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General Overview

Heat-exchange applications -such as boilers, evaporators and condensers- make use of
tube bundles as theirkey component. The main idea is to accumulate a large number
of ¯uid-carrying tubes inside a vessel which encloses the main ¯uid ¯ow, from which
heat is to be either transferred or extracted. Temperature differences between the ¯uid
on both sides of the tubes leads to heat transfer over a large effective contact area, thus
rendering the process highly ef®cient. The span of applications for tube bundles is thus
enormous, ranging from the pharmaceutical to the aerospace industries and covering
virtually everything in between. They have a particular importance in nuclear power
generation, as Steam Generators (SG) constitute the link between the primary coolant
loop -which carries the hot, radioactive ¯uid from the reactor- and the secondary loop
-with clean ¯uid destined to the production of steam-. Ensuring integrity of the tubes in
this case is thus a major concern for economical as well as safety reasons. Hence, the past
decades have seen signi®cant efforts been made to better understand the behaviour of tube
bundles. This has proved to be a challenging task, as the multi-physics setup involving
¯ow-induced vibrations within a two-phase, turbulent ¯ow, is extremely complex. While
outstanding developments have been accomplished, namely in the form of technological
solutions to mitigate excessive vibrations, a full understanding of the problem is yet to
be reached today, both in terms of the ¯uid-elastic coupling mechanisms responsible for
vibrations and the ef®cient prediction of long-term tube dynamics, especially in abnormal
situations (e.g., misalignment, widened gaps due to wear, excessively fast ¯ows).

One part of the issue is thus a modelling problem, in which one seeks to accurately
described the ¯uid-elastic coupling phenomena. On the other hand, once a reasonable
model has been found, one must be able to exploit it thoroughly for predictive analyses.
Due to the geometrical complexity of engineering structures and the non-linear nature
of their governing equations, this necessarily calls for the use of numerical methods,
which must be both accurate and ef®cient for practical predictive analyses. In this regard
it must be noted that the traditional approach, which consists in using time-integration
algorithms to obtain the predicted history of motions for the tubes, is not well-suited
for industrial use, mainly due to: the small time steps necessary to capture tube-support
impacts, the numerous degrees of freedom, and the large number of parameters to be
varied in order to fully cover the range of possible outcomes. The latter of these aspects
is all the more important when nonlinear equations are involved, as it is well known that
some parameter combinations lead to coexisting vibration regimes, some of which may
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General Overview

be undesirable (for instance, permanent friction must be avoided if possible in order to
limit premature failure due to wear). Specialized techniques are thus required to map the
parameter space of a given system and associate each of the regimes to a particular dy-
namical behaviour, thus allowing a full control of the problem and even an optimal design.

The present thesis aims to contribute to the solution of the second of the aforemen-
tioned problems, namely: the development of reliable and fast algorithms for the paramet-
ric analysis of nonlinear ¯ow-induced vibration problems. More precisely, the objectives
sought are:

± to generalize the existing methods for frequency-domain bifurcation analysis to
arbitrary codimension,

± to extend the stability analysis methods to dynamical systems with memory and to
quasi-periodic solutions,

± to create a robust numerical platform for these methods, rending them available for
practical engineering use, and

± to study simpli®ed systems representative of the SG vibration phenomenology, in-
cluding experimental validation of results when possible.

This manuscript is divided into two parts, with the ®rst one dedicated to the development
of numerical methods. Chapter 1 presents a state of the art covers the previous attempts
to tackle the SG vibration problem, as well as the corresponding framework from the
theory of nonlinear dynamical systems and the associated numerical and mathematical
techniques. This justi®es the structure of the thesis and the need for the developments
herein presented.
Chapter 2 establishes the selected framework for numerical analysis, which consists of
a frequency-domain solver employing the Harmonic Balance Method (HBM) coupled to
a continuation algorithm equipped with stability analysis and bifurcation detection. Fur-
thermore, the numerical contributions are described in detail.
The second part contains the application of these methods to selected systems related to
SG vibrations.
Chapter 3 deals with forced systems with impacts, in which ¯uid ¯ows are absent. Exper-
imental measurements are used to validate numerical results.
Finally, chapter 4 presents a purely numerical analysis of two simpli®ed systems with a
memory effect due to ¯uid-elastic coupling. The latter one, in particular, is a realistic
representation of a U-tube typically found with SG bundles.
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Chapter 1

State of the Art

This chapter offers an overview of the current state of the art
regarding steam-generator vibrations.

Firstly, the concept of ¯uidelastic instability is presented and
its importance is stressed within the industrial context of
pressurised water reactors. A detailed summary of the
associated scienti®c literature follows, which leads to
identifying the key aspects of the underlying dynamics

problem. Next, the theoretical considerations of said aspects
are reviewed; this includes stability, bifurcations, linear and

nonlinear modal analyses, ¯ow-induced vibrations and
contact mechanics. Finally, the currently-available numerical
tools and techniques for assessing the nonlinear dynamical
behaviour of structures are discussed. This review motivates

the numerical developments presented in the following
chapter, as well as the choice of systems studied in Chapter 3.
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Vibration Hazard in Steam Generators

1.1 Vibration Hazard in Steam Generators

Inside a nuclear power plant of the Pressurized Water Reactor (PWR) type, steam genera-
tors play the role of liquid-liquid heat exchangers between the coolants in the primary and
secondary circuits. The latter of these is destined to be evaporated by absorption of heat
from the former, which ¯ows from the reactor core. More precisely, heat exchange takes
place across the walls of U-shaped tubes, tightly-packed in a bundle (typically consist-
ing of around 3000 tubes in modern PWRs) inside the steam-generator vessel. A typical
design for this device, showing a single tube, is presented in Fig. 1.1.

Figure 1.1: Schematic view of a PWR steam generator. From [RIZ 17].

5
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1. State of the Art

High-temperature coolant from the primary circuit enters a tube via thehot leg, ¯ows
along the entire span while giving off its heat to the surrounding coolant, and exits at
a lower temperature through thecold leg. Meanwhile, an upwards two-phase develops
inside the inner shell as the secondary coolant evaporates. Steam is ®ltered by separa-
tors and exits the vessel through the uppermost nozzle, while any leftover liquid ¯ows
back into the inner shell along with an external water feed. This recirculating ¯ow acts
on the tube bundle in two distinct manners: parallelly along the legs (axial ¯ow), and
transversally on the U-bends (cross-¯ow). At several locations, the legs are held in place
by support plates.

Figure 1.2: Typical recirculating steam generator AVB arrangement. From [MAC 96].

The tube bundles serve a double purpose: on one hand, they act as a barrier between
the radioactive, pressurised coolant from the primary cycle; on the other, they ensure
ef®cient steam generation, which renders the production of power possible through the
action of a specialized turbine. As such, ensuring their integrity is of vital importance
for safe and reliable power plant operation. Indeed, ruptures in the primary coolant
circuit are a major practical concern, and were thus the topic of some of the earliest
engineering literature published during the early days of nuclear power generation
[MEL 65, GAL 66]. Weaver [WEA 08] references works on vibration and noise in steam
generators from as far back as 1954. As pointed out in the review by PaÈõdoussis [PAI 81],
however, steam-generator problems such as tube failure, which could be brought about
by ¯ow-structure interactions, were rarely (if ever) encountered in practice until the
seventies. This situation changed drastically as advanced steam generator designs
incorporated more compact bundles and higher ¯ow velocities: while this changes led to
enhanced ef®ciency, they come at the price of increasing the overall kinetic energy of the
¯ow. Strong coupling between ¯uid ¯ow and structural response ensues, which has lead
to dramatic economical consequences. As explained in the thesis of Antunes [ANT 86],
a 100-hour shutdown of a 1000 MW power plant yields a cost of roughly 3 million
US dollars. The 1996 report by the U.S. Nuclear Regulatory Commission [MAC 96]
directly cites ¯ow-induced vibrations as the direct precursor of tube failure by fretting
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Vibration Hazard in Steam Generators

wear. This happens especially at the U-bend region of the tubes, due to tube-to-tube or
tube-to-Anti-Vibration Bar (AVB) impacts. As shown in Fig. 1.2, AVBs are installed
as a means to prevent high-amplitude, out-of-plane vibration of the tube zones excited
by cross-¯ow. While only narrow gaps are left between tubes and AVBs to allow for
thermal expansion of the former under temperature gradients, these can be widened due
to misalignment, wear, or other factors, causing abnormal situations in which strong
impacts and friction lead to accelerated failure, i.e. a life-span of days rather than years.
Improper AVB support has also been reported to lead to high-cycle fatigue [EPR02].
Furthermore, in-plane vibrations have caused tube failures as well, as evidenced by
the now-famous malfunction and ultimate total shutdown of the San Onofre Nuclear
Generating Station on the Californian coast in 2012, following from a design error which
led to abnormally severe thermo-hydraulic conditions [DAP 15].

Besides steam-generator tubes, other components of nuclear reactors are also sub-
jected to ¯ow-induced vibrations, mainly fuel rod assemblies [CHE 72]. Moreover, a
great number of applications outside of nuclear power engineering face similar issues:
steam condensers [LEE 17], boilers [PAN 12], turbo-compressors [JUN 97] and pipelines
[FAA 11], to name but a few. In the present thesis, attention will be focused exclusively
on cross-¯ow excitations, as they lead to the highest response amplitudes and, hence, the
greatest vibration risk.

1.1.1 Excitation mechanisms

Fig. 1.3 schematically shows the ideal evolution of response amplitudes for tubes in
cross-¯ow with varying mean transverse velocity.

V
Vs Vc

��Y

A A

B C

Figure 1.3: Standard deviation of displacement in lift direction for a tube in cross-¯ow,
as a function of mean transverse velocity.
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1. State of the Art

Three regions are immediately evident from this graph, which correspond to distinct
¯uid-structure interaction mechanisms:

� A) Broadband turbulence (ºbuffetingº),

� B) Vortex shedding, and

� C) Fluidelastic instability.

Turbulent buffeting is ubiquitous at the high Reynolds numbers which characterise
¯ows inside steam generators, usually in the range: 104 � Re � 107 [AXI 06]. It
introduces a random excitation on the tubes which is independent of tube motion and
which can be characterized by a broadband frequency spectrum. Axisa et al. [AXI 90]
used experimental data from a wide range of tests to propose a dimensionless, 'bi-slope'
spectrum that is applicable to single-phase ¯ows. Later on, the two-phase case was
tackled by de Langre and Villard [LAN 98] through a similar approach. It should be noted
that the latter problem is considerably more complex, as the random spatio-temporal dis-
tribution of phases plays a role in the excitation alongside ¯ow turbulence. Consequently,
research in this area is still active. Although the methodology of de Langre and Villard
has been supported by experimental evidence [ÂALV 18], some authors note its extremely
conservative nature, and less restrictive design guidelines have been proposed for steam
generator U-tubes [JIA 17]. In recent work, Taylor and Pettigrew [TAY 20] carry out an
updated review of experimental data and propose two new, dimensionless upper bounds
for random forces in two-phase conditions, spanning different ¯ow regimes. While the
capacity to estimate the standard deviation of turbulent efforts is of great importance for
long-term wear predictions, their magnitude in practice is quite moderate, for both single
and two-phase ¯ows. Hence, this mechanism is not associated to a high vibration hazard
in the short term.

Vortex shedding is a well known phenomenon in which a ¯ow detaches from a bluff
body as vortices generated at regular intervals. As a result, the structure experiences a
periodic forcing at a frequency which depends linearly on mean ¯ow velocity. High-
amplitude oscillations can ensue if vortex-shedding is synchronized to one of the struc-
ture's natural frequencies, potentially leading to short-term damage. In [LIV 62], the
authors study the vibration modes of a row of tubes under excitation by vortex shedding,
which they suggest as a potential reason for premature tube failures in steam generators.
Chen [CHE 68] studied the vortex-shedding response of an experimental tube bank in a
gas ¯ow and proposed design guidelines to prevent vibration and noise in heat exchang-
ers. Gorman [GOR 76] reported resonant responses to vortex shedding in his experiments
with tube bundles in liquid cross-¯ow. These efforts dealt exclusively with simpli®ed con-
®gurations in which, most importantly, only single-phase ¯ows were considered. How-
ever, as pointed out by Axisa in Chapter 7 of [AXI 06], all experimental investigations
on two-phase ¯ow reported an absence of vortex shedding. Furthermore, this fact did not
prevent the occurrence of high-amplitude tube oscillations, regardless of bundle geome-
try or ¯ow composition, for suf®ciently high ¯ow velocities, cf. the experiments of Lai
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Vibration Hazard in Steam Generators

et al. [LAI 19] (transverse a single ¯exible tube in a rigid array subjected to two-phase
cross-¯ow) or those of Violette et al. [VIO 05] (stream-wise oscillations of a ¯exible array
subjected to two-phase ¯ow), where such a behaviour is observed without vortex shed-
ding. Nowadays, it is clear that the main excitation mechanism behind steam generator
tubes failure is of a different nature, and receives the name¯uidelastic instability. Nev-
ertheless, the study of vortex shedding remains relevant in the context of steam generator
design and analysis in relation to acoustic resonance [ZIA 06].

1.1.2 Fluidelastic instability of cylinder arrays

Roberts [ROB 66] was probably the ®rst to have proposed that self-excited oscillations
could take place in cylinder arrays. In contrast with buffeting and vortex shedding, which
occur even for static cylinders, this mechanism is inherently dependent on structural mo-
tions. Fluidelastic instability, as it is now known, started receiving attention following
Connors' report of self-excited oscillations in heat-exchanger tube arrays in cross-¯ow
[CON 70]. He postulated a quasi-static, semi analytical model in which oscillations were
sustained by energy extracted from the ¯ow, thanks to a speci®c motion pattern between
adjacent tubes. This could only occur for a suf®ciently energetic ¯ow, i.e. for ¯ow veloc-
ities beyond a critical value (Vc in Fig. 1.3). In his paper, energy-balance considerations
were used to derive a formula for predicting the value ofVc, which (along with its vari-
ations, such as those proposed by Blevins [BLE 74], Whiston & Thomas [WHI 82], and
Price & PaÈõdoussis [PRI 84]) knew a widespread practical use in the following years.
However, as evaluated by Price [PRI 01] after a thorough analysis of experimental evi-
dence, even the most re®ned quasi-static models perform rather poorly at predicting the
onset of ¯uidelastic instability. This fact was recognized in the early eighties and led to
the family of unsteady models pioneered by Tanaka & Takahara [TAN 81], as well as the
semi-analytical models by Lever & Weaver [LEV 82] for a single ¯exible cylinder in a
rigid bundle and their generalization by Yetisir & Weaver [YET 93a, YET 93b] to the case
of multiple ¯exible cylinders. Price & PaÈõdoussis [PRI 84] found a quasi-steady model by
adapting a model for galloping instability to the case of transverse vibrations of tube bun-
dles in cross-¯ow. An important effect considered by these authors was a time-delay term
in the de®nition of ¯uidelastic forces. Lettingy(t) denote the displacement amplitude of a
cylinder of diameterD in the transverse direction upon excitation by a single-phase ¯ow
with velocityV and densityr, the linearised expression for these forces around the static
equilibrium position(y0) takes the form:

Ffe =
1
2

r V2D

–
¶CL

¶y

�
�
�
�
y0

y(t  t)  
1
V

CD Çy(t)

™

(1.1)

whereCL andCD are the non-dimensional lift and drag coef®cients of the tube pro®le,
respectively. The delay is a mathematical necessity to achieve dynamic instability in this
model, and it may be physically justi®ed by arguing that the surrounding ¯ow does not
respond immediately to the tube's motions. Different authors, when using variations of
quasi-steady models, have conjectured different explanations as to which aspect of the
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1. State of the Art

¯uid dynamics is responsible for the delayed term [PAI 13]. While the model of Price
& PaÈõdoussis showed a reasonable agreement with experimental data, and was able to
predict both stiffness-controlled (depending on the coupling in the motion of two or more
tubes) and damping-controlled (requiring only one degree of freedom) stabilities, it failed
to capture the physical behaviour of tubes at low values of reduced velocity, de®ned as:

vr =
fV
D

(1.2)

where f is the frequency of oscillation. This shortcoming is, in fact, shared between this
model, the semi-analytical one of Lever-Weaver, and some other well-known ones such as
Chen's unsteady model [CHE 83a, CHE 83b]. Granger & PaÈõdoussis [GRA 96] improved
on the Price & PaÈõdoussis model by introducing a so-called quasi-unsteady approach.
They derived an analytical expression for the ¯uidelastic coupling forces from the im-
pulsive response of a single ¯exible tube by requiring continuity and Navier-Stokes (mo-
mentum) equations to be satis®ed. The physical mechanism behind the negative damping
leading to damping-controlled instability is found to be the diffusion of vorticity from
the tube boundary layer. The mathematical expression for the ¯uid forces replaces the
discrete delay of Eq. (1.1) by a distributed delay:

Ffe =
1
2

r V2D

–
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�
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 ¥
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1
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™

(1.3)

in which the convolution kernelD(t) models the transient decay of disturbances in the
¯ow generated by tube motions. Hidden within this function are constants that must
be measured for a given problem, thus making the model a semi-empirical one. When
compared to experimental data, the quasi-unsteady model showed a quantitative im-
provement with respect to its predecessors. Interestingly, this is the case even for systems
consisting of several ¯exible tubes, even though the model considers a unique vibrating
tube in a rigid array. This fact supports the claim by Lever & Weaver, who conjectured
that a ¯uidelastic instability analysis of tube arrays may be reduced to the study of a
single tube. The model thus provides a description of a destabilizing mechanism which
is based on a solid basis of ¯uid dynamics theory. While this is an important step
towards understanding the phenomenon, the model does not consider stiffness-controlled
instability and it is unclear whether it may be able to faithfully reproduce the dynamics
of tubes for low values of the mass-damping parameter:md=rD2, wherem is the tube
mass andd its structural damping coef®cient.

Even though efforts have not been scarce when it comes to the study of ¯uidelastic
instability, many aspects of the problem remain unanswered to this day, and no available
model provides a fully satisfactory predictive (nor descriptive) tool. Indeed, the short ex-
position presented here barely scratches the surface of a vast scienti®c literature spanning
six decades; comprehensive reviews include the works by Connors [CON 81], PaÈõdoussis
[PAI 81, PAI 83, PAI 87, PAI 06], Chen [CHE 75, CHE 84], Pettigrew et al. [PET 91],
Price [PRI 95], Gelbe [GEL 95] and Sarpkaya [SAR 03], as well as the books by Axisa
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Nonlinear dynamics of unstable tubes

[AXI 06], Gibert [GIB 88] and PaÈõdoussis et al. [PAI 13]. Design guidelines are under
constant revision and updating, with the publications by Sun et al. [SUN 19] and Taylor
& Pettigrew [TAY 20] being recent examples. Thus, the mechanism rightfully earns the
ºelusiveº label given to it by Weaver [WEA 08]. In that paper, some potential reasons
leading to this fact are: an industrial focus on gathering data for speci®c equipment rather
than on understanding the phenomena, the overwhelming complexity of a multi-physics,
strongly coupled problem who is seemingly sensitive to numerous parameters, and the
practical dif®culty to accurately measure ¯uidelastic forces. In particular, the latter of
these has received considerable attention in past years. Caillaud et al. [CAI 99, CAI 03]
have proposed a methodology to measure ¯uidelastic forces using active control. Bouzidi
& Hassan [BOU 15] used CFD computations to ®nd the empirical constants of the Lever-
Weaver model for a given tube con®guration. In the same vein, investigations of com-
plex ¯uid-structure interaction problems have been made possible by the advent of high-
performance computing. Moulinec et al. [MOU 04a, MOU 04b] used direct numerical
simulation to solve the full Navier Stokes equations for a ¯ow through a tube bundle. Si-
hnde et al. [SHI 14] performed parametric analyses of the coupled ¯uid-elastic problem
in a tube bundle through a mixed RANS-DDES methodology.

1.2 Nonlinear dynamics of unstable tubes

1.2.1 Studies on post-instability behaviour

All the models for ¯uidelastic instability described above are linear. This is made possi-
ble by linearisation of the motion-dependent ¯uid forces around the equilibrium position
of the tubes, which is justi®ed in light of the small vibration amplitudes typical of tube
bundles. As such, they can be used to predict the onset of instability but not the tube
responses beyond the critical ¯ow velocity, as they unrealistically predict divergent os-
cillations. In reality, amplitudes remain bounded through the activation of one or more
nonlinear mechanisms. For tube bundles, this typically means tube-to-support or tube-to-
tube impacts. The interplay between nonlinearity and ¯uidelastic forces leads to steady-
state, limit cycle-like oscillations in which the tubes undergo intermittent contacts. The
importance of studying such cycles for tube wear rate estimation and risk assessment
has been recognized, and a number1 of works have been dedicated to this task. Weaver
& Schneider [WEA 83] performed wind tunnel experiments on a heat-exchanger U-tube
bundle supported by different con®gurations of AVBs. In the absence of supports, the
limit cycles ensuing from ¯uidelastic instability consisted of essentially motions along
the tube's ®rst out-of-plane bending mode. When the bars were included in such a way
as to completely suppress this vibration mode, instability arrived at a larger value of ¯ow
velocity and the corresponding limit cycles following the second out-of-plane bending
mode instead. This pattern was observed to continue with higher out-of-plane modes as
the ¯ow velocity increased. However, no stabilities for in-plane modes were reported. The

1A small number, if compared to the bulk of investigations dealing with ¯uidelastic instability.
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1. State of the Art

effect of an asymmetric clearance was also explored brie¯y, and was found to provide a
stabilizing effect, i.e. to delay the onset of stability to a higher ¯ow velocity. Axisa et
al. [AXI 88] present an approach for the numerical investigation of post-instability vibra-
tions. Therein, tube motions are projected onto the unsupported modal basis, with contact
forces assumed to be localized at discrete points. Computation of impact forces in the
normal direction uses a penalty method in which the cross-section ovalization stiffness,
Kc, acts as the penalty coef®cient. This quantity can be theoretically estimated through
the formula2:

Kc = 3:8
Ee2

D

É
e
D

(1.4)

where e, D, and E are tube thickness, diameter and Young modulus, respectively. The
value ofKc is typically on the order of 106N=m for steam generator tubes. Tangential
forces are computed by using Coulomb's dry friction model, which was later re®ned by
Antunes et al. [ANT 90]. The authors present simulation results for a cross-¯ow-excited
U-tube supported by AVBs, where ¯uidelastic forces are computed from Connors' model
and the equations of motion are integrated in time using De Vogelaere's method [LES 68]:
for varying values of ¯ow velocity, a range of dynamical regimes are obtained: peri-
odic (with varying relative contributions of the tube's modes), quasi-periodic and chaotic
[OTT 81] vibrations. This behaviour clearly indicates the presence of multiplebifurca-
tions, as is typical for nonlinear dynamical systems [GUC 83, KUZ 04]. PaÈõdoussis et
al. [PAI 93] studied an analytical, two-degree of freedom model representing the planar
motions of a tube in an annular support within a rotated, triangular grid. Fluidelastic
coupling forces were provided by the Price & PaÈõdoussis model with experimentally-
determined coef®cients, and a fourth-order Runge-Kutta algorithm is used to solve for the
time histories of motion.

