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Abstract

Mechanical systems (e.g. flexible structures) are usually lightly damped so that
they vibrate severally in response to dynamic loads. Therefore, vibration control
strategies should be adopted in order to reduce the undesired vibration of mechan-
ical systems. The objective of this thesis is to develop multiple vibration control
techniques, which are either passive or active. All systems under investigation are
in the mechanical and/or electrical domains, for which analytical optimization and
theoretical analyses are performed.

The first part focuses on the application of inerter to enhance the vibration control
performance of two existing control devices, the tuned mass damper (TMD) and the
series double TMD (SDTMD). The inerter is employed to relate the tuned mass to
the ground. In the case of TMD, a mechanical system under stiffness uncertainty
is considered and the worst-case H∞ optimization is addressed by means of an en-
tirely algebraic approach. In the case of SDTMD, the vibration of a deterministic
mechanical system is to be controlled and the H∞ optimal design is carried out via
an extended version of fixed points theory (FPT).

Instead of using the inerter, the second part consists in improving the control effect
by incorporating a linear negative stiffness between the ground and the tuned mass.
Two case studies are conducted based on the non-traditional TMD and inerter-based
dynamic vibration absorber (IDVA), whose tuned mass is related to the ground by
a viscous damper or an inerter-based mechanical network, respectively. Later, the
exact electrical realization of non-traditional configurations with or without nega-
tive stiffness is proposed, which is based on the piezoelectric transducer enclosed
by a particular shunt circuit. This electromechanical analogy enables to extend the
applicability of mechanical control devices and to facilitate the precise tuning.

In the last part, active and semi-active vibration control techniques are developed.
The first strategy consists in enhancing the control capability of passive TMD and
IDVA by feeding back the displacement signal of mechanical system to the elec-
tromagnetic actuator. The proposed controller can be regarded as one or multiple
basic units arranged in series, which is featured by one pole at the origin and two
coalesced zeros on the real axis. It is analytically proven that such a controller de-
sign is always stable if and only if the magnitude of introduced zeros resides within

i
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Abstract

the magnitudes of the smallest and largest eigenvalues of coupled system, whose
expressions are analytically formulated in both cases of TMD and IDVA. Distin-
guished from the previous strategy, the semi-active control technique is based on
electromagnetic shunt damping (EMSD), therefore, no additional sensor is required
to measure the information of mechanical system. In order to artificially increase
the shunt damping performance, the employment of negative inductance (NI) in the
shunt circuit is considered. Three possible layouts of NI in the EMSD are assessed
in terms of the electromechanical coupling factor, which quantifies the energy con-
version efficiency between mechanical and electrical domains. Finally, six types of
shunt circuits are optimally tuned according to the FPT and the beneficial effect of
NI and the influence of its layout can be underlined.

ii
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Résumé

Les systèmes mécaniques (e.g. structures flexibles) sont généralement peu amortis,
et par conséquent des vibrations de fortes amplitudes peuvent apparaitre. Il appa-
rait nécessaire de développer des stratégies de contrôle vibratoire pour atténuer ces
vibrations mécaniques. Cette thèse a pour objectif de développer plusieurs tech-
niques d'amortissement de vibration passives ou actives. Tous les systèmes sont
étudiés dans des domaines mécanique et/ou électrique, pour lesquels l'optimisation
analytique et les analyses théoriques sont effectuées.

La première partie porte sur l'utilisation d'un “inerter” pour améliorer les perfor-
mances de contrôle vibratoire de deux dispositifs existants, l'amortisseur à masse
accordée (TMD) et deux TMDs placés en série (SDTMD). Dans le cas avec un TMD,
on considère un système mécanique avec incertitudes ainsi que son optimisation H∞
(worst-case optimization) en adoptant une approche purement algébrique. Dans le
cas de SDTMD, on vise à contrôler la vibration d'un système déterministe. Son op-
timisation H∞ s'effectue ici en utilisant une version étendue de la théorie de points
fixes (FPT).

Dans une seconde partie, on cherche à améliorer les performances de ce type de
dispositif en positionnant un élément linéaire de raideur négative entre la base et la
masse accordée. Deux cas d'étude sont menés: le TMD seul et celui basé sur l'inerter
(IDVA). Les deux dispositifs ont une configuration non-traditionnelle, dont la masse
accordée est liée à la base par l'intermédiaire d'un amortisseur visqueux ou un réseau
mécanique basé sur l'inerter. La réalisation de ces dispositifs non-traditionnelles avec
ou sans raideur négative et leurs shunts piézoélectriques sont étudiés et une analo-
gie électromécanique est établie. Cette analogie permet d'étendre l'applicabilité des
amortisseurs mécaniques et de faciliter les réglages.

Dans la dernière partie, deux techniques d'amortissement actif et semi-actif sont
développées. La première stratégie concerne une loi de contrôle hybride applicable
au TMD et à l'IDVA. Le contrôleur proposé est composé d'un seul ou plusieurs
compensateurs identiques, qui est caractérisé par un pôle à l'origine et deux zéros
coïncidents réels. Il est analytiquement prouvé qu'avec ce contrôleur, le système
complet est toujours stable si et seulement si le module de ces zéros est compris en-
tre la plus petite et la plus grande des valeurs propres du système. Les expressions
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Résumé

analytiques sont développées dans les deux cas. La seconde technique de contrôle
s'appuie sur l'atténuation de vibration par shunt électromagnétique (EMSD), pour
laquelle aucun capteur est requis. Une inductance négative (NI) est employée dans
les shunts électromagnétiques afin d'améliorer l'amortissement. Trois architectures
possibles de NI dans un EMSD sont évaluées à travers le facteur de couplage élec-
tromécanique, qui quantifie l'efficacité de conversion énergétique entre les domaines
mécanique et électrique. Finalement, six shunts électromagnétiques utilisant des
NIs sont optimisés et analysés.

iv
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Chapter 1

Literature Review

Vibration control is a critical issue in numerous fields, e.g. mechanical, precision
and civil engineering. Excessive vibrations in a structure could cause serviceability
problems (such as discomfort for its occupants), accelerate its fatigue and reduces
its operational time and life, or even worse, result in the structural failure.

Since the last century, vibration control strategies aiming at improving the struc-
tural behaviours under different dynamic loadings have been extensively investigated
in the literature and successfully implemented in engineering applications. In gen-
eral, they can be classified into three categories, passive, active and semi-active
vibration control, in the chronological order. Passive control devices are intrin-
sically stable and their operation does not require energy supply, however, those
resonant ones could be only effective at one dominant vibration mode, at which the
control efficiency is only optimal for a specific dynamic loading. Meanwhile, active
control devices can ensure a considerable effectiveness over a broadband frequency
bandwidth under different dynamic loadings. However, they could destabilize the
system due to the spillover effect or when a large controller gain is used, meanwhile,
they present a greater complexity compared to the passive devices in that sensors,
actuators and amplifiers are required and significant energy is indispensable in order
to counteract external excitations. Finally, semi-active control devices are developed
in the objective of combining the merits of their passive and active counterparts, i.e.
the reliability, adaptivity and reduced demand for energy supply.

The shunt damping technique has emerged later as a direct consequence of the
ever increasing demand for lightweight, flexible and elastic structures. Such a damp-
ing technique consists in integrating a smart material based transducer into the tar-
get structure and the electrodes of transducer are enclosed by a properly designed
shunt impedance. The mechanical energy of structure is then converted into electri-
cal energy via the electromechanical coupling and is subsequently dissipated through
the resistive components in the external shunt circuit.

In this thesis, only literature on the passive and active vibration control will
be reviewed in detail, followed by the state of the art of shunt damping techniques
based on piezoelectric and electromagnetic transducers. In the end, a brief survey of
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control strategies for simultaneous vibration mitigation and energy harvesting will
be carried out.

1.1 Passive vibration control

1.1.1 Tuned mass damper
The first passive device for vibration damping was patented by Frahm [1] in 1911.
As illustrated in Figure 1.1a, it is termed as tuned mass damper (TMD) or dynamic
vibration absorber (DVA), which is actually a block mass installed on the struc-
ture to be controlled via a linear spring. Later, an additional viscous damper was
introduced into the TMD by Den Hartog [2], forming the classic layout of mass-
spring-damper. In this thesis, the difference between TMD and DVA will not be
distinguished. Taking as an example a harmonically forced primary system of single
degree of freedom (SDOF), the underlying dynamics of coupled system in Figure
1.1b can be described by the equations of motion (EOMs):

m1ẍ1 = c2 (ẋ2− ẋ1) +k2 (x2−x1)−k1x1 +f(t) (1.1a)
m2ẍ2 = c2 (ẋ1− ẋ2) +k2 (x1−x2) (1.1b)

where m1 and k1 are the mass and stiffness of primary system, m2, c2 and k2 are the
mass, damping and stiffness of TMD. x1 and x2 are displacement of primary and
tuned masses, respectively, and the dot over symbol stands for differentiation with
respect to the time t. The primary system is harmonically forced at the angular
frequency ω. Clearly, Eq. (1.1) reduces to the dynamics of coupled system in Figure
1.1a when removing the damping c2. In order to facilitate the following optimization
procedure and analyses, the dynamics is nondimensionalized by introducing the
dimensionless parameters as follows:

m2

k2

m1

k1

x1

x2

F

(a)

m2

k2 c2

m1

k1

x1

x2

F

(b)

Figure 1.1: Schematic diagrams of an undamped SDOF primary system controlled
by the TMD of: (a) Frahm; (b) Den Hartog.
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ω1 =
 

k1
m1

: Natural frequency of primary system

ω2 =
 

k2
m2

: Natural frequency of TMD

µ= m2
m1

: The mass ratio between TMD and primary system

α = ω2
ω1

: The frequency tuning ratio between TMD and primary system

ξ = c2
2
√
k2m2

: The mechanical damping ratio of TMD

(1.2)

Besides, the time t is rescaled by ω1, yielding the dimensionless time τ = ω1t. One
has the following relationship:

d

dt
= ω1

d

dτ
,

d2

dt2
= ω2

1
d2

dτ2 .
(1.3)

and the dimensionless excitation frequency is equal to:

λ= ω

ω1
(1.4)

By substituting Eqs. (1.2) and (1.3) into (1.1), the EOMs can be recast into the
dimensionless form:

x′′1 + 2µξα
(
x′1−x′2

)
+µα2 (x1−x2) +x1 = f(τ)/k1 (1.5a)

x′′2 + 2ξα
(
x′2−x′1

)
+α2 (x2−x1) = 0 (1.5b)

where the prime in the superscript denotes differentiation with respect to the rescaled
time τ . Hereafter, the complex magnitudes of displacement x1 and force f are
denoted as X1 and F . Therefore, the displacement amplitude of primary system
normalized by the static deformation F/k1, termed as the normalized displacement
frequency response function (FRF), can be formulated as:

G(λ) =
∣∣∣∣∣ X1
F/k1

∣∣∣∣∣ =

Ã (
α2−λ2)2 + 4ξ2α2λ2

[(1−λ2)(α2−λ2)−µα2λ2]2 + 4ξ2α2λ2 [1− (1 +µ)λ2]2
(1.6)

By setting ξ = 0, Eq. (1.6) describes the displacement amplitude in Figure 1.1a:

G(λ) =
∣∣∣∣∣ X1
F/k1

∣∣∣∣∣ =

Ã (
α2−λ2)2

[(1−λ2)(α2−λ2)−µα2λ2]2
(1.7)

One can notice that if the natural frequency of TMD is tuned exactly the same
as that of primary system, i.e. α = 1, the vibration sustained by the primary sys-
tem is completely attenuated at its resonant frequency, as demonstrated in Figure
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1.2. However, there exist two significant peaks at the frequencies λ1 and λ2 in its
displacement FRF, with its two resonant frequencies locating at:

λ1 =

 
µ+ 2−

√
µ2 + 4µ

2 , λ2 =

 
µ+ 2 +

√
µ2 + 4µ

2 . (1.8)

Clearly, the frequency bandwidth between λ1 and λ2 is only dependant of the

0.6 0.8 1 1.2 1.4
0

10

20

30

40

50
w/o control
TMD of Frahm
TMD of Den Hartog

Figure 1.2: Comparison of displacement FRFs of primary system without any
control (dotted line) or coupled with a TMD of either Frahm (thin solid line) or
Den Hartog (thick solid line). The mass ratio µ is of 5%, the frequency tuning ratio

α is set as unity and the mechanical damping ratio is equal to 0.1.

mass ratio µ, which is generally small due to physical restrictions. Therefore, the
TMD of Frahm is only effective in a narrow region around its resonant frequency,
while it could amplify the vibration of primary system in the case of detuning. In
the contrary, Figure 1.2 suggests that the presence of viscous damper in TMD can
effectively reduce the peak vibration amplitude in the whole frequency range to the
detriment of vibration cancellation performance at the resonance.

The TMD of Den Hartog is widely used in engineering applications due to its
passivity, simplicity and effectiveness [3]. For the purpose of maximizing its control
efficiency, numerous researches have been conducted in the literature and various
optimization criteria have been proposed for different design objectives. A brief
review on this subject is provided below.

1.1.1.1 H∞ optimization criterion

Proposed by Den Hartog [2], the first design objective of TMD is to minimize
the peak displacement amplitude of primary system in the whole frequency range,

4

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI066/these.pdf 
© [S. Zhou], [2019], INSA Lyon, tous droits réservés



Passive vibration control

namely the H∞ norm of its displacement FRF. Indeed, such a H∞ optimal design
could be posed as a min-max optimization problem, whose objective function is
formulated as:

min
α,ξ

{
max
λr

ß
‖G(µ,α,ξ,λ)‖∞

™}
(1.9)

subject to:
α≥ 0, ξ ≥ 0, λ ∈ R+. (1.10)

where λr corresponds to the abscissa of resonance peak, at which the partial deriva-
tive of G(λ) with respect to λ is zero, i.e.:

∂G(λ)
∂λ

∣∣∣∣
λ=λr

= 0 (1.11)

Therefore, the H∞ optimal parameters of TMD, frequency tuning ratio α and me-
chanical damping ratio ξ, can be determined by numerically solving the min-max
problem (1.9) in conjunction with the equality constraint (1.11).

Although such a numerical approach can yield exact solutions, it is inefficient
to some extent. For example, multiple iterations may be required to yield the
optimal values, meanwhile, they correspond exclusively to a specific mass ratio µ.
To this end, analytical strategies have been developed in the literature so as to
derive closed-form formulae for all tuning parameters. It is worth noting that the
majority of research works on the analytical design have been carried out under the
assumption of an undamped primary system.

0.7 0.8 0.9 1 1.1 1.2 1.3
0

5

10

15

P

Q

Figure 1.3: The phenomenon of fixed points. The parameters other than ξ are set
as: µ= 5%, α = 1.
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1. Literature Review

• Fixed points theory. The first analytical method to solve the H∞ opti-
mization problem is the well-known fixed points theory (FPT) proposed by
Den Hartog [2]. This heuristic method is based on the phenomenon that irre-
spective of the damping values of TMD, the displacement FRF of undamped
primary system always passes through two invariant positions P and Q, as
depicted in Figure 1.3, which are the so-called fixed points. Therefore, the
FPT consists in tuning the TMD by equalizing the vibration amplitudes at all
invariant points and subsequently by making the displacement FRF passing
through them horizontally. Hence, it is also termed as the equal-peak method.
Obviously, this analytical approach only yields approximate solutions to the
H∞ optimization problem, since it works on the invariant points instead of
resonance peaks.

• Algebraic approach. The exact solutions to the H∞ optimization problem
could be analytically derived via the entirely algebraic approach developed
by Nishihara and Asami [4]. Instead of manipulating the fixed points, they
directly worked on the resonance points. By taking the peak amplitude as
a design parameter, the displacement FRF of primary system can be trans-
formed into a resultant polynomial as a function of three design parameters:
the mechanical damping ratio ξ, the frequency tuning ratio α and the peak
amplitude. Two optimality conditions can be achieved by factorizing the re-
sultant polynomial into the form of two double roots (corresponding to two
resonance points), and the third optimality condition is retained due to the
algebraic property of polynomial, i.e. multiplicity of roots. Finally, analytical
formulae of design parameters can be achieved by solving simultaneously all
three optimality conditions.

The comparison between two analytical approaches implies that the FPT could yield
highly accurate solutions to the H∞ optimization problem. Due to its simplicity and
applicability, the FPT is still widely adopted for optimal tuning of various dampers.

1.1.1.2 H2 optimization criterion

When the primary system is randomly excited, a new performance index is defined
as the mean square value of a specific motion variable (displacement, velocity or
acceleration). Clearly, the objective function is proportional to the area under the
FRF curve of the relevant motion. When the mean square displacement of primary
system is to be minimized, it is equivalent to minimize the total vibration energy
of primary system over the whole frequency range. Warburton [5] derived optimal
parameters of TMD when the mean square displacement and velocity of primary
system are to be minimized. Asami et al. [6] considered the optimal design for
minimizing the mean square acceleration of seismically excited primary system.
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1.1.1.3 Stability maximization criterion

Apparently, both H∞ and H2 optimization criteria aim at improving the frequency
response in the steady state. When the transient response of primary system is to
be improved, one should tune the damper according to the stability maximization
criterion (SMC). This tuning strategy was first proposed by Yamaguchi [7] who
stated that the transient vibration is attenuated in the shortest duration when the
logarithmic decrements are maximized. It was later pointed out by Nishihara and
Matsuhisa [8] that the design objective is fulfilled if the whole system (i.e. primary
system coupled with the TMD) has two coalesced pairs of conjugate eigenvalues.

1.1.1.4 Other optimization criteria

The H∞, H2 and SMC optimization criteria are the most widely used for opti-
mally tuning the dampers. Meanwhile, there exist other optimization criteria in the
literature, which have been proposed for specific engineering applications.

For machining processes, the tuning requirements of TMD differ from the afore-
said vibration problems. In the objective of improving the chatter stability and
enhancing the vibration suppression, Sims [9] proposed that the TMD should be
optimized by minimizing the positive real part of FRF or maximizing the negative
real part of FRF. An analytical approach based on the methodology of fixed points
was developed, which consists in tuning the TMD in such a way that the positive
or negative real parts of FRF have equal real peaks or troughs, respectively.

Zilletti et al. [10] proposed a new tuning criterion, aiming at maximizing the
power dissipated by the TMD. It was stated that for a damped primary system, the
power injected into the system is solely controlled by the primary mass, therefore,
the maximization of power absorbed by the TMD is fulfilled when the kinetic energy
of host structure is minimized.

Aforementioned criteria are dedicated to optimization of TMD in the determin-
istic scenario. Dell’Elce et al. [14] considered the case where the mechanical stiffness
of primary system is uncertain-but-bounded (UBB), and proposed the so-called ro-
bust equal-peak method. This novel strategy consists in tuning the parameters of
TMD in the worst-case scenario, according to which the vibration amplitudes at the
leftmost and rightmost fixed points should be equalized in the displacement FRF of
primary system.

Viguié and Kerschen [15] proposed a tuning methodology for controlling the
vibration of a nonlinear primary system by using a nonlinear vibration absorber
(NL-VA), and stated that the NL-VA should possess the same frequency-energy
plot as the nonlinear primary system. Later, Habib et al. [16] generalized the
Den Hartog’s equal-peak method to address the optimization problem of NL-VA
for a Duffing mechanical system. Recently, Sun et al. [17] further extended to the
case of a more complex primary system with multiple terms of nonlinearity, and a
more accurate design method for optimizing the NL-VA was developed based on the
nonlinear perturbation theory and bifurcation theory.
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1.1.2 Non-traditional TMD
In 2001, Ren [11] proposed a variant design for the TMD of Den Hartog. Termed
as the non-traditional TMD, its tuned mass m2 is linked to the host structure via
the spring k2 solely, meanwhile, it is connected to the base by the viscous damper
c2, as illustrated in Figure 1.4.

m2

k2

c2m1

k1 c1

Figure 1.4: Schematic diagram of an undamped SDOF primary system controlled
by a non-traditional TMD.

It optimal design has been carried out according to the FPT [11, 18], H2 opti-
mization criterion [12] and SMC [13, 19]. To this end, analytical formulae for optimal
parameters of traditional and non-traditional TMD are summarized in Tables 1.1
and 1.2 according to several aforementioned optimization criteria.

It was demonstrated that the non-traditional layout is slightly more effective
than the classic TMD, as reflected by the smaller peak amplitude or mean square
value of displacement for the primary system as well as the smaller stroke for the
damper. Xiang and Nishitani [13] stated that the non-traditional TMD could be
applied to base-isolated structures or central column-equipped high-rise structures
with a larger value of permissible mass ratio.

1.1.3 Multiple TMDs
Both classic and non-traditional TMDs are effective within a narrow region around
the vibration mode of interest. Meanwhile, their effectiveness would be significantly
deteriorated when the resonant frequency to structure fluctuates and/or the damping
of TMD is detuned.

In order to improve the effectiveness and the robustness, Xu and Igusa [20] pro-
posed to control the vibration of structure by employing multiple TMDs (MTMD)
arranged in parallel, as illustrated in Figure 1.5, whose natural frequencies are lin-
early distributed around the resonant frequency of structure. Following this seminal
work, numerous researches have been conducted in the literature, to name a few,
Yamaguchi and Harnpornchai [21], Abé and Fujino [22], Jangid [23], Li [24, 25] and
Hoang and Warnitchai [26]. Among them, Li [25] investigated the effectiveness of
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Figure 1.5: Schematic diagram of a SDOF primary system controlled by the mul-
tiple TMD.

five models of MTMD, which represent five types of combinations of the tuned mass,
stiffness and damping values. A conclusion has been therein drawn that in terms of
the effectiveness and robustness as well as better constructability, the most prefer-
able model for the MTMD is that all TMD units have the same values of stiffness
and damping, while their tuned masses vary. The main differences among these
previous works reside in: types of excitation (base or force, harmonic or random),
constraints on parameters of each TMD (uniformly or linearly distributed), design
objectives (maximum or mean square value of displacement or acceleration) and de-
sign methodologies (numerical or analytical). Recently, Kim and Lee [27] provided a
general design guide for linear MTMDs in the case of a SDOF primary system under
white noise excitation of acceleration type. They validated the remark made by Li
[25] that one should use the same spring and damper for each TMD unit in order
to achieve a better effectiveness as well as the reduction in the number of design
variables. Finally, approximate formulae for optimal parameters were also provided
in [27] for the most preferable model of MTMD.

m2

k2 c2

m1

k1 c1

m3

k3 c3

(a)

m1

k1 c1

m2

k2 c2

m3

k3 c3

(b)

Figure 1.6: Schematic diagrams of a SDOF primary system controlled by a: (a)
series DTMD; (b) parallel DTMD.

A particular configuration of MTMD is the double TMD (DTMD) arranged ei-
ther in series or in parallel, as depicted in Figure 1.6. In 2006, Li and Zhu [28]
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carried out numerical optimization of the series DTMD attached to a SDOF pri-
mary system whose natural frequency is constant or fluctuating. It suggested that
the TMD adjacent to the host structure has a much larger mass than the another
TMD and the larger TMD should have no damping in the optimal scenario. Be-
sides, it was shown that the series DTMD has the same effectiveness and robustness
as the MTMD composed of 5 TMD units in parallel against the detuning effect
caused by the drifting of natural frequency, meanwhile it is much more robust than
the classic TMD. Later, Zuo [29] adopted the decentralized H∞ and H2 control
methods to determine optimal parameters of series DTMD for controlling a SDOF
undamped primary system under harmonic and random vibration, respectively. Zuo
[29] concluded that the series DTMD is more effective and more robust than the
classic TMD, the viscoelastic TMD and the parallel DTMD. Recently, Asami [30]
considered the optimal tuning of both series and parallel DTMDs according to three
strategies: the H∞ and H2 optimization criteria and the SMC. Optimal parameters
based on each optimization criterion were approximately formulated in terms of the
mass ratio µ with a two-digit accuracy. More recently, Asami et al. [31] analyt-
ically derived the exact solutions to the same problem in [30] in the objective of
minimizing the mobility transfer function. It was confirmed in [31] that optimal-
ity conditions to the H∞ optimization of DTMD can be achieved by imposing as
zero all minor determinants of the Jacobian matrix related to the coupled system.
Meanwhile, such a matrix could be formulated by following the algebraic approach
developed by Nishihara and Asami [4]. Finally, these optimality conditions are si-
multaneously solved by applying the Newton-Raphson method with the H2 optimal
solutions taken as initial values. Although the algebraic approach in [31] could yield
exact solutions to the H∞ optimization of DTMDs, the derivation process is very
sophisticated and the computing cost is huge.

1.1.4 Multiple-DOF TMD
Although a significant improvement in effectiveness and robustness could be
achieved, the MTMD may be unsuitable for applications where a limited space
is available for accommodating the control device, e.g. a cutting tool embedded
with damper. Meanwhile, for all previously reviewed dampers, only the transla-
tional DOF is employed to mitigate the translational vibration mode of primary
system. To this end, Zuo [32] proposed the concept of multiple-DOF TMD, which
could utilize multiple DOFs of a single TMD to damp single or multiple vibration
modes of the host structure.

As shown in Figure 1.7, a SDOF primary system controlled by a two-DOF TMD
(i.e. translational plus rotational) was investigated by Zuo [32] and its optimal
design under harmonic and random excitation was carried out by using the de-
centralized H∞ and H2 optimization methods, respectively. It was demonstrated
that the two-DOF TMD leads to the smallest peak vibration amplitude and mean
square displacement when compared to the classic SDOF TMD and the parallel-
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Figure 1.7: A SDOF primary system controlled by a two-DOF TMD [32].

type DTMD. The same coupled system was later considered by Jang et al. [33],
in which a simple analytical method was proposed to optimize the two-DOF TMD.
Jang et al. [33] observed that for different damping levels, the displacement FRFs
of undamped primary system always intersect at four invariant positions, implying
the existence of four fixed points. Following the methodology of fixed points, a
first polynomial function of order 4 in the squared excitation frequency could be
achieved. Another fourth-order polynomial was formulated by taking the vibration
amplitude at fixed points as design parameters. Consequently, comparing the coef-
ficients of previous two polynomials culminates into four proportional relationships,
from which the optimal stiffness and mass distribution can be easily determined.
Meanwhile, the optimal value of damping element was numerically solved in [33].
More recently, Ma et al. [34] stated that the maximum available DOFs of TMD
for controlling a translational mode are three, which are one translational and two
rotational DOFs. A general routine was proposed for the deterministic design of
multiple-DOF TMD suppressing single vibration mode, and the H∞ optimal design
of the three-DOF TMD was numerically addressed via a simulated annealing algo-
rithm. Experimental results demonstrated that the three-DOF TMD can reduce the
vibration amplitude of uncontrolled primary system by 86.5% and improve the con-
trol performance by 29.5% with respect to that of two-DOF TMD with same mass.
Finally, other researches on multiple-DOF TMDs can be referred to [35, 36, 37, 38].

1.1.5 Inerter

In 2002, Smith [39] introduced a new mechanical element called the inerter, which
allows electrical circuits to be translated over to mechanical ones in a completely
analogous way.

As depicted in Figure 1.8, an ideal inerter is a two-terminal and one-port me-
chanical device, being capable of engendering a resisting force proportional to the
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b
F F

x1 x2

Figure 1.8: Schematic diagram of an inerter element.

relative acceleration of its two nodes, i.e.:

F = b(ẍ1− ẍ2) (1.12)

where the proportionality gain b is termed as inertance having the same unit as
a mass. A key feature of inerter is that its physical mass should be small and is
independent of its generated inertance.

(a) (b)

Figure 1.9: Realization mechanisms of inerter: (a) rack and pinion [40]; (b) ball
and screw [41].

The first mechanism of realizing an inerter was proposed in [39], which is es-
sentially a two-terminal flywheel driven by a rack, pinion and gears, as shown in
Figure 1.9a. A prototype was fabricated and tested by Smith and Wang [40], re-
vealing its potential benefits in passive vehicle suspension. An alternative approach
is to employ a ball screw mechanism [41]. As illustrated in Figure 1.9b, the ball
screw can translate the linear motion to the high-speed rotation of flywheel, thereby
generating a large apparent mass.

In what follows, three passive control devices involving inerters will be briefly
reviewed, which are the tuned inerter damper, the tuned mass damper with inerter
and the inerter-based dynamic vibration absorber, respectively.

1.1.5.1 Tuned inerter damper

Considering the similarity between a mass and an inerter, Lazar et al. [43] proposed
the tuned inerter damper (TID) by replacing the mass element of classic TMD with
an inerter. Due to the two-terminal property of inerter, the TID can be installed
between two storeys for mitigating the vibration of civil structures, as shown in
Figure 1.10. It was stated in [43] that for a SDOF primary system, the TID and TMD
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Figure 1.10: A civil structure installed with either a TMD or a TID [42].

with the same apparent mass have almost identical vibration control performance,
while the small weight and overall size of TID makes it an attractive alternative to
the TMD. Besides, Lazar et al. [43] also remarked that for a MDOF system, e.g. a
building of multiple storeys, the best control efficiency of TID is obtained when it is
installed at the bottom storey with its inerter grounded. It is very attractive since
no additional load will be imposed on the structure.

Recently, Gonzalez-Buelga et al. [44] proposed the synthesis of TID by means of
an electromagnetic shunt damper connected with a series resonant shunt circuit. A
test rig was built and experimental results demonstrated its effectiveness in terms
of vibration suppression and self-sufficiency via energy harvesting.

1.1.5.2 Tuned mass damper with inerter

Unlike a TID which replaces the mass of TMD with an inerter, Marian and Giaralis
[45] incorporated an inerter between the tuned mass and the ground, as shown in
Figure 1.11. Such a new control device is termed as the tuned mass damper with
inerter (TMDI).

m2

k2 c2

m1

k1 c1

b

Figure 1.11: Schematic diagram of a SDOF primary system controlled by a TMDI.

Closed-form solutions to optimal parameters of TMDI were formulated in [45] for
an undamped SDOF primary system under white noise base acceleration excitation.
The authors concluded that the inclusion of an inerter can either replace part of the
tuned mass for lightweight applications, or improve the control performance for a

14

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI066/these.pdf 
© [S. Zhou], [2019], INSA Lyon, tous droits réservés



Passive vibration control

given tuned mass. Later, Marian and Giaralis [46] reconsidered the optimization of
TMDI under harmonic vibration and optimal parameters were analytically derived
by using the FPT. It was suggested from [46] that in both cases of force and base
excitation, increasing the inertance leads to the decrease of peak vibration amplitude
of primary system, thereby improving the control performance and enhancing the
robustness against detuning effect or parametric uncertainty. Giaralis and Petrini
[47] further investigated the performance of TMDI on suppressing the excessive
wind-induced vibration in a 74-storey building, as shown in Figure 1.12. With the
tuned mass connected to the top floor and the inerter linked to the penultimate or
a lower floor, it was observed that compared to a TMD of same weight, the TMDI
can reduce the peak top-floor acceleration more effectively when the tuned mass
is relatively small and the inerter is linked to a much lower floor, i.e. spanning as
many storeys as possible. Besides, the inclusion of inerter can significantly reduce
the stroke of TMD, thereby facilitating its implementation in environments with a
small clearance.

Figure 1.12: Wind-induced vibration mitigation of a multi-storey building by
means of a TMDI [47]. The TMD is connected to the top floor, while the inerter is

linked to the penultimate or a lower floor.

Apart from the classic TMD, Wang et al. [48] also carried out the optimization
of non-traditional TMD and viscoelastic TMD with either a grounded inerter or an
inerter inserted between the tuned mass and host structure. In general, the inclusion
of a grounded inerter can enhance the vibration control performance, however, in-
serting an inerter between the primary and tuned masses will amplify the vibration
amplitude of host structure. Nevertheless, the inserted configuration could be ben-
eficial in specific applications. Chen et al. [49] reported that for a MDOF vibrating
system with inerters inserted between any two adjacent lumped masses, increasing
the inertance of any inerter can reduce natural frequencies of coupled system. Based
on this property, Zilletti [50] used an inerter to relate the proof mass of inertial ac-
tuator and the host structure so as to reduce the natural frequency of actuator,
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entailing a better stability for the feedback loop and an improved performance.

