαi+2(cosαo+γ)+A

with


C = QiaiLi

QoaoLo

A= γC[cos(αi−αo)−S]

S = 1+γ cosαo
1−cosαi

Table 1.3 : Raceway control hypothesis

1.4 Models without raceway control hypothesis
RCH has been widely used in literature, however under specific operating conditions such
assumption does not hold. That is why many recent studies interested in ways to get rid
of it.

1.4.1 Geometric assumption

One of the most simplified method is to use the geometric hypothesis that considers equal
gyroscopic moment distribution between inner and outer race (λi=λo=1), then pitch angle
is the mean of contact angles and S/R ratio are equal on both races.

1.4.2 Hybrid theory

Another method based on d’Alembert’s principle was established by Changan [35] to
compute yaw angle as a function of kinematic parameters and loads. Corresponding
formulas are summarized in Table 1.3. Advantage of this hybrid theory is that, contrary
to discrete RCH, it considers a continuous gyroscopic moment distribution between races.
Like most theories, it assumes an equal coefficient of friction between both races, as
expressed in (1.9).

µj = T ji
Qji

= T jo

Qjo
⇔ λi+λo = 2 (1.9)

This hybrid theory has been reemployed by many searchers. For instance, Lei [160] com-
pared Jones’ model with a quasi-static planar ACBB model that couples Hybrid theory
with an EHD lubrication model based on a semi-empirical friction coefficient. As well,
Noel [195] investigated the influence of kinematic hypothesis on gyroscopic moments and
stiffness matrix. Like Harris, they observed that ORC applies for high-speed and light
loaded bearings. Hybrid theory is suitable under these conditions, but also under higher
loads. Geometric hypothesis is less correct than hybrid one, but easier to implement and
provide good results for significantly loaded bearings. Wang [257] and Zhang [280],[283]
also used hybrid hypothesis for ACBB under combined axial, radial and momentum loads.
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It appears that radial load causes contact angles variation over the bearing and uneven
load distribution. However, the use of a proper momentum can compensate it and im-
prove load distribution and service characteristics under combined load. On the contrary,
misalignment reduces bearing performances under pure axial load. Rabréau [214] also
coupled a thermal FE model with a kinematic model with either Hybrid or Jones’ model
to investigate their influence on internal kinematics and frictional torque. Recently, Liu
[167] developed an optimised algorithm that uses Hybrid theory to study the effects of
elastic modulus, ball diameter, radial clearance, rotational speed and ring angular mis-
alignment on time-varying stiffness matrix.

1.4.3 Contact friction minimisation

Another approach is to focus on contact friction minimization. For instance, Dusserre
and Nélias [64] have shown that bearing components were working such that spinning
power losses between inner and outer races were minimal. Then, pitch angle β is equal
to IRC pitch angle βi when operating under low speeds and high loads, it is equal to
ORC pitch angle βo for high speeds and light-loads and it is distributed between those
angles otherwise. As well, Foord [71] replaced RCH by a minimisation of the total contact
friction power. It enables to compute accurate kinematics for any load or speed condi-
tion. The only limit occurs when axial and radial loads are of a similar magnitude. To
compute EHD traction model in quasi-static, Gupta proposed first [98] to replace RCH
by a constraint that minimises frictional energy due to rolling element-inner and outer
races slip with respect to pitch angle. Later, improvements [100] gave realistic rolling and
slipping motions at ball-race contacts, with an efficient friction simulation much closer to
dynamical results than RCH.

1.4.4 Ball torque equilibrium

For ACBB with tractive lubricant in aircraft gas turbine engines, especially under high
speed and temperature operating conditions, Chapman [36] has led an experimental study
that proves that RCH is inadequate to compute ball axis attitude angle and ball rotational
speed. Then, he proposed to compute β by a moment balance calculation. For rings with
same conformity, it appears that β is shared between IRC and ORC for low speed whereas
β is a bit smaller than βORC at high speed. In a similar way, Brecher [28] iterated on
ball pitch and yaw angles and ball and cage rotational velocities to access ball torque
equilibrium. Contrary to most models, friction coefficient is not based on usual EHL
theory but is expressed by an empirical relation that applies locally at each contact and
determined from experiments. Likewise, Bozet and Servais [27] developed a quasi-static,
axially loaded, dry lubricated, ball bearing model to compute the pitch angle without RCH
but by ball equilibrium resolution and by neglecting yaw angle. Significant differences
have been observed compared with traditional RCH models, especially in terms of power
losses. Later, they considered transverse loads T ji and T jo due to gyroscopic torques [232].
Contrary to other models, they did not impose prescribed values on T ji and T jo but they
iterated on λji and λjo through a process that consists in studying in detail ball kinematics
(transverse slip speed fields) to equilibrate transverse torque then transverse load and
ball spin attitude. Results have shown the strong influence of bearing rotational speed
and ball spin attitude angle on the transverse loads. Leblanc and Nélias [157], [158]
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interested in ACBB with 2, 3 or 4 contact points and computed pitch and yaw angles
without any assumption but by a resolution of ball equilibrium equations. They showed
that raceway control hypothesis is less correct when more than two contact-points are
present. This model also enables to better understand arched bearing kinematics and
particularly the fact that getting two contact points on a race distributes loads but also
increases sliding and spinning motions. Then, it enhances friction power losses, surface
friction shear stresses, pressure-velocity product, so surface temperatures. However, drain
holes can be designed on arched races to improve lubricant flow, to reduce oil churning
and to compensate friction power losses.

1.4.5 Rolling contact analysis

Chen [38], [39] used rolling contact theory, a new differential slip model and linked creepage
with slip and spin ratio to determine precisely ball and raceway relative motions without
making RCH or any assumption on traction forces. Such developed model enables to
represent more accurately ball kinematics (friction, traction, sliding and spinning at ball-
race contacts).

1.5 Other areas explored
Based on Jones’ and Harris’ [119] theory, many ACBB quasi-static models could be de-
veloped, each one presenting its advantages depending on application field. For example,
de Mul [56] developed a highly modular, systematic and complete system to compute
equilibrium, loads and bearing stiffness analytically for any kind of bearing. To model
a coupled spindle-bearing system made of spindle shaft, ACBB and housing, Jorgensen
[146] reused de Mul’s theory, whereas Cao [34] or Shin [237] used Jones’ analysis directly.
Both of them solved ACBB quasi-static problem and computed stiffness matrix to intro-
duce it into a dynamic spindle system. Shin has especially shown the influence of speed
variation on the decrease of bearing stiffness and natural frequencies that impacts the
prediction of stability lobes. Ignacio Amasorrain [136] proposed a procedure to compute
load distribution, ball-race contact parameters and ring motion in a four contact-point
slewing bearing under axial, radial and moment load working at low speeds. Jedrzejewski
and Kwasny [141] also developed an ACBB model for high-speed spindle bearing with
moving sleeves in order to forecast moving sleeve position depending on bearing kine-
matical operating conditions. Brecher [29] also proposed a very simplified procedure to
compute cage friction in spindle bearings. He considers a constant cage-to-outer race
contact and a unique ball-to-pocket contact with normal forces and Coulomb’s friction
forces. Thermal and centrifugal expansion of cage and outer ring are also implemented
to estimate the effects of radial clearance on cage friction. For thrust loaded ACBB,
Antoine [5] proposed a precise and quick tool to compute explicitly inner and outer ring
contact angles depending on preload and rotational speed. Chunjiang [45] investigated
the influence of axial load and rotational speed on ball-race contact angles, normal forces,
centrifugal forces, gyroscopic torque and coefficient of friction with their own quasi-static
model of thrust loaded ACBB. Zeng [279] also proposed a novel calculation method to
improve non-linear quasi-static resolution. As for that, recursive relations are found to
reduce the number of unknowns, a new initialization method is used and an improved
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artificial bee colony algorithm is developed to improve solutions accuracy, computational
time and reliability in solving large root difference problems.

Many studies also interested in computing ACBB running torque that is to say the
moment required to sustain a constant rotational speed. It is directly related to power
losses, heat generation and bearing efficiency. For example, Houpert [128] proposed ex-
pressions to compute hydrodynamic rolling forces, elastic rolling moments and friction
moments due to curvature effects and pivoting at ball-race contacts. Then, he obtained
sliding forces by ball equilibrium. Finally, he derived the running torque on the bearing
by summing all forces and moments around rotational axis. Joshi [147] also computed
bearing running torque of an ACBB with 2 or 4 contact points under high load and slow
speed. As for that, they simplified Leblanc and Nélias’ model [157] by neglecting centrifu-
gal forces and gyroscopic moments. Tong and Hong [245] also proposed new formulations
for EHL rolling resistance and spinning friction, and considered elastic hysteresis friction,
differential sliding losses and lubricant viscous drag. Later, this model was coupled with
de Mul’s one [56] and gyroscopic effects were added in order to study the effects of angular
misalignment on the running torque of ACBBs under different preloads [244]. In all these
running torque studies, particular attention has been paid to model friction coefficient.
As well, they all concluded that hydrodynamic rolling forces and spinning friction were
the main components responsible for running torque.

Regarding quasi-dynamics, Yan [272] developed a model that computes balls, rings,
and planar cage motion combined with heat transfers through a heat-flux method. They
investigated oil-air flow, lubrication and thermal ball bearing performances depending
on pocket shape (spherical or cylindrical), cage guiding type, cage guiding clearance and
pocket clearance. Similarly, Yang [273] developed another planar cage quasi-dynamic
model coupled with a convective heat transfer system. They studied the influence of cage
guiding clearance and pocket hole clearance on high-speed ACBB heating characteristics.
On the same principle, Wen [265] developed a quasi-dynamic planar cage model for high-
speed micro ball bearing. It appears that angular misalignment significantly modifies ball-
race contact load, contact angle, spinning and skidding velocity variations over a cycle.
Under axial load, angular misalignment increases bearing power losses, decreases fatigue
life, whereas for combined loads, depending on misalignment direction and amplitude it
can either improve or alter power losses and fatigue life. We should note that contrary
to traditional models, SHABERTH code [46] or these last quasi-dynamic models do not
neglect ball-to-pocket orthoradial displacements due to radial load or misalignment. They
also usually consider ball rotation velocities (ωjm, ωjx, ωjy, ωjz) as unknowns instead of ball
self-rotations (pitch βj and yaw β′j angles) and effective rolling radius r′j

i , r′j
o .

Wang [255] and Cui [51] also developed READ (Rolling Element Bearing Advanced
Dynamics), a 3D quasi-dynamic model for aero-engine ball bearings. For high-speed and
heavy-load ACBB, Shi [236] reused Cui’s [51] model with consideration of spinning, sliding
and rolling motions. At ball-race contact, they solved EHL problem by multi-grid method
in parallel with thermal equations. Results show that full film lubrication occurs under
normal operating conditions whereas poor lubrication occurs when the bearing slow down,
start-up or shut-down. That is why they extended this coupled quasi-dynamic/TEHL
model to mixed lubrication regime [235]. As for that, continuous Reynolds equations,
film thickness equations and film energy equations are considered whether the contact
is under EHL or boundary lubrication. Similarly, Wu [270] coupled mixed lubrication
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with Wang’s model [255] in order to investigate the effects of rotational velocity, inner
raceway curvature coefficient or initial contact angle on bearing behaviour under mixed
lubrication. Li [162] also implemented on Wang’s model [255], curve fitted relationships of
traction coefficient obtained from experimental studies on aviation lubricating oil. Results
especially show that ball-race traction force and relative sliding speeds causes a greater
increase of outer race temperature than inner race one. Cui [52] recently reused its quasi-
dynamic model and coupled it with a thermal model based on moving heat source method.
Minimum load to prevent skidding, maximal load to prevent overheating and maximal
speed to avoid both of them were evaluated depending on operating conditions such as
rotational speed, axial, radial loads, oil or grease lubrication, ceramic or steel balls.

2 Time dependent models
Dynamic models consider time-dependant accelerations of bearing components. Usually,
quasi-static or quasi-dynamic solutions are used to initialise such dynamical problems.
Systems of equations are solved with a time step numerical scheme, like fourth order Runge
Kutta (RK4), which can be time consuming [91]. Consequently, dynamic developments
were made possible by constant improvements of computer machines performances. And,
with the increasing of high-speeds, loads and temperatures in ball bearings, searchers had
to further interest in these time dependant models. But, one of the most important issue
in dynamic modelling is the investigation of cage motion and stability. Indeed, the cage
is a critical component in bearings and can be subject to defective operation, excessive
wear or failure. Difficulties in setting up experimental studies in dynamics due to the
requirement of sophisticated instrumentation and measurement systems, also explains
the need for analytical models development.

2.1 Bases on cage dynamical motion
Kingsbury [65] conducted an experimental study and brought solid bases to understand
cage dynamical motion. He measured cage orbital velocity about its mass center, cage
mass center angular velocity, races speeds and bearing torque. Then, as schematized in
Figure 1.3, he observed a whirling motion which is a very fast translation of the center
of mass of the retainer in a rotational motion around the bearing center. When whirl
velocity α̇ and whirl radius rw are constant over time, a pure tone at a particular pitch
angle can be heard, this phenomenon is called pure whirl. On the contrary, if whirl velocity
and whirl radius vary irregularly in an erratic motion, large changes in bearing torque
are observed, a noisy irregular sound can be heard also called squeal. These cage center
motions are illustrated in Figure 1.4. Besides, if whirl velocity is equal to bearing angular
velocity, bearing torque is unchanged, this is synchronous whirl. When whirl velocity is
equal to ball group velocity the mode is stable with a uniform torque, otherwise a ball
jump mode is observed with a sinusoidal torque variation. Later, Kingsbury and Walker
[152] further investigated bearing instabilities and confirmed that during squeal, a high-
frequency retainer motion is superimposed to the retainer ball group rotation rate. As
well, whirl is driven by friction and ball-to-pocket geometry, then squeal can be limited
by an asymmetric ball distribution, by adding oil lubricant or by reducing applied axial
load to limit ball-race traction. He also observed that whirl frequency is approximately
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proportional to ball spin rate and that for inner-race guided cage, whirl velocity is in
the same direction as retainer rotational speed whereas it is in the opposite direction for
outer-race guidance. We should also note that squeal instabilities do not obviously lead
to important damages. Thereafter, a stable cage motion will be defined by a constant
whirl speed (equal to cage rotational speed), a regular whirl orbit and a constant whirl
radius.

Figure 1.3 : Kingsbury’s model for cage whirl motion at initial position and at 90◦,
schematized by Niu [194]

Figure 1.4 : Cage center of mass motion under stable whirl and squeal
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2.2 Dynamical reference models
The first analytical dynamic model was designed by Walters [253] with the code BASDAP
which is a Ball And Separator Dynamic Analysis for ball bearings. It considers 4-DOF
for balls and 6-DOF for separator and solves Jones’ ball/race elasticity problem indepen-
dently to dynamic analysis. Particular attention was also paid to compute ball-to-races,
ball-to-separator and separator-to-races normal and traction forces depending on lubri-
cation and component positions. Especially, when a ball contacts the separator, Walters
imposed a constraint such that the normal ball and separator velocities are equal at the
contact point. Then, separator motion relative to ball motion was observed and especially
orbital speeds like whirling. Later, Kannel and Bupara [148] programmed BASDAP II
that simplifies cage motion in a plan, but considers ball-to-pocket impacts with traction,
normal spring and damping effects depending on EHD lubrication. Ball-cage bouncing
and ball sliding over the film results in cage-race energy dissipation. Results align with
Kingsbury’s observations and showed that stable motion highly depends on lubricant since
it is enhanced by low ball-to-pocket friction coefficient, low lubricant viscosity or low film
thickness that affect damping.

In the 1970’s, Gupta developed BDYN (Bearing DYNamic) and DREB (Dynamics
of Rolling Element Bearings) [89], [90] considering all bearing dynamical elements with
hydrodynamic or dry interactions. Later, with RAPIDREB and ADORE (Advanced
Dynamics of Rolling Element Bearings) [91], Gupta improved lubrication models. Then,
thermal effects were added, and today, ADORE still continues to be developed. An
animated interface called AGORE (Animated Graphics of Rolling Elements) was also
created to visualise bearing motion. While very complete as it considers any kind of
bearing, all possible interactions, solid effects or defaults, ADORE limitation is that cage
is assumed to be rigid even if it can be considered segmented between pockets. Also, only
two contact points between balls and rings are considered, the system is solved in a fixed
referential coordinate frame and is particularly time-consuming. This model enabled to
observe typical ball bearing phenomenon and instabilities such as skidding or whirling.
Extensive investigations on the effect of misalignment, squeeze-film, clearances, radial-to-
axial load ratio or lubrication models on accelerations, contact and friction forces or power
losses enabled to better understand bearing dynamics and to improve the model over the
years. Especially, important achievements have been done on EHD traction, lubrication
and thermal models that highly influence bearing behaviour.

In order to lead a parametric and optimisation study with a more cost effective code
than ADORE, Meeks [181], [180] developed a SEParator DYNamic program (SEPDYN)
for ball bearing under axial load. The analytic problem is simplified with two dynamic
equations for balls and six for the separator. To reduce resolution complexity, the system is
solved in rotating coordinate frames instead of fixed inertial one. Different cage types are
considered (ball or race-guided, with conical or cylindrical pockets). Results showed the
influence of high friction and traction coefficients, of high separator-races and separator-
pocket clearances on ball-to-pocket collision forces, wear energy dissipated, whirl and
squeal frequencies. Later, the system was improved into BABERDYN [182] to consider
radial load and misalignment, inertial effects, lubricant film, torque, heating and power
dissipation.

Later, Boesiger [22] developed PADRE for Planar Analysis of a Dynamic Retainer
that considers thrust loaded ball bearings with 2-DOF for balls without inertial effects.
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Retainer interactions are precisely introduced, especially with the consideration of cage
flexibility and asymmetric cages. A retainer instability investigation showed the whirl
occurrence at a characteristic frequency and its sensitivity with ball-to-retainer friction
increasing.

For the company SKF, Stacke [240], [239] designed BEAST, a very complete 3D BEAr-
ing Simulation Tool, that models the dynamic of all kind of bearing with any geometry,
external load or lubricated conditions. It has proven its efficiency to solve industrial
problems and to understand better cage motion and ball-to-pocket interactions around
the bearing depending on loads applied.

2.3 Cage stability evaluation

All dynamical models are more or less the same, the only difference is the consideration
or not of typical effects like inertia, external load and various interactions between balls,
cage, races and lubricant. In these tables, unless stated otherwise, ball-race and ball-to-
pocket normal forces are represented by Hertzian theory, ball-race friction forces by shear
stress integration over contact surface for given traction and lubrication model. Cage-
race interactions are represented by short journal bearing theory [73] if no contact occurs
and sometimes usual normal and friction forces are also added if contact is considered.
Regarding friction, pure sliding with high velocities occurs at ball-to-pocket and cage-race
contact, then frictional behaviour is represented by a constant coefficient.

Gupta developed an important work to characterise factors influencing cage instabil-
ities in solid lubricated ball and cylindrical bearings. First, he investigated the effect
of friction [93] on ball and cage stability by studying ball-race sliding velocities, cage
whirl orbit motion, velocity and time average wear rates of bearing elements for different
Kragelskii-type or simplified traction curves. To minimise instabilities it appears that
lubricant should present a limited traction slope at low slip rates for any interaction
and a minimum negative slope at high slip velocities for ball-race traction. Then, he
investigated the influence of cage unbalance [95], [102] on ACBB motion experimentally
and numerically with ADORE. For both inner and outer-race guided cages, stable cage
whirl occurs at any rotational speed. On the contrary, if cage unbalance increases under
a certain level, cage interactions are more important, whirl radius increases and whirl
velocity varies. With excessive unbalance, ball-cage collisions are also extended in time
which worsen cage wear. Such behaviours are confirmed by power loss and time-averaged
wear rates of cage which increase with unbalance. Besides, for inner race guided bearing,
cage-race contact occurs at the opposite location of unbalance which increases cage wear
then unbalance itself and instabilities. And, the severity of this interaction increases with
rotational speed and unbalance. On the contrary, for outer race guided bearing, the con-
tact occurs at the same location as the unbalance which limits this phenomenon, such
bearing is “self-balanced”. In another parametric study, Gupta [97] has also shown that
increasing ball-to-pocket clearance triggers instabilities at a certain threshold and that an
optimal ratio of cage-race to ball-pocket clearances exists. And, if these conclusions only
apply for the solid-lubricated bearing studied with given geometry, it clearly appears that
correlations exist between cage clearances and stability. Besides, Gupta [96] investigated
the influence of the type of load variation on ball-race contact load variation, whirl mo-
tion, ball-to-pocket contact amplitude and duration, then on the steady-state wear rate
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of the cage. In terms of stability, contact severity, wear and risk of failure, results show
that the stationary radial load is preferable than unbalanced load rotating with the shaft
which is itself less critical than a radial load rotating at half the shaft speed.

Based on Discrete Element Method (DEM), Saheta [221] developed an efficient Dy-
namic Bearing Model (DBM) for ACBB and DGBB. 6-DOF are considered for each
element represented with simple geometries and with dry contact interactions in order
to save computational time. A parametric study was led and confirmed previous obser-
vations from Gupta [91] and Kingsbury [65] about the effects of rotational velocity and
ball-race traction models on ball and cage motion. Especially, at high-speed, if increasing
the slope of the traction curve reduces ball-race slipping, it increases fluctuations in cage
whirl and radial velocities then motion is unstable. However, a symmetric distribution
of balls around the bearing can limit such instabilities. This model also proves that cage
velocities fluctuations are enhanced by ball-to-pocket friction coefficient increasing, that
ball-race maximum stresses increases with race curvature, that reducing ball-race clear-
ance reduces slip and maximum contact load whereas reducing ball-to-pocket clearance
increases the region of slip at ball-inner race contact. Later, Ghaisas [79] replaced the
simple traction model by a microslip model to consider the curvature of contact ellipse
and the different slipping velocities on each slice of the surface. This consideration tends
to increase ball angular velocity computed, especially on the loaded zone of the bearing.
Lubricant effects are also implemented with drag forces computation and ball-to-pocket
normal forces modified to consider the effect of EHD or PVR (piezoviscous rigid) film
thickness on elastic deformation computation. DBM was also extended to cylindrical and
tapered roller bearing with the consideration of new effects like churning, rolling friction
or the computation of roller-race normal forces by slicing method. Based on DBM the-
ory, Prenger [210] also modelled in three-dimension ACBB, DGBB and SRB dynamics on
ADAMS software. Every element interaction is defined on subroutines with the possibil-
ity, at each contact, to consider dry or lubricated interaction to compute normal forces.
Friction forces and momentums are also calculated with Kragelskii’s traction coefficient
along with spin-resisting moment on the ellipse of contact. Later, Dattawadkar [55] ex-
tended DBM to four contact point ACBB and confirmed the effectiveness of such bearings
to support large axial and moment load.

Liu [169] also developed an ACBB dynamical model with only 3-DOF in translation
for inner ring but with 3D cage. All possible interactions were taken into account with
usual bearings theories. In particular, oil damping at ball-race contact is represented
by Sarangi’s [225] expression, whereas imperfect elastic contact is considered by material
damping implementation at each possible contact. Cage motion analysis confirms that
improving cage stability requires to increase inner ring rotational speed or applied load
to limit skidding, to choose material with an important coefficient of restitution that
enhances damping effects and to restrict the ratio of pocket clearance to guiding clearance
below a value of 1 in order to avoid ball-to-pocket collisions then cage-race collisions. To
investigate the effect of external load on cage stability, Ye [276], [277] developed a 4-DOF
cage dynamical model with only normal and dry friction forces at each contact. Under
steady state, analysis of whirl track, cage sliding-ratio and deviation ratio of cage whirl
speed confirms that stability increases with axial load but decreases with radial load. On
the contrary, during starting process, if radial load has little influence, axial load plays
an opposite role on cage dynamics and enhances instabilities. Niu [194] has adopted
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Gupta’s BB dynamical model [89], [91] for an outer-race guided cage in order to deepen
previous researches on cage stability. An extensive analyse of stable and unstable motion
under skidding conditions shows precisely the involvement of ball-to-pocket normal and
friction forces, of cage-race forces, of centrifugal forces and the role of combined load or
spacing between balls in ensuring constant whirl radius and velocity. Zhang [281] studied
the dynamical behaviour of ACBB for three lubricants presenting different viscosity and
temperature resistance. Kragelskii’s traction coefficients are determined experimentally
and expressed as a function of lubricant temperature, entrainment speed and normal load.
Analysis of cage’s mass center motion, period of dynamic response and cage’s slip ratio,
under different temperature, axial or radial load, shows the influence of lubricant traction
coefficient on cage dynamical characteristics and stability. Then, depending on working
conditions an appropriate lubricant can be chosen. Using the same approach, Liu [172]
investigated effects of lubricant type and temperature on skidding behaviour and ball-
to-pocket impacts. It appears that increasing lubricant temperature reduces ball-race
traction coefficient, especially in the radially loaded zone and under low axial load. As
a consequence, sliding and spinning velocities increase, whereas ball-to-pocket contact
forces decrease. Under high temperatures, increasing axial load is a solution to limit
skidding and ball-to-pocket forces. As well, dynamic behaviour is different depending on
lubricant viscosity-temperature coefficient, then on temperature resistance. That is why,
according to operating temperature, the appropriate lubricant should be chosen. Later,
balls, cage and shaft assembly gravity effects [171] were added in this model in order to
compare bearing behaviour under microgravity and gravity. Analysis of skidding, impact
forces and cage center orbital motion shows that stability is improved under microgravity
whereas under gravity, traditional dynamical bearing problems gets worse with shaft
assembly increasing.

Bovet [26] developed a non-planar dynamical model for BB submitted to high mo-
ment load, then to important cage-race impacts. That is why these interactions are
accurately represented through a hybrid short journal model that considers the transition
from hydrodynamic to metal-to-metal contact by boundary layer theory. An equivalent
viscoelastic hinge joint is also present on the inner ring to represent shaft dependence, so
inertia, damping and rigidity of the rest of the system. Results confirms the importance of
these new features for moment load modelling. And, severe cage-race and ball-to-pocket
impacts simulated under high moment load, corroborate with experimental observations.
Wang [254] used Gupta’s approach to investigate the effects of bearing parameters and
working conditions on BB performances judged by different parameters such as contact
angle, contact stiffness, edge angle and edge distance. One of the novelties is the consid-
eration of time-varying contact stiffness. Nogi [196] also used Gupta’s formalism to study
the cage dynamical stability in a ball bearing submitted to purely axial load. Usual EHD
theories are employed excepted for cage-race interaction where instead of short journal
bearing HD theory, only physical contact is calculated with Palmgren formula for normal
load and with a constant coefficient for friction forces. Ball-race damping is also consid-
ered to stabilise contact load fluctuation. Evolution of cage center orbital motion and
whirl velocities with traction coefficient, bearing speed or balls separation confirms pre-
vious studies observations about cage stability, particularly Kingsbury’s [152] one. The
authors also postulated that cage instability occurs when cage friction coefficient is greater
than a critical coefficient µc formulated as a function of cage mass, ball-race traction, cage
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rotational velocity, ball-cage contact stiffness and number of balls.
Recently, for bearings working under radial clearance and dominant radial load,

Razpotnik [216] found an efficient method to solve instability problems due to ball-race
contact transitions. As for that, when contact deformation gets closer to zero, they pro-
posed to replace this deformation by a smoothed expression which is a function of radial
displacement. With such procedure, deformation, force and stiffness are continuous func-
tions and continuously differentiable. Such model showed significant stability improve-
ments and a reduction in computational time. And, even if it was applied in a vibrational
study of shaft-bearing-housing assembly, it may be rapidly extended to dynamical ACBB
studies with cage and lubrication. Yao [274] modelled four-contact points ball bearings
on a multibody dynamic software. Hertzian contact, dry Coulomb friction and damp-
ing forces are defined at ball-race, ball-pocket and cage-ring contacts. Dynamical results
show that under pure radial load there is always four-point contact at ball-race, whereas
under combined loads there is four-point contact in the loaded zone and two in the non-
loaded zone. Load distribution is also influenced by applied moment load. As well, with
four-contact points there is always a pair of opposite contact-points that present major
dynamic load and contact angle compared to a secondary pair of contact-points. Han
[118] developed an ACBB planar dynamical model that considers cage unbalance forces.
Results show that increasing cage mass unbalance improves cage center regular motion
and increases whirl radii. On the contrary, cage unbalance has no effect on ball-to-pocket
contact forces, but increases cage-guiding race forces which results in cage guiding surface
wear.

2.4 Skidding issues in dynamics

Most skidding studies are in quasi-statics, they usually use kinematic assumptions and
cannot be used to study the influence of time variation. Gupta [85], [86] conducted a dy-
namical skidding study that formulates in 3D the generalized equations of motion of a ball
in a thrust loaded ACBB. Especially, EHD lubrication and three possible traction models
were implemented. Results showed that ORC hypothesis does not hold for given EHL
conditions and especially under low traction coefficient that allows for gyroscopic slip.
Inner ring acceleration enabled to better understand skidding mechanism in dynamics.
The program also proved its ability to determine the required preload to prevent skidding
and to compute the product of normal load by slip velocity in order to estimate wear due
to skidding. The limit is that cage is not considered yet, whereas it has an important
influence on ball dynamics. Later, Jain [139] developed a simpler model where ball distri-
bution of load is first solved in quasi-static and then skidding is investigated in dynamics
for ACBB under combined loads. As for that, centrifugal forces, gyroscopic moments
and usual ball-race interactions are considered, whereas a 1-DOF cage is represented by
springs of very high stiffness interacting between balls. Results showed that under radial
load, skidding is not equally distributed over the bearing. It is especially higher in un-
loaded zones and maximum at the entry to load-zone where contact load is minimum.
Also, compared to pure axial load, a larger force is needed to minimize skidding. And, if
increasing loads can reduce the length of skid zone, it cannot totally eliminate skidding.
Nevertheless, this model is limited since it neglects cage inertia which has an important
effect on cage speed, especially for time-varying operating conditions. Consequently, Tu
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[247] developed a planar dynamical model to investigate skidding during acceleration.
The model is very basic since it neglects lubrication and only centrifugal forces, gravity,
Hertzian normal forces and Coulomb friction forces at ball-race and ball-to-pocket con-
tacts are considered. However, it is reliable and enables to better understand the effect
of radial load and acceleration on skidding. The limit is that it does not consider the
fact that ball spinning axis is not aligned with bearing axis, whereas spinning greatly
influences skidding. Then, Chen and Shao [37], [233] studied skidding of rolling elements
entering the loaded zone of a radially loaded bearing with and without lubrication. They
showed that lubrication decreases the length of the loaded zone and the amplitude of
rolling elements owns rotational speeds, but increases slip velocities and time duration of
slip.

Wang [258] and Han [117] both developed very complete dynamical 3D models for
ACBB under combined loads. They both considered spinning motion, centrifugal forces,
EHD lubrication, traction and drag forces. Ball-cage interactions are again represented by
springs of high stiffness. Wang’s results confirm those of previous studies with spinning
motion explanation. They also confirm the importance of lubrication parameters, of
centrifugal expansion that reduces skidding threshold and of bearing rotational speed that
severer skidding. Han [117] observed that constant radial load decreases slipping velocities
in high-loaded bearing zones whereas it increases them in lower loaded zones, then it makes
skidding become more serious. Nevertheless, for a given region, increasing time-variant
radial load can increase slipping velocities during a cycle but decrease it at next cycle.
Then, no conclusion can be drawn on the effect of time-variant load on skidding, excepted
that it increases maximal slipping velocity. Later, Wang [259] added ball rolling friction
and film thickness thermal effects to this dynamical model. The purpose was to study the
race conformity influence on ball skidding and ball-race contact forces. It appears that
under light axial load, open inner race and tight outer race conformities are preferred to
limit skidding whereas under important loads, tight inner and outer races are preferred
to limit contact pressure, then to improve bearing fatigue life. Starting from the original
model [258], they also modified traction forces by the use of curve-fitted EHL parameters
to consider the effect of surface roughness and temperature rise due to sliding [260].
Under low axial load, results show that raceway surface roughness reduces sliding velocity
and spinning speed then limits skidding especially on the inner ring. However, for any
axial load, increasing raceway surface roughness reduces film thickness, worsen lubrication
performances, induce stress fluctuation in the substrate and stress concentration near the
surface. Then, smooth surfaces are preferred under high axial load. More recently, Fang
[68] developed a quasi-static 3D model with all of previous effects and with cage-guiding
race interactions in addition. A thermal model was also implemented to show severe
influence of skidding on temperature rise. Results also confirm skidding increasing with
bearing speed, and the existence of an optimum preload to minimize it.

For the first time, Ma [174] developed a 3D-dynamical model for four contact point
ball bearing (FCPBB) with EHD traction forces and 3-DOF cage. He showed that when
axial load increases, bearing changes from 3 contact points with important skidding, to 2
contact points without skidding. The third contact-point on the outer race has important
spin-to-roll ratio that generates heat and risks of burn or failure even if main contact has
the largest PV (contact pressure x sliding speed) value. Under important radial load,
during one revolution, balls can have 2, 3 or 4 contact points. Under two contact points,
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PV factor is maximum on main contact, whereas it is maximum at sub-contact under four
contact points. Ma [173] also used this model to investigate FCPBB optimum working
conditions and outer race optimum geometry. At high speeds, working under three contact
points better distributes centrifugal forces, limits contact angles differences, weakens the
softening effect of high speed on stiffness, increases fatigue life, but also increases friction
forces. Generally, an optimum curvature center eccentricity exists to improve fatigue
life, whereas under skidding conditions, larger eccentricity and smaller groove curvature
coefficient are preferable to limit PV factor, sliding and to increase fatigue life.

2.5 Improved models for surface defects

Bearings are subjected to localized defects like pits, cracks or spalls that lead to vibrations
when the ball rolls over them. To prevent resulting failures, condition monitoring and
fault diagnosis have recently become important subjects of research. Most models that
consider surface defects are in quasi-statics or do not take into account 3D motion, ball-
race slipping, lubrication or cage contribution [168]. However, under high-speed such
effects are substantial for accurate defect modeling. Ashtekar and Sadeghi [10] added in
DBM [79] effects of dents with sinusoidal profiles. In this dry contact elastic model they
modified the Hertzian force-deflection relationship with a different exponent n function
of dent geometry and loading. It appears that balls rolling over dent generates vibrations
that have negative effects on balls, rings and cage behaviour. And, inner race speed
increasing, dent size increasing, offset of dent from race centerline or the presence of a
cluster worsen such vibrational phenomena. Later, they also modelled in DBM bumps,
dents, spalls and debris represented by spherical defects [11]. They used the superposition
principle to add or subtract to Hertzian contact force or pressure, an Hertzian force or
pressure due to defect height or depth. Results confirm that localize defects modify
contact force amplitude, direction and dynamical behaviour of all bearing components.

As well, employing Gupta’s formalism [91], Niu [33] developed a dynamical model for
high-speed ball bearing with ball-races normal load, relative slip and simplified traction
forces. Raceways localized surface defects are accurately represented by the addition of a
deflection due to material absence and by the modification of Hertzian contact stiffness
and contact forces direction due to curvature changes. Later, cage was added and surface
defect model was improved by considering the finite size of the ball instead of a point
mass contact [193]. Results show the influence of rotational speed, axial and radial forces,
initial contact angle and defect size on motions and ball passing frequencies especially
under skidding operating conditions.

Qin [213] also modelled fault dynamics for high-speed ACBB. As for that, Jones-Harris
quasi-static problem with inertial effects is solved for a planar ACBB. Then, balls dynamic
is simulated with the use of a B-spline fitting displacement excitation to represent the
fault. Later, 5-DOF were considered for inner ring, and cage was added with ball-to-pocket
interactions represented by spring-damper systems [212]. The displacement excitation
function was also replaced by a half-sine function to characterize the defect. These models
accurately represent the real excitation and enable to observe that impulse duration,
amplitude and ball-to-pocket forces increase with defect size. As well, with rotational
speed and radial load increasing, the amplitude of acceleration vibration increases and
cage motion changes from regular to erratic.
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Wen [263] also modified their quasi-dynamic ACBB model [265] in dynamics and to
implement a localized outer-race surface defect with a constraint on depth profile. They
added EHL damping by short bearing theory for planar cage-guiding race interaction
and by a constant for other components. For axial or combined loads, results showed
the negative influence of surface defect scale and position, on angular misalignment, ball-
to-pocket collisions, ball-race contact loads and traction forces over cycles. Then, they
modified this model by representing ball-raceway contact with starved lubrication [264].
As for that, Masjedi and Khonsari’s [177] mixed EHL theory is used to modify smooth and
fully lubricated oil film thickness. It considers effects of surface roughness and of the degree
of starvation which describes changes of mass flow rate. Traction forces and momentums
are also revised to take into account asperities effects and previous planar cage model is
transformed in 3 dimensions. Results show that ball-raceway starvation severity reduces
oil-film thickness, increases ball-to-pocket impact load for combined loads and influences
skidding behaviour and traction forces which modifies sliding, spinning velocities then
gyroscopic effects at each race.