Fig. 1.4, taken from their paper, shows a bifurcation diagram rich in dynamical
regimes, ranging from periodic to chaotic and including symmetry-breaking, double-
period and quasi-periodic motions. Similarly, the effect of simultaneously varying two
parameters was studied (¯ow velocity and gap size), which resulted in a number of sta-
bility boundaries separating different regimes. The same authors investigated a related
system, consisting of a clamped-pinned beam subjected to cross-¯ow, both experimen-
tally [MUR 94a] and analytically [MUR 94b]. While a more complex behaviour is ob-
served, qualitative similarities with the simple two-DOF model are evident. Antunes et
al. [ANT 92] performed experiments on a loosely-supported cantilever beam in which
¯uidelastic forces were simulated by a feedback loop. This provides an effective negative
damping, which plays an energy-source role analogous to that of ¯ow velocity in ºtrueº
¯uidelastic forces. Dynamical regimes of two distinct types were observed, each with dif-
ferent relative modal-to-total response contributions. While one of these was unique for
low and high values of negative damping, an intermediate region in which both regimes
coexisted was found. Thus, the observed steady state depended on initial conditions.
All regimes reported in this study are quasi-periodic, as the motions of the numerous

2The original publication reports a coef®cient of 1:9 in Eq. (1.4). However, it is nowadays recognized
that a factor of two is missing for adequate ®t with experimental results.
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Nonlinear dynamics of unstable tubes

Figure 1.4: Bifurcation diagram for varying ¯ow velocityV, from [PAI 93].

modes involved in the response are unsynchronized but their spectra consist of distinct
peaks rather than the broad-band signature of chaos. Piteau et al. [PIT 12] experimen-
tally identi®ed ¯uidelastic force coef®cients and turbulent spectra for a ¯exible cantilever
tube excited by single-phase cross-¯ow within a rigid, square grid. A numerical model
of the system was then shown to be successful in reproducing the experimental results.
Recently, the same authors have developed a more advanced test rig which allows for the
modal characteristics of the ¯exible tube to be adjusted [PIT 19]. In a series of confer-
ence papers, Borsoi and co-workers investigated different aspects of the dynamics of a
1-DOF model consisting of an autonomous oscillator destabilized by ¯uidelastic forces,
computed by the Granger & PaÈõdoussis quasi-unsteady model with empirical coef®cients
obtained through active control. The effect of gap size was studied in [BOR 17b], where
it was concluded that the relative weight of turbulence in the overall excitation is inversely
proportional to this parameter. The distribution of energy between turbulent and ¯uide-
lastic forces was discussed in [BOR 17a]. The same paper reported coexisting symmetric
(two-sided impacts) and asymmetric (one-sided impacts) periodic cycles for certain val-
ues of ¯ow velocity, in the case where turbulence was ignored. Including turbulence,
phase-space plots of tube motions were erratic but stayed in the vicinity of said cycles.
A parametric study was conducted in [BOR 18]. It was shown that velocity variations
led to an amplitude jump, accompanied by a transition from one-sided to two-sided im-
pacts for high-enough values. Prabel et al. [PRA 18] used the quasi-unsteady model to
numerically simulate the response of a U-tube in cross-¯ow with a realistic velocity and
density distribution. To this end, the two-phase ¯ow was homogenized into an equivalent
single-phase ¯ow. The obtained results showed an increase in the complexity of the re-
sponses as the number of modes considered was increased. For three modes (two out-of
plane and one in-plane), complementary asymmetrical regimes were observed, similarly
to the cantilever beam case. However, only one of these was periodic, while the other
was quasi-periodic. Lai et al. [LAI 19] used time-integration to numerically study the
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1. State of the Art

behaviour of a ¯exible, cantilever beam in a rigid, rotated-triangular grid under the ac-
tion of a two-phase cross-¯ow. Fluidelastic forces were computed through the Price &
PaÈõdoussis model ®tted with experimental data. For increasing ¯ow velocity, transition
from steady periodic to quasi-periodic and chaotic motions were observed. The method
of multiple scales was employed by Vourganti et al. [VOU 20] to analytically study the
stability of a 1-DOF oscillator with a discrete delay to model ¯uid-elastic forces. As the
method requires smooth functions, the impacts in that case where modelled by a cubic
spring rather than the usual piecewise-de®ned functions.

1.2.2 Modelling impacts

The high complexity observed in the studies mentioned above is a result of impacts, which
are a particularly strong type of nonlinearity. An ideal, 1-DOF impact oscillator with
natural (angular) frequencyw0 is described by the constrained system:

§
Èx(t)+ zÇx(t)+ w2

0x(t) = f (t) ; 8t > 0
Çx(t+

c ) =  r Çx(t  
c ) ; t = tc

(1.5)

wheretc is any instant where impact takes place, i.e. whenx(tc) = g for a given gap size
g. This model considers an instantaneous change in the sign of velocity, with a poten-
tial energy loss given by the restitution coef®cientr 2 (0;1], with the limiting caser = 1
corresponding to perfectly elastic collisions. The termf (t) accounts for external forcing.
Even though the system is linear between impacts, the discontinuity in velocity means
that the system is highly-nonsmooth [BRO 99]. This, in itself, represents a challenge to
the usual time-stepping integration schemes. As a consequence, specialized methods have
been devised to treat such problems [PAO 01, ACA 09]. When a periodic forcing such as
f (t) = bsin(wt) is applied, transitions from periodic to chaotic behaviour are known to
happen for increasing values ofb, usually through a sequence of period-doubling bifur-
cations [GUC 83, HIN 84].
An alternative modelling approach consists in adopting a penalty formulation, in which
some penetration of the structure into the support (or elastic deformation of the former due
to contact) is allowed. Hence, the impact law from Eq. (1.5) is replaced by a piecewise-
continuous function:

Èx(t) + zÇx(t)+ w2
0x(t) + fc(d1) ÃH(d1) = f (t) (1.6)

whered1 = x(t)  g is the penetration depth andÃH represents the Heaviside step function.
Thus, the support exerts a restoring force on the structure for the duration of contact,
which occurs over a ®nite time interval rather than instantaneously. Typically, linear or
exponential functions are used forfc(d). In the case of steam-generator vibrations, the
former is adopted [AXI 88], such that:

fc(d1) = Kcd1 (1.7)
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Before impact During impact

Figure 1.5: Ovalization of tube section at impact.

Besides enhanced ease for numerical simulations, this approach has the advantage of
being physically signi®cant, as the parameterKc is a measurable quantity which represents
the cross-section deformation during impact, as schematized in Fig. 1.5.

Eq. (1.6) speci®cally describes one-sided impacts, but it can be readily extended to
other cases. For two-sided impacts:

Èx(t) + zÇx(t)+ w2
0x(t) + fc(d1) ÃH(d1)  fc(d2) ÃH(d2) = f (t) (1.8)

whered2 =  x (t)  Äg. Several authors have studied the dynamics of systems similar
to Eq. (1.8) for asymmetric gaps, i.e.g 6=Äg. Natsiavas & Gonzalez [NAT 92] used a
semi-analytical approach to compute frequency response curves of a forced oscillator
with asymmetric impacts. They reported loss of stability through a period-doubling
bifurcation, leading to a sub-harmonic resonance peak at roughly twice the excitation
frequency of the main resonance. Kim et al. [KIM 05] studied a SDOF torsional system
with asymmetric gaps using the harmonic balance method and, similarly, encountered a
sub-harmonic resonance peak. Duan & Singh [DUA 08] found branches of double-period
solutions isolated from the main response curve, i.e. anisola. A connection between
asymmetry and period-doubling is evident from these results. This fact is especially
interesting in light of the transition to chaos via the successive period-doubling (or
sub-harmonic cascade) route. De Langre & Lebreton [LAN 96] performed experiments
and numerical computations on a forced SDOF system displaying both geometrical
nonlinearity and two-sided, soft impacts. For certain combinations of driving amplitude a
frequency, chaotic motions were observed, but solely in the asymmetrical con®gurations.
While this aspect is not explored deeply in their paper, it is likely that chaos arrives
following a sub-harmonic cascade.

An impact damper may also be included in order to account for energy losses result-
ing from impacts, which is analogous to the role of a restitution coef®cient [HUN 75].
PaÈõdoussis et al. [PAI 93] use a piecewise-linear impact damper to model the dissipation
of energy by the response of high-frequency vibration modes of a cylinder not included in
the reduced-order model used. This strategy was also employed by Prabel et al. [PRA 18]
in their study of U-tube vibrations. Mureithi et al [MUR 94a] used a more re®ned model
in which the impact damping coef®cient is a nonlinear function of normal velocity and
including a squeeze-®lm effect. Padmanabhan & Singh [PAD 95] incorporate impact
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damping into their model of gear rattle effects in automotive engines. A simple function
describing two-sided, linearly damped impacts is given by:

fc(x; Çx) = (K c(x(t)  g)+ Cc Çx(t))+ ÃH(x(t)  g)  (Kc(x(t) + Äg)+ Cc Çx(t))  ÃH( x (t)  Äg)
(1.9)

where the operators(�) + and(�)  denote, respectively, the positive and negative parts of
the expressions within parentheses. Fig. 1.6 shows the graphs of Eqs. (1.6) and Eq. (1.8)
side by side, for a displacement given byx(t) = 1:2sin(t) andKc = 20;Cc = 6;g = Äg = 1.
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Figure 1.6: Graphs of symmetric impact functions (penalty formulation) with and with-
out impact damping. Left: impact term from Eq. (1.6), right: Eq. (1.8).

Another important energy dissipation mechanism is friction, which plays a central
role in many industrial applications, including: tube-to-support contacts in steam genera-
tor tubes [AXI 88], brake squeal [COU 09], turbine blade dampers [WAN 93] and violin
string models [VIG 18]. The modelling of friction is far from being a task, as described
in great detail by the historical review of Feeny et al. [FEE 98]. Indeed, one can not
reasonably speak of a universal model, but rather of a group of models with certain ap-
plicability margins. For sliding friction between two metallic surfaces in contact, the
so-called Coulomb, or dry, friction gives a force in the tangential direction as:

fT = !j fNjsignÇxT(t) (1.10)

with ! the dimensionless dry friction coef®cient,fN the normal force and ÇxT(t) the
tangential velocity.fN can be given, for instance, by Eq. (1.9) in the case of intermittent
contacts, or by the weight of an object in permanent contact. When upon a surface
moving at a constant velocityV, an oscillating system may undergo stick-slip oscillations:
rapid transitions from a sticking to a sliding state as elastic forces overcome stiction. In
that case, the velocity in Eq. 1.10 is replaced byvrel = Çx(t)  V. Furthermore, the dry
friction coef®cient may be a nonlinear function ofvrel [YOS 00]. An issue encountered
when using such models for numerical simulation is the fact that the sign function is not
uniquely de®ned for. ÇxT(t) = 0. The theory of Fillippov systems [BER 07] can be used to
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rigorously study this problem through the formalism of differential inclusions. Another
approach, widely used in practice, is toregularizethe above model by complementing
it with a constitutive law for speeds close to zero. Such a model was proposed by
Oden & Martins [ODE 85], in which a linear evolution links the positive and negative
regions of the sign function over a small interval around ÇxT(t) = 0. Tangential force
is then non-smooth but completely regular. Antunes et al. [ANT 90] proposed a more
re®ned methodology in which the sticking behaviour was modelled by a ®ctitious degree
of freedom attached to the main one via a spring-damper mechanism. Leine et al.
[LEI 98] proposed a so-called switch friction model in which the tangential force varies
continuously from sliding to static friction.

1.3 Numerical methods for nonlinear vibration problems

The equations of motion to be solved in structural vibrations result from the ®nite-element
discretization of the continuous expression of dynamical equilibrium. They are sets of
nonlinearly-coupled, second-order, ordinary differential equations whose analytical solu-
tions are generally impossible to ®nd. While powerful semi-analytical techniques such
as multiple-scale analysis [NAY 79] and normal form transformation [JEZ 91] exist, they
are usually limited to systems withweaknonlinearities, i.e. those for which the nonlin-
ear terms remain small in comparison to the linear ones. This condition is certainly not
met in intermittent contact problems. Hence, as already evidenced from the above dis-
cussion, numerical methods are fundamental in investigating their dynamic behaviour. In
the context of heat-exchanger tube vibrations, the main focus is on ®nding steady-state
solutions, as these are the ones that determine long-term behaviour. Strictly speaking,
the presence of turbulent ¯uctuations and their corresponding forces renders the system's
behaviour unsteady; however, after an initial transient period, turbulent ¯ows become stat-
ically steady, in the sense that mean ¯ow features do not vary over time. Consequently,
it is reasonable to assume a similar behaviour for structural motions. The search for pe-
riodic and quasi-periodic solutions is of particular importance in this respect, as they are
common steady-state regimes for vibrating systems.

1.3.1 Time-domain methods

Numerical time-integration techniques are fundamental in capturing transient behaviour
of dynamical systems. This is relevant, for instance, in passive vibration control by
use of nonlinear energy sinks [GEN 00, LEE 08, GEN 11], or in the numerical study
of chaotic motions [NAR 91, CAI 92]. Dokainish & Subbaraj present an extensive
survey of common explicit [DOK 89] and implicit [SUB 89] algorithms. Special-
ized techniques have been developed for the time-integration of nonsmooth dynamical
systems [MOR 88, ACA 09]. Strongly-nonlinear restoring forces resulting from non-
instantaneous impacts, e.g. Eqs.(1.5,1.6,1.8), can be treated as long as the chosen time
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step for the discretization is smaller than the contact duration. In [PIT 18], for instance,
the authors use a value of 5� 10 5 s for the post-instability study of a loosely-supported,
cantilever tube in cross-¯ow. Explicit algorithms, which avoid the use of a non-linear
solver at each time step, are thus preferred in this context. Well-known and widely-used
examples are the methods from the Runge-Kutta family, which can also be extended to
treat delay differential equations [BAK 00, SHA 09]. Puthanpurayil et al. [PUT 14] pro-
posed a time-domain implementation permitting the computation of a distributed delay
term such as the one in Eq. (1.3). Prabel et al. [PRA 18] improved on this approach
by using a recurrence relation to compute the distributed delay term during integration
with an explicit De Vogelaere algorithm. Nevertheless, all time-integration methods are
inef®cient when it comes to capturing steady-state solutions, as computations have to be
performed over a large-enough interval to ensure that the transient response has faded.
Moreover, while a system of nonlinear equations admits both stable and unstable steady-
state regimes as solutions, only the former can be observed through numerical integration.
The shootingtechnique [NAY 89, SEY 10] is an alternative time-domain approach that
®nds periodic solutions by replacing the initial-value problem of time-integration by a
Boundary-Value Problem (BVP). Through an iterative procedure, the initial conditions
which satisfy dynamical equilibrium as well as periodicity are found. This requires the
equations of motion to be time-integrated over one period, which can be known in ad-
vanced (forced oscillations) or an additional unknown to be found (autonomous oscilla-
tions, for example in the case of self-excited motions). Sundararajan & Noah [SUN 97]
combine this method with a continuation algorithm to study forced vibrations of rotor sys-
tems. A similar approach was undertook by Dimitriadis [DIM 11] to study the paramet-
ric behaviour of limit-cycle oscillations in an aeroelastic system. A remarkable feature
of this study is the use of additional degrees of freedom to represent unsteady aerody-
namic forces, which is equivalent to having a distributed delay, Eq. (1.3), with a sum-
of-exponentials type kernel [SMI 11, DIM 17]. Howell & Pernicka [HOW 87] used a
shooting method to compute quasi-periodic solutions of the restricted three-body prob-
lem.
Collocationmethods get rid of time-integration altogether by considering a discrete ver-
sion of the periodic BVP. The steady-state solution is assumed to be a combination of
orthogonal (e.g., Legendre) polynomials. Then, by using a Galerkin projection onto the
basis formed by these same polynomials, a set of nonlinear algebraic equations is obtained
in which the unknowns are the solution values evaluated at discrete points. This method
has been proved to be both ef®cient and highly robust, and is thus at the heart of numerous
software for the analysis of nonlinear dynamics, including: COLSYS [ASC 79], CON-
TENT [GOV 99, GOV 00] AUTO [DOE 12], MATCONT [DHO 03, DHO 04] , COCO
[DAN 10]. The latter was recently used to study families of quasi-periodic solutions in
a forced, delayed Duf®ng oscillator [AHS 19]. DDE-BIFTOOL [ENG 02] specializes in
the solution of delay differential equations.
The codes mentioned herein make use ofcontinuation methods: once a solution is
found, a whole branch of solutions can be unfolded by treating one of the system's pa-
rameters as a new unknown and following the equilibrium path. This idea was orig-
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inally proposed for the study of equilibria in nonlinear elasticity [CRI 81] and then
adapted for the study of periodic solutions. Different approaches for path-following
have been employed over the years, with the most popular variants being arc-length
continuation [KEL 83, KEL 86, SEY 10] and the Asymptotic Numerical Method (ANM)
[DAM 90, COC 94]. The former consists in taking a step along the tangent direction to
the path at a given solution, followed by orthogonal corrections until convergence. The
latter, on the other hand, uses a series expansion to locally represent the path in the vicin-
ity of the initial solution, iteratively solving for the expansion coef®cients. Arc-length
continuation can be seen as a ®rst-order truncation of the corresponding series expansion.
Continuation software has built-in routines for the stability evaluation of the computed
periodic solutions, allowing for a detection of bifurcations as described in Sect. 1.3.3.
Hence, they represent a valuable aid at understanding the complex dynamics of nonlinear
systems. Nevertheless, codes relying on collocation methods are generally restricted to
systems with a few degrees of freedom. Moreover, the frequency content of solutions
computed in this way is not directly available and must be obtained in a post-processing
stage. Both of these shortcomings are addressed by frequency-domain methods.

1.3.2 Frequency-domain methods

Krylov & Bogoliubov [KRY 50] were probably the ®rst to have proposed a semi-analytic
method whose principle was to look for periodic solutions in the form of truncated Fourier
series. A Galerkin projection of the differential equations of motion onto a base of
trigonometric functions, which are mutually orthogonal, transforms the initial problem
into a system of nonlinear algebraic equations whose unknowns are the Fourier coef®-
cients up to a certain harmonic component. As Nayfeh pointed out in his book [NAY 79],
ana priori estimation of the number of terms required to correctly capture periodic mo-
tion is seldom possible, and the use of different approximation techniques was suggested.
Nevertheless, this issue would be circumvented by the numerical implementation of the
method by Nakhla & Vlach [NAK 76], who used it to ®nd periodic regimes in nonlinear
electronic circuits. Dynamical equilibrium is formulated as a minimization problem for an
error function, and the number of harmonics is adjusted accordingly. Lau et al. [LAU 82]
applied the Harmonic Balance Method (HBM) in a structural dynamics context to study
parametrically-excited, linear and geometrically-nonlinear systems with one or several
degrees of freedom. They introduce the Incremental Harmonic Balance Method (IHBM),
by which continuation of periodic solutions is performed via direct parametrization of
the equilibrium by path one of the system's parameters. This approach was followed by
Pierre et al. [PIE 85] and Ferri & Dowell [FER 88] for the study of friction-damped sys-
tems. An extension of the HBM to capture quasi-periodic responses was ®rst proposed by
Chua & Ushida [CHU 81] and later adapted to the IHBM by Lau et al. [LAU 83]. Kim
& Choi [KIM 97] use this method to study quasi-periodic oscillations of a forced, non-
linear Jeffcott rotor. A major breakthrough regarding practical implementation was the
introduction of the Alternating Frequency-Time (AFT) procedure by Cameron & Grif®n
[CAM 89], as it allows arbitrary nonlinearities to be treated by the HBM. The main idea
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is to compute the corresponding forces in the time domain, where -usually simple- analyt-
ical expressions are available, and then to transform back to the frequency domain. Any
suitable algorithms, such as the Fourier Transform (FFT) and its inverse, can be used to
perform this operation. The principle is illustrated in Fig. 1.7.

Figure 1.7: Illustration of the AFT procedure, from [KRA 19].

The coupling of AFT-HBM with arc-length continuation was proposed by Von Groll
& Ewins [GRO 01]. This approach is much better suited to the analysis of nonlinear
systems than IHBM, as the parametrization of the equilibrium path by the so-called
naturalcoordinate (i.e. the abscissa along the equilibrium curve) allows for the algorithm
to follow the path across folds. Cochelin & Vergez [COC 09] extended the ANM to
the continuation of periodic solutions by coupling it with the HBM. This led to the
development of the continuation software MANLAB [KAR 13, GUI 19]. In a recent
paper, Woiwode et al. [WOI 20] compare both of these techniques for a variety of
mechanical systems and conclude that arc-length continuation is better suited to treat
regularized nonlinearities like impacts or friction, whereas an outstanding performance
can be expected from ANM for inherently smooth systems.
In any case, the potential of HBM-based continuation as a design and analysis tool cannot
be understated. Some additional examples of this in mechanical engineering include the
nonlinear modal analysis of aerospace structures [KER 13, DET 15b, SAL 16], the re-
sponse prediction of a tuned mass damper subjected to a multi-frequency excitation with
hundreds of terms and stiff impacts [TIL 18], optimization of a nonlinear vibration ab-
sorber [DET 15a, GRE 17], the analysis of aeroelastic airfoils [LIU 04, LIU 07, DAI 14],
and the study of break squeal [COU 09].