1.1.5.3 Inerter-based dynamic vibration absorber

In 2015, Hu et al. [51] proposed to isolate the vibration of a target structure by incor-
porating an inerter-based mechanical network between the object and its supporting
foundation. An inerter-based mechanical network is actually a mixed connection of
an inerter, a spring and a viscous damper. Various configurations of inerter-based
isolator were investigated and their optimization was conducted according to the
FPT and H2 optimization criterion successively. Numerical analyses demonstrated
the superior performance of inerter-based isolator compared to the TMD under both
harmonic and random excitation, meanwhile, no additional mass should be mounted
on the target structure. Later, Hu et al. [52] proposed a novel control device termed
as inerter-based dynamic vibration absorber (IDVA), which is built by replacing the
viscous damper of classic TMD with an inerter-based mechanical network. The H∞
and H2 optimization problem of IDVA installed on a SDOF undamped primary sys-
tem was numerically solved and it implied that the vibration control performance of
an IDVA can be superior to that of a TMD only if the IDVA possesses more DOFs
than the TMD. Besides, it was shown that the IDVA with a series connection of an
inerter, a spring and a damper (shown in Figure 1.13) always has the best H∞ and
H2 control performance within the interval of mass ratio µ ∈ [0,1].

m2

k2 b3

c3

k3

m1

k1 c1

Figure 1.13: Schematic diagram of a SDOF primary system controlled by an IDVA.

In light of the introduction of an additional DOF by the inerter-based mechan-
ical network, the coupled system shown in Figure 1.13 has three DOFs and there
exists four invariant points in its displacement FRF instead of two. The number
of design parameters increases from 2 to 4, therefore, the classic FPT cannot be
directly used to conduct approximate solutions to the H∞ optimal design of IDVA.
Recently, Barredo et al. [53] developed an extended version of FPT, with which the
multi-variable optimization problem could be solved efficiently and the closed-form
expressions to optimal parameters could be analytically derived. This extended ver-
sion of FPT is actually based on the method proposed by Jang et al. [33], with which
the optimal value of stiffness and inertance can be easily obtained, leaving only the
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damping to be determined numerically. On this basis, Barredo et al. [53] proposed
that the optimal damping should be chosen as the root mean square (RMS) value
of damping levels evaluated at three reference frequencies, the concept of which was
initiated by Krenk and Høgsberg [54] for the purpose of flattening the plateau within
the fixed points in the displacement FRF curve.

1.1.6 Negative stiffness mechanism
The single-axis passive vibration isolation is usually realized by employing a linear
viscous damper or a Maxwell damping unit, which is placed between the structure
to be isolated and its support [55]. With a conventional linear isolator, the vibration
can be completely attenuated when the excitation frequency is beyond

√
2 times the

structural resonant frequency. Hence, reducing the dynamic stiffness of system can
broaden the frequency range of vibration isolation, however, the static stiffness of
structure should be sufficiently large in avoidance of an excessive static deformation
and system instability. Therefore, an ideal isolator should possess both characteris-
tics of high static stiffness and low dynamic stiffness. Such a high-static-low-dynamic
(HSLD) stiffness feature could realized by arranging in parallel a negative stiffness
mechanism (NSM) and the support stiffness of controlled structure.

The NSM is featured by a force-displacement curve with a negative slope, signi-
fying that a NSM can generate a force to assist its motion instead of resisting it. The
first approach to realize a NSM is to exploit the benefit of buckling of beam-column,
which was first proposed by Platus [56]. Later, geometrical nonlinearity is utilized
to yield the HSLD or quasi-zero-stiffness (QZS) characteristics, and a common con-
figuration is that two linear mechanical elements are positioned symmetrically with
respect to the translational direction of structure. Relevant researches could be cat-
egorized into the use of: linear springs (Carrella et al. [57] and Gatti et al. [58]),
linear bars (Yang et al. [59]) and linear bars hinged with springs moving perpendic-
ular to the structural motion (Le and Ahn [60, 61, 62] and Wang et al. [63]). The
last category of NSM is based on the magnetic repulsion and attraction and related
references are referred to [64, 65, 66, 67, 68].

Clearly, most NSMs in aforementioned researches are passive and nonlinear. A
convenient approach to realize a linear NSM was proposed and experimentally val-
idated in [69] by using an active control technique with a linear actuator. To sum-
marize, the NSM has widespread application in ameliorating the vibration isolation
performance, however, only few studies on enhancing the control effect of DVAs via
negative stiffness are available in the literature, as reported below.

Shen et al. [70] first proposed the concept of DVA with negative stiffness (NS-
DVA), which was established by incorporating a negative stiffness between the base
and the mass of non-traditional DVA. Its optimization according to the FPT was
carried out for a SDOF primary system, suggesting that the use of negative stiff-
ness decreases the peak vibration amplitude of primary system and broadens the
frequency range of vibration absorption. Similarly, the NSDVA based on the DVA
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of Den Hartog was studied by Antoniadis et al. [71], however, the optimal damping
value of absorber had not been provided. Later, Huang et al. [72] also addressed the
optimal tuning of traditional NSDVA attached to a SDOF primary system, while the
optimal damping value of absorber was derived according to the equal damping crite-
rion proposed in [54]. It should be noted that this criterion yielded a larger damping
value for DVA and a larger peak amplitude for primary system when compared to
the case optimized by the FPT. Finally, Xiuchang et al. [73] carried out the optimal
design of traditional NSDVA in terms of controlling the force transmitted to the
rigid foundation. The intentional introduction of a grounded negative stiffness into
both DVAs does contribute to the improvement of vibration control performance,
meanwhile, the coupled system could be potentially destabilized. Nevertheless, the
crucial stability analysis and the permissible interval of negative stiffness had not
been addressed in aforesaid works and the NSDVAs had been optimized only in
terms of suppressing harmonic vibration. Finally, a simple approach for the practi-
cal realization of linear NSDVA is still lacking in the literature.

1.1.7 Other passive damping mechanisms
Except for aforementioned damping techniques, there exist other passive mecha-
nisms of energy dissipation in the literature, as follows:

• Friction damper [74];

• Eddy current damper [75];

• Constrained layer damping [76];

• Targeted energy transfer (TET): nonlinear energy sink (NES) [77];

• Energy absorption through liquid: tuned liquid damper [78], tuned liquid col-
umn damper [79];

• Energy absorption through impact: pounding TMD [80], particle damper [81],
asymmetric and symmetric vibro-impact NES [82, 83].

1.2 Electromechanical shunt damper
Lightweight solutions for vibration control are of paramount importance in certain
engineering applications, e.g. aerospace structures. Such an increasing demand leads
to the emergence of various shunt damping techniques, which consist in transforming
the mechanical energy of target structure into electrical one via a transducer and
subsequently dissipate it in the external shunt circuit. Common transduction mech-
anisms include: piezoelectric, electromagnetic and electrostatic. This thesis focuses
on the applications of piezoelectric and electromagnetic transducers, which will be
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Figure 1.14: Electrical models of: (a) piezoelectric transducer; (b) electromagnetic
transducer.

briefly reviewed at below. The electrical models of these two types of transducers
are schematized in Figures 1.14a and 1.14b, respectively.

1.2.1 Piezoelectric shunt damper
In 1979, Forward [84] experimentally demonstrated the feasibility of attenuating
mechanical vibrations in optic systems by means of a piezoelectric shunt damper
(PSD). In 1991, Hagood and von Flotow [85] established the models of PSD en-
closed by two types of circuits, resistive (R) and resistive-inductive in series (series
RL), as shown in Figures 1.15a and 1.15b, respectively. The shunt parameters were
tuned according to the transfer function technique (i.e. the FPT) and the pole
placement technique (i.e. the SMC), respectively, and the proposed models were
experimentally validated on a cantilever beam. Following this pioneering work, Wu
[86] investigated the parallel arrangement of resistor and inductor (parallel RL), as
depicted in Figure 1.15c. A practical limit of typical series or parallel RL networks
resides in the requirement of large inductance (up to thousands of henries), which
should be either electrically synthesized [87] or generated by closed magnetic cores
made of high permeability materials [88]. Fleming et al. [89] pointed out that the
required inductance can be reduced by placing an additional positive capacitance
across the terminals of piezoelectric transducer. Caruso [90] carried out the compar-
ison of optimal performance delivered by three shunt circuits, series RL, parallel RL
and series RL in parallel with a positive capacitor (RLC parallel, shown in Figure
1.15d). It was demonstrated that the series and parallel RL networks have the quasi
identical effectiveness, meanwhile the control performance delivered by the RLC
parallel circuit turns inferior to that of series RL network as if a positive parallel
capacitance is involved. Recently, Soltani et al. [91] derived exact solutions to the
H∞ optimal design of PSD enclosed by a series RL shunt based on the algebraic
approach proposed in [4]. In summary, all these passive shunts can effectively atten-
uate the vibration around the target mode, however, they are sensitive to parametric
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detuning and the control effect on other modes is negligible.
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Figure 1.15: (a) R shunt; (b) series RL shunt; (c) parallel RL shunt; (d) RLC
parallel shunt; (e) multi-mode shunt proposed by Hollkamp [92]; (f) Current flowing

shunt circuit proposed by Behrens et al. [93].

Hollkamp [92] proposed the first shunt design for multi-mode vibration control,
which is composed of multiple branches of series RLC whose number is equal to that
of modes to be damped, as shown in Figure 1.15e. Its effectiveness was experimen-
tally validated, however, the tuning of each resonant branch is not independent so
that it is impossible to derive analytical formulae for all tuning parameters when a
large number of modes are of interest. Behrens et al. [93] developed the current-
flowing shunt technique, consisting in relating each branch to a particular vibration
mode so as to tune each branch independently. As depicted in Figure 1.15f, the
multi-mode shunt circuit proposed in [93] distinguishes from that of Hollkamp in
such a way that each circuit branch is functional at its corresponding resonant fre-
quency, while it is approximately open-circuited at other frequencies. Finally, an
adaptive current-flowing shunt damping was introduced in [94], which investigated
the online optimal tuning of component values in the presence of shift in structural
resonant frequency and variation in transducer capacitance.

Meanwhile, negative capacitance could be also included in electrical networks to
improve the damping performance at multiple modes, as reported below.

Tang and Wang [95] added a series negative capacitance (NC) in the shunt circuit
of various active-passive hybrid piezoelectric networks. It was found that adding a
NC can enhance the electromechanical coupling of integrated system, increase the
system damping capability and significantly improve the overall control authority.
Later, Behrens et al. [96] proposed an active shunt damping technique based on the
NC controller, which was proven to be capable of damping multiple vibration modes
and to be less sensitive to environmental variations. Neubauer et al. [97] carried
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Figure 1.16: Employment of NCs in PSD: (a) series layout; (b) parallel layout; (c)
SP layout.

out the optimal design of various electrical networks with a series NC based on the
FPT, in which the permissible bound on NC and the vibration amplitudes at fixed
points are concisely formulated in terms of the electromechanical coupling coefficient.
In 2016, Berardengo et al. [98] developed a general analytical formalism for three
layouts based on resistive (R) shunts: with one NC in series; with one NC in parallel;
with one NC in series to the R load while another NC placed across the piezoelectric
transducer (denoted as SP layout), as depicted in Figure 1.16. In this way, the
change made to the electromechanical coupling by the NCs can be expressed solely
in terms of ratios among NCs and the piezoelectric capacitance. It was numerically
and experimentally validated that the main effect of NCs is to artificially enhance
the electromechanical coupling, thereby improving the damping performance and
leading to a broadband vibration attenuation, and the SP layout can further enhance
the electromechanical energy transfer compared to its counterparts with only one
NC. Pohl [99, 100] considered the potential saturation of NC under high vibration
levels and proposed to improve the damping performance of NC by enlarging the
output voltage of the operational amplifier.

Practical applications of PSD cover: chatter reduction [101], acoustic radiation
reduction [102], vibration suppression of actuator arm in hard disk drive [103], vi-
bration damping of rotationally periodic structures [104], etc.

−

+

V

I

Z

R1R2

Figure 1.17: A negative impedance converter.

As shown in Figure 1.17, a negative impedance converter (NIC) can be used to
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synthesize the NC. Due to its requirement of energy input, employing a NC in the
shunt impedance is actually a semi-active shunt damping technique. Nevertheless,
all shunt designs with NCs in aforementioned researches are passive in nature since
no feedback control is involved.

1.2.2 Electromagnetic shunt damper
Similar to the PSD technique, Behrens et al. [105, 106] proposed the concept of
electromagnetic shunt damping (EMSD), in which an electromagnetic transducer is
employed to convert the kinetic energy of mechanical system into electrical energy
to be dissipated in the external shunt circuit. An electromagnetic transducer can be
modelled as a velocity-controlled voltage source with a resistive-inductive inherent
impedance, as illustrated in Figure 1.14b. Compared to its piezoelectric counterpart,
an EMSD presents some benefits: smaller shunt voltage and larger strokes.

Due to the resistive-inductive nature of electromagnetic transducer, Behrens et
al. [106] added a RC shunt so as to achieve the electrical resonance and a significant
vibration reduction of more than 20dB was experimentally observed at the natural
frequency of mechanical structure. Similar to the PSD, the online adaptive tuning
and current-flowing techniques for EMSD were carried out by Niederberger et al.
[107] and Cheng and Oh [108], respectively. Optimal design of EMSD coupled with
either R or RC shunt was addressed by Inoue et al. [109] according to the FPT and
ready-to-use formulae to optimal parameters were also provided. It was observed in
[109] that the optimal value of total resistance is inferior to the inherent resistance
of transducer, meanwhile, the authors suggested to include an external inductor
for yielding a larger value of optimal resistance at the sacrifice of vibration control
performance. Later, exact solutions to the H∞ and H2 optimization of EMSD
coupled with a resonant shunt circuit were derived by Tang et al. [110].

Analogous to PSD, negative impedance can be employed in the shunt circuit
to enhance the damping performance of EMSD. Niu et al. [111] enclosed the elec-
tromagnetic transducer by a positive capacitance and a negative resistance (NR) in
series, in which the capacitance is tuned in such a way that the electrical resonance is
coincident with the vibration mode of mechanical system. It was shown that increas-
ing the magnitude of NR results in the monotonic decrease of vibration amplitude
of primary system and the increase of damping capability. Later, the vibration iso-
lation performance of EMSD shunted with a sole NR was tested on a SDOF primary
system (a proof mass suspended by a spring) [112] and on a MDOF system (a beam
supported by two springs at its extremities) [113]. Numerical and experimental
studies in [112, 113] demonstrated that the use of NR in the shunt impedance can
significantly improve the vibration isolation performance at multiple modes. It was
later demonstrated in [114, 115] that using a negative inductance (NI) in conjunc-
tion with a NR can further improve the damping performance of EMSD and ensure
the broadband effect of vibration attenuation. Stabile et al. [116, 117] investigated
the potential application of EMSD with a NR for attenuating the micro-vibration
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in spacecrafts. More recently, Zheng et al. [68] stated that negative impedances
can be employed to electrically tune the natural frequency of coupled system, which
could be of special interest for applications of vibration isolation.

Finally, it should be pointed out that the influence of negative shunt impedance
on the electromagnetic coupling is still lacking in the literature, which should be
addressed in future works.

Figure 1.18: Schematic representation of active vibration control [118].

1.3 Active vibration control
Passive control devices based on mechanical resonance are usually tuned to a specific
vibration mode of structure, at which the vibration reduction is proportional to the
corresponding modal damping. However, the value of modal damping is directly
dependent of the mass ratio between the damper mass and the effective modal mass
of structure, which is relatively small. In order to improve the damping capabil-
ity at multiple modes, active vibration control strategies have been developed in
the literature, whose typical schematic representation is depicted in Figure 1.18.
The structural responses and/or the external excitation are measure by the sensors,
whose signals are fed back to real-time processing devices to calculate the required
control force. Finally, the active force acting on the structure is delivered by me-
chanical actuators. In the past few decades, various active control devices have been
developed, among which the active mass damper (AMD) and the active tuned mass
damper (ATMD) are in the scope of this thesis, as reported below.

As depicted in Figure 1.19a, an AMD is composed of an auxiliary mass installed
on the structure to be controlled and driven by a mechanical actuator. Its inherent
damping and stiffness can usually be ignored due to their small influence compared
to the actuation force. The first full-scale application of AMD in the world was
realized by Kajima Corporation in 1989 [120, 121], which installed two AMDs on
the 11-th floor of Kyobashi Seiwa Building in Tokyo, Japan. Later, Dyke et al.
[122] developed an acceleration feedback control strategy based on the H2/linear
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Figure 1.19: A SDOF primary system controlled by: (a) an AMD; (b) an ATMD.

quadratic Guassian technique, demonstrating the effectiveness of AMD at multiple
modes for aseismic protection of structure. In 1998, Cao et al. [123] applied an
AMD for mitigating the wind-induced vibration of an existing 340-meter-tall TV
tower in Nanjing, China, and both the linear quadratic regulator and nonlinear
feedback control algorithms were investigated. Recently, Yang et al. [124] proposed
a negative acceleration feedback control and experimentally verified the effectiveness
of a single AMD for damping multiple vibration modes of a MDOF system.

Unlike the AMD, an ATMD is a hybrid device, as shown in Figure 1.19b, whose
stiffness and damping are not neglectable and should be carefully tuned. Nishimura
et al. [125, 126] investigated the control efficiency of an ATMD on a SDOF primary
system. Based on the direct acceleration feedback control, both the parameters of
TMD and the feedback gain were optimized according to the FPT in the objec-
tive of minimizing the peak amplitude of displacement FRF of primary system. It
was shown that the peak amplitude decreases monotonically as the feedback gain
increases, while the TMD stroke is not increased with respect to the passive case.
Similarly, numerous researches have been carried out in the literature, which opti-
mize the ATMD in a passive way. To summarize, the design objectives of ATMDs
cover: minimizing the peak displacement (i.e. H∞ optimization) [127, 128, 129],
minimizing the variance of structural motion (i.e. H2 optimization) [130, 131, 132],
maximizing the decay rate of transient response (i.e. the SMC) [127] and minimiz-
ing kinetic energy of primary system or maximizing power dissipation [133]. Finally,
Figure 1.20 demonstrates the ten tallest completed buildings in the world with clear
indication of types of employed dampers.

To summarize, the AMD is actually an inertial actuator whose control force is
entirely attributed to the actuator. Hence, it becomes idle when its power supply is
turned off. Meanwhile, the passive-alike ATMDs are no longer optimal when the gain
deviates from its predefined value. Therefore, they are not suitable for applications
where a fail-safe mechanism is a prerequisite, e.g. helicopter vibration control [134].
Moreover, the system controlled by an AMD or ATMD could be destabilized when
a large gain is used.

Recently, Collette and Chesné [135] proposed a novel control law for the ATMD
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which guarantees simultaneously the fail-safe behaviour and the theoretical hyper-
stability, namely remaining stable for any controller gain. Hereafter, such a device
is referred to as the hybrid DVA in order to tell from the aforementioned ATMDs.
The fail-safe property of hybrid DVA is preserved by tuning its passive part in-
dependently. Meanwhile, a so-called α-controller, featured by two coalesced zeros
on the real axis and two poles at the origin, is introduced into the direct velocity
feedback control (DVFC) loop. By properly positioning the coalesced real zeros, the
entire system could remain always stable. Numerical simulation demonstrated its
superior performance to the AMD in terms of reduction in both vibration amplitude
of structure and required active force around the target mode. Later, this control
law was experimentally validated in [136], confirming its significant improvement of
control performance and revealing its robustness against parameter detuning.

Finally, the actuator mechanisms are herein briefly mentioned. For controlling
the vibration of large-scale structures, e.g. civil buildings, the actuators should have
a high force capacity and respond rapidly, covering: hydraulic cylinder [137] and
electric servo motor [138]. For small-scale control applications, e.g. thin-walled
panels and plates, smart materials based actuators could be employed, such as
piezoelectric [139], electromagnetic [140] and shape memory alloy [141], etc.

1.4 Dual-functional design

Wireless sensor networks are indispensable in the era of Internet of Things. An effi-
cient and compact solution to their power supply is to enable them to harvest energy
from ambient sources, from which arises the concept of energy harvesting. Past few
decades have witnessed tremendous development in energy scavenging techniques.
Literature reviews on this subject could be referred to [142, 143, 144, 145, 146].
In this section, however, special attention will be given to the state of the art of
dual-functional devices, which demonstrate capabilities of both energy harvesting
and vibration suppression, as reported below.

The first category is based on the fact that harvesting energy from mechanical
systems can generate structural damping effects, which was first initiated by the
community working on the energy extraction circuit design. Therefore, semi-active
and active control strategies could be developed to suppress the vibrations of flexible
structures by using harnessed power as the main source of energy. A detailed survey
on this direction was carried out by Wang and Inman [147].

Instead of scavenging energy directly from the structure to be controlled, the
second category aims at harvesting energy from a secondary structure, e.g. a DVA,
where the energy transferred from the primary system is to be dissipated. Ali and
Adhikari [148] proposed the concept of energy-harvesting DVA (EH-DVA), which
incorporates a piezoelectric element between the host structure and the absorber
mass. An approximate FPT was adopted to derive optimal parameters, and it was
shown that with a proper choice of harvester parameters, a broadband energy har-
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vesting can be obtained in combination with vibration reduction in primary system.
Harne [149] designed an EH-DVA in the form of a distributed mass layer with a
corrugated piezoelectric film spring for controlling the surface vibrations of struc-
tural panels. It was experimentally tested in both laboratory and field environment,
revealing its potential dual-functional applications. Later, an EH-DVA based on the
autoparametric resonance was first proposed by Yan and Hajj [150], as depicted in
Figure 1.21a. It optimal dual-functional design was analytically derived by Tan et
al. [151] in 2019 by means of the harmonic balance method and the multiple scales
method. Numerical and experimental results demonstrated that the autoparametric
EH-DVA can not only effectively reduce the vibration of base structure, but also
harvest relatively large electrical power at resonance or near resonance. A differ-
ent configuration of autoparametric EH-DVA was proposed by Kecik [152], who
combined the pendulum DVA with an electromagnetic energy harvester (EMEH),
as depicted in Figure 1.21b. Distinguished from its piezoelectric counterpart, the
electromagnetic EH-DVA proposed in [152] could be potentially implemented in
large-scale applications, e.g. civil structures.

(a) (b)

Figure 1.21: Schematic diagrams of a SDOF primary system controlled by au-
toparametric EH-DVA in the form of: (a) a cantilever beam with a tip mass and
embedded piezoelectric layers [150]; (b) a pendulum with a levitating magnet moving

freely insides [152].

Analogous to the EH-DVA, the vibration energy of mechanical systems can be
first localized in an attached NES through the TET mechanism, which will be con-
verted to harvestable electric power subsequently. Kremer and Liu [153, 154] de-
signed a NES whose restoring force is contributed by magnetic repulsion and hard-
ening effect due to lateral deformation of a fixed-fixed thin beam, and experimental
validation of dual-functional design was conducted in both transient and harmonic
excitation cases. A magnet-strung NES in conjunction with an EMEH was later re-
ported by Pennisi et al. [155] with experimental verification. Finally, a conceptual
design of vibro-impact NES combined with an EMEH was proposed by Afsharfard
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[156], in which a magnet can freely slide insides a tube wounded by coils. Therefore,
the vibration energy of primary system is dissipated by the inelastic impact between
the magnet and barriers of tube as well as the electric power generated in the coils
due to electromagnetic coupling.

1.5 Outline of thesis
Having reviewed the literature of passive and active damping techniques, multi-
ple control strategies will be developed in this thesis to attenuate the vibration of
a SDOF mechanical system under direct force excitation. Improvements will be
achieved in terms of one or multiple criteria, as listed below:

• Increased reduction of peak vibration amplitude and broadened frequency
bandwidth of vibration absorption;

• Enhanced robustness against parametric variation;

• Simplicity and ease of practical realization;

• Lightweight application.

For the three following chapters, the proposed control devices are purely passive,
which are based on the mechanical TMD or its variants developed in the literature.
Precisely, Chapter 2 will focus on the use of grounded inerter for enhancing the
effectiveness of traditional TMD against the parametric variation in the mechanical
system. Later, the series DTMD instead of the TMD will be employed in Chapter
3 in order to increase the control efficiency for a given amount of tuned mass, and
its combination with inerters will be investigated. Finally, Chapter 4 consists in
incorporating a linear negative stiffness element in the non-traditional DVA and
IDVA. It should be noted that the optimal design of all proposed control devices will
be carried out according to specific calibration strategies and the optimal parameters
will be analytically formulated.

In Chapter 5, the electromechanical analogy via the piezoelectric and electromag-
netic transducers will be established and the possibility of realizing the mechanical
devices by means of electromechanical shunt dampers will be investigated.

Advances in active and semi-active vibration damping techniques will be reported
in Chapters 6 and 7. A general control law will be proposed in Chapter 6 for both
hybrid DVA and IDVA, which assures simultaneously the fail-safe mechanism and
the theoretical hyperstability. The next chapter will focus on the electromagnetic
shunt damping enhanced by the use of one or two negative inductances, whose
influence on the electromechanical coupling will be systematically studied for the
first time.

Finally, the general conclusions fo this thesis, the major contributions made and
some suggestions for future work will be detailed in Chapter 8.
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Chapter 2

Worst-Case Optimization of TMDI

Mechanical systems are usually modeled as deterministic, whose parameters are
employed to evaluate the design parameters of dampers according to a specific op-
timization criterion, e.g. the FPT. In realistic situations, the physical properties of
mechanical system, i.e. stiffness and damping, could fluctuate due to the material
degradation and/or environmental variability. In this case, the control device cali-
brated with respect to the nominal system parameters could lose its effectiveness, or
even worse, contributes to vibration amplification due to the detuning effect. There-
fore, a novel tuning strategy should be proposed, which takes into consideration the
parametric uncertainty.

m2

k2 c2

m1

k1 c1

x1

x2

F

b

Figure 2.1: Schematic diagram of a SDOF primary system controlled by a TMDI.

Dell’Elce et al. [14] investigated the optimization of TMD for controlling the
vibration of a SDOF primary system, whose mechanical stiffness is UBB. A ro-
bust equal-peak method was therein developed, consisting in tuning the TMD by
equalizing the vibration amplitude at the leftmost and rightmost invariant points.
Nevertheless, the optimal mechanical damping ratio had not been explicitly formu-
lated. Recalling the salient effects of a grounded inerter, a TMDI is employed in
this chapter to damp the forced vibration of uncertain mechanical system, as shown
in Figure 2.1. Based on a perturbation approach and the property of multiplicity
of polynomials, an entirely algebraic method is developed to analytically derive the
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2. Worst-Case Optimization of TMDI

optimal parameters of TMDI, thereby of TMD. Ready-to-use formulae to all opti-
mal parameters will be provided. Finally, the influence of grounded inerter against
the detuning effect will be investigated, underlining its capability of decreasing the
peak vibration amplitude of primary system in the worst-case scenario.

2.1 Mathematical modeling

2.1.1 Equations of motion
The underlying dynamics of concerned system can be described by:

m1ẍ1 = c2 (ẋ2− ẋ1) +k2 (x2−x1)− c1ẋ1−k1x1 +F (t) (2.1a)
m2ẍ2 = c2 (ẋ1− ẋ2) +k2 (x1−x2)− bẍ2 (2.1b)

where b is the inertance relating the tuned mass to the ground, meanwhile, other
system parameters and displacement variables have been specified in Section 1.1.1.

In the deterministic scenario, it is common practice to neglect the damping of
lightly damped structure in order to concisely formulate the expressions of optimal
parameters. Meanwhile, Dell’Elce et al. [14] stated that in the uncertain case, the
worst-case scenario occurs when the primary system has zero damping. Hereafter,
the worst-case optimal design of TMDI will be conducted for a mechanical system
under stiffness uncertainty, whose damping is neglected.

2.1.2 Stiffness uncertainty modeling
Adopting the UBB model, the mechanical stiffness can be described by an interval
variable:

kI1 =∆ [k, k̄] =
{
k1|k ≤ k1 ≤ k̄,k1 ∈ R+} (2.2)

where the superscript I refers to the interval variable, k and k̄ correspond to its
lower and upper bounds. Such an UBB parameter can be also represented by its
midpoint kc and deviation ∆k which are defined as, respectively:

kc = k̄+k

2 , ∆k = k̄−k
2 . (2.3)

Therefore, an interval variable reduces to a deterministic value when its deviation
is zero. In this study, the nominal stiffness is chosen as the midpoint of kI1 , namely:

kI1 = {k1|kn−∆k ≤ k1 ≤ kn+ ∆k,k1 ∈ R+}= (1 + δ)kn, δ ∈ [−η,+η]. (2.4)

where η = ∆k/kn denotes the maximum uncertainty magnitude, therefore, η is non-
negative in nature. Besides, δ is a random variable quantifying the deviation degree
of actual mechanical stiffness from its nominal value, which has a constant proba-
bility distribution in the whole interval.
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2.1.3 Displacement FRF
Following the same nondimensionalization procedure in Section 1.1.1 and introduc-
ing an inertance-to-mass ratio ν:

ν = b

m1
(2.5)

The EOMs (2.1) can be recast into the dimensionless form:

x′′1 + (µ+ν)x′′2 + (1 + δ)x1 = F/kn (2.6a)
(µ+ν)x′′2 + 2µξα

(
x′2−x′1

)
+µα2 (x2−x1) = 0 (2.6b)

Therefore, by taking the Laplace transform of Eq. (2.6) and replacing the dimen-
sionless frequency variable by jλ with j =

√
−1, the normalized displacement FRF

of primary system is formulated as:

G=
∣∣∣∣∣ X1
F/kn

∣∣∣∣∣ =
 
A+Bξ2

C+Dξ2 (2.7)

with the four coefficients given by:
A=

[
µα2− (µ+ν)λ2]2

B = 4µ2α2λ2

C =
[(

1 + δ−λ2)[µα2− (µ+ν)λ2]−µ(µ+ν)α2λ2
]2

D = 4µ2α2λ2 [1 + δ− (1 +µ+ν)λ2]2
(2.8)

Clearly, the normalized displacement amplitude G is a function of six variables: µ,
ν, δ, α, ξ and λ. µ and ν are given a priori and δ varies within the specific interval
[−η,+η] with η being a known constant. Thus, α and ξ are design parameters,
which aim at minimizing the peak vibration amplitude in the worst-case scenario
over the whole frequency range, i.e. λ ∈ R+.

2.2 Worst-case optimal design
Figure 2.2 depicts a set of displacement FRFs of primary system controlled by a
TMDI, which is tuned by the classic FPT. The responses are simulated for the a
mass ratio of µ= 5%, an inertance-to-mass ratio of ν = 3% and an uncertainty mag-
nitude of η = 20%. Apparently, the FRF has two quasi-equal peaks in the nominal
case (marked by thick dashed line). Meanwhile, the peak vibration amplitude is
inevitably amplified when the stiffness fluctuates, as represented by the 20 FRFs
marked by thin dotted lines, which correspond to 20 randomly sampled values of
δ in the interval [−η,+η]. In the worst-case scenario (marked by thick solid line),
the deterioration of vibration control performance goes up to 7.2dB, signifying that
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Figure 2.2: Displacement FRFs of primary system controlled by a TMDI with the
classic equal-peak design. The set of parameters is: µ = 0.05, ν = 0.03, η = 20%.
Thin dash-dotted line: without control, thick dashed line: the deterministic scenario
(δ = 0), thick solid line: the worst-case scenario, thin dotted lines: 20 uncertainties

δ randomly sampled in [−η,+η].

the peak amplitude increases by 129% when compared to the nominal case. There-
fore, the classic FPT could not yield favourable result in the presence of parameter
fluctuation and a novel tuning rule should be developed in order to minimize the
worst-case peak amplitude.

2.2.1 Min-max optimization formulation
As presented in Section 1.1.1.1, the H∞ optimal design of TMDI can be posed as a
min-max optimization problem:

min
α,ξ

{
max
δ,λp

ß
‖G(δ,µ,ν,α,ξ,λ)‖∞

™}
(2.9)

subject to:
δ ∈ [−η,+η], η ≥ 0, α≥ 0, ξ ≥ 0, λ ∈ R+. (2.10)

Exact solutions to the min-max problem will be numerically solved, compared to
which the accuracy of analytical solutions derived in the following context will be
examined.

2.2.2 Proposed tuning methodology

The FRFs related to G(λ)
∣∣
δ=−η and G(λ)

∣∣
δ=+η are depicted in Figures 2.3a and

2.3b, respectively, for three values of mechanical damping ratio ξ. Similar to the
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Figure 2.3: Displacement FRFs of primary system controlled by a TMDI corre-
sponding to three damping levels: (a) δ = −η; (b) δ = +η. The set of parameters
is: µ = 0.05, ν = 0.03, η = 20% and α2 = 1.2. Dotted line: ξ = 0, solid line: ξ = 0.6

and dash-dotted line: ξ =∞.

deterministic scenario, these response curves always intersect at two positions, i.e.
invariant points, whose abscissas are denoted as λ−L and λ−R (or λ+

L and λ+
R).

