

Soutenance d'une thèse de doctorat De l'Université de Lyon en cotutelle internationale entre l'Ecole Nationale d'Ingénieurs de Tunis - ENIT (Tunis, Tunisie), et l'INSA de LYON (Villeurbanne, France)

La soutenance a lieu publiquement

Candidat	Mme BEN BRAHAM Marwa
Fonction	Doctorant
Laboratoire INSA	LAMCOS
Ecole Doctorale	ED162 : MÉCANIQUE, ENERGÉTIQUE, GÉNIE CIVIL,
	ACOUSTIQUE DE LYON
Titre de la thèse	« Comportement à la fatigue et à l'usure des biocéramiques utilisées pour la conception des prothèses ostéo-articulaires »
Date et heure de soutenance	03/11/2021 à 14h00
Lieu de soutenance	École Nationale des Ingénieurs de Tunis (Tunis)

Composition du Jury

Civilité	Nom	Prénom	Grade / Qualité	Rôle
		-		•
М	NASRI	Rachid	Professeur des Universités	Examinateur
Mme	ZNAIDI	Amna	Maître de Conférences HDR	Rapporteur
М	AZARI	Zitouni	Professeur des Universités	Rapporteur
М	DENAPE	Jean	Professeur des Universités	Examinateur
Mme	TRUNFIO-SFARGHIU	Ana Maria	Maître de Conférences HDR	Directrice de thèse
М	HAMZA	Samir	Professeur des Universités	Co-Directeur de thèse

Résumé

La complexité des pathologies ostéoarticulaires fait qu'actuellement il n'existe pas de traitements vraiment efficaces, hormis la pose d'un implant (arthroplastie). Ainsi, 245 625 arthroplasties primaires et 6 067 interventions de reprise ont été reportées en 2013-2018 [Rapport annuel 2019 du registre national de remplacement articulaire de l'Association australienne d'orthopédie] et les conséquences économiques de cette demande sur les hôpitaux sont lourdes.

Dans ce contexte, plusieurs couple de frottement ont été développés au fil des années afin de diminuer l'usure des Prothèses Totale de Hanche (PTH) métal / polyéthylène ; céramique / polyéthylène ; métal / métal ; céramique / céramique. L'estimation ex vivo de l'usure pour ces couples montre une usure très faible pour les couples métal/métal et céramique/céramique. Néanmoins, certains résultats in vivo sont discordants : malgré le faible taux d'usure, les particules nanométriques de type métal et céramique peuvent être bioactives pour l'organisme, leur réaction biologique pouvant être amplifiée pour certaines milieux biologiques dégénératifs (ostéoporose) ou inflammatoires (polyarthrites).

Par conséquent, ce projet a comme premier objectif de comprendre et de maîtriser les interactions mécaniques et physicochimiques entre l'environnement biologique (notamment le lubrifiant) et les surfaces d'implants PTH de type céramique/céramique. Ainsi des expertises in vivo, des tests de fatigue ex vivo et des tests de toxicité des particules d'usure in vitro sont réalisées afin d'optimiser l'interaction céramique / tissus periarticulaires et ainsi d'augmenter la durée de vie in vivo des PTH en céramique.