It is relevant to note, at this point, that no studies of steam-generator vibrations have
applied continuation methods so far, neither by time-domain nor by frequency-domain
approaches. This can be partially explained by the stochastic nature of the observed re-
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Numerical methods for nonlinear vibration problems

sponses due to turbulence, which prevents any sustained periodic or quasi-periodic regime
to develop. Nevertheless, analysing the behaviour of tubes under the steady-state, mean
¯ow could provide valuable insight into their extremely complex dynamics. In partic-
ular, the HBM seems to be ideally suited for the task, as ¯uidelastic forces involving
discrete (Eq. (1.1)) or distributed (Eq. (1.3)) delays can be ef®ciently computed in the
frequency domain. For instance, the time-domain convolution products appearing in the
latter become simple products under Fourier transformation as per the convolution theo-
rem [BLA 05].

1.3.3 Stability and Bifurcations

1.3.3.1 Floquet Theory

As mathematical solutions to the equations of motion, periodic solutions can be either
stable of unstable in nature. Different de®nitions of stability are used in nonlinear dynam-
ics literature [GUC 83], and for periodic solutions the focus is onlinear stability. Let us
consider a generic system of the form:

Çu(t) = f(u( t); t) (1.11)

for a smooth functionf : Rn � Rn, andu(t) 2 Rn. Assuming the state of the system to
be a slight perturbation from a known periodic solutionu0(t), i.e. u(t) = u0(t) + � (t), a
®rst-order expansion of Eq. 1.11 yields the linear system with periodic coef®cients:

Ç� (t) = A(t)� (t) (1.12)

whereA(t) =
•

¶f
¶u

˜

u=u 0

. Then solutions to Eq. 1.12 make up the fundamental solution

matrix �( t), with initial conditions�(0) = In. Any two states of� (t) are related by this
matrix and, in particular:

� (T ) = �(T )� (0) (1.13)

where T is the minimal period ofu0(t): u0(t + T) = u0(t). Hence, the eigenvalues of
�(T ), called themonodromy matrix, determine whether the perturbation decays (returns
to the underlying cycleu0) or grows (strays away fromu0) over the course of a period.
The eigenvalues,! 2 C, are calledFloquet multipliersand yield the criterion:

� Stable solution:j! j j < 1; 8i = 1; :::;n ,

� Unstable solution otherwise.

Alternatively, one may use the fact that solutions to Eq. 1.12 have the form� (t) = el tp(t),
wherep(t + T) = p(t), combined with Eq. 1.13 to express the stability criterion in terms
of theFloquet exponentsgiven by! = elT , such that:

� Stable solution:Â
�

l j
	

< 0; 8i = 1; :::;n ,
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1. State of the Art

� Unstable solution otherwise.

Numerical methods for stability evaluation of periodic solutions are designed to
compute either! i or l i . A technique for approximating the monodromy matrix with
time-integration was proposed by Friedmann et al. [FRI 77]. Shooting techniques yield
this matrix as a by-product [SEY 10], and it can be constructed with ease from matrices
employed in orthogonal collocation [DOE 91]. On the other hand, frequency-domain
methods compute Floquet exponents, following the approach pioneered by Takahashi
[TAK 79] and now known as Hill's method. Von Groll & Ewins [GRO 01] proposed
a version of this method which is specialized for mechanical systems described by
second-order differential equations and which leads to solving a Quadratic Eigenvalue
Problem (QEP) in the frequency domain. Their implementation uses a real HBM
formulation, such the coef®cient matrices involved in the QEP are already available as
a by-product of the Newton-Raphson iterations to convergence. Several authors have
successfully employed this technique [DET 14, XIE 15, GRE 17, ALC 19]; however,
its usual form cannot be used in the case of distributed delays, which are equivalently
expressed as additional ®rst-order differential equations [SMI 11]. An alternative
method, based on a complex HBM formulation, was proposed by Lazarus & Thomas
[LAZ 10], expanded upon by Bentvelsen & Lazarus [BEN 17], and developed alongside
ANM-HBM continuation [KAR 13, GUI 20] for the treatment of general systems, i.e.
Eq. 1.11.

1.3.3.2 Computing bifurcations

Along the continuation of periodic solutions, Floquet exponents evolve and may have
their real parts become positive/negative according to the system's parameters. Such
an event is called abifurcation. With respect to the continuation parameter, values
before and after bifurcation correspond to a different number of co-existing solutions.
This can happen by the equilibrium-path curve turning back on itself (afold, turning
point, saddle-node, orlimit point bifurcation of cycles), or by a new curve branching
out from it. The latter may be of a different dynamical nature than the former, for
instance a branch of quasi-periodic (asecondary Hopfor Neimark-Sackerbifurcation) or
double-period solutions bifurcating from a periodic solution curve. Hence, the capacity
to detect and characterize bifurcations is extremely important. For time-domain methods,
the problem has been extensively tackled, as reviewed in the books by Seydel [SEY 10]
and Kuznetsov [KUZ 04]. The main idea consists in monitoring the values of particular
test functions during continuation, which change sign when a bifurcation has occurred.
After detection, an iterative algorithm precisely localizes the bifurcation by solving
for dynamical equilibrium along with additional constraint equations for bifurcation
characterization. Details can be found in the works by Doedel et al. [DOE 03], Dhooge
at al. [DHO 04], Govaerts [GOV 00, GOV 05] and Witte el al. [WIT 13].
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Numerical methods for nonlinear vibration problems

Continuation can be applied to the extended systems de®ning bifurcations, a tech-
nique calledbifurcation tracking. The curves thus produced serve the role of stability
boundaries across which different dynamical behaviours are exhibited either by a vary-
ing number of solutions, a change in the nature of these, or both. Their knowledge is
thus precious to the understanding of global dynamics. It shall be clear that further
Floquet exponents may cross the imaginary axis during bifurcation tracking, indicating
a codimension-2 bifurcation (denotedcodim-2). The term 'codimension' relates to the
number of parameters to be tuned in order for such an event to happen, and thus codim-N
bifurcations may be observed through recursive tracking, where N is limited by the num-
ber of Floquet exponents a system possesses. Fig. 1.8 shows the successive bifurcations
that can be encountered when performing continuation of equilibria3, up to codim-3. The
AUTO software supports detection, localization and tracking of codim-2 bifurcations of
periodic solutions. Recently, so-called control-based continuation was used by Renson et
al.to perform experimental bifurcation tracking [REN 16, REN 17, REN 19].

Figure 1.8: Classi®cation of bifurcations with codimensions 0 through 3, from [GOV 00].

In contrast, frequency-domain bifurcation analysis is much more recent. Detroux
et al. [DET 15b] proposed extended systems for the characterization of limit point
and Neimark-Sacker bifurcations, and performed tracking of the former. This led to
the uncovering of isolated resonance curves (orisolas) in a forced system. Xie et al.
[XIE 16, XIE 17] employed alternative extended systems and tracked bifurcations in rotor
dynamics applications. Grenat et al. [GRE 17] use this formalism to develop bifurcations
analysis of nonlinear normal modes. Later, the same authors [GRE 19] used recursive
tracking of limit points in increasing codimension to optimize a nonlinear tuned vibra-

3A similar picture could be drawn for periodic solutions.
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tion absorber. Methods to systematically compute higher-codimension bifurcations of
arbitrary nature in the frequency domain have yet to be proposed.

1.4 Summary

The numerical prediction of non-linear response to ¯uidelastic instability in steam-
generator tubes is a challenging task. On one hand, no fully-satisfactory model has
been found to take into account ¯uidelastic forces. On the other, the combination
of complex geometries, time-delay effects and strong nonlinearities gives rise to an
extremely rich behaviour which is fertile in bifurcations. Numerical methods to tackle
this issue should be able to handle the ef®cient continuation of limit cycles induced by the
balance between frequency-dependent ¯uidelastic forces and impacts of beams, perform
stability evaluations of converged cycles, carry out bifurcation analyses (detection,
localization and tracking) and allow the transition between branches at bifurcation points
regardless of their nature (periodic, quasi-periodic, sub-harmonic). While this would
not lead to exact predictions of operating behaviour -due to the stochastic character of
turbulence-, it would surely shed light on the underlying phenomenology associated with
steam-generator tube vibrations. Potentially, this would aid in the creation of optimized
design guidelines.

The rest of this thesis is structured in two chapters, with the ®rst one devoted to the
development of numerical methods that meet the above requirements, and the second one
focused on applications to simpli®ed systems which approximate -in an increasingly re-
alistic way- qualitative aspects of the steam-generator tube vibration problem. Following
the bibliographical review presented in this chapter, the formalism of AFT-HBM with
arc-length continuation is adopted. From that starting point, the following contributions
to numerical analysis of nonlinear vibration problems are presented in Chapter 2:

1. A method to study discrete and distributed-delay systems in the frequency domain
which includes, in particular, the stability analysis of the latter by an appropriate
reformulation of Hill's method.

2. A practical approach to transitioning from periodic to quasi-periodic branches at
a Neimark-Sacker bifurcation, as well as the stability evaluation of quasi-periodic
regimes.

3. A systematic methodology to construct extended systems for the characterization
of bifurcations in any codimension.

4. A numerical implementation of continuation and bifurcation analysis algorithms
into the ®nite-element software CAST3M, thus permitting such analysis in practical
nonlinear vibration problems with arbitrary geometries.
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Chapter 2

Bifurcation analysis by Harmonic
Balance

This chapter details the numerical methods for general
bifurcation analysis in thefrequency domain, based on

coupling Harmonic Balance (HBM) and Pseudo Arc-length
Continuation (PAC). After a brief overview of the well-known
general principles and notations, the main contributions are

discussed, which are three-fold: quasi-periodic analysis
(including stability and branching from a NS bifurcation), the
treatment of systems with time delays (particularly distributed

delays, i.e. integro-differential equations) and the
generalization of bifurcation analysis to arbitrary

codimension. The methods are showcased on two example
systems: a Jeffcott rotor and a Nonlinear Energy Sink (NES).
Finally, the implementation of the presented methods in the

®nite-element software CAST3M is addressed.
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Continuation of periodic solutions: an overview

2.1 Continuation of periodic solutions: an overview

2.1.1 The Harmonic Balance Method (HBM)

Let us consider a discrete, nonlinear dynamical system havingn degrees of freedom
(DOFs), whose evolution in time is governed by the following equation:

M Èx(t)+ CÇx(t)+ Kx( t)+ fNL(x(t); Çx(t); Èx(t)) + fI(x(t); t) = f(t) (2.1)

If the system is idealized as a collection of lumped masses, as will be done throughout
this chapter, this expression can be considered exact and may include full matrices, with
x(t) 2 Rn a vector of generalized displacements. Otherwise, it may represent a discrete ap-
proximation to a continuous problem through, e.g., a ®nite-element spatial discretization
or a modal expansion up to then-th normal mode, in which case the modal displacements
q(t) replacex(t) in the above equation. In any case,M; C andK are the (full or modal)
inertia, damping, and stiffness matrices, respectively, whereasfNL is the vector of nonlin-
ear forces andf(t) is the vector of applied external forces. The termfI accounts for any
potential time-delay terms and will be discussed further in Sect. 2.2.1; for the purposes
of this section we will considerfI = 0.
An approximate solution to Eq. (2.1) is sought in two steps. Firstly, the steady state solu-
tion x(t) is assumed to be representable by a series expansion over a certain basisB1(t) of
orthonormal functions with particular properties, usually (quasi-)periodicity. Secondly,
this expansion is introduced in the equations of motion, which are then projected onto an
orthonormal basisB2(t) through an adequate scalar product. The classical HBM consists
of using a basis of trigonometric functions for both expansion and projection, i.e. per-
forming the Fourier-Galerkin method, such that the time dimension is removed, which
results is an algebraic problem for the Fourier coef®cients ofx(t). This implies choosing
B1(t) = B2(t) = FH(wt) 2 RL, with L = 2H + 1, such that:

FH(wt) =
�

1 cos(wt) sin(wt) : : : cos(Hwt) sin(Hwt)
�

(2.2)

wherew is the fundamental circular frequency of oscillation and the expansion is trun-
cated at theH-th harmonic. An alternative choice for a basis consists of the complex
trigonometric functions:

EH(wt) =
�

e iH wt � � � e iw t 1 eiwt � � � eiHwt �
(2.3)

It is quite simple to derive an isomorphism betweenFH(wt) andEH(wt) by Euler's for-
mula, which leads to the conclusion that both bases are equivalent. Herein, all devel-
opments will be based on Eq. (2.2). While lacking the symmetric nature of Eq. (2.3)
(which leads to convenient operators and greater overall elegance), this formulation has
the advantage of avoiding complex algebra, which is useful in view of the Cast3M imple-
mentation of the method.
A generic periodic vectorp(t) can be uniquely expressed in terms of its Fourier coef®-
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2. Bifurcation analysis by Harmonic Balance

cients,P 2 RnL:
p(t) = (F H(wt) 
 In) P (2.4)

with the following ordering convention:

P =
�
PT

0 ;PT
c1;P

T
s1; : : : ;P

T
cH;PT

sH
� T

(2.5)

The symbol
 stands for the Kronecker tensor product1. Each sub-vectorPx 2 Rn

contains thex-th Fourier coef®cient of each DOF, with the subscriptx denoting either
the static positions (0), or the cosine (c j) and sine (s j) parts of each harmonic, for
j = 1; : : : ;H. Conversely, thanks to the orthonormality of the Fourier basis,P is obtained
from p(t) through:

P = hFT
H(wt) 
 In;p(t)i (2.6)

where the inner producth�;�i, de®ned on the space of real, periodic functions over
•
0;

2p
w

˜
,

is given by:

hf (t); g(t)i =
w
2p

Z 2p
w

0
f (t)g(t)dt (2.7)

Time-derivatives ofp(t) are also proportional toP, since only the basis functions are
time-dependent. More precisely:

Çp(t) = w(FH(wt)Ñ 
 In)P (2.8)

The operatorÑ 2 RL�L applies a permutation to the basis functions (equivalent to a 90-
degree rotation), so that the velocity and displacement vectors are orthogonal in the fre-
quency domain:

Ñ = diag(0;Ñ1; :::;ÑH)

8 j = 1; :::;H : Ñ j = j
•

0 1
 1 0

˜
(2.9)

As every term in Eq. (2.1) must be periodic as well ifx(t) is, we can Fourier-expand them
all and use the Galerkin method to obtain:

R(X; w) =
”
w2(Ñ2 
 M)+ w(Ñ 
 C)+ IL 
 K

—
X + FNL(X; w)  F(w)

= Z(w)X + FNL(X; w)  F(w)

= 0

(2.10)

1This allows for very compact written expressions of the equations of motion. Nonetheless, a practical
implementation would bene®t from avoiding the construction and storage of large sparse matrices. A more
ef®cient procedure is to treat each DOF separately, even through parallel computing if possible.
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Figure 2.1: Schematic force balance for thej-th harmonic.

Here, the dynamic stiffness matrixZ(w) 2 RnL�nL has the following structure:

Z(w) = diag(K; Z1(w); :::; ZH(w))

8 j = 1; :::;H : Z j (w) =
•

K  ( jw)2M jwC
 jwC K  ( jw)2M

˜
(2.11)

Finding an approximate periodic solution to Eq. (2.1), correct up to theH-th harmonic,
is therefore equivalent to ®nding roots of the residue function,R(X; w), which is a
frequency-domain expression of dynamical equilibrium as illustrated in Fig. 2.1. We
shall distinguish between the following cases:

Forced response: C6=0; F(w) 6=0
The system is damped. The fundamental circular frequency,w, is ®xed and equals that

of the forcing termf(t), which is necessarily periodic. The residue is then a function ofX
only and the problemYF(X) = R(X) = 0 is well-posed.

Autonomous response: C6=0; F(w) = 0
The system is damped but unforced. Hence, periodic solutions are possible only if

FNL contains non-conservative terms which balance damping in such a way that the net
dissipated energy over one cycle is zero, i.e.:FNL = Fnc

NL + Fc
NL, whereFnc

NL ? Fc
NL and

Fnc
NL =  w(Ñ 
 C)X. Furthermore, the circular frequency is unknown a priori and must

be found simultaneously with the Fourier coef®cients. The problemR(X; w) = 0 is under-
constrained and must be completed by an additional equation. This is typically done by
introducing aphase conditionwhich ®xes the initial phase of any given DOF, which is
arbitrary since periodic solutions are invariant under time translations in the autonomous
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2. Bifurcation analysis by Harmonic Balance

case. Thus, without loss of generality, an initial phase of zero may be chosen for the ®rst
DOF:

Çx1(0) = 0 =) g(X) = e0X = 0

e0 = [0 0 1 0 2 : : : 0 H] 
 [1 0 : : : 0]
(2.12)

The problemYA(X; w) =
�
RT(X; w) g(X)

� T = 0 is well-posed.

Free response: C= 0; F(w) = 0
The system is conservative, which implies thatFNL = Fc

NL with Fc
NL collinear to�

IL 
 K  w2Ñ2 
 M
�
X. The solutionsX in this case correspond precisely to the de®ni-

tion ofNonlinear Normal Modes(NNMs) in the sense of Rosenberg [ROS 62]: families of
periodic orbits of a system's underlying conservative part, parametrized by energy level.
Indeed, as no input nor output of energy is present in the conservative equation, solutions
exist for arbitrary values ofE = XTX, which is a measure of total energy in accordance
with Parseval's theorem. In other words, the norm ofX is free to vary; this leads to an
under-constrained problem which requires the appending of anenergy conditionsuch as:

h(X) = XTX  E0 = 0 (2.13)

with E0 2 R+ . In contrast to the linear modes, an implicit relation exists betweenX and
w, so these variables must be computed simultaneously. Moreover, as the conservative
system is autonomous as well, Eq. (2.12) must be used to choose a particular solution
amongst the continuum of possibilities. This means, however, that the system is over-
constrained, asnL+ 2 equations are set up for thenL+ 1 unknownsX andw. The solution
we choose herein, following [ARQ 06], is to relax the system by including an arti®cial
parametera, which plays the role of a trivial Lagrange multiplier associated with the
non-conservative force:

Fa(X) = a(Ñ 
 In)X (2.14)

Hence, dynamical equilibrium reads:

R(X; w;a) =
”
w2(Ñ2 
 M)+ IL 
 K

—
X + a(Ñ 
 In)X + Fc

NL(X; w) = 0 (2.15)

As a non-zero energy level is imposed through Eq. (2.13), the only allowable
value is a = 0, and one effectively solves the conservative equations. The problem
YNNM(X; w;a) =

�
RT(X; w;a) g(X) h(X)

� T = 0 is well-posed.

The Newton-Raphson method is used to ®nd a solution to any of the above problems.
To this end, the Jacobian matrices associated to the forced, autonomous or free (NNM)
cases must be constructed at each iteration:
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JF = RX (2.16)

JA =
•

RX Rw
gX 0

˜
(2.17)

JNNM =

2

4
RX Rw Ra
gX 0 0
hX 0 0

3

5 (2.18)

where subscripts denote partial differentiation and dependence on the corresponding vari-
ables has been omitted for ease of presentation. It should be noticed that most of the
derivatives hereupon can be readily computed from the de®nitions given in this chapter.
However, the terms:

RX(X; w) = Z(w)+
dFNL

dX
(2.19)

Rw(X; w) = [2w(Ñ 2 
 M)+ (Ñ 
 C)]+
dFNL

dw
(2.20)

introduce derivatives of nonlinear forces, which require a special treatment. The same can
actually be said of the forces themselves, which are part of the residual vectorsYpt since,
in all cases, the Newton-Raphson correction to be added to the vector of unknowns,� pt,
at thek-th iteration is given by:

� (k) =  J  1
pt (� (k)

pt )Ypt(�
(k)
pt ) (2.21)

where the sub-indexpt stands for any one of the problem types:fF, A, NNMg and� pt
contains the corresponding unknowns. Convergence of the method is considered to be
achieved at iterationk if the residual norm falls below a given tolerancee> 0:

k Ypt(�
(k)
pt ) k< e =) � (k)

pt is a solution (2.22)

2.1.2 Computing nonlinear forces

Determining the Fourier coef®cients of nonlinear forces and their derivatives is not a
trivial task, as analytical expressions are generally not available in the frequency domain.
A wide range of problems, namely those dealing with large displacements or nonlinear
damping, involve forces with polynomial forms. For this particular class of functions, an
ef®cient computation can be performed by exploiting the convolution theorem. This is
frequently done when a complex formulation of the HBM is used, see e.g. [COC 09], but
rarely (if at all) for the real formulation. A method applicable to the latter is presented
in Appendix A.1. For all other kinds of nonlinearities, the Alternating Frequency-Time
(AFT) method introduced by [GRO 01] is certainly a practical choice.
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2. Bifurcation analysis by Harmonic Balance

General terms: AFT
The main idea is to compute the forces (and their derivatives) in the time domain,

where their explicit de®nitions are available and often simple, and to subsequently obtain
their Fourier coef®cients by projecting them onto the frequency domain, where the
harmonic equations are solved. Projections from one domain to the other are made by
direct and inverse Fourier transforms, which computationally leads to two variants of the
method:

a) DFT-based: Let Åx 2 RnN�1 represent an N-sample representation of the peri-
odic solution vector over the uniformly-spaced time gridÅt = [ t0; :::;tN 1 ]T , wheretN = 2p

w
and,8k = 0; :::;N : tk = k

N
2p
w . Hence, from Eq.(2.4):

Åx =

… 2

6
4

FH(0)
...