Dell’Elce et al. [14] stated that the optimal FRF should have the same amplitude
at the leftmost and rightmost fixed points, λ−L and λ+

R. In conjunction with Figure
2.3, this optimality condition can be mathematically formulated as:

∥∥G(−η,µ,ν,α,ξ,λ−L )
∥∥
∞ =

∥∥G(+η,µ,ν,α,ξ,λ+
R)
∥∥
∞ (2.11)

In the following, the squared vibration amplitude at these two invariant points
in the worst-case optimal scenario is denoted as h, i.e. G2(−η,µ,ν,α,ξ,λ−L ) =
G2(+η,µ,ν,α,ξ,λ+

R) = h.

Based on the aforementioned optimality condition, an algebraic approach alter-
native to the robust equal-peak method proposed in [14] is herein outlined. In the
worst-case optimal scenario, the optimal mechanical damping ratio ξopt could be ex-
pressed in terms of δ, λ, α and h by transforming Eq. (2.7). On this basis, another
expression for ξopt could be obtained by employing the perturbation approach as
mentioned in [18]. Equating these two expressions of ξopt yields a unique polyno-
mial function which is independent of ξopt. As a consequence, optimal parameters
could be determined by virtue of the algebraic properties of the polynomial function,
e.g. the multiplicity of roots.
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2.2.2.1 Polynomial function irrelevant to ξ

In the worst-case optimal scenario, the mechanical damping ratio ξ can be extracted
from G2 = h:

ξ2 =−A−hC
B−hD

(2.12)

which can be recast into a polynomial form of:

S(δ,µ,ν,α,ξ,λ) = (A−hC) + (B−hD)ξ2 = 0 (2.13)

Therefore, the optimality condition (2.11) could be rewritten as:

S(−η,µ,ν,f,ξ,λ−L ) = S(+η,µ,ν,f,ξ,λ+
R) = 0 (2.14)

Meanwhile, one can also tell that their partial derivative with respect to λ should
be equal to zero at two invariant points. Therefore, the following conditions should
be simultaneously satisfied:

S
∣∣∣
δ=−η,λ=λ−

L

= 0, ∂S

∂λ

∣∣∣∣
δ=−η,λ=λ−

L

= 0. (2.15)

and
S
∣∣∣
δ=+η,λ=λ+

R

= 0, ∂S

∂λ

∣∣∣∣
δ=+η,λ=λ+

R

= 0. (2.16)

designating that the root λ−L (or λ+
R) of polynomial function S

∣∣
δ=−η (or S

∣∣
δ=+η) is

at least of multiplicity 2. Therefore, the discriminant of polynomial function S is
zero, namely:

∆λS
∣∣∣
δ=−η

= 0, ∆λS
∣∣∣
δ=+η

= 0. (2.17)

where the subscript λ stands for the variable with respect to which the discriminant
is calculated.

Up to now, only two optimality conditions are obtained as given in Eq. (2.17),
while there exists three unknown variables in S: f , ξ and h. Therefore, one more
constraint should be formulated to reduce the number of variables in avoidance of
being an underdetermined system.

Recalling the perturbation approach [18], the optimal damping ratio (2.12) can
be reformulated by imposing the horizontal tangent constraint on a point (with
abscissa λ+ ε) adjacent to the fixed point, and then it could be simplified by ap-
proaching the perturbation ε to zero, i.e. ε→ 0. By replacing λ with λ+ ε, Eq.
(2.12) can be rearranged into the polynomial form in ε:

ξ2 = a0 +a1ε+a2ε2 + . . .

b0 + b1ε+ b2ε2 + . . .
(2.18)
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By assuming that the fraction a0/b0 is of indeterminate form 0/0 and by approaching
ε to zero, an alternative expression for ξ2 could be obtained according to the de
L’Hospital’s rule:

lim
ε→0

ξ2 = a1
b1

(2.19)

with

a1 = 2h
[
µα2 (1 +γ) +γ

(
1 + δ−2λ2)][µγα2λ2−

(
µα2−γλ2)(1 + δ−λ2)]

+ 2γ
(
µα2−γλ2)

b1 = 4µ2α2−4hµ2α2 [1 + δ−λ2 (1 +γ)
][

1 + δ−3λ2 (1 +γ)
] (2.20)

where γ = µ+ ν stands for the sum of mass ratio and inertance-to-mass ratio. By
inserting Eq. (2.19) into Eq. (2.13), the polynomial function S is rewritten as:

S(δ,µ,ν,f,λ) = (A−hC)b1 + (B−hD)a1 = 0 (2.21)

which is independent of ξ and can be solved together with optimality conditions
(2.17).

2.2.2.2 Optimal solutions to α and h

The discriminant of polynomial S is proportional to its resultant R (S,∂S/∂λ) due
to its linearity, as follows:

∆ω(S) =− 1
s0
·R
Å
S,
∂S

∂λ

ã
(2.22)

where s0 is the constant before the highest-order term in λ for the polynomial S.
Therefore, the resultant is set as zero instead of its discriminant. The mathematics
software MAPLE is herein employed to yield the resultant expression and thereby
conduct its factorization, as follows:

R

Å
S,
∂S

∂λ

ã
= Q0 ·Q3

1 ·Q2 ·Q3 = 0 (2.23)

where Q0 is independent of h, Q3 is non-factorable and contains too many terms
to be appended, which is omitted in this study. The other two factors are herein
provided:

Q1 = (1 + δ)2h−1
Q2 =−γ4 (1 + δ)4h2−γ2 (2 +γ)2

+
î
2γ2
î
1 + (1 +γ)2ó(1 + δ)2−8µγα2 (1 +γ)2 (1 + δ) + 4µ2α4 (1 +γ)4óh (2.24)

It is noticeable that the factor Q1 = 0 can not be satisfied simultaneously for δ =−η
and δ = +η, which is then rejected. Therefore, the factor Q2 should be equal to zero
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for lower and upper bound of stiffness uncertainty δ. Mathematically, the following
constraints should be satisfied:

Q2

∣∣∣
δ=−η

= Q2

∣∣∣
δ=+η

= 0 (2.25)

which is equivalent to two alternative conditions that

Q2

∣∣∣
δ=−η

−Q2

∣∣∣
δ=+η

= 0 (2.26)

and
Q2

∣∣∣
δ=−η

+Q2

∣∣∣
δ=+η

= 0 (2.27)

The condition (2.26) yields the closed-form expression of frequency tuning ratio α
in terms of the squared vibration amplitude h:

α2 =
γ
î
1 + (1 +γ)2ó+hγ3 (1 +η2)

2µ(1 +γ)2 (2.28)

By inserting Eq. (2.28) into (2.27) and after the manipulation, a quadratic function
in h is retained:

γ2 (1 +η2)2h2 + 2
î
1−η2−

(
1 +η2)(1 +γ)2óh+ (2 +γ)2 = 0 (2.29)

which has two possible positive roots given by, respectively:

hopt,1 =
Å

κ−η
γ (1 +η2)

ã2
, hopt,2 =

Å
κ+η

γ (1 +η2)

ã2
. (2.30)

with κ =
»

(1 +η2)(1 +γ)2−1. For any non-negative η, the following inequality
always holds:

hopt,1 ≤ hn = 2 +γ

γ
≤ hopt,2 (2.31)

in which hn is the squared vibration amplitude at fixed points in the deterministic
scenario [46]. Clearly, three expressions in Eq. (2.31) are equal when η = 0. As
the parameter detuning will deteriorate the control effect of TMDI, hopt,2 should be
then retained. Therefore, the normalized vibration amplitude at fixed points in the
worst-case optimal scenario can be expresses as:

Gopt =
»
hopt,2 = κ+η

γ (1 +η2) (2.32)

leading to the optimal frequency tuning ratio αopt:

αopt =
√

γ (1−κη)
µ(1 +η2)(1 +γ)2 (2.33)
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In the deterministic scenario, the vibration amplitude (2.32) and frequency tuning
ratio (2.33) reduce to, respectively:

G=
 

2 +γ

γ
, α =

 
γ

µ(1 +γ)2 . (2.34)

coinciding with the ones derived in [46].

2.2.2.3 Abscissas of fixed points

To date, the only unknown parameter to calculate the optimal damping ratio ξopt
is the abscissas of fixed points, λ−L and λ+

R. By inserting Eqs. (2.32) and (2.33) into
Eq. (2.21) and after simplification, a polynomial function T is obtained, which is
only dependent of the forcing frequency λ and uncertainty δ, i.e.:

T (λ,δ) = 0 (2.35)

which can be factorized as:

T (δ =−η) =
î
(2 +γ)(1 +γ)2λ4 + 2(1 +γ) [η (1 +γ)−2−γ]λ2 + 2−2η (1 +γ)

ó2
·Q4

T (δ = +η) =
î
(2 +γ)(1 +γ)2λ4−2(1 +γ) [η (1 +γ) + 2 +γ]λ2 + 2 + 2η (1 +γ)

ó2
·Q5

(2.36)
where Q4 and Q5 are non-factorable and have too many terms, which do not contain
useful informations. Therefore, the forcing frequencies at the leftmost and rightmost
fixed points should satisfy the following quadratic functions in λ2:

• λ−L and λ−R satisfy:

(2 +γ)(1 +γ)2λ4 + 2(1 +γ) [η (1 +γ)−2−γ]λ2 + 2−2η (1 +γ) = 0 (2.37)

• λ+
L and λ+

R satisfy:

(2 +γ)(1 +γ)2λ4−2(1 +γ) [η (1 +γ) + 2 +γ]λ2 + 2 + 2η (1 +γ) = 0 (2.38)

Therefore, the abscissas of four fixed points can be expressed as, respectively,

λ−L =
 

1 + (1−η)(1 +γ)−κ
(1 +γ)(2 +γ) , λ−R =

 
1 + (1−η)(1 +γ) +κ

(1 +γ)(2 +γ) ,

λ+
L =
 

1 + (1 +η)(1 +γ)−κ
(1 +γ)(2 +γ) , λ+

R =
 

1 + (1 +η)(1 +γ) +κ

(1 +γ)(2 +γ) .

(2.39)

Figure 2.4 plots three FRFs corresponding to three different values of ξ. The fre-
quency tuning ratio α of TMDI is evaluated by using Eq. (2.33) for the set of
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2. Worst-Case Optimization of TMDI

parameters: (µ,ν,η) = (0.05,0.05,10%). The coordinates of the leftmost and right-
most fixed points read as, respectively: (0.81,5.66) and (1.08,5.66). It is apparent
that their abscissas are coincident with the ones computed by using the expressions
of λ−L and λ+

R from Eq. (2.39). Besides, their ordinates have the same value and are
equal to that determined by Eq. (2.32), validating the derived solutions for α and
h.
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Figure 2.4: Displacement FRFs of primary system controlled by a TMDI corre-
sponding to three damping levels: (a) δ = −η; (b) δ = +η. The set of parameters
is: µ= 0.05, ν = 0.05, η = 10% and α is evaluated by Eq.(2.33). Dotted line: ξ = 0,
solid line: ξ = 1 and dash-dotted line: ξ =∞. The leftmost and rightmost fixed

points locate at (0.81,5.66) and (1.08,5.66).

2.2.2.4 Optimal mechanical damping ratio ξ

Finally, one can evaluate the value of mechanical damping ratio by substituting
the abscissas of fixed points (2.39), the squared vibration amplitude at fixed points
(2.32) and the frequency tuning ratio (2.33) into Eq. (2.19). At the leftmost and
rightmost invariant points, their corresponding damping ratios are computed as:

ξ2
L = a1

b1

∣∣∣∣∣
λ=λ−

L ,δ=−η,α=αopt,h=hopt

, ξ2
R = a1

b1

∣∣∣∣∣
λ=λ+

R,δ=−η,α=αopt,h=hopt

. (2.40)

It is noticeable that the damping ratios evaluated at each invariant point are slightly
different with each other. Therefore, the optimal mechanical damping ratio ξopt
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Worst-case optimal design

could be chosen as their root mean square value, i.e.:

ξopt =

 
ξ2
L+ ξ2

R

2 =

–
γ
(
1 +η2)

8µ(1−κη)(1 +κ2)2

8∑
j=0

njκ
j

4∑
j=0

djκj
(2.41)

with the constants in numerator and denominator given as, respectively,

n0 = γ5 + 5γ4 + 5γ3 +γ2

n1 =−2γ2η (1 +γ)
(
2γ2 + 8γ+ 5

)
n2 =−6γ5−30γ4−47γ3−15γ2 + 2γ
n3 = 2η (1 +γ)

(
2γ4 + 8γ3 + 16γ2 + 4γ−1

)
n4 = γ5 + 5γ4 + 27γ3 + 55γ2 + 12γ−2
n5 =−2η (1 +γ)

(
3γ2 + 12γ+ 2

)
n6 =−γ3−9γ2−30γ−4
n7 = 6η (1 +γ)
n8 = 6

(2.42)

and 
d0 = γ2 +γ
d1 =−η (1 +γ)(2γ+ 1)
d2 =−γ2−3γ−1
d3 = η (1 +γ)
d4 = 1

(2.43)

Parameters Deterministic model [46] Uncertain model

α

 
γ

µ(1 +γ)2

 
γ (1−κη)

µ(1 +η2)(1 +γ)2

ξ

 
3γ2

8µ(1 +γ)

œ
γ
(
1 +η2)

8µ(1−κη)(1 +κ2)2

8∑
i=0

niκ
i

4∑
j=0

djκj

G
∣∣
λ=λ−

L ,λ
+
R

…2 +γ

γ

κ+η

γ (1 +η2)

Table 2.1: Optimal parameters of TMDI for a deterministic and uncertain SDOF
primary system under force excitation. Constants ni and dj are given in Eqs. (2.42)

and (2.43) with γ = µ+ν and κ=
»

(1 +η2)(1 +γ)2−1.
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2. Worst-Case Optimization of TMDI

2.2.3 Preliminary remarks
Up to now, all optimal parameters of TMDI are derived for a SDOF uncertain
mechanical system. Their analytical formulae in both deterministic and uncertain
scenarios are summarized in Table 2.1. By vanishing the stiffness uncertainty (i.e.
η = 0), the proposed optimal parameters reduce to those derived by Marian and
Giaralis [46], validating the proposed optimal design.

An observation could be made by regarding Eq. (2.32) that for a given bound on
stiffness uncertainty η, the vibration amplitude at fixed points is solely controlled
by γ, i.e. the sum of mass ratio and inertance-to-mass ratio. Figure 2.5 shows two
identical FRFs corresponding to different sets of parameters: µ = 0.05, ν = 0.01,
η = 20% (represented by solid lines); µ = 0.03, ν = 0.03, η = 20% (represented by
circle markers). Therefore, one can infer that in the harmonically forced case, the
global vibration control effect remains unchanged as if the total amount of tuned
mass and inertance is unchanged. In other words, the tuned mass and the grounded
inertance are interchangeable so that the need for the tuned mass could be partially
diminished by increasing the amount of inertance.

0.5 0.7 0.9 1.1 1.3 1.5

2

4

6

8

10

12

C1 C2

Figure 2.5: Displacement FRFs of primary system controlled by a TMDI with the
worst-case optimal design. Solid line: µ = 0.05, ν = 0.01, η = 20%; circle markers:
µ= 0.03, ν = 0.03, η= 20%. C1 and C2 correspond to FRFs with δ=−η and δ= +η,

respectively.

Finally, the optimal parameters of TMD in the worst-case optimal scenario could
be achieved from those of TMDI with removing the grounded inerter (i.e. ν = 0 and
γ = µ), which are given in Table 2.2. Again, their analytical expressions reduce
to the long-established formulae of Den Hartog [2] in the deterministic scenario.
However, it is worth noting that the worst-case optimal parameters of TMDI could
not be obtained by extending those of TMD with simply replacing µ by γ, due to
the fact that the two optimal tuning parameters in Eqs. (2.33) and (2.41) of TMDI
are not dictated by γ but a function of µ and γ simultaneously.
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Numerical investigation

Parameters Deterministic model [2] Uncertain model

α
1

1 +µ

 
(1− κ̂η)

(1 +η2)(1 +µ)2

ξ

 
3µ

8(1 +µ)

œ
1 +η2

8(1− κ̂η)(1 + κ̂2)2

8∑
i=0

n̂iκ̂
i

4∑
j=0

d̂j κ̂j

G
∣∣
λ=λ−

L ,λ
+
R

…2 +µ

µ

κ̂+η

µ(1 +η2)

Table 2.2: Optimal parameters of TMD for a deterministic and uncertain SDOF
primary system under force excitation. Constants n̂i and d̂j are given in Eqs. (2.42)

and (2.43) with replacing γ by µ. κ̂=
»

(1 +η2)(1 +µ)2−1.

2.3 Numerical investigation
In this section, the proposed tuning methodology is validated by comparing with
existing or numerical solutions. Furthermore, we will highlight the effectiveness of
proposed worst-case optimum design and the favourable effect of grounded inerter
against parameter detuning.
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Figure 2.6: Displacement FRFs of primary system controlled by a TMD related
to three levels of stiffness uncertainty: (a) δ = −η; (b) δ = +η. The TMD is opti-
mized by either the method in [14] (represented by circle marker) or the proposed
methodology (marked by lines). The mass ratio is set as µ= 0.05. Solid line: η = 0,

dotted line: η = 10%, dash-dotted line: η = 20%.
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2. Worst-Case Optimization of TMDI
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Figure 2.7: Displacement FRFs of primary system controlled by a TMDI corre-
sponding to three inertance-to-mass ratios: (a) δ = −η; (b) δ = +η. The design
parameters are either analytically derived (solid lines) or numerically solved (dash-
dotted lines). The mass ratio and the uncertainty remain unchanged as: µ = 0.05

and η = 20%, while three values of ν are used: ν = 0, 0.05 and 0.10.

2.3.1 Validation of derived solutions

2.3.1.1 Case of TMD

Figure 2.6 depicted frequency responses corresponding to TMD optimized either by
the proposed methodology or the method in [14], which are marked by solid lines
and circle markers, respectively. The mass ratio is set as µ = 0.05 and three values
of η are used for simulation: η = 0, 10% and 20%. As evident from Figure 2.6, the
TMD calibrated by two methods yields exactly the same dynamics responses for all
uncertainty magnitudes.

It should be mentioned that closed-form solutions to the mechanical damping
ratio ξ and the vibration amplitude at fixed points h are lacking in [14], which are
herein provided in Table 2.2.

2.3.1.2 Case of TMDI

The design proposed for TMDI will be validated by comparing with numerical so-
lutions to its worst-case H∞ optimization. Their relevant FRFs are plotted in Fig-
ure 2.7. The mass ratio and the uncertainty magnitude are constant: µ = 0.05
and η = 20%, while three inertance-to-mass ratios are used: ν = 0, 0.05 and 0.10.
Clearly, the response curves with analytical solutions deviate slightly from the ones
with numerically obtained parameters, which is attributed to the suboptimal nature
of methodologies based on fixed points. Nevertheless, the maximum difference in
peak amplitude is of merely 2.7%. Therefore, the proposed methodology could yield
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Numerical investigation

accurate solutions to the worst-case optimal design of TMDI.
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Figure 2.8: Displacement FRFs of primary system controlled by a: (a) TMD; (b)
TMDI. The set of parameters is: µ = 0.05, ν = 0.03 and η = 20%. Thin solid lines:

with the classic design, thick solid lines: with the worst-case optimal design.

2.3.2 Effectiveness of worst-case design and influence of
grounded inerter

2.3.2.1 Harmonic excitation scenario

Figures 2.8a and 2.8b demonstrate the displacement FRFs of primary system con-
trolled by a TMD and TMDI, respectively, with classic equal-peak tuning (marked
by thin solid lines) or the proposed design (represented by thick solid lines). The
worst-case H∞ norm of normalized vibration amplitude is listed in Table 2.3 for all
four cases. It clearly suggests that for both TMD and TMDI, the worst-case opti-
mal design leads to a pair of quasi-equal peaks evidently lower than the maximum
amplitude with the classic design. More precisely, the proposed calibration strategy
contributes to the reduction of worst-case peak amplitude by 30.7% (or 27.5%) for
the primary system controlled by a TMD (or TMDI). Furthermore, the TMDI with
either classic or proposed design always conducts to a smaller peak amplitude than
its counterpart without inerter, implying that the incorporation of grounded inerter
could render the detuning effect on the frequency response less important. With an
inertance-to-mass ratio ν being 0.03, the classic and robust TMDI can decrease the
peak amplitude by 32.3% and 29.1%, respectively, when compared to their TMD
counterpart. Finally, the robust TMDI could reduce the worst-case peak vibration
amplitude by 50.9% compared to the case of classic TMD.
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2. Worst-Case Optimization of TMDI

Classic TMD Robust TMD Classic TMDI Robust TMDI
‖G‖∞ 17.21 11.92 11.65 8.45

Table 2.3: Worst-caseH∞ norm of displacement FRFs of primary system controlled
by either a TMD or a TMDI with classic or robust optimal design. The set of

parameters is: µ= 0.05, ν = 0.03 and η = 20%.

In fact, one can analytically investigate the influence of mass ratio µ, inertance-
to-mass ratio ν and the uncertainty magnitude η on the vibration control perfor-
mance. The partial derivative of vibration amplitude at fixed points Gopt with
respect to these variables are provided in Appendix A.1. It suggests that Gopt is a
monotonically decreasing function of γ (thereby µ and ν), while it increases mono-
tonically as η increases. Therefore, for a given uncertainty η, increasing the total
amount of tuned mass and inertance could contribute to compensate the deteri-
oration of vibration control effect incurred by the uncertainty present in the host
structure, which is also reflected in Figure 2.7. More precisely, for a given mass ratio
of 0.05 and a 20% uncertainty, increasing the inertance-to-mass ratio ν from 0 to
0.05 can reduce the worst-case peak amplitude by 39.2%. Furthermore, a reduction
of 53.4% could be achieved when ν arrives at 0.10, where the worst-case peak am-
plitude decreases to 5.56, inferior to 6.41 which is the peak amplitude with a TMD
in the deterministic scenario. Reminding the mass amplification effect of inertial
devices, a large value of γ can be easily achieved without increasing considerably
the total weight of TMDI.

2.3.2.2 Random excitation scenario

Of a special interest is to examine the applicability of proposed robust design in
the case of random excitation. In an effort to quantify the vibration sustained by
the broadband-excited host structure, a performance index PI related to its mean
square displacement is herein adopted, as defined in Appendix A.2.

Figure 2.9a plots the evolution of PIs for TMDIs with either classic or robust
design against the inertance-to-mass ratio ν. The mass ratio and the uncertainty
magnitude are set as: µ= 0.05 and η = 20%. Clearly, the worst-case optimal TMDI
always yields a smaller value of PI in the whole range of ν when compared to its
counterpart with classic design. Alternatively speaking, the primary system vibrates
less importantly when tuned by the proposed strategy, signifying its effectiveness in
the random vibration case. However, the two curves in Figure 2.9a approach each
other as the amount of inertance increases, suggesting that the control performance
improvement introduced by the robust design is minor for a large inertance, as
confirmed by Figure 2.9b. Finally, the positive influence brought by the grounded
inertance is demonstrated in Figure 2.9c, in which is plotted the reduction in PI for
TMDI with either classic or robust design when compared to their TMD counterpart.
With an inertance-to-mass ratio being 0.05, the TMDI with classic (or robust) design
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Figure 2.9: (a) Evolution of performance index PI against the inertance-to-mass
ratio ν for the set of parameters: µ = 0.05 and η = 20%. Thin line: classic TMDI,
thick line: robust TMDI, circle markers: ν = 0. (b) Reduction in PI (in %) for
robust TMDI with respect to classic TMDI. (c) Reduction in PI (in %) for TMDI

compared to TMD. Thin line: classic design, thick line: robust design.

can decrease the root mean displacement of primary system by 41.0% (or 35.5%,
respectively) compared to a TMD.

2.3.3 Discussion
A remark can be first made that the proposed design is always more effective than
the classic design in terms of confining the vibration of host structure under both
harmonic and random excitation. Besides, the incorporation of a grounded inerter
always contribute to the improvement of vibration control performance.

The proposed optimal design is proven to be effective in terms of controlling
the worst-case vibration amplitude of uncertain primary system, corresponding to
the scenario at lower and upper bounds of uncertainty, i.e. δ = ±η. Meanwhile,
it is also of interest to inspect the performance within the interval [−η,+η]. As
depicted in Figure 2.10, the peak vibration amplitude of primary system ‖G‖∞
varies as the actual stiffness uncertainty δ sweeps from −η to +η. More precisely,
‖G‖∞ is bounded by [5.12,11.65] and [6.60,8.45] (or [6.44,17.21] and [8.67,11.92])
when classic and robust designs are applied to the TMDI (or TMD), respectively.
Therefore, the first observation could be made in conjunction with Figures 2.10a
and 2.10b that the robust design leads to a smaller variability in ‖G‖∞ for a given
uncertainty interval. Moreover, the vibration amplification for a mechanical system
controlled by a classic TMDI could go up to 127.5% when its stiffness is largely
softened (insides the zone I). Meanwhile, the robust design could reduce the worst-
case peak vibration amplitude by 27.5%, however, at the expense of amplifying
the vibration insides the zone II where the actual stiffness of mechanical system is
stiffened or lightly softened. Hence, a remark is herein drawn that the TMDI with
robust design could lose its effectiveness, or even worse, bring damaging effects into
the vibration control performance when the stiffness uncertainty is overestimated,
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2. Worst-Case Optimization of TMDI

namely a too large value of η imposed for a small δ. All aforementioned observations
also hold for the case with a TMD.
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Figure 2.10: Evolution of ‖G‖∞ against actual stiffness uncertainty δ sweeping
within [−η,+η]: (a) TMD; (b) TMDI. The set of parameters is: µ= 0.05, ν = 0.03
and η = 20%. Thin solid lines: classic design, thick solid lines: worst-case design.

2.4 Concluding remarks
This chapter investigates the optimal design of TMDI for controlling a mechanical
system under UBB stiffness uncertainty. Posed as a min-max optimization problem,
its analytical solutions are derived by applying a novel algebraic method, which
is based on the philosophy of robust equal peaks and the perturbation approach.
Ready-to-use formulae to the optimal parameters of TMDI (and also TMD) are then
provided in this chapter.

The presence of uncertainty always leads to the parameter mismatch, thereby
entailing a deteriorated performance of vibration control. Nevertheless, increasing
the total amount of tuned mass and inertance is a favourable way to resist the
detuning effect. Numerical results demonstrate that for a primary system with a
20% stiffness uncertainty and with a mass ratio of 0.05, incorporating a grounded
inerter with an inertance-to-mass ratio of 0.10 can decrease the worst-case peak
amplitude by 53.4%, engendering a vibration control performance superior to the
TMD with the same mass ratio in the deterministic scenario.

In the next chapter, inerters will be employed in conjunction with two TMDs
arranged in series, whose vibration control performance will be compared with its
counterpart with a single TMD.
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Chapter 3

Series Double Tuned Mass
Damper with Inerters

It was reported in Chapter 1 that with the same amount of tuned mass, a series
DTMD (SDTMD) is more effective and robust than its parallel counterpart, the
classic TMD and the viscoelastic TMD. Nevertheless, a simple and effective ana-
lytical approach had not been yet developed in the literature to derive its optimal
parameters. Besides, the beneficial effects of inerter on structural vibration control
have been extensively investigated and industrial applications of inerter could be
found in both fields of automotive and civil engineering.

Enlightened by the layout of TMDI, a novel control device, termed as the
SDTMD with inerters (SDTMDI), is proposed for the first time. It is expected
to make use of benefits of both SDTMD and inerter in terms of vibration control,
namely the enhanced effectiveness and the lightweight potential. Depending on the
positions of inerters, the SDTMDI could have two different configurations: grounded
type (G-SDTMDI) and inserted type (I-SDTMDI). For the former layout, two in-
erters relate each tuned mass to the ground, while they are inserted between any
two adjacent masses in the latter layout, as depicted in Figures 3.1a and 3.1b, re-
spectively. Furthermore, it will be demonstrated that the phenomena of invariant
points are encountered in the displacement FRFs of primary system for both con-
figurations, suggesting that the methodology based on fixed points can be applied
to carry out their optimization analytically and efficiently. Finally, ready-to-use
formulae to optimal parameters of both SDTMDIs and subsequently the SDTMD
will be provided and their control performance will be assessed by comparing with
some well-known control devices.

3.1 Mathematical modeling

The host structure is modeled by a mass-spring-damper system (m1-k1-c1), which is
of SDOF and is lightly damped. The SDTMD is composed of two TMDs arranged
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3. Series Double Tuned Mass Damper with Inerters

m2

k2 c2

m1

k1 c1

x1

x2

F

d1

m3

k3 c3

x3

d2

TMDA

TMDB

(a)

m2

k2 c2 d1

m1

k1 c1

x1

x2

F

m3

k3 c3

x3

d2

TMDA

TMDB

(b)

Figure 3.1: Schematic diagrams of a SDOF primary system controlled by a: (a)
G-SDTMDI; (b) I-SDTMDI.

in series, in which the TMD adjacent to host structure is denoted as TMDA, while
another TMD is denoted as TMDB. m2, k2 and c2 (or m3, k3 and c3) are the lumped
mass, stiffness and viscous damping of TMDA (or TMDB), respectively. Meanwhile,
two inerters d1 and d2 are linked to the tuned masses m2 and m3, respectively, and
their another terminals are either connected to the ground or to the adjacent masses.
In the next, the underlying dynamics related to two configurations will be described
and all dimensionless parameters will be introduced.

3.1.1 G-SDTMDI
The dynamics of whole system depicted in Figure 3.1a is governed by the EOMs:

m1ẍ1 = c2(ẋ2− ẋ1) +k2(x2−x1)− c1ẋ1−k1x1 +F (t) (3.1a)
m2ẍ2 = c2(ẋ1− ẋ2) +k2(x1−x2) + c3(ẋ3− ẋ2) +k3(x3−x2)−d1ẍ2 (3.1b)
m3ẍ3 = c3(ẋ2− ẋ3) +k3(x2−x3)−d2ẍ3 (3.1c)

where x1, x2 and x3 are the displacements of m1, m2 and m3, respectively. Mean-
while, the natural frequencies of each subsystem can be computed by:

ω1 =
 

k1
m1

, ω2 =
 

k2
m2

, ω3 =
 

k3
m3

. (3.2)

And their mechanical damping ratios are evaluated by:

ξ1 = c1
2
√
k1m1

, ξ2 = c2
2
√
k2m2

, ξ3 = c3
2
√
k3m3

. (3.3)
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Mathematical modeling

Based on these mechanical properties, the following dimensionless parameters and
constants are introduced in order to facilitate the optimization.

ν = m2
m1

: The mass ratio between TMDA and primary system

µ−ν = m3
m1

: The mass ratio between TMDB and primary system

µ= m2 +m3
m1

: The mass ratio between total tuned mass and primary system

θ = d1
m1

: The inertance-to-mass ratio related to the inerter d1

η− θ = d2
m1

: The inertance-to-mass ratio related to the inerter d2

η = d1 +d2
m1

: The total inertance-to-mass ratio

α = ω2
ω1

: The frequency tuning ratio between TMDA and primary system

β = ω3
ω1

: The frequency tuning ratio between TMDB and primary system

(3.4)
Finally, the EOMs (3.1) can be recast into the dimensionless form:

x′′1 + 2ξ1x
′
1 +x1 + (ν+ θ)x′′2 + (µ+η−ν− θ)x′′3 = F/k1 (3.5a)

(ν+ θ)x′′2 + (µ+η−ν− θ)x′′3 + 2ξ2να
(
x′2−x′1

)
+να2 (x2−x1) = 0 (3.5b)

(µ+η−ν− θ)x′′3 + 2ξ3β (µ−ν)
(
x′3−x′2

)
+β2 (µ−ν)(x3−x2) = 0 (3.5c)

where the prime stands for differentiation with respect to the scaled time τ .