2.6 Cage elastic behaviour
With the development of high-speed bearings with cages made of lighter but softer mate-
rials, the necessity to model cage flexibility became essential. With PADRE, Boesiger [22]
was the first one to consider cage elasticity locally. As for that, Hertzian ball-to-pocket
penetration is considered in series with pocket web bending deflection and Hertzian race-
retainer deflexion in series with radial flexing of the retainer. In each case, bending and
radial deflexion are determined by finite element method (FEM) and the resulting contact
force is modified by a displacement-proportional energy loss term or damping. The limit
of this model is that it neglects cage global deformation.

Later, Hahn [107] developed a dynamical DGBB model that considers 3D cage elas-
ticity with a FEA approach limited to linear-elastic materials. The macroscopic deforma-
tion of cage structure is defined as a deflection between pockets contact surfaces, whereas
only micro-elastic deformations are allowed at ball-to-pocket iso-viscous contacts. Many
phenomena are also considered such as squeeze-film damping effects, combined loads,
misalignment or manufacturing inaccuracies.

Pederson and Sadeghi [203], [204] introduced a planar Flexible Cage Model in DBM
code designed for DGBB [79], [221]. As schematised in Figure 1.5, the cage is divided
into N spring-mass-damper translational systems where masses are centered on pockets.
Torsional springs are also present between three consecutive pockets to provide a restoring
moment. These stiffnesses are computed on the FEM software ANSYS, then a lumped
mass model is solved for the cage and is finally inserted in DBM global system. Results
show the importance of cage flexibility modelling. Indeed, rigid cage model predicts signif-
icantly higher ball-to-pocket contact forces and larger minimum ball-to-pocket clearances
required to reduce normal forces and instabilities like whirl.
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Figure 1.5 : Pederson’s flexibility modeling [203], [204]

For DGBB and ACBB, Weinzapfel and Sadeghi [262] developed in DBM another model
of deformable cage in a plan but with three-dimensional motion. As for that, pockets are
assumed to be rigid, bridges are divided into finite elements linked by viscoelastic fibers
comparable to spring-damper systems and massless rigid beams connect pockets to bridges
as represented in Figure 1.6. Damping coefficient is derived from empirical relationships
and stiffness is computed from a force-deflection relationship of a FE model. Resulting
efforts are then introduced in DBM system of equations.

Results confirms the significant reduction of ball-to-pocket contact forces and ball-race
slip velocities with flexible cage. Tilt angle also presents smaller amplitude, steady state is
reached faster and whirl radius increases with elastic modulus. In contrast, flexibility does
not change whirl frequencies, cage motion or velocity in case of radial load. This study
also confirms Walters’ [253] and Meeks’ [180] conclusions about the role of centrifugal
forces in making the cage maintain its radial position by overcoming cage friction forces
and by increasing whirl radius to a constant value.

Figure 1.6 : Weinzapfel’s flexibility modeling [262]

Ashtekar and Sadeghi [9] continued to work on DBM and combined this discrete
element ball bearing dynamic model (DEM) with a 3D explicit finite element model
(EFEM) of cage. As for that, the bearing cage is analytically meshed and the FE problem
with boundary conditions and applied forces is solved at each RK4 time step in order to
compute velocities and displacements at each node. An accurate and continuous procedure
is also implemented to link DEM to EFEM problem, especially at ball-to-pocket contact
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because ball forces acts at several pocket nodes. Results analysis confirmed Weinzapfel
and Sadeghi’s [262] observations. As well, for flexible cage, elastic deformations appear
to be at the origin of multiple oscillations at ball-to-pocket impacts, centrifugal forces
to be responsible for global cage expansion, deformation and resulting stresses. Moment
load also increases magnitude and duration of ball-to-pocket impacts that generates stress
cycles in the bridge and rail cage sections leading to fatigue failures. It’s worth noting that
those three models developed in DBM by Sadeghi’s team, particularly improved flexible
cage understanding and modelling. However, they were limited to ball guided cages, then
cage-race interactions were not considered.

For NTN company, Sakaguchi [222], [223], [224] developed planar flexible cage models
for tapered and needle roller bearings. However, 2D or 3D bearing geometry and bodies
interaction forces are modelled on MSC. ADAMS, a multibody dynamic analysis soft-
ware. If damping effects are neglected, elastic deformations and resultant cage stresses
are derived in different points by Component Mode Synthesis method in ADAMS. Later,
these two models were combined and organized on a simplified interface called IBDAS
(Integrated Bearing Dynamic Analysis System) [231]. This system was extended to any
kind of bearing and a Guyan reduction was applied to the FE cage system in order to
reduce computation time. A comparison with a FE model shows that the accuracy of this
CMS method highly depends on eigenmodes and boundary points chosen. We should also
precise that these models proved that unequal steady distribution of rolling elements had
an effect on stable whirl motion and particularly increases whirl radius.

For TIMKEN, Houpert developed CAGEDYN [129], [130], [131], a planar dynamical
model for roller bearings with flexible cages. As schematised in Figure 1.7, cage 2D-
elasticity is represented at ball-to-pocket impact by an equivalent stiffness that comprises
Hertzian contact stiffness and bridge structural stiffness responsible for its bending. This
last one is determined analytically if the beam has a simple shape and numerically by
FEA otherwise. As well, cage-guiding ring Hertzian contact stiffness is added in series
with a contact stiffness defined by standard load-ring ovalization relationship. If struc-
tural damping is neglected, effects of sliding, rolling, friction, traction or lubrication are
particularly well considered. Model validation proves its high efficiency and confirms the
importance of implementing bridge structural stiffness when the latter is small. It also
shows its effectiveness in predicting cage damage by computing impact force on bridges,
then Von Misses stresses to compare them to cage material fatigue limit.

Figure 1.7 : Houpert’s flexibility modeling [129]
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Qian [211] also developed CyBeSime, a 3D dynamical Simulation code for CRB with
any cage type. It is based on the multibody dynamic software SIMPACK where forces
and solid or lubricated interactions are precisely defined in FORTRAN routines. Cage
deformation and pocket-to-roller stiffness are computed in real time on Abaqus, and
results obtained are automatically exported on SIMPACK for global bearing resolution.
Contrary to other studies, results between rigid and flexible cages do not show differences
in terms of roller-to-pocket contact forces or slip velocities. However, CyBeSime proves
to be an efficient tool to optimise cage pocket geometry or structural design, to predict
cage wear and vibrations, to better understand bearing behaviour as instabilities (whirl
or squeal), motions, speeds and to investigate effects of parameters (misalignment, radial
load, clearances, materials, type of cage, etc.) on contact forces, pitch and yaw angles.

Li [161] developed a 3D dynamical model of high-speed ball bearing with flexible cage
lintel represented by 3D beam elements with 6-DOF at each node as represented in Figure
1.8. To model global cage flexibility, nodal displacements, force vectors and stiffness
matrices are defined locally before being converted into the overall coordinate system.
To compute ball-to-pocket interactions, geometric displacements are considered with the
addition of the term BPWL that represents the amount of ball-to-pocket wear loss. Then,
beams static equilibrium is solved on nodal displacements and on beam deformation,
is this way, ball-to-pocket position and contact-force interactions are recalculated, and
the procedure is repeated until forces does not vary anymore. As well, ball-to-raceway
and cage-race contact and friction forces are computed with usual theories. Finally, the
resulting system of dynamical equations on balls, cage and rings is solved by an RK4
scheme. Results show the influence of BPWL on cage center trajectory, on skidding ratio
fluctuation and on total cage forces, then on bearing elements interactions.

Figure 1.8 : Li’s flexible cage model[161]

Liu [167] developed a planar dynamical model to investigate the influence of cage
flexibility and impact load on skidding performances. As for that, dried and Hertzian
contacts are considered for ball-race and ball-to-pocket interactions whereas races do not
act on cage. To represent cage flexibility, cage pockets are lumped to springs whith
stiffnesses calculated by FEM as schematised in Figure 1.9. Note that cage-to-pocket
clearance is ignored, then springs can only be compressed and they only work under
contact conditions. Results confirms that high radial load and small inner ring rotational
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speed limits skidding. A comparison between rigid and flexible cage model shows that
neglecting cage elasticity underestimates cage skidding and overestimates rolling element
skidding in self-rotational direction. Indeed, if ball-race contact forces do not change
between the two models, ball-race friction forces and ball-to-pocket normal forces are
higher for the flexible cage because ball-race slipping velocities are also higher. Another
consequence is that it takes less time to a reach stable motion state with the flexible
cage model. This study also shows that increasing cage stiffness reduces cage and rolling
element-race slipping velocities, then it limits skidding.

Figure 1.9 : Liu’s flexibility modeling [167]

Then, cage flexibility is a subject that has been investigated only recently. Few studies
interest in ACCB guided by inner or outer race, many flexible cage models are planar or
based on a multibody dynamic analysis software. That is why, starting from Leblanc’s
previous work [158], authors aim at developing their own dynamical flexible cage model
for ACBB with 2, 3 or 4 contact point in the future.

2.7 Squeeze-film damping modeling
A new feature to consider in dynamics is damping effect that can come from different
sources as material hysteresis, fluid film or dry friction. From the first research, like those
of Vichard [251] or Dareing [54], it was shown that lubricant film damping is one of the
most important source of total damping and that it is primarily generated by squeeze-
film mechanism in EHL contacts. Later, for cage-race interaction, Gupta [84] extended
short journal bearing theory by adding a squeeze-film term that depends on film thickness
evolution over time. Subsequently, for an ACBB subjected to an oscillating radial load,
Walford and Stone [252] proposed to model ball-race interaction by the Hertzian contact
stiffness Kc in parallel with the squeeze-film damping at the entry of contact zone fe
as schematised in Figure 1.10. Analysis of radial and axial stiffness and damping and
comparison with experiments shows that damping magnitude is preload dependant and
that bearing joints are another source of bearing damping that should be considered in
dynamical modelling especially at high-speed.

Figure 1.10 : Walford’s squeeze-film modeling [252]
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Hagiu and Gafitanu [106] added inlet zone rigidity kef in parallel with elastic Hertzian
stiffness kc and entry zone squeeze-film damping hef as represented in Figure 1.11. They
also considered EHD lubrication film thickness hmin by Hamrock Dowson [113] formula
multiplied by Wilson and Murch [185] thermal factor and Olaru [200] starvation fac-
tor. ACBB axial, radial and angular stiffnesses and dampings were investigated. And,
experimental comparison shows that shaft-inner ring and housing-outer ring should be
additional sources of damping under high-speed conditions.

Figure 1.11 : Hagiu’s squeeze-film modeling [106]

To compute squeeze-film damping, some studies are based on the change of mutual
approach like those of Hagiu [106] or Sarangi [225] whereas others are based on the change
of film thickness like those of Wijnant [267], Nonato [198], Wensing [266], Dietl [57] or
Zhang [284]. They generally follow the same procedure that consists in solving a tran-
sient EHL line or point contact problem, usually by Van Nijenbanning’s [192] or Venner’s
[249] multigrid method in order to compute lubricant and structural elements vibration
response. From the logarithmic decrement of the response, squeeze film damping is cal-
culated. Then, various numerical data are curve fitted by least square method to obtain
a general expression on oil-film damping between roller and race. A similar expression
is usually proposed for stiffness, is this way each ball-race interaction is described by a
spring-damper system as schematised in Figure 1.13. These systems are then inserted in
a whole dynamical bearing model.

Mostofi [183] followed this procedure, solved EHL point contact problem numerically
and proposed a film thickness expression as a function of contact parameters and especially
of integrated pressure which depends on squeeze velocity. Later, Rahnejat [215] reused
this theory and computed in axial and radial direction, the vibrational response and
squeeze film damping of a rotating shaft supported by two lubricated DGBB. Increasing
the number of balls reduces film thickness and damping coefficient in unloaded region,
whereas increasing load increases squeeze-film damping coefficient.

For an EHL-line contact problem, Dietl [57], [58] also derived an equivalent oil-film
damping coefficient cEHL at the inlet zone of the contact. In parallel, he estimated viscous
material damping coefficient ch due to dry Hertzian contact. This coefficient depends on
a loss factor, on local contact stiffness and on frequency vibration. The system was
then applied at each ball-race contact, as schematised in Figure 1.12. Damping matrix
was also computed for the whole 5-DOF bearing. Experimental comparisons confirmed
efficiency of these two formulations to predict bearing damping. Results also show that
the damping coefficient increases with axial preload, lubricant viscosity, roller number
or contact surface, but decreases with starvation, with an excessive amount of oil or
with rotational speed. Damping is also highly dependant on lubricant temperature, since
temperature depends on rotational speed but influences oil viscosity.
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Figure 1.12 : Dietl’s squeeze-film modeling [57], [58]

Wensing [266] solved time-dependant EHL point contact problem and proposed a curve
fitted formula for damping coefficient as a function of dimensionless contact parameters
(geometry, materials, load, frequency). Spring-damper systems were inserted in a whole
dynamical bearing model where shaft, housing and outer ring are modelled by finite
element method. Results show that two dampers are necessary for the ball to damp
principal bearing resonances. And, viscosity increases damping values whereas starvation,
load or speed decreases them significantly.

Wijnant [267] also used this methodology to investigate dry contact and lubricated
contact under fully flooded or starved condition and for circular or elliptic EHL contacts.
Curve fitted expressions were proposed for contact stiffness and viscous damping as a
function of Moes-Venner parameters [248] with damping computed from solutions for
sinusoidally varying loads.

Figure 1.13 : Wijnant’s squeeze-film modeling [267]

For EHL point contact problem with consideration of surface roughness, Sarangi [225],
[226] derived empirical formulas on lubricant stiffness and damping of a single ball-race
contact. Analysis of these expressions indicates that stiffness and damping increase with
load capacity, but decrease with speed, material or ellipticity parameters. They are also
a function of hydrodynamic roughness and surface pattern parameters. Damping is also
inversely proportional to a geometrical parameter that conforms with ball-race contact.
Then, the overall stiffness and damping matrices of the radially loaded bearing can be
computed by replacing each ball by an equivalent spring-damper system made of two
spring-dampers in series, as represented in Figure 1.14. Results show that damping cannot
be neglected for lubricated ball bearings dynamic modelling. Later, Sarangi [227] reused
the same approach to compute lubricant stiffness and damping for mixed lubricated point
contact problem. As for that, contact asperities were considered in pressure computation
with the use of Greenwood and Tripp model. Consequently, an additional parameter
on contact stiffness K ′ was added in curve-fitted formulas on lubricant stiffness Kl and
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damping Cl at entry contact region. And, an additional stiffness formula Ka was curve-
fitted to represent asperity contact stiffness at the center of contact as schematised in
Figure 1.15. Physically, when the contact stiffness parameter K’ increases, more asperities
are in contact then contact stiffness Ka increases, whereas lubricant stiffness Kl and
damping Cl decrease considerably. As well, contact stiffness Ka increases with roughness
pattern parameter or load capacity. Then, a dynamical, planar and non-linear ball bearing
model [228] was developed to study the influence of previous parameters on vibrational
response. Especially, the effect of EHL damping in reducing ball bearing vibrations was
shown.

Figure 1.14 : Sarangi’s squeeze-film modeling [225] under pure EHD lubrication

Figure 1.15 : Sarangi’s squeeze-film modeling [227] under mixed EHD lubrication

Zhang [284] also derived stiffness and damping coefficients for transient EHL and free
vibration models and under wider load and speed ranges than previous studies. Another
feature is the consideration of the influence of working load and speed on inlet length and
natural frequency computation. Such considerations significantly modify damping results,
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especially under heavy load and high speed. It is also shown that stiffness and damp-
ing increases with lubricant ambient viscosity, whereas damping decreases with pressure-
viscosity coefficient. Nonato [197], [198] also derived non-linear stiffness and linear viscous
damping expressions to model EHD film effects under harmonic loading. Then, these ef-
fects were implemented in a planar DGBB model to compute resulting restoring and
dissipative forces. Bizarre [20] also used this method to solve EHD contact problem in
parallel with 5-DOF ACBB equilibrium based on Harris and Mindel’s kinematic approach
[123]. One of the differences with the DGBB model is the distinction of contact angles
between inner and outer raceways, then the necessity to compute damping and stiffness at
each contact over the bearing. Results differences between dry and EHD approaches show
the necessity to consider these EHD dynamic parameters. And, computational efficiency
was also shown which can be interesting to introduce this model in a rotor system with
lubricated ACBB. Dong [60] also solved steady and transient EHL contact problem, con-
sidered energy conservation theory, a harmonic sinusoidal load, and curve fitted mutual
approach and damping coefficient as a function of load and entrainment velocity. These
EHD effects were implemented in a 3D dynamic, axially loaded ball bearing model based
on Gupta’s formalism [91]. Results between dry and EHD model are significantly different
under low axial load because contact forces are low, ball motion is unsteady then damping
effects are important. Guessasma [83] proposed a dynamical 3D discrete element model
for radial ball bearing where, under mixed lubrication, material damping and Walford’s
[252] fluid film damping are considered in parallel. Feature of this model is that at each
contact, each time step, lubrication regime is accurately and smoothly determined from
fluid parameter and friction coefficient analysis on Stribeck curve [241]. Results show
that lubrication regimes highly depend on inner ring rotational speed whereas radial load
and diametral clearance have minor effects. Sun [242] also solved EHD point contact
problem with the use of multi-grid method to compute pressure and film thickness distri-
butions over the contact. Then, damping is calculated by the ratio between the change
of force and the contact velocity. An experimental study was led in parallel in order to
validate theoretical results. It was confirmed that damping increases with radial load, but
decreases with rotational speed.
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3 Conclusions
Ball bearing is an old mechanism that has known important development these past eighty
years in parallel with aero-spatial evolutions. Indeed, bearings were subjected to get larger
diameters, higher speeds, higher temperatures or wider load range (axial, radial, moment
loads). Such modifications significantly change physical behaviour. Many models and
experiences have been led to optimise their design. Especially, several quasi-static and
quasi-dynamic models have been developed to better understand Angular Contact Ball
Bearing behaviour. For different working conditions (speeds, axial, radial loads, misalign-
ments, bearing geometry, etc.), these models allowed to study balls equilibrium, contact
angles distribution, pitch angle evolution or ball kinematics. Importance of accurately
considering EHD lubrication through film thickness, traction, starvation, dynamic vis-
cosity definitions or thermal considerations was shown. First models like those of Jones,
Harris or Crecelius are still considered as references. However, many researches have been
led to improve them and especially to get rid of raceway control hypothesis. Some of
them use geometric assumptions to compute pitch angle, others are minimizing contact
friction or directly solving ball torque equilibrium. Depending on model applications,
some authors investigated parameters influencing skidding, others interested in spindle
bearings, or in calculating running torque. Few models interested in 3 or 4 contact point
ball-bearing or considered yaw angle. Quasi-static and quasi-dynamic models are time-
computational efficient and give a first outlook of ball-race equilibrium. However, analysis
of cage motion, of accelerations or of accurate behaviour under important radial load or
misalignment, requires dynamical studies.

ADORE and BEAST were among the first bearing dynamics computer codes devel-
oped. Their continuous improvements until today makes them one of the most important.
More recently, Purdue University searchers, supervised by Sadeghi, developed DBM and
made major advances in the domain. Chinese tribologist community also led many stud-
ies and brought important knowledges on the subject. Most dynamical models have same
structures and considers more or less same interactions at ball-race, cage-race and ball-
to-pocket contacts. Nevertheless, depending on authors, different bearing behaviours are
studied under different working conditions. Especially, cage center of mass motion and
ball-to-pocket interactions have been analysed for different ball-race friction models, cage
speeds, cage unbalances, cage guidances, ball-to-pocket or cage-race clearances, lubricant
types, lubricated conditions, raceway conformities, surface roughness, temperatures, grav-
ity, axial, radial and moment loads. Is this way, bearing behaviour could be understood
more precisely and working conditions to get stable cage whirl and to avoid skidding could
be identified. To consider dynamic effects of EHD lubrication, some studies interested in
modelling squeeze-film damping, especially at ball-race contacts. As well, to avoid bear-
ing failures, more and more authors are modelling in dynamics, surface defects like dents,
bumps, spalls or debris. Recently, with polymeric cages development, searchers started
to implement cage flexibility in their models. If such investigations stay limited at the
moment, improvements are expected in the coming years.
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Markers definition

In this section, the quasi-static model of Angular Contact Ball Bearing developed by
Leblanc, Nelias and Lacroix [156], [157], [158] is improved. In such study the bearing is
double-arched, then 1, 2, 3 or 4 contact points are present between balls and rings. The
bearing has 5 degrees of freedom (3 translations, 2 rotations) due to external loads. Inner
ring rotates at shaft speed Ωi and outer ring at speed Ωo in global coordinates system.
The analysis is static with consideration of inertial effects. Consequently, only balls and
rings are considered since cage is a dynamic body.

1 Markers definition

1.1 Global coordinate system RG

The formalism described in Lacroix’s thesis [155] is reused here. The orientation of bearing
axis xG is reversed in order to work in a direct coordinate system as represented in Figure
2.1. Then, RG is the global coordinate system of the bearing. It is considered as Galilean
and it defines bodies positions under initial conditions without external forces applied.
In this system, the center G represents bearing center, outer ring center and inner ring
center initially. xG axis is bearing rotational axis, whereas yG and zG define outer ring
medium plan.

1.2 Inner ring coordinates systems
1.2.1 Inner ring position Ri1

In this study, rings are supposed to be rigid, only local deformations at ball-race contacts
are considered. Because of external loads, inner ring center Gi1 moves relative to bearing
center G. To model corresponding degrees of freedom, the inner ring local coordinate
system Ri1 is defined as represented in Figure 2.1. Then, inner ring has 3 degrees of
freedom in translation δx, δy, δz and 2 degrees of freedom in rotation θy, θz. Because
those displacements and rotations are small, RG and Ri1 systems are almost equivalent.
Then, for the sake of simplicity, future projections related to inner ring will be defined in
the global coordinate system RG.

RG = {G, xG, yG,zG} (2.1)

Ri1 = {Gi1, xi1, yi1, zi1} (2.2)

δ = GGi1 =

 δx
δy
δz


RG

(2.3)

θy = (xG,xi1′) = (zG,zi1) (2.4)

θz = (xi1′ ,xi1) = (yG,yi1) (2.5)
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2. Quasi-static model with balls and rings

1.2.2 Inner ring rotation Ri

Because of shaft speed, inner ring also rotates around its own axis (Gi1,xi1) at rotational
speed ωi. To model this motion, the coordinate system Ri is defined such as represented
in Figure 2.2. Note that rotational speed ωi is the time derivative of θi/i1 angle. Again,
because of small inner ring motion, it can be considered that xi1 is equivalent to xG, then
that inner ring rotates around bearing axis (G, xG).

Ri = {Gi1, xi1, yi, zi} (2.6)

θi/i1 = (yi1,yi) = (zi1,zi) (2.7)

Ωi/i1 = θ̇i/i1 ·xi1 = ωi ·xi1 (2.8)

xG

yG

zG

G

δ

Gi1 θy

θzyi1

θz

xi1

θy zi1

Figure 1 – Repere BI

1

Figure 2.1 : Inner ring motions relative
to bearing center

xi1

yi1

zi1

Gi1

θi/i1
yi

θi/i1 zi

Figure 1 – Moments agissants sur une bille

1

Figure 2.2 : Inner ring self-rotation
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Markers definition

1.3 Balls coordinates systems

Figure 2.3 : Balls orbital positions and
precession speeds in the bearing

xG

yG

zG

G

ψj

yj
b1

ψj zj
b1

Bj
xG

yj
b1

zj
b1

δj
b

Gj
p

dm/2

1

Figure 2.4 : Balls translations

1.3.1 Balls positions Rj
b1

In global coordinate system RG, each ball j rotates around (G, xG) axis. This motion
is called ball orbit or precession. As schematized in Figure 2.3, corresponding local co-
ordinates systems are Rj

b1. They define each ball orbital position ψj at pocket center
Gjp such that initially, balls are equally distributed around the bearing (cf. expression
(2.10), where ψc is angular position of the first ball). Time derivative of ball position Bj

is ball precession speed ωjm, that can differ from one ball to another one. That is why,
in quasi-static, we suppose that the average of ball precession speeds is cage rotational
speed as expressed in (2.11).

Rj
b1 =

{
Gjp, xG, y

j
b1, z

j
b1
}

(2.9)

ψj = ψc+ 2π
N

(j−1) = (yG,yj
b1) = (zG,zj

b1) (2.10)

ωc =
N∑
j=1

ωjm
N

(2.11)
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2. Quasi-static model with balls and rings

XG

ZG

xj
b1

yj
b1, yj

b2

β
β ′

ωR
ωy
ωz

ωx

xj
b2

xj
b3

zj
b1

zj
b2, zj

b3

yj
b3

G

β

β ′

Figure 1 – Rotation de la bille dans un repère direct (Version 5 BB20)

1

Figure 2.5 : Ball self-rotations

As well, ball orbital position or pocket position Gjp is located at a distance dm/2
from bearing center G, where dm is the initial average bearing diameter. From this
position, ball center Bj can translate of a distance δjb as represented in Figure 2.4. Note
that in quasi-static, ball orthoradial displacement is neglected, then δjb does not have a
component along zj

b1 axis. Such hypothesis is no longer valid in quasi-dynamics because
of cage contribution and ball-to-pocket interactions.

GBj =


xjG
yjG
zjG


RG

=

 δjbx
dm
2 + δjby

0


Rj

b1

(2.12)

1.3.2 Balls own rotations Rj
b2, Rj

b3

Each ball rotates in three directions around its own axis. The first rotation is around
(Bj , xj

b3) axis and related to ωjR the ball own rotational speed. The second rotation is
around (Bj , zj

b2) axis and related to βj . This angle is caused by centrifugal forces. The
last rotation is around (Bj , yj

b1) and related to β′j . This angle is caused by gyroscopic
effects. To define these three consecutive rotations, coordinates systems Rj

b2 and Rj
b3 are

introduced as schematized in Figure 2.5. Consequently, ball rotational speed is expressed
by relation (2.17) in ball coordinate system Rj

b1.

Rj
b2 =

{
Bj , xj

b2, y
j
b2, z

j
b2
}

(2.13)

Rj
b3 =

{
Bj , xj

b3, y
j
b3, z

j
b3
}

(2.14)
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Markers definition

βj = (xj
b2,x

j
b3) = (yj

b2,y
j
b3) (2.15)

β′j = (xj
b1,x

j
b2) = (zj

b1,z
j
b2) (2.16)

ωj
R =

ω
j
x

ωjy
ωjz


Rj

b1

=


ωjR cosβj cosβ′j

ωjR sinβj
−ωjR cosβ sinβ′j


Rj

b1

(2.17)

1.3.3 Ball-raceway contacts Rj
km

Figure 2.6 : Contacts orientations

Each ball can have 1, 2, 3 or 4 contact points with races in Ijkm. Thereafter, index k
equal to i or o will refer to inner or outer race, and index m equal to 1 or 2 will refer to
contact side 1 or 2. Coordinates systems Rj

km are introduced to orient each contact and
resulting ellipse on ball j. As schematized in Figure 2.6, in this system, Y jkm defines the
contact normal that faces outwards from ball. Xj

km is directed along major ellipse axis
and Z

j
km along minor ellipse axis.

Rj
km =

{
Ijkm,X

j
km,Y

j
km,Z

j
km

}
(2.18)

For these contacts definitions, we assume that all contact points belong to the same
plan

{
Bj ,xG,y

j
b1
}
. As well, contact angles αjkm can take positive or negative values

between −π/2 and +π/2. By convention, an angle αjkm is positive if it is directed from
yj
b1 axis to Y

j
km axis. Then, a positive angle αjk1 at side 1 corresponds to a contact at

the right side whereas a negative angle αjk1 corresponds to a contact at the left side. The
inverse applies for contact angle αjk2 at side 2.

αjkm = (yj
b1,Y

j
km) (2.19)
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2. Quasi-static model with balls and rings

Consequently, several contact combinations can be modelled. They are associated
to a Contact Configuration (LMCCj) value and summarized in Table 2.1. However,
physically, because of centrifugal forces, a total detachment from outer ring cannot occur.
Then, cases LMCCj = 6 and LMCCj = 12 are not allowed. As well, inner race and
outer race contacts cannot take place on the same side. That is why, case LMCCj = 3 is
allowed if αji1 and αjo2 have same signs and LMCCj = 8 if αji2 and αjo1 have same signs.
Case LMCCj = 10 is allowed if αji1 and αjo1 have opposite signs and case LMCCj = 11
is allowed if αji2 and αjo2 have opposite signs.

LMCCj Contacts
0 I1 I2 O1 O2

1
O1

O2
2 O1 O2
3* I1 O2
4 I1 O1 O2
5 I1 I2 O2
6*
7 I2 O1 O2
8* I2 O1
9 I1 I2 O1

10* I1 O1
11* I2 O2

I1 I2
12** I2

I1

Table 2.1 : Overview of ball-raceway possible contacts

Besides, a deformation δjkm and a film thickness hjkm are defined at each possible
contact point Ijkm. These components are directed along Y

j
km axis. For the sake of

simplicity, we speak about contact when δjkm computed is positive. Then, film thickness
hjkm that separates ball from race is calculated from Hamrock Dowson theory [116], with
a thermal reduction factor from Gupta [101]. On the contrary, when δjkm is equal to zero
or negative, we consider that no contact occurs. Then, δjkm defines the gap between ball
and race whereas film thickness hjkm is set to zero.

δjkm = δjkmY
j
km (2.20)

hj
km = hjkmY

j
km (2.21)
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Geometric equations

2 Geometric equations

Figure 2.7 : Curvature centres at inner and outer ring

In this study, rings are supposed to be rigid, only local deformations at ball-race
contacts are considered. As well, ring curvature centers are supposed to be fixed in inner
ring coordinate system Ri1 and to remain in (Bj ,xG,y

j
b1) plan related to each ball. Then,

curvature centers displacement along zj
b1 axis is neglected.

Geometric equations are based on geometric closures on BjCj
km. These vectors define

the distance between raceway curvature center and ball center as schematized on Figure
2.7. They are expressed by relation (2.22) where δjkm is the ball displacement induced by
contact point deformation, and hjkm is the corresponding lubricant film thickness.

|BjCj
km| =GEjkm = (fk −0.5)D+ δjkm−hjkmwith k = o, i and m= 1,2 (2.22)

To cope with projections on xG axis when αjkm becomes negative, λ coefficients have also
been introduced. They are equal to ±1 and expressed in (2.23), (2.24), (2.25) and (2.26).
They are based on sign function such that sgn(x) = x

|x| .

λjo =
 sgn(FX) if GEjo1 sinαjo1 +GEjo2 sinαjo2 = 0
sgn(GEjo1 sinαjo1 +GEjo2 sinαjo2) otherwise

(2.23)

λji =
 sgn(FX) if GEji1 sinαji1 +GEji2 sinαji2 = 0
sgn(GEji1 sinαji1 +GEji2 sinαji2) otherwise

(2.24)

λjo2 =
 sgn(FX) if GEjo2 sinαjo2 = 0
sgn(GEjo2 sinαjo2) otherwise

(2.25)

λji1 =
 sgn(FX) if GEji1 sinαji1 = 0
sgn(GEji1 sinαji1) otherwise

(2.26)
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2. Quasi-static model with balls and rings

2.1 Geometric closure on outer ring
First geometric closure involves that outer ring does not move :

Cj
o1C

j
o2 = goxG (2.27)

In this equation, we introduce ball center Bj in order to get functions of BjCj
om vectors:

Cj
o1B

j +BjCj
o2 = goxG (2.28)

Finally, we project relation (2.28) on xG and yjb1 axis to obtain two geometric equations
(2.29), (2.30) on the outer ring.

f jORx =GEjo1 sinαjo1 +GEjo2 sinαjo2 −goλ
j
o = 0 (2.29)

f jORy =GEjo1 cosαjo1 −GEjo2 cosαjo2 = 0 (2.30)

2.2 Geometric closure on inner ring
Second geometric closure involves that inner ring rotates :

Cj
i1C

j
i2 = gixi1 (2.31)

Similarly, we introduce ball center Bj in order to get functions of BjCj
im vectors:

Cj
i1B

j +BjCj
i2 = gixi1 (2.32)

We express xi1 vector in ball coordinate system Rj
b1:

xi1 =


cosθy cosθz

cosψj sinθz − sinψj sinθy cosθz
−sinψj sinθz − cosψj sinθy cosθz


Rj

b1

(2.33)

Finally, we project relation (2.32) on xG and yjb1 axis to obtain two geometric equations
(2.34), (2.35) on the inner ring.

f jIRx =GEji1 sinαji1 +GEji2 sinαji2 −giλ
j
i cosθz cosθy = 0 (2.34)

f jIRy = −GEji1 cosαji1 +GEji2 cosαji2 −giλ
j
i (cosψj sinθz − sinψj sinθy cosθz) = 0 (2.35)
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Geometric equations

2.3 Geometric closure on inner and outer ring
To consider relative displacements between inner and outer ring, we make a geometric
closure that uses a curvature center on each ring and each side:

Cj
i1B

j +BjCj
o2 +Cj

o2C
j ini
i1 = Cj

i1Gi1 +Gi1G+GCj ini
i1 (2.36)

Then, we detail each component of equation (2.36):

Cj
i1B

j +BjCj
o2 =GEji1


sinαji1

−cosαji1
0


Rj

b

+GEjo2


sinαjo2

−cosαjo2
0


Rj

b

(2.37)

Cj
o2C

j ini
i1 =


−(go

2 λ
j
o2 + gi

2 λ
j
i1)

Acosαf
0


Rj

b

, with A= |Cj
o2C

j ini
i1 | = (fo+fi−1)D (2.38)

Cj
i1Gi1 =


gi
2 λ

j
i

−(dm
2 +(fi−0.5)D cosαf )cosψj

−(dm
2 +(fi−0.5)D cosαf )sinψj


Ri1

=


−R1

−R2 cosψj

−R2 sinψj


Ri1

=


−R1 cosθy cosθz +R2 cosψj cosθy sinθz −R2 sinψj sinθy

−R1 sinθz −R2 cosψj cosθz
R1 sinθy cosθz −R2 cosψj sinθz sinθy −R2 sinψj cosθy


RG

(2.39)

Gi1G =


−δx
−δy
−δz


RG

(2.40)

GCj ini
i1 =


R1

R2 cosψj

R2 sinψj


RG

(2.41)

Finally, we add these vectors and project the sum on xG and yj
b1 to get geometric

equations (2.42), (2.43) on inner and outer rings.

f jIRORx = −GEji1 sinαji1 −GEjo2 sinαjo2 +
(
go
2 λ

j
o2 + gi

2 λ
j
i1

)
−δx+R1 −R1 cosθy cosθz +R2 cosψj cosθy sinθz −R2 sinψj sinθy

(2.42)

f jIRORy =GEji1 cosαji1 +GEjo2 cosαjo2 +
[
−δy −R1 sinθz −R2 cosψj cosθz

]
cosψj

−Acosαf +
[
−δz +R1 sinθy cosθz −R2 cosψj sinθy sinθz −R2 sinψj cosθy

]
sinψj +R2

(2.43)

55



2. Quasi-static model with balls and rings

2.4 Choice of equations depending on rings truncations
Depending on bearing type and especially depending on ring truncations, certain races
will never get more than one contact point. In such a case, geometric equations presented
above are no longer valid. That is why, for each bearing we distinguish four possible
configurations that are function of ring truncations. Then, depending on the bearing
studied, a set of geometric equations adapted to truncations is applied. Description of
these configurations and corresponding equations are summarized in Table 2.2.
Note that configuration 0 defines DGBB. Configuration 2 defines ACBB that are mostly
used in high speed applications. Configuration 3 describes bearings less frequently used
like those present in wind turbines or tower cranes.