FH
 
2pN 1

N

�

3

7
5 
 In

•

X = (! H 
 In)X (2.23)

Multiplication by matrix! H 2 RN�L thus performs an inverse DFT. The direct transform
is given by the pseudo-inverse!  1

H , such that!  1
H ! H = IL and:

X = (!  1
H 
 In)Åx (2.24)

This is, in particular, true for the vector of nonlinear forces, which is thus given by:

FNL = (!  1
H 
 In)ÅfNL(Åx; ÇÅx; ÈÅx) (2.25)

The sampled velocities and accelerations, if required, are computed by combining Eqs.
(2.23) and (2.8):

ÇÅx = w((! HÑ) 
 In)X = w(! H 
 In)V (2.26)
ÈÅx = w2((! HÑ2) 
 In)X = w2(! H 
 In)A (2.27)

Differentiation of Eq. (2.25) with respect to (X,w), minding the chain rule, thus yields:

dFNL

dX
= (!  1

H 
 In)
•

¶ÅfNL

¶Åx
(! H 
 In) + w

¶ÅfNL

¶ÇÅx
((! HÑ) 
 In) + w2¶ÅfNL

¶ÈÅx
((! HÑ2) 
 In)

˜

=
¶FNL

¶X
+ w

¶FNL

¶V
(Ñ 
 In) + w2¶FNL

¶A
(Ñ2 
 In) (2.28)

dFNL

dw
= (!  1

H 
 In)
•

¶ÅfNL

¶w
+

•
¶ÅfNL

¶ÇÅx
((! HÑ) 
 In) + 2w

¶ÅfNL

¶ÈÅx
((! HÑ2) 
 In)

‹
X

˜

= (!  1
H 
 In)

¶ÅfNL

¶w
+

¶FNL

¶V
(Ñ 
 In)X + 2w

¶FNL

¶A
(Ñ2 
 In)X (2.29)

Since matrices! H ; !  1
H depend solely onH andN, they need only be computed once

as a preliminary step, and so this method is very easy to implement. For a givenH, it
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Continuation of periodic solutions: an overview

is necessary to choose a number of samplesN � 2H + 1 in order to avoid thealiasing
phenomenon [HES 09, DAI 18]: as the numerical representation of a function is made
up of a discrete collection of values, any events occurring between two consecutive sam-
ples are unresolved. Hence, high-frequency components are incorrectly interpreted as a
combination of lower-frequency ones, arti®cially distorting the signal.An illustration is
shown in Fig. 2.2 with the functionf (t) = sin(3t). For N = 3 < 7, a discrete Fourier
transform 'sees' the function sin( t), shown in dashed lines. On the other hand, choosing
N = 16 > 7 leads to an unambiguous representation. This corresponds to the intuition
that good resolution requires at least one sample per peak in the corresponding waveform.
Respecting the condition above, commonly known as thesampling theorem, yields the
exact values of Fourier coef®cients up to the H-th harmonic through DFT [KRA 19].

0 2

-1

-0.5

0

0.5

1

a)N = 3

0 2

-1

-0.5

0

0.5

1

b) N = 16

Figure 2.2: Aliasing phenomenon for the representation off (t) = sin(3t).

b) FFT-based: The main drawback of the DFT method is its computational cost,
which grows quadratically withH andN. Indeed, the number of operations involved in
one back-and-forth transformation of a vector with lengthL is nNL(L + nN). Supposing
N andL are of the same order of magnitude (a rather optimistic estimation, as discussed
in the following paragraph), this means that computing the nonlinear forces demands at
least the same computational effort as inverting the Jacobian in Eq. (2.21), and this is
still not taking into account the derivatives. A higher ef®ciency is possible through the re-
placement of the straightforward products(!  1

H 
 In)Åx and(! H 
 In)X by calls to direct
and inverse Fast Fourier Transform (FFT) subroutines, respectively. A FORTRAN im-
plementation, for instance, exists within the open-access linear algebra library FFTPACK
[SWA 84], whereasfft/ifft are standard commands available in MATLAB. Both of these
are based on the algorithm generally attributed to Cooley and Tukey [COO 65], which is
based on recursively computingn1 complex DFTs of sizen2, whereN = n1n2. Optimal
ef®ciency is thus achieved by choosingN to be as decomposable as possible into small
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2. Bifurcation analysis by Harmonic Balance

integer factors, i.e.N should be a power of 2.
The direct FFT of a sampled signal yields complex-valued Fourier coef®cientsÃX j ; 8 j =
0; :::;H, from where the real coef®cients are computed through:

Xc j =
2
N

Â
 ÃX j

�
Xs j =  

2
N

Á
 ÃX j

�
(2.30)

An additional advantage of the FFT over the DFT-based AFT is that it is generalizes
to multiple-dimensional Fourier series with relative ease, which is convenient for quasi-
periodic analyses. Besides, as in such cases the size of the problem becomesn(2H + 1)m,
the gain in computational ef®ciency quickly becomes a necessity rather than a commodity.

2.1.3 Pseudo Arc-length Continuation (PAC)

The equations for dynamic equilibrium generically depend on an arbitrary number of
parameters, whose values are ®xed when calculating a solution� 0

pt. Let us consider
a parametera, with initial value a0. A small variationDa will result in violating the
equilibrium conditions, unless a corresponding variationD¡pt is introduced such that
Ypt(� 0

pt + D� pt;a0 + Da) = 0. A Taylor expansion around the initial solution can be
performed, as the residualYpt depends continuously on the Fourier coef®cients and on all
of its parameters. To ®rst order, this yields:

Ypt(� 0
pt + D� pt;a0 + Da) � J0

ptD� pt + Y0
aDa � 0 (2.31)

where the super-index denotes evaluation at
€
� 0

pt;a
0
Š

and the error is

O
 
max

 
jjD� ptjj2; jDaj2

��
. The Implicit Function Theorem ensures that a smooth,

bijective curve f (� pt;a) = 0 exists in the vicinity of the initial solution, under the
condition thatJ0

pt is non-singular. The ®rst-order approximation of Eq.(2.31) -which lies
on the local tangent line to the initial solution in(� pt;a) space- will generally not belong
to this curve. Nevertheless, for suf®ciently small variations, it provides a good starting
point from where Newton-Raphson iterations may be used to converge to a new solution.
The strategy is thus of thepredictor-correctortype, and consists of two stages:

Prediction An additional equation must be appended to Eq.(2.31) in order to achieve
closure. Thepseudo arc-lengthequation is used:

jjD� ptjj2 + Dw2 = Ds2 (2.32)

whereDs> 0, which ®xes the magnitude of the tangent step. The predicted solution is:
‚

� 1f 0g
pt

a1f 0g

Œ

=
•

� 0
pt

a0

‹
+

•
D� pt
Da

‹
(2.33)

where the components of the tangent vector satisfy:
–

J0
pt

 
Y0

pt
�

a
D� T

pt Da

™•
D� pt
Da

‹
=

•
0

Ds2

‹
(2.34)
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Continuation of periodic solutions: an overview

Correction Newton-Raphson iterations are performed in a direction orthogonal to the
tangent vector of the predictor step. At the k-th iteration, the corrections are computed as
the solution to: –

J1f kg
pt Y1f kg

w
D� T

pt Da

™•
d� pt
da

‹
=  

‚
Y1f kg

pt
0

Œ

(2.35)

until the magnitude of the residual falls below a given tolerance.

This procedure can be automated so that the implicit curve is computed step-by-step
over a given range ofa. An ef®cient algorithm includes automatic step-length adaptation,
such that smaller steps are taken in the presence of important local curvature, as evidenced
by large deviation from the tangent approximation. The number of required iterations at
a given step is an appropriate practical measure of this characteristic, and is thus the
foundation of adaptation strategies [SEY 10]. Besides, as the sign of the tangent vector is
not inherently prescribed by Eq. (2.32), it is the duty of the algorithm to choose it so that
direction of the course is preserved along continuation. Lettingt i be the tangent vector at
thei-th step, the condition to ful®ll is simply expressed as:tT

i � t i 1 > 0.
Fig. 2.3 summarizes the PAC algorithm with tangent prediction, as used throughout this
work. It shall be noted that this method works for any system of nonlinear algebraic
equations. In particular, it can be used on the de®ning systems for the wide range of
bifurcations encountered in dynamics problems, which are presented in the following
sections. This application of continuation methods is termedbifurcation tracking[XIE 17,
DET 14, PET 16].
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2. Bifurcation analysis by Harmonic Balance

Initial solution: (X0;w0;a0)

Prediction: Tangent vector

� Solve:Ji 1
pt D� pt =  

€
Y i 1

pt

Š

a

� Tangent step:
 � if 0g

pt

a if 0g

�
=

 � i 1
pt

a i 1

�
+ Dsi

 D� pt
Da

�

Correction: N-R iterations

� ComputeY if kg
pt ; Jif kg

pt ;
€
Y if kg

pt

Š

a

� Solve:

–
Jif kg

pt

€
Y if kg

pt

Š

a
D� pt

T Da

™§
d� pt
da

ª
=

¨
 Y if kg

pt
0

«

� Apply corrections:
 � if k+1g

pt

a if k+1g

�
=

 � if kg
pt

a if kg

�
+

 d� pt
da

�

k Y if k+1g
pt k< e?

Stability
analysis

[amin;amax]
covered?

NO
k ! k+ 1

YES

NO
i ! i + 1

YES

End

Figure 2.3: Generic HBM-PAC algorithm.

36

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI032/these.pdf 
© [R. Alcorta], [2021], INSA Lyon, tous droits réservés



Continuation of periodic solutions: an overview

2.1.4 Bifurcation analysis

2.1.4.1 Codimension-1 bifurcations

The numerical computation of Floquet exponents for nonlinear vibration problems can be
performed in the frequency domain by employing Hill's method. When pseudo arc-length
continuation is used, this amounts to solving the quadratic eigenvalue problem [GRO 01]:

”
RX + lD 1 + l 2D2

—
ÅP = 0 (2.36)

whereRX is de®ned by Eq. (2.19) and:
8
<

:
D1 = 2wÑ
 M + IL 
 C+

¶FNL

¶V
D2 = IL 
 M

(2.37)

Given that Floquet exponents are implicit, continuous functions of the parameters on
which a system depends, bifurcations are generically found during the continuation of
(quasi-) periodic solutions. Fig. 2.4 summarizes the four well-known bifurcation sce-
narios in codimension 1, represented by one or two (complex conjugate)critical expo-
nents crossing the imaginary axis in the Argand plane. The rigorous detection of bifur-

Á(l j )

w
2

 
w
2

Â(l j )

a) Static bifurcation: LP or BP.

Á(l j )

w=2

 w=2

Â(l j )
 k

k

b) Dynamic bifurcation: NS or PD.

Figure 2.4: Stability loss at codimension-1 bifurcations.

cations is done by evaluating, at each continuation step, scalar test functions tailored to
vanish at a speci®c bifurcation. Examples can be found in [DOE 03, SEY 10], or even
[XIE 17, ALC 19] in the context of HBM. A more ef®cient methodology for practical
implementations consist in keeping track of ºunstable exponentsº, i.e. of exponents with
positive real parts, and comparing their number at consecutive steps. For thej-th step, let
this number be given byN j

u. This yields a very simple criterion, as follows:

1. N j
u  N j  1

u = 0 : regular point, no bifurcation has occurred.
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2. Bifurcation analysis by Harmonic Balance

2. N j
u  N j  1

u = 1 : static bifurcation. A critical Floquet exponent crosses the
imaginary axis through the origin, corresponding to a singular Jacobian matrix:
det(RX) = 0. If this is accompanied by a change in the continuation direction, i.e.
DwjDwj  1 < 0, then a point of vertical tangency (Dw= 0) exists on the response
curve and the bifurcation at hand is a Limit Point (LP). Else, the singularity is de-
generate and translates the non-uniqueness of the tangent vector; in other words,
two branches of solutions intersect at the bifurcation, which is thus a Branch Point
(BP). As solutions pertaining to distinct branches are qualitatively different, the
latter case is associated to the breaking of a certain symmetry (see Sect. 2.2.4).

3. N j
u  N j  1

u = 2 : dynamic bifurcation. A pair of complex conjugates crosses the
imaginary axis. At the critical value, such thatÂ(l � ) = 0, the imaginary part has
magnitudeÁ(l � ) = �k. A branch of solutions, whose frequency content includes

combinations ofw andjkj 2
i
0;

w
2

i
, emanates from the bifurcation: in the generic

case where the ratiow=k is irrational, a Neimark-Sacker (NS) bifurcation occurs
and the family of branching solutions is quasi-periodic. If, on the other hand, this
ratio is an integer, then the minimal period of the branching solutions is multiplied.
The most fundamental case, both by its ubiquitousness and its practical implica-
tions, isperiod doubling(PD), wherejkj = w=2.

Hereafter, typical fully-extended systems are given for each kind of bifurcation.

YLP(X; �; w) =

2

4
R

RX �
� T �  1

3

5 (2.38)

YBP(X; � ;w;g) =

2

6
6
4

R+ g�
� TRX
� TRw

� T �  1

3

7
7
5 (2.39)

YNS(X; � R; � I ;k; w) =

2

6
6
6
6
4

R 
RX  k2D2

�
� R  kD1� I

kD1� R+
 
RX  k2D2

�
� I

� T
R� R  1
pT � R

3

7
7
7
7
5

(2.40)

YPD(X; � R; � I ;w) =

2

6
6
6
6
6
6
4

R•
RX  

� w
2

� 2
D2

‹
� R  

� w
2

�
D1� I

� w
2

�
D1� R+

•
RX  

� w
2

� 2
D2

‹
� I

� T
R� R  1

3

7
7
7
7
7
7
5

(2.41)

They are presented in a form suitable for forced response analysis, but they are also
applicable to autonomous responses as well by systematically including a phase condition
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Continuation of periodic solutions: an overview

alongside the constraint equations. Moreover, as a trivial zero exponent is always included
among the 2nFloquet exponents of autonomous periodic solutions, a necessary additional
step for computing static bifurcations in that case consists in shifting

In Eq.(2.39),gis an arti®cial parameter used to unfold the BP bifurcation, similarly to
the relaxation strategy used for NNM computation. Any non-zero value ofgwould gener-
ate an imperfect bifurcation, i.e. disjoint solution branches, as the dynamical equilibrium
equations are perturbed. Thus, imposingg= 0 is equivalent to requiring symmetry of
the main branch. In addition, it should be noted that theleft eigenvector is considered
in this case. The degeneracy of the zero exponent is equivalent to the singularity of the
tangent matrix from Eq.(2.33), which in turn implies thatRw is in the range ofRX. In
other words:

9v 2 RnL; RXv+ Rw = 0 (2.42)

which leads to the third line of Eq.(2.39) upon multiplication by the left eigenvector.
In Eq.(2.40), the last lines are used to normalize vectors� R and � I , with p 2 RnL

a constant vector with non-zero projection on Span(�R; � I ). In practice, any two non-
contradictory normalization conditions can be used, and those above can be replaced -for
instance- by:pT � R = 0 andpT � I  1 = 0. These simplify to the LP system, Eq. (2.38),
for k = 0, as the lack of amplitude constraint allows for� R to become nil. The physical
reason for the need of two is that, as explained in Sect. 2.2.2, a 2-torus such as the ones on
the branch emerging from a NS bifurcation is parametrized by two time-like coordinates.
While the total initial phase is imposed by the forcing, the phase of one of the latter can
be taken arbitrarily, and a particular value must be chosen by ®xing the value of a given
component, as is done by the second normalization equation above.

As the second frequencyk is not unknown in this case of Eq.2.41, one of the nor-
malization equations has to be removed. An alternate extended system, which resembles
Eq.(2.40) as closely as possible, is obtained by keepingk variable and replacing the sec-
ond normalization condition by the phase-locking expression:w 2k = 0.
For completeness, details on the computation of the different terms involved in the Jaco-
bian matrices of general extended systems are given in Appendix A.2.

2.1.4.2 Trivial eigenvalue of autonomous systems

A limit cycle solution to conservative systems, such as Eq. (2.1) withf(t) = 0, is never
unique, in the sense that a continuous family of associated solutions can be obtained by
varying its phase, which is imposed only arti®cially through a phase condition. This im-
plies the existence of a trivial Floquet exponent with value zero, which has no impact on
the actual stability behaviour of the computed solutions. Ideally, this would pose no prob-
lem, since one could just isolate this eigenvalue and evaluate stability with the remaining
ones. However, given that numerical errors are practically unavoidable, the trivial eigen-
value may ¯uctuate and cross the stability boundaryÁ(l) = 0 during continuation, which
would be spuriously interpreted as a bifurcation. Therefore, a better strategy is to identify
the trivial exponent not by its value, but rather through a formal characterisation. This may
be achieved by ®nding an analytical expression of its associated eigenvector, as follows.
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2. Bifurcation analysis by Harmonic Balance

Consider a periodic solution of Eq. 2.86 with an arbitrary initial phase:X(t + b0); b0 2 R.
Its Fourier expansion can be expressed in two equivalent ways, either in terms of the
coef®cients associated with zero phase shift,X0, or by considering a new vectorXb0:

x(t + b0) = [F(w( t + b0)) 
 In]X0 = [F(w t) 
 In]Xb0 (2.43)
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Figure 2.5: Translation invariance. The three time series shown all satisfy Eq. (1), with
the phase condition Çy1(wb0) = 0 imposed on the ®rst mode.

This relation simply states the known fact that a phase shift equates to a rotation of the
harmonic coef®cients by an angleb0 in the frequency domain, while their amplitudes are
kept constant. Indeed, by using trigonometric identities, it is straightforward to deduce:
F(w(t + b0)) = F(wt)G(wb0), where :

G(wb0) = diag
•

1;
•

cos(wb0) sin(wb0)
 sin(wb0 cos(wb0)

˜
; :::;

•
cos(Hwb0) sin(Hwb0)

 sin(Hw b0) cos(Hwb0)

˜‹

(2.44)

=) Xb0 = (G(wb 0) 
 In)X0 (2.45)

Fig. 2.5 illustrates this on a periodic solution to an autonomous equation, rotated
to satisfy different phase conditions. Now, ifX0 satis®es dynamical equilibrium, the
invariance property implies thatXb0 must do the same for anyb0. Hence:R(Xb0) = 0
and, moreover:

dR(Xb0)
db0

=
¶R
¶b0

+ RX(Xb0)
dXb0

db0
= 0 (2.46)
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Continuation of periodic solutions: an overview

As the equilibrium residual does not depend explicitly onb0, the ®rst term is identi-

cally zero. Furthermore, from Eq. (2.45),
dXb0

db0
= w(ÑG(wb0) 
 In)X0 = w(Ñ 
 In)Xb0,

which implies:

RX(Xb0) [(Ñ 
 In)Xb0] = 0 (2.47)

The term within brackets is a vector which belongs to the null space ofRX for any
givenb0. Thus, regardless of the phase condition used to ®x the value of this quantity, the
corresponding eigenvector for the zero eigenvalue ofRX is always given by Eq. (2.47).
This is true, in particular, forb0 = 0:

RX(Ñ 
 In)X0 = 0 (2.48)

This proves that the invariant nature of limit cycles is re¯ected by a zero eigenvalue of
its Jacobian matrix. Now, let us consider once more the eigenvalue problem of Eq. (2.36).
The trivial Floquet exponent is sought by imposingl = 0. We ®nd:

RX ÅP = 0 (2.49)

Any nil Fourier exponents thus coincide with zero eigenvalues of the Jacobian. Only
one such eigenvalue exists for a regular periodic solution if the system is autonomous.
This implies that, necessarily,

ÅP = ( Ñ 
 In)X (2.50)

is the eigenvector associated to the trivial Floquet exponent.
Coming back to the static bifurcations of autonomous systems, the Jacobian matrixRX
appearing in extended systems Eqs. (2.38) and (2.39) can be replaced by:

RXs = RX  
ÅPÅPT

jj ÅPjj2
(2.51)

whose spectrum is the same as that of the original Jacobian, with except that the trivial
exponent has been shifted to -1. In this way, any null exponent found along the continua-
tion procedure can be unambiguously identi®ed as either a LP or a BP and then localized
by using Newton-Raphson iterations on a slightly modi®ed form of Eqs. (2.38,2.39):

YLPA(X; �; w;a) =

2

6
6
4

R
g(X)
RXs�

� T �  1

3

7
7
5 (2.52)

YBPA(X; � ;w;a; g) =

2

6
6
6
6
4

R+ g�
g(X)
RXs�
� TRw

� T �  1

3

7
7
7
7
5

(2.53)
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2. Bifurcation analysis by Harmonic Balance

For the case of NS and PD bifurcations, no change to the corresponding extended systems
is necessary. It should be noted, however, that stability evaluation itself requires the trivial
eigenvalue to be shifted from the quadratic problem, Eq (2.36). This can be accomplished
by using the technique proposed in [MEI 13], or by using a typical shift on the double-
size, equivalent linear system:

•
0 IL

 D  1
2 Rx  D  1

2 D1

˜ • ÅP
l ÅP

˜
= l

• ÅP
l ÅP

˜
(2.54)

In the latter case, the eigenvector used to shift the trivial zero of the left-hand matrix is
clearly equal to

�
(Ñ 
 In)XT 0T

� T . Moreover, it shall be noted that these expressions
imply the geometric and algebraic multiplicities of the zero exponent to be identically
equal to two, in such a way that each zero is associated to a different eigenvector, thus
enablingÅPT � = 0. Shall this condition not be veri®ed, as may be the case in practice,
� is sought as a generalized eigenvector by using the alternative systems presented in
Appendix A.2.