3.1.2 I-SDTMDI
The whole system related to I-SDTMDI is shown in Figure 3.1b, whose dynamics is
described by:
m1ẍ1 =d1(ẍ2− ẍ1) + c2(ẋ2− ẋ1) +k2(x2−x1)− c1ẋ1−k1x1 +F (t)
m2ẍ2 =d1(ẍ1− ẍ2) + c2(ẋ1− ẋ2) +k2(x1−x2) +d2(ẍ3− ẍ2) + c3(ẋ3− ẋ2) +k3(x3−x2)
m3ẍ3 =d2(ẍ2− ẍ3) + c3(ẋ2− ẋ3) +k3(x2−x3)

(3.6)
By taking the same procedure, Eq. (3.6) can be transformed into the dimensionless
form as follows:

x′′1 + 2ξ1x
′
1 +x1 +νx′′2 + (µ−ν)x′′3 = F/k1

νx′′2 + (µ−ν)x′′3 + θ
(
x′′2−x′′1

)
+ 2ξ2να

(
x′2−x′1

)
+να2 (x2−x1) = 0

(µ−ν)x′′3 + (η− θ)
(
x′′3−x′′2

)
+ 2ξ3β (µ−ν)

(
x′3−x′2

)
+β2 (µ−ν)(x3−x2) = 0

(3.7)
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3. Series Double Tuned Mass Damper with Inerters

By vanishing the inertance-to-mass ratios η and θ, Eqs. (3.5) and (3.7) reduce to the
same set of equation, describing the underlying dynamics of a forced SDOF primary
system controlled by a SDTMD.

3.2 Optimization of G-SDTMDI

For deriving concise solutions to optimal parameters of dampers, it is common prac-
tice to take the assumption of an undamped primary system (i.e. c1 = ξ1 = 0).
Meanwhile, it was confirmed in [28, 29, 30, 31] that in the optimal scenario, the
TMDA of SDTMD should have zero damping, which will be used as a precondition
for the optimal design of SDTMDIs. By taking into consideration the previous facts
and taking the Laplace transform of Eq. (3.5), the normalized displacement FRF
of primary system controlled by G-SDTMDI can be formulated as:

G=
∣∣∣∣∣ X1
F/k1

∣∣∣∣∣ =

√
A+Bξ2

3
C+Dξ2

3
(3.8)

with its four coefficients given by:



A=
[
β2 (µ−ν)

(
να2− (µ+η)λ2)− (µ+η−ν− θ)λ2 (να2− (ν+ θ)λ2)]2

B = 4β2λ2 (µ−ν)2
[
να2− (µ+η)λ2

]2

C =
ï
λ2 (1−λ2)[β2 (µ−ν)(µ+η)− (ν+ θ)(µ+η−ν− θ)λ2]+

να2λ2 (µ+η−ν− θ)
[
1− (1 +ν+ θ)λ2]−να2β2 (µ−ν)

[
1− (1 +µ+η)λ2]ò2

D = 4β2λ2 (µ−ν)2
[
(1−λ2)

[
να2− (µ+η)λ2]−να2λ2 (µ+η)

]2

(3.9)

Three sets of simulation are performed by varying the mechanical damping ratio
ξ3 of TMDB, and the displacement FRFs of primary system are demonstrated in
Figure 3.2. Clearly, the response curves corresponding to different damping levels
always intersect at four positions, signifying the existence of four invariant points.
Therefore, methodologies based on fixed points could be applied to derive its optimal
design. Apparently, the FPT of Den Hartog could not be directly employed, as it is
dedicated to systems characterized by two fixed points. Nevertheless, its extended
version proposed in [53] can efficiently tackle the optimization problem of systems
featured by four invariant points, which will be used to optimize both SDTMDIs
hereafter.
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Optimization of G-SDTMDI
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Figure 3.2: Displacement FRFs of primary system controlled by a G-SDTMDI
with three sets of parameters. Only the mechanical damping ratio ξ3 varies, while
the other parameters remain unchanged: µ= 0.05, ν = 0.04, α= 1.3, β = 0.9, ξ2 = 0
and η = θ = 0.02. Dotted line: ξ3 = 0, solid line: ξ3 = 0.2, dash-dotted line: ξ3 =∞.

3.2.1 Analytical derivation of optimal parameters

The total mass ratio µ and the total inertance-to-mass ratio η are generally imposed
by practical constraints. Therefore, design parameters are the mass ratio ν between
TMDA and primary system, the natural frequency ratios α and β between two
TMDs and primary system, and the mechanical damping ratio ξ3 of TMDB.

3.2.1.1 Optimal solutions to ν, α and β

The first step is to find the optimal values of ν, α and β which lead to an identical
vibration amplitude at four invariant points. Considering two extreme cases, ξ3 = 0
and ξ3→∞, one has:

G
∣∣∣
ξ3=0

=
…
A

C
, G

∣∣∣
ξ3→∞

=
…
B

D
. (3.10)

By equating this two expressions, a quartic equation in λ2 is obtained:

a4λ
8 +a3λ

6 +a2λ
4 +a1λ

2 +a0 = 0 (3.11)
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3. Series Double Tuned Mass Damper with Inerters

with coefficients of all terms given by:

a4 =−2(µ+η)(ν+ θ)(µ+η−ν− θ)

a3 = 2(µ+η−ν− θ)
[

(µ+η)
(
θ+ν+να2)+να2 (ν+ θ)(1 +µ+η)

]
+2(µ−ν)(µ+η)2β2

a2 =−2β2 (µ−ν)(µ+η)
[
2να2 + (µ+η)

(
1 +να2)]

−να2 (µ+η−ν− θ)
[
2να2 + (µ+η+ν+ θ)

(
2 +να2)]

a1 = 2να2
[
β2 (µ−ν)(µ+η)

(
2 +να2)+να2β2 (µ−ν) +να2 (µ+η−ν− θ)

]
a0 =−2α4β2ν2 (µ−ν)

(3.12)

Let denote the squared vibration amplitude at fixed points as h, i.e. G2
∣∣∣
ξ3=0

=

G2
∣∣∣
ξ3→∞

= h, which yields another optimality condition in the form of a fourth

degree polynomial in λ2:

b4λ
8 + b3λ

6 + b2λ
4 + b1λ

2 + b0 = 0 (3.13)

with five coefficients given as a function of α, β, ν and h:

b4 = h(µ+η)2

b3 =−2h(µ+η)
[
(1 +µ+η)να2 +µ+η

]
b2 = hν2 (1 +µ+η)2α4 + 2hν (µ+η)(2 +µ+η)α2 + (h−1)(µ+η)2

b1 =−2να2[hν (1 +µ+η)α2 + (h−1)(µ+η)
]

b0 = ν2α4 (h−1)

(3.14)

In order to yield the same invariant points, the coefficients of like power of λ2 in
Eqs. (3.11) and (3.13) should satisfy the proportionality relationship imposed by
the Vieta’s theorem, which cumulates into four equations:

a4b3− b4a3 = 0 (3.15a)
a4b2− b4a2 = 0 (3.15b)
a4b1− b4a1 = 0 (3.15c)
a4b0− b4a0 = 0 (3.15d)

By solving simultaneously the four equations in (3.15), the optimal values of α, β,
ν and h can be determined and their closed-form formulae are given as a function
of the total mass ratio µ and two inertance-to-mass ratios η and θ, as follows:
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Optimization of G-SDTMDI

• The natural frequency ratio α between TMDA and primary system is formu-
lated as:

α =

√
(µ+η)

[
1 + 2(µ+η)

]
(1 +µ+η)

[
(µ+η)(1−2θ)− θ

] (3.16)

In order to yield a real value for α, the inertance-to-mass ratio θ should be
bounded by:

0 = θ−1 < θ < θ+
1 = µ+η

1 + 2(µ+η) (3.17)

• The natural frequency ratio β between TMDB and primary system is formu-
lated as:

β = (µ+η)
 

2
(1 +µ+η)

[
1 + 2(µ+η)

][
2(µ+η)(µ+ θ) + θ−η

] (3.18)

Similarly, there exists another constraint for θ:

θ > θ−2 = η−2µ(µ+η)
1 + 2(µ+η) (3.19)

• The mass ratio ν between tuned mass m2 and primary mass m1 is equal to:

ν = µ+η

1 + 2(µ+η) − θ (3.20)

whose non-negativity is automatically guaranteed when Eq. (3.17) is satisfied.

• Finally, the squared vibration amplitude h at four invariant points can be
expressed as:

h= 1 +µ+η

µ+η
(3.21)

Without loss of generality, the vibration amplitude at fixed points is considered
as the H∞ norm of primary system in the following context, namely

√
h =

‖G‖∞.

3.2.1.2 Optimal solution to ξ3

Up to now, the only parameter to be determined is the mechanical damping ratio
ξ3 which has an important influence on the shape of frequency response curve of
primary system. With the knowledge of α, β, ν and h, the mechanical damping
ratio can be evaluated by transforming Eq. (3.8) into the following form:

ξ3 =
 
−A−hC
B−hD

(3.22)
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3. Series Double Tuned Mass Damper with Inerters

where the only unknown parameter is the frequency λ, which should be properly
chosen. According to the extended fixed points technique [53], the optimal ξ3 should
be imposed as the RMS value of damping levels evaluated at three reference frequen-
cies λ1, λ2 and λ3. According to [54], the reference frequencies correspond to the
real eigenvalues of two particular dynamical systems, G

∣∣
ξ3→∞ and G

∣∣
ξ3=0. The

characteristic equation relevant to G
∣∣
ξ3→∞ is a quadratic polynomial in λ2, i.e.:

P1(λ2) = (µ+η+ 1)
(
λ2)2−2(µ+η+ 1)λ2 + 1 = 0 (3.23)

from which two reference frequencies can be obtained, as follows:

λ2
1 = 1−

 
µ+η

µ+η+ 1 , λ2
2 = 1 +

 
µ+η

µ+η+ 1 .
(3.24)

And the eigenvalue of G
∣∣
ξ3=0 should satisfy the following expression of order 3 in

λ2:

P2(λ2) = (γ+ 1)2 (λ2)3− (γ+ 1)(4γ+ 3)
(
λ2)2 + (γ+ 1)(2γ+ 3)λ2−1 = 0 (3.25)

where an intermediate variable γ = µ+ η is introduced in order to facilitate the
curve fitting process, which stands for the sum of the total mass ratio and the
total inertance-to-mass ratio. Clearly, Eq. (3.25) has three possible roots, however,
only the one between λ1 and λ2 is chosen as the third reference frequency λ3 [53].
Although the exact solutions to the roots of P2(λ2) could be analytically derived,
their formulae are extremely cumbersome and irreducible. Therefore, only the curve-
fitted solution is retained, which is in the form of linear polynomial in γ:

λ2
3 = 1− γ4 = 1− µ+η

4 (3.26)

The non-negativity of λ2
3 imposes that µ+ η ≤ 4, which is satisfied for most engi-

neering applications. After finding the expressions of three reference frequencies, Eq.
(3.22) can be employed to evaluate their corresponding mechanical damping ratios,
ξ
∣∣
λ1
, ξ
∣∣
λ2

and ξ
∣∣
λ3
. Finally, the optimal mechanical damping ratio ξ3 is calculated

as their RMS value, namely:

ξ3 =

 
ξ2∣∣

λ1
+ ξ2∣∣

λ2
+ ξ2∣∣

λ3

3 =

√
γ3 (γ3 + 34γ2−111γ−160

)
24(γ−4)(γ+ 1)(2γ+ 1)

[
2γ (µ+ θ) + θ−η

]
(3.27)

which remains real if Eq. (3.19) is satisfied. In summary, the allowable interval
for the inertance-to-mass ratio θ is given by θ ∈

(
θ−, θ+) with its lower and upper

bounds defined as:
θ− = max

{
θ−1 , θ

−
2
}
, θ+ = θ+

1 . (3.28)
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Optimization of G-SDTMDI

3.2.2 Validation of derived solutions
It is of a primary importance to validate the proposed optimal design of G-SDTMDI.
To this end, it is pertinent to reduce the G-SDTMDI to a SDTMD by vanishing the
inertance, i.e. η = θ = 0 and compare its dynamics response to that whose param-
eters are tuned by using the H∞ optimization criterion. The optimal parameters
of SDTMD based on the extended FPT are summarized in Table 3.1. Meanwhile,
exact solutions to its H∞ optimal design will be numerically solved.

ν α β ξ2 ξ3 ‖G‖∞
µ

1 + 2µ

…1 + 2µ
1 +µ

 
1

(1 +µ)(1 + 2µ) 0
 
µ
(
µ3 + 34µ2−111µ−160

)
48(µ−4)(µ+ 1)(2µ+ 1)

…1 +µ

µ

Table 3.1: Closed-form formulae to optimal parameters of SDTMD attached to a
SDOF undamped primary system under force excitation.

µ= 0.01 ν α β ξ2 ξ3 ‖G‖∞
H∞ optimization 0.0098 1.0057 0.9871 0 0.0904 11.2093
Extended FPT 0.0098 1.0049 0.9852 0 0.0904 11.5344

µ= 0.05 ν α β ξ2 ξ3 ‖G‖∞
H∞ optimization 0.0455 1.0303 0.9278 0 0.1923 5.1251
Extended FPT 0.0455 1.0235 0.9305 0 0.1944 5.3527

µ= 0.10 ν α β ξ2 ξ3 ‖G‖∞
H∞ optimization 0.0833 1.0554 0.8717 0 0.2628 3.6778
Extended FPT 0.0833 1.0445 0.8704 0 0.2629 3.9222

µ= 0.15 ν α β ξ2 ξ3 ‖G‖∞
H∞ optimization 0.1154 1.0784 0.8210 0 0.3094 3.0598
Extended FPT 0.1154 1.0632 0.8179 0 0.3090 3.3036

Table 3.2: Exact and approximate parameters of SDTMD based on the H∞ opti-
mization criterion and the extended FPT, respectively, for four mass ratios: µ= 0.01,

0.05, 0.10 and 0.15.

Table 3.2 summarizes the exact and approximate values for all parameters of
SDTMD, which are derived according to the H∞ optimization criterion and the
extended FPT, respectively. Four values of mass ratio are considered, µ = 0.01,
0.05, 0.10 and 0.15, and their corresponding FRFs are depicted in Figure 3.3. One
can observe that with the H∞ optimal design, the FRFs are featured by three
distinct peaks having the same amplitude, while there exists a slight misalignment
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3. Series Double Tuned Mass Damper with Inerters

among these peaks when analytically obtained parameters are used. In general, the
extended FPT yields approximate but highly accurate solutions, due to which this
method can be employed for optimizing a coupled system featured by four invariant
points.

0.6 0.8 1 1.2 1.4

5

10

15

=0.10

=0.15

=0.05

=0.01

Figure 3.3: Displacement FRFs of primary system controlled by a SDTMD, whose
parameters are tuned by the H∞ optimization criterion (solid lines) and the ex-
tended FPT (dash-dotted lines), respectively. Four sets of simulation are performed

corresponding to different mass ratios: µ= 0.01, 0.05, 0.10 and 0.15.

0.6 0.8 1 1.2 1.4

1

3

5

Figure 3.4: Displacement FRFs of primary system controlled by a G-SDTMDI
(solid line: ξ2 = 0, dash-dotted line: ξ2 = 1%). The tuning parameters are optimized

for: µ= 0.05 and η = θ = 0.

Besides, the phenomenon of zero damping for ξ2 is encountered in both numerical
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Optimization of G-SDTMDI

and analytical designs for all mass ratios, proving that no optimal value exists for
c2 when bounded by the non-negativity constraint. In practice, the zero-damping
situation never occurs, therefore, the influence of damping in TMDA on the global
dynamics should be studied. In Figure 3.4, the FRFs of primary system are depicted
when controlled by an optimized G-SDTMDI with zero damping for TMDA (marked
by solid line) or with an inherent damping ratio of 1% (marked by dash-dotted line).
Clearly, the global frequency response slightly changes, with the difference between
peak vibration amplitudes being of only 1%. Hence, the proposed analytical design
can be still used in practical applications.
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(a)
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(b)

Figure 3.5: Displacement FRFs of primary system controlled by an optimized G-
SDTMDI with different sets of parameters. (a) Solid line: µ = 0.05, η = 0.02 and
θ = 0.01; circle marker: µ= 0.04, η = 0.03 and θ = 0.01. (b) Solid line: µ= 0.05 and

η = θ = 0.02; circle marker: µ= 0.05, η = 0.02 and θ = 0.

3.2.3 Remarks
As evident from Eq. (3.21), the normalized displacement amplitude at fixed points
is dictated by the sum of the total mass ratio µ and the total inertance-to-mass ratio
η. Therefore, one can imagine that the vibration control performance of G-SDTMDI
will be maintained if and only if this specific value, µ+η, remains unchanged. This
prediction is confirmed by Figure 3.5a, in which the dynamics response of primary
system does not change as the mass ratio µ decreases while the total inertance-to-
mass ratio η increases in order to keep the same amount of µ+η.

Another important finding to be mentioned is that the vibration control capabil-
ity of G-SDTMDI is irrelevant to the distribution of inertance in the control scheme.
As demonstrated in Figure 3.5b, the FRF of primary system remains unchanged ei-
ther by vanishing the inertance d1 (i.e. θ = 0) or removing the inertance d2 (i.e.
η = θ). Therefore, the G-SDTMDI can be simplified into two configurations: type I
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3. Series Double Tuned Mass Damper with Inerters

with only one inerter placed between the TMDA and the ground (depicted in Figure
3.6a), and type II with only one inerter relating the TMDB to the ground (shown in
Figure 3.6b). For the purpose of completeness, the analytical formulae of optimal
parameters for two variants are provided in Table 3.3 with allowable bounds on η
specified.

m2

k2 c2

m1

k1 c1

x1

x2

F

d

m3

k3 c3

x3

TMDA

TMDB

(a)

m2

k2 c2

m1

k1 c1

x1

x2

F

m3

k3 c3

x3

d
TMDA

TMDB

(b)

Figure 3.6: Two variant configurations of G-SDTMDI: (a) type I with only one
inerter placed between the TMDA and the ground; (b) type II with only one inerter

placed between the TMDB and the ground.

Parameters Type I Type II

ν
µ−2ηγ
2γ+ 1

γ

2γ+ 1

α

 
γ (2γ+ 1)

(γ+ 1)(µ−2ηγ)

…2µ+ 2η+ 1
µ+η+ 1

β

 
1

(γ+ 1)(2γ+ 1)

 
2γ2

(γ+ 1)(2γ+ 1)(2µγ−η)

ξ2 0 0

ξ3

 
γ
(
γ3 + 34γ2−111γ−160

)
48(γ−4)(γ+ 1)(2γ+ 1)

 
γ3 (γ3 + 34γ2−111γ−160

)
24(γ−4)(γ+ 1)(2γ+ 1)(2µγ−η)

η ∈
(
η−,η+) η− = 0, η+ = −µ+

√
µ2 + 2µ

2 . η− = 0, η+ = 2µ2

1−2µ with µ < 0.5.

Table 3.3: Analytical formulae to optimal parameters of two variants of G-
SDTMDI under force excitation and the allowable bounds on the total inertance-

to-mass ratio η.
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Optimization of I-SDTMDI

3.3 Optimization of I-SDTMDI

The optimal design of I-SDTMDI will be carried out by employing the same pro-
cedure in Section 3.2. For the purpose of brevity, the detailed optimization process
is omitted and only the expressions of different constants are provided in Appendix
B. By applying the proportionality relationship (3.15) with constants ai and bi
(i= 0, . . . ,4) given in Eqs. (B.4) and (B.3), the optimal solutions for α, β, ν and h
could be analytically obtained. Specifically, the squared displacement amplitude at
fixed points is expressed as:

h= (1 +µ) [θ+µ(1 + θ)]
µ2 (1 + θ) =

ï
1 + θ

µ(1 + θ)

ò 1 +µ

µ
(3.29)

suggesting that h > (1 +µ)/µ always holds for any positive θ. Reminding that
(1 +µ)/µ is exactly the squared vibration amplitude at fixed points related to the
SDTMD (as given in Table 3.1), a conclusion could be then drawn that the vibration
control performance of a SDTMD will be deteriorated by inserting an inerter between
the primary mass m1 and tuned mass m2 of TMDA. This finding will be examined
by looking at the frequency response of primary system under the condition that all
optimal parameters are obtained.

Furthermore, it clearly suggests that the vibration amplitude at fixed points
is solely controlled by the total mass ratio µ and the inertance-to-mass ratio θ.
Alternatively speaking, the inerter d2 incorporated between masses of TMDA and
TMDB has no influence on the global vibration control effect of I-SDTMDI. In
the objective of reducing the structural complexity and simplifying the optimization
procedure, the inerter d2 is then removed in the following context by imposing θ= η.

After the simplification, closed-form solutions to the optimal α, β and ν are
formulated as a function of the total mass ratio µ and the inertance-to-mass ratio
η:

α =
 

(µ+η+ 2µη) [2µ(µη+µ+η) +µ+η]
µ(µ+ 1)(µ+η) (3.30)

β =
 

µ+η+ 2µη
(µ+ 1)[2µ(µη+µ+η) +µ+η] (3.31)

ν = µ(µ+η)
2µ(µη+µ+η) +µ+η

(3.32)

By vanishing the inertance, i.e. η = 0, the expressions of h, α, β and ν in Eqs.
(3.29)-(3.32) are exactly the same as optimal parameters of SDTMD, as given in
Table 3.1.

Again, the optimal mechanical damping ratio ξ3 is chosen as the RMS value of
three mechanical damping ratios evaluated at reference frequencies, which are the
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3. Series Double Tuned Mass Damper with Inerters

real roots of characteristic equations of G
∣∣
ξ3→∞ and G

∣∣
ξ3=0, respectively:

P3(λ2) = (µ+ 1)(µ+η+µη)
(
λ2)2−2(µ+ 1)(µ+η+µη)λ2 + 2µη+µ+η = 0

(3.33)
and

P4(λ2) = (µ+ 1)2 (µη+µ+η)(2µη+µ+η)
(
λ2)3

−(µ+ 1)(µη+µ+η)
(
6ηµ2 + 8ηµ+ 4µ2 + 3µ+ 3η

)(
λ2)2

+(µ+ 1)(2µη+µ+η)
(
2ηµ2 + 4ηµ+ 2µ2 + 3µ+ 3η

)
λ2− (2µη+µ+η)2 = 0

(3.34)

The first characteristic equation (3.33) yields two reference frequencies described by:

λ2
1 = 1−µ

 
η+ 1

(µ+ 1)(µη+µ+η) , λ2
2 = 1 +µ

 
η+ 1

(µ+ 1)(µη+µ+η) .
(3.35)

while Eq. (3.34) is a cubic polynomial in λ2 and its constants before terms are
dependent of two variables, µ and η. Therefore, under no circumstance, the concise
solution of the third reference frequency λ2

3 could be achieved. In this context, the
surface fitting technique is applied to provide an approximate solution of λ2

3 in terms
of both µ and η, as follows:

λ2
3 = 1.00−0.16µ+ 0.24η−1.19µ2 + 2.75µη−1.97η2 (3.36)

This surface-fitted solution is a polynomial of second degree in both µ and η and

0.96
0.1

0.97

0.98
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2

0.99

0.08

1
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1.01
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0.020

Figure 3.7: Comparison of the exact and fitted solutions for λ2
3. Black dots: exact

solution at given pairs of (µ,η); grid surface: the fitted solutions.

are evaluated for µ ∈ [0.01,0.10] and η ∈ [0,0.10], which is represented by the grid

60

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI066/these.pdf 
© [S. Zhou], [2019], INSA Lyon, tous droits réservés



Numerical investigation

surface in Figure 3.7, while the exact solutions are marked by black dots. It should
be mentioned that for a larger interval of both µ and η, more accurate solutions
could be obtained by increasing the degree of employed polynomial model. With
the knowledge of three reference frequencies, one can calculate the optimal value for
ξ3 by employing Eq. (3.27), whose analytical formulation is, however, omitted in
this thesis.

Figure 3.8 demonstrates the FRFs of primary system coupled with a SDTMD,
whose parameters correspond to those reduced from a G-SDTMDI or I-SDTMDI.
Their coincidence validates the proposed optimal design for the I-SDTMDI.

0.6 0.8 1 1.2 1.4

1

3

5

G-SDTMDI
I-SDTMDI

Figure 3.8: Displacement FRFs of primary system controlled by a classic SDTMD
with optimal parameters derived for G-SDTMDI or I-SDTMDI. The total mass ratio
is set as: µ = 0.10. Solid line: with optimal design for G-SDTMDI, circle marker:

with optimal design for I-SDTMDI.

TMD [2] TMDI [46] SDTMD G-SDTMDI I-SDTMDI

‖G‖∞
…
µ+ 2
µ

…
µ+η+ 2
µ+η

…
µ+ 1
µ

…
µ+η+ 1
µ+η

 Å
1 + η

µ(1 +η)

ã
µ+ 1
µ

Table 3.4: H∞ norm of normalized displacement FRF of primary system when
controlled by five types of dampers: TMD, TMDI, SDTMD, G-SDTMDI and I-

SDTMDI.

3.4 Numerical investigation
Up to now, the optimal design of both types of SDTMDIs is conducted based on
the extended FPT. Table 3.4 summarizes all normalized displacement amplitudes of
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3. Series Double Tuned Mass Damper with Inerters

primary system at fixed points when controlled by five types of damper, i.e. TMD
[2], TMDI [46], SDTMD, G-SDTMDI and I-SDTMDI.

A first observation is that in the case of a SDOF primary system under force
excitation, the SDTMD leads to the same vibration amplitude at invariant points
as the IDVA plotted in Figure 1.13 (i.e. the IDVA-C3 in [53]). Therefore, one
can conclude that the SDTMD and the IDVA are equivalent in terms of vibration
control.

3.4.1 Performance index
In order to quantify the improvement of vibration control effect of damper II over
the damper I, it is pertinent to introduce a performance index P defined as:

P{I, II}=
Ç

1−
‖G‖∞,II
‖G‖∞,I

å
×100% (3.37)

The damper II outperforms the damper I when their relevant performance index is
positive, and the larger the positive value of P{I, II} is, the more significant this
outperformance is. It is the opposite case if a negative value is encountered.

0.04 0.08 0.12 0.16 0.2

 or  =  + 

26

27

28

29

P
 (

%
)

P{TMD, SDTMD}
P{TMDI, G-SDTMDI}

Figure 3.9: Evolution of performance indices as a function of µ or γ = µ+η. Solid
line: P{TMD,SDTMD}, circle markers: P{TMDI,G-SDTMDI}.

Let first look at the evolution of performance index relevant to the TMD and
SDTMD and their counterpart with grounded inerter as a function of the mass
ratio µ and µ+ η, respectively. As demonstrated in Figure 3.9, the curve of
P{TMD,SDTMD} is coincident with that of P{TMDI,G-SDTMDI}. Therefore,
it suggests that for both classic TMD and SDTMD, the incorporation of a grounded
inerter is equivalent to increase the physical mass of absorber by the same amount of
the added inertance. Moreover, one can remark from Figure 3.9 that with the same
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value of µ or µ+ η, the configuration of SDTMD can decrease the peak vibration
amplitude of primary system by 26−29% when compared to the TMD.
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Figure 3.10: Evolution of performance indices against the total mass ratio
µ and the total inertance-to-mass ratio η: (a) P{SDTMD,G-SDTMDI}; (b)

P{SDTMD, I-SDTMDI}.

The performance indices relating two types of SDTMDIs and the SDTMD are
also investigated, as depicted in Figure 3.10. Apparently, the G-SDTMDI always
yields a positive performance index, while those related to the I-SDTMDI are always
negative. Thus, one can conclude that a grounded inerter contributes to the improve-
ment of vibration control performance of SDTMD, while only potential detrimental
effect is observed if one incorporates an inerter between the primary system and
the TMDA. Moreover, for both configurations, changes made to the control effects
of a SDTMD are much pronounced when a considerable value of the ratio η/µ is
present. In the extreme case where a small mass ratio µ combined with a large
inertance-to-mass ratio η is encountered, the performance index could go up to 70%
for the G-SDTMDI, and migrates towards −300% for the I-SDTMDI.

3.4.2 Displacement FRF
The displacement FRFs of primary system are plotted in Figure 3.11 when controlled
by five aforementioned types of damper. The mass ratio and the inertance-to-mass
ratio are imposed as: µ = 0.05 and η = 0.02. The vibration control performance of
a damper is characterized by two features: the peak vibration amplitude of target
system and the frequency bandwidth of vibration reduction, the definition of which
is demonstrated in Figure 3.11a. Accordingly, their values corresponding to different
dampers are summarized in Table 3.5. Clearly, the G-SDTMDI has the best capa-
bility of vibration control, featured by the broadest reduction bandwidth and the
minimal vibration amplitude of controlled system. More precisely, compared to the
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3. Series Double Tuned Mass Damper with Inerters

classic TMD and SDTMD, the G-SDTMDI can enlarge the reduction bandwidth
by 54.2% and 17.8%, and reduce the peak amplitude by 28.3% and 14.2%, respec-
tively. One can image that with a larger inertance, the improvement will become
more significant. Meanwhile, the I-SDTMDI leads to a peak amplitude similar to
the classic TMD, and decreases the reduction bandwidth by 15.3% compared with
the classic SDTMD, confirming the previous remark that incorporating an inerter
between the main system and tuned mass of TMDA could bring detrimental effect
to the vibration control performance.

0.6 0.8 1 1.2 1.4

1

3

5

7

w/o control
TMD
TMDI

Reduction bandwidth

(a)

0.6 0.8 1 1.2 1.4

1

3

5

7

w/o control
SDTMD
G-SDTMDI
I-SDTMDI

(b)

Figure 3.11: Displacement FRFs of primary system under harmonic force excita-
tion with µ = 0.05 and η = 0.02. (a) Dotted line: without control, thin solid line:
classic TMD, thick solid line: TMDI. (b) Dotted line: without control, thin solid
line: classic SDTMD, thick solid line: G-SDTMDI, thick dashed line: I-SDTMDI.

TMD [2] TMDI [46] SDTMD G-SDTMDI I-SDTMDI
Reduction bandwidth 0.1625 0.1948 0.2128 0.2506 0.1803

Peak amplitude 6.4084 5.4443 5.3527 4.5923 6.4170

Table 3.5: Frequency bandwidths of vibration reduction and peak vibration am-
plitude of primary system when controlled by five types of dampers for the set of

parameters: µ= 0.05 and η = 0.02.

3.4.3 Discussion
It should be mentioned that the primary system under investigation is of SDOF and
the best control performance is observed when the inerter is grounded. The control
performance of a TMDI on a MDOF primary system was considered by Masri et al.
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[157], revealing that the control efficiency under stationary excitation is maximized
when the inerter is placed between the tuned mass and the ground. When a civil
structure of multiple storeys is to be controlled, the proposed G-SDTMDI can be
installed in such a way that the SDTMD is connected to a specific floor (usually the
top floor) via the spring k2 and damper c2, meanwhile, the inerter d relates one of
its two tuned masses to a penultimate or lower floor. Such an implementation was
also considered in [158], in which a TMDI is employed to mitigate the wind-induced
vibration of a tall building.

3.5 Concluding remarks
Two types of SDTMDIs are investigated in this chapter, and their optimal design is
conducted according to the extended FPT for an harmonically forced SDOF primary
system. Therefore, closed-form solutions to the optimal parameters of SDTMD
could be also obtained by vanishing the inertance, whose accuracy is validated by
comparing with numerical solutions to the relevant H∞ optimization problem.

The G-SDTMDI contributes to the decrease of peak vibration amplitude of pri-
mary system and the broadening of frequency range of vibration reduction, thereby
entailing a better performance of vibration control. Moreover, its control effect is
only influenced by the total mass ratio µ and the total inertance-to-mass ratio η.
Therefore, two variant layouts can be developed by combining the two grounded
inerters into one in order to keep the structural simplicity.

Distinguished from the G-SDTMDI, the two inerters positioned between three
vibrating masses are not interchangeable in the case of I-SDTMDI. It is hinted that
its control effect is solely controlled by the inerter between the primary mass and its
adjacent TMDA, while it is irrelevant to the inerter relating two TMDs. Neverthe-
less, the vibration amplitude of main system is amplified compared to the SDTMD
and the effective frequency bandwidth of vibration mitigation is decreased. There-
fore, only adverse effect on the vibration control performance could be introduced
by incorporating an inerter between vibrating masses, for which this configuration
should not be considered for further applications of vibration control.

Finally, other calibration strategies could be applied in future work to tune the
G-SDTMDI for different design objectives.

Instead of using the inerter, the next chapter will consist in incorporating a linear
negative stiffness element in existing control devices and its influence on control
efficiency will be investigated.
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Chapter 4

Dynamic Vibration Absorber with
Negative Stiffness

The previous two chapters demonstrated that the employment of grounded inerter
can enhance the vibration control performance of DVA due to its effect of mass
amplification. Meanwhile, it was remarked in [70] that incorporating a negative
stiffness between the tuned mass of absorber and the base can also improve the
vibration attenuation of primary system. Distinguished from a grounded inerter,
the mechanism related to the negative stiffness can be described as: the inclusion of
a negative stiffness will amplify the relative motion across the two terminals of vis-
cous damper, therefore, more energy from the mechanical system can be dissipated,
entailing a reduced vibration amplitude.

