

Soutenance d'une thèse de doctorat De l'Université de Lyon Opérée au sein de l'INSA Lyon

La soutenance a lieu publiquement

Candidat	MME BALBINOT Chiara			
Fonction	Doctorant			
Laboratoire INSA	LAMCOS			
Ecole Doctorale	ED162 : MÉCANIQUE, ENERGÉTIQUE, GÉNIE CIVIL,			
	ACOUSTIQUE DE LYON			
Titre de la thèse	« Etude tridimensionelle des phenomènes d'impregnation de renforts fibreux biosourcés pour matériaux composites »			
Date et heure de soutenance	21/09/2021 à 10h00			
Lieu de soutenance	Site de plasturgie de l'INSA Lyon à Oyonnax (85, rue H. Becquerel) (Bellignat)			

Composition du Jury

Civilité	Nom	Prénom	Grade / Qualité	Rôle
M.	DUMONT	Pierre	Professeur	Directeur de thèse
M.	MARTOÏA	Florian	Maître de Conférences	Examinateur
M.	ORGÉAS	Laurent	Directeur de Recherche	co Directeur de thése
Μ.	COMAS-CARDONA	Sebastien	Professeur	Rapporteur
MME.	PROTIERE	Suzie	Chargé de recherche HDR	Rapporteur
М.	PARK	Chung Hae	Professeur	Examinateur

Résumé

Most of composite manufacturing processes require an impregnation phase of the fibrous reinforcement by a polymer matrix. The optimization of this phase is crucial to avoid defects such as porosity that can compromise the end-use properties of the parts. This is even more difficult with biosourced fibrous reinforcements. Hence, it is crucial to determine the permeability of the fibre reinforcements as a function of the process-induced evolution of their microstructure, and to control the propagation of the flow front of the polymer matrix.

Thus, we investigated experimentally and numerically the evolution of several key descriptors of the microstructure of flax fibre reinforcement materials as a function of their compaction, using 3D X-ray microtomography images. These descriptors were used in a modified Kozeny-Carman anisotropic permeability model whose predictions were in good agreement with CFD simulation results performed on the 3D images. However, one remaining unknown flow-microstructure coupling parameter needs to be identified by a numerical method. Then a new full analytical tensorial permeability model was built using the homogenisation with multiple scale asymptotic expansions. Its originality is that it accounts for variations in the fibre orientation distributions. Its relevance was assessed using permeability results obtained numerically on various virtual fibre networks as well as real fibrous materials.

3D images were also used to investigate the phenomena that occur during the propagation of a flow front in a model fibre network. For that in situ impregnation experiments were performed using ultrafast and high resolution synchrotron X-ray microtomography and a specially developed device. The variations in the fluid-air interface curvatures, triple line lengths, and local contact angles were quantified using advanced image analysis procedures. Hence, local capillary forces and capillary pressure were estimated during the flow front propagation. These original results will allow theoretical and numerical impregnation models to be improved.