2.2 Contributions to the numerical analysis of nonlinear
vibration problems

2.2.1 Delayed systems

In this section, the following time-delayed termfI of Eq. 2.1 is considered:

fI = Ax(t  t) + BÇx(t  t) + a
Z t

 ¥
D(t)x( t  t)d t (2.55)

wherea 2 R, is considered. Each of the terms in the above expression is a linear function
of lagged displacements/velocities, i.e. evaluated at a previous state characterized by the
time lagt 2 R+ . Likewise, the nonlinear force vector is allowed to depend on the de-
layed variables:fNL(x; Çx; t) � fNL(x(t); Çx(t); x(t  t); ÇÅx(t  t)). If a = 0 andA,B are not
both nil (discrete delay), the system's characteristic equation is transcendental rather than
polynomial, and so Hill's method leads to a nonlinear eigenvalue problem for its Floquet
exponents, which are in®nite. The stability evaluation in such cases has been addressed
by several authors (e.g. [WAN 19]) and is not considered within the scope of the present
work. Nonetheless, the computation and continuation of periodic solutions through the
HBM is straightforward, and so it is detailed next for completeness. On the other hand,
if a 6=0 andA = B = 0 (distributed delay), certain types of kernel functions allow for
the integro-differential equations of motions to be recast into an equivalent, purely differ-
ential form to which a set of additional ®rst-order equations has been appended. In the
context of pseudo arc-length continuation, Floquet exponents are then obtainable through
a particular variant of Hill's method which is introduced in this section.
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Contributions to the numerical analysis of nonlinear vibration problems

2.2.1.1 Discrete delays

The delayed term is given by:fI = Ax(t  t)+ BÇx(t  t). Let Xt represent the Fourier co-
ef®cients of a delayed periodic solution to Eq.(2.1), sayx(t  t), with angular frequency
w. Relative to the coef®cients of the current-time solution,X, Xt is rotated in the fre-
quency domain by an angle wt due to the time lag. Hence, using the rotation matrix of
Eq. (2.44):

Xt = (G( wt) 
 In) X

=)
§

x(t  t) = (F H(wt)G( wt) 
 In) X
Çx(t  t) = w(FH(wt)ÑG( wt) 
 In) X

(2.56)

The Fourier-Galerkin projection of the equations of motion yields a residual analogous to
Eq. (2.10), where additional terms are included in the dynamic stiffness matrix:

Zt (w) = w2Ñ2 
 M + w(Ñ 
 C+ ÑG( wt) 
 B)+ IL 
 K + G( wt) 
 A (2.57)

A successful convergence of the Newton-Raphson algorithm towards a periodic solu-
tion must take into account thew-dependence of matrixG( wt). Moreover, the AFT-
computation of derivatives also has to be adapted in the case of nonlinear functions of
x(t  t) and Çx(t  t). Denoting the sampled representation of these two vectors by, re-
spectively,Åxt andÅvt :

dFNL

dX
= (!  1

H 
 In)
•

¶ÅfNL

¶Åx
(! H 
 In) +

¶ÅfNL

¶Åxt
((! HG( wt)) 
 In)

+w
¶ÅfNL

¶Åvt
((! HÑG( wt)) 
 In)

˜
(2.58)

where, without loss of generality, it has been assumed that nonlinear forces dependent
only on x(t); x(t  t) and Çx(t  t). It shall be noted that frequency dependence is also
introduced here through the rotation matrix; this must be considered when computing the
termRw.

Example: A self-excited Duf®ng oscillator with feedback control Consider the fol-
lowing SDOF system:

Èx(t)+ 2zÇx(t)+ x(t) + kNLx3(t)  cNL Çx3(t) + ax(t  t) + bÇx(t  t) = pcos(wt) (2.59)

with (kNL;cNL; t; p) � (0;0;0;0) and(a;b) 2 R. Eq. (2.59) serves as a toy model to study
the dynamics of a mechanical system undergoing large displacements and self-excited
oscillations (due, in this case, to a cubic negative-damping term), as one could encounter
when studying ¯uid-structure interaction problems. Control of the system's dynamics is
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2. Bifurcation analysis by Harmonic Balance

sought through delayed state feedback. With the valuesz = 0:05;p = 0:5;kNL = 0:05
®xed, the frequency-response curve is computed withH = 5;nFFT = 29 for varying time-
lag t in four different scenarios:

� Case 1: Displacement feedback, no nonlinear damping:a =  0:1; b = 0;cNL = 0

� Case 2: Displacement feedback, nonlinear damping:a =  0:1; b = 0;cNL = 0:01

� Case 3: Full state feedback, no nonlinear damping:a =  0:1; b =  a; cNL = 0

� Case 4: Full state feedback, nonlinear damping:a =  0:1; b =  a; cNL = 0:01

Results are summarized in Figs. 2.6 a) through d). Four values were chosen fort:
f 0:000;0:086;0:286;0:786g. Besides frequency responses, bifurcation tracking of LPs
is shown as well. This can be achieved even in the absence of stability information, as
this particular bifurcation is detected by monitoring the component of the tangent vector
related to the continuation parameter,Dw in this case. Furthermore, it can be shown
(see Appendix A.2) that extended systems for the static bifurcations retain their forms
when delays are considered, the only differences occurring during the computation of
the extended Jacobian matrix. Once the LPs were localized, they were tracked witht
as continuation parameter, yielding the stability boundaries of Fig.2.7. For this simple
example, it can be observed that an increased lag has a stabilizing effect in the absence of
nonlinear damping, i.e. Cases 1 and 3, as seen on the overall decrease of peak amplitude
whether a displacement-only or a full feedback are used. The latter is notoriously more
effective, as these curves possess no LPs at all and the response is rendered almost linear.
For the longest time lag, the curve in Case 1 also loses its bi-stability zone. This can be
explained by bifurcation tracking, as the LP curves remarkably coalesce at a cusp point
for t = 0:7141. Thus, choosing a delay superior to this value ensures the suppression of
an unstable branch and the associated amplitude jumps. On the other hand, comparing
these two cases further reveals that the feedback has a softening effect on the response
curve of Case 1, while the opposite is true for Case 3.
With the addition of negative nonlinear damping, a displacement feedback alone (Case
2) can be thought to have the reverse effect, as Fig. 2.6 b) clearly shows an increase of
peak amplitude with increasingt. While this is true for the chosen values, the projection
of stability boundaries on thew jjXjj plane are closed loops, so that amplitudes lower
to those of the non-delayed case are reachable for larger values oft. However, the two
LP curves are disjoint and transcendental with respect tot in this case, so a bi-stable
region is unavoidable if the other parameters remain unchanged. A similar behaviour is
observed when a full state feedback is used, Case 4.

An optimal tuning of the controller is possible by choosing(a;b;t) such that features
of the curve (e.g. maximum response amplitude, bi-stability region width, quasi-periodic
responses) are either ampli®ed or hindered, subjected to variation of the external parame-
ters (cNL; p). The generalized bifurcation analysis exposed in Sect. 2.2.3 is ideally suited
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Contributions to the numerical analysis of nonlinear vibration problems

to tackle this interesting problem; nevertheless, as this requires stability computations -
which have not been implemented here in the case of discrete delays-, this study is left
for future work.
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Figure 2.6: Time-lag effect on the FRC of a self-excited Duf®ng oscillator, Eq. (2.59).

2.2.1.2 Distributed delays

The termfI = yd(t) is given by a convolution between displacements2 and a certain kernel
functionD(t), say:

2Convolutions involving velocities are treated in exactly the same way.
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2. Bifurcation analysis by Harmonic Balance
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Figure 2.7: LP bifurcation tracking.

yd(t) =
Z t

 ¥
D(t)x( t  t)d t (2.60)

We require the kernel function to be continuously differentiable on]0;2p=w]and to
have a bounded delay, i.e. to respect causality:D(t) = 0;8t < 0. While the mechanical
systems under study consist of a ®nite number of modes, the introduction of convolutions
with generic kernels leads to an in®nite-dimensional system of equations, just as in the
case of discrete delays. In particular, this means that the characteristic equations de®n-
ing the Floquet exponents will be transcendental rather than polynomial. However, in
the special case where the kernel is de®ned by a sum ofexponentialterms, the integro-
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Contributions to the numerical analysis of nonlinear vibration problems

differential equations can be shown to be equivalent to a system of ODEs with dimension
Na = n(1+ ne), wherene is the number of exponentials inD(t). This fact stems from the
particular behaviour of the exponential function under the derivative operator, as can be
seen by replacingD(t) = ÅH(t)e at in Eq. (2.60) and taking its derivative with respect to
t, with ÅH(t) the Heaviside step function. The result, applying Leibniz's rule, is:

Çyd(t) = x(t)  ayd(t) (2.61)

This is an inhomogeneous, ®rst-order differential equation foryd(t), which can be treated
as an internal variable whose dynamics describe a memory effect. By noticing that Eq.
(2.60) imposesyd(0) = 0, we conclude that the following two equations (and their corre-
sponding initial value problems) are strictly equivalent:

M Èx(t)+ CÇx(t)+ Kx( t)+
neX

i=1

L i

Z t

0
e a i t x(t  t)d t + fNL(x(t); Çx(t)) = f(t) (2.62)

()

8
>>><

>>>:

M Èx(t)+ CÇx(t)+ Kx( t)+
P ne

i=1 L iydi(t) + fNL(x(t); Çx(t)) = f(t)
Çyd1(t) = x(t)  a1yd1(t)
...
Çydne(t) = x(t)  aneydne(t)

(2.63)

Other integral terms, e.g. the integrals of instantaneous (non-delayed) displacements
involved in PID controllers, may be substituted using the same procedure. What follows
can certainly be applied to such systems as well (with slight adjustments), although here-
after our attention will be centred around Eqs. (2.62) and (2.63). Indeed, these arise quite
naturally in ¯uid-induced vibration problems, in the form of Wagner's function for un-
steady aerodynamics [DIM 17] or the quasi-unsteady model of ¯uid-elastic instability of
tube bundles in cross-¯ow [GRA 96], for instance, as a decreasing exponential has the
meaningful physical interpretation of recent events having more impact on the present
state than those far behind in the past. Let us remark that, by linearity, equations for the
internal variables will be periodic -once a steady state is reached- if the vector function
x(t) is periodic as well. Hence, this is assumed to be the case and the Fourier-Galerkin
projection is applied on every line of Eq. (2.63), which gives:

8
>>><

>>>:

Z(w)X +
P ne

i=1 L iYdi + FNL(X)  P = 0
[a1IL + w(Ñ 
 In)] Yd1 = X
...
[aneIL + w(Ñ 
 In)] Ydne = X

(2.64)

Eq.(2.64) could be solved directly by Newton-Raphson iterations, treating theYdi as addi-
tional unknowns. However, this is unnecessary, as the Fourier coef®cients of the internal
variables are proportional toX (this is evident from Eq.(2.64), as well as from the convo-
lution theorem). For allai 6=0, the matrices[ai IL + w(Ñ 
 In)] admit the inverses:

Si(w) = (B i(w) 
 In) [ai IL  wÑ
 In] (2.65)
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2. Bifurcation analysis by Harmonic Balance

where:

Bi(w) = diag

‚

1=a2
i ;

1
a2

i + w2

•
1 0
0 1

˜
; :::;

1
a2

i + (H w)2

•
1 0
0 1

˜ Œ

Eq. (2.65), actually, describes nothing more than the Laplace transform of a decaying
exponential function evaluated at the discrete valuesf 0;w; :::;Hwg, with the real parts
along the diagonal and the imaginary parts as the elements of a skew-symmetric matrix.
Respectively, these contribute additional stiffness and (negative) damping terms to the
equations of dynamical equilibrium, which read:

R(X; w) =

"

Z(w)+
neX

i=1

(B i(w) 
 L i) [ai IL  wÑ
 In]

#

X + FNL(X)  P = 0 (2.66)

2.2.1.3 Hill's method revisited

Our goal is to determine the local stability of a periodic solutionx0(t) to Eq.(2.66)
by studying the evolution of a small applied perturbation� (t), i.e. by lettingx(t) =
x0(t) + � (t) in the equations of motion. A linear system is thus obtained for the pertur-
bation, whose asymptotic behaviour characterizes the attractive (stable) or repulsive (un-
stable) nature of the underlying cycle,x0(t). Stability calculations for pseudo arc-length
continuation algorithms in the frequency domain usually follow [GRO 01] and are based
on the quadratic eigenvalue problem of Eq. (2.36). However, as shown next, this approach
is not directly applicable to cases with integral terms, i.e.fI(t) 6=0, or any other system
in which some terms are described by additional differential equations. An alternative
methodology is proposed hereafter which generalizes this version of Hill's method.

Memoryless vibrations: fI(t) = 0
Replacing the perturbed solution in Eq. (2.1) and keeping only the tangent (®rst-order)

terms in the Taylor expansion of the nonlinear forces leads to:

M È� (t) +

–

C+
•

¶fNL

¶Çx

‹

Çx0(t)

™

Ç� (t)+

–

K +
•

¶fNL

¶x

‹

x0(t)

™

� (t) = 0 (2.67)

As the tangent stiffness and damping matrices are evaluated at the converged cycle, they
are periodic functions with frequency equal tow. Eq.(2.67) is then a linear, autonomous
system of equations with periodic coef®cients, whose study can be performed through
Floquet theory. As a preliminary step, however, we will recast it into an equivalent ®rst-
order form of double size by introducing the state vectorz(t) = [� T(t); Ç� T(t)]T . Hence:

Çz(t) = A(t)z(t) (2.68)

with the coef®cient matrix given by:
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Contributions to the numerical analysis of nonlinear vibration problems

A(t) =

2

4
0n In

 M  1

–

K +
•

¶fNL

¶x

‹

x0(t)

™

 M  1

–

C+
•

¶fNL

¶Çx

‹

Çx0(t)

™
3

5 (2.69)

q0(t)q0(t)

h(t)

h(0) h(0)
h(t)

Figure 2.8: Notion of local (asymptotic) stability fora cycleq0(t). Left: stable cycle,
right: unstable cycle.

The 2nsolutions of Eq.(2.68) are known as theFloquet forms, which play a role
analogous to normal modes for systems with periodic coef®cients and are expressed in
the general formz j (t) = el j tp j (t), with p j (t + 2p=w) = p j (t). Clearly, the time evolution
of the perturbation is determined by the real part of the exponentsl j : if there exists at
least onej such thatÂ

�
l j

	
> 0, the associated mode's amplitude grows exponentially

and the underlying cycle is thus unstable, as depicted in Fig. 2.8. Furthermore, in the
case of unforced systems, there exists at least one trivial exponent equal to zero. This is
due to the invariance of periodic solutions with respect to time translations, which equates
to the existence of a direction in phase space along which perturbations have no effect.
This particular direction is given byÇv(t) = [ ÇxT

0 (t); ÈxT
0 (t)]T , and the demonstration of this

fact is a classical result shown in numerous textbooks, see e.g. [SEY 10]. Substituting
the Floquet form ansatz in Eq. (2.68) and factoring out the exponentials from both sides
yields an equation for thel j purely in terms of periodic functions:

Çp j (t) + l jp j (t) = A(t)p j (t) (2.70)

Eq. (2.70) has been used in [LAZ 10, BEN 17], where a Fourier expansion of the
coef®cient matrix and of vectorp j (t) was introduced. Then, using harmonic balance, a
linear eigenvalue problem is obtained from which the characteristic (Floquet) exponents
are found as the eigenvalues of a truncatedHill's matrix. The right-hand side, being a
product of two time series, leads to a convolution in the frequency domain which is rep-
resented by a Toeplitz matrix if a complex formulation of harmonic balance is employed
(and a more complicated matrix otherwise). Hereafter we adopt a different approach,
which has the advantage of exploiting information already available from the AFT-HBM
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2. Bifurcation analysis by Harmonic Balance

solution of the equations of motion to ef®ciently construct a real Hill's matrix. Concep-
tually, vectorsp j (t) consist of the state representation of some periodic solution, i.e. the
vertical concatenation of, say, a ºdisplacement partº and a ºvelocity partº. Thus, each half
can be expressed as a separate Fourier series, here denoted with the previously-introduced
DFT operators:

p j (t) =
•

(! H 
 In) P
(! H 
 In) P0

˜
=

•
(! H 
 In) 0nL

0nL (! H 
 In)

˜
� (2.71)

Eq. (2.70) is then projected row-wise onto the frequency domain through left-
multiplication by the inverse transformation matrixI2 


€
!  1

H 
 In

Š
, which yields the

eigenvalue problem:

H� = l� (2.72)

where Hill's matrix is explicitly given by:

H =
•

 wÑ 
 In InL
HK HC

˜
(2.73)

HK =  (I L 
 M  1 )
•
IL 
 K +

¶FNL

¶X

˜

HC =  wÑ 
 In  (I L 
 M  1 )
•
IL 
 C+

¶FNL

¶X0

˜

It should be noted that the derivatives appearing in Eq. (2.73) have already been computed
during the iteration process for the converged cycle, so that no further computations are
necessary to assemble this matrix for suf®ciently compliant systems3. While this formu-
lation of the Hill matrix is a novelty, it is straightforward to demonstrate its equivalence
with the well-known quadratic eigenvalue problem introduced by Von Groll and Ewins.
Indeed, the ®rst line of Eq. (2.72) states:ÅP0= (lI nL + wÑ
 In) ÅP. Introducing this ex-
pression in the second line leads exactly to Eq. (2.36).

Moreover, and most importantly, this approach is readily generalisable to the case of
systems with memory, which is not an obvious task if the traditional QEP, Eq. (2.36), is
taken as a starting point.

In the same way as before, an evaluation of local stability around a cycleq0(t) is
sought by applying a perturbation� (t) to Eq. (2.62). The resulting equation for the
perturbation is similar to Eq. (2.67):

3While an accurate computation of the Fourier coef®cients of cycles can be achieved through AFT with
moderate sampling, highly stiff systemsmay require a re-evaluation of these terms with a higher sampling
rate in order to ensure convergence of the Floquet exponents; this aspect is discussed more in detail in
Chapter 3.
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M È� (t)+

–

C+
•

¶fNL

¶Çx

‹

Çx0(t)

™

Ç� (t)+

–

K +
•

¶fNL

¶x

‹

x0(t)

™

� (t)+
neX

i=1

L i

Z t

0
e a i t � (t  t)d t = 0

(2.74)
Let us de®ne the state vectorz(t) = [� T(t); Ç� T(t); � T

1 (t); :::; � T
ne

(t)]T , where each of the
� T

j (t) vectors( j = 1; :::;ne) stands for the j-th convolution term for the perturbation. The
state representation of the above equation is then, after recast in extended-ODE system
form, exactly the same as Eq. (2.68), with the periodic coef®cient matrix:

A(t) =

2

6
6
6
6
6
6
6
4

0n In 0n � � � 0n

 M  1

–

K +
•

¶fNL

¶x

‹

x0(t)

™

 M  1

–

C+
•

¶fNL

¶Çx

‹

Çx0(t)

™

 M  1 L1 � � �  M  1 Lne

In 0n  a 1In � � � 0n
...

...
...

...
...

In 0n 0n � � �  a neIn

3

7
7
7
7
7
7
7
5

(2.75)
The application of Floquet theory, followed by harmonic balance, leads once again to

the linear eigenvalue problem of Eq. (2.72), where Hill's matrix is now given by:

H =

2

6
6
6
6
6
4

 wÑ 
 In InL 0nL � � � 0nL
HK HC  I L 
 (M  1 L1) � � �  I L 
 (M  1 Lne)
InL 0nL  wÑ 
 In  a1InL � � � 0nL
...

...
...

...
...

InL 0nL 0nL � � �  wÑ 
 In  aneInL

3

7
7
7
7
7
5

(2.76)

The advantages of using the formulation described above are evident when one attempts
to apply the Floquet-Fourier approach on the second-order Eq. (2.74), which leads to the
system:

M
€

Èp+ 2l Çp+ l 2p
Š

+ C(t) ( Çp+ lp)+ K( t)p +
neX

i=1

L i

Z t

0
e (a i+l)t p(t  t)d t = 0 (2.77)

Here, the total stiffness and damping matrices have been replaced by the symbolsK( t)
andC(t), respectively, to denote their time-dependence. The extended differential system
is obtained afterwards by de®ning the internal variables:

si(t) =
Z t

0
e (a i+l)t p(t  t)d t ; 8i = 1; :::;ne

=)
§

M
 

Èp+ 2l Çp+ l 2p)+ C(t)( Çp+ lp
�

+ K( t)p +
P ne

i=1 L isi(t) = 0
Çsi(t) + (l + ai)si(t) = p(t) ; 8i = 1; :::;ne

(2.78)
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2. Bifurcation analysis by Harmonic Balance

The following quadratic problem is obtained for the eigenvaluesl and their associated
eigenvectors =

�
PT ;ST

1 ; :::;ST
ne

� T :

”
ÅD0 + l ÅD1 + l 2 ÅD2

—
 = 0 (2.79)

with the coef®cient matrices given by:

ÅD2 =

2

6
6
6
4

D2 0nL � � � 0nL
0nL 0nL � � � 0nL
...

...
...

...
0nL 0nL � � � 0nL

3

7
7
7
5

; ÅD1 =

2

6
6
6
4

D1 0nL � � � 0nL
0nL InL � � � 0nL
...

...
...

...
0nL 0nL � � � InL

3

7
7
7
5

ÅD0 =

2

6
6
6
4

RX IL 
 L1 � � � IL 
 Lne

 I nL wÑ
 In + a1InL � � � 0nL
...

...
...

...
 I nL 0nL � � � wÑ
 In + aneInL

3

7
7
7
5

A problem immediately appears, asÅD2 is singular and the same is true for its
double-size ®rst-order form. This does not immediately imply that Eq. (2.79) is not
solvable, but in®nite roots will appear amongst its solutions, which is not the case for the
well-posed matrixH from Eq. (2.76). Furthermore, the accuracy of eigenvalue solvers is
compromised when dealing with such singular, leading to erroneous results (especially
when the systems at hand are stiff). An alternative approach is to directly express the
Fourier coef®cients of the internal variables as a function ofP by using the second line
of Eq. (2.78), which leads to a regular system. However, this involves matrices similar
to Eq. (2.65) but which include rational functions ofl, and thus de®nes a nonlinear
eigenvalue problem. The dif®culty is then much higher when compared to Eq. (2.72),
which is linear and stands out as the most convenient formulation within the present
framework of the HBM.