In this chapter, the NSDVA based on the non-traditional DVA will be first in-
vestigated, whose optimal design will be carried out according to the FPT and the
SMC. The advantage of such a non-traditional configuration will be discussed in the
next chapter. Since the inclusion of negative stiffness could destabilize the whole
system, a thorough stability analysis will be performed and its allowable bounds
will be explicitly specified in each optimal scenario. Finally, the control capability
of NSDVA could be further enhanced by replacing its viscous damper with an series-
type inerter-based mechanical network, yielding a novel control device termed as the
non-traditional IDVA with negative stiffness (NSIDVA). In the end, its optimal de-
sign will be carried out based on the SMC. Considering that the SDOF primary
system coupled with the NSIDVA is of three DOFs, an optimality condition will be
first postulated and will be analytically proven in this chapter.

4.1 NSDVA

The undamped primary system controlled by a non-traditional DVA and the NSDVA
is depicted in Figures 4.1a and 4.1b, respectively. Clearly, the NSDVA is based on
the DVA with a supplemental negative stiffness kn relating its mass to the base.
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Figure 4.1: Schematic diagrams of a SDOF undamped primary system controlled
by a: (a) non-traditional DVA; (b) NSDVA.

4.1.1 Mathematical modeling
The dynamics of whole system in Figure 4.1b is governed by:

m1ẍ1 = k2(x2−x1)−k1x1 +F (t) (4.1a)
m2ẍ2 = k2(x1−x2)−knx2− c2ẋ2 (4.1b)

in which all designations are given in Section 1.1.1. An additional dimensionless
parameter η is herein introduced, which is defined as the ratio of negative stiffness
and the mechanical stiffness of primary system:

η = kn
k1

(4.2)

with η ≤ 0. Then, the EOMs (4.1) can be transformed into:

x′′1 + (1 +µα2)x1−µα2x2 = F (τ)/k1 (4.3a)

x′′2 + 2ξαx′2 +α2(x2−x1) + η

µ
x2 = 0 (4.3b)

The dimensionless frequency variable, complex magnitudes of displacement x1 and
external force F (τ) are denoted by s̄, X1 and F , respectively. Therefore, the nor-
malized displacement FRF of primary system can be expressed as:

G(s̄) = X1
F/k1

= µs̄2 + 2µξαs̄+η+µα2

µs̄4 + 2µξαs̄3 + (η+µ+µα2 +µ2α2)s̄2 + 2µξα(1 +µα2)s̄+η+µα2(1 +η)

(4.4)

where F/k1 corresponds to its static deflection controlled by a DVA (namely η = 0).
It is worth noting that as a negative stiffness is present, the static displacement of
primary system is no longer equal to F/k1, as evident from G(s̄= 0) 6= 1.
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4.1.2 Stability analysis
In light of the inclusion of negative stiffness, it is of a special importance to specify
the allowable bound on the value of negative stiffness, within which the coupled
system remains stable.

According the Routh-Hurwitz stability criterion, a system is asymptotically sta-
ble if and only if all its eigenvalues lie in the left half of the complex plane. Denoted
by λ, eigenvalues can be determined by the characteristic polynomial P (λ) of the
two DOF system in the form of:

P (λ) = λ4 + δ1λ
3 + δ2λ

2 + δ3λ+ δ4 (4.5)

and the stability of coupled system is guaranteed when the following necessary and
sufficient conditions are satisfied:

δ1 > 0, δ3 > 0, δ4 > 0, δ1δ2δ3 > δ2
3 + δ2

1δ4. (4.6)

where all real coefficients of the characteristic polynomial P (λ) correspond to the
ones in the denominator of the FRF G(s̄), recasting into the monic form. Therefore,
these coefficients are given by

δ1 = 2ξα, δ2 = 1 + η

µ
+ (1 +µ)α2, δ3 = 2ξα(1 +µα2), δ4 = η

µ
+ (1 +η)α2.

(4.7)
By substituting Eq. (4.7) into (4.6), the constraint on negative stiffness ratio η is
determined:

η >− µα2

µα2 + 1 =−1 + 1
µα2 + 1 (4.8)

where the expression of lower bound on η is implicit due to the probable dependence
between the frequency tuning ratio α and the negative stiffness ratio η. Nevertheless,
it is evident from Eq. (4.8) that η should be always greater than −1 for any positive
mass ratio µ, signifying that the absolute value of negative stiffness kn should be
always inferior to that of primary system k1. The explicit expression for lower limit
of η will be derived in the following study under the condition that the analytical
formulation of frequency tuning ratio α is sought and expressed as a function of η.

4.1.3 Optimization according to the FPT
In this section, the NSDVA will be tuned according to the FPT in the objective of
minimizing the peak vibration amplitude of displacement FRF.

Considering that the primary system is harmonically excited at the forcing fre-
quency ω, the squared amplitude of its displacement FRF can be written by substi-
tuting s̄= jω/ω1 = jλ into Eq. (4.4):

G2(Ω) =
∣∣∣∣∣ X1
F/k1

∣∣∣∣∣
2

= A+ 4ξ2B

C+ 4ξ2D
(4.9)
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4. Dynamic Vibration Absorber with Negative Stiffness

with j =
√
−1 and λ designating the excitation frequency normalized by the natural

frequency of primary system. And the four components are given by:

A=
[
η+µ(α2−λ2)

]2
, B = µ2α2λ2,

C =
[[
η+µ(α2−λ2)

]
(1−λ2) +µα2(η−µλ2)

]2
, D = µ2α2λ2(1 +µα2−λ2)2.

(4.10)

4.1.3.1 Optimal design parameters

The derivation process based on the FPT has been detailed in previous chapters,
therefore, it is omitted in the optimization of NSDVA for brevity and the expressions
of all design parameters are directly given below.

• The optimal frequency tuning ratio α and mechanical damping ratio ξ are:

αfpt =
 

µ−η
µ(1−µ) , ξfpt =

Ã
3µ(1−η)(µ−η)3

4
[
2µ(1−η)2(µ−η)2− (µ−η)4

] . (4.11)

• The normalized displacement amplitude at fixed points is:

‖G‖∞ = (1−µ)
 

2µ
(µ−η)2 (4.12)

Clearly, all optimal parameters are expressed in terms of the mass ratio µ and the
negative stiffness ratio η.

4.1.3.2 Lower limit and optimal value of η

By substituting the optimal frequency tuning ratio into the general stability condi-
tion (4.8), the upper and lower limits of η can be obtained:

η ∈ (η−fpt,0] = (−√µ,0] (4.13)

Figure 4.2 depicts the FRF surface of primary system against the dimensionless
excitation frequency λ and the negative stiffness ratio η. The curve C1 corresponds
to the FRF in the case of a DVA (η = 0). Clearly, the inclusion of negative stiffness
does contribute to the decreasing of peak vibration amplitude and the increasing
of absorbing frequency range. Nevertheless, the static displacement Xst of primary
system attached with a NSDVA increases monotonically as the negative stiffness
ratio η approaches to its lower limit η−fpt, which is in contrast with the trend of
the magnitude at fixed points. Therefore, it could be postulated that the optimal
negative stiffness ratio ηfpt is achieved when the static deflection Xst and the peak
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NSDVA

magnitude ‖G‖∞ are equalized. The normalized static deformation Xst can be
obtained from Eq. (4.9) by imposing λ= 0:

Xst =G
∣∣∣
λ=0

= µ(1−η)
µ−η2 (4.14)

It is worth noting that Xst deviates from unity if η 6= 0, implying that the static
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Figure 4.2: Displacement FRF surface of primary system controlled by a NSDVA
versus the dimensionless frequency λ and the negative stiffness ratio η. Curve C1:

η = 0, C2: η = ηfpt.

deflection of primary system is also influenced by the secondary oscillator. Equating
Eqs. (4.12) and (4.14) yields four rational values of ηfpt, respectively:

η1 = −1− (1−µ)
√

2µ
1−2µ , η2 = −1 + (1−µ)

√
2µ

1−2µ ,

η3 = µ− (1−µ)
√

2µ
2−µ , η4 = µ+ (1−µ)

√
2µ

2−µ .

(4.15)

where η2 and η4 are greater than zero for any positive µ and η1 < η−fpt always holds
for µ < 0.25. The last possible solution satisfies: η−fpt < η3 < 0,∀µ ∈ (0,0.25), which
should be then retained. Finally, the optimal negative stiffness ratio ηfpt for the
NSDVA is expressed as:

ηfpt = µ− (1−µ)
√

2µ
2−µ

(4.16)
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4. Dynamic Vibration Absorber with Negative Stiffness

Marked by C2, the FRF of primary system with the optimal value ηfpt is drawn in
Figure 4.2, where an equilibrium is established between the increasing of static dis-
placement and the decreasing of vibration amplitude at fixed points as the negative
stiffness goes up to its lower limit.

Figure 4.3 depicts the evolution of peak vibration amplitude of primary system
with respect to the stiffness ratio η. A minimum is observed in the peak amplitude
curve within the stability region, at which the optimal negative stiffness ratio is
defined and coincides with the one predicted by Eq. (4.16).

-0.2 -0.16 -0.12 -0.08 -0.04 0

5

10

15

Figure 4.3: Evolution of peak displacement amplitude of primary system against
the negative stiffness ratio η when tuned by the FPT.

4.1.4 Optimization according to the SMC
When the transient response of primary system is to optimally shaped in terms of
fast attenuation and low peak response, the NSDVA should be tuned according to
the SMC.

4.1.4.1 Optimal design parameters

Give that the coupled system is of two DOFs, there exist four eigenvalues for its
characteristic polynomial, denoted by z1, z2, z3 and z4. Therefore, the transient
response of primary system under free vibration can be expressed in the form of:

x1(τ) = A1e
z1τ +A2e

z2τ +A3e
z3τ +A4e

z4τ (4.17)

where A1, A2, A3 and A4 are coefficients in terms of rescaled time τ and are de-
pendent of the initial state of the system. As proposed in [8], a performance index,
degree of stability, is defined as the absolute value of the maximal real part of all
eigenvalues, i.e.:

Λ =−max
i

ß
Re(zi)

™
(4.18)
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indicating the slowest speed of convergence of the free vibration response. Therefore,
the SMC aims at maximizing the degree of stability Λ, namely all eigenvalues should
locate as far as possible away from the imaginary axis in the left half complex plane.

As stated in [8], the design objective is fulfilled when the eigenvalues of coupled
system take the form of a double pair of complex conjugates. Denoting the eigen-
values by z1 = z3 = −p+ jq and z2 = z4 = −p− jq, p must be positive in order to
locate at the left half complex plane and is exactly the degree of stability Λ. Thus,
the characteristic polynomial can be factorized in terms of its eigenvalues:

(z− z1) · (z− z2) · (z− z3) · (z− z4) = 0 (4.19)

which can be expanded and further rearranged in the polynomial form of z as:

z4 + 4pz3 + (4p2 + 2r2)z2 + 4pr2z+ r4 = 0 (4.20)

with r =
√
p2 + q2 being the modulus of complex poles. By comparing coefficients

in Eqs. (4.7) and (4.20), four conditions should be satisfied simultaneously:

4p= 2ξα (4.21a)

4p2 + 2r2 = 1 + η

µ
+ (1 +µ)α2 (4.21b)

4pr2 = 2ξα(1 +µα2) (4.21c)

r4 = η

µ
+ (1 +η)α2 (4.21d)

from which one can determine the SMC-based optimal parameters as:

αsmc =

 
1 +η−2µ−

√
(1 +η)2−4µ

2µ2 , ξsmc =

 
1−η−

√
(1 +η)2−4µ
2 . (4.22)

with the modulus and real part of eigenvalues given by:

r =

 
1 +η−

√
(1 +η)2−4µ
2µ , Λ = p=

 
1 +η− (3−η)µ− (1−µ)

√
(1 +η)2−4µ

8µ2 .

(4.23)
It is remarked that the lower threshold of η is not unique for µ ∈ [0,1/4], which
should be investigated per segment of µ. The detailed deduction is provided in
Appendix C.1, leading to the following lower bounds on negative stiffness ratio:

η−smc =



µ+ 2√µ(5µ−1)
1−4µ , 0≤ µ < 1

9;

7µ−1
1−3µ,

1
9 ≤ µ≤

1
7;

2√µ−1, 1
5 ≤ µ≤

1
4 .

(4.24)
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NSDVA

Analytical formulae to optimal parameters of both non-traditional DVA and NS-
DVA according to the FPT and the SMC are summarized in Tables 4.1 and 4.2,
respectively. Clearly, the parameters of NSDVA reduce to those of DVA when η = 0.
Besides, the lower thresholds of negative stiffness ratio η in two optimal scenarios
are summarized in Table 4.3.

An alternative configuration of NSDVA based on the DVA of Den Hartog is
provided in Appendix C.2, where its all optimal parameters according to the FPT
and the SMC are analytically formulated and the corresponding lower bounds on η
are specified.

4.1.5 Numerical simulations and analyses
In this section, numerical simulations will be performed in order to illustrate the
effect of negative stiffness on vibration control performance in both harmonic and
transient scenarios by comparing with the DVA. In the following study, the results
are obtained with the mass ratio being µ= 0.05 except for specific cases.
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NSDVA-FPT
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NSDVA-SMC
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Q

Figure 4.4: Displacement FRF of primary system controlled by a NSDVA. Thin
lines: η = 0, thick lines: η = ηfpt. Dashed lines: tuned by the FPT; solid lines:

calibrated by the SMC.

4.1.5.1 Harmonic vibration case

Figure 4.4 depicts the displacement FRFs of primary system controlled by either a
DVA (marked by thin lines) or a NSDVA with optimal negative stiffness ratio ηfpt
(marked by thick lines). Meanwhile, the dashed and solid curves correspond to DVAs
optimized by the FPT and the SMC, respectively. It is evident that compared to the
SMC, the FPT contributes to the minimizing of peak vibration amplitude of primary
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4. Dynamic Vibration Absorber with Negative Stiffness

system in the steady state and to a relatively large frequency bandwidth of vibration
suppression. Moreover, in the FRFs related to NSDVAs, the vibration amplitude at
fixed points P and Q is equal to the static deformation (i.e. at λ= 0), validating the
aforementioned postulation on optimality condition. Finally, comparison between
FRFs relevant to DVA and NSDVA suggests that the addition of negative stiffness
leads to the decrease of peak vibration amplitude, the broadening of suppression
bandwidth and the left shifting of resonance area.
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Figure 4.5: CMSR value of normalized displacement of primary system. Thin
lines: η = 0, thick lines: η = ηfpt. Dashed lines: tuned by the FPT; solid lines:

calibrated by the SMC.
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Figure 4.6: FRF of relative displacement between primary and secondary masses.
Thin lines: η = 0, thick lines: η = ηfpt. Dashed lines: tuned by the FPT; solid lines:

calibrated by the SMC.
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NSDVA

The main drawback of negative stiffness is to amplify the vibration amplitude
of primary system in low frequency region. Nevertheless, the justification of its
use in control scheme could be twofold: improved frequency responses over a larger
area around resonance as previously discussed and reduced cumulative mean square
response (CMSR) of primary mass, which is illustrated in Figure 4.5. The dimen-
sionless CMSR is defined as the integrated value of squared normalized displacement
of primary system over a certain frequency range [55], standing for the total kinetic
energy of primary mass when undergoing a broadband excitation. Figure 4.5 clearly
suggests that both NSDVAs can reduce the peak value of CMSR by a factor close to
3, signifying that the use of negative stiffness can enhance significantly the system
damping capability against external disturbance.

More benefit could be introduced into the control performance by using the
negative stiffness. Figure 4.6 demonstrates FRFs of relative motion between primary
and secondary masses, also termed as the stroke of DVA. One can remark that
the NSDVA can reduce significantly the peak stroke amplitude compared to their
DVA counterparts, which facilitates their practical implementation in a more strict
environment.

-0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0
0

0.2

0.4

0.6

0.8

1
FPT
SMC

Figure 4.7: Evolution of system damping ratio ξ∗ as a function of the negative
stiffness ratio η. Dashed lines: tuned by the FPT; solid lines: calibrated by the

SMC.

Nevertheless, the FPT is not oriented towards the optimization of damping ratio
ξ∗ of coupled system, which is defined as the minimal value of all modal damping
ratios. The modal damping ratio associated with a specific eigenvalue is determined
as the absolute value of ratio between its real part and its complex modulus. There-
fore, increasing ξ∗ leads to the decrease of damped natural frequency so that the
required oscillation cycle for decaying the disturbance to zero is reduced. Figure
4.7 demonstrates the evolution of system damping ratio ξ∗ as a function of negative
stiffness ratio η. Compared to the SMC, the FPT always yields a smaller value of ξ∗
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4. Dynamic Vibration Absorber with Negative Stiffness

over the whole range of η, implying that the SMC is more preferable when a larger
damping ratio is needed. Moreover, one can observe that the system damping value
at the optimal negative stiffness ratio ηII,fpt is not the largest, validating the fact
that the FPT aims at improving the steady state response instead of maximizing
the damping capability.
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Figure 4.8: Root loci of primary system coupled with a NSDVA. Circle marker:
tuned by the FPT with η = 0; square marker: calibrated by the SMC with η = 0;
diamond marker: optimized by the SMC with critical negative stiffness ratio η−smc.

The performance indices read as: Λfpt = 0.067, Λsmc = 0.12 and Λ−smc = 1.35.

4.1.5.2 Transient vibration case

The capability of decaying transient disturbances can be also quantified by tak-
ing the degree of stability Λ as the performance index. In fact, Λ represents the
slowest exponential decay speed of transient response, therefore, a larger value of Λ
corresponds to a faster decay of disturbance. Figure 4.8 depicts the eigenvalues of
coupled system. With the definition of degree of stability given in Eq. (4.18), the
performance indices read as: Λfpt = 0.067, Λsmc = 0.12 and Λ−smc = 1.35. Performance
indices without any superscript are related to DVAs without negative stiffness, while
those with the superscript, −, are related to NSDVA with critical negative stiffness
ratio η−smc. It clearly suggests that the SMC always conducts to a double pair of
complex eigenvalues and a larger performance index than the FPT, namely a faster
convergence of transient response. In the ultimate scenario with SMC-based opti-
mization, all the eigenvalues are coincident with each other and locates at the real
axis of the complex plane, at which the largest degree of stability can be achieved.

A numerical simulation in the temporal domain is also carried out to investigate
the control performance of various DVAs with respect to transient vibration. Figure
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Figure 4.9: Transient responses under free vibration normalized by the initial
displacement of primary system z0: (a) displacement of primary system; (b) stroke
length of DVA. The mass ratio is imposed as µ = 0.10. Dashed line: tuned by the
FPT with η = 0; thin solid line: tuned by the SMC with η = 0; thick solid line:

calibrated by the SMC with critical negative stiffness ratio η−smc.

4.9 plots the temporal responses of primary system and stroke of DVA. The simula-
tion is performed under free vibration (namely F (τ) = 0) with a relatively large mass
ratio µ = 0.1 for a better visual effect. The initial states of two DOFs are imposed
as: x1(0) = z0 = 0.1 and x′1(0) = x2(0) = x′2(0) = 0. The temporal solutions related
to the dimensionless ordinary differential equations (4.3) are obtained by adopting
the fourth order Runge-Kutta method with a fixed time step 1e−4 for a simulation
duration of 60. As evident from Figure 4.9a, DVA tuned by the FPT and SMC
render a similar attenuation performance of transient response of primary system in
terms of the peak vibration amplitude and the settling time, which is consistent with
the prediction according to the performance index. Meanwhile, the use of negative
stiffness can significantly reduce both peak amplitudes of primary system and stroke
of DVA and can accelerate the decay rate of transient disturbance.

4.2 NSIDVA

In this section, a novel control device termed as NSIDVA is proposed, which can
be built by replacing the viscous damper of NSDVA with a series-type inerter-
based mechanical network, as shown in Figure 4.10b. The NSIDVA is supposed to
combine the beneficial effects brought by both the negative stiffness and the inertial
mechanical network. By removing the negative stiffness, the NSIDVA reduces to a
non-traditional IDVA (as shown in Figure 4.10a), whose optimal design had been
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4. Dynamic Vibration Absorber with Negative Stiffness
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Figure 4.10: Schematic diagrams of a SDOF undamped primary system controlled
by a: (a) non-traditional IDVA [159]; (b) NSIDVA.

carried out according to the FPT and the SMC in my published work [159].

4.2.1 Mathematical modeling

The dynamics of whole system in Figure 4.10b can be described by the EOMs:

m1ẍ1 = k2(x2−x1)−k1x1 +F (t) (4.25a)
m2ẍ2 = k2(x1−x2)−knx2 + c3(ẋ3− ẋ2) (4.25b)

0 = b3(ẍ4− ẍ3) + c3(ẋ2− ẋ3) (4.25c)
0 = b3(ẍ3− ẍ4)−k3x4 (4.25d)

where x3 and x4 are the displacements at two terminals of inerter. Besides, b3, k3
and c3 denote the inertance, stiffness and viscous damping of the series-type inerter-
based mechanical network, respectively. The following natural frequencies are first
defined:

ω1 =
 

k1
m1

, ω2 =
 

k2
m2

, ω3 =
 
k3
b3
. (4.26)

with ω3 being the corner frequency of mechanical network. On this basis, the fol-
lowing dimensionless parameters are introduced:

µ= m2
m1

, ν = b3
m1

, ξ = c3
2
√
k2m2

, α = ω2
ω1
, β = ω3

ω1
, η = kn

k1
. (4.27)

Apparently, the design parameters to be optimized are the inertance-to-mass ratio
ν, mechanical damping ratio ξ and two frequency tuning ratios α and β. Finally,
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NSIDVA

the dimensionless EOMs read as:

x′′1 +x1 +µα2(x1−x2) = F (τ)/k1 (4.28a)
µx′′2 +ηx2 + 2ξµα(x′2−x′3) +µα2(x2−x1) = 0 (4.28b)

ν(x′′4−x′′3) + 2ξµα(x′2−x′3) = 0 (4.28c)
x′′3−x′′4−β2x4 = 0 (4.28d)

from which the normalized displacement FRF of primary system can be formulated
in the form of:

X1
F/k1

= B4s̄4 +B3s̄3 +B2s̄2 +B1s̄+B0
A6s̄6 +A5s̄5 +A4s̄4 +A3s̄3 +A2s̄2 +A1s̄+A0

(4.29)

with the coefficients in the numerator and denominator given by:
B4 = 2µ2ξα
B3 = µνβ2

B2 = 2µξα
[
η+µα2 + (µ+ν)β2]

B1 = νβ2 (η+µα2)
B0 = 2µξαβ2 (η+µα2)

(4.30)



A6 = 2µ2ξα
A5 = µνβ2

A4 = 2µξα
[
µ+η+ (1 +µ)µα2 + (µ+ν)β2]

A3 = νβ2 [µ+η+ (1 +µ)µα2]
A2 = 2µξα

[
η+ (1 +η)µα2 + (µ+ν+η)β2 + (1 +µ+ν)µα2β2]

A1 = νβ2 [η+ (1 +η)µα2]
A0 = 2µξαβ2 [η+ (1 +η)µα2]

(4.31)

As evident from Eq. (4.29), the characteristic polynomial is of degree six in terms
of s̄, implying the existence of six distinct poles for the whole system.

4.2.2 Optimization according to the SMC
Similar to the case of traditional IDVA [53], the displacement FRF of primary system
is featured by four invariant points when controlled by a non-traditional IDVA (and
thereby the NSIDVA), thus their H∞ optimization can be conducted according
to the extended FPT. However, it is remarked that the derivation process is very
sophisticated, which is omitted in this section. Meanwhile, the optimal design of
NSIDVA according to the SMC will be carried out.

For a coupled system of two DOFs, i.e. a SDOF primary structure controlled by
a SDOF DVA, the design objective of optimizing the transient response is fulfilled
by coinciding the two pairs of complex conjugate eigenvalues. Therefore, it can be
herein postulated that:

81

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI066/these.pdf 
© [S. Zhou], [2019], INSA Lyon, tous droits réservés



4. Dynamic Vibration Absorber with Negative Stiffness

Proposition 1 For a coupled system of three DOFs, the transient response of pri-
mary system is optimized when it has three coalesced pairs of conjugate poles.

The proof of this proposition is detailed as follows.

Proof 1 The characteristic equation is actually the monic form of the denominator
in Eq. (4.29), i.e.:

f(s̄) = s̄6 + Ã5s̄
5 + Ã4s̄

4 + Ã3s̄
3 + Ã2s̄

2 + Ã1s̄+ Ã0 (4.32)

with the normalized coefficients being: Ãi = Ai/A6, i = 0,1, . . . ,5. Let denote its six
poles as: s1,2 = −p1± jq1, s3,4 = −p2± jq2 and s5,6 = −p3± jq3, the characteristic
polynomial can be then written in a factorization form of its eigenvalues such that:

f(s̄) = (s̄− s1)(s̄− s2)(s̄− s3)(s̄− s4)(s̄− s5)(s̄− s6)
= s̄6 +D5s̄

5 +D4s̄
4 +D3s̄

3 +D2s̄
2 +D1s̄+D0

(4.33)

with the coefficients Di, i= 0,1, . . . ,5 given by:

D5 = 2(p1 +p2 +p3)
D4 = 4(p1p2 +p1p3 +p2p3) + r2

1 + r2
2 + r2

3
D3 = 8p1p2p3 + 2p1(r2

2 + r2
3) + 2p2(r2

1 + r2
3) + 2p3(r2

1 + r2
2)

D2 = 4(p2p3r2
1 +p1p3r2

2 +p1p2r2
3) + r2

1r
2
2 + r2

1r
2
3 + r2

2r
2
3

D1 = 2(p1r2
2r

2
3 +p2r2

1r
2
3 +p3r2

1r
2
2)

D0 = r2
1r

2
2r

2
3

(4.34)

where p1,p2 and p3 must be positive due to the stability requirement, and ri =»
p2
i + q2

i denotes the complex magnitude of poles. By balancing coefficients in Eqs.
(4.32) and (4.33), six equations should be satisfied:

Ãi =Di, i= 0,1, . . . ,5. (4.35)

By inspecting the coefficients in Eq. (4.32), a constraint relating Ã0, Ã5 and Ã1 can
be obtained:

Ã0Ã5−β2Ã1 = 0 (4.36)
which is equivalent to

D0D5−β2D1 = 2p1r
2
2r

2
3(r2

1−β2) + 2p2r
2
1r

2
3(r2

2−β2) + 2p3r
2
1r

2
2(r2

3−β2) = 0
(4.37)

With all coefficients before brackets being positive, Eq. (4.37) is satisfied when three
terms in bracket do not have the same sign simultaneously. As the magnitude of
pole signifies the dimensionless natural frequency of corresponding mode, a larger
value of ri is always preferred for faster transient response. Therefore, the optimal
scenario occurs when

r1 = r2 = r3 = r = β (4.38)
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NSIDVA

With the equality between magnitudes of poles, the condition Ã0 = D0 yields the
expression of α in terms of r:

α2 = µr4−η
µ(1 +η) (4.39)

Subsequently, Ã3 is proportional to Ã5 in such a way that:

Ã3 = Ã5
µ+η2 +

(
µ2 +µ

)
r4

µ(1 +η) (4.40)

Alternatively, one has:

D3−D5
µ+η2 +

(
µ2 +µ

)
r4

µ(1 +η) = 8
3p1

(
p2p3−p2)+ 8

3p2
(
p1p3−p2)+ 8

3p3
(
p1p2−p2)= 0

(4.41)
with

p2 = 3
4
η2−2µr2η+µ2r4 +µ

(
r2−1

)2
µ(1 +η) (4.42)

Given that pi is positive and denotes the exponential decay rate of transient response,
thus a larger value of pi is always beneficial. Again, the same observation can be
made for Eq. (4.41) that the design objective is achieved when p1p3 = p1p2 = p2p3 =
p2, which is equivalent to the following expression:

p1 = p2 = p3 = p=

√
3
4
η2−2µr2η+µ2r4 +µ

(
r2−1

)2
µ(1 +η) (4.43)

Therefore, the aforementioned statement is justified that the transient response of
primary system is optimized when the six distinct poles of the coupled system coalesce
into three identical pairs of complex conjugate eigenvalues.

By substituting Eqs. (4.38) and (4.43) into (4.34) and considering the optimality
conditions (4.35), a quadratic equation in r2 can be obtained:

µr4− (1 +η)r2 + 1 = 0 (4.44)

where real roots could be retained if the mass ratio satisfies: µ ≤ 0.25, which is
generally the case in practical applications. In this case, two possible solutions of
r2 exist, respectively:

r2
L =

1 +η−
»

(1 +η)2−4µ
2µ , r2

U =
1 +η+

»
(1 +η)2−4µ
2µ . (4.45)

Under no circumstance, the absolute value of real part of conjugate eigenvalues p
could be greater than their magnitude r, viz. p≤ r as required by the complex poles
assumption, which yields an inequality expression solely in r as:

3(µ2 +µ)r4−10µ(1 +η)r2 + 3η2 + 3µ≤ 0 (4.46)
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4. Dynamic Vibration Absorber with Negative Stiffness

from which the allowable bound on r2 can be specified as: r2 ∈ [r2
−, r

2
+] with its lower

and upper threshold expressed by:

r2
− = 5µ(1 +η)−

√
µ [(16µ−9)η2 + 50µη+µ(16−9µ)]

3(µ2 +µ) ,

r2
+ = 5µ(1 +η) +

√
µ [(16µ−9)η2 + 50µη+µ(16−9µ)]

3(µ2 +µ) .

(4.47)

where η should satisfy η− ≤ η ≤ 0 for having real solutions for r2, with

η− =
12(µ+ 1)√µ−25µ

16µ−9
(4.48)

It is apparent that r2
− ≤ r2

L ≤ r2
+ and r2

U > r2
+ always hold for any µ ≤ 0.25. Thus,

r2
L should be retained and taken as the optimal magnitude of poles. Furthermore,
the inertance-to-mass ratio is given by:

νsmc =
8
[(
µ2 +µ

)
r4−2µ(1 +η)r2 +µ+η2]
r2 (1 +η) (4.49)

Finally, the optimal mechanical damping ratio is formulated as:

ξsmc = 4
√

3
9

 (
µ2 +µ

)
r4−2µ(1 +η)r2 +µ+η2

µr4−η
. (4.50)

Finally, optimal parameters of both non-traditional IDVA and NSIDVA according to
the SMC are summarized in Table 4.4. By imposing η= 0, the analytical expressions
of NSIDVA reduce to those of non-traditional IDVA.

The displacement FRFs of primary system controlled by the non-traditional
DVA, NSDVA, non-traditional IDVA and NSIDVA optimized by the SMC are de-
picted in Figure 4.11. The mass ratio and negative stiffness ratio are set as: µ= 5%
and η = −0.02. Clearly, there exists a mono-peak in all four FRF curves since the
SMC is not oriented towards the optimization of steady state responses. Precisely,
the peak values are 8.1544, 5.7765, 6.3878 and 4.6040, respectively. It suggests that
with a 2% negative stiffness, the NSDVA can further reduces the peak vibration by
29.2% compared to the non-traditional DVA. Meanwhile, with respect to the non-
traditional DVA, IDVA and NSDVA, the NSIDVA can reduce the peak amplitude
by 43.5%, 27.9% and 20.3%, respectively.
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Non-traditional IDVA [159] NSIDVA

r

 
1−
√

1−4µ
2µ

√
1 +η−

»
(1 +η)2−4µ
2µ

α r2
 

µr4−η
µ(1 +η)

β r r

ν
8
[(
µ2 +µ

)
r4−2µr2 +µ

]
r2

8
[(
µ2 +µ

)
r4−2µ(1 +η)r2 +µ+η2]
r2 (1 +η)

ξ
4
√

3
9

…
(1 +µ)r4−2r2 + 1

r4
4
√

3
9

 (
µ2 +µ

)
r4−2µ(1 +η)r2 +µ+η2

µr4−η

Table 4.4: Closed-form formulae to optimal parameters of non-traditional IDVA
and NSIDVA based on the SMC.
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Figure 4.11: Displacement FRFs of primary system when controlled by four types
of dampers. The mass ratio is set as: µ= 5%. Thin lines: without negative stiffness,
thick lines: with a negative stiffness ratio of η =−0.02. Black lines: DVA, red lines:

IDVA.