Configuration 0 1 2 3

Truncations
gi = go = 0 gi = 0, go ̸= 0 gi ̸= 0, go = 0 gi ̸= 0, go ̸= 0

No truncation OR truncated IR truncated OR+IR truncated

Contacts
0-1 point on IR 0-1 point on IR 0-2 points on IR 0-2 points on IR
1 point on OR 1-2 points on OR 1 point on OR 1-2 points on OR

LMCCj 1, 3, 8, 10 or 11
1, 2, 3, 4, 7, 1, 3, 5, 8, 1, 2, 3, 4, 5, 7, 8,
8, 10 or 11 9, 10 or 11 9, 10 or 11

αji2 = δji2 = 0 αji2 = δji2 = 0 IR along xG, yj
b1 IR along xG, yj

b1
Geometric αjo1 = δjo1 = 0 OR along xG, yj

b1 αjo1 = δjo1 = 0 OR along xG, yj
b1

equations IR - OR IR - OR IR - OR IR - OR
along xG, yj

b1 along xG, yj
b1 along xG, yj

b1 along xG, yj
b1

Table 2.2 : Bearing configurations and corresponding equations

3 Ball kinematic
Ball kinematic is directly related to interactions with inner and outer race, especially
with ωi and ωo, the relative angular velocity of inner and outer race. The operating pitch
diameter dm, represented in Figure 2.8, is defined by :

dm = dm+2[(fo−0.5)D+ δo2] cosαo2 −2(fo−0.5)D cosαf (2.44)

At each ball-race contact, Rk defines the radius of deformed pressure surface in plane
of major axis of pressure ellipse. It is calculated by averaging radii of balls and raceway
curvatures:

Rk = 2fkD
2fk +1 with k = i,o (2.45)
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Ball kinematic

Is this way, we can geometrically compute rkm, the distance between ball center Bj

and a point Xkm on surface ellipse. Note that for convenience, exponent j referring to
ball index is omitted in this section.

rkm =
√
R2
k −X

2
km−

√
R2
k −a2

km+
√(

D

2

)2
−a2

km with k = i,o and m= 1,2 (2.46)

Figure 2.8 : Contact parameters on outer race, side 2

57



2. Quasi-static model with balls and rings

3.1 Detailed computation for outer race, side 2
On contact ellipse located at the outer race, side 2, because of outer race relative rotation,
each point (Xo2,Zo2) on ball j has the translational velocity Vb/o2(Io2) :

Vb/o2(Io2) = Vb/o2(Gi1)+Io2Gi1 ∧Ωb/o2

= 0−
(dm

2 yj
b1 + ro2Y o2

)
∧−ωoxG

Vb/o2(Io2) =
(

− dm
2 ωo− ro2ωo cosαo2

)
Zo2

(2.47)

As well, each point (Xo2,Zo2) on ball j has the translational velocity Vb(Io2) due to
ball self-rotation:

Vb(Io2) = Vb(Bj)+Io2B
j ∧ωR

= 0− ro2Y o2 ∧ωRxj
b3

Vb(Io2) =


−ro2ωz

0
ro2(ωx cosαo2 +ωy sinαo2)


Ro2

(2.48)

Then, at side 2, VXo2 and VZo2, ball velocities relative to outer race in Xo2 and Zo2
directions, are expressed by :

VXo2 =
(
Vb/o2(Io2)+Vb(Io2)

)
.Xo2 = −ro2ωz (2.49)

VZo2 =
(
Vb/o2(Io2)+Vb(Io2)

)
.Zo2 = −dm

2 ωo− ro2ωo cosαo2 + ro2(ωx cosαo2 +ωy sinαo2)
(2.50)

Similarly, each point (Xo2,Zo2) on ball j has the rotational speed Ωb/o2 due to outer
race relative rotation and Ωb due to ball self-rotation.

Ωb/o2 = −ωoxG =


−ωo cosαo2
ωo sinαo2

0


Ro2

(2.51)

Ωb = ωrx
j
b3 =


ωx cosαo2 +ωy sinαo2
−ωx sinαo2 +ωy cosαo2

ωz


Ro2

(2.52)

Then, ball-race rolling speed ωRo2 and spinning speed ωSo2 are calculated:

ωRo2 =
(
Ωb/o2 +Ωb

)
.Xo2 = −ωo cosαo2 +ωx cosαo2 +ωy sinαo2 (2.53)

ωSo2 =
(
Ωb/o2 +Ωb

)
.Y o2 = ωo sinαo2 −ωx sinαo2 +ωy cosαo2 (2.54)
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Ball kinematic

3.2 Kinematic synthesis at 4 contacts
• Relative speeds on outer race, side 2

In above kinematic relations, we can replace ball-self rotations ωx, ωy, ωz by their de-
veloped expressions (2.17). Then, ball kinematics at outer race, side 2 can be expressed
by:

VXo2 = ωR ro2 cosβ sinβ′ (2.55)

VZo2 = −dmωo
2 + ro2ωo

[
−cosαo2 + ωR

ωo

(
cosβ cosβ′ cosαo2 +sinβ sinαo2

)]
(2.56)

ωRo2 = ωo

[
−cosαo2 + ωR

ωo

(
cosβ cosβ′ cosαo2 +sinβ sinαo2

)]
(2.57)

ωSo2 = −ωo
[
−sinαo2 + ωR

ωo

(
cosβ cosβ′ sinαo2 − sinβ cosαo2

)]
(2.58)

Using different projections, same procedure is applied at the three other ball-race
contacts to compute translational velocities, spinning and rolling speeds. Corresponding
expressions are synthesized below by relations (2.59) to (2.70).

• Relative speeds on outer race, side 1

VXo1 = ωR ro1 cosβ sinβ′ (2.59)

VZo1 = −dmωo
2 + ro1ωo

[
−cosαo1 + ωR

ωo

(
cosβ cosβ′ cosαo1 − sinβ sinαo1

)]
(2.60)

ωRo1 = ωo

[
−cosαo1 + ωR

ωo

(
cosβ cosβ′ cosαo1 − sinβ sinαo1

)]
(2.61)

ωSo1 = −ωo
[
sinαo1 − ωR

ωo

(
cosβ cosβ′ sinαo1 +sinβ cosαo1

)]
(2.62)

• Relative speeds on inner race, side 1

VXi1 = ωR ri1 cosβ sinβ′ (2.63)

VZi1 = −dmωi
2 + ri1ωi

[
cosαi1 − ωR

ωi

(
cosβ cosβ′ cosαi1 +sinβ sinαi1

)]
(2.64)

ωRi1 = ωi

[
cosαi1 − ωR

ωi

(
cosβ cosβ′ cosαi1 +sinβ sinαi1

)]
(2.65)

ωSi1 = −ωi
[
sinαi1 + ωR

ωi

(
−cosβ cosβ′ sinαi1 +sinβ cosαi1

)]
(2.66)

• Relative speeds on inner race, side 2

VXi2 = ωR ri2 cosβ sinβ′ (2.67)

VZi2 = −dmωi
2 + ri2ωi

[
cosαi2 − ωR

ωi

(
cosβ cosβ′ cosαi2 − sinβ sinαi2

)]
(2.68)

ωRi2 = ωi

[
cosαi2 − ωR

ωi

(
cosβ cosβ′ cosαi2 − sinβ sinαi2

)]
(2.69)

ωSi2 = −ωi
[
−sinαi2 + ωR

ωi

(
cosβ cosβ′ sinαi2 +sinβ cosαi2

)]
(2.70)
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2. Quasi-static model with balls and rings

Note that these kinematic results are different than those presented in literature by
Jones [144] or Harris [121]. It is because we define ball motion in a direct coordinate
system whereas Jones and Harris work in an indirect one.

3.3 Point of pure rolling

When ball and race translational velocities are equal, pure rolling occurs at the effective
rolling radius r′

km:

Vb(Ikm) = Vb/km(Ikm) (2.71)

Consequently, kinematic relations (2.72) to (2.75) applies.

−ωi cosαi1
(

dm
2cosαi1

− r′
i1

)
= r′

i1 (ωx cosαi1 +ωy sinαi1) (2.72)

−ωi cosαi2
(

dm
2cosαi2

− r′
i2

)
= r′

i2 (ωx cosαi2 −ωy sinαi2) (2.73)

−ωo cosαo1
(

dm
2cosαo1

− r′
o1

)
= −r′

o1 (ωx cosαo1 −ωy sinαo1) (2.74)

−ωo cosαo2
(

dm
2cosαo2

− r′
o2

)
= −r′

o2 (ωx cosαo2 +ωy sinαo2) (2.75)

Such equations can be written in a different way as in (2.76) to (2.83). However, in this
quasi-static problem, r′

i1 and r′
o2 are the unknowns of the Newton-Raphson scheme. Then,

ξ1 and ξ2 are computed with relations (2.76) and (2.79) and r′
i2 and r′

o1 are calculated
with relations (2.81) and (2.82). In these relations, r′

km define the effective rolling radius
which is the distance between ball center and a point of pure rolling. This point is not
necessarily located on surface ellipse, especially if ball-race sliding occurs. r′

km is not to
be confused with rkm, the distance between ball center Bj and a point Xkm on surface
ellipse.

ξ1 = ωR
ωi

=
− dm

2r′
i1

+cosαi1
cosβ cosβ′ cosαi1 +sinβ sinαi1

(2.76)

ξ1 = ωR
ωi

=
− dm

2r′
i2

+cosαi2
cosβ cosβ′ cosαi2 − sinβ sinαi2

(2.77)

ξ2 = ωR
ωo

=
dm
2r′

o1
+cosαo1

cosβ cosβ′ cosαo1 − sinβ sinαo1
(2.78)

ξ2 = ωR
ωo

=
dm
2r′

o2
+cosαo2

cosβ cosβ′ cosαo2 +sinβ sinαo2
(2.79)
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r′
i1 =

−dm
2

ξ1 (cosβ cosβ′ cosαi1 +sinβ sinαi1)− cosαi1
(2.80)

r′
i2 =

−dm
2

ξ1 (cosβ cosβ′ cosαi2 − sinβ sinαi2)− cosαi2
(2.81)

r′
o1 =

dm
2

ξ2 (cosβ cosβ′ cosαo1 − sinβ sinαo1)− cosαo1
(2.82)

r′
o2 =

dm
2

ξ2 (cosβ cosβ′ cosαo2 +sinβ sinαo2)− cosαo2
(2.83)

From inner and outer race rotational speeds Ωi and Ωo, and from above kinematic rela-
tions, we can compute races relative speeds ωi and ωo, ball precession speed ωm and ball
self-rotational speed ωR. Is this way, all ball kinematics is defined.

ωo = ξ1
ξ2 − ξ1

(Ωi−Ωo) (2.84)

ωi = (Ωi−Ωo)+ωo (2.85)
ωm = Ωo−ωo (2.86)

ωR = (Ωi−Ωo)ξ2ξ1
(ξ2 − ξ1) (2.87)

4 Forces definition

4.1 External forces on the inner ring
Inner ring is subject to external forces caused by many factors such as preloads or shaft
misalignments. Corresponding torsor T j

ext/IR is defined at bearing center G in global
coordinate system RG.

T j
ext/IR =

 −FX −FY −FZ
0 −MY −MZ


RG

(2.88)

4.2 Forces due to ball motion
Ball self-rotation and ball orbital motion result in inertia and drag forces gathered in
torsor T j

/b defined at ball center Bj in ball coordinate system Rj
b1.

T j
/b =

 0 F jc F jdr

0 M j
GY M j

GZ


Rj

b1

(2.89)

Indeed, because of their orbital motion, each ball of mass mb, is subject to a centrifugal
force F jc directed along the outer normal yj

b1:

F jc =mb
dm
2 (ωjm)2 (2.90)
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2. Quasi-static model with balls and rings

As well, because of their self-rotation, each ball of inertia momentum Ib, is subject to a
gyroscopic momentum M j

GY along yj
b1 and M j

GZ along zj
b1:

M j
GY = −IbωjRω

j
m cosβj sinβ′j (2.91)

M j
GZ = −IbωjRω

j
m sinβj (2.92)

Similarly, because of their orbital motion, balls move throughout lubricant in ortho-
radial direction zj

b1. This creates an oleodynamic force or drag force F jdr in the opposite
direction. This force can be expressed by relation (2.93) with a simple drag model defined
in SI units. From experimental results, Harris’ [121] developped a comparable relation
expressed in (2.94) in anglo-saxon units (lb, inch, s).

F jdr = −1
2 Cd ρm

(πD2

4
)(ωjmdm

2
)2

(2.93)

F jdr = −CdπρmD
2(ωjmdm)1.95

32g (2.94)

In both expressions, Cd is the drag coefficient set by BB20 user. Its value varies with
Reynolds number such as reported by Schlichting [229]. As well, ρm is air/oil lubricant
mixture density. If foil, the oil fraction in the mixture, is known, ρm can be calculated by
relation (2.95). Otherwise, if Wlub, the lubricant flow, is known, XCAV, the oil percentage
in the mixture, can be calculated from Parker [202] relation defined in (2.96). In this
expression XCAV is in percent, Wlub in cm3/min, dm in mm and Ni in rpm.

ρm = foil ρoil+(1−foil)ρair (2.95)

XCAV = 100ρm = 107 (Wlub)0.37

Ni d1.7
m

(2.96)

4.3 Coulomb’s friction
At each ball-race contact, from the unknown δjkm, Hertzian theory is applied to compute
contact parameters such as normal force Qjkm, contact stiffness K, pressure P jkm or semi-
major and semi-minor axes of ellipse ajkm, bjkm.

Qjkm =K (δjkm)
3
2 (2.97)

Friction forces also act at each contact, they are defined by Coulomb’s model presented
in Jones’ study [144]. In this model, macro-sliding due to ball-race kinematics is consid-
ered. Shear stress that depends on contact pressure, is integrated on each point of ellipse
surface and corresponding forces are projected along each axis. Especially, as expressed
in (2.99), F jXkm and M j

Rkm correspond to friction along X
j
km, F jZkm and M j

Zkm along
Z
j
km and M j

Skm along Y
j
km. Regarding directions, forces of races on balls are opposed to

ball-race velocity at contact such as schematised on Figures 2.9 and 2.10. Consequently,
each ball-race contact is represented by the torsor T j

km/b defined at ball center Bj , in
ball-race contact coordinate system Rj

km.
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Figure 2.9 : Contact forces acting on each ball

T j
km/b =

 F jXkm −Qjkm F jZkm

M j
Rkm M j

Skm M j
Zkm


Rj

km

(2.98)

F jXkm = 3Qjkmµ
2π

∫ 1

−1

∫ √
1−q2

−
√

1−q2

√
1− q2 − t2 sinφ dtdq

F jZkm = 3Qjkmµ
2π

∫ 1

−1

∫ √
1−q2

−
√

1−q2

√
1− q2 − t2 cosφ dtdq

M j
Rkm = 3Qjkmµ

2π

∫ 1

−1

∫ √
1−q2

−
√

1−q2
r
√

1− q2 − t2 cosφ dtdq

M j
Skm = 3Qjkmµa

2π

∫ 1

−1

∫ √
1−q2

−
√

1−q2

√
1− q2 − t2

√
q2 + t2

k2 cos(φ− θ) dtdq

M j
Zkm = 3Qjkmµ

2π

∫ 1

−1

∫ √
1−q2

−
√

1−q2
r
√

1− q2 − t2 sinφ dtdq

(2.99)

with

q = X

a
, t= Z

b
, k = a

b
, tanθ =

(
Z

X

)
=
(
t

kq

)

tanφ=
 ρωjS sinθ+V j

X

−ρωjS cosθ−V j
Z

=
 ZωjS +V ′j

X

−XωjS −V j
Z

=


t
k + V j

X

aωj
S

−q− V j
Z

aωj
S


(2.100)
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2. Quasi-static model with balls and rings

Figure 2.10 : Contact momentums acting on each ball

Figure 2.11 : Coulomb’s parameters definition

Note that in previous BB20 (version 4), cosφ, sinφ and cos(φ− θ) were calculated
by trigonometric relations. However, we noticed that these relations, just like arctan
function, were valid on ] − π

2 ; π2 [ interval. That is why, in this new version, φ and θ are
calculated by arctan2 function which is valid on ]−π;π[ interval.

As well, in BB20V4, F jXkm, F jZkm and M j
Rkm were projected in an opposite direction

than in BB20V5. Is this way torsor T j
km/b was defined like in Jones’ model. However, to

have opposite friction forces and sliding speeds, torsor defined in (2.98) is according to us
the correct one.
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Friction forces computation

5 Friction forces computation

5.1 Analytic expressions
Integrals (2.99) must be solved numerically. To begin, we express all of them by the
general form (2.101). Then, variable change x = ax and z = bz̃

√
1−x2 is applied to get

relation (2.102). To solve this last one, different methods with more or less advantages
can be used.

I =
∫ a

−a

∫ b
√

1−( x
a )2

−b
√

1−( x
a )2

√
1−

(x
a

)2
−
(z
b

)2
f(x,z) dzdx (2.101)

I = ab

∫ 1

−1
(1−x2)

∫ 1

−1

√
1− z̃2 f(ax,bz̃

√
1−x2) dz̃dx (2.102)

5.1.1 Gupta’s method

To solve such integrals, Gupta [91] proposed to apply the polar variable change x= ar cosθ
and z = br sinθ, in order to get relation (2.103), also written in (2.104).

I = ab

1∫
0
r
√

1− r2
2π∫
0
f (ar cosθ,br sinθ)dθdr (2.103)

I = ab

1∫
0

√
1− r2F (r)dr with F (r) = r

2π∫
0
f (ar cosθ,br sinθ)dθ (2.104)

To evaluate the inner integral F (r), midpoint method is applied. It consists in dividing
integration domain into 2m equal sections. Integral of each section [c;d] is approximated
by a rectangle centered in the middle as expressed by relation (2.105). The whole integral
is obtained by adding all of these contributions.

d∫
c

f(x)dx= (d− c)f
(c+d

2
)

(2.105)

Brought back to our problem, F (r) integral is partitioned into 2m rectangles from 0 to
2π, and midpoint method is applied to get relation (2.106). Geometrically, m represents
the number of equally spaced points on a circle of radius r.

F (r) ≈ πr

m

2m∑
i=1

f
(
ar cos

(πi
m

)
, br sin

(πi
m

))
(2.106)

Regarding outer integral, by its form, it can be approximated by Gauss-Chebyshev
quadrature but limited to [0;1] interval instead of [−1;1]. Then, expression (2.107) is
obtained where wj and rj are weights and roots related to this quadrature. Corresponding
values for n= 5 are synthesized in Table 2.3.

1∫
0

√
1− r2F (r)dr ≈

n∑
j=1

wjF (rj) (2.107)
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2. Quasi-static model with balls and rings

j rj wj

1 0.04455946723 0.1123147489
2 0.2186940824 0.2209876009
3 0.4743109864 0.2392785529
4 0.7358891185 0.1615816193
5 0.929067427 0.05123564139

Table 2.3 : Roots and weights for n= 5

Finally, from inner and outer integral estimations, the initial double integral I is expressed
by the following double summation:

I ≈ ab

n∑
j=1

wj πrj
m

2m∑
i=1

f
(
arj cos

(πi
m

)
, brj sin

(πi
m

)) (2.108)

Gupta estimated that m= 72 and n= 5 were adequate to get a good accuracy. However,
if this method is time effective, it is also less robust because contact ellipse is meshed with
equal elements. Indeed, if mesh can be improved by increasing m or n values, all elements
are fixed at the same size. This can cause important integral computation errors when
points of zero sliding are met because it causes discontinuous derivatives.

5.1.2 Gauss-Legendre’s method

Development of this method was initially inspired by Legrand’s work [159] implemented
in RBL4 code. However, study of contact ellipses led us to use different Gaussian quadra-
tures and to define different partitioning with other directions and with computations
adapted to BB20 coordinate systems and kinematics.
To know which quadrature using in order to integrate functions defined in (2.99), we stud-
ied evolution of these functions over contact ellipses. As for that, asymptotic expansions
of integrands were calculated when ellipse coordinates (x,z) gets closer to values that
cancel sliding velocities (zωjS +V j

X) and (−xωjS −V j
Z). Asymptotic expansions obtained

presented finite values. Sliding velocities quotient that corresponds to tanφ function were
also plotted for the bearing defined in Table 2.4. For example, tanφ function obtained for
first ball is reported in Figure 2.12. All results confirmed that tanφ has finite values. This
indicates that integrands do not present singularities over contact ellipses. Then, classical
Gauss-Legendre quadrature is suitable to integrate these functions. This quadrature has
the advantage to refine mesh at integration limits −1 and 1.

In this problem, to compute accurately integrals (2.99), mesh should be refined in
regions where integrands vary significantly. To identify these regions, integrands of F jXkm,
F jZkm, M j

Skm, M j
Rkm, M j

Zkm and corresponding sliding speeds were plotted. Analysis of
integrands showed important variations along x when sign of (−xωjS −V j

Z) changes and
along z when sign of (zωjS +V j

X) changes. This is noticeable if we compare evolution of
sliding lines of Figure 2.13, with F jXkm integrands of Figure 2.14 and with sliding speeds
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of Figure 2.15. This phenomena indicates that zero sliding lines and instantaneous centre
of rotation will have to be identified to partition contact ellipses. Then, integrals will
be calculated on each portion with Gauss-Legendre quadrature that will improve mesh
density in regions where integrand vary significantly. Is this way, discontinuities and errors
sources found with Gupta’s method will be avoided.

N D (m) dm (m) Jd (mm) fi fo gi go FX (N) FY (N) Ωi (rpm)
20 0.019 0.15 0.13 0.52 0.51 ̸= 0 0 15 000 14 000 17 500

Table 2.4 : Bearing dimensions and working conditions

Figure 2.12 : tanφ functions over contact ellipses

Figure 2.13 : Sliding lines on contact ellipses

67



2. Quasi-static model with balls and rings

Figure 2.14 : FXkm integrands over contact ellipses

Figure 2.15 : Sliding speeds −xωjS −V j
Z and zωjS +V j

X over contact ellipses
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To begin integral computation, we seek on contact ellipse, for which abscissas x,
transverse speeds become equal to zero. According to kinematic relations, VZkm is a
function of x such that:

VZkm(x) = γ1 + rkmγ2 with rkm =
√
R2
k −x2 +γ3 (2.109)

and γ1 = −dm
2 ωk (2.110)

γ2 =



ωo
[
−cosαo2 + ωR

ωo
(cosβ cosβ′ cosαo2 +sinβ sinαo2)

]
if km= o2

ωo
[
−cosαo1 + ωR

ωo
(cosβ cosβ′ cosαo1 − sinβ sinαo1)

]
if km= o1

ωi
[

cosαi1 − ωR
ωi

(cosβ cosβ′ cosαi1 +sinβ sinαi1)
]

if km= i1
ωi
[

cosαi2 − ωR
ωi

(cosβ cosβ′ cosαi2 − sinβ sinαi2)
]

if km= i2

(2.111)

γ3 = −
√
R2
k −a2

km+
√(

D

2

)2
−a2

km (2.112)

Consequently, equation (2.113), that defines zero transverse speed, has two solutions x1
and x2 expressed in (2.114).

−VZkm(x)−xωskm = 0 (2.113)

x1,2 =
−ωskm(γ1 +γ2γ3)±γ2

√
R2
k(ω2

skm+γ2
2)− (γ1 +γ2γ3)2

ω2
skm+γ2

2
(2.114)

We define x1,2 = x1,2/a and consider that a solution x1,2 is correct, that is to say belongs
to contact ellipse, if x2

1,2 ≤ 1. In such a case, we set:

q1 =max
(

−1,min(x1,x2)
)

(2.115)

q2 =min
(
max(x1,x2),1

)
(2.116)

Then, we partition contact ellipse into 1, 2 or 3 zones located between zero sliding abscissas
x1 and x2:

zone 1 x ∈ [v1,1,v1,2] with v1,1 = −1 v1,2 = q1 (2.117)
zone 2 x ∈ [v2,1,v2,2] with v2,1 = q1 v2,2 = q2 (2.118)
zone 3 x ∈ [v3,1,v3,2] with v3,1 = q2 v3,2 = 1 (2.119)

Mathematically, by partitioning the integral along x, expression (2.102) of double integral
I becomes:

I = ab

3∑
k=1


vk,2∫
vk,1

(1−x2)
∫ 1

−1

√
1− z̃2 f

(
ax,bz̃

√
1−x2

)
dz̃dx

 (2.120)
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Regarding outer integral, variable change v = x and u= z̃ gives:

J =
v2∫
v1

F (v)dv with F (v) = (1−v2)
1∫

−1

√
1−u2 f

(
av,bu

√
1−v2

)
du (2.121)

To apply Gaussian quadrature, J integral must be limited to [−1;1] interval. That is why
variable change s= 2v−v1−v2

v2−v1
is applied and we obtain :

J = v2 −v1
2

1∫
−1

G(s)ds with G(s) = F

(
(v2 −v1)s+v2 +v1

2

)
(2.122)

This integral can be approximated by Gauss-Legendre quadrature such that:

J ≈ v2 −v1
2

Nk∑
j=1

wjG(sj) (2.123)

In this expression, wj and sj are weights and roots of the quadrature. They are calculated
numerically for a given quadrature order Nk. This order corresponds to the number of
sections to mesh contact ellipse in each zone k. It is fixed between 2 and 30 and calculated
in (2.124) such that total number of sections is close to Nt, the value specified by user.

Nk =

max
(

2, Nt(vk,2−vk,1)
2

)
if
(
vk,2 −vk,1

)
> 0

0 if
(
vk,2 −vk,1

)
≤ 0

(2.124)

To compute inner integral, we seek in x1 or x2, if longitudinal speed (zωs+VX) gets
equal to zero. In such a case, an instantaneous centre of rotation (ICR) is present on
contact ellipse, partitioning along z direction is necessary. This is especially visible on
Figure 2.14, for inner ring side 1, where important integrand variations occurs along both
x and z directions when approaching the ICR.
To compute ordinates z1 or z2, respectively related to x1 or x2, we apply relation (2.125).

z1,2 = −VXkm(x1,2)
ωskm(x1,2) (2.125)

Then, we define z1,2 = z1,2/b and consider that an ICR belongs to contact ellipse if
x2

1,2 + z2
1,2 ≤ 1. In such a case, we set relations (2.126), (2.127), otherwise we set p1 = −1

and/or p2 = 1 to do not partition along z.

p1 =max
(

−1,min(z1, z2)
)

(2.126)

p2 =min
(
max(z1, z2),1

)
(2.127)

Then, we divide contact ellipse into 1, 2 or 3 zones located between zero sliding
ordinates z1 and z2:

zone 1 z ∈ [u1,1,u1,2] with u1,1 = −1 u1,2 = p1 (2.128)
zone 2 z ∈ [u2,1,u2,2] with u2,1 = p1 u2,2 = p2 (2.129)
zone 3 z ∈ [u3,1,u3,2] with u3,1 = p2 u3,2 = 1 (2.130)
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By partitioning inner integral along z, F (v) expression (2.121) becomes:

F (v) = (1−v2)
3∑

k′=1


uk′,2∫
uk′,1

√
1−u2f

(
av,bu

√
1−v2

)
du

 (2.131)

Again, to limit integral to [−1;1] interval, variable change s′ = 2u−u1−u2
u2−u1

is applied
and we obtain :

F (v) = (1−v2)
3∑

k′=1

(
uk′,2 −uk′,1

2

1∫
−1

H(s′) ds′
)

with H(s′) =
√

1−u2 f
(
av,bu

√
1−v2

)
and u=

s′(uk′,2 −uk′,1)+uk′,2 +uk′,1
2

(2.132)

This integral can be approximated by Gauss-Legendre quadrature such that:

F (v) ≈ (1−v2)
3∑

k′=1

(
uk′,2 −uk′,1

2

Nk′∑
j′=1

wj′H(sj′)
)

(2.133)

Here again, wj′ and sj′ are weights and roots of the quadrature calculated numerically
for a given quadrature order Nk′ defined in (2.124). Note also that F (v) defines a pressure
density that vary significantly in regions around vk,1, vk,2, uk′,1 and uk′,2. However, with
this method, finer mesh is modeled at integral limits, then in these required regions.

Finally, from above ellipse partitions and integrals approximations, the initial double
integral I can be expressed by the following quadruple summation:

I = ab

3∑
k=1

vk,2 −vk,1
2


Nk∑
j=1

(
wj(1−v2

j )
( 3∑
k′=1

uk′,2 −uk′,1
2

Nk′∑
j′=1

wj′H(sj′)
))

with H(sj′) =
√

1−u2
j′ f

(
avj , buj′

√
1−v2

j

)
and vj = (vk,2 −vk,1)sj +vk,2 +vk,1

2 ; uj′ =
(uk′,2 −uk′,1)sj′ +uk′,2 +uk′,1

2

(2.134)

5.1.3 Monte-Carlo’s method

To compute a double integral, Monte-Carlo’s method generates NMC random points
(xi,yj) over the integration domain [a,b] × [c,d]. Then, integrand f is evaluated in each
point and total integral is estimated by summing all these evaluations f(xi,yj) and by
multiplying it by the ratio domain area/number of points, such as defined in relation
(2.135).
Brought back to our problem, integral I, defined in (2.101), can be approximated by ex-
pression (2.136). This method is easy to program and gives very accurate results without
meshing problems found with previous methods. However, to avoid important computa-
tional errors, lot of points NMC are required. Then, f(xi,yj) must be evaluated many
times which is very time consuming.
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I =
∫ d

c

∫ b(y)

a(y)
f(x,y)dxdy ≈ (d− c)

NMC

∑
i,j

(b(yj)−a(yj))f(xi,yj) (2.135)

I ≈ 4ab
NMC

∑
i,j

√
1−

(xi
a

)2
√

1−
(xi
a

)2
−
(zj
b

)2
f(xi, zj) (2.136)

5.2 Validation
5.2.1 Friction without spinning or transverse sliding

• Analytic solutions

To validate integration methods, we first study a case without spinning ωjSkm or trans-
verse sliding V j

Xkm. In such a case, friction forces F jXkm, M j
Zkm, M j

Skm are equal to zero.
Pure longitudinal sliding V j

Zkm occurs whereas βj , β′j angles and gyroscopic momentums
are negligible. As illustrated on Figure 2.16, on contact ellipse, sliding speeds get equal to
zero in a maximum of two points located in c1 and c2 along X axis. On each side of these
points, directions of longitudinal speed V j

Zkm or friction force F jZkm are opposite. That
is why ellipse can be partitioned in three zones and forces can be expressed by relations
(2.138) and (2.139). After computation, analytic solutions (2.140), (2.141) on F jZkm and
M j
Rkm are obtained.

F jXkm =M j
Zkm =M j

Skm = 0 (2.137)

F jZkm = 3Qjkmµ
2π

3∑
k=1

±
(∫ v2,k

v1,k

∫ √
1−q2

−
√

1−q2

√
1− q2 − t2 sign(V j

Z0) dtdq
)

with


v1,1 = −1 v2,1 = c1

v1,2 = c1 v2,2 = c2

v1,3 = c2 v2,3 = 1

(2.138)

M j
Rkm = 3Qjkmµ

2π

∫ 1

−1

∫ √
1−q2

−
√

1−q2
rkm dF jZkm (2.139)

F jZkm =Qjkmµ
(
1− 3

2(c2 − c1)+ 1
2(c32 − c31)

)
sign(V j

Z0) (2.140)

M j
Rkm = F jZkm

[√(D
2
)2

−a2 −
√
R2
k −a2

]
+ 3Qjkmµ

4 Rk sign(VZ0)[
1
2

cos3λ3 − c2 cos3λ2 + c1 cos3λ1
sin2λ3

+(cosλ3 − c2 cosλ2 + c1 cosλ1 + λ3 −λ2 +λ1
sinλ3

)(1− 1
4sin2λ3

)
]

with sinλ1 = ac1
Rk

; sinλ2 = ac2
Rk

; sinλ3 = a

Rk
(2.141)
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Figure 2.16 : Sliding speed V j
Zkm and friction force F jZkm without spinning or transverse

sliding

• Methods comparison

To get a numerical solution with pure transversal sliding, bearing presented in Table 2.4
is reused excepted that pure axial load FX = 150N is applied and that friction coefficient
is divided by 10. Under these conditions, BB20 quasi-static code converges to a solution
with all balls identicals and with sliding lines distribution of Figure 2.17.

Figure 2.17 : Sliding lines on contact ellipses

This test case has been run 3 times with friction forces calculated either by Gupta,
Gauss-Legendre or Monte-Carlo method. We also ran this test case with analytical so-
lution. However, system diverged because during first iterations, pure transversal sliding
does not occur. Then this simplified model is not appropriate to solve a whole system.
It can be used just as a way of comparison once we are sure there is no spinning or lon-
gitudinal sliding. To do that, we extracted BB20 solution outputs from Gauss-Legendre
test and computed friction forces with each method. Results are synthesized on Table
2.5. As expected, Monte-Carlo method is the closest to analytical one. Gauss-Legendre
method is very similar, Gupta’s method is comparable excepted for F jZo2. For outer race,
F jXo2 and M j

Zo2 are not negligible which makes us think that, despite sliding lines profile,
hypothesis of pure transverse sliding is not correct on this race.
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2. Quasi-static model with balls and rings

Gupta Gauss-Legendre Monte-Carlo Analytic

F jZo2 -30.40957 -1.07911 1.18925 0.47956
M j
Ro2 -0.14691 5.43983E-2 1.16747E-2 6.01112E-2

F jXo2 -15.50998 -17.42163 -16.91385 0
M j
Zo2 -0.16505 -0.16505 -0.16123 0

M j
So2 7.37064E-2 8.99466E-2 8.71947E-2 0

F jZi1 7.12535 7.13742 7.14774 7.17893
M j
Ri1 -1.66382E-4 6.79711E-2 6.80786E-2 6.83663E-2

F jXi1 -1.74746E-2 -1.58402E-2 -1.79318E-2 0
M j
Zi1 -1.50827E-4 -1.50827E-4 -1.570114E-4 0

M j
Si1 2.39647E-5 2.03182E-5 1.78833E-5 0

Table 2.5 : Comparison of friction forces calculated with different methods

On Figure 2.18, for each method, we plotted evolution of friction forces over iterations.
Note that we did not report M j

Rkm and M j
Zkm because they respectively have same profile

as F jZkm and F jXkm. We can observe that Gupta’s method gives similar results to Monte-
Carlo excepted for M j

So2. Indeed, this momentum oscillate and the system has difficulties
to converge with a persistently small error. Gauss-Legendre and Monte-Carlo results
are almost equal for inner race whereas important differences are observed for outer race,
especially for M j

So2. Final results on ball parameters are summarised in Table 2.6. Gauss-
Legendre solution is particularly close to Monte-Carlo. Gupta’s method is also comparable
and differences does not physically change bearing behaviour.

To conclude, Monte-Carlo method appears to be the most accurate to compute friction
forces. However, a million points NMC had to be used to converge. Then, computations
took several hours whereas other methods required less than 30 seconds. For this reason,
Monte-Carlo method is not suitable in practice. Gauss-Legendre method is more adapted
to our problem, it has the best accuracy-to-computation time ratio even if results calcu-
lated are not exactly equal to Monte-Carlo’s.

5.2.2 Friction for combined axial and radial loads (rolling, sliding, spinning)

To study if spinning and transversal sliding are correctly considered in integral compu-
tations, bearing presented in Table 2.4 is used again with combined forces FX =15 000N
and FY =7 500N, FY =10 500N or FY =14 000N. Friction forces were plotted at first and
last iteration of BB20 resolution. Results for outer race, FY =14 000N, are reported on
Figure 2.19. For all tests, we observed that Monte-Carlo and Gauss-Legendre methods
were almost equal. Small differences are due to Monte-Carlo convergence difficulties. At
first iteration, some differences are noticeable between Gupta and other methods, espe-
cially for outer race contact. These differences have cancelled at last iteration. Balls
characteristics given in output were also plotted and very similar results were obtained
between all methods.
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Figure 2.18 : For each method, friction calculated over iterations

Gupta Gauss-Legendre Monte-Carlo

ωjm (rpm) 8553.6 8566.7 8580.9
ωjR (rpm) -75871.5 -75963.1 -75963.0
βj (◦) 0.06123 0.14089 0.01427
β′j(◦) 0.0000409 0.0002156 0.0000171
αji1 (◦) 4.2250 4.2250 4.2257
αo2 (◦) 0.05535 0.09129 0.03414
δji1 (µm) 0.45897 0.45944 0.46047
δjo2 (µm) 10.382 10.403 10.403

Table 2.6 : Results obtained with different methods
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2. Quasi-static model with balls and rings

This confirms accuracy of Gauss-Legendre methods compared with Gupta’s method, es-
pecially when pure rolling occurs. Note that Gupta’s method is almost twice faster than
Gauss-Legendre since no ellipse partitioning is done. However, Gauss-Legendre stays more
recommended, particularly in case of critical operating conditions.