The eigenvalues of matrixH, which are in the number of(2 + ne)nL, contain the
(2+ ne)n Floquet exponents of the system. These are identi®ed by selecting, amongst all
solutions, those whose imaginary parts lie within the elementary cell[ w

2 ; w
2 ], i.e. those

with the smallest imaginary parts in magnitude, as ®rst suggested in [MOO 05]. Stability
assessments are then possible by inspection of the real parts. This is true regardless of
whether the original system is forced or autonomous, the only difference being that a
trivial zero eigenvalue is present in the latter case. Regarding bifurcations, the usual
extended systems for LPs and BPs remain unchanged; furthermore, those for the PD and
NS bifurcations have exactly the same form, upon addition of corrective terms to the usual
matricesD1 andD2. Details and the proof of this claim are presented in Appendix A.3.
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Contributions to the numerical analysis of nonlinear vibration problems

2.2.2 Quasi-periodic analysis

The HBM can be readily extended to compute quasi-periodic solutions of Eq. (2.1), by
assumingq(t) to be a M-periodic function, i.e. one which is periodic with respect to each
of its M arguments independently. As such, it may be expressed as an M-dimensional
Fourier series, which we write compactly as:

x(t) = (F H(� ) 
 In)X (2.80)

where hyper-time vector� = [w 1t; :::;wMt] = [q 1; :::;qM] groups the independent time
scales associated with each basic frequency. The requisite imposed on the frequencies is
that they are incommensurable; in other words:

8(i; j) 2 f 1; :::;Mg; i 6=j =)
wi

w j
62Q (2.81)

since otherwise the elements of� are linearly dependant and the formulation reduces to
a lower-dimensional Fourier series. The vectorFH(� ) contains the harmonic functions
forming an orthonormal basis for the sought solutions, which are approximated up to the
H-th harmonic, while the associated Fourier coef®cients make up the vectorX.
Orthogonality is de®ned through the following inner product on continuous,M-periodic
functions:

hf (t); g(t)i =

!
MY

i=1

wi

2p

%Z 2p
wM

0
:::

Z 2p
w1

0
f (� )g(� )dq1:::dqM (2.82)

As an immediate consequence of this de®nition:

hFH(� ); FH(� )i = IL (2.83)

whereL = (2H + 1)M is the size of the system for each DOF. As time only appears in the
elements of� , velocity and acceleration terms are also proportional toX in the frequency
domain. Hence:

Çx(t) =
•

d
dt

FH(� ) 
 In

‹
X =

"!
MX

i=1

wi
¶FH(� )

¶qi

%


 In

#

X (2.84)

Èx(t) =

‚
d2

dt2
FH(� ) 
 In

Œ

X =

2

4

„
MX

j=1

MX

i=1

w jwi
¶2FH(� )
¶qj¶qi

Ž


 In

3

5 X (2.85)

Replacing all variables in Eq. (2.1) by their frequency-domain expressions and taking the
product of the resulting equations with the basis functionsFH(� ) yields the general form
of the algebraic problem to be solved for the Fourier coef®cients of the solution and the
basic frequencies:

R(X; ! ) = Z(! )X + FNL(X)  F(! ) = 0 (2.86)
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2. Bifurcation analysis by Harmonic Balance

Through the forcing termf(t), some or all of the basic frequencies may be imposed. Let
m� M be the number of 'free' frequencies of the problem. The total number of unknowns
is thusnL+ m, whereas the system given in (2.86) consists of merelynL equations. Clo-
sure is achieved by appendingmadditional phase conditions to the system. A robust way
of doing this is by exploiting the invariance with respect to translation along certain di-
rections in hyper-time, which correspond to the velocity vectors associated to each 'free'
time scale. Thus, assigning a value to any component of each of these vectors uniquely
®xes a phase for the solution and effectively closes the system of equations; lettingek
denote the unit vector for the k-th coef®cient, we may write:

8i = 1; :::;m e�
k � ((Ñ i 
 In)X) = 0

Ñi =

*

FH(� );
¶FH(� )

¶qi

+ (2.87)

As will be shown later on, the vectors in parentheses are actually eigenvectors of the
system's Jacobian associated with zero eigenvalues. Invariance along these particular
directions comes from the fact that they span the null-space: perturbations along any of
them has no effect on the solution other than shifting its phase.
The dynamic stiffness matrix in Eq. (2.86) can be explicitly written as:

Z(! ) = Ñ2 
 M + Ñ
 C+ IL 
 K (2.88)

where a total derivative has been introduced:

Ñ =
MX

i=1

wiÑi (2.89)

Bi-dimensional time case
The implementation details will now be discussed by considering the particular case
whereM = 2.
Let the vectorsXx(i; j) group then Fourier coef®cients for a given combinationiw1 + jw2
of the basic frequencies, where the subindexx identi®es the cosine (real) part (x= c) or
the sine (imaginary) part (x= s). Thus, for a H-harmonic approximation:

X =

[ XT
(0;0) ::: XT

c(H;0) XT
s(H;0)

XT
c( H ;1) XT

s( H ;1) ::: XT
c(0;1) XT

s(0;1) ::: XT
c(H;1) XT

s(H;1)
� � �

XT
c( H ;H) XT

s( H ;H) ::: XT
c(0;H) XT

s(0;H) ::: XT
c(H;H) XT

s(H;H) ]T

(2.90)

It should be noted that, because of the symmetry properties of the Fourier transform, it
is suf®cient to consider only positive values of the second subindex. This is illustrated
in Fig. 2.9, which shows the distribution of Fourier coef®cients for a quasi-periodically
forced Duf®ng oscillator.
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Figure 2.9: Response of a Duf®ng oscillator to two-frequency QP forcing, with 642 sam-
pling points for the FFT2 algorithm. Left: phase space plot, right: frequency content

(centered DFT2). Harmonics (1,0), (1,1) and (1,7) are dominant.

Furthermore, by inspecting the terms of this depiction, it is clear that the basisFH
2 (� )

is nothing more than the frequency-domain convolution corresponding to the product of
basesFH

1 (w1t) and FH
1 (w2t) (which can be observed in the ®rst ºrowº and the centre

ºcolumnº, respectively). Thus, both of these can be viewed as sub-spaces of the full
toroidal space, a fact that proves to be useful for branch switching.
The total derivative is given by:

Ñ = w1Ñ1 + w2Ñ2 (2.91)

with the partial derivatives being block-diagonal matrices.
The two-dimensional direct and inverse Fourier transforms are used to go back and forth
between time and frequency domains for the practical computation of the nonlinear terms
FNL(X). More speci®cally, the direct and inverse Discrete Fourier Transform algorithms
(DFT2 and IDFT2, respectively) are implemented. To this end, the real Fourier coef®-
cients (2.90) are expressed in complex form through the formula:

bX(0;0) =
1
2

X(0;0) ; bX(�a;b) =
1
2

�
Xc(�a;b) � iXs(�a;b)

�
for a;b = 1; :::;H (2.92)

Next, the complex coef®cients are re-arranged in matrix form. This includes a zero-
padding operation in order to have an adequate number of sampling pointsnf for the
time-domain signal. The transformation mapping the real Fourier coef®cient vector to the
complex coef®cient matrixMat bX 2 Rnf �n f �n is thus simply expressed by introducing the
operatorTC:

Mat bX = TCX (2.93)
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2. Bifurcation analysis by Harmonic Balance

For practical purposes, the matrixMat bX is a three-dimensional array, with one two-
dimensional ºlayerº attributed to each DOF. Thus, the following operations are performed
independently on each of these and may be parallelized to enhance computational ef®-
ciency.
Let Dn

nf
denote then-dimensional transition tensor composed ofn instances of thenf -

point DFT matrix. The two-dimensional Fourier transform is carried out by inverse
Fourier-transforming each row ofMat bX and subsequently applying this same operation
to each column of the obtained tensor:

bx(q1;q2) = Dn
nf

”
Dn

nf
Mat bXT

—T
=

”
Dn

nf
TCX

—
DnT

nf
(2.94)

If the time-domain velocities and/or accelerations are involved in the nonlinear forces,
they can be obtained in exactly the same fashion by using the corresponding formulas.
Afterwards, the time-domain expressions for these forces are evaluated and the associated
Fourier coef®cients are found by applying the inverse operations to those described above:

FNL(X) = T 1
C

�
Dn�

nf

”
Dn�

nf
bfT

NL(bx;bÇx)
—T �

= T 1
C

€
Dn�

nf

”
bfNL(bx;bÇx)DnT�

nf

—Š
(2.95)

From this expression, the frequency-domain derivatives4 can also be expressed as a func-
tion of their time-domain counterparts:

¶FNL

¶X
=

¶FNL

¶bfNL

¶bfNL

¶bx
¶bx
¶X

+
¶FNL

¶bfNL

¶bfNL

¶bÇx

¶bÇx
¶X

¶FNL

¶X
= T 1

C

€
Dn�

nf
DnT�

nf

Š
¨

¶bfNL

¶bx

”
Dn

nf
TCDnT

nf

—
+

¶bfNL

¶bÇx

”
Dn

nf
TC(Ñ 
 In)DnT

nf

—
«

(2.96)

Stability
The de®nition of asymptotic stability remains unchanged for quasi-periodic solutions

to Eq. (2.67). Thus, application of a perturbationh leads once again to the autonomous
Eq. (2.67), with the difference that the damping and stiffness matrices are now quasi-
periodic functions. For an M-dimensional hyper-time, one may thus consider a solution
to be of the general form:

� (t) = � (q1; :::;qM) = el tp(q1; :::;qM)

An equation analogous to Eq. (2.70) is thus obtained through ®rst-order recast, with
the time derivative now expressed in terms of partial derivatives with respect to each time
scale:

MX

i=1

wi
¶p j (t)

¶qi
+ l jp j (t) = A(t)p j (t) (2.97)
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q0(t)q0(t)

h(t)
h(0) h(0)

h(t)

Figure 2.10: Local stability for a quasi-periodic solutionq0(t). Left: stable cycle, right:
unstable cycle.

Projection onto the frequency domain leads once again to Eq. (2.72), where the total
derivative, Eq. (2.89), is employed.

Mediating the computational strategies for the computation of the required terms,
Hill's methods remains unchanged for quasi-periodic solutions, as the number of Floquet
exponents for a given system does not depend on the nature of its solutions. However,
it is important to realize that any free phase will lead to a trivial eigenvalue, just as in
the case of autonomous systems discussed in Sect. 2.1.4.2. In fact, an analogous in-
variance argument may be advanced for quasi-periodic solutions, as follows. Consider a
periodically-forced system driven at a frequencyw1, which acts as continuation param-
eter; let one of its solutions bex(q1;q2), belonging to a bifurcated branch born at a NS
point. As the forcing prescribes only a phase with respect to the ®rst hyper-time coor-
dinate, the total phase is free: in other words, time-translations purely along the second
time coordinate result in rotations along the torus surface, which is invariant. A good
geometric picture, represented in Fig. (2.11) is the following: a PoincarÂe section of the
solution in phase space taken att = 0 yields a closed curve, such that an in®nite family of
solutions describe the same torus, each one corresponding to a different starting point on
this curve.

Let us express the partially time-shifted Fourier coef®cients as:

x(q1;q2 + Dq2) = [F(q 1;q2 + Dq2) 
 In]X = [F(q 1;q2)G2(Dq2) 
 In]X

= [F(q 1;q2) 
 In]XDq2 (2.98)

where the matrixG2 operates a partial rotation along the second hyper-time coordinate.
Owing to invariance, the ®rst variation of the equilibrium equations with respect toDq2
must be nil for any givenw1 andw2. Hence:

4Alternatively, one can compute this term using ®nite differences, which is much simpler to code but
also quite inef®cient.
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2. Bifurcation analysis by Harmonic Balance
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Figure 2.11: A forced quasi-periodic solution. The time history is probed at regular
intervals equal to the forcing periodT = 2p=w1. Left: phase-space representation; right:

PoincarÂe section.

dR(XDq2;Dq2)
d(Dq2)

=
¶R

¶(Dq2)
+ RX(XDq2)

¶XDq2

¶(Dq2)
= RX(XDq2) (Ñ2 
 In) XDq2 = 0 (2.99)

This proves that, regardless of the chosen phase condition, the Jacobian (and thus the Hill
matrix) possesses a trivial eigenvalue with an associated null-space spanned by the vector
(Ñ2 
 In) XDq2.

2.2.3 Generalized bifurcation analysis

Special points on bifurcation curves can be detected, precisely localized and tracked in
an analogous manner to codim-1 bifurcations on response curves. Hence, by recursive
application of tracking, an understanding of the global bifurcation behaviour of the
system -i.e., over the full parameter space- is attainable. Evidently, this has great
potential as a functional optimization technique, as certain aspects of the dynamics
may be enhanced or suppressed altogether by adequate parameter choices. This
was recently done in [GRE 19] to ensure safe operation of a nonlinear vibration ab-
sorber by avoiding high-amplitude isolated solutions. In that case, a recursive tracking of
LPs was proposed; in this section, the same idea is generalized to all kinds of bifurcations.

Consider any one of the extended systems presented in Sect. 2.1.4.1, which we will
denote generically asY1(W), with all the corresponding variables (Fourier coef®cients
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Contributions to the numerical analysis of nonlinear vibration problems

X, frequencyw, and potentially eigenvectors/eigenvalues characterizing a particular bi-
furcation) being grouped into the vectorW. Without loss of generality, let us assume that
w was used as the initial continuation parameter and that a second one,a, is freed and
used to track bifurcations with pseudo arc-length continuation. The tangent matrix at the
i-th continuation step is thus given by:

JY1(W; a) =
•

(Y1)W (Y1)a
DWT

i 1 Dai 1

˜
(2.100)

where the derivatives are evaluated at(W i ;a i). Following the constraint equations ap-
pended to dynamical equilibrium inY1(W; a), each solution along the computed curve
possesses a certain number of ®xed Floquet exponents which have a null real part up to
the chosen tolerance of the NR algorithm: one for LPs and BPs, two for PDs and NSs
(plus an additional one in the autonomous case). Let the number of these free exponents
be given byd. The remaining 2n d ones evolve as a function ofw anda, such that one of
the three following scenarios might be encountered between two consecutive continuation
stepsi andi + 1:

1. Pseudo-regular point: the number of exponents with negative real parts among
the 2n d free ones does not change from one step to the other. Likewise, the
continuation direction is preserved. This last statement is equivalent to either of the
following: det((Y1)W j i)det((Y1)W j i+1 ) > 0, orDaiDai+1 > 0.

2. Generalized turning point: The continuation direction changes, as evidenced by
det((Y1)W j i)det((Y1)W j i+1 ) < 0, or DaiDai+1 < 0. Meanwhile, the number of
Floquet exponents with negative real parts stays the same.

3. Codim-2 bifurcation: one or more of the free Floquet exponents cross the imagi-
nary axis, while the continuation direction is preserved.

It should be noted that a linear stability analysis, as given by Hill's method, yields suf-
®cient information to distinguish between cases 1 and 3, under the condition that alld
eigenvalues on the imaginary axis are shifted away or ignored during stability evaluation
while performing bifurcation tracking. This operation can be achieved with great ease,
since the associated eigenvectors of the Hill matrix are solved for at each step. Formally,
one detects hybrid bifurcations by evaluating the real parts of Floquet exponents issued
from the arti®cially-hyperbolic system:

ÜHf =

!

H  
dX

i=1

viv
T
i

%

f = lf (2.101)

For a practical implementation, shifting Hill's matrix is not required, as the critical Flo-
quet exponents can simply be identi®ed with the aid of their eigenvectors. Extended
systems for any codim-kbifurcations identi®ed in this manner, withk being an arbitrary
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2. Bifurcation analysis by Harmonic Balance

integer greater than 1, are then constructed in a modular fashion, using constraint equa-
tions for the codim-1 case as building blocks. The codim-2 case, for which an exhaustive
list has been established by Kuznetsov and co-workers [KUZ 04, WIT 13], is used here
for illustration purposes. Two qualitatively different situations, which transpose exactly
to the codim-kcase, have to be considered:

Strong resonances
They correspond to a pair of Floquet multipliers crossing the unit circle through one of

the ®rst four roots of unity:

! k
1;2 = 1 (2.102)

with k = 1;2;3;4 and! 2 C. Although, in practice, crossings through higher roots of unity
is evidently possible, these four cases are special in the sense that they lead to high-order
terms which cannot be eliminated in the associated normal forms [HAL 91], a trait absent
for theweakresonances (k> 4). In turn, this results in extremely complex dynamics in
their vicinity. Reasoning in terms of Floquet exponentsl 1;2, the conditions of Eq. (2.102)
are equivalent to:

8
>><

>>:

1:1 resonance(R1) : l 1;2 = 0
1:2 resonance(R2) : l 1;2 = �i w

2
1:3 resonance(R3) : l 1;2 = �i w

3
1:4 resonance(R4) : l 1;2 = �i w

4

(2.103)

While these bifurcations are not generic in codim-1, they are readily found along NS
curves in codim-2 as the ratiow=k becomes rational, implying phase-locked (resonant)
tori. It should be noted that the condition for aR2 resonance is exactly the same as that
for a PD bifurcation, Eq. (2.41). However, we distinguish between the two on the basis
of their codimension.

1:1 resonance(R1) l 1 = l 2 = 0
Also known as adouble-zero,fold-fold, orBogdanov-Takensbifurcation of cycles. This

is an instance of a bifurcation with geometric multiplicity 1 but algebraic multiplicityk >
1, i.e. ak-fold repeated root for the eigenvalue problem given by Eq. (2.72), associated to
a single eigenvector� 1. The null subspace ofH has thus a rank de®ciency of orderk 1,
and a complete basis for it may be constructed by ®ndingk 1 generalized eigenvectors
� 2; :::; � k that constitute the links of a Jordan chain alongside� 1 [TIS 01].
The following relations thus hold forP(l) = A0 + lA 1 + ::: + l pAp, a generic matrix
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Contributions to the numerical analysis of nonlinear vibration problems

polynomial of orderp > k :

P(l 0)� 1 = 0

P(l 0)� 2 =  P 0(l 0)� 1

...

P(l 0)� k =  P 0(l 0)� k 1  :::  
1

(k  1)!
P(k 1) (l 0)� 1 (2.104)

This form is suitable for the quadratic eigenvalue problems such as the standard Hill
method, Eq. (2.79). If the equivalent linear recast is rather considered, i.e:

•
0 I

 D  1
2 RX  D  1

2 D1

˜ •
�
l�

˜
= A

•
�
l�

˜
= l

•
�
l�

˜
(2.105)

then the above equations still hold by introducing the following matrix polynomial:
ÃP(l; �) = (A  lI)

�
� T ; l� T

� T . For a root with multiplicity 2, this leads to:

ÃP(l 0; � 1) = 0
ÃP(l 0; � 2) =  ÃP0(l 0; � 1) (2.106)

The alternate form of Hill's method proposed in this thesis, withH as described in
Eqs.(2.73,2.76), is treated in the exact same fashion, hence all the following develop-
ments apply to reducible integro-differential systems as well. Eq. (2.106) together with
the constraint equations for codim-1 bifurcations provides the required tool to construct
extended systems for multiple roots, of which 1:1 resonance is the sole codim-2 example.
Let ' denote the generalized eigenvector. Thus, by introducingl 0 = 0 into Eq. (2.106),
one ®nds the constraint equationRX ' + D1� = 0, which leads to the following extended
system:

YR1(X; � ;w;'; a) =

2

6
6
6
6
4

R
RX �

� T �  1
RX ' + D1�

� T '

3

7
7
7
7
5

(2.107)

where the last equation is a normalisation condition on', derived as follows. While the
vector� in the equationRX ' + D1� = 0 is uniquely de®ned through the normalization in
the LP extended system, it is not the same for', since it can be replaced by Ä' = ' + a�
for anya 2 R and yield the same result. Nevertheless it is always possible, since� and'
cannot be collinear, to choosea = a0 such that� and Ä' are orthogonal, as illustrated in
Fig. 2.12. This is the vector chosen among the family of possible solutions, whose initial
approximation for the Newton-Raphson method can be found by solving fora0 and':

•
RX 0
� T jj�jj 2

˜ •
'
a0

˜
=

•
 D 1�

0

˜
(2.108)
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2. Bifurcation analysis by Harmonic Balance

j

f

Äj = j + a0f

a0f

Figure 2.12: Eigenvectors spanning thenull subspace associated to a multiple root.

The R1 bifurcation is relevant in quasi-periodic analysis, since it marks the branching,
i.e. the birth or end, of a NS curve out a LP one. As its name suggests, it is a conse-
quence of the coincidence between natural frequencies of two different vibration modes
of the system, triggered by the detuning introduced by nonlinear effects. For instance, two
modes with initially close linear frequencies can intersect due to stress stiffening. In the
vicinity of an R1 point, the closeness between these frequencies results in a beating phe-
nomenon, i.e. modulated oscillations. Conversely, this bifurcation can also be detected
along NS tracking, where it is self-evident from the fact that eigenvalues�ik tend to zero.

1:n resonance(Rn) l 1;2 = �i
w
n

;n 2 N

Extended systems for the other strong resonances are found by appending the required
phase-locking condition to the NS system, Eq. (2.40), as follows:

YRn(X; � R; � I ;w;k; a) =

2

6
6
6
6
6
6
4

R 
RX  k2D2

�
� R  kD1� I

kD1� R+
 
RX  k2D2

�
� I

pT � R  1
pT � I

w nk

3

7
7
7
7
7
7
5

(2.109)

At an Rn point, branches ofnT-periodic sub-harmonic solutions bifurcate and can be
followed by applying the techniques introduced in the following section.

Hybrid bifurcations
Critical Floquet exponents in this case are of different nature, i.e. each root has simple

multiplicity. Thus, extended systems are built by straightforwardly appending the con-
straint equations for the corresponding codim-1 bifurcations one after the other. Regard-
ing nomenclature, here the choice is made to borrow from the bifurcations of equilibria.
Thus, the words ºof cyclesº shall be understood to be systematically, albeit implicitly,
present. For instance, the wordHopf refers to a Hopf bifurcationof cycles, i.e. a NS
bifurcation.
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Zero-Hopf (ZH) l 1 = 0;l 2;3 = �ik
In contrast with the R1 case, a NS curve does not start/end at a ZH bifurcation. Rather, a

curve of LP and one of NS intersect transversely at this point. Letting� be the eigenvector
corresponding to the zero exponent and' = ' R� i' I the complex eigenvector associated
to the incommensurate frequencyk:

YZH(X; � ;w;' R; ' I ;k; a) =

2

6
6
6
6
6
6
6
6
4

R
RX �

� T �  1 
RX  k2D2

�
' R  kD1' I 

RX  k2D2
�

' I + kD1' R
pT ' R  1

pT ' I

3

7
7
7
7
7
7
7
7
5

(2.110)

Locating a ZH bifurcation is useful for branching from a curve of LP to either a NS curve
or a quasi-periodic response branch.