4.3 Concluding remarks

In this chapter, the optimal design of NSDVA is carried out based on the FPT
and the SMC. Ready-to-use formulae to all design parameters are provided and
allowable bound on negative stiffness is specified in each optimal scenario based
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4. Dynamic Vibration Absorber with Negative Stiffness

on the stability requirement. Besides, an optimal negative stiffness ratio is defined
when the NSDVA is optimized according to the FPT.

Numerical simulation results demonstrate that under harmonic excitation, the
inclusion of negative stiffness can reduce significantly the maximum vibration am-
plitude of primary system and the stroke length of DVA and increase the frequency
bandwidth of vibration suppression. Moreover, it is shown that the system damping
increases as the negative stiffness approaches to its lower limit. Finally, temporal
responses under free vibration suggest that in the ultimate scenario, the SMC-based
NSDVAs can attenuate the transient response in an extremely short duration.

The control effect of NSDVA can be further improved by incorporating an inerter-
based mechanical network, leading to the NSIDVA. Since the whole system is of three
DOFs, it is postulated and later proven that the transient response is optimally
shaped when three coalesced pairs of conjugate poles are observed. Finally, its
optimal parameters according to the SMC are analytically derived and numerical
results confirm its superior control effect with respect to the NSDVA.

In the next chapter, the electrical analogous models in the framework of PSD
will be established for both NSDVA and NSIDVA, facilitating their application for
controlling the vibration of flexible structures.
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Chapter 5

Electromechanical Analogy

In previous chapters, several non-traditional configurations of passive dampers have
been investigated, whose tuned masses are related to the base by either a viscous
damper or an inerter-based mechanical network. It was later proven that incorporat-
ing a linear negative stiffness in parallel to the ground-hook component is beneficial
in terms of enhancing the vibration attenuation performance of existing control
devices. Their optimal design had been addressed in the literature or have been
newly carried out in this thesis. To facilitate their implementation and to extend
their applicability, the possibility of accurately realizing these mechanical dampers
by means of piezoelectric and electromagnetic shunt dampers will be investigated.
Some fundamentals of structural dynamics will be first presented.

5.1 Fundamentals

5.1.1 Mechanical impedance
Consider that a linear generalized mechanical structure is forced at the frequency
ω, its velocity is denoted as ẋ. Therefore, its impedance can be defined in terms of
the complex magnitudes of force F and its velocity Ẋ in such a way that:

Z(s) = F

Ẋ
(5.1)

with s= jω and j =
√
−1.

m
f1 f2

ẋẋ1 ẋ2

Figure 5.1: A mass element.
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5. Electromechanical Analogy

For the mass element shown in Figure 5.1, f1 is the force input at one of its
terminals and f2 is the force output at another terminal. Clearly, one has:

ẋ1 = ẋ2 = ẋ (5.2a)
mẍ= f2 +f1 (5.2b)

Therefore, the mass element is rigid since no relative motion could be generated
across its two terminals, meanwhile, the force transmitted through it will be attenu-
ated since f2 =mẍ−f1. Following the same way, the impedances of four mechanical
elements, mass, inerter, spring and damper, and their corresponding characteristics
of force transmission can be obtained, as summarized in Table 5.1. Although the
mass and inerter have the same form of impedance, the inerter is a two-terminal
device, through which the force transmitted is unattenuated. Their difference can be
further observed in the impedances of non-traditional DVA and grounded series-type
inertial mechanical network, as provided in Table 5.2.

Element Symbol Impedance Force transmitted
Mass m s ·m Attenuated
Inerter b s ·b Unattenuated

Spring k k
s Unattenuated

Damper c c Unattenuated

Table 5.1: Impedances and key characteristics of mechanical elements.

Mechanical model Total impedance

Non-traditional DVA m2

k2

c2

Å
s

k2
+ 1
m2s+ c2

ã−1

Inertial mechanical network b2

k2

c2

Å 1
b2s

+ s

k2
+ 1
c2

ã−1

Table 5.2: Total impedances of non-traditional DVA and series-type inertial me-
chanical network.
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Fundamentals

5.1.2 Addition laws of mechanical impedances
The total impedance of n mechanical elements in series is computed by:

1
Zseries

=
n∑
i=1

1
Zi

(5.3)

Meanwhile, the total impedance of n elements in parallel is equal to:

Zparallel =
n∑
i=1

Zi (5.4)

5.1.3 Electrical impedance
The impedance of an electronic component can be expressed in terms of the complex
magnitudes of the voltage V across its two terminals and the current I flowing
through it, as follows:

Z(s) = V

I
(5.5)

The electrical impedances of inductor, capacitor and resistor are given in Table 5.3.

Component Symbol Impedance
Inductor L s ·L

Capacitor C 1
s ·C

Resistor R R

Table 5.3: Impedances of three basic electronic components.

5.1.4 Addition laws of electrical impedances
The total impedance of n electronic components in series is determined as:

Zseries =
n∑
i=1

Zi (5.6)

The total impedance of n electronic components in parallel is described by:

1
Zparallel

=
n∑
i=1

1
Zi

(5.7)
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5. Electromechanical Analogy

m1

k1 c1

FA

F

ẋ

(a)

m2

k2

c2

FA
ẋ

(b)

Figure 5.2: Two subsystems for the configuration of a SDOF primary system
controlled by a non-traditional DVA.

5.1.5 Subsystem approach
Consider the case where a SDOF primary system under force excitation is controlled
by a non-traditional DVA, the whole system can be partitioned into two subsystems,
as depicted in Figures 5.2a and 5.2b. Based on the impedance-mobility approach, the
structural dynamics could be concisely represented by Figure 5.3, in which ZS and
ZA are arranged in parallel and correspond to the impedances of primary structure
and absorber, respectively. Therefore, its relevant EOMs can be expressed as:

FS +FA = ZSẊ+ZAẊ = F (5.8)

with
ZS =m1s+ k1

s
+ c1, ZA = 1

s

k2
+ 1
m2s+ c2

. (5.9)

In what follows, one consists in finding the piezoelectric analogous model of non-
traditional DVA, whose equivalent mechanical impedance should be equal to ZA.

FS

Zs

FA

ZA

F
ẋ

Figure 5.3: The equivalent model based on the impedance-mobility approach.
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Piezoelectric analogous model

5.2 Piezoelectric analogous model
The piezoelectric transducer can generate a voltage across its terminals when a me-
chanical force is exerted on it, and vice versa. Meanwhile, its generated current is
controlled by the mechanical velocity. Therefore, electromechanical analogy via the
piezoelectric transducer follows the principle of direct analogy, namely the mechan-
ical force is related to the electric voltage and the mechanical velocity is related to
the electric current.

m1

k1 c1 FA

F

ẋ

(a)

Ip Cp ZL

I

V

(b)

Vi

Li Ri

ZL

Zi

I

(c)

Figure 5.4: (a) Equivalent model of a SDOF primary system controlled by an
electromechanical shunt damper; (b) electrical model of a PSD with a generalized
electrical impedance ZL; (c) electrical model of an EMSD with an impedance ZL.

If one replaces the mechanical absorber by a PSD with a generalized electrical
impedance ZL, as depicted in Figures 5.4a and 5.4b, the dynamics of electromechan-
ical system can be described by [160]:

ZSẊ+FA = F (5.10a)
ZLI = V (5.10b)

with

FA = kp
s
Ẋ+φpeV (5.11a)

I = φpeẊ−CpsV (5.11b)
where kp is the mechanical stiffness of short-circuited piezoelectric element and φpe
is the piezoelectric coupling coefficient. Therefore, the EOMs (5.10) can be recast
into the form of Eq. (5.8):

Z̄SẊ+ZpeẊ = F (5.12)
where Z̄S is the modified mechanical impedance of structure due to the inclusion
of piezoelectric transducer and Zpe is the equivalent mechanical impedance of PSD,
with their expressions given by:

Z̄S =m1s+ k1 +kp
s

+ c1, Zpe = 1
Cps

φ2
pe

+ 1
φ2
pe ·ZL

.
(5.13)
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5. Electromechanical Analogy

Mechanical model External shunt circuit

Maxwell unit
k2

c2

R2

Inertial mechanical network b2

k2

c2

R2 L2

Non-traditional DVA m2

k2

c2 R2

L2

NSDVA m2

k2

c2 kn

Cn

R2

L2

Non-traditional IDVA
m2

k2

b3

c3

k3
L3

L2

R3 C3

NSIDVA
m2

k2

b3

c3

k3

kn

L3

Cn

L2

R3 C3

Table 5.4: Basic mechanical elements or vibration absorbers and the external shunt
circuits of their corresponding PSD.

92

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI066/these.pdf 
© [S. Zhou], [2019], INSA Lyon, tous droits réservés



Piezoelectric analogous model

Therefore, the piezoelectric analogous model of non-traditional DVA should sat-
isfy the relationship ZA = Zpe, leading to the expression of shunt impedance ZL:

ZL = m2
φ2
pe
s+ c2

φ2
pe

(5.14)

According to the addition laws for electrical impedances, ZL is the total impedance of
an inductor L2 and a resistor R2 in series, whose values are related to the mechanical
mass and damper by, respectively:

L2 = m2
φ2
pe
, R2 = c2

φ2
pe
. (5.15)

Meanwhile, the piezoelectric capacitance Cp is analogous to the mechanical stiffness
k2 with Cp = φ2

pe/k2.
To this end, one can remark that the non-traditional DVA can be accurately

realized by a PSD with a series RL shunt circuit. However, the use of PSD will
increase the equivalent mechanical stiffness of primary structure, thereby altering
its natural frequency. Thus, one should substitute k1 by k1 +kp when determining
the parameters of shunt circuit by means of electromechanical analogy.

Following the same approach, six configurations of basic mechanical elements or
vibration absorbers and the shunt circuits of their corresponding analogous PSD
are summarized in Table 5.4. In summary, the values of electronic components are
related to those of mechanical elements by:

Li = mi

φ2
pe

or bi
φ2
pe
, Ri = ci

φ2
pe
, Ci =

φ2
pe

ki
. (5.16)

Employing a Maxwell unit or an inertial mechanical network between the proof mass
of primary structure to its base forms the so-called relaxation isolator [55] or inerter-
based isolator [51]. It is worth mentioning that their realization via piezoelectric
transducer may not be an attractive option, since the static stiffness of coupled
system is increased, leading to a reduced frequency range of vibration isolation.

Besides, analogous PSDs of both NSDVA and NSIDVA are also provided, in
which the effect of negative stiffness is realized by the negative capacitance Cn in
series with the transducer. Given that the analogous relationship is established and
their optimal design have been accomplished in previous chapter, the application of
both NSDVA and NSIDVA can be extended to vibration control of flexible struc-
tures. Their optimal deign based on different tuning strategies will be experimentally
validated in future works.

93

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI066/these.pdf 
© [S. Zhou], [2019], INSA Lyon, tous droits réservés



5. Electromechanical Analogy

5.3 Electromagnetic analogous model
When an EMSD is employed, its equivalent electrical model is depicted in Figure
5.4c and the structural dynamics of system can be expressed as:

ZSẊ+FA = F (5.17a)
(Zi+ZL)I = Vi (5.17b)

with

FA = φemI (5.18a)
Vi = φemẊ (5.18b)

where Zi = Lis+Ri are the inherent impedances of electromagnetic transducer and
φem is the electromagnetic coupling coefficient. In this case, the mechanical force is
correlated to the electric current, while the voltage is controlled by the mechanical
velocity. Thus, the analogous relationship via the electromagnetic transducer fol-
lows the principle of inverse analogy, with the correspondence between electric and
mechanical elements given as below:

L= φ2
em

k
, R = φ2

em

c
, C = m

φ2
em

or b

φ2
em
. (5.19)

Finally, the structural dynamics can be transformed into the following form:

Mechanical model External shunt circuit

Maxwell unit
k2

c2
R2

L2

Inertial mechanical network b2

k2

c2

C2

R2

L2

Table 5.5: Electromagnetic realization of Maxwell unit and inertial mechanical
network.

ZSẊ+ φ2
em

Lis+Ri+ZL
Ẋ = F (5.20)
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Concluding remarks

Clearly, the structural impedance ZS does not change due to the inclusion of elec-
tromagnetic transducer in the idealized scenario. Nevertheless, the possible config-
urations of mechanical analogous models are restricted by the presence of inherent
impedances Zi. In Table 5.5, the accurate realization of Maxwell unit and inertial
mechanical network via EMSD is provided. Finally, it should be mentioned that
other dampers can be imitated if negative impedances are used to compensate the
electrical losses of transducer.

5.4 Concluding remarks
In this chapter, the mobility-impedance and subsystem approaches are employed to
describe the structural dynamics. The possibility of realizing several non-traditional
mechanical dampers by means of PSD is investigated, and their corresponding shunt
circuit is provided. Such an electromechanical equivalence enables to develop new
shunt damping techniques in the framework of PSD, to facilitate the implementation
and precise tuning of proposed concepts of mechanical absorbers as well as to deliver
the same damping performance in a more lightweight way.

The next chapter will investigate a novel hybrid IDVA, in which the passive part
will be realized by means of an EMSD enclosed by a series RLC shunt circuit.
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5. Electromechanical Analogy
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Chapter 6

A General Control Law for Hybrid
DVA and IDVA

The mechanical control devices investigated in previous chapters are all passive,
therefore, their maximal control efficiency is dictated by their amount of equiva-
lent tuned mass, which is relatively small due to practical constraints. Thus, active
control force can be introduced into the passive control devices in order to enhance
their capability of counteracting the vibration induced by external disturbances.
Nevertheless, such a control scheme, i.e. the hybrid vibration control, could consid-
erably improve the damping performance at the expense of potential destabilization
of whole system.

Recently, Collette and Chesné [135] proposed an α-controller for the hybrid DVA,
which can assure the fail-safe behaviour and the theoretical hyperstability simultane-
ously. Recalling the advantage claimed for the IDVA over the DVA and its possible
realization via the resonant electromagnetic shunt damper, this chapter consists in
proposing an hybrid IDVA based on the generalized α-controller. In this config-
uration, the electromagnetic actuator is driven by the position signal of primary
system and the controller can be regarded as n identical units arranged in series in
the feedback control loop, each of which introduces two coalesced real zeros and a
single pole at the origin. Compared to the hybrid DVA, the hybrid IDVA will lead
to a reduced vibration for primary system when the controller is failed or switched
off. Moreover, one of major contributions of this chapter is the proposition and
theoretical proof of a uniform limit for the magnitude of intentionally introduced
zeros, irrespective of the controller order. Finally, a criterion is set to compare com-
pensators of different orders by equalizing their corresponding active force at the
natural frequency of primary system, therefore, the influence of controller order on
the control performance could be revealed.
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6. A General Control Law for Hybrid DVA and IDVA

6.1 Mathematical modeling

6.1.1 System description
The configuration related to hybrid IDVA is depicted in Figure 6.1b. The mass
and stiffness of primary system are m1 and k1, respectively. Directly excited by
a primary force fp, the vibration of main system is confined by two subsystems
simultaneously. The passive control effect is attributed to the auxiliary IDVA, com-
posed of a block mass m2 attached to the target structure via a spring k2 and an
inerter-based mechanical network in parallel. The inertial device is actually a series
connection of a spring k3, an inerter b3 and a damper c3. In order to reinforce the
disturbance rejection performance, the structural position is fed back to the actua-
tor via a controller −H, exerting an active force fa on both the primary system and
the tuned mass of IDVA.

6.1.2 Generalized equations of motion
The underlying dynamics of whole system in Figure 6.1b could be described by:

m1ẍ1 = k2(x2−x1) +k3(x3−x1)−k1x1 +fp(t)−fa(t) (6.1a)
m2ẍ2 = k2(x1−x2) + c3(ẋ4− ẋ2) +fa(t) (6.1b)

0 = b3(ẍ3− ẍ4) + c3(ẋ2− ẋ4) (6.1c)
0 = b3(ẍ4− ẍ3) +k3(x1−x3) (6.1d)

where x1 and x2 are displacement of inertial masses of primary system and IDVA,
respectively. x3 and x4 are the displacement at two terminals of inerter b3. Finally,
the dot over symbol represents differentiation with respect to unscaled time t.

m2

k2c2

m1

k1

x1

x2

fp(t)

fa(t)

−H

(a)

m2

k2b3

c3

k3

m1

k1

x1

x2

fp(t)

x3

x4

fa(t)

−H

(b)

Figure 6.1: Schematic diagrams of a SDOF primary system controlled by: (a) a
hybrid DVA; (b) a hybrid IDVA.
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Mathematical modeling

Since the current system is different from those investigated in precedent chap-
ters, the complete nondimensionalization procedure is herein detailed. A series of
dimensionless parameters are first introduced:

ω1 =
 

k1
m1

, ω2 =
 

k2
m2

, ω3 =
 
k3
b3
, ξ = c3

2
√
k2m2

,

µ= m2
m1

, ν = b3
m1

, α = ω2
ω1
, β = ω3

ω1
.

(6.2)

where ω1 and ω2 are natural frequency of primary and auxiliary systems, and ω3
is the corner frequency of mechanical network. ξ denotes the passive mechanical
damping ratio of absorber. µ and ν stands for the mass ratio and the inertance-to-
mass ratio. Besides, α (or β) is frequency ratio between ω2 (or ω3, respectively) and
ω1. Moreover, the time is scaled by ω1, i.e. τ = ω1t.

Finally, the EOMs (6.1) are transformed into:

x′′1 +µx′′2 +x1 + 2µξα
(
x′2−x′4

)
+νβ2 (x1−x3) = f̃p(τ) (6.3a)

µx′′2 + 2µξα
(
x′2−x′4

)
+µα2 (x2−x1) = f̃a(τ) (6.3b)

ν
(
x′′3−x′′4

)
+ 2µξα

(
x′2−x′4

)
= 0 (6.3c)

x′′4−x′′3 +β2 (x1−x3) = 0 (6.3d)

where the prime in the superscript denotes differentiation with respect to the rescaled
time τ . Besides, the normalized primary and active forces are related to the orig-
inal ones by: f̃p = fp/k1 and f̃a = fa/k1. In the following context, the complex
magnitudes of x1, f̃p and f̃a are denoted as X1, F̃p and F̃a, respectively.

Ga(s̄)

Gp(s̄)

−H(s̄)

X1

F̃p

F̃a

Figure 6.2: Block diagram of the SISO control scheme.

6.1.3 Open-loop and closed-loop FRFs
In fact, the hybrid control system in Figure 6.1b can be classified as a single-input-
single-output (SISO) feedback control scheme, where the primary disturbance F̃p
constitutes the only input and the output is the position of primary system X1.
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6. A General Control Law for Hybrid DVA and IDVA

Consequently, its corresponding block diagram can be drawn as in Figure 6.2, where
Gp(s̄) and Ga(s̄) are two FRFs relating the structural position X1 and the primary
and active forces, F̃p and F̃a. Besides, s̄ is the dimensionless Laplace variable, i.e.
s̄= jλ with j =

√
−1 and λ being the excitation frequency normalized by the natural

frequency ω1. As evident from Figure 6.2, X1, Gp(s̄) and Ga(s̄) satisfy the following
relationship:

X1 =Gp(s̄)F̃p+Ga(s̄)F̃a (6.4)
Meanwhile, Gp(s̄) and Ga(s̄) can be achieved by setting as zero f̃a and f̃p in Eq.
(6.3), respectively. After taking the Laplace transform, one has:

Gp = B4s̄4 +B3s̄3 +B2s̄2 +B1s̄+B0
A6s̄6 +A5s̄5 +A4s̄4 +A3s̄3 +A2s̄2 +A1s̄+A0

,

Ga = −s̄2(C2s̄2 +C1s̄+C0)
A6s̄6 +A5s̄5 +A4s̄4 +A3s̄3 +A2s̄2 +A1s̄+A0

.

(6.5)

with the coefficients in the denominator being:

A6 = 2µξα
A5 = νβ2

A4 = 2ξα
[
µ+

(
µ2 +µ

)
α2 + (µ+ν+µν)β2]

A3 = νβ2 [1 + (1 +µ)α2]
A2 = 2ξα

[
µα2 + (µ+ν)β2 +

(
µ2 +µ

)
α2β2]

A1 = να2β2

A0 = 2µξα3β2

(6.6)

and those in the numerator given by:
B4 = 2µξα
B3 = νβ2

B2 = 2ξα(µα2 +µβ2 +νβ2)
B1 = να2β2

B0 = 2µξα3β2

 C2 = 2µξα
C1 = νβ2

C0 = 2µξαβ2
(6.7)

Therefore, the closed-loop FRF from the input F̃p to the output X1 can be described
in terms of Gp(s̄), Ga(s̄) and H(s), as follows:

GCL = X1

F̃p
= Gp(s̄)

1 +Ga(s̄)H(s̄) (6.8)

Furthermore, one can read from Eq. (6.8) that the open-loop FRF of control system
is expressed as:

GOL =Ga(s̄)H(s̄) (6.9)
by which the stability of control scheme will be assessed. Finally, it should be
mentioned that the block diagram in Figure 6.2 is idealized due to the fact that the
dynamics of actuator and the measurement noise are not taken into consideration.
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Controller design

6.1.4 Passive IDVA
When the controller is switched off, i.e. H = 0, the vibration is attenuated entirely
via passive IDVA. In this case, the closed-loop FRF of system (6.8) is reduced to:
GCL =Gp. The closed-form solutions to the H∞ optimization of passive IDVA were
conducted by Barredo et al. [53] by using a methodology based on fixed points. The
optimal parameters of IDVA are herein provided [53]:

ν = 2µ2

µ+ 1 , α = 1
µ+ 1 , β =

 
1

µ+ 1 , ξ =
 

11µ
36(µ+ 1) .

(6.10)

With a mass ratio of 5%, the vibration control performance of passive DVA and
IDVA are compared in terms of steady state FRFs (in Figure 6.3a) and damping
capability (in Figure 6.3b). It suggests from Figure 6.3a that compared to the
passive DVA, the IDVA can reduce the peak vibration amplitude by 19.4% in the
steady state. However, the IDVA has an inferior capability than the DVA in terms
of decaying transient disturbances, as reflected by the smaller damping ratio.

6.2 Controller design

The hyperstable controller proposed in this chapter has the following formulation:

−H(s̄) = gn

ï(s̄+ θ)2

s̄

òn
,n= 1,2, . . . (6.11)

where gn and θ are the normalized gain and magnitude of introduced zeros, with
gn ≥ 0 and θ > 0. They are related to the dimensional parameters, ĝn and θ̂, by:

gn = ĝn

m1ω
2−n
1

, θ = θ̂

ω1
. (6.12)

suggesting that gn is related to the order of controller, while θ is not. As evident
from Eq. (6.11), the controller of order n introduces 2n zeros and n poles to struc-
tural dynamics. In practice, the maximum value of n should not be superior to the
number of poles in excess of zeros relevant to the FRF, Ga(s̄). Finally, the compen-
sator (6.11) reduces to a proportional feedback controller when the zero-th order is
considered.

To this end, the major objective of this present study is twofold. First, find the
allowable bound on the magnitude of coalesced zeros θ for all admissible orders n
of compensator, which renders the control system always stable in the whole range
of gain gn. Second, investigate the influence of compensator order on the resultant
disturbance rejection performance.
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Figure 6.3: Dynamics of undamped primary system coupled with a passive DVA or
IDVA: (a) normalized FRFs GCL (dotted line: without control, dashed line: DVA,
solid line: IDVA); (b) pole-zero plots (black: DVA, red: IDVA). The mass ratio is

set as: µ= 0.05.

6.2.1 Hyperstability
As illustrated in Figure 6.3b, the three pairs of conjugate poles do not locate on the
imaginary axis, the deviation of which depends on the viscous damper c3 and the
inherent damping of target structure (which is not modelled in this chapter). The
presence of mechanical damping increases the gain margin, thereby improving the
relative stability, however, it renders more complicated the deduction of hypersta-
bility limits for θ.

In the objective of simplifying the deduction analysis, it is pertinent to consider
the worst-case scenario, in which all three pairs of conjugate poles lie on the imag-
inary axis, thus, the linear system is marginally stable. Nevertheless, it should be
mentioned that such a simplification will result in a more strict bound on θ. In
fact, the worst-case scenario occurs when an undamped primary system is consid-
ered and the damper c3 is intentionally disabled by restricting the relative motion
of its two terminals, i.e. by imposing c3 =∞. By doing so, the open-loop FRF
Ga(s̄) has three pairs of conjugate poles on the imaginary axis, which are denoted
as ±jλ1, ±jλ2 and ±jλ3 with 0 < λ1 < λ2 < λ3, respectively. Their magnitudes
are analytically formulated in Appendix D.1, which are only dependent of the mass
ratio µ. Meanwhile, the dynamics of coupled system related to hybrid DVA (shown
in Figure 6.1a) and its open-loop poles in the worst-case scenario are also provided
in Appendix D.2.

Proposition 2 For the proposed compensator (6.11) of any order n, the allowable
bound on θ guaranteeing an infinite gain margin is given by:

λ1 ≤ θ ≤ λ3 (6.13)
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Controller design

in which λ1 and λ3 are the smallest and largest eigenvalues.

Proof 2 The path of proving the proposition (6.13) could follow two routes: applying
the Routh-Hurwitz stability criterion; determining the departure angles at all open-
loop poles. In what follows, these two approaches will be employed for the case of
n= 1 and n≥ 2 successively.

• n= 1. Detailed proof is given in Appendix D.3.

• n≥ 2. The same deduction procedure as the case of n= 1 can be still employed.
Meanwhile, one can prove the proposition by calculating the departure angles
at these open-loop poles on the imaginary axis. Alternatively speaking, the
system remains stable if all closed-loop poles go immediately insides the left-
half complex plane.

Re

Im

p1

p2, z3

p3

p̄1

p̄2, z̄3

p̄3

z1, z2, p4, . . . , pn+3z4, . . . , z2n+3 −λ1−λ3
φ1

φ3

ψ1

ψ3

Figure 6.4: Pole-zero plot for the hybrid control scheme related to IDVA in the
worst-case scenario. Zeros are marked by unfilled circles and poles are represented
by cross markers. φ1 and φ3 are phase angles of the vector joining the coalesced
zeros zi = −θ (i = 4,5, . . . ,2n+ 3) to the poles p1 and p3, respectively. ψ1 and ψ3

stand for the departure angles of root locus at the open-loop poles p1 and p3.

As depicted in Figure 6.4, the passive system in the worst-case scenario has
three pairs of conjugate poles (pi = +jλi, p̄i =−jλi), two coalesced zeros at the
origin (z1 and z2) and a pair of conjugate zeros (z3 and z̄3). Meanwhile, the
integrated compensator of order n introduces 2n coincident zeros on the real
axis (z4, z5, . . . , z2n+3) and n coalesced poles at the origin (p4, . . . ,pn+3). For
all poles at the origin, the departure angles of their corresponding root loci are
equal to π due to the symmetry of other poles and zeros about the real axis.
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6. A General Control Law for Hybrid DVA and IDVA

Besides, the pole p2 and zero z3 coincide with each other, engendering a pole-
zero cancellation. Therefore, one should only inspect the departure angles of
root loci relevant to p1 and p3, which could potentially destabilize the control
scheme.
Clearly, the phase angle of the vector joining each imaginary pole/zero to a spe-
cific pole pi is equal to ±π/2 (the sign depends on their position relationship).
Let denote φ1 and φ3 as the phase angles relating the zeros z4, z5, . . . , z2n+3 to
the pole p1 and p3, as illustrated in Figure 6.4. Then, the departure angles, ψ1
and ψ3, of root locus starting at p1 and p3 can be formulated as, respectively:

ψ1 = 2kπ+ 3π
2 + 2n

(
φ1−

π

4

)
, (6.14a)

ψ3 = 2kπ+ π

2 + 2n
(
φ3−

π

4

)
, k = 0,±1,±2, . . . . (6.14b)

with φ1 and φ3 determined as:

φ1 = tan-1
Å
λ1
θ

ã
, φ3 = tan-1

Å
λ3
θ

ã
. (6.15)

Apparently, the phase angles φ1 and φ3 fluctuate as the introduced zeros zi =
−θ (i = 4,5, . . . ,2n+ 3) move along the negative real axis. Their magnitudes
corresponding to different intervals of zi are summarized in Tables 6.1 and 6.2,
in which the magnitudes of departure angles are also provided. In order to keep
the whole root loci in the left-half complex plane, the departure angles ψ1 and
ψ3 should be constrained by: ψ1 ≤ 3π/2 and ψ3 ≥ π/2. According to Tables 6.1
and 6.2, the coalesced zeros should locate within the interval zi ∈ [−λ3,−λ1]
(namely λ1 ≤ θ ≤ λ3), validating the proposition for the case of n≥ 2.

Until now, a simple and uniform limit for θ is proposed and analytically proven,
within which the theoretical hyperstability is preserved for the proposed controller.
It should be mentioned that the aforementioned proof is conducted for the hybrid
control scheme related to the IDVA, however, such a proposition can be also extended
to the case of hybrid DVA.

zi (−∞,−λ1) −λ1 (−λ1,0)

φ1
(

0, π4

) π

4

(π
4 ,
π

2

)
ψ1 <

3π
2 = 3π

2 >
3π
2

Table 6.1: The evolution of phase angle φ1 as the coalesced zeros zi = −θ (i =
4,5, . . . ,2n+ 3) move along the negative real axis. The departure angle ψ1 of root

locus at the pole p1 is then compared with 3π/2.
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zi (−∞,−λ3) −λ3 (−λ3,0)

φ3
(

0, π4

) π

4

(π
4 ,
π

2

)
ψ3 <

π

2 = π

2 >
π

2

Table 6.2: The evolution of phase angle φ3 as the coalesced zeros zi = −θ (i =
4,5, . . . ,2n+ 3) move along the negative real axis. The departure angle ψ3 of root

locus at the pole p3 is then compared with π/2.

6.2.2 Criterion for performance comparison
In order to fairly compare the control performances delivered by controllers of dif-
ferent orders, a criterion is herein chosen by equalizing their active forces f̃a at the
natural frequency of primary system. Denoting (s̄+ θ)2 /s̄ as H̄, the FRF of active
force required by a controller of order n, Gf,n, is formulated as follows:

Gf,n = Fa
Fp

= F̃a

F̃p
= gnH̄

nGCL = gnH̄
nGp

1−gnH̄nGa
(6.16)

Considering two controllers of arbitrary orders, i and j with i 6= j, equating their
corresponding active forces at fundamental frequency leads to:∣∣Gf,i∣∣=

∣∣∣∣∣ giH̄
iGp

1−giH̄iGa

∣∣∣∣∣=
∣∣∣∣∣ gjH̄

jGp

1−gjH̄jGa

∣∣∣∣∣=
∣∣Gf,j∣∣ (6.17)

with gi and gj being positive. A rational solution to Eq. (6.17) is: giH̄i = gjH̄
j ,

with which the corresponding closed-loop FRFs have the same magnitude at the
resonant frequency. With

∣∣H̄(s̄= j1)
∣∣= 1 + θ2, the gains gi and gj are then related

by the following relationship:

gi = gj
(
1 + θ2)j−i (6.18)

Therefore, for a given amount of active force at the resonance, the vibration control
performance of a compensator is only dependant of its order n and the magnitude
of zeros θ.

Clearly, the relationship (6.18) is satisfied when the same type of absorber is
used. Nevertheless, it is impossible to derive such a closed-form expression when
different types of passive absorber are engaged.

6.3 Performance of hybrid control scheme
In the following study, the absorber mass m2 is of only 5% of the main mass m1
and the normalized magnitude of introduced zeros is set as θ = 1 (namely θ̂ = ω1),
which is within the hyperstability limit of θ for both hybrid DVA and IDVA.
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Figure 6.5: Root locus diagrams of hybrid control scheme based on the IDVA: (a)
zeroth-order controller; (b) controller of orders n= 1 and 2 (corresponding to dotted
and solid lines, respectively). The normalized magnitude of introduced zeros is set

as: θ = 1.

6.3.1 Root locus
As confirmed by the root loci in Figure 6.5, the coupled system controlled by hybrid
IDVAs of order n= 0,1,2 remains always stable. With the hyperstability guaranteed,
however, the zeroth-order controller (i.e. the direct position feedback control) could
not deliver satisfactory control performance, as reflected in Figure 6.5a where its two
pairs of conjugate poles migrate towards the imaginary axis when the gain increases.
On the contrary, the closed-loop poles shift to the left of their corresponding open-
loop poles when a compensator of higher order is used, as illustrated in Figure
6.5b. In fact, this is due to the attraction of coalesced zeros on the real axis, which
keeps the whole root locus in the left-half complex plane and improves the control
performance simultaneously. Finally, a remark can be made that:

Remark 1 The two branches of root locus starting at open-loop poles p1 and p3 get
closer when the controller order is higher.