Figure 2.19 : For each method, outer race friction forces obtained for FX=15 000N and
FY =14 000N
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6 Quasi-static resolutions

6.1 R1 Resolution

Before solving the complete quasi-static system with balls and rings, a first resolution
called R1, is led in order to get simple initial values. In this procedure, external forces
on the inner ring, ball centrifugal forces and ball-race normal forces are the only one of
concern. In other words, gyroscopic effects, drag forces and ball-race friction forces are
neglected.

6.1.1 Inner race equilibrium

In this R1 resolution, inner ring is subject to external forces and ball-race normal forces
coming from N balls, that is why forces equilibrium gives:

Fext/IR+
N∑
j=1

(
Qj
i1 +Qj

i2
)

= 0 (2.142)

After projecting normal forces in global coordinate system RG, equations on the sum of
forces on the inner ring in xG, yG and zG directions are obtained:

−FX −
N∑
j=1

(
− sinαji1Q

j
i1 +sinαji2Q

j
i2
)

= 0 (2.143)

−FY −
N∑
j=1

(
cosψj(cosαji1Q

j
i1 +cosαji2Q

j
i2)
)

= 0 (2.144)

−FZ −
N∑
j=1

(
sinψj(cosαji1Q

j
i1 +cosαji2Q

j
i2)
)

= 0 (2.145)

Momentum equilibrium on the inner ring is calculated at bearing center G such that:

M/IR(G) = Mext/IR(G)+
N∑
j=1

(
Qj
i1 ∧GIji1 +Qj

i2 ∧GIji2
)

= 0 (2.146)

To compute GIjim, we use inner ring center GI and consider the fact that inner ring
translates of δ and rotates of [θ], such that GCj′

im = δ + [θ]GCj
im. We also know that

GCj
i1 =


R1

R2 cosψj

R2 sinψj


RG

, GCj
i2 =


−R1

R2 cosψj

R2 sinψj


RG

, and GIjim = GCj′
im+Cj′

imI
j
im.
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2. Quasi-static model with balls and rings

Then, we can compute GIjim coordinates:
xj1

yj1

zj1


RG

=


R1 cosθz cosθy +R2(−cosθy sinθz cosψj +sinθy sinψj)

R1 sinθz +R2 cosθz cosψj

−R1 sinθy cosθz +R2(sinθz sinθy cosψj +cosθy sinψj)


RG

+


+fiD sinαji1

−fiD cosαji1 cosψj

−fiD cosαji1 sinψj


RG

(2.147)
xj2

yj2

zj2


RG

=


−R1 cosθz cosθy +R2(−cosθy sinθz cosψj +sinθy sinψj)

−R1 sinθz +R2 cosθz cosψj

+R1 sinθy cosθz +R2(sinθy sinθz cosψj +cosθy sinψj)


RG

+


−fiD sinαji2

−fiD cosαji2 cosψj

−fiD cosαji2 sinψj


RG

(2.148)

Consequently, from relations (2.146), (2.147), (2.148) , equations on the sum of mo-
mentums on the inner ring in yG and zG directions, at bearing center G are obtained:

−MY +
N∑
j=1

(
zj1 sinαji1Q

j
i1 − zj2 sinαji2Q

j
i2 +sinψj(xj1 cosαji1Q

j
i1 +xj2 cosαji2Q

j
i2)
)

= 0

(2.149)

−MZ +
N∑
j=1

(
− cosψj(xj1 cosαji1Q

j
i1 +xj2 cosαji2Q

j
i2)−yj1 sinαji1Q

j
i1 +yj2 sinαji2Q

j
i2
)

= 0

(2.150)

6.1.2 Balls equilibrium

In this R1 resolution, each ball is subject to centrifugal forces and ball-race normal forces
coming from four contacts, then forces equilibrium gives:

F j
c +Qj

i1 +Qj
i2 +Qj

o1 +Qj
o2 = 0 (2.151)

After projecting in ball coordinate system Rj
b1, equations on the sum of forces on each

ball j in xG and yj
b1 directions are obtained:

F jR1/bx =−Qji1 sinαji1 +Qji2 sinαji2 −Qjo1 sinαjo1 +Qjo2 sinαjo2 = 0 (2.152)

F jR1/by =Qji1 cosαji1 +Qji2 cosαji2 −Qjo1 cosαjo1 −Qjo2 cosαjo2 +F jc = 0 (2.153)

Note that ball forces equilibrium along zj
b1 and ball momentums equilibrium are not

solved in R1 resolution. Instead, ball kinematics is assumed such that effective rolling
radius r′j

km are equal to ball radius. Kinematic parameters ξj1 and ξj2 are deduced from
relations (2.76) and (2.79). Races relative speeds ωji , ωjo, ball precession speeds ωjm and
ball self-rotation speeds ωjR result from kinematic relations (2.84) to (2.87). As well,
ball self rotation β′j is supposed to be equal to zero whereas outer race control (ORC)
hypothesis is applied to compute βj . Indeed, βj is assumed to be balanced between left
and right outer race contact angles such as defined by relation (2.154).
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βj = −γo1βjo1 +γo2β
j
o2 with


γok =

∣∣∣∣ Qj
ok√

(Qj
o1)2+(Qj

o2)2

∣∣∣∣
βjok = arctan

( sinαj
ok

cosαj
ok+ D

dm

) (2.154)

Nevertheless, for final R1 iteration, if LMCCj = 3, that is to say if ball contacts
each race in one point, βj is calculated without ORC hypothesis. Indeed, Dusserre and
Nélias [64] showed that ball angle βj was shared between inner race control angle βji and
outer race control angle βjo such that power loss at ball-race contact is minimum. Then,
βj calculated is shared between βji and βjo such that ball energy equilibrium is satisfied.
Is this way, accuracy of βj predicted for R2 initialisation is enhanced.

βjo = arctan
( sinαjo2

cosαjo2 + D
dm

)
(2.155)

βji = arctan
( sinαji1

cosαji1 − D
dm

)
(2.156)

6.1.3 Numerical procedure

R1 procedure consists in solving a set of 8N+5 equations with
• 5 equilibrium equations on inner ring: (2.143), (2.144), (2.145), (2.149), (2.150).
• 2N equilibrium equations on balls: (2.152), (2.153).
• 6N geometric equations between balls and rings: (2.29), (2.30), (2.34), (2.35), (2.42),

(2.43).

Related unknowns are:
• 3 displacements, 2 rotations on inner ring (δx, δy, δz, θy, θz) or 3 forces, 2 momen-

tums (FX , FY , FZ , MY , MZ) or 3 displacements, 2 momentums (δx, δy, δz, MY ,
MZ) depending if input parameters are forces, moments, displacements or rotations.

• 4N ball-race contact angles (αji1, αji2, αjo1, αjo2).
• 4N Hertzian deformations at ball-race contacts (δji1, δji2, δjo1, δjo2).

This system is solved numerically by a Newton-Raphson algorithm. However, conver-
gence difficulties occurs when the bearing support important radial load or misalignment.
In such a case, balls located at the opposite of the load tend to lose contact with inner
race. To solve this problem, a numerical procedure is implemented to increase incremen-
tally radial and misalignment input parameters. Is this way, system is solved step-by-step
by initialising unknowns of the next step with previous solution that is less radially loaded
or less misaligned.
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2. Quasi-static model with balls and rings

6.1.4 Stiffness matrix computation

At the end of R1 resolution, bearing stiffness matrix KStiff defined in (2.157) is calcu-
lated. Note that this matrix could be calculated at the end of R2 resolution. However
equations are much complicated in R2, computation time would be significantly increased
without important accuracy improvement. Procedure to compute stiffness matrix was
developed by Leblanc in 2008 [158]. We just corrected few mistakes and adapted it to
equations modifications brought in this version.

KStiff =



∂FX
∂δx

∂FX
∂δy

∂FX
∂δz

∂FX
∂θy

∂FX
∂θz

∂FY
∂δx

... ... ... ...

∂FZ
∂δx

... ... ... ...

∂MY
∂δx

... ... ... ...

∂MZ
∂δx

... ... ... ...



(2.157)

6.2 R2 Resolution
R2 resolution uses R1 results to initialise unknowns. In this procedure, R1 kinematic
hypothesis on ball parameters do not hold anymore. Instead, complete ball equilibrium
is solved to compute accurately βj , β′j , r′j

km, then ωjo, ω
j
i , ωjm and ωjR. As well, now all

external forces T j
ext/IR, ball motion forces T j

/b and ball-race contact forces T j
km/b including

friction are considered.

6.2.1 Inner ring equilibrium

Inner ring is subject to external forces, ball-race normal and friction forces arising from
N balls, that is why forces equilibrium is given by:

Fext/IR+
N∑
j=1

(
Fb/i1 +Fb/i2

)
= 0 (2.158)

After projecting each contribution in global coordinate system RG, quasi-static equations
on the sum of forces on the inner ring in xG, yG and zG directions are obtained:

FQS/IRx = −FX −
N∑
j=1

(
− sinαji1Q

j
i1 − cosαji1F

j
Xi1 +sinαji2Q

j
i2 − cosαji2F

j
Xi2

)
= 0

(2.159)

FQS/IRy = −FY −
N∑
j=1

(
cosψj(cosαji1Q

j
i1 − sinαji1F

j
Xi1 +cosαji2Q

j
i2 +sinαji2F

j
Xi2)

−sinψj(F jZi1 +F jZi2)
)

= 0
(2.160)
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FQS/IRz = −FZ −
N∑
j=1

(
sinψj(cosαji1Q

j
i1 − sinαji1F

j
Xi1 +cosαji2Q

j
i2 +sinαji2F

j
Xi2)

+cosψj(F jZi1 +F jZi2)
)

= 0
(2.161)

To compute momentum equilibrium on the inner ring, the point GI is not used like
in R1 resolution. Indeed, Coulomb’s friction momentums are expressed at ball center Bj .
That is why momentums are transposed in this point:

M/IR(G) =Mext/IR(G)+
N∑
j=1

(
Mb/i1(Bj)+Mb/i2(Bj)+(Fb/i1 +Fb/i2)∧GBj

)
(2.162)

To compute GBj , intermediate point Cjo2 is used. This curvature center is the most
relevant point because a total ball detachment cannot happen on the outer ring. And, if
the outer race contact is lost at side 2, formulas remain valid since δjo2 can take negative
values.

GBj = GCj
o2 +Cj

o2B
j (2.163)

GBj =


+go

2 λ
j
o

dm
2 − (fo−0.5)D cosαf

0


Rj

b

+


−GEo2 sinαjo2
GEo2 cosαjo2

0


Rj

b

(2.164)

The projection in global coordinate system RG gives ball center coordinates:

xjG

yjG

zjG


RG

=


+go

2 λ
j
o−GEo2 sinαjo2

(dm
2 − (fo−0.5)D cosαf +GEo2 cosαjo2)cosψj

(dm
2 − (fo−0.5)D cosαf +GEo2 cosαjo2)sinψj


RG

(2.165)

Note again that, in the above expression, ball orthoradial displacements along zj
b1 are

neglected. Such hypothesis will be revised in quasi-dynamics because of cage contribution
and ball-to-pocket interactions.

Finally, after combining equations (2.162) and (2.165), quasi-static equations on
the sum of momentums on the inner ring in yG and zG directions are obtained:

MQS/IRy = −MY −
N∑
j=1

[(
−sinαji1M

j
Ri1 − cosαji1M

j
Si1 +sinαji2M

j
Ri2 − cosαji2M

j
Si2
)

cosψj

−sinψj(M j
Zi1 +M j

Zi2) + zjG

(
−cosαji1F

j
Xi1 − sinαji1Q

j
i1 − cosαji2F

j
Xi2 +sinαji2Q

j
i2
)

−xjG
(
(−sinαji1F

j
Xi1 +cosαji1Q

j
i1 +sinαji2F

j
Xi2 +cosαji2Q

j
i2)sinψj +cosψj(F jZi1 +F jZi2)

)]
= 0

(2.166)
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MQS/IRz = −MZ −
N∑
j=1

[
(−sinαji1M

j
Ri1 − cosαji1M

j
Si1 +sinαji2M

j
Ri2 − cosαji2M

j
Si2)sinψj

+cosψj(M j
Zi1 +M j

Zi2)+xjG

(
(−sinαji1F

j
Xi1 +cosαji1Q

j
i1 +sinαji2F

j
Xi2 +cosαji2Q

j
i2)cosψj

−sinψj(F jZi1 +F jZi2)
)

−yjG(−cosαji1F
j
Xi1 − sinαji1Q

j
i1 − cosαji2F

j
Xi2 +sinαji2Q

j
i2)
]

= 0

(2.167)

6.2.2 Balls equilibrium

Each ball is subject to forces due to their motion and to ball-race normal and friction
forces coming from four contacts. Then, forces equilibrium on each ball gives:

F j
/b+F j

i1/b+F j
i2/b+F j

o1/b+F j
o2/b = 0 (2.168)

After projecting in ball coordinate system Rj
b1, quasi-static equations on the sum of

forces on each ball j in xG, yj
b1 and zj

b1 directions are obtained:

F jQS/bx = −Qji1 sinαji1 +Qji2 sinαji2 −Qjo1 sinαjo1 +Qjo2 sinαjo2
− F jXi1 cosαji1 −F jXi2 cosαji2 +F jXo1 cosαjo1 +FXo2 cosαjo2 = 0

(2.169)

F jQS/by =Qji1 cosαji1 +Qji2 cosαji2 −Qjo1 cosαjo1 −Qjo2 cosαjo2
− F jXi1 sinαji1 +F jXi2 sinαji2 −F jXo1 sinαjo1 +FXo2 sinαjo2 +F jc = 0

(2.170)

F jQS/bz = F jZi1 +F jZi2 +F jZo1 +F jZo2 +F jdr = 0 (2.171)

Computation of momentum equilibrium on each ball j is straightforward since tor-
sors T j

km/b and T j
/b are expressed at ball center Bj :

M j
/b(B

j)+M j
i1/b(B

j)+M j
i2/b(B

j)+M j
o1/b(B

j)+M j
o2/b(B

j) = 0 (2.172)

After projecting in ball coordinate system Rj
b1, quasi-static equations on the sum of

momentums on the ball j in xG, yj
b1 and zj

b1 directions, are obtained:

M j
QS/bx = +M j

Si1 sinαji1−M j
Si2 sinαji2 +M j

So1 sinαjo1 −M j
So2 sinαjo2

−M j
Ri1 cosαji1−M j

Ri2 cosαji2 +M j
Ro1 cosαjo1 +M j

Ro2 cosαjo2 = 0
(2.173)

M j
QS/by = −M j

Si1 cosαji1−M j
Si2 cosαji2 +M j

So1 cosαjo1 +M j
So2 cosαjo2

−M j
Ri1 sinαji1+M j

Ri2 sinαji2 −M j
Ro1 sinαjo1 +M j

Ro2 sinαjo2 +M j
GY = 0

(2.174)

M j
QS/bz =M j

Zi1 +M j
Zi2 +M j

Zo1 +M j
Zo2 +M j

GZ = 0 (2.175)
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6.2.3 Numerical procedure

BB20 solves in quasi-static a system of 12N+5 equations with:
• 5 equilibrium equations on inner ring: (2.159), (2.160), (2.161), (2.166), (2.167).
• 6N equilibrium equations on balls: (2.169), (2.170), (2.171), (2.173), (2.174), (2.175).
• 6N geometric equations between balls and rings: (2.29), (2.30), (2.34), (2.35), (2.42),

(2.43).

The related unknowns are:
• 3 displacements, 2 rotations on inner ring (δx, δy, δz, θy, θz) or 3 forces, 2 momen-

tums (FX , FY , FZ , MY , MZ) or 3 displacements, 2 momentums (δx, δy, δz, My,
Mz).

• 4N ball-race contact angles (αji1, αji2, αjo1, αjo2).
• 4N Hertzian deformations at ball-race contacts (δji1, δji2, δjo1, δjo2).
• 2N ball position angles induced by gyroscopic and centrifugal motions (βj , β′j).
• 2N effective rolling radius at ball-race contacts (r′j

i1, r′j
o2).

Besides, to improve numerical resolution and especially Jacobian conditioning, each
equation and each unknown are nondimensionalized by a parameter given in Table 2.7.

Equation Parameter Unknown Parameter

FQS/IRx : (2.159) δx

FQS/IRy : (2.160)
√
F 2
X +F 2

Y +F 2
Z δy

D
2

FQS/IRz : (2.161) δz

MQS/IRy : (2.166)
dm
2

√
F 2
X +F 2

Y +F 2
Z

θy π
N

MQS/IRz : (2.167) θz

F jQS/bx : (2.169) αjo2 αf

F jQS/by : (2.170) N
√
F 2
X +F 2

Y +F 2
Z δjo2

D
2

F jQS/bz : (2.171) r′j
o2

D
2

M j
QS/bx : (2.173) r′j

i1
D
2

MQS/by : (2.174) dm
2 N

√
F 2
X +F 2

Y +F 2
Z β′j αf

MQS/bz : (2.175) βj αf

f jORx : (2.29)
D
2

αjo1

f jIRx : (2.34) αji2 αf

f jIRORx : (2.42) αji1

f jORy : (2.30)
D
2

δjo1

f jIRy : (2.35) δji2
D
2

f jIRORy : (2.43) δji1

Table 2.7 : Parameters used to nondimensionalize related equation or unknown
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6.2.4 Ball-to-inner race detachment

• Initial observations
To validate BB20, we interest in four bearings currently mounted on aircraft engines
designed by Safran company. Their main characteristics are given in Table 2.8.

Bearing N D (m) dm (m) Jd (mm) fi fo gi go Ωi (rpm) FX(kN) FY (kN)

A 20 0.019 0.15 0.13 0.52 0.51 ̸= 0 0 17 500 [1;15] [0.1;15]
B 17 0.018 0.12 0.14 0.52 0.51 ̸= 0 ̸= 0 23 900 [1;300] [0.1;30]
C 24 0.029 0.25 0.13 0.51 0.51 ̸= 0 0 5 000 [1;100] [1;15]
D 20 0.045 0.35 0.17 0.51 0.51 ̸= 0 ̸= 0 3 700 [10;200] [0.1;100]

Table 2.8 : Bearing data

We run BB20 with these four bearings under different axial and radial loads between
minimums and maximums accepted by each one. For all bearings, under important axial
load, system always converges rapidly. It generally takes around 16 iterations for R1 and
10 for R2. However, when axial-to-radial load ratio gets closer to 1, for balls located at
the opposite of radial load, a fall in precession ωjm and self-rotation speed ωjR is observed.
This fall is illustrated on Figure 2.20 where results for bearing A under an axial load
FX=7500N and an increasing radial load FY are reported. If this fall does not prevent
algorithm to converge, such solutions are not physically possible.

When radial load gets larger than axial load, balls located at the opposite from radial
load detach from inner race and BB20 computes values equal to zero for ωjm and ωjR.
Algorithm diverges or converge towards non physical solutions. Nevertheless, we observed
that bearing C, which is made to work with important radial loads, converges for bigger
radial-to-axial load ratios. In practice, all these bearings never work with radial loads
larger than 2

3 of axial loads. However, bearing designers are asking for a computer code
that works for the load panel presented.

In previous version of BB20, when a ball detached from inner race, equations (2.171)
to (2.175) on ball equilibrium were not solved. Instead, βj and β′j angles were set at
zero and effective rolling radius r′j

i1, r′j
o2 were supposed to be equal to ball radius. In this

new version, we deleted all locks that forced convergence. However, after many researches
and algorithm improvements, we did not find a solution that solves this ball-detachment
problem. We assume that, in quasi-static and if we only consider balls and rings, the
system is not designed for important radial loads. Indeed, when a ball detach from inner
race, it only gets in contact with outer race and get positioned at groove middle such that
βj and β′j are equal to zero and that αjo2 is equal to zero if outer ring is not truncated or
that αjo1 and αjo2 are equal if it is truncated. If inner race does not drive the ball anymore,
cage is supposed to take over this role. Since cage is not considered yet in BB20, this
explains why it cannot converge under these conditions. Mathematically, when a ball
detach from inner race, friction forces on inner race and gyroscopic momentums get equal
to zero. Then, in ball equilibrium equations (2.169) to (2.175), no momentum is present
to balance outer race momentum.
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Also, only drag force F jdr balances outer race friction F jZom. This explains why ωjm and
ωjR values tend to zero. This also confirms necessity to consider ball-cage forces. Dynamic
modelling with additional inertial effects should also allow to solve this problem.

Figure 2.20 : Illustration of ball rotations fall for bearing A

• Solution proposed
Under important radial loads, bearing designers need a computer code that gives at

least load distribution for all balls and a complete solution for balls that stay attached
to inner race. To satisfy this demand, we differentiate two kind of balls; those in contact
with inner race and those detached or at limit of contact. We consider that a ball belongs
to this second category if its orbital speed ωjm is less than 20% of balls maximal one or if
ball-to-inner race contact Qjim is less than 10% of balls maximal one. For these (almost)
detached balls, we suppose that βj , β′j angles are equal to zero and that ωji , ωjo, ωjm, ωjR
speeds are equal to attached ball average one. Then, equations (2.171) to (2.175) on ball
equilibrium are not solved anymore. Instead, βj and β′j angles are set to zero and ball
radius are calculated by kinematic relations (2.72) and (2.75).
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With this procedure, convergence is forced and solution on βj , β′j , ωjm, ωjR is approx-
imated for (almost) detached balls. Nevertheless, this solution gives a first outlook of
bearing equilibrium before modelling cage. Indeed, tests were rerun with these modifica-
tions and convergence improvements are noticeable. For these four bearings, more than
1000 tests have been done and less than 5% diverged. Computational difficulties mainly
happen when axial-to-radial load ratio gets closer to 1. Modification of Newton-Raphson
relaxation criteria makes converge some of these cases but makes diverge other ones. This
shows that remaining diverging cases are only due to numerical limitations and not to
physical errors in the model.

Ball results obtained for bearing A are presented in Figure 2.21. When radial load
FY is less or equal than 7 000N, all balls are attached to inner race. All curves (excepted
those of β′j) have sinusoidal shapes. For FY =7 000N, a small fall already occurs. For
FY =9 000N, balls 1, 2, 19, 20 are detached and balls 3, 4, 5, 6, 17, 18 are almost detached
from inner race, then their computation is forced. For FY =10 000N, balls 1, 2, 3, 19,
20 are detached and balls 4, 5, 6, 16, 17, 18 are almost detached. This detachment
has no influence on outer race loads and contact angles computed. For inner race, as
expected, contact angles and loads tend to zero. Ball speeds are particularly impacted by
this detachment since they are prescribed. Consequently, curves obtained does not have
sinusoidal shape anymore.

Note also that instead of forcing ωji , ωjo, ωjm, ωjR to be equal to attached ball average
ones, we have tried to force these speeds to be equal to maximal one. Is this way we
thought we could get results closer to a sinusoid. However, system did not succeed to
converge. We suppose that such method does not work because it overestimates cage
speed ωc. In any case, new solution proposed to manage ball detachment appears to be
satisfying as a first approach to always make the system converge and have a first idea of
bearing equilibrium.

6.3 New features of BB20 version 5
Quasi-static model presented above was not entirely developed during this thesis. Indeed,
basis were already present in BB20 version 4. However, some mistakes have been found
in previous system, algorithm was not optimal with important numerical discontinuities,
computer code was over-constrained in order to make it converge towards a solution
that was not always physically correct. These limits were not visible while working with
important axial load. However, they appeared to be problematic while trying to add cage
contributions.

To solve these problems, we first transposed the whole system in a direct coordinate
system since previous version was based on Jones’ indirect system [144]. Unknowns and
coordinate systems were also defined to only work with positive axial loads and positive
angles. This limited working conditions but also forced the solution to converge toward
false values. Indeed, depending on speed and combined loads, contact angles αjkm or ball
self-rotation angles βj , β′j can take negative values even if axial load is positive. That is
why, this new definition of contact angles, of ball rotations and adaptation of equations
to negative values were necessary.
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Figure 2.21 : Results for bearing A after ball detachment improvements
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In BB20V4, when a ball lost a contact with a race, elastic deformation δjkm was put
to zero. Then, at each iteration, depending on ball-race contacts and LMCCj values,
geometric equations had to be adapted which created important numerical discontinuities.
Now, with consideration of film thickness hjkm and negative δjkm, an unique system of
equation is solved. To deal with different ring truncations and to work with a continuous
system of equations, we also created the whole procedure presented in section 2.4. Then,
numerical resolution is smooth and contact differentiations with LMCCj is only used
to relax Newton-Raphson scheme between two successive iterations in order to avoid
aberrant contacts.

As well, we optimised drag model to consider lubricant flow effect. We verified and
improved the whole procedure of friction forces computation. Especially, we completely
revised Gauss-Legendre’s method and implemented Monte-Carlo’s one. To optimise com-
putational efficiency, converging loops of R1 and R2 have also been deeply revised. Pro-
jections of friction forces were changed. We revised stiffness matrix computation and
procedure to deal with ball-to-inner race detachments. Equations and unknowns nondi-
mensionalization is also a novelty in BB20V5. Order of equations and unknowns in the
program has also been modified to associate each equation with its corresponding un-
known. All these modifications brought us to verify and adapt all equations and compu-
tational code. Is this way, quasi-static BB20 is made of a unique system of equations, it is
better conditioned, it better deals with contact changes over iterations and does not force
any solution. It is adapted to larger working conditions in terms of bearing geometry,
speed or load. Previous errors have been rectified, then cage should be modelled without
problems.

7 Results analysis

7.1 Investigation of existing bearings
7.1.1 Pure axial load

To pursue BB20 validation, we run four tests on bearing A where we vary axial load
FX , shaft speed Ni and friction coefficient µ such as indicated in Table 2.9. Main results
obtained are gathered in Appendix B, Table B.1.

Test A B C D

FX (N) 15 000 15 000 150 150
Ωi (rpm) 17 500 1 750 17 500 17 500

µ 0.065 0.065 0.065 0.65

Table 2.9 : Operating conditions applied for bearing A under pure axial load

We work under pure axial load, then all balls have same kinematics with two contact
points and with sliding lines of Figure 2.22. Spinning direction is clearly visible on ellipses
of test B. Is this way we can verify that ωjSi1, M j

Si1 and ωjSo2, M j
So2 are opposite.
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As well, on inner race of tests C and D, pure sliding occurs in a constant direction,
then we verify that V j

Zi1 and F jZi1 are opposite. From Table B.1, we also confirm that
F jXkm and M j

Zkm are opposite to M j
GZ in order to balance this gyroscopic momentum,

as predicted by Figures 2.9 and 2.10. We also check that M j
Skm and ωjSkm are always

opposite. We expected M j
Rkm and ωjRkm to be in reverse directions. However, if M j

Ro2
and ωjRo2 have opposite signs, M j

Ri1 and ωjRi1 have same signs. Then, if we can validate
all friction forces directions, this last one stays questionable. Note however that ωjRkm is
not involved in any BB20 computation.

Besides, we can observe on sliding lines profile of test A, that under high speed, high
axial load, ball rolls, spins and slides on both races. When speed is reduced, spinning
ωjs then gyroscopic momentums decrease whereas contact angles tend to be equal. When
axial load is reduced, as shown in Figure 2.22 for test C, on the inner race, pure rolling
point translates longitudinally and skidding occurs since spinning is negligible compared
to transversal sliding. When friction is increased and axial load stays small, as represented
on Figure 2.22 for test D, skidding occurs on both races. All these results confirms that
BB20 models physical behaviour expected from an ACBB submitted to pure axial load.

Figure 2.22 : Sliding lines for bearing A, under different working conditions
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7.1.2 Combined axial and radial loads

First results on bearing behaviour under combined loads were presented in section 6.2.4.
When radial load is less or equal than axial load, results are in adequacy with literature.
Indeed, we can observe on Figure 2.21, for FY =6 000N, that inner race contact angle αji1
is always larger than outer race αjo2 whereas inner race normal load Qji1 is less than outer
race Qjo2. Attitude angle βj is comprised between inner and outer race contact angles.
Since radial load is applied on ball 11, it is the one with the higher normal loads and
contact angles. Orbital speed plot also confirms that balls decelerate when they enter the
loaded zone and accelerate when they come out.

On Figures 2.23 and 2.24, for different radial loads, we reported sliding lines profile of
few balls. Under small radial loads, all balls roll, spin and slide on both races as illustrated
on Figure 2.23. When radial load increases, normal load increases then outer race ellipse
gets larger whereas inner race ellipse gets smaller. For first balls, point of pure rolling on
the inner race translates longitudinally and skidding occurs as visible on Figure 2.24 for
balls 1 and 5 under radial load of 7 000N. Note that these balls are those subjected to ωjm
and ωjR fall. For even larger radial loads, as under FY =8 000N, on radially loaded balls,
spinning occurs at inner race contact then outer race controls ball.

7.1.3 Comparison BB20 Version 4 vs 5

To compare this new version of BB20 with previous one, we interest in bearing D under
an axial load of 100 000N and an increasing radial load. Results obtained with both
versions are presented in Figure 2.25. Note that results reported for BB20V5 are shifted
of 10 balls. Indeed, this new model is defined in a direct coordinate system, then axis zj

b1
has rotated of 180◦. So to compare same loaded balls as BB20V4, either we set the first
ball with ψc at 180◦ or we inverse the sign of applied radial load. As well, we would have
expected to get opposite signs of βj between BB20V4 and V5. But since F jXkm, F jZkm
and M j

Rkm directions were reversed, same signs for βj are obtained with both versions.
On Figure 2.25, for radial loads of 50 000N or 75 000N, we can observe that orbital

speeds ωjm and ball rotational speeds ωjR are significantly higher for BB20V4, especially
for radially loaded balls. Pitch angles βj , yaw angles β′j , contact angles αjo2 and normal
loads Qjo1 also have more important variations in version 4. We also ran BB20V5 with
previous friction forces projections and obtained very close results to BB20V4. This shows
that amplitude differences between BB20V4 and V5 are directly due to F jXkm, F jZkm and
M j
Rkm projections. For radial load of 100 000N, in BB20V4, balls 9 to 13 have detached

from inner race whereas in BB20V5, only ball 11 has detached and balls 8, 9, 10, 12, 13,
14 are at limit of detachment. Considering almost detached balls gives smoother curves
on orbital and rotational speeds such as noticeable in Figure 2.25 where peaks on 8th
and 14th balls decreased of a factor 5 between V4 and V5. Finally, different kinematics
are calculated between BB20V4 and V5. We cannot say if new results are more or less
correct than previous ones. As we will see in next sections, no model in literature has
exactly the same physics to be compared with BB20. And, leading experimental study on
quasi-static parameters like pitch, yaw or contact angles is a complicated task. However,
we will see that obtaining less important orbital speed variations is preferable for future
cage computations.
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Figure 2.23 : Sliding lines for bearing A under low radial loads

7.1.4 Power loss

At the moment, only power loss due to ball-race friction is calculated by formula (2.176).
Under different operating conditions, experiences have been led by bearing designers at
Safran, to measure driving torque and rings temperatures. Especially, hybrid bearing
defined in Table 2.10, was tested under an oil shut-off. After results exploitation, a
power loss of 6587W was estimated. Same test is run with BB20 without considering film
thickness or drag forces. A power loss P of 9 658W is obtained.
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Figure 2.24 : Sliding lines for bearing A under important radial loads
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Figure 2.25 : Comparison of BB20V4/V5 for bearing D under FX =100 000N
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Then, 31% difference is observed between experiments and model. This difference is
acceptable and may be due to the fact that friction coefficient considered is equal to 0.065.
This is an important value, a coefficient around 0.04 may have given closer results. This
analysis shows that power loss is a useful tool to validate a model. It is easily measured
experimentally and calculated numerically. That is why, power dissipated at all contacts
and arising from dry and lubricated effects, will have to be added in future versions of
BB20.

P =
N∑
j=1

∑
m=1,2

ωji

(
−M j

Sim sinαjim+M j
Rim

d
j
m− r′j

im cosαjim
r′j
im

)

+ωjo
(
M j
Som sinαjom+M j

Rom

d
j
m+ r′j

om cosαjom
r′j
om

) (2.176)

N D (m) dm (m) Jd (mm) fi fo gi go Ωi (rpm) FX FY

21 0.045 0.34 0.14 0.508 0.513 ̸= 0 ̸= 0 3050 347 300 15 000

Table 2.10 : Data of bearing tested

7.2 Comparison with literature
7.2.1 Reference analytical models

In order to validate our model with two contact points, an investigation is led to compare
BB20 outputs with Harris [121] and ADORE quasi-static [91] results.

Gupta developed a quasi-static code to solve bearing equilibrium without cage. All
of kinematic effects considered in BB20 quasi-static, are also modelled in ADOREQS ex-
cept for drag force and β′j angle. To compute orientation of ball angular velocity vector,
depending on user choice, Raceway Control Hypothesis (RCH) or Minimum Energy Hy-
pothesis (NRJ) are applied. This last method was developed recently by Gupta [100]. For
a given lubrication model, it consists in searching for βj angle such that frictional energy
dissipated at ball-race contacts is minimum. This iterative procedure is much time con-
suming than RCH. However, rolling and spinning are considered at both raceways, more
than one point of pure rolling can be present and point of pure rolling is not obviously
located at ellipse center. Gupta has shown that QS results obtained with this method are
much closer to dynamical results than those given by RCH method.

• Shaft speed effects
In 1971, Harris developed a model based on Jones’ work [144] in order to study ACBB

without making raceway control hypothesis (RCH). In his first model [120], such as rep-
resented on Figure 2.16, he supposed that only longitudinal sliding and spinning occur.
Then, he only calculated friction forces F jZkm, M j

Rkm and M j
Skm. To get rid of double

integral, as we did in section 5.2.1, he supposed that a maximum of two lines of pure
rolling occurs in surface ellipse. He also supposed that angle θn is small. This angle is
defined between ball-center-to-ellipse center axis and ball center-to point of pure sliding

94



Results analysis

axis as expressed by relation (2.177). Is this way, analytic expressions on F jZkm, M j
Rkm

and M j
Skm are obtained. Since M j

Zkm is not considered, ball momentum equation on zjb1
is not solved, β′j angles and gyroscopic momentums M j

GZ are supposed to be equal to
zero. Consequently, friction coefficient is calculated such that this gyroscopic slippage
gets equal to zero. Note that Harris defined these parameters with different names, but
for the sake of clarity, we adapted them to our model.

sinθn = x′
n

rn
(2.177)

Then, he led a parametric study on bearing defined in Table 2.11, and made vary shaft
speed from 0 to 10 000 rpm. We also run these tests on BB20 and ADOREQS computer
code. As for that, we applied a constant friction coefficient µ=0.065. Results from all
tests are synthesized in Figures 2.26 to 2.29.

N D (mm) dm (mm) αf (◦) fi fo gi go FX (N) FY (N)
14 8.731 48.54 24.5 0.52 0.52 0 0 442 0

Table 2.11 : Bearing design data from Harris’ first study [120]

Figure 2.26 : Evolution of spin-to-roll ratio at inner and outer race with shaft speed

Figure 2.26 presents with shaft speed Ni, evolution of spin-to-roll ratio ωSkm
ωRkm

for inner
race (IR1) and outer race (OR2). We can observe that ADORE RCH compute a solution
with inner race control (ωSo2 ̸= 0,ωSi1 = 0) at speeds below 8 000 rpm and outer race
control (ωSo2 = 0,ωSi1 ̸= 0) at higher speeds.
BB20 curves have similar shapes excepted that control is always slightly shared between
both races at low and high speeds. For speeds lower than 4 000 rpm, balls mainly spin on
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outer race, whereas they mainly spin on inner race for higher speeds. For speeds higher
than 10 000 rpm, BB20 curve on SR-OR2 seems to tend to zero, then to outer race control.
At low speed, ADOREQS with minimum energy hypothesis gives results comparable to
BB20. For higher speeds, SR ratio changes in sign which is surprising. However, SR-OR2
tend to zero such as predicted by RCH.
SR ratio computed by Harris is significantly larger than other ones. We suppose that
this difference comes from friction coefficient that is not prescribed but calculated such
that gyroscopic momentum M j

GZ is minimum. As well, at low speeds, balls mainly spin
on inner race which is at the opposite from other models. This difference may be due to
the fact that θn is neglected which seems to be an important approximation. For speeds
higher than 4 000 rpm, SR ratios change in sign and SR-OR2 tend to get equal to zero,
which is comparable to ADORE with minimum energy hypothesis.
At this point, we cannot say if sign inversion of SR ratio with speed should be expected
or not. However, we believe that Harris’ model is too much simplified to correctly model
ball spinning and rolling. Gupta’s model with minimum energy hypothesis is the one
that model physics the most accurately. BB20 is closer to this model which comforts us
in its correctness. Note that measuring experimentally spinning and rolling motions at
each contact is almost impossible. No article about such experience has been found in
literature.