Hopf-Hopf (HH) l 1;2 = �ik; l 2;3 = �ix
As a last example, the case where a second pair of complex-conjugate Floquet expo-

nents crosses the imaginary along NS tracking is considered. It should be noted that,
although theHopf-Hopf bifurcation strictly denotes the case wherew;k andx are all in-
commensurate, other cases such as¯ip-Hopf (l 1;2 = �ik; l 2;3 = �iw=2) can be derived
easily from the following system by ®xing one of the frequencies to the appropriate value
and removing one of the normalisation equations. Considering two complex-conjugate
eigenvalue pairs� and', the HH extended system reads:

YHH(X; � R; � I ;k; w;' R; ' I ;x;a) =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

R 
RX  k2D2

�
� R  kD1� I 

RX  k2D2
�

� I + kD1� R
pT � R  1

pT � I 
RX  x2D2

�
' R  xD1' I 

RX  x2D2
�

' I + xD1' R
pT ' R  1

pT ' I

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

(2.111)

Generalized turning points
Let Y(V; a) denote a set ofl nonlinear algebraic equations depending on an arbitrary

set of variables, grouped in vectorV 2 Rl , and tracked with respect to the scalar parameter
a. An implicit curve in the(l + 1)-dimensional solution space is de®ned byY(V; a) =
0 together with an appropriate arc-length equation. The components(DV;Da) of the
tangent vector at any given point on this curve thus satisfy:

YVDV+ YaDa = 0 (2.112)
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2. Bifurcation analysis by Harmonic Balance

Just as in the case of a LP, the curve exhibits a fold wheneverDa = 0. Thus, theV-
increment is none other than an eigenvector spanning the null-space ofYV, whose
magnitude can be ®xed to any non-zero value to yield an extended system analogous to a
codim-1 LP:

YG(V;  ;a) =

2

4
Y

YV 
 T   1

3

5 (2.113)

ReplacingYG with the LP extended system, Eq. (2.38), in the above expression leads
to a characterization of the well-knowncuspbifurcation (CSP). The Chenciner (CH) and
Generalized Period Doubling (GPD) are the analogous points on NS and PD curves, re-
spectively. Serving as organizing centres for the global dynamics of a given system, gen-
eralized turning points mark the appearance or vanishing of attractors. This, in particular,
is true of isolas. Certain cusp bifurcations have been shown to indicate isola birth/death as
well as detaching from/attaching to a main response branch. In [ALC 19], whose results
are presented in Chapter 3 of this thesis, a similar phenomena is observed in relation to
GPD bifurcations.
Fig. 2.13 summarizes the discussion of the present subsection. Even though the tree-like
structure of this diagram branches out and becomes complicated when codimension in-
creases -as the number of possible cases widens-, the ®rst two 'levels' are the foundation
on which the most general scenarios can be constructed.
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Dynamical Equilibrium
R(X;w) = 0
g(X) = 0

Bifurcation

codim-1
Continuation

Static Dynamic
Á(l c) = �k

LP BP NS PD

Branch switch

Generalized
Limit Point

Strong
Resonance

Hybrid
Bifurcation

Branch switch

Á(l c) = 0

codim-2
Tracking

Bifurcation

codim-3
Tracking
(and so forth)

Figure 2.13: Summary of numerical bifurcation analysis.
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2. Bifurcation analysis by Harmonic Balance

2.2.4 Branch switching

Periodic branches
With the exception of LPs, all codim-1 bifurcations exist at the intersection of (at

least) two branches of qualitatively-different solutions. BPs are frequently referred to as
symmetry-breakingbifurcations since cycles on one of the branches arehalf-wave sym-
metric, i.e.:

x
•

t +
T
2

‹
=  x (t) (2.114)

whereas those on the bifurcating branch do not. In the context of the HBM, this means
that even harmonics are inactive in the former branch but not in the bifurcating one, a fact
that is easily proven by considering:

8
><

>:

cos
•

jw
•

t +
T
2

‹‹
= cos(jwt) cos( jp)  sin( jwt) sin( jp) = ( 1) j cos(jwt)

sin
•

jw
•

t +
T
2

‹‹
= sin( jwt) cos( jp)+ cos(jwt) sin( jp) = ( 1) j sin( jwt)

(2.115)
Comparing Eqs. (2.114) and (2.115), it is clear that only a signal whose spectrum contains
exclusively odd harmonics veri®es half-wave symmetry, see Fig. 2.14. Moreover, any
signal can be decomposed into its odd and even harmonics:X = Xo + Xe where the ®rst
right-hand side vector contains non-zero terms only on its components associated to odd
harmonics, and vice-versa. Thus, clearlyXT

o Xe = 0. Let us formalize this by stating that
Xo 2 Uo � RnL andXe 2 Ue � RnL, where any two elements -taken one from each subset-
are orthogonal.

0 /2 3 /2 2
t

-1

-0.5

0

0.5

1

f(
t)

0 /2 3 /2 2
t

-1

-0.5

0

0.5

1

Figure 2.14: 2p-periodic functions. Left: cos(t), exhibiting half-wave symmetry. Right:
cos(2t), an antisymmetric function.

Following a symmetric branch means that, at thej-th continuation step, the tangent
vector t j 2 Uo. Assuming a BP to occur precisely at thej-th step, the emerging non-
symmetric tangenttBP has a non-zero projection on bothUo andUe, which implies that:
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Contributions to the numerical analysis of nonlinear vibration problems

tBP = at j + bve;ve 2 Ue; (a;b) 2 R2. This last vector can be identi®ed with the eigenvec-
tor � associated to the nil eigenvalue of the JacobianRX. This observation is at the heart
of theparallel searchalgorithm for branch switching [HEN 05, DOE 12], whose princi-
ple is to take a step along� from a BP and then converge onto the bifurcating branch
through orthogonal Newton-Raphson corrections. The other well-known alternative is
to compute the coef®cients(a;b) through the use of theAlgebraic Branching Equation
(ABE) [KEL 86].
It is important to note that half-wave symmetry, as described above, is not the only way
in which BPs can occur. For instance, along the FRC of a 2-DOF system of which only
one mode is excited by an external force, a branch of bi-modal solutions can bifurcate
from the main curve due to modal interactions. The argument advanced herein still holds
by considering a decompositionX = X1 + X2, where the vectors respectively contain the
(odd and even) coef®cients of the ®rst and second mode, so thatXT

1 X2 = 0.

Sub-harmonic branches
Recall that the Fourier basisFH(wt) includes only terms whose frequencies are multi-

ples of the fundamental frequencyw. This means, ®rst of all, that sub-harmonic responses
can not be computed with this basis alone, but also that PD and Rn bifurcations can be
readily identi®ed as such. Indeed, consider the alternative basis:

FnH(wt) =
h
1;cos(

w
n

t); sin(
w
n

t); cos(wt); sin(wt); :::
i

(2.116)

SinceFH(wt) � FnH(wt), any T-periodic solution to the equations of motion can be con-
structed in this new basis. However, the addition of sub-harmonic functions means that
the minimal period is nownT. As a consequence, the period-multiplying bifurcation is
not associated with a change in period any more: instead, it identi®es a BP, as a branch
emerges on which the solutions have components orthogonal to those of the branch be-
ing followed. The operationw ! w

n transformsFH(wt) into HnH(wt). In practice, this
implies extending the size of vectorX in order to not neglect the higher harmonics while
including sub-harmonics.
The most practical way to switch branches, upon detection of a sub-harmonic bifurca-
tion, is thus to extend the original Fourier basis and compute the eigenvector� verifying
RX � = 0. Afterwards, the ABE or parallel switching can be applied.

Quasi-periodic branches
Branches of quasi-periodic solutions emerging from a NS bifurcation on a periodic

branch can be reached through a similar switching technique as that concerning asym-
metrical periodic or sub-harmonic branches. Once again, the key idea is to exploit the
symmetry-breaking nature of the bifurcation. A root of the system Eq. 2.40 yields
[Q;w;� R; � I ;k], where a perturbation applied to the marginally stable cycle at(Q; w)
is described by the relation:

� � (t) = [F H(wt) 
 In] (� R � i� I ) e�ik t (2.117)
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2. Bifurcation analysis by Harmonic Balance

The general form of� (t) is a linear combination of the eigenvalue/eigenvector pairs cor-
responding to the positive and negative values ofk. Considering this and grouping terms
yields:

� (t) = [F H(wt) 
 In]
�

(eikt + e ik t)� R+ i(eikt  e ik t)� I
	

(2.118)

From Euler's formula, the terms in parentheses correspond, respectively, to 2cos(kt)
and 2isin(kt). Thus, since the frequenciesw andk are incommensurate, the resulting
product of trigonometric functions gives rise to two-frequency quasi-periodic motions.
The extended HBM formalism of Sect. 2.2.2 with a bi-dimensional hyper-time accounts
for this type of solutions by introducing the basisFH(wt;kt). It should be noted that
FH(wt) � FH(wt;kt), such that we may consider the decompositionX = XP+ XQP, where
the ®rst right-hand side vector has as non-zero components those which are included in
the periodic basisFH(wt). The perturbation� (t) can be expressed in terms of the new
basis functions, as follows:

� (t) = [F H(wt;kt) 
 In]  (2.119)

where the coef®cients of the real eigenvector depend on those of� R and� I . Indeed, by
distributing the cos(kt) and sin(kt) terms over the components ofFH(wt) and applying
trigonometric product identities, it can be shown that consists entirely of terms involv-
ing combinations of harmonics ofw and the fundamental frequencyk. Moreover, the
explicit expressions of the corresponding coef®cients are given by:

8
>>>><

>>>>:

 c(a;1) = � R(ca)  sign(a)� I (sa)

 s(a;1) = sign(a)� R(sa) � I (ca) ; 8a =  H ; :::;  1; 1; :::;H

�
 c(0;1);  s(0;1)

�
=

�
� R(0);  � I (0)

�

(2.120)

For practical implementations, a speci®c arrangement must be de®ned for the coef®-
cientsXy(a;b) of arbitrary vectors spanned by the quasi-periodic basis, where the sub-index
y can stand forc or s (cosine or sine terms, respectively) andb = 0; :::;H. It is important
to note that, regardless of the chosen arrangement, the vector is always orthogonal to
the response curve at a NS bifurcation. This is necessarily the case because any non-zero
coef®cients of a periodic solution must correspond to the º0-th harmonicº ofkt in vector
 , i.e.  y(jaj;0). Hence, this situation is analogous to symmetry-breaking of periodic solu-
tions and to period multiplying. Indeed, as in the latter case, extending the original basis
to include the new time scale has the effect of 'transforming' a NS bifurcation into a stan-
dard branch point5. The classical ABE could thus be used to robustly follow the emerging
branch. Alternatively, parallel search can be applied. The approach taken herein is to use
Eq.(2.120) to transform the complex eigenvector found from NS localization into a real
eigenvector in terms of the quasi-periodic basisFH(wt;kt), and to use parallel switching
afterwards. This is simpler to code -as it avoids the numerical computation of second
derivatives- but more likely to encounter convergence issues as compared to the ABE.

5The analogy is actually imperfect, as a phase condition must also be appended to the initial system of
equations to ®x the phase alongthe second hyper-time direction. Nevertheless, this is the only difference.
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w

jjX Pjj

jjX QPjj

Figure 2.15: QP branch between two NSbifurcations. Dashed arrow (in grey) shows the
direction of parallel search. Blue and green arrows represent, respectively, the tangent

vector along the periodic codim-1 space and eigenvector .

2.2.5 Benchmark examples

2.2.5.1 Isolas of the Jeffcott rotor

Consider the following simple model of a symmetrically-supported, nonlinear Jeffcott
rotor:

m
•

Èx
Èy

˜
+ c

•
Çx
Çy

˜
+ k

•
x
y

˜
+

g(r)
r

•
1  fT
fT 1

˜•
x
y

˜
= f w2

•
cos(wt)
sin(wt)

˜
(2.121)

This equation describes the planar motions of a disk of radiusR and with a mass unbal-
ance f , rotating within an annular support with an angular speedw. Notice that mass,
damping and stiffness properties are the same along both directions, owing to the symme-
try of the system. The last term in the left-hand side describes the contact forces, both in
the normal and tangential directions, projected on the x and y-directions. Dry Coulomb
friction is assumed for the tangential force, such that:jjFT jj = jjFNjj = fT jjFNjj, whereas
the magnitude of the normal force is given by the functiong(r) in non-dimensional form:

g(r) =
1
2

h
(r  1)+

È
(r  1)2 + 4h

i
(2.122)

wherer(t) =
p

x2(t) + y2(t) is the radial displacement. It should be noted that these
equations make use of non-dimensional variables such that both contact stiffness and
support radius are unitary. Similarly,fT is a regularized function of relative velocity:

fT(vrel) = !
vrelÈ
v2

rel + e
(2.123)

69

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI032/these.pdf 
© [R. Alcorta], [2021], INSA Lyon, tous droits réservés



2. Bifurcation analysis by Harmonic Balance

with:

vrel(x;y; Çx; Çy;w) =
xÇy yÇx

r
+ Rw (2.124)

Let H = 5 andnFFT = 28. Fig. 2.16 shows frequency response curves for two different
values of forcing amplitude, with other parameters taking the following values:m= 1,c=
0:1,k = 0:04,R= 20,! = 0:125,h = e= 1E 5. For f = 0:4, the mass unbalance alone
does not generate contact between rotor and stator, represented by the dashed line, and so
the well-known linear response is obtained. On the other hand, forf = 0:9524, contact
is established forw > 0:153 and a fully nonlinear response results over a wide range of
forcing frequencies, delimited by LPs. Furthermore, stability of the periodic branch is lost
through a NS bifurcation atwNS= 0:59. This is a consequence of friction forces, which
manifest as cross-coupling terms in the equations of motion and oppose damping in the
tangential direction at contact. Thus, for high-enough amplitudes, damping is overcome
by friction and a backward whirl regime begins at an angular speed non-synchronous to
w. In the unstable region following this bifurcation, quasi-periodic motions thus occur,
and even coexist with a linear, synchronous periodic response over the range delimited by
the two LPs atwLP1 = 0:89 andwLP2 = 0:99. Moreover, by zooming in at this later point,
it can be seen that a second NS bifurcation occurs in its vicinity, as shown in Fig. 2.16 c).
Indeed, the closeness of these two points hints at the presence of a coalescence frequency
wZH, i.e. a ZH bifurcation, for a different, albeit nearby, parameter set.
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Figure 2.16: Forced response of Jeffcott rotor, Eq. (2.121).�: LP, 4: NS

Bifurcation tracking with respect tof has been performed and the resulting stability
boundaries are shown in Fig. 2.17. As discussed in Sect. 2.2.3, the Floquet exponents
with null real parts are shifted by exploiting their corresponding eigenvectors, thus
allowing codim-2 bifurcations to be detected by a standard stability analysis (Hill's
method); generalized turning points, which in this case are cusps, are detected by
monitoring the sign ofDf . Solutions with unstable modes besides those associated to
the codim-1 bifurcation are represented as cyan lines in this diagram: in this case, they
are delimited by two zero-hopf bifurcations, ZH1 and ZH2, marked by cyan circles.
The Floquet exponents associated with the LP curve are shown in Fig. 2.18. It should
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Figure 2.17: Jeffcott rotor bifurcations tracked with respect to parameterf . Green: LP
curve. Magenta: NS curve. Cyan: 'unstable' bifurcations.
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Figure 2.18: Floquet exponents of LP solutions for the Jeffcott rotor with! = 0:125.

be noted that only three out of the system's four exponents are represented, as the one
associated to the singular Jacobian has been shifted to -1.
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2. Bifurcation analysis by Harmonic Balance

Tracking of NSs and LPs both yield the exact same locations for the ZH bifurcations,
as expected. Even if only one of the curves is computed, for instance the LP one, such a
point can be used to easily transition to the NS curve by using it as an initial solution and
then employing continuation on the associated extended system. An interesting observa-
tion, is that an 'unstable' LP or NS bifurcation happens within an unstable branch with no
stability change, whereas a 'stable' one separates a stable and an unstable periodic branch.

0.214 0.216 0.218 0.22

0.4772

0.4774

0.4776

a) CP3 and CP4

0.99 1 1.01
0.95

0.96

0.97

b) CP1

Figure 2.19: Close-up view of cusp bifurcations for the Jeffcott rotor with! = 0:125.

Similarly, four cusp bifurcations have been detected by monitoring the sign ofDf
and subsequently localized, as marked by red diamonds in Figs. 2.17 and 2.19, the latter
showing more details around the outermost points. While these bifurcations are all char-
acterized as local extrema of the LP curve, they have different interpretations in terms of
the system's dynamics. As the magnitude off is increased, the following phenomena are
encountered:

� f < fCP2: Absence of any LP. The system's response is strictly linear.

� f = fCP2: The cusp is an isola centre.

� fCP2 < f < fCP3: The center splits into two LPs which bound a closed response
curve composed of a stable and an unstable branch. Solutions on the isola are
high-amplitude and thus nonlinear, whereas the main response curve remains linear.
Moreover, forf > fZH1, quasi-periodic solutions are born from NS bifurcations on
the isola.

� f = fCP3 Isola merging. The cusp point is a BP which connects the isola and the
main response curve.
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� fCP3 < f < fCP4: The BP splits into two LPs, for a total of four. Each pair borders
an unstable branch, the ®rst one in the narrow regionw 2 [wCP4;wCP3] and the
second one in the wide bi-stability region forw > wCP3.

� f = fCP4: the low-amplitude unstable branch disappears as the two LPs which en-
close it coalesce at the cusp.

� fCP4 < f < fCP1: overall response amplitude increases. The two remaining LPs
move closer together. For the narrow region betweenfZH1 and fCP1, both NS bifur-
cations are now accompanied by stability changes in the response curve.

� f = fCP1: The two LPs meet at a cusp.

� f > fCP1: Absence of LPs, and thus of amplitude jumps (for periodic solutions).
With increasingf , the two NS bifurcations enclose a wider range of forcing fre-
quencies and quasi-periodic motions become the norm.

Fig 2.2.5.1 shows once again the FRC atf = 0:4 < fCP3, where both the low-
amplitude linear response and the isola are visible. To compute the latter, the point with
the lowestw at the intersection of the LP curve and the horizontal linef = 0:4 on Fig 2.17
was used as a starting point for the continuation algorithm.
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Figure 2.20: Forced response atf = 0:4, with isola.

Changes in response curve topology asf is increased fromfCP3 to beyondfCP4 are
shown Fig. 2.21. Also noticeable in these graphs are two NS bifurcations, out of which
one belongs to the unstable branch of what was formerly the isola. This is to be expected,
as f > fZH1. Interestingly, a visual inspection of Figs. 2.17 and 2.19 reveals that cusp
points CP2 and CP3 -corresponding to the birth and merging of the isola, respectively-
appear as parabolic extrema on thew f plane, whereas CP1 and CP4 -which mark the
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2. Bifurcation analysis by Harmonic Balance

disappearance of an unstable branch- are seen as sharp wedges. While this is purely an
effect of the projection employed, it hints at the possibility of distinguishing between
both cases through a well-de®ned criterion. Such a characterization of cusps, with its
numerical implementation, is left as an open problem for future work.
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Figure 2.21: Evolution of response curve in the vicinity of cusp points CP3 and CP4.
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2.2.5.2 Quasi-periodic solutions & Strong resonances of a Nonlinear Energy Sink
(NES)

The dynamics of an essentially nonlinear element with masseNES attached to a main
structure is described by Eq. (2.125):
•

1 0
0 eNES

˜ •
Èx1
Èx2

˜
+

•
c  c

 c c

˜•
Çx1
Çx2

˜
+

•
1 0
0 0

˜•
x1
x2

˜
+ kNL

•
(x1  x2)3

(x2  x1)3

˜
=

•
f cos(wt)

0

˜

(2.125)
This con®guration offers great potential in passive vibration control applications, as an ir-
reversible energy transfer from the main system to the NES is ef®cient over a wide range
of frequencies and without the need for tuning, as a consequence of the NES having no
natural frequency. Here, parameter values are ®xed at:kNL = 0:5;c = 0:04;eNES = 0:1.
The forced response curve is computed with an initial forcing amplitudef = 0:03, yield-
ing curves of Fig. 2.22. For all the results presented here, a ®ve-harmonic approximation
was used. Two NS bifurcations are found surrounding the linear resonance frequency, and
the quasi-periodic FRC was computed as well by branching from the lowest-frequency
NS. For illustration purposes, the coexisting (stable) quasi-periodic and (unstable) peri-
odic regime are shown in Fig. 2.23 forw = 1.

0.9 0.95 1 1.05 1.1
0.1

0.2

0.3

0.4

0.5

Figure 2.22: Frequency response for NES atf = 0:03. Black: stable periodic, blue:
stable quasi-periodic, red: unstable.

Next, the forcing amplitudef was used as a tracking parameter within the interval
[0;0:5]. The result of this operation is shown in Fig. 2.24, superimposed to the previous
FRC. The NS curve loses stability at a ZH point, which was then used as a starting point
to track LP bifurcations. Moreover, two R4 and one R3 strong resonances were localized
in this interval.
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Figure 2.23: NES: coexisting regimes atw = 1.
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Figure 2.24: NES: NS/LP tracking with respect tof . Magenta: NS curve, green: LP
curve, cyan: 'unstable' bifurcations.

Using extended sub-harmonic bases, branches of 4Tand 3T-periodic solutions were
computed starting from the respective bifurcations on the unstable NS curve:(w; f ) =
(1:2213;0:1226) for R4 and(w; f ) = (1:3973;0:2559) for R3. Fig. 2.25 groups con-
tinuation results around each bifurcation and shows one example of converged cycle for
each one. Black dots in the latter indicate values ofx1;x2 sampled at the forcing period
T = 2p=w. It can be noted that two distinct sub-harmonic branches emerge from the
strong resonance points, and also that these curves are fully unstable.
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4T-periodic FRC,f = 0:1226.
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3T-periodic FRC,f = 0:2559.
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4T-periodic cycle,w = 1:2375.
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Figure 2.25: NES: Sub-harmonic responses at strong resonances R4 and R3.

2.3 CAST3M Implementation

The methods described above have been implemented in the form of an operator, called
DYNC (for DYNamic Continuation), in the most recent version of Cast3M. In this way,
not only can systems of arbitrarily complicated geometries be studied, but one also ben-
e®ts from the wide library of non-linear forces (linkages) which is already present in
the software. As an illustration, Fig 2.26 shows the computational model of the steam-
generator U-tube studied Chapter 3.
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First out-of-plane bending mode.
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First in-plane bending mode.
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Second out-of-plane bending mode.
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Second in-plane bending mode.