This can be explained by looking at the difference between their corresponding
departure angles ψ1 and ψ3, which could be approximated by the ones in the worst-
case scenario. According to Eq. (6.14), their difference for a controller of order n
can be analytically formulated as:

ψ1−ψ3 = (2l+ 1)π−2n(φ3−φ1) , l = 0,±1,±2, . . . . (6.19)

in which φ3−φ1 = tan-1 (λ3/θ)− tan-1 (λ1/θ) is constant and positive, as λ3 > λ1
always holds for any mass ratio µ. When n= 0, the angle difference is π, as confirmed
in Figure 6.5a. Moreover, the difference between ψ1 and ψ3 decreases monotonically
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as the increase of compensator order n. Therefore, One can conclude that for a
compensator of higher order, the intentionally introduced zeros have a stronger
attraction for the root locus.
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Figure 6.6: Closed-loop FRFs GCL with the passive part being: (a) a DVA; (b) an
IDVA. Dotted line: without control, dash-dotted line: passive, dashed line: compen-
sator of order 0, thin solid line: compensator of order 1, thick solid line: compensator
of order 2. The set of parameters used for simulation is: µ = 0.05, θ = 1, g0 = 0.4,

g1 = 0.2 and g2 = 0.1.

6.3.2 Dynamics at specific gains
Hereafter, the gains corresponding to controllers of orders n = 0,1,2 are set as:
g0 = 0.4, g1 = 0.2 and g2 = 0.1. Note that their values satisfy the relationship (6.18).

The closed-loop FRFs, GCL, relevant to the DVA and IDVA are depicted in Figs.
6.6a and 6.6b, respectively. In both cases, the hybrid control schemes can reduce
the vibration by nearly 20dB in the proximity of fundamental frequency, however,
two distinct peaks arise at two sides of the target mode. Moreover, one can notice
that the two peaks approach each other when the order of compensator increases,
validating the remark made in Section 6.3.1. Finally, a remark can be made in
conjunction with Figure 6.6 regarding the peak vibration amplitude that:

Remark 2 The increase of compensator order results in the monotonically decreas-
ing vibration amplitudes at the two peaks.

Comparing now the performance of different absorbers, the advantages claimed for
IDVA over DVA reside in two aspects: smaller peak amplitude and larger frequency
bandwidth of vibration mitigation in the passive control mode; a broadband col (in
the form of double wells) in the frequency response around the target mode in the
hybrid control mode. More precisely, the −3dB bandwidth λR−λL can be used to
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Figure 6.7: FRFs of active force required by controllers Gf,n with the passive part
being: (a) a DVA; (b) an IDVA. Dashed line: compensator of order 0, thin solid
line: compensator of order 1, thick solid line: compensator of order 2. The set of
parameters used for simulation is: µ= 0.05, θ = 1, g0 = 0.4, g1 = 0.2 and g2 = 0.1.

quantify the col width, as illustrated in Figure 6.6a. Accordingly, the widths corre-
sponding to hybrid DVA and IDVA of order 2 are 0.234 and 0.365, signifying that
the IDVA can broaden the frequency bandwidth of significant vibration reduction
by 56% compared to the DVA. Nevertheless, the IDVA results in larger amplitudes
at two arising peaks than the DVA when the same controller is used.

The remarks made for the displacement of primary system also hold for the
active force required by the controller, as demonstrated in Figure 6.7.

The frequency responses of relative displacement between the primary and tuned
masses, also termed as the stroke, are plotted in Figure 6.8. Compared to their
passive counterparts, the hybrid control schemes lead to a similar stroke around
the natural frequency of main system, however, they yield a much larger stroke at
frequencies outsides the resonance region. Besides, the strokes at two arising peaks
reduce monotonically as the controller order increases.

6.4 Practical consideration and case study

In practice, the directly measured signal of main system is usually its acceleration,
therefore, two integrators are needed to yield the position signal to drive the actu-
ator in this study. Moreover, the proposed controller of order n introduces n more
integrators, leading to the phenomenon of stroke saturation and actuator force over-
loading at the low-frequency region, as shown in Figures 6.7 and 6.8. In avoidance
of such a phenomenon, a high pass filter should be introduced in the feedback loop,
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Figure 6.8: FRFs of absorber stroke with the passive part being: (a) a DVA; (b) an
IDVA. Dashed line: compensator of order 0, thin solid line: compensator of order 1,
thick solid line: compensator of order 2. The set of parameters used for simulation

is: µ= 0.05, θ = 1, g0 = 0.4, g1 = 0.2 and g2 = 0.1.

which has the form of:

Hf (s̄) =
Å

s̄

s̄+λc

ãn+2
(6.20)

where λc is the normalized cut-off frequency of high pass filter and is set as θ/50 in
this paper. Therefore, the open-loop FRF is changed to: GOL =Ga(s̄)H(s̄)Hf (s̄).

(a) (b)

Figure 6.9: (a) Schematic diagram of dual transducer; (b) its prototype [134].
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Figure 6.10: Temporal responses relevant to passive and hybrid control schemes:
(a) displacement of primary system; (b) relative displacement between main and
tuned masses (dash-dotted line: passive absorber, solid line: hybrid absorber, black
line: DVA-based, red line: IDVA-based). (c) Active force generated by the actuator
(black: hybrid DVA, red: hybrid IDVA). (d) Close-up of root locus relevant to first-
order hybrid IDVA with high pass filter. The set of parameters used for simulation

is: µ= 0.0667, θ = 1, g1 = 0.2, λ= 1 and
∣∣F̃p∣∣= 0.5mm.

The main system and the absorber investigated in [134] is chosen as the case
study. The absorber can be represented by a mass-spring model with negligible
damping and is integrated with two electromagnetic transducers at its two extrem-
ities, as depicted in Figure 6.9. Therefore, one of its dual transducer can be served
as the actuator, while another can be used to realize the inerter-based mechanical
network analogously. The main system has a mass of 150kg, its natural frequency is
16Hz and is weakly damped (0.8%). The absorber mass is 10kg, leading to a mass
ratio of 6.67%. Finally, the force constant of actuator is ke = 65NA−1. In the next,
the primary system is harmonically excited at its natural frequency and the ampli-
tude of external force is 758N, namely the primary system has a static displacement
of
∣∣F̃p∣∣ = 0.5mm. Results in previous section show that the same performance is
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achieved at the natural frequency when the gains of different controllers satisfy Eq.
(6.18). Hereafter, only the first-order controller is considered and its normalized
gain is unchanged: g1 = 0.2.

The temporal responses of coupled system under harmonic force excitation are
depicted in Figure 6.10. It suggests from Figure 6.10a that compared to their passive
counterpart, both hybrid control schemes can reduce the vibration amplitude of
primary system by 17dB, meanwhile, they do not increase the stroke amplitude
significantly, as shown in Figure 6.10b. Moreover, Figure 6.10c illustrates that the
hybrid DVA requires an active force slightly greater than the hybrid IDVA. More
precisely, the maximum current amplitude required by hybrid DVA in the steady
state can be calculated as: I = fa/ke = 3.5A. Note that this value dos not exceed
its upper threshold Imax = 6A, which was experimentally calibrated. Finally, Figure
6.10d depicts a close-up of root locus related to hybrid IDVA around the origin.
One can notice that with the inclusion of high pass filter in the feedback loop, the
root locus goes insides the right-half complex plane when the gain is greater than
the critical value gmax = 35.2, therefore, the controller is no longer hyperstable.
Nevertheless, this upper threshold is sufficiently large for the proposed controller to
deliver a superior control performance in practice, recalling that the controller with
a gain of 0.2 can already improve the control performance significantly.

6.5 Concluding remarks

This chapter theoretically investigates a simple control law for designing a hybrid
control scheme based on either a classic DVA or an IDVA. The position signal of
primary system is fed back to drive the actuator and is filtered by a compensator
of order n, which introduces 2n coalesced zeros on the real axis and n poles at the
origin.

For possessing an infinite gain margin, a uniform limit for the magnitude of in-
troduced real zeros is proposed for a controller of arbitrary order and is theoretically
proven. It is suggested that the hyperstability is guaranteed when the magnitude
of introduced zeros lies between the smallest and largest magnitudes of all open-
loop poles, whose closed-form expressions are analytically derived for both DVA
and IDVA. Besides, a criterion is proposed to compare the performance delivered
by controllers of different orders. Numerical examples demonstrate that increasing
the controller order can reduce monotonically the vibration amplitudes at the two
arising peaks around the natural frequency of primary system, however, the phe-
nomenon of stroke saturation and active force overloading is encountered at low
frequencies due to the increasing integrators in the control loop. Finally, a case
study is carried out and some practical issues are discussed.

Future work will be dedicated to the realization of inerter-based mechanical
network via electromechanical analogy and the experimental validation of proposed
control law.
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6. A General Control Law for Hybrid DVA and IDVA

In the next chapter, a family of semi-active control techniques will be developed,
which is based on the EMSD in conjunction with negative inductance. Unlike the
hybrid control scheme in this chapter, no additional sensor will be needed to feedback
the information of target structure.
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Chapter 7

Electromagnetic Shunt Damping

Passive vibration control techniques have been developed in Chapters 2, 3 and 4,
while Chapter 6 proposed a simple controller design for actively controlling the
vibration. The current chapter will focus on the semi-active vibration damping.

The shunt damping techniques based on smart materials are gaining momentum
due to the trends towards lightweight structures. Instead of dissipating the mechan-
ical energy of the target structure through a viscous damper, a shunt damper consist
in converting it into electrical energy and dissipating it in the external shunt cir-
cuit. In this chapter, the shunt damping technique with the use of electromagnetic
transducer is of interest.

In the field of PSD, it is a long established fact that adding a NC in series
and/or parallel with the piezoelectric transducer can artificially enhance the control
performance. In fact, it is attributed to the fact that the use of NCs contributes
to the improvement of energy conversion efficiency between mechanical and elec-
trical domains, which is quantified and denoted as the electromechanical coupling
factor (EMCF) hereafter. Meanwhile, the current literature on EMSD has reported
theoretical and experimental studies on the feasibility of enhancing the damping
capability by employing negative impedances (NI and/or NR) in series with the
electromagnetic transducer. Nevertheless, the influence of negative impedances on
the EMCF related to EMSD is still lacking in the current literature. Besides, no
attempt has been made to the employment of negative impedances in parallel with
the electromagnetic transducer.

To this end, this chapter consists in carrying out a systematic study on the
influence of negative impedances on the EMSD in terms of the EMCF and the
confinement of peak structural vibration. All possible layouts of EMSD with a NI
in series, in parallel and combination thereof will be first investigated within the
same framework and their corresponding EMCFs will be analytically formulated.
Finally, six types of shunt circuit design will be applied to the EMSD and their
H∞ optimization will be conducted for a SDOF primary system, whose control
performance will be compared with each other.
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7. Electromagnetic Shunt Damping

m1

k1 Fi

F

x1

Vi

(a)

Li

Vi

Ri

Zsh

T
ra
n
sd
u
ce
r

Ish

Vsh

(b)

Li

Vi

Ri

Ls

Zsh

T
ra
n
sd
u
ce
r

Ish

Vsh

(c)

Li

Vi

Ri

Lp Zsh

Ish

Vsh

T
ra
n
sd
u
ce
r

(d)

Li

Vi

Ri

Ls

Lp Zsh

Ish

Vsh

T
ra
n
sd
u
ce
r

I

(e)

Figure 7.1: (a) Schematic diagram of mechanical system coupled with an EMSD.
Four layouts are investigated: (b) w/o; (c) series; (d) parallel; (e) SP.

7.1 Electromechanical coupling factor

In what follows, the mechanical system under investigation is undamped and is of
SDOF, as depicted in Figure 7.1a. To confine its vibration, an electromagnetic
transducer is incorporated between its proof mass and the supporting foundation,
whose two terminals are connected to a properly designed shunt impedance Zsh, as
shown in Figure 7.1b, which is denoted as the w/o layout hereafter. Meanwhile,
adding a NI Ls in series with the external impedance forms the series layout, as
demonstrated in Figure 7.1c. Similarly, a single NI Lp can be placed in parallel
with the generalized impedance Zsh, yielding the parallel configuration as plotted
in Figure 7.1d. Finally, it was suggested from [98] that in the case of PSD, the
employment of two NCs in series and parallel connection can further increase the
EMCF, thereby improving the effectiveness of PSD. Therefore, a novel SP layout is
herein proposed for the EMSD for the first time, in which a NI Ls is placed in series
with the electromagnetic transducer and another NI Lp is positioned across the two
terminals of external shunt circuit, as illustrated in Figure 7.1e.

Clearly, the series and SP layouts will reduce to the w/o and parallel configura-
tions, respectively, when the series NI Ls is vanished, i.e. Ls = 0. Therefore, only
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Electromechanical coupling factor

investigation of series and SP layouts will be detailed below. In order to facilitate
the analysis, two dimensionless parameters are introduced:

α = Li+Ls
Li

, γ = Lp
Li
. (7.1)

in which α−1 and γ represent the ratio between the series and parallel NIs and the
internal inductance of transducer, respectively.

7.1.1 EMCF related to the series layout
For the coupled system shown in Figures 7.1a and 7.1c, its dynamics can be described
by the EOMs:

m1ẍ1 +k1x1 +φemIsh = F (7.2a)
(Li+Ls) İsh +RiIsh +Vsh = φemẋ1 (7.2b)

where m1 and k1 are the mass and the stiffness of primary system, Li and Ri
are the internal impedances of transducer, Vsh is the voltage across the generalized
impedance Zsh and Ish is the current flowing through it.

The EMCF of electromechanical system can be defined as [161]:

Ψ = (ωsc)2− (ωoc)2

(ωoc)2 = ksc−koc

koc (7.3)

where ωoc and ωsc are the open-circuited (OC) and short-circuited (SC) resonant fre-
quencies of electromechanical system, which are related to the OC and SC stiffness,
koc and ksc, respectively. For the purpose of simplification, the internal resistance
Ri is strategically neglected when calculating the OC and SC stiffness.

• SC stiffness. Clearly, the voltage Vsh should be equal to zero if the transducer
is SC. Therefore, the SC stiffness corresponds to the constant before the dis-
placement term in the mechanical equation, in which the only explicit state
variables are x1 and Vsh. Accordingly, the mechanical equation in Eq. (7.2)
can be transformed into:

m1ẍ1 +
Å
k1 + φ2

em

Li+Ls

ã
x1−

∫
φem

Li+Ls
Vshdt= F (7.4)

implying that the SC stiffness is expressed as:

ksc
S = k1 + φ2

em

Li+Ls
(7.5)

• OC stiffness. When the transducer is OC, the electric current Ish is vanished.
Hence, the OC stiffness will present in the mechanical equation which is ex-
plicitly expressed in terms of x1 and Ish solely. As evident from Eq. (7.2), the
OC stiffness is equal to the stand-alone structural stiffness, namely:

koc
S = k1 (7.6)
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7. Electromagnetic Shunt Damping

As a consequence, the EMCF related to the series layout can be determined as:

ΨS =
ksc

S −koc
S

koc
S

= φ2
em

k1 (Li+Ls)
= θ

α
(7.7)

where θ corresponds to the EMCF of w/o layout:

Ψw/o = θ = φ2
em

k1Li
(7.8)

which will be termed as the nominal value of EMCF hereafter. According to the
analogous relationship (5.19), θ represents the ratio between the equivalent electrical
stiffness and the mechanical stiffness of primary system.

7.1.2 EMCF related to the SP layout
Following the same procedure, the SC and OC stiffness will be determined for the
coupled system depicted in Figures 7.1a and 7.1e.

• SC stiffness. According to the Kirchhoff’s voltage law, the electrical equation
can be written in terms of voltage across the external impedance Vsh, i.e.:

Vi = φemẋ1 = (Li+Ls)İ+Vsh (7.9)

where I is the electric current flowing out of the transducer. Therefore, the
mechanical equation in Eq. (7.2) can be recast into:

m1ẍ1 +
Å
k1 + φ2

em

Li+Ls

ã
x1−

∫
φem

Li+Ls
Vshdt= F (7.10)

When the external impedance is SC, the SC stiffness reads as:

ksc
SP = k1 + φ2

em

Li+Ls
(7.11)

• OC stiffness. The dynamics in the electrical domain can be formulated in
terms of Ish:

Vi = φemẋ1 = (Li+Ls+Lp) İ−Lpİsh (7.12)
Hence, one can transform the mechanical equation in Eq. (7.2) into the fol-
lowing form:

m1ẍ1 +
Å
k1 + φ2

em

Li+Ls+Lp

ã
x1 + φemLp

Li+Ls+Lp
Ish = F (7.13)

By vanishing the current flowing into the external impedance, i.e. Ish = 0, the
OC stiffness is then achieved:

koc
SP = k1 + φ2

em

Li+Ls+Lp
(7.14)
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Electromechanical coupling factor

Layout w/o Series Parallel SP

OC stiffness k1 k1 k1 + φ2
em

Li+Lp
k1 + φ2

em

Li+Ls+Lp

SC stiffness k1 + φ2
em

Li
k1 + φ2

em

Li+Ls
k1 + φ2

em

Li
k1 + φ2

em

Li+Ls

EMCF θ
θ

α

γθ

1 +γ+ θ

γθ

α (α+γ+ θ)

Table 7.1: The OC and SC stiffness of various electromechanical systems and their
corresponding EMCFs.

One can remark that for the EMSD of SP configuration, the SC stiffness is influenced
by the series inductance Ls, while its OC stiffness is controlled by both series and
parallel inductances Ls and Lp. Finally, the EMCF related to the SP layout can be
formulated as:

Ψ =
ksc

SP−koc
SP

koc
SP

= γθ

α (α+γ+ θ) (7.15)

7.1.3 Remarks
The EMCFs corresponding to the w/o and parallel layouts can be obtained from
those of series and SP layouts by removing the series inductance Ls, i.e. by imposing
α = 1. Table 7.1 summarizes the OC and SC stiffness of electromechanical system
related to various layouts and their corresponding EMCFs.

Apparently, the series configuration can turn superior to the w/o layout in terms
of EMCF when α is bounded by:

α ∈
(
α−S ,α

+
S
)

= (0,1) (7.16)

where the signs − and + refer to the lower and upper limit, respectively. Given
that the EMCF characterizes the energy conversion efficiency between electrical and
mechanical domains, a larger value of EMCF for an EMSD signifies more mechanical
energy dissipated in the electrical circuit, implying that adding a NI in series can
entail a better shunt damping performance.

Similarly, the parallel configuration is more preferable than the w/o layout when
γ satisfies:

γ < γ+
P =−1− θ (7.17)

while the SP layout outperforms the series counterpart as if the following condition
is met:

γ < γ+
SP =−α− θ,∀α ∈ (0,1) . (7.18)
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7. Electromagnetic Shunt Damping

The previous analysis theoretically reveals the potential benefit of introducing NIs
into the existing shunt circuit so as to improve the attenuation performance. How-
ever, it should be mentioned that all EMCFs are calculated by neglecting the coil
resistance. In what follows, the complete dynamics of electromechanical systems
will be modeled, on the basis of which the optimal design of various shunt circuits
will be carried out.

A series NI will be first inserted in existing R and RC shunt circuits (as depicted
in Figure 7.2a), forming the series RL and RLC shunt circuits (as shown in Figure
7.2b). Later, the SP shunt will be investigated, as plotted in Figure 7.2d, which
is based on the R shunt with two NIs positioned in series and in parallel with it.
Removing the series NI, the SP shunt reduces to the parallel shunt, as illustrated in
Figure 7.2c. Finally, the optimized shunt circuits will be compared with each other
in terms of shunt damping performance.

Re

R shunt

Re

Ce

RC shunt

(a)

Re

Ls

RL shunt

Ce

Re

Ls

RLC shunt

(b)

Lp Re

(c)

Ls

Lp Re

(d)

Figure 7.2: (a) R and RC shunts; (b) series RL and RLC shunts; (c) parallel shunt;
(d) SP shunt.

7.2 EMSD enclosed by series RL and RLC shunts
The dynamics of primary system controlled by an EMSD with a series RLC shunt
circuit can be described by:

m1ẍ1 +k1x1 +φemIsh = F (7.19a)

(Li+Ls) İsh + (Ri+Re)Ish +
∫ 1
Ce
Ishdt= φemẋ1 (7.19b)

while it reduces to the EOMs in the case of a series RL shunt circuit when Ce
approaches to infinity. To simplify the optimal design, the following dimensionless
parameters are introduced:

β = Re
Ri
, κ= Ri

Liω1
, ωe =

 
1

LiCe
, φ= ωe

ω1
. (7.20)
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EMSD enclosed by series RL and RLC shunts

where β is the ratio between external and internal resistances, κ is a constant depen-
dent of the internal impedances of transducer and the natural frequency of primary
system, ωe is the pseudo electrical resonant frequency and φ is the frequency tun-
ing ratio. Therefore, the normalized displacement FRFs of primary system can be
expressed as follows:

• Series RL shunt:

G(s̄) = X1
F/k1

= αs̄+κ(1 +β)
αs̄3 +κ(1 +β) s̄2 + (α+ θ) s̄+κ(1 +β) (7.21)

• Series RLC shunt:

G(s̄) = X1
F/k1

= αs̄2 +κ(1 +β) s̄+φ2

αs̄4 +κ(1 +β) s̄3 + (α+ θ+φ2) s̄2 +κ(1 +β) s̄+φ2 (7.22)

According to the Routh-Hurwitz criterion, the stability of whole system is guaran-
teed when the following conditions are satisfied:

α > α−S = 0,β > β−S =−1. (7.23)

implying that in the series layout, the magnitudes of negative impedances should
be always inferior to the internal impedances of transducer.
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Figure 7.3: Displacement FRFs of primary system against the normalized excita-
tion frequency λ and the inductance ratio α controlled by a RL EMSD. The set of

parameters is: θ = 0.2 and κ= 5.
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7. Electromagnetic Shunt Damping

7.2.1 Optimization of EMSD with a series RL shunt
For the electromechanical system related to the series RL shunt, the displacement
FRFs of primary system always pass through an invariant position when the external
resistance varies, therefore, the FPT can be applied to optimally tune the non-
resonant EMSD. The optimization procedure had been detailed in previous chapters
and is herein omitted for brevity. The optimal parameters and some characteristics
are directly given at below.

• The abscissa of fixed point λRL and its normalized displacement amplitude
‖G‖∞,RL are:

λRL =
…

1 + θ

2α, ‖G‖∞,RL = 2α
θ
. (7.24)

Clearly, the dynamics of optimal EMSD coupled with series RL shunt is dom-
inated by two key parameters, the total inductance ratio α and the nominal
EMCF θ. As evident from Figure 7.3, the fixed point shifts to higher frequency
when the negative inductance Ls approaches to the internal inductance of coil
Li, meanwhile, the peak vibration amplitude decreases monotonically.

• The optimal resistance ratio βRL is equal to:

βRL = 1
κ

…
α2 + θ

2α−1 (7.25)

Therefore, the stability margin can be read as: βRL− β−S =
√
α2 + θα/2/κ.

For a given transducer and primary system, the stability margin decreases
monotonically as the total inductance ratio α decreases, namely the negative
impedances get closer to the internal impedances, which could destabilize the
system in realistic applications.

By imposing α= 1, the optimal parameters of series RL shunt reduce to those of R
shunt.

Strategy FPT H2 optimization SMC

Inductance ratio α
[θ

2 , +∞
) [θ

2 , +∞
) [θ

4 , +∞
)

Resistance ratio β 1
κ

…
3
2θα−1 1

κ

…
αθ− θ

2

4 −1 2
κ

√
θα−1

Frequency tuning ratio φ
…
α− θ2

…
α− θ2

√
α

Table 7.2: Optimal parameters of an EMSD shunted by a series RLC circuit tuned
by the FPT, the H2 optimization criterion and the SMC.
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EMSD enclosed by series RL and RLC shunts

7.2.2 Optimization of EMSD with a series RLC shunt
The EMSD shunted by a series RLC circuit is optimized according to the FPT,
the H2 optimization criterion and the SMC, respectively. The derivation process
related to the H2 optimization criterion is detailed in Appendix E.1, while those
based on the FPT and the SMC are omitted for brevity. To summarize, the optimal
parameters of resonant EMSD are provided in Table 7.2, with the allowable bound
on total inductance ratio α specified in each optimal scenario.

Besides, some key characteristics when tuned by the FPT and the SMC are given
at below.

• The FPT-base optimal design. The two fixed points locate at:

λRLC,1 =
…

1− θ

2α, λRLC,2 =
…

1 + θ

2α.
(7.26)

at which the normalized displacement amplitude is expressed as:

‖G‖∞,RLC =
…

2α
θ

(7.27)

It suggests from Figure 7.4 that the reduction of α (i.e. the increase of negative
inductance Ls) leads to the spreading of fixed points and the decreasing of peak
vibration amplitudes, thereby entailing a better effectiveness and an enhanced
robustness.

1

-10

-5

0.5

0

0

5

10

0.5

15

1 1.5 2

RLC,1

RLC,2

C0

Figure 7.4: Displacement FRFs of primary system against λ and α controlled by
a RLC EMSD. The set of parameters is: θ = 0.2 and κ= 5.
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7. Electromagnetic Shunt Damping

• The SMC-base optimal design. The real part of coalesced pairs of conjugate
poles, i.e. the degree of stability, is formulated as:

p= Λ =
…

θ

4α
(7.28)

Meanwhile, all poles of whole system when tuned by the SMC locate on a
circle whose centre is the origin of complex plane and whose radius is equal
to unity, namely r = 1. As α decreases gradually, the coalesced poles move
on the circle in such a way that they move away from the imaginary axis and
migrate towards the real axis, entailing a faster attenuation rate of transient
response and a smaller oscillation cycle.

7.2.3 Remarks
For both EMSDs coupled with a series RL and RLC shunt circuit, the optimal
values of resistance and capacitance are formulated in terms of the series NI Ls,
which could be adjusted within a certain interval.

In the optimal scenario, the vibration amplitude of primary system at fixed points
is only dependent of the nominal EMCF θ and the inductance ratio α. Moreover,
the vibration amplitude when controlled by the RC or series RLC shunt circuit is
the square root of that when shunted by a R or series RL circuit, respectively.

7.3 EMSD enclosed by a SP shunt

7.3.1 Mathematical modeling
The EOMs of electromechanical system related to the SP layout are formulated as:

m1ẍ1 +k1x1 +φemI = F (7.29a)
(Li+Ls) İ+RiI+Vsh = φemẋ1 (7.29b)

V̇sh
Re

+ Vsh
Lp

= İ (7.29c)

By employing the aforementioned dimensionless parameters and taking the Laplace
transform, the displacement FRF of primary system is simplified as:

G(s̄) = X1
F/k1

= αγs̄2 +κ(αβ+γ+βγ) s̄+βκ2

αγs̄4 +κ(αβ+γ+βγ) s̄3 + (αγ+ θγ+βκ2) s̄2 +κ(αβ+γ+βγ+βθ) s̄+βκ2

(7.30)
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EMSD enclosed by a SP shunt

As evident from the denominator, the coupled system has four eigenvalues, suggest-
ing that an additional DOF could be introduced by employing the SP layout. This
could be confirmed by computing the equivalent mechanical impedance of EMSD,
namely:

Fi

Ẋ1
= φem

I

Ẋ1
= k1θ

γs̄+βκ

αγs̄2 +κ(αβ+γ+βγ)s̄+βκ2 (7.31)

whose denominator is a second order polynomial, implying that the resistive shunt
enhanced by two NIs in series and parallel could behave as a mass-spring-damper
system, which will be theoretically proven at below. Finally, the squared amplitude
of displacement FRF of primary system could be achieved by substituting s̄ = jλ
into Eq. (7.30), yielding:

G2 =
∣∣∣∣∣ X1
F/k1

∣∣∣∣∣
2

= (βκ2−αγλ2)2 +λ2κ2(αβ+γ+βγ)2[
(βκ2−αγλ2)(1−λ2)− θγλ2

]2
+λ2κ2

[
βθ+ (αβ+γ+βγ)(1−λ2)

]2

(7.32)

7.3.1.1 Optimal design based on the FPT

To apply the FPT, an electrical damping ratio ξe should be first defined for the
EMSD coupled with a SP shunt in a similar manner to a second-order mechanical
oscillator:

ξe = |αβ+γ+βγ|
2
√
αβγ

(7.33)

which should be subject to:
αβγ > 0 (7.34)

Therefore, the squared amplitude of displacement FRF (7.32) corresponding to two
extreme cases, ξe = 0 and ξe→∞, could be simplified as:

G2
∣∣∣∣
ξe=0

=
(
βκ2−αγλ2)2[

(βκ2−αγλ2)(1−λ2)− θγλ2]2 + (θκβ)2λ2
, G2

∣∣∣∣
ξe→∞

=
Å 1

1−λ2

ã2
.

(7.35)
Equating the two expressions yields a quadratic equation in λ2 as:

a2λ
4 +a1λ

2 +a0 = 0 (7.36)

whose coefficients are given by:

a2 = αγ2, a1 =−βγκ2−αγ2− 1
2θγ

2, a0 = βγκ2− 1
2θβ

2κ2. (7.37)

from which one can obtain the sum of its two roots λ2
1 and λ2

2 as:

λ2
1 +λ2

2 =−a1
a2

(7.38)
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7. Electromagnetic Shunt Damping

Besides, another constraint on their sum can be achieved by balancing G2
∣∣∣
ξe→∞,λ=λ1

and G2
∣∣∣
ξe→∞,λ=λ2

, leading to:

λ2
1 +λ2

2 = 2 (7.39)
By combining Eqs. (7.38) and (7.39), the optimal resistance ratio β is determined
as a function of two inductance ratios α and γ:

β = γ

κ2

Å
α− θ2

ã
(7.40)

By back-substituting Eq. (7.40) into (7.36), its two real roots read

λ2
1 = 1−

 
4θκ2 + θ (θ−2α)2

8ακ2 , λ2
2 = 1 +

 
4θκ2 + θ (θ−2α)2

8ακ2 . (7.41)

which imposes the positivity on series inductance ratio α. Meanwhile, the normalized
displacement amplitude of primary system at fixed points is formulated as:

‖G‖∞,SP =

√
8ακ2

4θκ2 + θ (θ−2α)2 (7.42)

According to the FPT, the subsequent approach consists in calculating the optimal
damping ratio by imposing a zero tangent for the displacement FRF at λ2

1 and λ2
2,

which is very sophisticated. For the sake of convenience, the vibration amplitudes
at fixed point and at a reference frequency are equalized. In this study, the refer-
ence frequency is set as the natural frequency, i.e. λref = 1, at which the vibration
amplitude is equal to:

G

∣∣∣∣
λ=λref

=

√(
βκ2−αγ

)2 +κ2 (αβ+γ+βγ)2

θ2γ2 +κ2β2θ2 (7.43)

Then, balancing Eqs. (7.42) and (7.43) conducts to a quadratic equation in γ:

b2γ
2 + b1γ+ b0 = 0 (7.44)

whose coefficients are equal to:
b2 = (θ−2α)2

b1 =−2(θ−2α)
(
2α2 + 2κ2−αθ

)
b0 = 4α4−4θα3 +

(
θ2 + 8κ2)α2−12θκ2α+ 4κ4 +κ2θ2

(7.45)

Hence, two possible solutions for the inductance ratio γ can be obtained, as follows:

γ1 =−α− 2κ2

2α− θ −
κ |2α− θ|
(2α− θ)2

√
8αθ− θ2, γ2 =−α− 2κ2

2α− θ + κ |2α− θ|
(2α− θ)2

√
8αθ− θ2.

(7.46)
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Discussion

Shunt R RL RC RLC Parallel SP

‖G‖∞
2
θ

2α
θ

…
2
θ

…
2α
θ

Õ
2
θ

1

1 + (θ−2)2

4κ2

Õ
2α
θ

1

1 + (θ−2α)2

4κ2

Table 7.3: Normalized peak displacement amplitude of primary system controlled
by various shunt circuits tuned by the FPT.

Clearly, only the one satisfying the stability requirement should be retained. Ac-
cording to the Routh-Hurwitz criterion, the optimal inductance ratio β is formulated
as:

γ =−α− 2κ2

2α− θ + κ

2α− θ
√

8αθ− θ2 (7.47)

with the stability analysis detailed in the Appendix E.2.