Figure 2.27 : Evolution of pitch angle β with shaft speed

Figure 2.27 presents evolution of pitch angle βj with shaft speed. For all models,
we can observe an abrupt change of this angle at same speeds values as abrupt spin-
to-roll ratio change. Differences in speeds between BB20 and Harris may be due to
friction coefficient definition. BB20 and ADORE RCH have same shape as Harris but
different amplitudes. We can ask ourselves if these differences are due to BB20 mistakes,
to hypothesis in ADORE RCH or to Harris’ model hypothesis. Especially, neglecting β′j

angle and transversal speed may have significant impact on βj computation.
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Figure 2.28 : Evolution of cage-to-shaft
speed ratio ωc

Ni
with shaft speed

Figure 2.29 : Evolution of ball-to-shaft
speed ratio ωR

Ni
with shaft speed

Figure 2.28 presents evolution of cage-to-shaft speed ratio ωc
Ni

with shaft speed. BB20 is
close to Harris at low speeds. ADORE results are different at all speeds even if magnitude
stays comparable. We can assume that differences between models are due to friction
coefficient and drag force considerations. Indeed, these elements have direct effects on
cage speed ωc. Drag is not considered in ADOREQS and Harris did not mentioned it
either.

Figure 2.29 presents evolution of ball rotation-to-shaft speed ratio ωR
Ni

with shaft speed.
Same order of magnitude is obtained with all models. BB20 and ADOREQS curves are
very close.

• Axial load effects
Later, Harris improved this model to include EHD film thickness and drag forces

[119]. However, he did not specified values taken by drag coefficient Cd or oil fraction
in the mixture. He considered all friction forces F jXkm, F jZkm, M j

Rkm, M j
Zkm, M j

Skm
without simplifying double integrals like previously. He led a novel parametric study on
same bearing but fixed shaft speed at 27 000 rpm and varied axial load between 400N
and 1900N. We also run these tests with ADOREQS and BB20 and obtained results of
Figures 2.30 and 2.31.

Figure 2.30 presents evolution of spin-to-roll ratio with axial load FX . We can observe
that all curves have similar shapes but different amplitudes. ADORE RCH computes a
solution with outer race control. ADORE with minimum energy hypothesis is close to
BB20 with same amplitude difference on SR-I1. For SR-O2 ratio, results given by ADORE
min NRJ are questionable since SR-O2 is far from zero and becomes larger than SR-I1 for
FX = 800N . This indicates an unexpected change in raceway control. Harris amplitudes
are also very different than other models. This may be due to friction coefficient and drag
forces definition.
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Figure 2.30 : Evolution of spin-to-roll ratio at inner and outer race with axial load

Figure 2.31 presents evolution of cage-to-shaft speed ratio with axial load FX . We can
observe that ADORE and Harris with RCH have similar results. BB20 is also close but
with amplitude differences under low axial loads. For all models, cage speed decreases
with axial load whereas it increases for Harris’ one. This phenomena is due to drag effect
that decelerates cage speed under low axial load. Indeed, as illustrated on Figure 2.32,
when drag coefficient Cd is increased in BB20, cage slows down more and more under
low axial loads. Same behaviour is observed on Figure 2.33 when friction coefficient µ is
decreased. Then, Harris differences observed in Figure 2.31 are also due to the fact that
friction coefficient is prescribed differently.

Figure 2.31 : Evolution of cage-to-shaft speed ratio ωc
Ni

with axial load
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Figure 2.32 : Influence of drag coefficient
Cd on cage speed ωc

Figure 2.33 : Influence of friction coeffi-
cient µ on cage speed ωc

7.2.2 Experience measuring pitch angle βj

After comparing BB20 with Harris and Gupta’s studies, many questions remain outstand-
ing. Comparing results between different models is a tricky thing since each model has
its own hypothesis that significantly influence resulting behaviour. Another way of vali-
dating BB20 is to compare with experiments. Many parameters calculated in quasi-static
(spinning, rolling, ball rotations, normal loads or contact angles) are very difficult to be
measured experimentally. However, in 1990, Kawamura [150] succeeded to measure 3D
ball motion by magnetizing an unbalanced ball drilled with a hole and by measuring 3D
voltage with the use of Hall elements. Cage and shaft speeds were also recorded. For axial
load of 392N or 588N, for ACBB defined in Table 2.12, shaft speed was varied between
400 and 12 000 rpm. Data were recorded for ball A which has an unbalance eccentric-
ity of 3µm and for ball B which has 0.3µm unbalance eccentricity. Results obtained by
Kawamura and BB20 are reported on Figures 2.34 and 2.35. For this bearing, Kawamura
showed that friction coefficient µ was comprised between 0.006 and 0.02. That is why
BB20 is run in this range.

N D (mm) ID x OD x width (mm) αf (◦) fi fo gi go Wlub (L/min)
9 19.058 50 x 110 x 27 30 0.52 0.52 0 0 0.4

Table 2.12 : Bearing design data from Kawamura’s study [150]
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Figure 2.34 : Evolution of pitch angle βj
with shaft speed

Figure 2.35 : Evolution of ball-to-cage
rotational speeds ωj

R
ωc

with shaft speed

Concerning pitch angle plotted on Figure 2.34, for FX = 392N, experimental results
are very close to BB20 with µ= 0.006. For FX = 588N, they are very close to BB20 with
µ = 0.02. At low speed, results from ball B are closer to BB20 than results from ball A.
This is logical because unbalance is not considered in BB20, then ball B which has the
less unbalance eccentricity is the closest one to BB20. And, Kawamura has shown that
unbalance eccentricity affected regularity and stability of ball motion at low speeds.

On Figure 2.35, only ball A is reported because comparable results were measured
experimentally with ball B. This shows that unbalance does not influence ball rotation
to cage rotation speeds ratio. Results between BB20 and experiments are very close
especially under high friction coefficient. If curve shapes are similar, a small vertical
shift is observed. This is probably due to the fact that cage is not considered yet, then
its rotational speed ωc is underestimated. In any case, BB20 and experimental results
for β and ωR are comparable which makes us think that BB20 correctly models ball
self-rotations under pure axial load.
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8 Summary
To conclude, ACBB with 1, 2, 3 or 4 contact points are modelled by solving balls and
rings quasi-static equilibrium. Lubrication, inertia, external forces on inner ring, ball-
race normal and friction forces are considered. Compared with models in the literature,
important feature of BB20 is the possibility to get more than 2 ball-race contact points
and the consideration of yaw angle β′j due to gyroscopic momentum M j

GY . Another
specificity is that no raceway control hypothesis is done to compute kinematics. Then,
nothing is neglected and all balls degrees of freedom are calculated by solving bearing
equilibrium.

Ball-race interactions are accurately modelled by considering spinning, rolling, macro-
sliding at contact and by integrating shear stress on each point of surface ellipse. All
these elements significantly complicate kinematic behaviour and numerical resolution,
but improve model accuracy. It was also shown that modifications brought in this version
reduce constraints, improves numerical continuity, robustness, computational time and
allows to work under a larger panel of operating conditions.

Results obtained under pure axial load or moderated radial loads, are in agreement
with physics expected. When radial load becomes larger than axial load, model limita-
tions are reached. Then, cage and dynamical effects should be considered to compute
balls rotations without making important hypothesis. Results validation by comparison
with literature is complicated since each model has its own considerations. However,
comparable behaviours were observed and makes us believe on model correctness even if
few questions remain and should be kept in mind while pursuing development. Validation
by experiments is also limited by difficulties to measure kinematic parameters of interest.
However, satisfying results were obtained while comparing BB20 with power loss measured
by Safran, or with pitch angle, ball and cage rotations experienced by Kawamura.
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Quasi-dynamic model with cage

Contents
1 Markers definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

1.1 Cage coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . 104
1.2 Relative displacements . . . . . . . . . . . . . . . . . . . . . . . . . 106

2 Ball-to-pocket interactions . . . . . . . . . . . . . . . . . . . . . . . 108
2.1 Interactions in (Gj

p,y
j
p,z

j
p) plan . . . . . . . . . . . . . . . . . . . . 109

2.2 Interaction in (Gj
p,z

j
p,x

j
p) plan . . . . . . . . . . . . . . . . . . . . . 114

2.3 Total interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3 Cage-ring interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.1 General model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.2 Computation for whole cage . . . . . . . . . . . . . . . . . . . . . . 119
3.3 Computation for each pocket . . . . . . . . . . . . . . . . . . . . . 121

4 Rigid cage resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.1 Inner Ring equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.2 Balls equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3 Cage equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.4 Numerical procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 Flexible cage resolution . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.1 Cage elasticity definition . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 Pocket equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3 Numerical procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4 Cage center motions and pocket elastic deformations . . . . . . . . 128

6 Results analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.1 Investigation of existing bearings . . . . . . . . . . . . . . . . . . . 130
6.2 Comparison with a 4 contact-points literature model . . . . . . . . 142

7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

103



3. Quasi-dynamic model with cage

1 Markers definition

1.1 Cage coordinate systems
1.1.1 Cage center Rc

Cage can be considered as a rigid or flexible body in three-dimensions. In any case, it has
six degrees of freedom as represented in Figure 3.1. Indeed, cage center Gc translates of xc,
yc, zc and rotates of θcx, θcy, θcz relative to bearing center G. Rc is the coordinate system
related to these motions. As mentioned previously, cage also rotates around bearing axis
xG at ωc speed. In quasi-static and quasi-dynamic, this speed is supposed to be the
average of balls precessions.

RC = {GC , xC , yC , zC} (3.1)

δc = GGc =


xc

yc

zc


RG

(3.2)

θcx = (yG,yc) = (zG,zc) (3.3)

θcy = (zG,zc) = (xG,xc) (3.4)
θcz = (xG,xc) = (yG,yc) (3.5)

ωc =
N∑
j=1

ωjm
N

(3.6)

xG

yG

zG

G
δ GC

θcy

θczθcxyc

θcz

xc

θcyθcx
zc

Figure 1 – repcage

1

Figure 3.1 : Cage center motions
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Figure 3.2 : Pocket center motions
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Markers definition

1.1.2 Pocket initial position Rj
p

Cage presents N cylindrical holes, or pockets, equally distributed around circumference.
Initially, when cage is centered on the bearing and has not moved yet, each pocket is
located in Gjp and defined locally by coordinate system Rj

p. Since cage rotational speed
is supposed to be the average of balls precessions, this coordinate system is equivalent to
ball position coordinate system Rj

b1.

Rj
p ≡ Rj

b1 =
{
Gjp, xG, y

j
p, z

j
p

}
(3.7)

ψj = ψc+ 2π
N

(j−1) = (yG,yj
p) = (zG,zj

p) (3.8)

1.1.3 Pocket removed position Rj
p′

Like cage, pockets have six degrees of freedom as schematized in Figure 3.2. In global
coordinate system, pocket centers P j translates of δjpx, δjpy, δjpz and rotates of θjpx, θjpy,
θjpz relative to pocket initial position Gjp. Rj

p′ is the coordinate system that defines this
removed position.

Rj
p′ =

{
P j , xj

p′ , y
j
p′ , z

j
p′

}
(3.9)

Gj
pP

j = δjp =


δjpx

δjpy

δjpz


RG

(3.10)

θjpx = (yj
p ,y

j
p′) = (zj

p ,z
j
p′) (3.11)

θjpy = (zj
p ,z

j
p′) = (xj

p,x
j
p′) (3.12)

θjpz = (xj
p,x

j
p′) = (yj

p ,y
j
p′) (3.13)

1.1.4 Bridge position Rj
br

Each bridge is defined at its center Gjbr, by coordinate system Rj
br. As illustrated in

Figure 3.3, this position corresponds to initial pocket position with an additional rotation
of − π

N .

Rj
br ≡ Rj

b1 =
{
Gjbr, xG, y

j
br, z

j
br

}
(3.14)

ψjbr = ψc+ 2π
N

(j−1.5) = (yG,yj
br) = (zG,zj

br) (3.15)
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3. Quasi-dynamic model with cage

Figure 3.3 : Pocket centers and bridge centers positions

1.2 Relative displacements
1.2.1 Balls positions

In quasi-static, ball position was defined by relation (2.12). However, ball orthoradial dis-
placement δjbz was neglected, which is no longer valid with cage contribution. Indeed, as
represented on Figure 3.4, pocket center P j and ball center Bj are not combined anymore
and ball-to-pocket interactions can occur. Nevertheless, determination of δjbz is tricky
since ball motion is already entirely defined. Adding another unknown would overstress
the system. The solution found to estimate these variables is to consider ball number 1 as
reference with δ1

bz set to 0. Then, we suppose that following balls have a displacement δjbz
equal to previous ball displacement δj−1

bz with an additional increment ∆j
bz. This incre-

ment, defined by relation (3.16), corresponds to ball acceleration between two positions.
To compute it, we assume that time step ∆τ between two balls is the average time trav-
elled by cage. With such definition, balls accelerations ω̇jm are approximated as a function
of positions and speeds instead of real time. That is why we speak about quasi-dynamics
of cage. Note that a coefficient λc is introduced in this expression. It is normally equal
to 1 but during numerical procedure, it will be used as a relaxation coefficient comprised
between 10−6 and 1.

∆j
bz = ωjm−ωj−1

m

2
dm
2 ∆τ with ∆τ = 2π

Nωc
(3.16)

δjbz =


0 if j = 1

δj−1
bz +λc

ωj
m−ωj−1

m
ωc

π
N
dm
2 otherwise

(3.17)

Now that balls orthoradial displacements are known from expression (3.17), coordi-
nates of ball mass center are updated with relation (3.18) and balls displacements relative
to initial pockets centers are assessed by relation (3.19).
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Figure 3.4 : Ball tangential displacement

GBj =


xjG

yjG

zjG


RG

=


δjbx

dm
2 + δjby

δjbz


Rj

b1

=


go
2 λ

j
o−GEo2 sinαjo2

(dm
2 − (fo−0.5)D cosαf +GEo2 cosαjo2)cosψj − δjbz sinψj

(dm
2 − (fo−0.5)D cosαf +GEo2 cosαjo2)sinψj + δjbz cosψj


RG

(3.18)

Gj
pB

j = δjb =


δjbx

δjby

δjbz


RG

=


xjG

yjG− dm
2 cosψj

zjG− dm
2 sinψj


RG

(3.19)

1.2.2 Pockets motions

When cage is considered as rigid, pocket displacements δjp and rotations θjp are only due
to cage rigid motion. That is why, δc and θc are unknowns of the problem and δjp, θj

p

are deduced from relations (3.20) and (3.21).

Gj
pP

j =


δjpx

δjpy

δjpz


RG

=


xc−Rc cosψj θcz +Rc sinψj θcy

yc−Rc sinψj θcx
zc+Rc cosψj θcx


RG

(3.20)


θjpx

θjpy

θjpz


RG

=


θcx

θcy

θcz


RG

(3.21)

On the contrary, as illustrated in Figure 3.5, when cage is considered as flexible,
pocket motions δjp, θjp, are the contribution of cage rigid body modes δjc , θjc and of elastic
deformations δjel, θ

j
el. That is why, δjp and θjp cannot be expressed directly and becomes

unknowns of elastic problem instead of δc, θc.
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3. Quasi-dynamic model with cage

Figure 3.5 : Pocket motion and deformation

1.2.3 Ball-to-pocket geometric approach

From ball and pocket respective displacements, we can compute ball-to pocket displace-
ments δjpb by relation (3.22). We also define Cjb the closer point on ball that approaches
the point on pocket Cjp . We suppose that ball-to-pocket interaction occurs in (P j ,xj

p,z
j
p)

plan. Then, we assume that film thickness hjf , geometric approach ∆pbj and normal con-
tact force do not have component along yj

p. Consequently, geometric approach ∆j
pb is the

projection of δjpb in (P j ,xj
p,z

j
p) plan, as expressed in (3.23). As well, we define direction

of ball-to-pocket approach by ϕj angle such as reported in Figure 3.6 and in expression
(3.24). We will also suppose for the future, that ball-to-pocket clearance is a geometric
constant, that is to say that ball and pocket macroscopic deformations are neglected even
when cage is considered as flexible.

PBj = δjpb =


PBj

x

PBj
y

PBj
z


RG

=


δjbx− δjpx

δjby − δjpy

δjbz − δjpz


RG

(3.22)

∆j
pb =

√
(PBj

x)2 +(−PBj
y sinψj +PBj

z cosψj)2 (3.23)


cosϕj = PBj
x

∆j
pb

sinϕj = −PBj
y sinψj+PBj

z cosψj

∆j
pb

(3.24)

2 Ball-to-pocket interactions
Balls have complex motions with three self-rotations. That is why, ball-to-pocket inter-
actions involve two phenomenon:

• Hydrodynamic (HD) or elastohydrodynamic (EHD) contact due to rotation ωjyp =
ωjR sinβj in (Gjp,y

j
p,z

j
p) plan.

• Short journal bearing effect due to rotation ωjxp = ωjR cosβj cosβ′j in (Gjp,z
j
p,x

j
p)

plan.
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Figure 3.6 : Ball-to-pocket geometric interaction

2.1 Interactions in (Gjp,yjp, zjp) plan
2.1.1 Barrel-plan HD contact

Ball-to-pocket hydrodynamic interaction in (Gjp,y
j
p,z

j
p) plan is equivalent to a barrel-plan

contact as schematized in Figure 3.7. This theory, developed in Nelias’ thesis [186], gives
HD normal force (3.25) and friction force (3.26) expressions of a fully lubricated contact
between a barrel and a plan. To assess these forces, the relative velocity U (3.27) projected
in (Gjp,y

j
p,z

j
p) plan and equivalent radius Rx, Ry (3.28) are computed. Barrel-plan forces

also depends on lubricant dynamic viscosity µ, on half length of the contact l, here half
cage thickness hc and above all on film thickness h0 at the given contact.

Figure 3.7 : Barrel-plan contact

W = 2πµURy
1+ 2

3
Ry

Rx

√
2Rx
h0

(3.25)
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3. Quasi-dynamic model with cage

F = 2µU
√
RxRy

∫ 3

−3

1√
1
L2 +η2

arctan
(

1√
1
L2 +η2

)
dη with L= l√

2Ryh0
(3.26)

U = D

2 ω
j
R cosβj cosβ′j (3.27)

 Rx = RpRb
Rp−Rb

Ry =Rb
with Rb = D

2 and Rp = cp+D

2 (3.28)

2.1.2 Dry contact

When two bodies get closer and film thickness gets smaller, contact interaction changes
from hydrodynamic to elastohydrodynamic, then bodies deform with an elastic deforma-
tion δjH . In such case, barrel-plan HD theory does not apply and normal contact force is
characterised by Hertzian theory (3.29) instead.

W j
H =KH(δjH)

3
2 (3.29)

As well, by curve-fitting numerical solutions from 2D contact under EHD or PE (piezo-
viscous elastic) lubrication regimes, Hamrock and Dowson [116] developed formula (3.30).
It links film thickness with contact parameters such as load, speed or materials properties
written in (3.31). More details about rheological parameters defined in these relations
and in all BB20 interactions are presented in Appendix C.

HHD = 1.69U ′0.67G′0.53W ′−0.067(1−0.61e−0.73k′)Ry
with k′ = 1.03

(
Rx
Ry

)0.64 (3.30)



Young’s equivalent modulus 1
E′ = 1

2(1−ν2
b

Eb
+ 1−ν2

c
Ec

)

Dimensionless velocity U ′ = µU
E′Ry

Dimensionless force W ′ = W
E′R2

y

Dimensionless elasticity modulus : G′ = α∗E′

(3.31)

Besides, when bodies deform elastically and when ball slips on pocket at relative speed
U, shearing of solid fluid film occurs. Resulting shear force F jτ is calculated by considering
non-Newtonian behaviour and by integrating shear stress limit τL on contact ellipse. This
stress τL is defined by an isothermal, Maxwell-type, traction model with a Ree-Eyring
visco-elastic formulation. Corresponding expression is reported in (3.32), where a, c are
ellipse semi-axes and P is the average contact pressure. Lubricant parameters τL0, ατ ,βτ ,
T0 come from Nelias’ experimental results [187] obtained for Mobil Jet-oil II with MIL-
L-23699 specification.

F jτ =
∫
ellipse

τLdS = πacτL(T,P ) with τL(T,P ) = τL0 e
(ατP+βτ ( 1

T − 1
T0

)) (3.32)
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2.1.3 Contact forces continuity

Figure 3.8 : Contact at each side

As schematized in Figure 3.8, ball-to-pocket interaction in (Gjp,y
j
p,z

j
p) plan takes place

at two locations:
• at front side where ball gets closer to pocket.
• at rear side which is opposite and where ball moves away from pocket.

At rear side, film thickness hjr arises from geometric relation (3.33), normal force W j
r and

friction force F jr are deduced from barrel-plan relations (3.25) and (3.26).

hjr = cp
2 +∆j

pb (3.33)

At front side, computation of normal and friction forces is tedious. Depending on
ball-to-pocket relative positions, different contact model applies and transition from one
model to another one results in important numerical discontinuities.

Indeed, as represented on the right part of graphics 3.9, when film thickness (or positive
gap: hjf = cp

2 − ∆j
pb) decreases to get closer to zero, barrel-plan normal load W j

BP tends
to infinity. This is due to the fact that W j

BP is inversely proportional to the root of
film thickness. Such exponential increase generates discontinuities when film thickness
changes between two iterations. This also confirms that barrel-plan HD theory does not
apply below a minimal film thickness.

On the left part of graphics 3.9, Hertzian load W j
H is plotted by supposing that elastic

deformation is equal to ball-to-pocket penetration: δjH = −cp

2 + ∆j
pb. Then, it can be

observed that normal load increases rapidly with penetration. This is due to the fact
that W j

H is proportional to δjH at power 1.5. Note that physically, ball never penetrates
pocket, a film is always present between bodies and gap cannot be negative. However,
such case can be numerically encountered before reaching a converged state.
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3. Quasi-dynamic model with cage

Analysis of these two curves in zero, also shows a discontinuity of normal load between
barrel-plan and Hertzian model when changing from HD to EHD contact. Many proce-
dures have been tested to find a solution to this problem. Optimal method selected is to
define hjtr, the film thickness transition from HD to EHD regime. This transition occurs
when Moes-Venner parameter M ′, defined by relation (3.34), becomes greater than 10.
Then, hjtr is calculated by Hamrock Dowson film thickness formula (3.30) with W ′ fixed
such that M ′ = 10.

M ′ =W ′U ′−0.75 (3.34)
Is this way, we consider that barrel-plan HD theory applies when gap is greater than

hjtr. For lower values, Hertzian theory is applied with a δjH value translated of hjtr.
This translation does not introduce important error on load computation since W j

H is
particularly small when δjH = hjtr. This equivalent model is represented by the grey plot
on Figure 3.9. With such model, transition between HD and EHD regimes is smooth and
normal load does not take infinite values when film thickness tends to zero.

Figure 3.9 : Normal load evolution with ball-to-pocket gap cp

2 −∆j
pb, for different contact

models

Consequently, depending on ball-to-pocket positions and pocket clearance cp, the fol-
lowing procedure is applied to compute contact forces at the front side:

• Hydrodynamic contact prevails if cp

2 −∆j
pb ≥ hjtr:

Then, film thickness hjf is calculated from geometric relation (3.35), HD normal force W j
BP

and friction force F jf are deduced from barrel-plan relations (3.25) and (3.26). From the
knowledge of film thickness hjf , Hamrock-Dowson formula (3.30) is used in the reversed
direction to compute dry normal load W j

H . Then, Hertzian deformation δjH is calculated
by applying relation (3.29) in the reversed direction. From dry contact parameters, shear
force F jτ is obtained by relation (3.32).

hjf = cp
2 −∆j

pb (3.35)
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• Dry contact prevails if cp

2 −∆j
pb < hjtr:

Then, Hertzian deformation is calculated geometrically by translated expression (3.36),
dry normal load W j

H by relation (3.29) and shear force F jτ by (3.32). Using normal
load W j

H , film thickness hjf is assessed by Hamrock Dowson formula (3.30). From film
thickness, hydrodynamic normal force W j

BP and friction force F jf are deduced from barrel-
plan relations (3.25) and (3.26).

δjH = |cp2 −∆j
pb−hjtr| (3.36)

Finally, for any lubrication regime, from HD and EHD contributions, equivalent nor-
mal load at front side is estimated by relation (3.37). Similarly, friction force at front side
is expressed in (3.38) and shear force in (3.39).

W j
f =W j

BP

(
hjf

hjf + δjH

)
+W j

H

(
δjH

hjf + δjH

)
(3.37)

F jf = F jf

(
hjf

hjf + δjH

)
(3.38)

F jτ = F jτ

(
δjH

hjf + δjH

)
(3.39)

2.1.4 Forces summary

To summarize, ball-to-pocket forces acting in (Gjp,y
j
p,z

j
p) plan are normal and friction

forces at front and rear side (W j
f , W j

r , F jf , F jr ) and shear forces F jτ at front side. They
act such that friction and shear are opposed to sliding speed U and that normal forces are
directed toward the body of interest. Then, contact forces and momentums of pocket-on-
ball at ball center Bj , in ball coordinate system Rj

b1, are expressed by:

F j
bp/b =


(W j

f −W j
r )cosϕj − sinβj cosβ′j(F jr −F jf −F jτ )

(F jr −F jf −F jτ )cosβj

(W j
f −W j

r )sinϕj +sinβj sinβ′j(F jr −F jf −F jτ )


Rj

b1

(3.40)

M j
bp/b(B

j) =


D
2 (F jr +F jf +F jτ )sinϕj cosβj

D
2 (sinϕj cosβ′j +cosϕj sinβ′j)(F jr +F jf +F jτ )sinβj

−D
2 (F jr +F jf +F jτ )cosϕj cosβj


Rj

b1

(3.41)

Forces and momentums of ball-on-pocket are opposed to pocket-on-ball ones. They
are projected in global coordinate system RG because equilibrium equations on pocket
or cage will be defined in this system. Ball-on-pocket momentums are also transposed at
pocket center P j .

F j
bp/p = −F j

bp/b (3.42)
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M j
bp/p(P

j) = −M j
bp/b(B

j)+PBj ∧F j
bp/p (3.43)

Then, contact forces and momentums of ball-on-pocket at pocket center P j , in global
coordinate system RG, are expressed by:

F j
bp/p =


−F jbp/bx

−F jbp/by cosψj +F jbp/bz sinψj

−F jbp/by sinψj −F jbp/bz cosψj


RG

(3.44)

M j
bp/p(P

j) =


−M j

bp/bx+PBj
yF

j
bp/pz −PBj

z F
j
bp/py

−M j
bp/by cosψj +M j

bp/bz sinψj +PBj
z F

j
bp/px−PBj

xF
j
bp/pz

−M j
bp/by sinψj −M j

bp/bz cosψj +PBj
xF

j
bp/py −PBj

yF
j
bp/px


RG

(3.45)

2.2 Interaction in (Gjp, zjp,xjp) plan

Considering forces acting in (Gjp,z
j
p,x

j
p) plan is essential to gain in accuracy and to

understand all mechanisms involved in cage behaviour. To model these interactions, we
assume that corresponding contact is lightly loaded, that fluid is Newtonian and that
bodies deformations are negligible. We also suppose that ball and pocket are co-axial and
that the ratio cage thickness hc to ball diameter D is less than 1/6. Then, this interaction
can be assimilated to an infinitely short hydrodynamic journal bearing. Note that in fact
the ratio cage thickness to ball diameter hc/D is between 1/3 and 1/2. That is why an
improvement of this model could be considered a posteriori.

Figure 3.10 : Short journal bearing interaction

2.2.1 Short journal bearing modeling for HD contact

When film thickness hjf is greater than or equal to hjtr, lubrication regime is hydrodynamic
and short journal bearing (SJB) theory applies directly. In this problem, we consider ball
as a shaft of radius R1 =Rb and pocket as a pad of radius R2 =Rp. Ball rotates around
yj
p at speed ω1 = ωjyp

= ωjR sinβj whereas pocket does not rotate around yj
p: ω2 = 0.
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Contact width is equal to cage thickness hc and eccentricity is equal to geometric
approach ∆j

pb. We also define in (3.46) eccentricity ratio ϵ as the ratio between eccentricity
and radial clearance.

ϵ=
2∆j

pb

cp
(3.46)

Then, application of SJB theory gives attitude angle ϕjsb, hydrodynamic load W j
sb,

friction torque on ball Cjb and friction torque on pocket Cjp as expressed in (3.47), (3.48),
(3.49), (3.50).

tanϕjsb = π

4

√
1− ϵ2

ϵ
sign(ωjR sinβj) (3.47)

W j
sb = µ |ωjR sinβj |Rph3

c

c2p

ϵ(
1− ϵ2

)2

√
16ϵ2 +π2(1− ϵ2) (3.48)

Cjb = −
µR3

pω
j
R sinβj hc
cp

2π(2+ ϵ)
(1+ ϵ)

√
1− ϵ2

(3.49)

Cjp = −Cjb +∆j
pbW

j
sb sinϕjsb (3.50)

These contact parameters are schematized in Figure 3.10. Note that, because of fluid
rotation ωjyp

, hydrodynamic load W j
sb is directed by attitude angle ϕjsb. This direction is

different than ϕj that orient contact approach with normal load W j
f such as illustrated

in Figure 3.7. Indeed, according to SJB theory, attitude angle ϕjsb is defined by relation
(3.51).

ϕjsb = (W j
sb,W

j
f ) (3.51)

2.2.2 Extension of short journal bearing theory to EHD contact

When film thickness hjf is less than hjtr, lubrication regime is elastohydrodynamic, SJB
theory does not apply anymore. Indeed, when film thickness reduces, ∆j

pb gets closer to
half pocket clearance cp

2 , relative eccentricity ϵ tends to 1, (1 − ϵ2) tends to zero, load
W j
sb and torques Cjb , Cjp tend to infinity. Nevertheless, a detailed analysis of SJB theory

enables to understand that component cp

2 (1 − ϵ) characterises shaft-pad minimum film
thickness. Then, SJB theory can be extended to EHD contact by replacing cp

2 (1 − ϵ) by
hjf and ϵ by 1. Is this way, relations (3.52) to (3.56) are obtained.

ϵ= 1 (3.52)

ϕjsb = 0 (3.53)

W j
sb = µ |ωjR sinβj |Rph3

c(
hjf

)2 (3.54)

Cjb = −3π
2
µR3

pω
j
R sinβj hc√
2cphjf

(3.55)

Cjp = −Cjb (3.56)
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2.2.3 Forces summary

For both HD and EHD regimes, when fluid flow changes from laminar to turbulent, that is
to say when Reynolds number Re gets greater than 3 000, a correction on friction torques
Cjb and Cjp is applied such that:

Cjturb = Cjlam(1+0.0012R0.94
e ) with Re = ρ |ωjR sinβj |Dcp

4µ (3.57)

Besides, from attitude angle definition (3.51), relation (3.58) can be deducted and
load W j

sb can be projected in ball coordinate system Rj
b1. However, to avoid the use of

arctangente function that can introduce numerical errors, explicit expression of ϕj is not
calculated. Instead, sinϕj and cosϕj expressed in (3.24), are combined with trigonometric
relations to project W j

sb in Rj
b1 system.

(xj
p,W

j
sb) = ϕj −ϕjsb+π (3.58)

Is this way, SJB forces and momentums of pocket-on-ball, at ball center Bj , in ball
coordinate system Rj

b1, are expressed by:

F j
sb/b =


−W j

sb(−cosϕj cosϕjsb− sinϕj sinϕjsb)
0

−W j
sb(−sinϕj cosϕjsb+cosϕj sinϕjsb)


Rj

b1

(3.59)

M j
sb/b(B

j) =


0
Cjb

0


Rj

b1

(3.60)

SJB forces and momentums of ball-on-pocket, at pocket center P j , in global coordinate
system RG, are expressed by:

F j
sb/p =


−F jsb/bx

F jsb/bz sinψj

−F jsb/bz cosψj


RG

(3.61)

M j
bp/p(P

j) =


0

Cjp cosψj

Cjp sinψj


RG

(3.62)
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Cage-ring interactions

2.3 Total interactions
To conclude on ball-to-pocket total interactions, resulting forces and momentums are the
sum of contributions in (Gjp,y

j
p,z

j
p) and (Gjp,z

j
p,x

j
p) plans as expressed in relations (3.63)

to (3.66).

F j
p/b = F j

bp/b+F j
sb/b (3.63)

M j
p/b(B

j) = M j
bp/b(B

j)+M j
sb/b(B

j) (3.64)

F j
b/p = F j

bp/p+F j
sb/p (3.65)

M j
b/p(P

j) = M j
bp/p(P

j)+M j
sb/p(P

j) (3.66)

Moreover, since rigid cage equilibrium will be defined at cage center Gc, ball-to-pocket
momentum M j

b/p(P
j) is transposed in this point:

M j
b/c(Gc) = M j

b/p(P
j)+GcP

j ∧F j
b/p (3.67)

M j
b/c(Gc) =


M j
b/px(P j)+Rc cosψj F jb/pz −Rc sinψj F jb/py

M j
b/py(P

j)+Rc sinψj F jb/px
M j
b/pz(P

j)−Rc cosψj F jb/px


RG

(3.68)

3 Cage-ring interactions

3.1 General model
If cage-inner race clearance cIR is less than cage-outer race clearance cOR, cage is guided
by inner ring and hydrodynamic interaction occurs between these solids. Otherwise, cage
is guided by outer ring and hydrodynamic interaction occurs with this ring. In any
case, guiding clearance is defined by relation (3.69) and cage interactions with left and
right races are considered independently. Is this way, different shoulder diameters can be
considered at each side of a given ring: deil, deir for left, right inner race and deol, deor
for left, right outer race. This distinction of upstream and downstream races is also an
alternative to model a dissymmetry in cage temperature.

cG =min(cIR, cOR) with
 cIR =Dci−0.5(deil+deir)
cOR = 0.5(deol+deor)−Dco

(3.69)

To model these interactions, we assume that contact between cage and guiding race
is lightly loaded, that fluid is Newtonian and that bodies deformations are negligible. We
also suppose that cage and guiding race are co-axial and that the ratio race width Lkm to
shoulder diameter dekm is less than 1/6. Then, this interaction can be assimilated to an
infinitely short hydrodynamic journal bearing in (G,yG,zG) plan. With such hypothesis
ring misalignment is not considered. Its implementation should be done in future versions.
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3. Quasi-dynamic model with cage

Figure 3.11 : Short journal bearing parameters

If short journal bearing theory is used to compute both cage-inner races or cage-outer
races interactions, parameters definition is specific to each interaction. This parametrisa-
tion is illustrated in Figure 3.11.

When cIR ≤ cOR, cage-inner races interactions occur, then cage-outer races forces
Fc/OR, Mc/OR are set to zero. To apply SJB theory to cage and inner races, we consider
that left or right inner race is shaft (solid 1) of radius R1 = 0.5deim, rotational speed
ω1 = Ωi and that cage is pad (solid 2) of radiusR2 = 0.5Dci, rotational speed ω2 =ωc. From
cage and inner ring coordinates in (G,yG,zG) plan, eccentricity is defined by relation
(3.70).

e=O1mO2m =
√

(δy −yc)2 +(δz − zc)2 (3.70)
On the contrary, when cOR > cIR, cage-outer races interactions occur, then cage-inner

races forces Fc/IR, Mc/IR are set to zero. To apply SJB theory to cage and outer races,
we consider that left or right outer race is pad (solid 2) of radius R2 = 0.5deom, rotational
speed ω2 = Ωo and that cage is shaft (solid 1) of radius R1 = 0.5Dco, rotational speed
ω1 = ωc. Since outer ring is supposed to be centered on the bearing in G, from cage
coordinates in (G,yG,zG) plan, eccentricity is defined by relation (3.71).

e=O1mO2m =
√
y2
c + z2

c (3.71)

For both interactions, relative eccentricity is defined in (3.72) as the ratio between
eccentricity and half guiding clearance.

ϵ= 2e
cG

(3.72)
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Cage-ring interactions

From bearing geometry, contact widths Lkm at left and right side of both rings are
calculated by relation (3.73). In this expression, k refers to inner or outer race and m
to left or right side. wBk is ring width, fk is race conformity and Ckm,xG

, C
km,yj

b1
are

raceway curvature center positions along xG and yj
b1.