Figure 2.26: Cast3M model of upper U-tube region in stagnant ¯uid.

The modal basis shown is computed for the tube in with stagnant ¯uid with a non-
uniform density distribution, so the added mass effect is directly incorporated into the
system and leads to slightly asymmetrical out-of-plane modes. This complicated sce-
nario is treated without dif®culties in CAST3M. Continuation and bifurcation methods
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CAST3M Implementation

can then be applied on the reduced, modal representation of the system with the inclusion
of forcing terms and nonlinear forces.

Scope The objective is to ®nd periodic solutions of the discrete equations of motion:

M Èq(t)+ aCÇq(t)+ Kq( t) = fNL(q(t); Çq(t)) + afe(t) (2.126)

obtained by projecting a full ®nite-element model onto a basis consisting of the ®rstn
linear eigenmodes, and to study their parametric evolution through continuation methods
and bifurcation analysis. Here,q 2 Rn is the vector of modal displacements, while the
physical displacementsd of any given pointp = (x ;y;z) on the structure are obtained by
linear combination:

d(p; t) = �(p)q( t) (2.127)

with �(p) 2 Rs�n a matrix containing the eigenvectors evaluated atp. M, C andK are,
respectively, the (modal) mass, damping, and stiffness matrices, while the vectorsfe, fNL
contain the modal contributions of applied external loads and nonlinear forces. Depend-
ing on whether the parametera is nil or not, the computed solutions may correspond to
the forced, autonomous, or free response curves. This is, in every aspect, analogous to
the discussion of the present chapter, the only difference being the back-and-forth trans-
formations required between modal and physical coordinates to compute contact forces.

Linkages
Nonlinear forces de®ned in terms of modal displacements and velocities are referred to

asbase-A linkagesin Cast3M jargon. They are straightforwardly computed by AFT. On
the other hand, nonlinear forces de®ned in terms of physical displacements and velocities
are calledbase-B linkages, and their computation requires two additional steps. Firstly,
the physical displacements at theNc contact points must be computed through Eq. (2.127),
thus yieldingdi = d(p i ; t); 8i = 1; :::;Nc, so that the forces in physical space,ÃfNL(d i ; Çdi),
can be evaluated. Secondly, these forces must be projected to modal basis. Looping over
all linkages, the total force vector is given by:

fNL(q; Çq) =
NcX

i=1

� T(p i)
”
ÃfNL(d i ; Çdi)

—
+ fA

NL(q; Çq)

= fB
NL(q; Çq)+ fA

NL(q; Çq)

(2.128)

where the second terms groups all base-A linkages. As the contact points are speci®ed
beforehand in most situations, the matrices�(p i) are computed and stocked during the
pre-processing stage. This makes the treatment of localized non-linearities extremely
ef®cient.
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2. Bifurcation analysis by Harmonic Balance

Problem setup
In Cast3M, a structural dynamics problem is de®ned by writing a text ®le with.dgibi

extension, containing a series of statements in the OOP-language GIBIANE6. This leads
to the de®nition of severalTableobjects which can be read and exploites by operators. In
our case, the call to DYNC has the syntax:

TAB1 = DYNC TMOD TCHR TLIA TAMOR TINI TNUM NHBM NFFT;

where NHBM and NFFT are two integers indicating, respectively, the desired number of
harmonics and FFT samples, while the remaining inputs are the following Table objects:

1. TMOD: modal basis.

2. TCHR: external loadings (if forced response).

3. TLIA: linkages.

4. TAMOR: damping (if forced response).

5. TINI: approximation to the ®rst solution (optional).

6. TNUM: setting for the numerical continuation, including: problem type, max./min.
step-size, among others.

Remarks: The modal basis table TMOD is simply computed by a call to the Cast3M
operator VIBR. A detailed description of all currently-supported linkages is included in
the Manual Pagespage of the website, under the tag DYNE7. The output table TAB1
consists of two sub-tables: the ®rst one stocks the Fourier coef®cients, frequencies, Flo-
quet exponents, and stabilities at each continuation step, while the second one stocks the
bifurcations found along the response curves.

Examples
This section brie¯y presents example calculations performed with DYNC. The.dgibi

®les corresponding to the test cases herein are available under theExamplespage of the
Cast3M website, and described succinctly in Tab. 2.1. A summary of the main parameters
is as follows:

1. Duf®ng oscillator: NHBM= 5, NFFT= 28, n = 1, point mass, base-A linkage.

2. Jeffcot rotor: NHBM= 7, NFFT= 28, n = 2, point mass, base-B linkage.

3. Cantilever beam: NHBM =15, NFFT= 210, system modelled with 50 beam ele-
ments, base-B linkage. The casen = 3 is shown for NNM computation.

6Detailed explanations, tutorials and examples can be found on the Cast3M website. While most com-
mands in the GIBIANE language useFrench words, documentation is available both in French and English.

7DYNE is the explicit time-integration operator in Cast3M, which uses the same library of nonlinear
forces.
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CAST3M Implementation

Note: The inherently non-smooth impact forces involved in the last examples have
been replaced by a smooth approximation in order to enhance the performance of pseudo
arc-length continuation. This is not strictly necessary if contact stiffness is moderate
(which is not the case of thedync03.dgibitest case). The option to smooth contact forces
is supported by the current version of the program.

*.dgibi System Cast3M Linkage Force
dync01 Duf®ng oscillator COUPLAGEDEPLACEMENT Geometric nonlinearity
dync02 Jeffcott rotor POINT CERCLEFROTTEMENT Frictional (annular) contact
dync03 Cantilever beam POINT PLAN Bilateral elastic impacts

Tableau 2.1:Cast3M test cases.

Fig. 2.27 shows the superposition of the frequency-response and backbone curves
for a single Duf®ng oscillator. The well-known bi-stability region characterized by an
unstable branch delimited by two LPs is clearly visible. As the system is lightly damped,
the resonant (highest-amplitude) response coincides with a cycle on the NNM curve.

w

|Q
|

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4
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Figure 2.27: Duf®ng oscillator: frequency response (black) and backbone curve (blue).
Notice the limit points (diamonds).

The frequency response of a Jeffcott rotor model, identical to the one presented in
Sect 2.2.5, is shown in Fig. 2.28. As before, the presence of friction leads to de-
synchronization and thus to the onset of quasi-periodic motions, as evidenced by a NS
bifurcation. The LP on the unstable branch has also been computed.
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2. Bifurcation analysis by Harmonic Balance
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Figure 2.28: Jeffcott rotor: frequency response; notice the Neimark-Sacker (triangle) and
limit point (diamond) bifurcations.
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Figure 2.29: Frequency-energy plot of cantilever beam with bilateral elastic stops. Left
to right: ®rst NNM (internal resonances labelled by markers), second NNM, third NNM.

Fig. 2.29 shows the backbone curves for the ®rst three NNMs of the cantilever beam
with symmetrical stops. While the second and third modes have monotonous evolutions
with increasing energy level, interaction tongues appear along the backbone curve of the
®rst mode. This corresponds to modal interactions: due to nonlinear coupling, a higher
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Conclusion

mode can become active when the frequency of the ®rst one, or one of its harmonics, is
close to its own. By plotting scaled version of the second and third NNMs in the same
graph as the ®rst mode, the curves are seen to intersect at speci®c points. Therein, an in-
ternal resonance occurs: there is exact coincidence between a harmonic of the ®rst-mode
frequency and that of the second or third modes. In the case of the present example, 1:15
and 1:13 resonances are found between the third and ®rst modes, as well as a 1:5 reso-
nance between second and ®rst. This means that, around internal resonance frequencies,
a response consisting of a combination of modes is obtained even if a mono-modal exci-
tation is applied. It should be noted that resonances beyond 1:15 can not be observed with
the present setup, as a 15-harmonic expansion is used.

2.4 Conclusion

In this chapter, several contributions to the numerical, frequency-domain analysis of non-
linear vibration problems are presented. The stability of quasi-periodic solutions, as well
as a branch switching technique to follow them from a NS bifurcation, is introduced. A
formulation for time-delay problems is also proposed for the case of discrete and contin-
uous delays. For the latter, stability evaluation and bifurcations are addressed. The proce-
dure to track bifurcations of all types and in arbitrary codimension is described. Finally,
the implementation of these methods in the ®nite element software CAST3M -which al-
lows for the treatment of complex structures- is reported. Numerous brief examples are
provided for illustration purposes. In following chapters, these techniques and concepts
are applied to study the phenomenology of steam-generator vibrations.
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Chapter 3

Applications: Towards an
understanding of steam-generator

vibrations

This chapter presents the study of three simpli®ed models
which represent,in a broad sense, certain key aspects of
steam-generator tube vibrations. Firstly, the tube's ®rst
bending mode is assimilated to a SDOF oscillator with

bilateral contacts and cubic stiffness. It is shown how the
symmetry (and loss thereof) of the system greatly impacts the

resulting dynamics and leads to complex bifurcation
scenarios, such as the period-doubling route to chaos and the

formation of sub-harmonic isolas. As an intermediate
approximation, a cantilever tube subjected to single-phase
cross-¯ow is considered next. The quasi-unsteady model is
used to compute ¯uidelastic forces in the frequency domain

and the dynamics are explored by through continuation for an
increasing number of modes. In particular, a pattern of

super-harmonic resonances is observed for the higher modes,
to which the linearly-unstable ®rst one transfers energy via

impacts. Finally, a more realistic system representing a
U-tube vibrating in non-uniform ¯ow is studied.

85

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI032/these.pdf 
© [R. Alcorta], [2021], INSA Lyon, tous droits réservés



Contents
3.1 The KOALA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.1.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.1.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2 A mathematical model for ¯uid-elastically unstable tubes . . . . . . . . 101

3.2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2.2 Model reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.2.3 Hopf bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.3 Cantilever beam in cross-¯ow . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3.1 1-mode model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3.2 2-mode model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.3.3 A word on 3-mode and further models . . . . . . . . . . . . . . . . 114

3.4 Heat-exchanger arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.4.1 Numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.4.2 Continuation results . . . . . . . . . . . . . . . . . . . . . . . . . 119

86

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI032/these.pdf 
© [R. Alcorta], [2021], INSA Lyon, tous droits réservés



The KOALA model

Figure 3.1: Experimental apparatus

3.1 The KOALA model

The techniques and concepts discussed previously are applied to an example system,
shown in Fig. 3.1.
The apparatus in this photograph was ®rst studied by de Langre et al. in [LAN 91]. It was
conceived as a simple mechanism which exhibits chaos, with the purpose of validating
time integration algorithms. In that paper, it was observed that both measured and calcu-
lated chaotic regimes had a rich sub-harmonic spectrum, i.e., frequencies below that of
the external forcing, and thus a sub-harmonic cascade was suggested as the likely route
to chaos. However, a detailed bifurcation analysis was deemed out of the scope of their
study. This is, in turn, the objective of this section.

3.1.1 Modelling

Fig. 3.2(a) shows a schematic representation of our system. It consists of a heavy concrete
block supported by two clamped, slender steel bars on its sides. A mono-harmonic ex-
ternal excitationp(t) = pcos(wt) is provided by a ®xed electromagnet whose oscillating
magnetic ®eld drives a coil, attached to the main block, sinusoidally. In this con®gura-
tion, the system is constrained to move in only one direction. Displacement amplitude,
denoted byx(t), is measured relative to the rest position of the block's centre of mass,
which coincides with the location of a rigid stop. One elastic spring lies on each side
of the stop, so that the mass undergoes intermittent contacts when the displacement am-
plitude is greater in magnitude than at least one of the gaps, which are adjustable and
allowed to be asymmetrical: contacts happen forx(t) > j2 or x(t) <  j1. In this study,
we limit ourselves to the clearance-type system, where bothj1 and j2 are positive, as op-
posed to the pre-loaded type. The springs are chosen to have a stiffnessKc which is larger
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3. Applications: Towards an understanding of steam-generator vibrations

than the stiffnessk of the linear system's ®rst bending mode. As explained in [LAN 96],

Thin bars Rigid 
stop Springs

Mass

Magnet (fixed)

Magnetic coil
 (moving)

Experimental con®guration.

m

j1

k
j2

 

c Kc Kc

p(t)

x

SDOF model.

Figure 3.2: Idealized system

the geometrical and material parameters were carefully chosen so that the system's ®rst
natural frequencies were far apart on the spectrum. Indeed, for the ®rst bending mode,
f1 = 5 Hz andf3 = 80 Hz for the third mode, whereas the second one has no contribution
on the motion of the mass. Thus, if the frequencies associated to both the external forcing
and the contact stiffness are kept low enough we can consider the motion to be largely
dominated by the ®rst mode. The limited parameter ranges used later in this paper are
chosen to verify this constraint. As a consequence, the system is modelled by a forced
SDOF oscillator of the form:

mÈx(t)+ cÇx(t)+ kx(t) + fNL(x) = pcos(wt) (3.1)

and depicted in Fig. 5 b).
Nonlinear terms, included infNL, come from two distinct effects:

1. During vibration, the clamped bars are bent perpendicularly to their length, which
produces tension. The projection of this force onto the direction of motion gives
rise to a cubic stiffness termfNL,g = ax3, wherea is a constant depending on the
geometry of the bars and their Young modulus.

2. A piecewise-linear stiffness induced by the clearances:
fNL,c = Kc [(x + j1)H(x + j1) + (x  j2)H(x  j2)].
H(�) represents the Heaviside step function.

Note that, in general, some amount of dissipation can be expected due to contact, which
would require the inclusion of a piecewise-linear damping force in the model as was done
in [NAT 92]. However, a combination of force measurements and free-oscillation tests
revealed this effect to be negligible compared to modal damping, and thus it was omitted.
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The KOALA model

Before proceeding further, equation (3.1) is recast into non-dimensional form. Intro-
ducing the following dimensionless quantities:

x(t) = j1 Åx(t); w0 =
È

k
m; t = w0t; c = 2w0mz; w = Åww0;

p = k j1 Åp; j2 = j1 Åj; a = Åa k
j21

; Kc = ÅKck
(3.2)

the equation of motion is written as:

Åx00(t) + 2zÅx0(t) + Åx(t)+ Åa Åx3(t) + ÅFc( Åx(t)) = Åpcos( Åwt) (3.3)

where(�) 0 represents derivation with respect tot and the restoring force from the clear-
ances is:

ÅFc( Åx(t)) = ÅKc [( Åx(t) + 1)H( Åx(t)+ 1)+ ( Åx(t)  Åj)H( Åx(t)  Åj)] (3.4)

The choice of usingj1 rather thanj2 as a reference length is arbitrary and would not
change the results if reversed. It is, however, convenient to introduce the ratio of clear-
ancesÅj as a parameter, since this provides a way to quantify the symmetry of the system.
As shown next, this symmetry factor has a de®ning in¯uence on the system's bifurcation
behaviour.
As a ®nal preliminary step before analysis, we replace the non-smooth contact force (3.4)
by a regularized approximation. This is not strictly necessary for the HBM-based contin-
uation to succeed, as the AFT technique is perfectly capable to converge in such cases.
However, for stiff springs, convergence issues were found for bifurcation localization. To
get rid of this inconvenience, the following smooth de®nition is used instead:

ÅFc;r( Åx(t)) = ÅKc

•
Åx(t) +

1
p

•
f   f + +

1
2s

f L + ac

‹˜
(3.5)

where:
f + = ( Åx(t)+ 1) tan 1 (s( Åx(t) + 1))

f  = ( Åx(t)  Åj) tan 1 (s( Åx(t)  Åj))

f L = log

–
1+ (s( Åx(t)+ 1))2

1+ (s( Åx(t)  Åj))2

™

ac =

–

tan 1 (s)  Åj tan 1 ( s Åj)  
1

2s
log

‚
1+ s2

1+ (s Åj)2

Œ™

The function ÅFc;r from (3.5) tends to the non-smooth contact force ass # ¥. In the case
of the results presented hereafter,s = 3 � 103 was ®xed. The choice of this value was
made after numerical tests, which showed that further increasings beyond this point had
a negligible effect on the position of bifurcations.
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3. Applications: Towards an understanding of steam-generator vibrations

3.1.2 Numerical results

3.1.2.1 Period-doubling cascades

The values of parameters used in this study are summarized in Table 3.1. Based on the
simple error estimation technique proposed by Ferri [FER 09], it was found through nu-
merical tests that choosing H=15 was enough to guarantee that higher harmonics had a
negligible effect on even the most nonlinear responses for the present system, which cor-
respond to the strongly forced, asymmetric con®guration. For the sake of simplicity, the
same number of harmonics (H=15) was used for all tested cases, withNs = 28 sampling
points used for the AFT algorithm. It should be stressed that using such a high number
of harmonics is not needed for frequency intervals away from resonances, where the re-
sponse amplitudes (and thus the magnitudes of nonlinear forces) are small. However, this
does not substantially increase computation times for a SDOF system.

Tableau 3.1:Koala: Parameter values for Sect. 3.1.2.1.
z Åa Åw Åp ÅKc Åj

0.03 0.16 [1.3 ; 4.0] [0.0 ; 2.0] [0.0 ; 6.0] [0.0 ; 1.0]

Following [LAN 96], the main focus is on the post-resonant (Åw > 1) behaviour of the
system as a function of the forcing frequency.

Frequency-response curves
The contact stiffness is initially set toÅKc = 4:7. Figure 3.3 shows two frequency re-

sponse curves, corresponding to perfect symmetry( Åj = 1) and ºmaximumº asymmetry
( Åj = 0), for a weak forcing case: Åp = 0:55. The results are quite different: while they
have comparable peak amplitudes and both show a bi-stable zone between two LP bi-
furcations, the locations of these points differ. More importantly, an additional unstable
region appears in the asymmetric case for excitation frequencies beyond twice the natural
frequency. Two period doubling bifurcations, which are absent in the symmetric case,
border this region, where the system enters a sub-harmonic vibration regime. This new
branch has also been computed using the branching algorithm of Sect. 2.2.4, and it can
be observed that it contains no bifurcations at this forcing level. The same qualitative
behaviour as the main resonance is displayed, with a bi-stable zone generated by a hard-
ening effect.
Now we consider the case of a strong forcing: Åp = 1:7. As the symmetric case showed
no qualitative changes with respect to the former case, it is not presented here. On the
other hand, as seen in ®gure 3.4, the sub-harmonic branch of the system with asymmetric
gaps contains two additional PD bifurcations. Between them, the 2T-periodic solutions
are unstable, giving rise to 4T-periodic motions.

The cycles corresponding to the points labelledA and B in Fig. 3.4 (respectively
before and after the lowest-frequency PD bifurcation) are shown in phase space in Fig.
3.5. The latter can be seen to contain an additional loop when compared to the former.
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Figure 3.3: Frequency-response curves, weak forcing.(�: Limit Point;O: Period-
Doubling bifurcation point)
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Figure 3.4: Successive PD bifurcations in
the asymmetric con®guration, strong forc-
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Figure 3.5: Phase space plots of cyclesA
andB from Fig. 3.4.

Thus, in the span of one forcing period, the whole of cycleA is described, whereas only
half of B is. This provides visual evidence of a double-period response. The evolution of
Floquet exponents as a function of forcing frequency can be seen in Figs. 3.7 and 3.7 when
a T-periodic or 2T-periodic Fourier basis is used by the HBM, respectively. On the region
between two PD bifurcations, the former has a pair of complex conjugate eigenvalues
with magnitudew=2, while the corresponding exponents in the latter are purely real, thus
characterizing a symmetry-breaking BP.
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Figure 3.6: Floquet exponents near period-doubling bifurcations: T-periodic basis.
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Figure 3.7: Floquet exponents near period-doubling bifurcations: 2T-periodic basis.

Forcing amplitude
The PD bifurcations presented above for( Åj = 0) were tracked with respect to the forc-

ing amplitude Åp. The resulting curves, as well as their projection on the codimension-2
plane( Åw; Åp), are presented in Fig. 3.8. For visualization purposes, response curves at
different values of Åp are included as well.

It can be seen that the ®rst pair of PD points happens independently of the forcing
amplitude over the considered range, thus implying that this phenomenon is not driven
by external forcing. On the contrary, the stability boundary corresponding to the second
stage of the cascade, labelled ª4T+º (solutions whose period is at least 4T), only exists
for high forcing amplitudes.

Contact stiffness
While varying the contact stiffness in a continuous fashion is evidently infeasible in
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Figure 3.8: Forcing amplitude as tracking parameter.

practice, this can be done with ease by continuation methods. The four PD bifurcations
from Fig. 3.4 were tracked with respect to the contact stiffnessÅKc, as shown in Fig. 3.9,
with forcing amplitude Åp = 1:7.

From these curves, it is easily seen that the ®rst period doubling is quite sensitive to
contact stiffness, in contrast with the case of forcing amplitude, since the location of
bifurcation points changes signi®cantly as this parameter is varied. Nonetheless, consider
the local extremum close to null contact stiffness. From physical grounds, a value of zero
simply indicates an absence of springs, and the system reduces to a typical, symmetrical
Duf®ng oscillator in such a case. It is seen here that the boundary folds back shortly
before reaching thew-axis, but we can state that period doubling occurs over practically
the whole interval of contact stiffness values, and so this parameter is also not the main
trigger for bifurcation in this case.

Chaos
So far, we have con®rmed the well-understood fact that high inputs of energy by exter-

nal forcing, as well as increasingly stiff contacts, have a tendency to promote bifurcation.
Successive sub-harmonic branching such as the one observed here hints to the presence
of a sequence of PD bifurcations leading to chaos. It is, of course, not possible to use
harmonic balance to compute chaotic regimes, since these are aperiodic by de®nition.
Nonetheless, the search for parameter regions associated with chaos can be limited to
those in the neighborhood of high-period boundaries. An example of this can be seen in
Fig. 3.10. Here, the values( Åp; ÅKc) = (1:6; 4:2) were ®xed and a constant-acceleration
Newmark scheme was used to numerically integrate the equation of motion over a range
of frequency excitation values. A PoincarÂe map was then established by sampling the
response signal (amplitudes and velocities) at intervals equal to the excitation period.
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