Lkm =
∣∣∣0.5wBk+λCkm,xG

−
√

(fkD)2 − (C
km,yj

b1
−0.5dekm)2

∣∣∣ with λ= +/−1 for m= l/r

(3.73)
This theory applies to model both rigid and elastic cages. However, for rigid cage,

quasi-dynamic resolution consists in solving cage equilibrium at cage center Gc. On the
contrary, for flexible cage, quasi-dynamic resolution consists in solving pocket equilibrium
at pocket center Gjp. That is why computation of cage-ring interactions has to be done
for whole cage on one hand, and for each pocket on the other hand.

3.2 Computation for whole cage
For rigid cage resolution, SJB theory is applied directly to the whole cage to obtain at
each race k, each side m, attitude angle ϕkm, hydrodynamic load Wkm, friction torque on
shaft C1km and friction torque on pad C2km as expressed in (3.74), (3.75), (3.76), (3.77).
Note also that cage and inner ring rotation speeds are high, then fluid flow is turbulent
and correction (3.78) is applied on torque computation.

tanϕkm = π

4

√
1− ϵ2

ϵ
sign(ω1 −ω2) (3.74)

Wkm = µ |ω1R1 −ω2R2|L3
km

cG

ϵ

(1− ϵ2)2

√
16ϵ2 +π2(1− ϵ2) (3.75)

C1km = −µR3
2 (ω1 −ω2)
cG

2πLkm (2+ ϵ)
(1+ ϵ)

√
1− ϵ2

(3.76)

C2km = −C1km+ eWkm sinϕkm (3.77)

Cjturb = Cjlam(1+0.0012R0.94
e ) with Re = ρ |ω1R1 −ω2R2|cG

2µ (3.78)

To project normal forceWkm in global coordinate system RG, angle ϕGk is defined between
zG and eccentricity direction O1mO2m as schematized in Figure 3.11. This angle is
calculated by relation (3.79) for cage-inner races interactions and by relation (3.80) for
cage-outer races.

ϕGi = (zG;O1mO2m) such that



if zc− δz ̸= 0 : tanϕGi = yc−δy

zc−δz

if zc− δz = 0 and


if yc− δy = 0 : ϕGi = 0
if yc− δy < 0 : ϕGi = π

2
if yc− δy > 0 : ϕGi = −π

2
(3.79)
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3. Quasi-dynamic model with cage

ϕGo = (zG;O1mO2m) such that



if zc ̸= 0 : tanϕGo = yc
zc

if zc = 0 and


if yc = 0 : ϕGo = 0
if yc > 0 : ϕGo = π

2
if yc < 0 : ϕGo = −π

2

(3.80)

Figure 3.12 : Cage-inner races interactions

Finally, to compute cage-race forces we suppose that each force apply at the middle
width of the race in Nkm. We also assume that torques apply in O1m or O2m such as
illustrated in Figure 3.12.

Consequently, forces and momentums of cage on inner race, at bearing center G, are
expressed by:

Fc/IR =
∑
m=l,r


0

Wim sin(ϕim−ϕGi)
Wim cos(ϕim−ϕGi)


RG

(3.81)

M j
c/IR(G) =

∑
m=l,r

(
M j

c/IRm(O1m)+GNim∧Fc/IRm
)

(3.82)

Mc/IR(G) =
∑
m=l,r


C1im

−Wim cos(ϕim−ϕGi)
(
δx+0.5λ(wIR−Lim)

)
Wim sin(ϕim−ϕGi)

(
δx+0.5λ(wIR−Lim)

)


RG

with λ= −/+1
for m= l/r

(3.83)

Forces and momentums of inner race on cage at cage center Gc are expressed by:

FIR/c = −Fc/IR (3.84)
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Cage-ring interactions

M j
IR/c(Gc) =

∑
m=l,r

(
M j

IR/cm(O2m)+GcNim∧FIR/cm
)

(3.85)

MIR/c(Gc) =
∑
m=l,r


C2im

Wim cos(ϕim−ϕGi)
(
δx+0.5λ(wIR−Lim)

)
−Wim sin(ϕim−ϕGi)

(
δx+0.5λ(wIR−Lim)

)


RG

with λ= −/+1
for m= l/r

(3.86)

Forces and momentums of outer race on cage at cage center Gc are expressed by:

FOR/c =
∑
m=l,r


0

Wom sin(ϕom−ϕGo)
Wom cos(ϕom−ϕGo)


RG

(3.87)

M j
OR/c(Gc) =

∑
m=l,r

(
M j

OR/cm(O1m)+GcNom∧FOR/cm
)

(3.88)

MOR/c(Gc) =
∑
m=l,r


C1om

−Wom cos(ϕom−ϕGo)
(
0.5λ(wOR−Lom)

)
Wom sin(ϕom−ϕGo)

(
0.5λ(wOR−Lom)

)


RG

with λ= −/+1
for m= l/r

(3.89)
Note that forces and momentums of cage on outer race are not calculated because no

equilibrium is made on outer race.

3.3 Computation for each pocket
Computation of cage-race forces for flexible cage is more complicated since cage is seg-
mented in N elements. Forces of each race section on each pocket must be calculated.
As for that, SJB theory is revised from the beginning. Indeed, in general theory, normal
load and friction torque are calculated by integrating respectively, hydrodynamic pressure
and shear stress, on the whole bearing. Now, to compute normal load W j

km and friction
torque Cjkm on each pocket j, hydrodynamic pressure and shear stress are only integrated
on each element. Corresponding integration interval is defined in (3.90) and taken as
bridge angular position on both sides of a pocket.

[
aj ;bj

]
=
[
ψjbr;ψ

j+1
br

]
=
[ 2π
N

(j−1.5)+ψc;
2π
N

(j−0.5)+ψc
]

(3.90)

Pockets are separated into two categories depending on their orbital position:

• Pockets in active zone where ϕGk + π
2 ≤ ψj ≤ ϕGk + 3π

2 , hydrodynamic pressure is
positive and normal load is calculated by pressure integration on [aj ;bj ].

• Pockets in passive zone where ϕGk + 3π
2 ≤ ψj ≤ ϕGk + 5π

2 , pressure and normal load
are supposed to be equal to zero.
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3. Quasi-dynamic model with cage

Each zone also presents a different shear stress. Then, after computation, different nor-
mal load W j

km and friction torque Cjkm are obtained for pockets located in each zone.
Corresponding expressions are summarised by relations (3.91) to (3.95). Note that torque
correction (3.78) is again applied on Cjkm since fluid flow is turbulent.

W j
km =


√

(W j
tkm)2 +(W j

rkm)2 if ψj ∈ active zone
0 if ψj ∈ passive zone

(3.91)

W j
tkm = µ |ω1R1 −ω2R2|L3

km

c2G

2ϵ
(1− ϵ2)2

(
(cosψjb)2 − (cosψja)2

2 − ϵ(cosψjb − cosψja)
)

(3.92)

W j
rkm = µ |ω1R1 −ω2R2|L3

km

c2G

ϵ

(1− ϵ2)1.5

(
ψjb −ψja− sin(2ψjb)− sin(2ψja)

2

)
(3.93)

Cjkm =


µR3

2 (ω1−ω2)
cG

2Lkm√
1−ϵ2

(
ψjb −ψja

)
if j ∈ active zone

µR3
2 (ω1−ω2)
cG

2Lkm

(1+ϵ)
√

1−ϵ2
(
ψjb −ψja− ϵ(sinψjb − sinψja)

)
if j ∈ passive zone

(3.94)

cosψjc = ϵ+cosc
1+ϵcosc

sinψjc =
√

1−ϵ2 sinc
1+ϵcosc

sin(2ψjc) =
√

1−ϵ2 sin(2c)
1+ϵcos(2c)

with c= aj , bj (3.95)

Figure 3.13 : Races-Pocket interactions

Finally, to compute race-to-pocket forces, we suppose that each force apply at the
middle length of a pocket in N j

m such as schematized in Figure 3.13. Normal load W j
km

is directed along yj
p and friction torque Cjkm around xG.

Consequently, forces and momentums of inner race on pocket j, at pocket center Gjp,
are expressed by:
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Rigid cage resolution

F j
IR/p =

∑
m=l,r


0

W j
im cosψj

W j
im sinψj


RG

(3.96)

M j
IR/p(G

j
p) =

∑
m=l,r

(
M j

IR/pm(Gjp)+Gj
pN

j
m∧FIR/pm

)
(3.97)

M j
IR/p(G

j
p) =

∑
m=l,r


Cjim

−0.25λW j
im sinψj(wc+Dp)

0.25λW j
im cosψj(wc+Dp)


RG

with λ= −/+1
for m= l/r

(3.98)

Similarly, forces and momentums of outer race on pocket j, at pocket center Gjp, are
expressed by:

F j
OR/p =

∑
m=l,r


0

−W j
om cosψj

−W j
om sinψj


RG

(3.99)

M j
OR/p(G

j
p) =

∑
m=l,r

(
M j

OR/pm(Gjp)+Gj
pN

j
m∧FOR/pm

)
(3.100)

M j
OR/p(G

j
p) =

∑
m=l,r


−Cjom

0.25λW j
om sinψj(wc+Dp)

−0.25λW j
om cosψj(wc+Dp)


RG

with λ= +/−1
for m= l/r

(3.101)

4 Rigid cage resolution
Quasi-dynamic (QD) resolution of ACBB with rigid cage is straightforward and consists in
adding cage-race forces and pocket-to-ball forces in previous quasi-static (QS) equations
on inner ring and balls. Six equations on cage are also added to solve its equilibrium.

4.1 Inner Ring equilibrium
In QD, sum of forces and momentums that apply on the inner ring, at bearing center G,
in xG, yG and zG directions, includes QS contribution and cage-to-inner race interactions
such that:

FQD/IRx = FQS/IRx+Fc/IRx = 0 (3.102)
FQD/IRy = FQS/IRy +Fc/IRy = 0 (3.103)
FQD/IRz = FQS/IRz +Fc/IRz = 0 (3.104)

MQD/IRy =MQS/IRy +Mc/IRy = 0 (3.105)
MQD/IRz =MQS/IRz +Mc/IRz = 0 (3.106)
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3. Quasi-dynamic model with cage

4.2 Balls equilibrium
In QD, sum of forces and momentums that apply on each ball j at their center Bj , in
xG, yj

b1 and zj
b1 directions, includes QS contribution and pocket-to-ball interactions such

that:

F jQD/bx = F jQS/bx+F jp/bx = 0 (3.107)

F jQD/by = F jQS/by +F jp/by = 0 (3.108)

F jQD/bz = F jQS/bz +F jp/bz = 0 (3.109)

M j
QD/bx =M j

QS/bx+M j
p/bx = 0 (3.110)

M j
QD/by =M j

QS/by +M j
p/by = 0 (3.111)

M j
QD/bz =M j

QS/bz +M j
p/bz = 0 (3.112)

In R2 resolution with cage, when balls (almost) detach from inner race, balls equations
are not modified anymore. Then, no convergence is forced on βj , β′j , ωjm or ωjR.

4.3 Cage equilibrium
In QD, sum of forces and momentums on cage, that apply at its center Gc, in xG, yG and
zG directions, includes cage-ring forces and ball-to-pocket forces coming from N balls.
These equilibrium equations are expressed by:

FQD/cx = FIR/cx +FOR/cx+
N∑
j=1

F jb/px = 0 (3.113)

FQD/cy = FIR/cy +FOR/cy +
N∑
j=1

F jb/py = 0 (3.114)

FQD/cz = FIR/cz +FOR/cz +
N∑
j=1

F jb/pz = 0 (3.115)

MQD/cx =MIR/cx+MOR/cx+
N∑
j=1

M j
b/cx = 0 (3.116)

MQD/cy =MIR/cy +MOR/cy +
N∑
j=1

M j
b/cy = 0 (3.117)

MQD/cz =MIR/cz +MOR/cz +
N∑
j=1

M j
b/cz = 0 (3.118)

4.4 Numerical procedure
Then, QS system of 12N+5 equations becomes a QD system of 12N+5+6 equations. Six
additional equations are related to cage equilibrium with cage center positions xc, yc, zc
and cage rotations θcx, θcy, θcz as unknowns. These cage equations and unknowns are
also nondimensionalized by parameters given in Table 3.1.
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Then, this dimensionless system of 12N+11 QD equations is solved with same
Newton-Raphson scheme as QS one. Note that QS solution of R2 resolution is used
to initialise balls and inner ring unknowns of QD problem. Regarding initialisation of
cage unknowns, axial displacement xc is set equal to balls average position along xG. If
cage is guided by inner ring, it is assumed that other cage displacements and rotations
are initially equal to inner ring ones. If cage is guided by outer ring, it is assumed that
cage is initially centered on bearing, then all cage unknowns, except for xc, are set to zero.

Equation Parameter Unknown Parameter

FQD/cx : (3.113) xc

FQD/cy : (3.114)
√
F 2
X +F 2

Y +F 2
Z yc

cG
2

FQD/cz : (3.115) zc

MQD/cx : (3.116) θcx

MQD/cy : (3.117) dm
2

√
F 2
X +F 2

Y +F 2
Z θcy

π
N

MQD/cz : (3.118) θcz

Table 3.1 : Cage parameters used to nondimensionalize related equations or unknowns

At first iterations of R2 resolution with cage, precession speeds calculated are far
from real values because cage was not considered before. Under important radial load,
consecutive balls can have important precession speeds differences. Consequently, ball-
to-pocket orthoradial displacements δjbz, defined in (3.17), can be very large. Then, in
(Gjp,y

j
p,z

j
p) plan, radially loaded balls are under EHD regime. Elastic deformations δjH

and normal loads W j
f are large compared with unloaded balls that are under HD regime.

In (Gjp,z
j
p,x

j
p) plan, extended theory of short journal bearing is used for radially loaded

balls. Film thickness is particularly small, then load W j
sb and torques Cjb , Cjp are very

large. Numerically, load differences between radially loaded and unloaded balls create an
ill conditioned Jacobian matrix and cage does not succeed to balance itself.

This problem can be solved by improving numerical procedure. As for that, on the
one hand, R2 resolution with cage is first solved without considering ball-to-pocket in-
teractions in (Gjp,z

j
p,x

j
p) plan. Once cage is balanced, these forces are introduced in the

system in order to refine solution. This is made possible by the fact that ball-to-pocket
SJB interactions are of the second-order even if they can be responsible for converging
problems when suddenly, film thickness gets particularly small. On the other hand, a
coefficient λc is introduced in ball-to-pocket orthoradial displacement expression (3.17).
This coefficient allows to relax δjbz value when important precession differences occurs
between two consecutive balls. This coefficient is comprised between 10−6 and 1. It is
fixed at the beginning of each iteration such that all ball-to-pocket normal loads W j

f are
less than 5 000N. Numerically, we observe that λc is always equal to 1 under small radial
loads. But, when radial load is increased, this coefficient gets smaller at first iterations.
Then, it increases step by step as bearing with cage balances itself and as ball precession
differences reduce. In any case, system is not considered as converged if λc is less than 1.
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3. Quasi-dynamic model with cage

Over iterations, if system no longer changes because of too small λc, W j
f is authorized

to be larger than 5 000N and λc is increased incrementally. Note that if W j
f can take values

larger than 5 000N, once converged this normal load is never larger than a dozen Newtons.
This is logical since in quasi-dynamics, ball-to-pocket impacts are not considered, then
only small interactions occurs.

5 Flexible cage resolution

5.1 Cage elasticity definition

To model cage flexibility, we divide it into finite elements centered on each bridge. Each
node corresponds to pocket center such as represented on Figure 3.14. In this finite
element model, we suppose that nodal forces directly applies on the node. Is this way,
use of shape functions is not necessary.

Figure 3.14 : Cage discretisation by fi-
nite elements

Figure 3.15 : 3D Beam element

Each bridge is defined by a 3D beam with 6 degrees of freedom at each node: δjpz for
traction, δjpx, δjpy, θjpx, θjpy for bending and θjpz for torsion, such as schematized in Figure
3.15. Each element is defined by a stiffness matrix Kel of size 12 by 12 and expressed
in bridge coordinate system Rj

br such as defined in (3.119). Transfer matrix P j
K defined

in (3.120), enables to transpose Kel in global coordinate system RG in order to obtain
Kj

G computed in (3.121). Numerically, assembling all these element matrix Kj
G between

all bridges, gives the global cage stiffness matrix Kcage of size 6N by 6N and defined in
global coordinate system RG. Multiplication of Kcage by related degrees of freedom at
each node gives nodal elastic deformation forces and momentums such as calculated in
(3.122).

126



Flexible cage resolution

Kel =



0 12EIx

L3
br

0 -6EIx

L2
br

0 0 0 -12EIx

L3
br

0 -6EIx

L2
br

0 0

0 0 ES
Lbr

0 0 0 0 0 -ESLbr
0 0 0

0 -6EIx

L2
br

0 4EIx
Lbr

0 0 0 6EIx

L2
br

0 2EIx
Lbr

0 0

6EIy

L2
br

0 0 0 4EIy

Lbr
0 -6EIy

L2
br

0 0 0 2EIy

Lbr
0

0 0 0 0 0 GJ
Lbr

0 0 0 0 0 -GJLbr

-12EIy

L3
br

0 0 0 -6EIy

L2
br

0 12EIy

L3
br

0 0 0 -6EIy

L2
br

0

0 -12EIx

L3
br

0 6EIx

L2
br

0 0 0 12EIx

L3
br

0 6EIx

L2
br

0 0

0 0 -ESLbr
0 0 0 0 0 ES

Lbr
0 0 0

0 -6EIx

L2
br

0 2EIx
Lbr

0 0 0 6EIx

L2
br

0 4EIx
Lbr

0 0

6EIy

L2
br

0 0 0 2EIy

Lbr
0 -6EIy

L2
br

0 0 0 4EIy

Lbr
0

0 0 0 0 0 -GJLbr
0 0 0 0 0 GJ

Lbr


Rj

br

with
 Lbr = π(Dco+Dci)

2N S = hcwc Gc = Ec
2(1+νc)

Ix = wch
3
c

12 Iy = hcw
3
c

12 J = Ix+ Iy

(3.119)

P j
K =


P jbr→G 0 0 0

0 P jbr→G 0 0
0 0 P jbr→G 0
0 0 0 P jbr→G

 with P j
br→G =


1 0 0
0 cosψjbr sinψjbr
0 −sinψjbr cosψjbr

 (3.120)

Kj
G =

(
P j
K

)−1
KelP

j
K (3.121)
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5.2 Pocket equilibrium
In QD, sum of forces and momentums on each pocket j, that apply at its center P j , in
xG, yG and zG directions, includes race-to-pocket forces, ball-to-pocket forces and nodal
elastic deformation forces. These equilibrium equations are expressed by:

F jQD/px = F jIR/px +F jOR/px +F jb/px− F jelx = 0 (3.123)

F jQD/py = F jIR/py +F jOR/py +F jb/py − F jely = 0 (3.124)

F jQD/pz = F jIR/pz +F jOR/pz +F jb/pz − F jelz = 0 (3.125)

M j
QD/px =M j

IR/px+M j
OR/px+M j

b/px−M j
elx = 0 (3.126)

M j
QD/py =M j

IR/py +M j
OR/py +M j

b/py −M j
ely = 0 (3.127)

M j
QD/pz =M j

IR/pz +M j
OR/pz +M j

b/pz −M j
elz = 0 (3.128)

5.3 Numerical procedure
Then, with flexible cage modelling, a QD system of 12N+5+6N equations is solved. Inner
ring and ball equilibrium equations defined for rigid cage are the same for flexible cage.
Nevertheless, 6 cage equilibrium equations (3.113) to (3.118) are replaced by 6N pocket
equilibrium equations (3.123) to (3.128). Related unknowns are pockets displacements
δjpx, δjpy, δjpz and rotations θjpx, θjpy, θjpz. These pocket equations and unknowns are also
nondimensionalized by parameters given in Table 3.2. This system is solved with same
Newton-Raphson scheme. Regarding initialisation, cage motions are initialised like in
rigid cage problem. Then, pocket unknowns are initialised by applying relations (3.20)
and (3.21).

Equation Parameter Unknown Parameter

F jQD/px : (3.123) δjpx

F jQD/py : (3.124) N
√
F 2
X +F 2

Y +F 2
Z δjpy

cp

2

F jQD/pz : (3.125) δjpz

M j
QD/px : (3.126) θjpx

M j
QD/py : (3.127) NRp

√
F 2
X +F 2

Y +F 2
Z θjpy

π
N

M j
QD/pz : (3.128) θjpz

Table 3.2 : Pocket parameters used to nondimensionalize related equation or unknown

5.4 Cage center motions and pocket elastic deformations
Pocket unknowns calculated numerically are made of one component related to rigid body
motion (RBM) and another one related to elastic deformations such as defined in relation
(3.129) and in Figure 3.5. But rigid body motion of each pocket δjRBM is due to cage
center rigid motion as expressed in (3.130).
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δ1p

θ1p

...

...

δNp

θNp


=



δ1

θ1

...

...

δN

θN


RBM

+



δ1

θ1

...

...

δN

θN


elastic

(3.129)

δjRBM = δjc = δc +Gj
pG∧θc (3.130)

Consequently, from the knowledge of pockets center motions δjp, θjp, we can compute
each of these component by searching for cage center motions δc, θc, such that pocket
elastic deformations are minimum:

minδc
θc


∥∥∥∥∥∥
δj
θj


elastic

∥∥∥∥∥∥
2

(3.131)

After computations we obtain rigid cage center motions defined in (3.132), rigid pocket
motions in (3.133) and pocket elastic deformations in (3.134). Finally, with this post-
treatment of pockets unknowns, we assess in three-dimensions the elastic and rigid body
movement of the whole cage.

δc
θc

= (P TP )−1P T



δ1p

θ1
p

...

...

δNp

θN
p


(3.132)

δj
θj


RBM

=P j

δc
θc

with P j =



1 0 0 0 Rc sinψj −Rc cosψj

0 1 0 −Rc sinψj 0 0
0 0 1 Rc cosψj 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


and P =


P 1

...

PN



(3.133)

δjx

δjy

δjz

θjx

θjy

θjz


elastic

=



δjpx

δjpy

δjpz

θjpx

θjpy

θjpz


−



δcx−Rc cosψjθcz +Rc sinψjθcy
δcy −Rc sinψjθcx
δcz +Rc cosψjθcx

θcx

θcy

θcz


RBM

(3.134)
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6 Results analysis

6.1 Investigation of existing bearings
6.1.1 Pure axial load

• Cage interactions
To begin quasi-dynamic validation, tests are run with bearing A defined in Table 2.8.

An axial load between 50 and 100 000N is applied. Cage has a pocket clearance of 525µm
and a guiding clearance of 1.085mm. Outer race diameter is changed to consider in one
case a cage centered on inner race and in another case a cage centered on outer race.
These tests are also run with rigid and flexible cages. First results are gathered in Figure
3.16. For a given guidance, we can observe that rigid and flexible cage results are almost
equal. This is due to the fact that under pure axial load, ball-to-pocket displacements
and interactions are very small, cage stacks up against guiding race, then cage elastic
deformations are negligible.

Cage rotation along bearing axis xG is reported on Figure 3.16 (a). As expected,
because of cage-race SJB interactions, when cage is centered on IR, cage rotation θcx is
positive, inner race drives the cage because its rotational velocity Ωi is higher than ωc.
On the contrary, when cage is centered on OR, cage rotation θcx is negative since outer
race does not rotate. Same phenomena can be observed on Figure 3.16 (c) where PBj

x

and PBj
z , the ball-to-pocket positions along xj

p and zj
p, are reported. Axis orientation

used is the same as in Figure 3.6. When cage is centered on IR, PBj
z are negative which

means that cage pulls balls whereas when cage is centered on OR, PBj
z are positive, cage

slows down balls. We can also note that, when cage is centered on IR, PBj
x are positive

whereas they are negative under OR guidance. This is because, as shown in Figure 3.16
(b), δjpx are more negative under IR guidance, then δjbx− δjpx are positive.

xc and δx, cage and inner race displacements along xG, are plotted on Figure 3.16
(b). As expected, cage moves in same direction as inner race. Inner race displacements δx
obtained are the same whatever cage guidance or cage model considered. When cage is
centered on IR, xc and δx are closer than under OR guidance since influence of IR is more
important. Axial displacements increase with axial load because contact angles increase
too.

Ball-to-pocket normal loads Wf are reported on Figure 3.16 (d). These loads are
only the contribution of barrel-plan hydrodynamic effects since Hertzian deformations are
negligible under pure axial load. In absolute value, normal loads Wf decrease with axial
loads, then balls are better centered on pockets. Normal loads are higher for IR guidance
since cage rotations θcx and ball-to-pocket displacements PBj are also higher. These
differences are due to lubricant drag forces and to the fact that balls are always guided
by inner race. Note also that under low axial loads, a small spike is present on all curves.
Same trend is observed if we plot the evolution of cage rotational speed ωc. Indeed, under
low axial loads, ωc is small, ball skidding occurs because axial load is too small to drive
balls in rotation.
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Figure 3.16 : Results for different type of cages under pure axial load

• Ball-race kinematics
For rigid cage centered on IR, ball-race kinematics is analysed in details. Main results

are gathered on Figure 3.17. Ball-race contact loads and friction forces are plotted on
Figure 3.17 (a). Because of centrifugal forces, ball-to-outer race contact load Qo2 is
always larger than Qi1, the inner race one. These loads increase linearly with axial
load whereas friction forces FXo2 and FXi1 increase logarithmically. These friction forces
oppose gyroscopic moment, then this momentum also increase with axial load. Friction
forces along zj

b1 also increase with axial load but their value are significantly lower than
FXo2, FXi1 forces. Friction FZi1 is also larger than FZo2 even if Qi1 is less than Qo2. This
behaviour is in agreement with results presented in literature, like in Wen and Meng’s
article [264]. Few differences may be due to the fact that, in BB20, ball-race friction is
modelled by a constant coefficient µ. In future works, to refine kinematics, this EHD
model should be improved.

Ball-race contact angles αi1, αo2 and ball self-rotations β are plotted in Figure 3.17
(b). As expected, inner race contact angle is always larger than outer race one. These
angles increase with axial load even if αo2 increase is more important. β angle is always
close to αo2, which reflect a trend in outer race control. This trend is confirmed by Figure
3.17 (c) and (d), where spinning, sliding speeds and PV factors are plotted. Indeed, balls
mainly slide and spin on the inner race, especially under low axial load. When axial
load increases, sliding on the inner race decreases whereas it increases on the outer race.
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PV factor follows the same tendency since spinning is directly related to this product.
However, if tests are run until FX =100 000N, this bearing usually works for much smaller
loads around 15 000N. Then, results for loads larger than 40 000N should be analysed
with precaution. Note also that PV factor is an important criteria used by industry to
design bearings because it is an indicator of wear and heat generation.

Figure 3.17 : Ball-race kinematics for rigid cage centered on IR

Besides, we interested in the evolution of β′ angle with axial load FX and shaft speed
Ωi. We can observe on Figure 3.18 (a) that, for a given speed Ωi, under small axial loads,
β′ increases abruptly until reaching a maximum. For larger axial loads, β′ decreases more
slowly. The higher the speed Ωi, the more β′ is large and reached for important loads.
We can notice on Figure 3.18 (b) that, for a given axial load FX , β′ is close to zero at
low speeds because gyroscopic momentum M j

GY is too small to turn the ball in transverse
direction. When speed increases, ball precession ωjm, gyroscopic momentum M j

GY and β′j

angle increase until reaching a maximum. For larger speeds, β′j decreases because ball
sticks at outer race bottom, contact angle αjo2 and βj angle decrease too. As well, the
higher the axial load, the more β′ is large and reached at high-speeds.
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Figure 3.18 : Evolution of β′ with axial load FX and shaft speed Ωi for rigid cage
centered on IR

6.1.2 Combined loads with a rigid cage

In this section, bearing A centered on inner race, is investigated with a rigid cage. An
axial load FX of 15 000N and radial loads FY varying between 100 and 15 000N are
applied. Since −FY is applied on inner race, ball 11 it the most loaded.

• Cage center motion
Positions of cage center xc, yc, zc and inner race centers δx, δy, δz are reported on

Figure 3.19 (a). When radial load increases, cage and IR displacements decrease in a
negative direction along xG. Along yG, cage and IR centers move of a few microns in a
negative direction. IR center does not move along zG whereas cage center significantly
moves in a positive direction. This displacement of zc is caused by cage-race SJB effects
and by the fact that each ball has a different load. This phenomena is also observable in
Figure 3.19 (b) where cage-to-inner race attitude angle ϕi, defined in (3.74), is plotted.
As expected, when radial load is equal to zero, relative eccentricity ϵ is equal to 1, then ϕi
is equal to 90◦. When radial load increases, cage is more and more off-centered, relative
eccentricity reduces, then attitude angle decreases.

In this test, cage-race clearance is large and equal to 1.085mm, then relative eccen-
tricity stays close to 1 and attitude angle decreasing is small. Under important radial
loads and small guiding clearances, this angle should tend to zero. In such conditions,
cage-race dry contact almost occur. However, only SJB HD contact is considered in BB20.
When cage-race dry contact is found, Newton-Raphson solution is relaxed until calculat-
ing cage-race HD interaction. Then, we did not succeed to make converge tests with small
clearances and important radial loads. This indicates the necessity to model cage-race
dry contact in future works. Even if we do not expect to converge towards such contact,
it should be used in iterative process before converging towards quasi-dynamic solution.
In any case, dynamical experiences have already shown cage-race collisions, then their
consideration will be important when modelling dynamics. Note also that in SJB model,
bearings are supposed to be coaxial. Such hypothesis does not hold when misalignment
is applied on the inner ring. To solve such a case, SJB solutions with misaligned axis, like
that of Gomez-Mancilla [81], should be implemented in the future.
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Figure 3.19 : Rigid cage results with an increasing radial load

Cage self rotations are plotted in Figure 3.19 (b). These rotations are almost equal
to zero along yG, they are very small along zG but increase with FY . Rotation θcx is
positive under low radial loads because cage is centered on the inner race that drives it.
When radial load increases, contact angles are different on each ball which tends to slow
down cage. Then, θcx decreases and gets negative for radial loads larger than 2 500N.

All these cage center motions are related to cage-race SJB forces reported in Figures
3.19 (c), (d). Indeed, according to SJB expressions (3.70) to (3.86), when radial load
increases, cage-race eccentricity increases, then relative eccentricity gets closer to 1, cage-
race hydrodynamic loads Wkm and friction torques C1km increase which explains that
Fc/IRy, Fc/IRz and Mc/IRx increase too.

To better understand cage behaviour, we plotted in Figures 3.20 and 3.21, the evolution
of |GIC

j
i1| and |GCj

o2| over the bearing. These scalars define the distance between inner
or outer ring center and race curvature centers. These distances reflect ball-race contact
point motion relative to ring center. On both Figures (d) we can observe that radial
load does not influence location of ball-race contact points along yG and zG. On the
contrary, as noticeable on Figures (a), (b), (c), when radial load is applied, ball-race
contact points are shifted from pure axial load position, in xG direction. This motion
increase with radial load. It is directed in one direction for loaded balls and in opposite
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direction for unloaded balls. It is always maximum for loaded ball 11 and unloaded ball
1. Variation GIC

j
i1 ·xG is almost symmetric between loaded and unloaded balls whereas

it is asymmetric for GCj
o2 ·xG. Indeed, under radial load of 15 000N, for ball-to-outer

race contact, loaded balls move of 45µm maximum from pure axial load position, whereas
unloaded balls move of 15µm maximum in opposite direction. For inner race contacts,
these displacements are of 170µm for both balls 1 and 11. Then, we can also note that
ball-to-inner race motion is 4 times larger than ball-to-outer race.

Figure 3.20 : Positions of ball-to-inner race contact points: |GIC
j
i1|
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Figure 3.21 : Positions of ball-to-outer race contact points: |GCj
o2|

• Ball-to-pocket motion
Ball-to-pocket positions along xj

p and zj
p are reported in Figure 3.22 by using same

axis orientation as in Figure 3.6. Results are given for all balls of the bearing and for
increasing radial loads. These positions are also plotted in Figures 3.23 (a), (b) as a
function of ball number. Under small radial loads, all balls are positioned on the same
side of the pocket. They are at the back side (PBj

z < 0) which means that cage pull
them. This position is mainly due to inner race guidance and to drag forces. When radial
load increases, differences in ball-to-pocket positions between consecutive balls increase.
Displacement PBj

z increases in negative value for loaded balls, whereas it decreases and
gets closer to zero for unloaded balls. When radial load gets larger than 10 000N, PBj

x

of unloaded balls is getting negative whereas PBj
z is getting positive. Then, some balls

locate at one side of the pocket whereas other balls get positioned at the opposite. Loaded
balls are pulled by the cage, unloaded balls pull the cage.
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If we look at Figure 3.23 (g) where balls precession ωjm are plotted, we can observe that
balls decelerate when they enter the loaded zone and accelerate when they exit it. This
is due to the fact that outer race contact angles αjo2 decrease in loaded zone and increase
in unloaded zone. These results agree with physical behaviour described in literature.

Figure 3.22 : Ball-to-pocket displacements in (Gjp,z
j
p,x

j
p) plan, for rigid cage

F jp/bz and F jp/bx, the ball-to-pocket forces along zj
p and xG, are plotted in Figure 3.23

(c) and (d). These forces are the contribution of barrel-plan normal and friction forces,
Hertzian load, shear force and ball-to-pocket SJB forces. By comparing Figure 3.23 (a)
with (c) and Figure (b) with (d), we can observe that evolution of PBj

z is directly related
to F jp/bz since same tendencies (up to an overall sign) are observable. On the contrary,
F jp/bx does not have same evolution as PBj

x which shows that ball-to-pocket position along
xG is influenced by other forces like those of adjacent balls.

Contribution of barrel-plan normal load W j
f is plotted in Figure 3.23 (e) whereas

contribution of ball-to-pocket SJB normal load W j
sb is plotted on Figure 3.23 (f). Under

small radial loads, W j
f are centered around -1N whereas W j

sb are centered on zero. When
radial load increases, both loads vary around these values. However, if W j

f amplitude
does not exceed 2.5N, W j

sb variation is 10 times larger. Then, ball-to-pocket SJB effect is
predominant on barrel-plan effect when ball-to-pocket interaction is under HD lubrication.
This phenomena is confirmed if we compare Figure 3.23 (c) with (f) under large radial
loads. Indeed, same spikes around balls 8 and 14 are present on both plots which confirms
that forces F jp/bz are mainly due to SJB forces. In dynamics, because of EHD lubrication,
we expect Hertzian loads to be larger than these SJB forces.

If we compare Figure 3.23 (a), (b) with (e), we can confirm that barrel-plan normal
loads W j

f are directly related to ball-to-pocket displacements. Under small radial loads,
they are not equal to zero but almost constant because of small PBj . Under important
radial loads, they are maximum when PBj are maximum and film thickness hjf are
minimum . Ball-to-pocket SJB normal loads W j

sb are related both to PBj and to ball
self-rotations βj . Indeed, βj are maximum for loaded balls and minimum for unloaded
balls. On Figure 3.23 (f), we can observe that W j

sb are equal to zero when radial load is
equal to zero. Under combined loads, they are small for balls located in unloaded zone. In
such cases, even if PBj are not minimum, ball self-rotations βj are small, then W j

sb are
small too. When balls are getting loaded, βj increase, then, according to relations (3.47)
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to (3.50), SJB effect is more important. However, because of small PBj , SJB forces of
loaded balls 10, 11, 12 are almost equal to zero, even if βj is maximum.

In Figure 3.23 (h), ball-to-pocket minimal clearance min
j=1,N

(cp

2 − ∆j
pb), is plotted for

increasing radial loads. Results are given for R2 resolution without cage and for R2 with
rigid cage. We can observe that without considering cage, then by directly applying
λc = 1, negative clearances are obtained for radial loads larger than 5 000N. This would
mean that balls hit the pocket under such loads. By considering cage, then by increasing
λc incrementally, cage equilibrates to get positive clearances until 15 000N. Physically,
balls are not supposed to hit cage under relatively small radial loads. That is why, results
with cage appears to be closer to reality and confirm the need to introduce it into the
model.

Nevertheless, for radial loads larger than 15 000N, then for axial-to-radial load ratios
smaller than 1, BB20 does not converge with cage. This is due to the fact that some balls
start to detach from inner race, important precession differences ωjm are calculated between
successive balls, then δjpb are important, ball-to-pocket clearances are negative, pocket
normal loads W j

f are huge, cage does not succeed to equilibrate. Physically, we cannot
say if these ball-to-pocket collisions really occur. Indeed, quasi-dynamic hypotheses on
δjbz and ωc limit computation accuracy, especially under important radial loads. Then,
we should not draw attive conclusions on bearing behaviour under such conditions. By
solving BB20 in dynamics, we should get rid of such hypotheses, then simulate a behaviour
closer to reality and be able to answer these questions.

6.1.3 Combined loads with a flexible cage

• Steel cage
BB20 is run again with bearing A centered on inner race, with FX = 15 000N, with

increasing radial loads FY but with a flexible cage made of steel. Results on cage motion,
IR displacements, cage-race SJB interactions and ball-to-pocket minimal clearance are
gathered in Figure 3.24. For radial loads smaller than 7 000N, comparable results are
obtained between rigid and flexible cage. For larger loads, evolution of cage displacements
xc are more abrupt for flexible cage, SJB forces FIR/cy, FIR/cz are slightly higher whereas
MIR/cx and cage rotations θcx are smaller.

Nevertheless, these results were obtained without considering errors on pocket motions
unknowns δp and θp. Then, converging conditions only depended on ball and inner race
error variation between two iterations. We have also tried to run these tests by considering
pockets errors, but it did not converge for radial loads larger than 7 000N. In such a
case, even if errors on balls and IR were small, BB20 continued to solve the Newton
Raphson scheme until relative variation of pocket unknowns over iterations were less
than 10−3. Finally, system did not equilibrate, the problem was over-relaxed because
cage-race dry contacts were found. These results show again that cage-race collisions
should be considered in future works and that numerical improvements are still needed.
In particular, instead of post-treating cage RBM, implementing in the Newton-Raphson
scheme the equation (3.132) on cage minimisation and cage center motions as unknowns
may be a solution to improve numerical resolution of flexible cage. To return to Figure
3.24, we can now assume that differences between rigid and flexible cage, observed for
radial loads larger than 7 000N, are due to the fact that system is not really converged.
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Figure 3.23 : Ball-to-pocket interactions under increasing radial loads
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Figure 3.24 : Comparison between flexible and rigid cage for increasing radial loads

Ball-to-pocket displacements in (Gjp,z
j
p,x

j
p) plan are synthesised in Figure 3.25. Re-

sults between rigid and flexible cage are again very similar. Under small radial loads,
displacements PBj

z are only 1 or 2µm smaller for flexible cage. For radial loads of 10
000N and 12 000N, displacements PBj

x are always between 0 and 20µm for flexible cage
whereas they vary between 0 and 100 µm for rigid cage. Such differences are unexpected
and prove that these two tests are not converged.

Besides, pocket elastic rotations θjelcx, θjelcy, θ
j
elcz obtained are always less than 0.005◦,

which is negligible. Pocket elastic deformations δjelcx, δjelcy, δ
j
elcz are plotted on Figure

3.26. Deformations δjelcx, δjelcz are equal to zero for the most loaded ball and the lowest
loaded ball, whereas they are maximum for balls located in between. On the contrary,
deformations δjelcy are maximum for the most loaded ball and the lowest loaded ball. For
all deformations, maximal amplitude increases with radial load. However, for FY =10
000N and FY =12 000N, δelcx are smaller than under 8 000N. This confirm again that
these two tests are not converged. In any case, elastic deformations have amplitudes of
several hundred microns which is non negligible.

Consequently, in quasi-dynamics, if modelling cage flexibility does not influence cage
center rigid body motions, it reveals that cage is subject to structural deformations even
when ball-to-pocket and cage-race interactions are under HD regime. In dynamics, EHD
interactions should happen, then influence of cage flexibility on cage motion and elastic
deformations should be more important.
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Figure 3.25 : Ball-to-pocket displacements in (Gjp,z
j
p,x

j
p) plan, for flexible cage

• PEEK cage
These tests with varying radial loads are rerun with a cage made of PEEK. However,

it only converged for radial loads less or equal than 8 000N because cage-race dry contacts
were obtained for larger loads. Under radial loads lower than 8 000N, cage RBM, cage-
race and ball-to-pocket interactions are comparable with steel ones. On the contrary,
cage elastic deformations differs, as illustrated in Figure 3.27. Indeed, if δjelcx are similar
with both cages, δjelcy and δjelcz are larger with PEEK. In particular, for a radial load
of 8 000N, these deformations are 30% larger with PEEK cage. This is due to the fact
that PEEK elastic modulus is 52 times lower than steel and that Poisson’s coefficient
is 25% larger, such as reported in Table 3.3. Then, E and Gc parameters are smaller,
components of stiffness matrix Kel, defined in (3.119), are also smaller, PEEK cage is
softer and subjected to larger deformations. We can also note that evolution of δjelcy and
δjelcz with ball position is a sinusoid for steel cage whereas it is more erratic with PEEK.

Material Elastic modulus (GPa) Poisson’s coefficient Density (kg/m3)

Steel 200 0.3 7850
PEEK 3.85 0.4 1300

Table 3.3 : Material properties of steel and PEEK

• Computational time
Regarding computational time, it is worth noting that R1 resolution of a single test,

always lasts less than a second. R2 resolution without cage lasts around 90 seconds
which is much lower than R2 with cage. Indeed, with cage consideration, because of the
need to increase incrementally ball-to-pocket ortho-radial displacements δjbz, number of
iterations needed to converge is much important. To get an idea, under pure axial load,
computational time is comprised between 500 and 700 seconds. It vary linearly with
increasing radial load, to be larger than 4 000 seconds when FY =15 000N. This time
is comparable whether if rigid or flexible cages are considered. If this time may seem
important, we expect dynamic computations to be much more consuming. Besides, these
results were obtained with jacobian matrix calculated numerically by a Fortran routine.
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Computing analytic jacobian reduces this computational time of a factor 14 but gives less
accurate results.

Figure 3.26 : Pocket elastic deformations with steel cage

Figure 3.27 : Pocket elastic deformations with PEEK cage

6.2 Comparison with a 4 contact-points literature model
In this section, we are comparing BB20 with Ma’s model [174] which is one of the only one
to consider the dynamics of ACBB with up to 4 contact points. Compared with BB20,
this model is solved in dynamics, cage has only 3 degrees of freedom, ball-race traction
coefficient is defined by Kragelskii’s model [154] with Gupta’s coefficients [104] and ball-to-
pocket interactions are only modelled by Hertzian contact for normal load and Coulomb’s
theorem for friction. Above all, ball gyroscopic momentums are not considered in this
model. Tests are run with the bearing defined in Table 3.4, with outer race guidance and
under high-speed (Ωi = 5000rpm), small loads (always lower than 3 000N).
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Notation Parameter Unity Value

N Ball number 16
D Ball diameter mm 17.464
di IR diameter mm 84.925
do OR diameter mm 120.14
ri IR groove curvature radius (ri = fiD) mm 9.15
ro OR groove curvature radius (ro = foD) mm 9.25
ei IR curvature eccentricity (ei = 0.5gi) mm 0.183
eo OR curvature eccentricity (eo = 0.5go) mm 0.298
Dp Pocket diameter mm 17.7
Dco Cage outer diameter mm 111

Table 3.4 : Data of bearing tested

6.2.1 Pure axial load

To begin, tests are run with constant speed of 5 000rpm and pure axial loads varying
between 100 and 3 000N. Results obtained with BB20 and Ma’s model are gathered
in Figure 3.28. On each plot, continuous line refers to BB20 and dashed line to Ma.
Main contact corresponds to inner race side 1 (IR1) and outer race side 2 (OR2) whereas
sub contact corresponds to inner race side 2 (IR2) and outer race side 1 (OR1). These
secondary contacts are less loaded and occur under specific conditions.

Some parameters like material properties (elastic modulus, density), lubricant prop-
erties, drag coefficient Cd or friction coefficients are not specified in Ma’s article. Con-
sequently, in order to get comparable cage-to-shaft speed ratios ωc

Ωi
, we fixed ball-race

friction coefficient µ at 0.01, oil fraction in the mixture foil at 0.15 and drag coefficient
Cd at 0.4. Such values do not seem aberrant even if we usually work with a coefficient
µ =0.065. These results for ωc

Ωi
are plotted in Figure 3.28 (g). As well, BB20 tests were

first run with steel material. However, we obtained transitions from 3 to 2 contact-points
for FX =7 000N whereas it occurs at 2 400N with Ma’s model. This reveal a difference
in contact stiffness. Then, in BB20, we let rings and cage in steel but fixed ball elastic
modulus at 10 GPa, Poisson’s coefficient at 0.3 and density at 3 950kg/m3. Is this way,
as observable in Figure 3.28 (h), contact transition with BB20 occurs around 2 400N too.

• FX <400N
With both models, for axial loads smaller than 400N, 3 contact-points are present:

two on outer race and one on inner race side 1. We can observe in Figure (g) that
cage speed increases with axial load. In Figure (c), ball-to-inner race sliding speed in
the rolling direction is very important but decreases with axial load. In figure (a), at 3
contacts, normal load increases with FX because of centrifugal force increasing. Then,
as observable in Figure (d), (e), (f), contact pressures and traction forces at 3 contacts
increase too, whereas PV factor of inner-race contact is important and decrease because
of sliding speed decrease.
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3. Quasi-dynamic model with cage

All these results shows that, for axial loads smaller than 400N, ball skidding occurs
because applied load is too small to develop sufficient EHD tractive force to overcome
cage drag and prevent gyroscopic spin.

• 400N< FX <2 400N
When axial load is larger than 400N but smaller than 2 400N, skidding does not occur
anymore. Then, cage speed is more stable and sliding speeds of main contacts are very
small. On the contrary, sliding speed of OR1 contact increases before falling down to
zero when this contact is lost for FX=2 400N. This increase is due to the fact that
axial force changes ball angular velocity. Contact loads of main contacts increase linearly
with axial load whereas OR1 contact load decreases to zero for FX=2 400N. For main
contact, inner race contact load is always a bit larger than outer race one which shows
that centrifugal forces stay relatively small. Main contact loads are also at least one
order of magnitude larger than sub contact. Contact pressures present same evolutions as
contact loads excepted that curves are flatter because of non-linear relationship between
contact stress and contact force. PV factors of main contacts are almost equal to zero
since sliding speeds are very small whereas PV factor of OR1 increases until 1 900N and
then decreases and gets equal to zero for 2 400N because contact is lost.

• 2 400N< FX <3000N
When axial load is larger than 2400N, the sub contact on outer race is lost, related pa-

rameters are equal to zero. Only IR1 and OR2 contacts remain, corresponding parameters
present same evolution as when 400N< FX <2 400N.

• Differences analysis
Excepted for traction forces, BB20 and Ma’s curves present same evolutions. Only

differences are in amplitudes. In Figure 3.28 (a), we can observe that contact loads of
main contacts are comparable between BB20 and Ma’s model. Ma’s loads are just about
40N larger than BB20. For sub contact OR1, contact loads are comparable under small
axial loads. When axial load gets closer to 400N, Ma’s contact load increase is larger than
BB20, with a difference of a factor 2 at 400N. For larger loads, these differences decrease.

Concerning contact angles plotted in Figure 3.28 (b), with Ma’s model these angles are
almost constant, excepted for αjo1 that fall to zero when contact is lost. Under 3 contact-
points, outer race contact angles are almost equal whereas inner race contact angle is
always larger than outer race ones. Outer-race contact angles obtained with BB20 are
comparable whereas inner-race contact angle is 30% smaller than with Ma’s model. In
BB20, this angle also decrease with axial load and is smaller than outer race angles which
is unexpected.

BB20 and Ma’s sliding speeds of Figure 3.28 (c) are comparable for main contacts
whereas sliding speed evolution for OR1 is rather linear with Ma and exponential with
BB20. Contact pressures and PV factors obtained with Ma’s model are four times larger
than with BB20, such as illustrated in Figure 3.28 (d), (f).
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Results analysis

Figure 3.28 : Comparison between BB20 and Ma [174] under pure axial load
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3. Quasi-dynamic model with cage

Regarding traction forces represented in Figure 3.28 (e), under small axial loads, these
forces are much larger with Ma’s model whereas contact loads of main contacts are com-
parable. Maybe, this difference is due to the fact that Ma’s friction coefficient is larger
than BB20’s one. As well, when axial load is larger than 400N, then when sliding speeds
of main contacts are equal to zero, Ma’s friction forces are constant because Kragelskii’s
model is applied. On the contrary, Coulomb’s model with constant friction coefficient is
applied in BB20, then traction forces increase with contact load. Such differences show
the influence of EHD traction model on ball kinematics. This confirm that this model
should be improved in BB20.

Finally, BB20 and Ma’s models are comparable. Few differences can be attributed to
the fact that each model makes its own hypothesis. This study of ACBB with more than
2 contact points under increasing axial load shows that getting a third contact is non
negligible and complicates ball kinematics. When axial load increases, bearing changes
from 3 contacts with skidding, to 3 contacts without skidding, then to 2 contacts without
skidding either. The third contact-point on the outer race has important sliding, then
spin-to-roll ratio that generates heat and risks of burn or failure even if main contact has
the largest PV value.

6.2.2 Combined loads

Figure 3.29 : Comparison between BB20 and Ma [174] under combined loads
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Tests are still run with a speed of 5 000rpm but with combined loads FX = FY =1
000N. Results obtained with BB20 and Ma’s models are gathered in Figure 3.29. We can
observe that with Ma’s model, balls 1, 2, 3, 14, 15, 16 have 4 contact-points, balls 4, 5, 6,
11, 12, 13 have 3 contact-points (two on OR, one on IR) and balls 7 to 10 have 2 contact-
points (one on each race). On the contrary, BB20 never works under 4 contact-points,
many tests have been run without succeeding to get two contact-points on inner race. In
the present test, balls 1 to 5 and 12 to 16 have 3 contact-points whereas balls 6 to 11 have
2 contact-points on OR, then these last balls are detached from IR.
These contact differences between both models are non negligible and probably due to the
fact that BB20 is solved in quasi-dynamics and Ma’s model in dynamics. We have also
already noticed limits of BB20 quasi-dynamics in solving problems with axial-to-radial
loads ratios greater than or equal to 1. The fact that Ma’s model does not consider
gyroscopic effects may also explain contact differences.

Nevertheless, we can notice in Figure 3.29 (a), that for non-detached balls, contact
loads of main contacts are comparable. Sub contact loads are never comparable because
of the absence of fourth contact in BB20 or the absence of ball detachment in Ma’s
results. Contact angles reported in Figure 3.29 (b) are also comparable in amplitudes,
differences are due to contact-point differences. Finally, we have decided here to do not
report further plots on sliding speeds, contact pressures, traction forces or PV factors
because contact differences make kinematics too different to be compared. Such study
may be interesting once BB20 will be transposed in dynamics. However, this combined
load study of ACBB with up to 4 contact-points, shows again that getting more than two
contact-points significantly changes ball kinematics.
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7 Summary
To conclude on quasi-dynamic modelling of ACBB with rigid or flexible cage, we can
summarize all cage interactions by diagram of Figure 3.30. Resolution reuse R2 quasi-
static system with balls and rings. Cage interactions and corresponding equations are
added to solve its equilibrium.

An extensive study has been led in order to better understand the influence on bear-
ing behaviour of operating conditions (axial, radial load, shaft speed), bearing materi-
als and geometry (cage guidance, pocket clearance, guiding clearance, ring truncations).
Contribution of each force, like inertia, cage-race SJB, ball-to-pocket SJB, barrel-plan
or ball-race interactions, has been analysed in order to understand the impact on cage
center motion, ball-to-pocket positions, ball-race contacts, inner race motion and ball
kinematics. It appears that motion of each element is closely related to that of each
other. It was also shown that ACBB kinematics is a complex mechanism not only related
to ball-race interactions but also to cage effects, to gyroscopic motion in two directions
(β,β′) and to additional ball-race contact-points. Besides, if modelling cage flexibility
in quasi-dynamics does not influence cage center motion, it reveals non negligible pocket
elastic deformations even if cage interactions are under HD regime.

We should recognize that this quasi-dynamic model still has some limits like its ability
to work with radial loads larger than axial load. Ball-race EHD traction model could also
be refined, cage-race dry contact and SJB misalignment could be considered. However, in
terms of accuracy and computational time, this model appears to be a good compromised
between quasi-statics and dynamics. In any case, its development was essential to set
solid basis before modelling dynamics.
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Figure 3.30 : Synthesis of cage modelling and numerical resolution
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4. Dynamic model

1 Inertia matrices
In dynamics, masses and moments of inertia of solids (S∗) are needed. In BB20, either
user directly enter their values, or it is calculated by following theory.

1.1 Inner ring
To compute its inertia matrix I(G,(SIR)), the inner ring is considered as a hollow cylinder
of height wIR, internal diameter dei1, external diameter dei2 and mass mcyl. To represent
races curvature, this cylinder is cut by a half-torus of mass mt, small-radii rt = fiD and
large-radii Rt = 0.5dei2. As a consequence, inner ring mass is expressed by Eq. (4.1),
whereas diagonal inertia matrix is expressed by Eq. (4.2). Note that, because of small
inner ring displacements δ, this matrix is supposed to be the same at bearing center G
and inner ring center Gi1.

mIR =mcyl−mt with
 mcyl = ρIR

π
4 (d2

ei2 −d2
ei1)wIR

mt = 1
2ρIR 2π2Rtr2

t

(4.1)

I(G,(SIR)) =


IIRx 0 0

0 IIRy 0
0 0 IIRy


RG

with
 IIRx = mcyl

8 (d2
ei1 +d2

ei2)−mt (R2
t + 3

4r
2
t )

IIRy = mcyl

12

[
(3

4(d2
ei1 +d2

ei2)+w2
IR

]
− mt

2 (R2
t + 5

4r
2
t )

(4.2)
Inner ring dynamic behavior is directly linked to shaft behavior. To consider this con-

tribution, another hollow cylinder of height ws, internal diameter ds1, external diameter
ds2, mass ms and inertia matrix I(G,(SIR)) is added to inner ring components. Depend-
ing on user, either shaft dimensions are directly entered or shaft is considered as a full
cylinder four times larger than inner ring.

ms = ρs
π

4 (d2
s2 −d2

s1)ws (4.3)

I(G,(Ss)) =


Isx 0 0
0 Isy 0
0 0 Isy


RG

with
 Isx = ms

8 (d2
s1 +d2

s2)
Isy = ms

12

[
(3

4(d2
s1 +d2

s2)+w2
s

] (4.4)

1.2 Balls
Balls are defined as spheres of diameter D, mass mb and diagonal inertia matrix
I(Bj ,(Sjb )) at their center.

mb = ρb
π

6D
3 (4.5)

I(Bj ,(Sjb )) =


Ib 0 0
0 Ib 0
0 0 Ib


Rj

b1

with Ib = mb

10D
2 (4.6)
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Inertia matrices

1.3 Cage
To compute cage mass mc and cage inertia matrix I(Gc,(Sc)), we first consider that cage
is a hollow cylinder of height wc, internal diameter dc1, external diameter dc2, mass mcy

and inertia matrix I(Gc,(Scy)).

mcy = ρcwc
π

4 (d2
c2 −d2

c1) (4.7)

I(Gc,(Scy)) =


Icy−x 0 0

0 Icy−y 0
0 0 Icy−y


RG

avec
 Icy−x = mcy

8 (d2
c2 +d2

c1)
Icy−y = mcy

12

[
3
4(d2

c1 +d2
c2)+w2

c

] (4.8)

This cage cylinder has N cylindrical holes corresponding to pockets. Such holes have
a height hc, a radii Rp, a mass mp, an inertia matrix I(Gjp,(Sjp)) at pocket center and
I(Gc,(Sjp)) at cage center.

mp = ρcπR
2
phc (4.9)

I(Gjp,(Sjp)) =


Ipx 0 0
0 Ipy 0
0 0 Ipx


Rj

p

with
 Ipx = mp

12 (3R2
p+h2

c)
Ipy = mp

2 R
2
p

(4.10)

I(Gc,(Sjp)) =


IjPX 0 0

0 IjPY IjPY Z

0 IjPY Z IjPZ


RG

with



IjPX = Ipx+mpR
2
c

IjPY = Ipy cos2ψj +(Ipx+mpR
2
c)sin2ψj

IjPY Z = (Ipy − Ipx−mpR
2
c)cosψj sinψj

IjPZ = Ipy sin2ψj +(Ipx+mpR
2
c)cos2ψj

(4.11)

Then, cage mass mc and cage inertia matrix I(Gc,(Sc)) are computed in Eq. (4.12),
(4.13) by subtracting pocket components from cage cylinder. Note that in order to work
with a diagonal matrix, the extra-diagonal terms Icyz are neglected if ball number N is
uneven whereas they are equal to zero if N is even.

mc =mcy −Nmp (4.12)

I(Gc,(Sc)) =


Icx 0 0
0 Icy Icyz

0 Icyz Icz


RG

with



Icx = Icy−x−∑N
j=1 I

j
PX

Icy = Icy−y −∑N
j=1 I

j
PY

Icyz = −∑N
j=1 I

j
PY Z = 0

Icz = Icy−y −∑N
j=1 I

j
PZ

(4.13)
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2 Dynamic torsors

2.1 Inner ring
To compute the dynamic torsor of inner ring with shaft

{
D(SIR)/RG

}
, we consider once

again small inner ring displacements δ. Especially, we suppose that inner ring displace-
ments δx, δy, δz are small in front of accelerations δ̈x, δ̈y, δ̈z, θ̈y, θ̈z. We should specify
that such hypothesis does not hold in the case of blade loss. Then, from inner ring ac-
celerations, we directly compute the dynamic resulting D(G,(SIR)/RG) in Eq.(4.15) and
the dynamic momentum δ(G,(SIR)/RG) in Eq. (4.16).

{
D(SIR)/RG

}
=
D(G,(SIR)/RG)
δ(G,(SIR)/RG)


RG

(4.14)

D(G,(SIR)/RG) = (mIR+ms)A(Gi1,(SIR)/RG) = (mIR+ms)


δ̈x

δ̈y

δ̈z


RG

(4.15)

δ(G,(SIR)/RG) =
[
d(I(G,(Ss+SIR))Ω(SIR)/RG

)
dt

]
RG

=


(IIRx+ Isx) Ω̇I

(IIRy + Isy) θ̈y
(IIRy + Isy) θ̈z


RG

(4.16)

2.2 Balls
In dynamics, ball angular position previously defined by ψj becomes ψjb which is a function
of ψj the angular pocket center position and θjm the ball-to-pocket relative rotation such
as defined in Eq. (4.17). Then, in ball coordinate system Rjb1, ball position GBj is
defined by relation Eq. (4.18). Corresponding accelerations are expressed in Eq. (4.19)
and dynamic resulting D(Bj ,(Sjb )/RG) in Eq. (4.20).

ψjb = ψj + θjm with ψj = ψc+ 2π
N

(j−1) (4.17)

GBj =


xjG

yjG

zjG

=


go
2 λ

j
o−GEo2 sinαjo2

dm
2 − (fo−0.5)D cosαf +GEo2 cosαjo2

dm
2 θ

j
m


Rj

b1

(4.18)


ẍjG

ÿjG

z̈jG

=


−(δ̈jo2 − ḧjo2)sinαjo2 −2(δ̇jo2 − ḣjo2)α̇jo2 cosαjo2
(δ̈jo2 − ḧjo2)cosαjo2 −2(δ̇jo2 − ḣjo2)α̇jo2 sinαjo2

dm
2 (ω̇jm− ω̇c)


Rj

b1

+


−GEjo2

(
− (α̇jo2)2 sinαjo2 + α̈o2 cosαjo2

)
−GEjo2

(
(α̇jo2)2 cosαjo2 + α̈o2 sinαjo2

)
0


Rj

b1

(4.19)
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D(Bj ,(Sjb )/RG) =mbA(Bj ,(Sjb )/RG) =mb


ẍjG

ÿjG

z̈jG


Rj

b1

(4.20)

Balls kinetic momentums are calculated from Eq. (4.21) to (4.23). Then, by time
derivation, dynamic momentums are calculated in Eq. (4.25).

σ(Bj ,(Sjb )/RG) = I(Bj ,(Sjb ))Ω(Sj
b )/RG

(4.21)

Ω(Sj
b )/RG

=


ωjm

0
0


RG

+


ωjr

0
0


Rj

b3

+


0
0
β̇


Rj

b2

+


0
β̇′

0


Rj

b1

(4.22)

σ(Bj ,(Sjb )/RG) = Ib


ωjm+ωjr cosβj cosβ′j + β̇j sinβ′j

ωjr sinβj + ˙β′j

−ωjr cosβj sinβ′j + β̇j cosβ′j


Rj

b1

(4.23)

δ(Bj ,(Sjb )/RG) =
dσ(Bj ,(Sjb )/RG)

dt


Rj

b1

(4.24)

δ(Bj ,(Sjb )/RG) = Ib


ω̇jm+ ω̇jr cosβj cosβ′j +ωjr(−β̇j sinβj cosβ′j − ˙β′j cosβj sinβ′j)

ω̇jr sinβj +ωjr β̇
j cosβj

−ω̇jr cosβj sinβ′j −ωjr(−β̇j sinβj sinβ′j + ˙β′j cosβj cosβ′j)


Rj

b1

+Ib


β̈j sinβ′j + β̇j ˙β′j cosβ′j

β̈′j

β̈j cosβ′j − β̇j ˙β′j sinβ′j


Rj

b1
(4.25)

2.3 Cage
In dynamics, cage self-rotation previously called θcx is included in ψc, itself included in
ψj . Then, pocket removed positions are defined by relations (4.26) and (4.27).

Gj
pP

j =


δjpx

δjpy

δjpz


RG

=


xc−Rc cosψj θcz +Rc sinψj θcy

yc

zc


RG

(4.26)


θjpx

θjpy

θjpz


RG

=


0
θcy

θcz


RG

(4.27)

155



4. Dynamic model

Cage dynamic torsor
{
D(Sc)/RG

}
computation is immediate since it directly de-

pends on accelerations of cage unknowns. This torsor is made of dynamic resulting
D(Gc,(Sc)/RG) expressed in Eq. (4.29) and dynamic momentum δ(Gc,(Sc)/RG) ex-
pressed in Eq. (4.30).

{
D(Sc)/RG

}
=
D(Gc,(Sc)/RG)
δ(Gc,(Sc)/RG)


RG

(4.28)

D(Gc,(Sc)/RG) =mcA(Gc,(Sc)/RG) =mc


ẍc

ÿc

z̈c


RG

(4.29)

δ(Gc,(Sc)/RG) =
[
d(I(Gc,(Sc))Ω(Sc)/RG

)
dt

]
RG

=


Icx ω̇c

Icy θ̈cy

Icz θ̈cz


RG

(4.30)

3 Dynamic equations
Dynamic equations (4.31) to (4.47) are made of quasi-dynamic equations with the addi-
tion of acceleration component calculated in dynamic torsors. Later, dynamic forces like
unbalance or ball-race, cage-race and ball-to-pocket damping should be implemented.

3.1 Inner ring

(mIR+ms) δ̈x = FQD/IRx (4.31)

(mIR+ms) δ̈y = FQD/IRy (4.32)

(mIR+ms) δ̈z = FQD/IRz (4.33)

(IIRy + Isy) θ̈y =MQD/IRy (4.34)

(IIRy + Isy) θ̈z =MQD/IRz (4.35)

3.2 Balls
mb

[
− (δ̈jo2 − ḧjo2)sinαjo2 −2(δ̇jo2 − ḣjo2)α̇jo2 cosαjo2

−GEjo2
(

− (α̇jo2)2 sinαjo2 + α̈o2 cosαjo2
)]

= F jQD/bx
(4.36)

mb

[
(δ̈jo2 − ḧjo2)cosαjo2 −2(δ̇jo2 − ḣjo2)α̇jo2 sinαjo2

−GEjo2
(
(α̇jo2)2 cosαjo2 + α̈o2 sinαjo2

)]
= F jQD/by

(4.37)

mb
dm
2
(
ω̇jm− ω̇c

)
= F jQD/bz (4.38)
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Geometric equations

Ib
[
ω̇jm+ ω̇jr cosβj cosβ′j +ωjr(−β̇j sinβj cosβ′j

− ˙β′j cosβj sinβ′j)+ β̈j sinβ′j + β̇j ˙β′j cosβ′j
]

=M j
QD/bx

(4.39)

Ib
[
ω̇jr sinβj +ωjr β̇

j cosβj + β̈′j
]

=M j
QD/by (4.40)

Ib
[
− ω̇jr cosβj sinβ′j −ωjr(−β̇j sinβj sinβ′j

+ ˙β′j cosβj cosβ′j)+ β̈j cosβ′j − β̇j ˙β′j sinβ′j
]

=M j
QD/bz

(4.41)

3.3 Cage
mc ẍc = FQD/cx (4.42)

mc ÿc = FQD/cy (4.43)
mc z̈c = FQD/cz (4.44)

Icx ω̇c =MQD/cx (4.45)

Icy θ̈cy =MQD/cy (4.46)

Icz θ̈cz =MQD/cz (4.47)

4 Geometric equations
To get 6 additional equations in dynamics, geometric equations are derived twice with
respect to time. Then, geometric equations on outer ring becomes equations (4.48) and
(4.49). [

δ̈jo1 − ḧjo1 −GEjo1α̇
j2
o1
]
sinαjo1 +

[
2(δ̇jo1 − ḣjo1)α̇jo1 +GEjo1α̈

j
o1
]
cosαjo1 +[

δ̈jo2 − ḧjo2 −GEjo2α̇
j2
o2
]
sinαjo2 +

[
2(δ̇jo2 − ḣjo2)α̇jo2 +GEjo2α̈

j
o2
]
cosαjo2 = 0

(4.48)

[
δ̈jo1 − ḧjo1 −GEjo1α̇

j2
o1
]
cosαjo1 −

[
2(δ̇jo1 − ḣjo1)α̇jo1 +GEjo1α̈

j
o1
]
sinαjo1

−
[
δ̈jo2 − ḧjo2 −GEjo2α̇

j2
o2
]
cosαjo2 +

[
2(δ̇jo2 − ḣjo2)α̇jo2 +GEjo2α̈

j
o2
]
sinαjo2 = 0

(4.49)

Geometric equations on inner ring becomes equations (4.50) and (4.51).[
δ̈ji1 − ḧji1 −GEji1α̇

j2
i1
]
sinαji1 +

[
2(δ̇ji1 − ḣji1)α̇ji1 +GEji1α̈

j
i1
]
cosαji1 +[

δ̈ji2 − ḧji2 −GEji2α̇
j2
i2
]
sinαji2 +

[
2(δ̇ji2 − ḣji2)α̇ji2 +GEji2α̈

j
i2
]
cosαji2

− d2

dt2

(
giλ

j
i cosθz cosθy

)
= 0

(4.50)

−
[
δ̈ji1 − ḧji1 −GEji1α̇

j2
i1
]
cosαji1 +

[
2(δ̇ji1 − ḣji1)α̇ji1 +GEji1α̈

j
i1
]
sinαji1

+
[
δ̈ji2 − ḧji2 −GEji2α̇

j2
i2
]
cosαji2 −

[
2(δ̇ji2 − ḣji2)α̇ji2 +GEji2α̈

j
i2
]
sinαji2

− d2

dt2

(
giλ

j
i (cosψjb sinθz − sinψjb sinθy cosθz)

)
= 0

(4.51)
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4. Dynamic model

Geometric equations on inner and outer ring becomes equations (4.52) and (4.53).

[
δ̈ji1 − ḧji1 −GEji1α̇

j2
i1
]
sinαji1 +

[
2(δ̇ji1 − ḣji1)α̇ji1 +GEji1α̈

j
i1
]
cosαji1

+
[
δ̈jo2 − ḧjo2 −GEjo2α̇

j2
o2
]
sinαjo2 +

[
2(δ̇jo2 − ḣjo2)α̇jo2 +GEjo2α̈

j
o2
]
cosαjo2 =

d2

dt2

(
− δx+R1 −R1 cosθy cosθz +R2 cosψjb cosθy sinθz −R2 sinψjb sinθy

) (4.52)

−
[
δ̈ji1 − ḧji1 −GEji1α̇

j2
i1
]
cosαji1 +

[
2(δ̇ji1 − ḣji1)α̇ji1 +GEji1α̈

j
i1
]
sinαji1

−
[
δ̈jo2 − ḧjo2 −GEjo2α̇

j2
o2
]
cosαjo2 +

[
2(δ̇jo2 − ḣjo2)α̇jo2 +GEjo2α̈

j
o2
]
sinαjo2 =

d2

dt2

(
R2 +

[
−δy −R1 sinθz −R2 cosψjb cosθz

]
cosψjb

+
[
−δz +R1 sinθy cosθz −R2 cosψjb sinθy sinθz −R2 sinψjb cosθy

]
sinψjb

)
(4.53)

Note that in these equations dψj
b

dt = d(θj
m+ψj)
dt = ωjm and d2ψj

b
dt2 = ω̇jm.

5 System resolution

5.1 Adaptive Stepsize Runge-Kutta-Fehlberg algorithm

Different implicit or explicit algorithms exist to solve dynamical systems made of real-time
differential equations. Depending on system characteristics, computation cost or accuracy
expected, each one has its advantages and disadvantages. In dynamics, ball bearings have
components with frequency differences of several orders. They are also subjected to
important discontinuities due to ball-to-pocket and cage-race impacts. For these reasons,
Gupta [91] stated that explicit methods were more suitable to model bearing dynamics
with cage. Many authors like Walters [253], Meeks [182] or Liu [171], also developed
dynamical ball bearing codes and confirmed efficiency of explicit algorithms like Runge-
Kutta-Fehlberg (RKF) method. Particularity of Fehlberg method is that it proposes
RK tables for higher orders than 4. It also estimates error at each step in order to
adapt accurately step-size. That is why, this RKF method is implemented in BB20 with
possibility to set the order between 1 and 7 depending on precision and time-computation
expected.

For given initial conditions X0 on a set of vector unknowns X, this method solves the
differential system of equations (4.54) and gives evolution of these unknowns on discretised
time interval [t0, tf ]. As for that, at each new time tn+1, formula (4.55) is applied to
compute new unknowns xk, k being the position in vector X. In this expression, Aij , Bi,
Ci and Di are scalar components of RKF tables defined in literature [69], [70].

 Ẋ = f(X, t)
X = X0 at t= t0

(4.54)
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System resolution


xk(tn+1) = xk(tn)+∆tn+1

s∑
i=0

CiKi

Errk(tn+1) =
s∑
i=0

(Di−Ci)Ki

with Ki = f
(
xk(tn)+∆tn+1

s∑
j=1

AijKj , tn+Bi∆tn+1
)

(4.55)
To adapt time step ∆t, at each time tn+1, for each variable xk, truncation error

Errk(tn+1) is calculated by relation (4.55). For a RKF method at order m, this error is
the difference between solution calculated at order (m+1) and solution calculated at order
m. According to Gupta [91] and as expressed in (4.56), norm of errors vector |Err(tn+1)|
varies as (m+ 1)th power of previous step size ∆tn. Then, at each time step, step size
∆tn+1 is adapted by relation (4.57), where ϵR3 is error tolerance set by user. To avoid
increasing or decreasing step size too much, γ factor is limited between 0.125 and 4.

|Err(tn+1)| ∼ (∆tn)m+1 (4.56)

∆tn+1 = γ∆tn with γ = 0.8
(
ϵR3|X(tn)|
|Err(tn+1)|

)1/m
(4.57)

5.2 System of equations and unknowns
From dynamic equations expressed in sections 3 and 4, vector unknown X and corre-
sponding system of equation Ẋ = f(X, t) to be solved are summarised in Tables 4.1 and
4.2. To initialise unknowns X0, solution of R2 with cage is used for lengths, rotations
unknowns, cage speed ωc, precession speeds ωjm and ball rotational speeds ωjR whereas
other unknowns are set to zero.

Note that in this dynamic system, quasi-static unknowns r′j
i1 and r′j

o2 have been replaced
by ωjm and ωjR. Then ξj1 and ξj2 are obtained by relations (4.58), (4.59) and effective rolling
radius r′j

km by relations (2.80) to (2.83).

ξj1 = ωjR
Ωi−ωjm

(4.58)

ξj2 = ωjR
Ωo−ωjm

(4.59)

Besides, Gupta [91] specified the importance of nondimensionalizing equations of mo-
tion in order to correctly estimate local truncation error. As for that, length unknowns
were nondimensionalized by ball radius D

2 , forces by axial load FX and time by a com-
bination of ball mass mb, ball radius and axial load such as defined in relation (4.60).
Such strategy should be implemented in BB20 in order to work with consistent time steps
comprised between 0 and 1.

t∗ = t√
mbD
2FX

(4.60)

At the moment, all this theory on dynamic modelling has been programmed in BB20.
However, improvements still need to be made in order to get exploitable results.

159



4. Dynamic model

Unknown Name Equation

δx x1 ẋ1 = x6

δy x2 ẋ2 = x7

δz x3 ẋ3 = x8

θy x4 ẋ4 = x9

θz x5 ẋ5 = x10

δ̇x x6 ẋ6 = δ̈x from Eq. (4.31) of F/IRx
δ̇y x7 ẋ7 = δ̈y from Eq. (4.32) of F/IRy
δ̇z x8 ẋ8 = δ̈z from Eq. (4.33) of F/IRz
θ̇y x9 ẋ9 = θ̈y from Eq. (4.34) of M/IRy

θ̇z x10 ẋ10 = θ̈z from Eq. (4.35) of M/IRz

xc x11 ẋ11 = x17

yc x12 ẋ12 = x18

zc x13 ẋ13 = x19

ψc x14 ẋ14 = x20

θcy x15 ẋ15 = x21

θcz x16 ẋ16 = x22

ẋc x17 ẋ17 = ẍc from Eq. (4.42) of F/cx
ẏc x18 ẋ18 = ÿc from Eq. (4.43) of F/cy
żc x19 ẋ19 = z̈c from Eq. (4.44) of F/cz

ψ̇c = ωc x20 ẋ20 = ψ̈c from Eq. (4.45) of M/cx

θ̇cy x21 ẋ21 = θ̈cy from Eq. (4.46) of M/cy

θ̇cz x22 ẋ22 = θ̈cz from Eq. (4.47) of M/cz

Table 4.1 : Inner ring and cage unknowns and equations in dynamics
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Summary

Unknown Name Equation

ψjb x22+j ẋ22+j = x22+12N+j

αjo2 x22+N+j ẋ22+N+j = x22+13N+j

δjo2 −hjo2 x22+2N+j ẋ22+2N+j = x22+14N+j

ψ̇jb = ωjm x22+12N+j ẋ22+12N+j = ψ̈jb from Eq. (4.38) of F j/bz
α̇jo2 x22+13N+j ẋ22+13N+j = α̈jo2 from Eq. (4.36), (4.37) of F j/bx, F j/by

δ̇jo2 − ḣjo2 x22+14N+j ẋ22+14N+j = δ̈jo2 − ḧjo2 from Eq. (4.36), (4.37) of F j/bx, F j/by
αjo1 x22+3N+j ẋ22+3N+j = x22+15N+j

δjo1 −hjo1 x22+4N+j ẋ22+4N+j = x22+16N+j

αji1 x22+5N+j ẋ22+5N+j = x22+17N+j

δji1 −hji1 x22+6N+j ẋ22+6N+j = x22+18N+j

αji2 x22+7N+j ẋ22+7N+j = x22+19N+j

δji2 −hji2 x22+8N+j ẋ22+8N+j = x22+20N+j

α̇jo1 x22+15N+j ẋ22+15N+j = α̈jo1 from (4.48), (4.49) of f̈ jORx, f̈ jORy
δ̇jo1 − ḣjo1 x22+16N+j ẋ22+16N+j = δ̈jo1 − ḧjo1 from (4.48), (4.49) of f̈ jORx, f̈ jORy
α̇ji1 x22+17N+j ẋ22+17N+j = α̈ji1 from (4.52), (4.53) of f̈ jIRORx, f̈ jIRORy

δ̇ji1 − ḣji1 x22+18N+j ẋ22+18N+j = δ̈ji1 − ḧji1 from (4.52), (4.53) of f̈ jIRORx, f̈ jIRORy
α̇ji2 x22+19N+j ẋ22+19N+j = α̈ji2 from (4.50), (4.51) of f̈ jIRx, f̈ jIRy

δ̇ji2 − ḣji2 x22+20N+j ẋ22+20N+j = δ̈ji2 − ḧji2 from (4.50), (4.51) of f̈ jIRx, f̈ jIRy
βj x22+9N+j ẋ22+9N+j = x22+21N+j

θjr x22+10N+j ẋ22+10N+j = x22+22N+j

β′j x22+11N+j ẋ22+11N+j = x22+23N+j

β̇j x22+21N+j ẋ22+21N+j = β̈j from Eq. (4.39), (4.41) of M j
/bx, M j

/bz

θ̇jr = ωjr x22+22N+j ẋ22+22N+j = θ̈jr from Eq. (4.39), (4.41) of M j
/bx, M j

/bz

β̇′j x22+23N+j ẋ22+23N+j = β̈′j from Eq. (4.40) of M j
/by

Table 4.2 : Balls unknowns and equations in dynamics

6 Summary
Previous chapters have shown the necessity to transpose BB20 in dynamics. This work
has been started here. As for that, balls, cage and inner race masses, inertia matrix and
dynamic torsors have been defined. New dynamic system of equations and unknowns
have been set. This system can be solved by a Runge-Kutta-Fehlberg algorithm that
computes problem unknowns at each time-step and that adapts step size at each step.
At the moment, numerical developments are still needed to get exploitable results. This
should be done in a future thesis.
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Conclusion

To conclude, this thesis focused on BB20, a computer code that solves quasi-static equi-
librium of four contact point ball bearings. In initial model, only balls and rings are
considered with lubrication, inertia, external loads on inner ring, ball-race contact and
friction forces. A detailed state of the art of literature models revealed that BB20 was
one of the most accurate ACBB existing model. Indeed, it considers up to 4 ball-race
contact points and does not make any raceway control hypothesis to compute kinematics.
Instead, all balls degrees of freedom are calculated by solving forces and torques equilib-
rium. Especially, both pitch and yaw angles, arising from two gyroscopic momentums, are
computed. Ball-race interactions are accurately modelled by considering spinning, rolling,
macro-sliding at contact and by integrating shear stress on each point of surface ellipse.
Is this way, detailed kinematic behaviour is calculated. However, all these considerations
make numerical resolution particularly tricky to be solved.

Then, because of initial BB20 complexity and limitations, algorithm optimisation
and models improvements had to be done before considering cage effects. As for that,
model has been transposed in a direct coordinate system. Unknowns, coordinate systems
and equations have been redefined to consider negative angles and reverse thrust load.
Ball-race deformations and film thickness definition have also been reconsidered to work
with a single, continuous and smooth system of equations adapted to any contact and
any ring truncations. Numerical scheme, drag model, friction forces computation and
system nondimensionalization have also been revised in details. It was shown that all
these modifications reduce converging constraints, improve numerical continuity, system
conditioning, robustness and computational time. This new model is also adapted to
larger operating conditions in terms of bearing geometry, speeds or loads.

Consequently, under pure axial load or moderated radial loads, analysis of ball kine-
matic parameters and sliding lines on contact ellipse is in agreement with expected results.
When radial load becomes larger than axial load, ball-to-inner race detachments and falls
in ball-speeds are observed. Model is not adapted anymore, cage and dynamical effects
should be considered. However, a solution with hypothesis on balls rotations, have been
proposed to get a first overview on bearing equilibrium.

A comparative study with literature reference models has also been conducted. Sim-
ilar behaviours have been observed between models, which confirms BB20 correctness.
BB20 has also been validated by comparison with Safran’s power loss experiments and
with Kawamura’s measurements of pitch angle, ball and cage rotations. Nevertheless,
validation of a quasi-static model turned out to be complicated because on the one hand,
each literature model makes its own hypothesis, and on the other hand, experiments are
limited by ability to measure kinematic parameters.
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Conclusion

In a second time, cage has been added into the model. As for that, cage rotational
speed and ball-to-pocket ortho-radial displacements are estimated by a quasi-dynamic ap-
proach. Cage-to-guiding race interactions are modelled by short journal bearing theory.
Ball-to-pocket interactions are also represented, in a given plan, by SJB theory adapted
to HD or EHD regimes. In an orthogonal plan, ball-to-pocket interactions combine dif-
ferent effects. Indeed, barrel-plan theory models HD normal and frictions forces. EHD
interactions are defined by Hertzian contact for normal loads and by dry shearing for
friction forces. Numerical procedures have been developed to manage with discontinuities
between these HD to EHD regimes. A strategy has also been set up to deal with impor-
tant ortho-radial displacements and SJB forces that can cause singularities. Then, cage
equilibrium is reached step-by-step. This involves larger computational time but ensures
greater robustness.

In addition, cage can be considered as a rigid or flexible body. With rigid model, cage
is defined as a single solid and 6 equations on cage center are solved. With flexible model,
cage is divided into N finite elements and 6N equations on pockets are solved. Structural
dynamics methods are used to compute 3D cage flexibility with both global and local
deformations.

This quasi-dynamic model has been run with increasing axial loads. When cage is
guided by the inner race, axial displacements and ball-to-pocket normal loads are larger
than under outer race guidance. Under IR guidance, cage self-rotations and ball-to-pocket
displacements are such that cage pulls balls whereas under OR guidance, balls are pulled
by the cage. Ball kinematics have also been investigated under pure axial loads. If general
results agree with literature, BB20 showed in addition the non negligible influence of axial
load and shaft speed on yaw angle.

Tests have also been run with combined axial and radial loads. Because of cage-race
SJB interactions, cage rotates on itself and gets positioned at 90◦ from radial load. And,
these motions increase with radial load. As well, analysis of ball-to-pocket minimal clear-
ance confirmed the necessity to take cage into account. Its influence on ball kinematics
and ball-race contact points location have been demonstrated. It has also been shown
that, under small radial load, all balls are positioned at the same place in the pocket.
When radial load increases, each ball gets positioned differently until that loaded balls
stand at one side of the pocket and unloaded balls at the opposite side. To better under-
stand this behaviour, contribution of kinematic parameters and ball-to-pocket forces in
each plan have been analysed. It appears that each effect is related to others by precise
mechanisms.

Flexible cage has also been studied. Convergence difficulties have been observed be-
cause of quasi-dynamic limits and of simplifications on cage-race interactions. Similar
cage center motions have been observed between flexible and rigid models. However,
flexible cage experiences non negligible pocket elastic deformations, especially with soft
materials like PEEK. Besides, rigid quasi-dynamic model has been compared with a dy-
namical model of four contact-point ball bearing. Similar results have been observed,
which strengthens our belief in BB20 correctness. Transposition in dynamics should al-
low to get even closer results. Above all, this comparative study with ACBB working
under 1, 2, 3 or 4 contact-points, confirmed the influence of rings truncations and pointed
out that getting a third contact-point particularly complicates kinematics.

164



Conclusion

Finally, computational time analysis has shown that quasi-dynamic resolution was
much longer than quasi-static, even if it cannot be longer than dynamics. Then, quasi-
dynamic model is a practical tool to get a first overlook on bearing behaviour with cage.
Its development was essential to introduce cage accurately, its limits have been raised and
justified the necessity to transpose BB20 in dynamics. As for that, bodies inertia param-
eters and dynamic torsors have been defined before setting the system of equations. This
system can be solved by a Runge-Kutta-Fehlberg algorithm that computes problem un-
knowns at each time-step. This dynamic modelling approach has been started. However,
numerical developments are still needed to get correct results.

Prospects
Once the basic dynamical model solved, additional effects should be considered. For
example, ball-race, cage-race and ball-to-pocket squeeze-film damping are non negligi-
ble dynamical phenomena caused by film thickness variations. Cage weight or bodies
unbalance could also be added as an option. Lubrication could be improved by consider-
ing thermal effects, starvation or by improving ball-race traction model. Indeed, instead
of considering a constant coefficient, Kragelskii or Maxwell-type formulations should be
used. They are function of sliding speeds and lubricant characteristics, then they are more
accurate. Cage-race interactions are also limited to SJB theory with coaxial bearings. To
be able to represent rings misalignment, SJB solutions with misaligned axis should be
considered. Cage-race dry contact should also be made possible, especially to improve
numerical resolution when such contact is met over iterations.

Besides, this computer code will be used to design new cages and to validate manufac-
turing defects (clearances, fits, etc.). That is why, cage asymmetries should be modelled
with possibility to change pockets geometry independently of one another. And, if most
cages are made of cylindrical pockets, other shapes like oblong pockets exist. With such
geometry, ball-to-pocket clearance is increased, then collisions are limited. It would be
interesting to investigate the influence of pocket geometry on kinematics, contact forces or
cage center motions. To improve cage flexible model, stiffness matrix could be imported
from a finite element software, rather than being calculated analytically. Is this way, dif-
ferent cage architectures could be considered. As well, to avoid bearing failures, surface
defects like dents, bumps, spalls or debris could be added. In such a case, dynamics is es-
sential since surface imperfections involve ball speed reduction and risks of ball-to-pocket
collisions.

As well, aircraft engines bearings are submitted to important temperatures. Lubricant
flow between upstream and downstream side can result in large temperature differences,
then in asymmetric forces distribution. That is why, influence of such parameter could be
taken into account through a thermo-mechanical model. Finally, in previous BB20 version,
rings and housing deformations were considered by coupling BB20 with a finite element
approach. In this new version, we did not report coordinate systems modifications to this
deformable model. This could be done in order to investigate in dynamics the influence
of rings deformations.

Thus, all these prospects show the huge potential offered by BB20 once the dynamic
solved.
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Appendix A

Review summarising Tables

Main features of each model are summarised in Tables A.1 to A.6. They are organized
from the most complete to the most simplified. However, such classification is highly
modular depending if we consider that a modelling criteria, as avoiding RCH, considering
gyroscopic momentum or 4 contact-points, is more important than another one. As well,
certain model are considered as simplified because main feature is not to model ACBB
but to consider a specificity like damping, raceway defect or cage flexibility. This does
not mean that the model is basic or uninteresting. Note also that if a data is not given
in a table, either it is not considered in the model or information was not found.

Bearing types are defined with following notations:
- ACBB : Angular Contact Ball Bearing
- All: Any type of bearing
- ABB : Arched Ball Bearing
- BB : Ball Bearing
- CMGB : Control Moment Gyro Bearing
- CRB : Cylindrical Roller Bearing
- DGBB : Deep Groove Ball Bearing
- NRB: Needle Roller Bearing
- RB : Roller Bearing
- SB : Spindle Bearing
- TRB : Tapered Roller Bearing

Traction models can be defined by a constant friction coefficient (=), by a simplified
Newtonian model (N), by Kragelsii’s [154] (K) with coefficients extracted from literature
experiments or by another model.
Film thickness is generally defined by one of the following model:

- AC : Archard and Cowking [8]
- C : Chittenden [42]
- DH : Dowson and Higginson [62]
- HD : Hamrock and Dowson [109]

Reduction factor on film thickness due to thermal effects (ϕT ) or to starvation (ϕS) can
be defined by those models:

- ϕTC : Cheng [41]
- ϕTM : Murch and Wilson [185]
- ϕTW : Wilson and Cheu [269]
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A. Review summarising Tables

- ϕTG : Gupta [101]
- ϕSC : Chiu [44]
- ϕSHD : Hamrock and Dowson [115]
- ϕSO : Olaru [200]

When pitch angle is calculated, following method can be used:
- ED : Equal distribution between races
- HT : Hybrid theory
- min : Contact friction minimisation
- µ : Friction coefficient is set to prevent gyroscopic slippage
- RCA : Rolling Contact Analysis
- RCH : Raceway Control Hypothesis
- ∑M : Ball torque equilibrium

As well, 1 or 2 gyroscopic momentums can be calculated. In quasi-static, they arise from
pitch and yaw angle computations.
Note that if a data is not given in a table, either it is not considered in the model or
information was not found.
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Bearing type Authors - CODE [Ref] Year
Degrees of
freedom Ball - Races

Ball -
Pocket

Cage -
Ring

Additional
forces

ACBB Yang [273] 2016 5 6 3 = 2 ✓ ✓ ✓ 2 ✓

ACBB Yan [272] 2015 5 6 3 ✓ = 2 ✓ ✓ ✓ 2 ✓

ACBB Shi - READ [235] 2020 5 6 ✓ ✓ [51] 2 ✓ ✓ ✓ 2 ✓

BB Li - READ [162] 2019 5 6 ✓ ✓ ✓ 2 ✓ ✓ 2
ACBB Cui - READ [52] 2019 5 6 ✓ HD [140] K 2 ✓ ✓ 2
ACBB Wu - READ [270] 2021 5 6 ✓ ✓ [14] 2 ✓ ✓ 2
ACBB Poplawski - SHABHYB [207] 1996 5 6 3 AC, ϕTC , ϕSC ✓ 2 µ ✓ ✓ ✓ 2 ✓

MicroBB Wen [265] 2020 5 6 3 HD N 2 ✓ ✓ ✓ 2 ✓

BB, CRB Crecelius - SHABERTH [46] 1977 5 6 3 AC, ϕTC , ϕSC ✓ 2 RCH ✓ ✓ ✓ 2 ✓

ACBB Shoda [238] 1997 5 6 1 K [94] 2 ∑
M ✓ ✓ ✓ 2 ✓

ABB Leblanc - BB20 [157] [158] 2007, 2008 5 6 HD = 4 ∑
M ✓ 2 ✓

ACBB Aramaki [6] 1988 6 1 HD [142] [53] 2 ∑
M ✓ ✓ ✓ 2 ✓

ACBB Chen - SACAB [38][39] 2012 1 5 = 2 RCA ✓ 2
ABB Hamrock [110] 1975 3 6 0 = 3 ∑

M ✓ 2
BB, RB Harris [120], Mindel [123] 1972 5 6 1 AC N 2 ∑

M ✓ ✓ ✓ 2 ✓

BB Servais [232] 2017 5 6 ✓ 2 ∑
M ✓ 1

BB Bozet [27] 2016 2 6 = 2 ∑
M ✓ 1

ACBB Legrand - RBL4 [159] 1997 6 6 C, ϕTWS , ϕSHD 2 ∑
M ✓ 1 ✓

ACBB Tong [244] [245] 2017 5 6 HD [16] [285] 2 ED ✓ 1 ✓

ACBB Shi - READ [236] 2015 5 6 ✓ [51] 2 ✓ ✓ ✓ 2 ✓

Table A.1 : Quasi-static and quasi-dynamic sophisticated models169
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Bearing type Authors - CODE [Ref] Year
Degrees of
freedom Ball - Races

Ball -
Pocket

Cage -
Ring

Additional
forces

ACBB Jones [144] 1959 3 6 0 = 2 RCH ✓ 2
SB, ACBB Brecher [28] 2013 1 2 1 = 2 ∑

M ✓ ✓ ✓ 2
BB Yoshida [278] 2013 5 6 1 HD [142] 2 RCH ✓ ✓ ✓ 2 ✓

ACBB Harris [119] 1971 3 6 0 AC N 2 µ ✓ ✓ 1
ACBB Gupta [100] 2020 6 6 ✓ [105] 2 min ✓ 1
ACBB Nélias [64][186] [188] [189] 1989-1994 2 4 3 HD, ϕTG [143][217] 2 ✓ ✓ ✓ ✓

ABB Joshi [147] 2015 3 6 = 4 RCH
BB Foord [71] 2006 3 6 0 [72] = 2 min ✓ 1

ACBB, TRB Houpert [128] 2002 5 6 ✓ [133] [134] 2 ✓ 1
ACBB Oktaviana [199] 2018 5 2 2 ED ✓ 1

SB Cao [34] 2004 5 6 2 RCH ✓ 1
ACBB, DGBB Gentle [77], Boness [25] 1975 1 6 AC [78] 2 ✓ ✓ 1 ✓

ACBB Liao - Lin [166] 2006 3 4 HD [149] 2 ✓

RB Boness [23] 1970 3 DH [61] ✓ ✓

RB Poplawski - COBRA [206] 1972 2 3 1 DH ✓ ✓ ✓ ✓

RB Rumbarger [220] 1973 1 3 1 DH, ϕTC [179] ✓ ✓ ✓ 1 ✓

ACBB Townsend [246] 1973 1 3 DH [4] 2 ✓

ABB Hamrock, Anderson [111] 1973 1 3 0 3 ✓

Table A.2 : Quasi-static and quasi-dynamic developed models
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Bearing type Authors - CODE [Ref] Year
Degrees of
freedom Ball - Races

Ball -
Pocket

Cage -
Ring

Additional
forces

BB, RB Mauriello [178] 1973 4 5 4 [62] [142] 2 ✓ ✓ ✓ 1 ✓

ABB Ignacio Amasorrain [136] 2002 3 3 4
BB de Mul [56] 1989 5 2 2 ✓ 1

ACBB Antoine [5] 2006 1 2 = 2 RCH ✓ 1
ACBB Liao - Lin [163] 2001 3 4 2
ACBB Liao - Lin [164] 2002 3 4 2 ✓

ACBB Liao - Lin [165] 2004 3 4 2 ✓

SB, ACBB Brecher [29] 2014 6 [205] 2 ✓ ✓ ✓

BB Dominy [59] 1986 3 1 [72] 2 RCH ✓ ✓ ✓

ACBB Lei [160] 2010 3 5 [7] 2 HT ✓ 1
BB Rabréau [214] 2018 3 2 HT ✓ 1

ACBB Zhang [283] 2020 6 5 [257] 2 HT ✓ 1
ACBB Zhang [280] 2020 5 3 [257] 2 HT ✓ 1
ACBB Noel [195] 2013 5 4 = 2 HT ✓ 1
ACBB Wang [257] 2014 3 4 ✓ 2 HT ✓ 1

SB Jorgensen [146] 1998 5 2 2 ✓ 1
BB Chittenden [42] 1989 0 6 C [76][142] 2 ✓

ACBB Xu [271] 2013 1 4 2 RCH ✓ 1
ACBB Wang [256] 2014 3 3 2 RCH ✓ 1

SB Shin [237] 1992 3 3 2 RCH ✓ 1
SB Jedrzejewski [141] 2010 1 2 = 2 RCH ✓ 1

ACBB Zeng [279] 2020 3 2 2 RCH ✓ 1
ACBB Chunjiang [45] 2015 2 2 ✓ 2 RCH ✓ 1

Table A.3 : Quasi-static and quasi-dynamic simplified models
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Bearing type Authors - CODE [Ref] Year
Degrees

of
freedom

Ball - Races
Ball -
Pocket

Cage
-

Ring

Additional
forces

All Gupta - BDYN,DREB,ADORE [86]-[103] 1975-2020 6 6 6 HD,ϕTG,ϕSHD K [103] 2 ✓ ✓ ✓ ✓ 2 ✓

All Stacke - BEAST [240][239] 2000 6 6 6 ✓ [191] [1] 2 ✓ ✓ ✓ ✓ ✓ 2 ✓

ACBB, DGBB Saheta - DBM [221] 2001 6 6 6 [230] 2 ✓ ✓ ✓ 2
ACBB, TRB, DGBB, CRB Ghaisas - DBM [79] 2003 6 6 6 [30][113] [108] 2 ✓ ✓ ✓ 2 ✓

ACBB, DGBB Ashtekar - DBM[10][11] 2008-2010 6 6 6 [30] HD = 2 ✓ ✓ ✓ 2
BB Ashtekar - DBM [9] 2012 6 6 6 [31] HD K [91] 2 ✓ ✓ ✓ 2 ✓ 3D

DGBB Weinzapfel - DBM [262] 2009 6 6 5 [31] HD K [91] 2 ✓ ✓ ✓ 2 ✓ 2D
DGBB Pederson - DBM [203][204] 2005 6 6 3 [31] HD [230] 2 ✓ ✓ 2 ✓ 2D
ABB Yao [274] 2018 6 6 6 4 ✓ ✓ ✓

ABB Ma [173][174] 2022 5 6 3 K [282] 3-4 ✓ ✓ ✓ ✓

ACBB Li [161] 2020 6 6 6 K [95] 2 ✓ ✓ ✓ ✓ 3D
DGBB Hahn [107] 2005 6 6 6 ✓ 2 ✓ ✓ ✓ 3D
CRB Qian - CyBeSime [211] 2013 6 6 6 ✓ [201] [175] K [184] ✓ ✓ ✓ ✓ ✓ 1 ✓ 3D

ACBB Gao [75] 2021 5 4 4 HD [117] 2 ✓ ✓ ✓ ✓ 1 2D
ACBB Wen, Meng [264] 2021 5 6 6 ✓ [177] [176] [265] 2 ✓ ✓ ✓ ✓ ✓ 2
ACBB Wen, Meng [263] 2021 5 6 3 ✓ HD [176] [265] 2 ✓ ✓ ✓ ✓ ✓ 2

BB Niu [193] 2015 6 6 6 N 2 ✓ ✓ ✓ 2
ACBB Liu [169] 2011 3 6 6 ✓ [42][101] K [32] 2 ✓ ✓ ✓ ✓

ACBB Wang [259] 2017 3 6 1 HD, ϕTG [48] 2 ✓ ✓ 2 ✓

BB Wang [254] 2016 6 6 6 ✓ [170] [97] 2 ✓ ✓ ✓ 1
BB Nogi [196] 2017 1 6 6 ✓ HD [137] [217] 2 ✓ ✓ ✓ 1
BB Niu [194] 2016 6 6 6 [91] N 2 ✓ ✓ ✓ ✓

ACBB Zhang [281] 2016 5 6 6 ✓ K 2 ✓ ✓ ✓ ✓

Table A.4 : Sophisticated dynamical models
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Bearing type Authors - CODE [Ref] Year
Degrees

of
freedom

Ball - Races
Ball -
Pocket

Cage
-

Ring

Additional
forces

ACBB Liu [172] 2020 3 6 3 K [281] 2 ✓ ✓ ✓ ✓

ACBB Liu [171] 2020 3 6 3 = 2 ✓ ✓ ✓ ✓

RB Liu [167] 2021 2 3 1 [86] [79] 2 ✓ ✓ 2D
BB Dong [60] 2015 6 6 6 ✓ ✓ [261] 2 ✓ ✓ ✓

ACBB Bovet [26] 2016 6 6 6 [191] [138] [217] 2 ✓ ✓ ✓

ACBB Fang [68] 2018 5 6 3 HD K [281] 2 ✓ ✓ ✓ 1 ✓

ACBB Han [118] 2018 3 6 3 HD [13] [117] 2 ✓ ✓ ✓ ✓

ACBB Meeks - SEPDYN [181][180] 1984 2 6 [103] 2 ✓ ✓ ✓ ✓ ✓ ✓

ACBB Meeks - BABERDYN [182] 1996 2 6 [103] 2 ✓ ✓ ✓ ✓ ✓ 1 ✓

ACBB Kannel - BASDAP II [148] 1978 3 [18] ✓ 2 ✓ ✓ ✓ ✓ ✓ 1
Gyro-bearing Walters - BASDAP [253] 1971 4 6 ✓ ✓ 2 ✓ ✓ ✓ 1

CMGB Boesiger - PADRE [22] 1991 2 3 [143] 2 ✓ ✓ ✓ ✓

RB Houpert - CAGEDYN [129][130][131] 2010 2 3 [125] [127] ✓ ✓ ✓ ✓ 2D
ACBB, SRB, DGBB Prenger [210] 2003 6 6 6 [30] [113] K 2 ✓ ✓ ✓ 2

BB Niu [33] 2014 6 6 0 N 2 ✓ 2
BB Ye [276][277] 2015 5 6 4 [261] 2 ✓ ✓ ✓ ✓

BB, RB Shao [37] [233] 2014 2 3 1 HD K [86] 2 ✓ ✓

ACBB Wang [258][260] 2015 3 6 1 HD [48] 2 ✓ ✓ ✓

ACBB Han, Chu [117] 2015 5 5 1 HD N 2 ✓ ✓ 1 ✓

ACBB Gao [74] 2020 5 4 1 HD [50] 2 ✓ ✓ 1 ✓

NRB, TRB Sakaguchi [223][224] 2006,2009 6 6 [201] [175] K [184] ✓ ✓ 1 3D
NRB Sakaguchi [222] 2006 6 6 [31] C, ϕTG K [184] ✓ ✓ 1 2D

TRB, NRB Sekiya [231] 2011 6 6 [201] [175] K [184] ✓ ✓ ✓ 1 ✓

Table A.5 : Developed dynamical models

173



A
.R

eview
sum

m
arising

Tables

In
ne

r
rin

g

Ba
lls

C
ag

e

Sq
ue

ez
e-

fil
m

da
m

pi
ng

EH
D

Fi
lm

th
ick

ne
ss

Tr
ac

tio
n

m
od

el

C
on

ta
ct

po
in

ts

N
or

m
al

+
Fr

ic
tio

n
fo

rc
es

Sq
ue

ez
e-

fil
m

da
m

pi
ng

N
or

m
al

+
Fr

ic
tio

n
fo

rc
es

Sq
ue

ez
e-

fil
m

da
m

pi
ng

C
en

tr
ifu

ga
lf

or
ce

s

G
yr

os
co

pi
c

M
om

en
ts

V
isc

ou
s

dr
ag

fo
rc

es

C
ag

e
Fl

ex
ib

ili
ty

Bearing type Authors - CODE [Ref] Year
Degrees

of
freedom

Ball - Races
Ball -
Pocket

Cage
-

Ring

Additional
forces

BB Guessasma [83] 2018 6 6 ✓ [109] = 2 ✓ ✓ 1
ACBB Qin [212] 2020 5 3 3 = 2 ✓ ✓ 1
ACBB Qin [213] 2019 3 3 0 = 2 ✓ ✓ 1
ACBB Jain, Hunt [139] 2011 3 3 1 HD [47] [49] 2 ✓ ✓ 1 ✓

BB, RB Tu [247] 2012 2 3 1 K [86] 2 ✓ ✓

BB Sarangi [228] 2005 2 1 0 ✓ ✓ 2 ✓

ACBB Bizarre [20] 2018 5 6 ✓ ✓ N 2 ✓ 1
ACBB Walford, Stone [252] 1983 2 2 ✓ AC 2
ACBB Hagiu [106] 1996 3 2 ✓ HD,ϕTM ,ϕSO 2
DGBB Nonato [198] 2014 2 ✓ ✓ 2

Table A.6 : Simplified dynamical models
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Appendix B

R2 results under pure axial load
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B. R2 results under pure axial load

Test A B C D

F jXi1 (N) -42.5 -3.37 -0.0002 0
F jXo2 (N) -149.5 -3.46 -8.845 0
F jZi1 (N) 7.338 1.577 -0.815 -1.85
F jZo2 (N) 0.595 -1.699 0.561 -535

Friction M j
Ri1 (N.m) 0.070 0.014 0.0078 0.0176

forces M j
Ro2 (N.m) 0.014 -0.013 0.0056 4.83

M j
Si1 (N.m) 0.052 0.051 -13E-9 -49E-9

M j
So2 (N.m) -0.028 0.051 0.0035 -0.0072

M j
Zi1 (N.m) -0.404 -0.032 -2.2E-6 0

M j
Zo2 (N.m) -1.410 -0.033 -0.084 0

V j
Xi1 (m/s) -1.160 -0.00088 -0.021 0
V j
Xo2 (m/s) -1.160 -0.00088 -0.021 0
V j
Zi1 (m/s) -0.358 0.0063 72.5 3.61

Ball V j
Zo2 (m/s) -0.605 -0.00158 -0.043 -0.031

kinematics ωjSi1 (rad/s) -3396 -57.5 -2598 -5749
ωjSo2 (rad/s) 176.2 -44.2 -62.4 3.65
ωjRi1 (rad/s) 7677 792 3854 6838
ωjRo2 (rad/s) -6640 -638 -2825 -7108
M j
GY (N.m) 0.106 0.000 0.001 0.000

Ball motion M j
GZ (N.m) 1.813 0.032 0.083 0.000

forces F jc (N) 1494 14 275 1729
F jdr (N) -7.933 -0.074 -1.460 -18.891
ωjm (rpm) 8022 777 3442 8628
ωjR (rpm) -71100 -6752 -30414 -76507
βj (◦) 16.33 32.40 4.01 0.00

Bearing β′j(◦) 0.98 0.01 0.04 0.00
parameters αji1 (◦) 38.3 32.6 36.7 40.1

αo2 (◦) 19.9 32.3 3.3 0.0
δji1 (µm) 10.212 10.904 0.472 0.175
δjo2 (µm) 13.805 9.125 3.146 16.936

Table B.1 : Results obtained for bearing A under pure axial load
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Appendix C

Rheological parameters

1 Dynamic viscosity µ

Normal loads, friction forces and film thickness formulas presented are functions of lubri-
cant dynamic viscosity µ. Depending on lubrication regime, viscosity can be constant or
pressure and temperature dependant. In BB20, we consider W.L.F. model modified by
Yasutomi [275] because it is suitable for high pressures [250]. It is based on temperature
and pressure dependency on free volumes. Dynamic viscosity is expressed by relation
(C.1) where A1,A2,B1,B2,C1,C2 are constants determined by curve fitting different lu-
bricants. F (P ) is thermal expansion coefficient, Tg(P ) is glass transition temperature,
Tg0 is reference glass transition temperature and µg is viscosity at glass transition.

logµ(T,P ) = logµg + C1(T −Tg(P ))F (P )
C2 +(T −Tg(P ))F (P ) , with

 F (P ) = 1−B1 ln(1+B2P )
Tg(P ) = Tg0 +A1 ln(1+A2P )

(C.1)
Consequently, to model lubricant in all ball-to-pocket interactions, viscosity is cal-

culated at cage temperature Tc and at ambient pressure Pa such that F (Pa) = 0 and
Tg(Pa) = Tg0. Note that under EHD regime, viscosity is also considered at ambient pres-
sure because contact pressure is already taken into account in film thickness through load
parameter W ′. For cage-race interaction, viscosity is calculated at a temperature equal to
cage-race average one, and at ambient pressure Pa because pressure is low. For ball-race
interactions, viscosity is calculated at race temperature Ti or To, and at ambient pressure
Pa.

2 Reciprocal asymptotic isoviscous pressure α∗

Reciprocal asymptotic isoviscous pressure α∗ is necessary for Hamrock Dowson film thick-
ness computation. Blok [21] expressed this parameter by relation (C.2). Integration of
equation (C.1) in (C.2) gives relation (C.3) where A00, A01, A10 and A11 are lubricant
parameters given by Nelias [187] for Mobil Jet-oil II.

1
α∗ = µ(T,0)

∞∫
0

dp

µ(T,p) (C.2)
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C. Rheological parameters

α∗ = 10−9
(
A00
T

+ A01
T 2 + A10

T −Tc0
+ A11

(T −Tc0)2

)
(C.3)

3 Friction coefficients
At ball-race contacts, a constant friction coefficient, set by user, is considered. At cage-
race and ball-to-pocket interactions, constant coefficients equal to dynamic viscosity
µ(T,P ) are also considered. However, for continuity reasons, when shear force F jsh is
greater than 10% of normal load W j

f , we set F jsh equal to 0.1W j
f . In other words, at high

pressures, shear force is replaced by a Coulomb’s law with a friction coefficient of 0.1.

4 Thermal reduction factor on film thickness
Under high-speed and important sliding, energy loss due to shearing and temperature
increasing occurs at contact. Since oil viscosity decreases rapidly with temperature, film
thickness is reduced too. That is why, a reduction factor on film thickness ϕT is considered
at ball-race contact. It is expressed by Gupta’s [101] relation in (C.4), where L and S
are dimensionless parameters that characterize, respectively, thermal load and sliding.
Normal load effects are given by Pm, the maximum Hertzian pressure.

ϕT =
1−13.2

(
Pm
E

)
L0.42

1+0.213(1+2.23S0.83)L0.64

 L= − ∂µ
∂T

(U1+U2)2

4Kf

S = 2U1−U2
U1+U2

(C.4)
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RESUME :  
 
Angular Contact Ball Bearings are widely used in aerospace industry because of their ability to work at high-speed and to support 
important loads. Depending on operating conditions, kinematic and dynamic behaviours are complex and bearing design 
optimisation is essential. That is why this study aims at continuing Leblanc and Nelias’ quasi-static model with balls and rings. 
Difficulty of this model lies in the fact that up to four ball-race contact points are considered. As well, all balls degrees of freedom 
are calculated without making any kinematic assumption. Then, one of the purpose of this thesis is to improve computation of 
friction forces, EHD lubrication and kinematics at each point of contact ellipse. The model is also harmonized in order to get a 
single system of equations that better deals with numerical discontinuities due to contact changes. Solutions are proposed to 
extend operating conditions at lower speeds and higher radial loads or misalignments.   
 
Besides, aeronautical industry is currently developing ball bearings with cages made of lighter but softer materials. Such bearings 
experience cage deformation and stress concentration due to ball-to-pocket impacts. These are produced during acceleration 
and deceleration phases or during cruise when operating with combined thrust and radial load. That is why this study aims, in a 
second time, at adding cage into the quasi-static model. Ball-to-pocket and cage-race interactions are considered as well as 
global and local cage elasticity in three dimensions. Finally, the whole system is transposed in dynamics in order to be solved 
over time and to consider acceleration components. 
 
For various operating conditions, ball kinematics, ball-race interactions, cage center motion, cage local and global deformations 
are analysed. Model validation is done by comparison with existing models or with experimental results found in literature. 
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