7.4 Discussion
To this end, it is pertinent to compare the vibration damping performance of various
shunt circuits. Table 7.3 summarizes the analytical formulae of peak displacement
amplitudes of primary system normalized by its static deflection when controlled
by R, RL, RC, RLC, parallel and SP shunt circuits. It is interesting that for all
series layouts, the peak amplitude of primary system is solely controlled by the
corresponding EMCF, ΨS in Eq. (7.7), in such a way that:

• For non-resonant shunt circuits (R, RL):

‖G‖∞ = 2
ΨS

(7.48)

• For resonant shunt circuits (RC, RLC):

‖G‖∞ =
 

2
ΨS

(7.49)

For all series layouts, the use of a series NI will increase the EMCF, thereby reducing
the peak vibration amplitude of primary system.

In the framework of electromagnetic shunt damping, a criterion could be herein
proposed to assess the electromagnetic coupling strength by comparing the nominal
value of EMCF and 2, as follows:

θ < 2: weakly coupled;
θ = 2: critically coupled;
θ > 2: strongly coupled.

(7.50)
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7. Electromagnetic Shunt Damping

Following this criterion, the optimal RC shunt for a critically coupled system is
actually a R shunt, whose left fixed point has an abscissa of zero. Meanwhile,
the peak vibration amplitude of primary system is equal to its static deflection.
Therefore, the aforementioned optimal design based on the FPT is not applicable to
a strongly coupled system, due to the fact that the vibration amplitudes at invariant
points are no longer global maximum.

In general, the electromechanical system is weakly coupled. Therefore, the peak
displacement amplitude of primary system should always be greater than its static
deflection, meanwhile, an optimal resonant shunt circuit (RC or RLC) should always
be superior to its non-resonant counterpart (R or RL) in terms of shunt damping
performance. Finally, one can observe from Table 7.3 that compared to the RLC
shunt, the R shunt enhanced by series and parallel NIs can lead to a slightly smaller
vibration amplitude of primary system at fixed points.
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Figure 7.5: Displacement FRFs of primary system controlled by an EMSD: (a)
α = 1 (dashed: SC, black: R, cyan: RC, red: parallel); (b) α = 0.5 (dashed: SC,

black: RL, cyan: RLC, red: SP). The set of parameters is: θ = 0.2 and κ= 5.

Figure 7.5a depicts the displacement FRFs of primary system when the EMSD
is SC or enclosed by a R, RC or parallel shunt. The nominal EMCF and the system
constant are set as: θ= 0.2 and κ= 5. When the transducer is SC, the peak vibration
amplitude of primary system is 28.3dB, while it reduces to 20dB, 10dB and 11.4dB
when controlled by an EMSD coupled with a R, RC and parallel shunt, respectively.
Employing a NI with α= 0.5 in series with previous shunt circuits, the peak vibration
amplitudes are further decreased to 14dB, 7dB and 7.8dB, respectively, as plotted
in Figure 7.5b. Clearly, an evident misalignment of vibration amplitudes at fixed
points is observed in both FRFs related to the parallel and SP shunts, which is
attributed to the fact that the damping value had not been optimized according to
the classic FPT. Besides, three more remarks can be made, as listed below:
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Concluding remarks

• The SC vibration amplitude of primary system can be approximated by that
at its natural frequency, i.e.:

‖G‖∞,SC =G
∣∣∣
λ=1

=
√

1 +κ2

θ
(7.51)

If the two parameters θ and κ are known, one can estimate the attainable
vibration reduction from a specific shunt circuit with respect to the SC case.

• By comparing the vibration attenuation performance of the series RL and the
parallel shunts, it suggests that adding a single NI in parallel with the purely
resistive shunt could present more benefit than the series layout.

• The R shunt in conjunction with a parallel NI has a similar damping capabil-
ity as the RC shunt, meanwhile, the SP shunt can lead to a shunt damping
performance comparable to that of RLC shunt.

7.5 Concluding remarks
In this chapter, a systematic study on improving the shunt damping performance
by using NIs has been conducted. To this end, three possible layouts have been
proposed for the NIs, which are in series, parallel or series-parallel with the external
shunt. Their corresponding EMCFs have been analytically determined and are con-
cisely formulated in terms of the nominal EMCF θ and two inductance ratios α and
γ. It implies that the inclusion of one or two NIs can artificially enhance the energy
conversion efficiency between mechanical and electrical domains, and the smallest
and largest EMCF is achieved by employing the series and SP layout, respectively.

For the series layout, the optimal design of EMSD enclosed by a series RL and
RLC shunt circuit have been carried out according to the FPT. It is observed that
the normalized displacement amplitude of primary system at fixed points can be
concisely expressed as their corresponding EMCF. Therefore, the vibration decreases
monotonically as the EMCF increases, which could be achieved by increasing the
magnitude of series NI.

Finally, the optimal tuning of parallel and SP shunts have been performed by
using an approximate FPT. It is noticeable that the purely resistive shunt in parallel
with a single NI can deliver a vibration attenuation performance similar to the RC
shunt. Meanwhile, the R shunt enhanced by two NIs has the same effectiveness as a
series RLC shunt. Thus, one can conclude that employing the parallel or SP layout
constitutes an alternative approach to introduce the electrical resonance into the
circuit.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions
Excessive vibrations in a structure could have detrimental effects, ranging from
lowering of vibrational and acoustic comfort, performance degradation of precision
mechatronics to the loss of structural integrity. Therefore, persistent efforts have
been devoted to developing vibration control devices with an enhanced effective-
ness and robustness. In this thesis, some advances in passive and active vibration
damping techniques are reported. The conclusions and original contributions of this
thesis are listed as below.

Firstly, the optimal design of TMDI is carried out for minimizing the peak vibra-
tion amplitude of a mechanical system under UBB stiffness uncertainty. To address
this worst-case optimization problem, a purely algebraic method is developed, which
is based on the perturbation approach combined with properties of polynomial. Both
optimal parameters of TMDI (thereby TMD) and the peak vibration amplitude of
primary system are analytically formulated for the first time. Finally, the analyt-
ical study suggests that the proposed design can minimize the peak amplitude of
primary system in the worst-case scenario, meanwhile, the control efficiency can be
increased by using the grounded inerter.

Secondly, a novel control device SDTMDI based on the series DTMD in conjunc-
tion with inerters is investigated. The H∞ optimization of its all possible configu-
rations is conducted via an extended FPT, revealing that the best control efficiency
is achieved when the inerters are incorporated between two tuned masses and the
ground. Meanwhile, the global effectiveness is irrespective of the distribution of
inertance in the control scheme, therefore, two equivalent variants of SDTMDI are
then proposed by removing one of the two grounded inerters. Finally, it suggests
that with the same amount of tuned mass and inertance, the SDTMDI can further
reduce the peak amplitude of host structure by more than 25% with respect to the
TMDI.

Thirdly, the possibility of enhancing the control performance of existing dampers
via a linear negative stiffness is investigated. Optimal design is carried out for both
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8. Conclusions and Future Work

non-traditional NSDVA and NSIDVA, whose viscous damper or inerter-based me-
chanical network is grounded. It is underlined that the inclusion of negative stiffness
can effectively reduce both the peak vibration amplitude of primary system and the
stroke of damper, meanwhile, it leads to an enhanced damping capability. Fur-
thermore, the piezoelectric shunt dampers analogous to both NSDVA and NSIDVA
(thereby the non-traditional DVA and IDVA) are proposed, by which the applica-
bility of aforementioned mechanical devices could be largely extended. Therefore,
one of advantages claimed for the non-traditional configuration of existing dampers
resides in the fact that it allows an exact electrical realization of the mechanical
dampers by means of piezoelectric transducer.

Fourthly, a simple hybrid control scheme based on optimized DVA or IDVA is
proposed. The feedback signal is the position of mechanical system and is filtered
by a single or multiple identical compensators in series, each of which is featured
by a single pole at the origin and two coalesced real zeros. The simplicity of such
a controller design is attributed to the fact that the stability is dictated by the
position of introduced zeros, and the hybrid control scheme remains stable for any
controller gain if and only if the magnitude of real zeros is bounded by those of
the smallest and largest system eigenvalues. For both hybrid DVA and IDVA, the
corresponding allowable bounds are analytically formulated in terms of the mass
ratio µ solely. Compared to the DVA counterpart, a hybrid IDVA can maintain the
significant vibration reduction over a much broader frequency bandwidth around
the natural frequency of primary system. In general, the increase of compensator
can decrease monotonically the peak amplitude of primary system. However, the
potential stroke saturation and active force overloading at low frequency should be
addressed in practical implementation.

Finally, the employment of NIs in electromagnetic shunt damping is considered
and all possible layouts are investigated in the same framework for the first time.
The shunt damping capability of various layouts is first assessed by means of the
EMCF, suggesting that adding a NI in series with the transducer can increase the
energy conversion efficiency, while it can be further enhanced by employing an-
other NI in parallel with the external impedance. The preliminary remark is later
confirmed by comparing the peak amplitudes of primary system when controlled by
different shunt circuits tuned by the FPT. A general characteristics for all optimized
shunts is that for a given coupled system, the peak vibration amplitude of primary
system is only influenced by the NI in series, and the increasing of its magnitude
improves monotonically the effectiveness. Besides, for a weakly coupled system, a
series resonant shunt always demonstrates a superior shunt damping performance
than its non-resonant counterpart. Finally, employing a NI in parallel with the
resistive shunt constitutes an effective alternative to the resonant shunt damping.
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Future work

8.2 Future work
Future work could be dedicated to the following issues:

• All optimal designs in this thesis were conducted in the case of force excitation.
Therefore, similar studies could be carried out for a seismically excited primary
system, which is usually the case in the field of civil engineering.

• The worst-case optimization in Chapter 2 could be further extended to the
cases where uncertainty is present in system property other than stiffness
and/or the uncertain parameter is asymmetric.

• The H∞ optimization of series DTMD carried out in Chapter 3 suggests that
the TMD adjacent to the primary system has zero damping. Therefore, one can
propose a non-traditional configuration for the series DTMD by grounding the
viscous damper of smaller TMD, which can be electrically realized by means
of piezoelectric shunt damper with a high-order circuit. Its effectiveness could
be first assessed by the displacement amplitude of primary system at fixed
points. Furthermore, a negative stiffness element could be also incorporated
in order to enhance the performance of vibration attenuation.

• The NSIDVA was only optimized according to the SMC, therefore, its FPT-
based optimal design could be addressed in future work. Meanwhile, the elec-
tromechanical analogous models of non-traditional DVA and IDVA, NSDVA
and NSIDVA proposed in Chapter 5 should be experimentally verified.

• It was demonstrated in Chapter 7 that a purely resistive shunt enhanced by NIs
in series and parallel configuration can deliver a shunt damping performance
similar to that of a series RLC shunt circuit. Thus, it is reasonable to expect a
better effect of vibration reduction when the R shunt is replaced by a resonant
shunt circuit, i.e. a RC shunt either in series or in parallel.

• The H∞ optimal design of a passive damper for controlling the vibration of a
SDOF mechanical system is usually accomplished by means of methodologies
based on the fixed points. For any coupled system in which the displacement
FRF of primary system is characterized by one, two, three or four invariant
points, analytical optimization procedure has been already reported in the
current literature. Therefore, attention could be paid in the future to the
development of analytical approaches based on fixed points, which are capable
of addressing the optimization of coupled system characterized by five or more
invariant points, e.g. a SDOF primary system controlled by a MTMD.

In general, this thesis has focused on the theoretical investigation of multiple vi-
bration damping techniques, whose applicability should be further experimentally
validated. Moreover, the realization of mechanical absorbers by means of smart

131

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI066/these.pdf 
© [S. Zhou], [2019], INSA Lyon, tous droits réservés



8. Conclusions and Future Work

material based shunt dampers constitutes a compact and lightweight solution for
vibration control, therefore, a periodic array of shunt dampers with the advanced
damping techniques can be applied to attenuate the broadband vibration of thin-
walled or periodic structures. Finally, attentions could be paid to the possibility of
energy harvesting via the proposed absorbers in quest of a dual-functional applica-
tion.
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Appendix A

Appendix related to Chapter 2

A.1 Partial derivative of Gopt with respect to µ, ν
and η

With γ = µ+ ν, both partial derivatives of Gopt with respect to µ and ν are equal
to that with respect to γ, namely:

∂Gopt
∂µ

= ∂Gopt
∂ν

= ∂Gopt
∂γ

(A.1)

where
∂Gopt
∂γ

=−(1 +γ)η2 +κη+γ

κγ2 (1 +η2) (A.2)

with κ =
»

(1 +η2)(1 +γ)2−1. For any positive γ and η, ∂Gopt/∂γ < 0 always
holds, therefore, Gopt is a monotonically decreasing function of γ, thereby of µ or ν.
Meanwhile, its partial derivative in terms of η is formulated as follows:

∂Gopt
∂η

=
κ
(
1−η2)+η

(
1−κ2)

γκ(1 +η2)2 (A.3)

Generally, the mass ratio or inertance-to-mass ratio is very small and the stiffness
uncertainty could not be superior to unity, as required by its definition. Therefore,
∂Gopt/∂η is always non-negative in realistic situations, signifying that Gopt increases
monotonically as η becomes larger.

A.2 Definition of performance index PI
Considering that the primary system is excited by a random force having a con-
stant power spectral density over the whole range of frequency, an intermediate
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A. Appendix related to Chapter 2

performance index I can be first defined as:

I = 1
π

∫ +∞

−∞

∣∣∣∣∣ X1
F/kn

∣∣∣∣∣
2

dλ= 1
π

∫ +∞

−∞

∣∣∣∣∣
3∑
i=0

pi (jλ)i

4∑
i=0

qi (jλ)i

∣∣∣∣∣
2

dλ (A.4)

with the constants in numerator and denominator given by:


p0 = µα2

p1 = 2µξα
p2 = µ+ν
p3 = 0


q0 = µα2 (1 + δ)
q1 = 2µξα (1 + δ)
q2 = (1 + δ)(µ+ν) +µα2 (1 +µ+ν)
q3 = 2µξα (1 +µ+ν)
q4 = µ+ν

(A.5)

Then, the indefinite integral (A.4) can be calculated by employing the analytical
formula provided in [162]. Finally, the performance index PI is chosen as the worst-
case value of I for the stiffness uncertainty δ varying within the interval [−η,+η],
i.e.:

PI = max
−η≤δ≤+η

{
I(δ)

}
(A.6)
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Appendix B

Appendix related to Chapter 3

The four expressions in the normalized vibration amplitude (3.8) are:



A=
[
β2 (µ−ν)

(
να2− (µ+ θ)λ2)− (µ−ν)λ2 (να2− (ν+η)λ2)

−(η− θ)λ2 (να2− (ν+ θ)λ2)]2

B = 4β2λ2 (µ−ν)2
[
να2− (µ+ θ)λ2

]2

C =
(
e3λ6 + e2λ4 + e1λ2 + e0

)2
D = 4β2λ2 (µ−ν)2

[
(1−λ2)

[
να2− (µ+ θ)λ2]−µλ2 (να2− θλ2)]2

(B.1)

with the constants before terms ei, i= 0, . . . ,3 given by:



e3 = (1 +µ)θ2 + (1 + θ) [ν (ν−µ)−µη] + θ (ν−η)
e2 = ν

(
ηµ+µν−µθ−ν2 +η+µ−ν− θ

)
α2 +β2 (µθ+µ+ θ)(µ−ν)

+ηµ+η θ+µν−ν2−ν θ− θ2

e1 =−να2 (µ+η−ν− θ)− (µ−ν)β2 [µ+ θ+να2 (1 +µ)
]

e0 = α2β2ν (µ−ν)

(B.2)

The constants in Eq. (3.13) change to:

b4 = h(µθ+µ+ θ)2

b3 =−2h(µθ+µ+ θ)
(
α2µν+α2ν+µ+ θ

)
b2 = hν2 (µ+ 1)2α4 + 2hν

(
µ2 + 2µθ+ 2µ+ 2θ

)
α2 + (µ+ θ)2 (h−1)

b1 =−2α2ν
(
α2hµν+α2hν+hµ+hθ−µ− θ

)
b0 = ν2α4 (h−1)

(B.3)
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The constants in Eq. (3.11) change to:

                            a
4

=
2

(µ
+

1)
θ3

+
( −2µ

η
+
µ

2
+
ν

2
−

2η
+

2µ
+

2ν
) θ2

+
( −2η

µ
2
−

2µ
2 ν

+
2µ

ν
2
−

4µ
η

+
2ν

2) θ−
2µ
( µη+

µ
ν
−
ν

2)
a

3
=

2β
2
(θ

+
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)(
µ
θ

+
µ

+
θ)

(µ
−
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)+
2

(θ
+
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)( µη
+
η
θ

+
µ
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−
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2
−
θ
ν
−
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)

+
( 2η

µ
2 ν

+
4η
µ
ν
θ

+
2µ

2 ν
2
−

2µ
ν

3
−
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ν
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−

2ν
3 θ

+
4η
µ
ν

+
4η
ν
θ

+
2µ

2 ν
−

2ν
3
−

4ν
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−

4ν
θ2
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a
2

=
−
ν

2
( 2µ

η
+
µ

2
−

2µ
θ
−
ν

2
+

2η
+

2µ
−

2ν
−

2θ
) α4 −

2β
2
(θ

+
µ

)2
(µ
−
ν
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−

2ν
[ β2(

µ
2

+
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+
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+

2θ
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−
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η
+
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+
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2
−
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−
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−
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1

=
2ν
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+
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Appendix C

Appendix related to Chapter 4

C.1 Lower bounds on η for NSDVA tuned by the
SMC

Multiple constraints exist on the negative stiffness ratio η, as discussed one by one
in the following study.

1. The stability requirement. The substitution of optimal frequency tuning ratio
αsmc into the general stability condition (4.8) yields:

(1 +η)2−2µ > (1 +η)
»

(1 +η)2−4µ (C.1)

which results in a possible bound on η: η > η1 =
√

2µ−1.

2. α2
smc ≥ 0. This condition imposes that:

1 +η ≥ 2µ
(1 +η)2 ≥ 4µ

(1 +η−2µ)2 ≥ (1 +η)2−4µ

 =⇒
ß
η ≥ η2 = 2µ−1
η ≥ η3 = 2√µ−1 (C.2)

One can tell that η3 > η1 > η2 always holds for any positive µ ≤ 0.5 and the
mass ratio should be inferior to 0.25. Up to now, the negative stiffness ratio η
should be bounded by: η ≥ η3 = 2√µ−1.

3. The complex eigenvalue assumption p2≤ r2. The inequality conducts to t1≤ t2
with the two polynomials given by:

t1 = 1−7µ+η(1−3µ), t2 = (1−5µ)
»

(1 +η)2−4µ. (C.3)

It is remarkable that the signs of t1 and t2 depend on the mass ratio µ so that
the lower bound on η should be deducted per segment of µ. The coefficient t1
will be positive if η > η4 = (7µ−1)/(1−3µ) and t2 remains positive when µ is
less than 1/5. Besides, one can tell that η3 ≥ η4 for any µ∈ [0,1/9]. Therefore,
three possible cases where a negative stiffness could be employed in the DVA,
i.e. η < 0, are listed as follows:
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C. Appendix related to Chapter 4

• Case 1: η ≥ η3, η3 ≤ 0, 0≤ t1 ≤ t2, ∀µ ∈
ï
0, 19

ò
,

• Case 2: η ≥ η4, η4 ≤ 0, 0≤ t1 ≤ t2, ∀µ ∈
ï1

9 ,
1
5

ò
,

• Case 3: η ≥ η3, η3 ≤ 0, t1 ≤ t2 ≤ 0, ∀µ ∈
ï1

5 ,
1
4

ò
.

each of which will be investigated in order to obtain the lower bound on η with
respect to the segment of mass ratio µ.

• Case 1. η < 0 always holds for µ ∈ [0,1/9]. Moreover, the condition
0≤ t1 ≤ t2 results in:

(1−4µ)η2−2µη+ 25µ2−4µ≤ 0 (C.4)

It is noticeable that the upper limit of this inequality is always positive,
therefore, the corresponding bound on η is: η5 ≤ η ≤ 0 with

η5 =
µ+ 2√µ(5µ−1)

1−4µ (C.5)

With η5 being superior to η3 in the very range of mass ratio, the allowable
bound on η is:

η5 ≤ η ≤ 0,∀µ ∈
ï
0, 19

ò
. (C.6)

• Case 2. In this range of mass ratio, the condition 0≤ t1 ≤ t2 will be satis-
fied if η ≥ η4 holds. Nevertheless, η4 will be positive when the mass ratio
is greater than 1/7. Therefore, no negative stiffness could be employed
in the range of [1/7,1/5] and the permissible bound on η is expressed as:

η4 ≤ η ≤ 0,∀µ ∈
ï1

9 ,
1
7

ò
. (C.7)

• Case 3. The constraint of t1 ≤ t2 ≤ 0 gives rise to

η ≤ η− =
µ−2√µ(5µ−1)

1−4µ , η ≥ η+ =
µ+ 2√µ(5µ−1)

1−4µ
(C.8)

In the mass ratio range of [1/5,1/4], η+ >η−> 0 always holds. Therefore,
the corresponding interval of η is given as:

η3 ≤ η ≤ 0,∀µ ∈
ï1

5 ,
1
4

ò
. (C.9)

Finally, the lower thresholds of negative stiffness ratio η are found for each segment
of mass ratio µ and are summarized in Eq. (4.24).
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An alternative layout of NSDVA

C.2 An alternative layout of NSDVA
Figure C.1 represents a different configuration of NSDVA based on the DVA of Den
Hartog. Its dimensionless EOMs are given by:

x′′1 +x1 +µx′′2 +ηx2 = F (τ)/k1 (C.10a)

x′′2 + 2ξα(x′2−x′1) +α2(x2−x1) + η

µ
x2 = 0 (C.10b)

Besides, its normalized displacement FRF of primary system is written as:

G(s̄) = X1
F/k1

= µs̄2 + 2µξαs̄+η+µα2

µs̄4 + 2µξα(1 +µ)s̄3 + (η+µ+µα2 +µ2α2)s̄2 + 2µξα(1 +η)s̄+η+µα2(1 +η)
(C.11)

Finally, its squared magnitude of displacement FRF has the same form as Eq. (4.9)
with the four coefficients expressed as:

A=
[
η+µ(α2−λ2)

]2
, B = µ2α2λ2,

C =
[[
η+µ(α2−λ2)

]
(1−λ2) +µα2(η−µλ2)

]2
, D = µ2α2λ2(1−λ2 +η−µλ2)2.

(C.12)
Following the same procedure in Section 4.1, ready-to-use formulae to optimal pa-
rameters of NSDVA according to the FPT and the SMC are summarized in Tables
C.1 and C.2, respectively. Meanwhile, the lower bounds on negative stiffness ratio
η in both optimal scenarios are given by:

η−fpt = µ2 + 3µ−
√

(µ2 + 3µ)2 + 4µ
2 , η−smc =

µ−2√µ
1 + 2√µ .

(C.13)

m2
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k1

x1

x2

F
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Figure C.1: Schematic diagram of a SDOF undamped primary system controlled
by a traditional NSDVA.
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Appendix D

Appendix related to Chapter 6

D.1 Open-loop poles in the worst-case scenario
In the worst-case scenario, the characteristic equation of system, P (s̄), corresponds
to the coefficients of ξ in the denominator of Eq. (6.5). By substituting the optimal
formulae (6.10), the characteristic polynomial can be simplified as:

P (s̄) =
[
(µ+ 1) s̄2 + 1

]î
(µ+ 1)2 s̄4 + (µ+ 1)(3µ+ 2)s̄2 + 1

ó
= 0 (D.1)

Meanwhile, P (s̄) can be also written in the factorized form in terms of its all imag-
inary poles, i.e.:

P (s̄) = (s̄+ jλ1)(s̄− jλ1)(s̄+ jλ2)(s̄− jλ2)(s̄+ jλ3)(s̄− jλ3)
=
(
s̄2 +λ2

1
)(
s̄2 +λ2

2
)(
s̄2 +λ2

3
)

= 0
(D.2)

By comparing Eqs. (D.1) and (D.2), the magnitudes of imaginary poles are deter-
mined as, respectively:

λ1 =

√
3µ+ 2−

√
3µ(3µ+ 4)

2(µ+ 1) , λ2 =
 

1
µ+ 1 , λ3 =

√
3µ+ 2 +

√
3µ(3µ+ 4)

2(µ+ 1) .

(D.3)
with 0< λ1 < λ2 < λ3 always holding for any value of mass ratio µ.

D.2 Dynamics of hybrid control scheme based on
a DVA

D.2.1 System description
The control scheme related to hybrid DVA is depicted in Figure 6.1a. By applying
the same nondimensionalization procedure as in Section 6.1, the underlying dynam-
ics of a SDOF undamped primary system controlled by a hybrid DVA is governed
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by the dimensionless equations of motion:

x′′1 +x1 +µx′′2 = f̃p(τ) (D.4a)
µx′′2 + 2µξα

(
x′2−x′1

)
+µα2(x2−x1) = f̃a(τ) (D.4b)

Therefore, its corresponding FRFs, Gp(s̄) and Ga(s̄), are formulated as:

Gp = s̄2 + 2ξαs̄+α2

s̄4 + 2ξα (µ+ 1) s̄3 + [1 + (µ+ 1)α2] s̄2 + 2ξαs̄+α2 , (D.5a)

Ga = −s̄2

s̄4 + 2ξα (µ+ 1) s̄3 + [1 + (µ+ 1)α2] s̄2 + 2ξαs̄+α2 . (D.5b)

D.2.2 Passive design
The optimal design of a classic DVA in terms of minimizing the peak vibration
amplitude of primary system is long established. Analytical formulae of its optimal
parameters were derived by applying the well-known fixed points theory [2]:

α = 1
µ+ 1 , ξ =

 
3µ

8(µ+ 1) .
(D.6)

D.2.3 Open-loop poles in the worst-case scenario
Distinguished from the hybrid IDVA where we disable the damping element by
restricting the relative motion of its two terminals, the worst-case scenario for a
hybrid DVA occurs by removing the viscous damper c3 (i.e. c3 = ξ = 0). Therefore,
its simplified characteristic equation can be read from the denominator of Eq. (D.5)
and further factorized as:

P (s̄) = s̄4 +
[
1 + (µ+ 1)α2] s̄2 +α2 =

(
s̄2 +λ2

1
)(
s̄2 +λ2

3
)

= 0 (D.7)

By substituting Eq. (D.6), the open-loop poles locate at ±jλ1 and ±jλ3 on the
imaginary axis, with λ1 and λ3 formulated as, respectively:

λ1 =

√
µ+ 2−

√
µ2 + 4µ

2(µ+ 1) , λ3 =

√
µ+ 2 +

√
µ2 + 4µ

2(µ+ 1) . (D.8)

D.3 Proof of proposition for the case of n = 1
By substituting Eq. (6.11) into (6.8) with n = 1 and by approaching ξ to infinity,
the closed-loop FRF can be further simplified as:

lim
ξ→∞

GCL = lim
ξ→∞

N1ξ+N0
D1ξ+D0

= N1
D1

(D.9)
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Proof of proposition for the case of n= 1

where the denominator D1 is a polynomial function of degree 6 in s̄, i.e. D1 =∑6
i=0Eis̄

i with its coefficients given by:

E6 = 2µα
E5 = 2gµα
E4 = 2α

[
µ(1 + 2gθ) +

(
µ2 +µ

)
α2 + (µ+ν+µν)β2]

E3 = 2gµα
(
β2 + θ2)

E2 = 2α
[
µα2 + (µ+ν+ 2gµθ)β2 +

(
µ2 +µ

)
α2β2]

E1 = 2gµαβ2θ2

E0 = 2µα3β2

(D.10)

Then, the stability of hybrid system can be assessed from its characteristic equation,
which is exactly the denominator in Eq. (D.9). According to the Routh Hurwitz
stability criterion, a system is stable if its all poles have negative real parts. One can
also judge its stability by inspecting if there exists sign changes for coefficients in the
first array of Routh table relevant to the characteristic equation. By substituting the
formulae of optimal parameters in Eq. (6.10) and after simplification, the stability
requirement culminates into two conditions:

2θ (µ+ 1)g+ 3µ+ 2− θ2 (µ+ 1)≥ 0 (D.11a)
2θ3 (µ+ 1)2 g− (µ+ 1)2 θ4 + (µ+ 1)(3µ+ 2)θ2−1≥ 0 (D.11b)

Given that θ is positive and g could go from zero to positive infinity, hence, the hy-
perstability of controller could be achieved when θ satisfies the following inequalities:

3µ+ 2− θ2 (µ+ 1)≥ 0 (D.12a)
−(µ+ 1)2 θ4 + (µ+ 1)(3µ+ 2)θ2−1≥ 0 (D.12b)

the first of which leads to θ2 ≤ θ2
1 = (µ+ 1)/(3µ+ 2), while the latter yields

3µ+ 2−
√

3µ(3µ+ 4)
2(µ+ 1) = θ2

− ≤ θ2 ≤ θ2
+ = 3µ+ 2 +

√
3µ(3µ+ 4)

2(µ+ 1) (D.13)

Given that θ2
1 > θ2

+ always holds for any positive µ, therefore, the lower and upper
limits of θ are θ− and θ+, respectively. Furthermore, it is apparent that its two
bounds are exactly the same as the magnitudes of poles, λ1 and λ3, respectively,
thereby proving the proposition for the case of n= 1.
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Appendix E

Appendix related to Chapter 7

E.1 H2 Optimization of EMSD coupled with a se-
ries RLC shunt

Assuming that the external force F has a constant power spectral density Sf over
the whole frequency range, we can then define a performance index I as:

I = E[x2
1]

2πSfω1/k2
1

(E.1)

where E[·] denotes the mean square value. And E[x2
1] can be evaluated by the

following expression:

E[x2
1] =

∫ +∞

−∞

∣∣∣∣∣X1
F

∣∣∣∣∣
2

Sfdω =
Sfω1
k2

1

∫ +∞

−∞

∣∣∣∣∣ X1
F/k1

∣∣∣∣∣
2

dλ=
Sfω1
k2

1

∫ +∞

−∞
G2(λ)dλ (E.2)

The infinite integral in Eq. (E.2) can be evaluated by applying the residue theorem.
An analytical form of result for this integral is also provided herein. For a rational
function G(λ) having the form of

G(λ) = b0 + b1(jλ)1 + b2(jλ)2 + b3(jλ)3

a0 +a1(jλ)1 +a2(jλ)2 +a3(jλ)3 +a4(jλ)4 (E.3)

its corresponding integral over the infinite range of frequencies can be evaluated by
the following closed-form formula:

∫ +∞

−∞

∣∣G(λ)
∣∣2dλ= π

b20 (a2a3−a1a4)
a0

+a3
(
b21−2b0b2

)
+a1

(
b22−2b1b3

)
+ b23 (a1a2−a0a3)

a4
a1 (a2a3−a1a4)−a0a2

3
(E.4)
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By comparing Eqs. (7.22) and (E.3), the coefficients may be written as:


b0 = φ2

b1 = κ(1 +β)
b2 = α
b3 = 0


a0 = φ2

a1 = κ(1 +β)
a2 = α+ θ+φ2

a3 = κ(1 +β)
a4 = α

(E.5)

Mathematically speaking, the global minimum of I(α,β,φ) is attained at points
satisfying the following conditions:

∂I

∂α
= 0, ∂I

∂β
= 0, ∂I

∂φ
= 0. (E.6)

However, the authors notice that such a global extreme of I(α,β,φ) does not exist.
Hence, a trade-off is made and the optimization is only conducted with regard to
resistance ratio β and frequency tuning ratio φ, i.e.

∂I

∂β
= 0, ∂I

∂φ
= 0. (E.7)

from which the optimal values of β and φ can be obtained as a function of inductance
ratio α, respectively

βopt = 1
κ

 
αθ− θ

2

4 −1, φ2
opt = α− θ2 .

(E.8)

The non-negativity constraint on φ2
opt imposes that α≥ θ/2, and the general stability

condition β >−1 leads to α > θ/4. Therefore, the aforementioned optimal formulae
(E.8) will not have physical meaning except if the inductance ratio γ satisfies the
following constraint

α≥ αcri,h2 = θ

2 (E.9)

It is noted that this boundary value still resides in the stable region.
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Stability analysis for the resistive EMSD enhanced by series and parallel NIs

E.2 Stability analysis for the resistive EMSD en-
hanced by series and parallel NIs

The characteristic polynomial for the electromechanical system is actually the monic
form of denominator in Eq. (7.30), i.e.:

P (s̄) = s̄4 + δ1s̄
3 + δ2s̄

2 + δ3s̄+ δ4 (E.10)

whose coefficients are given by:

δ1 = κ(αβ+γ+βγ)
αγ

, δ2 = αγ+ θγ+βκ2

αγ
, δ3 = κ(αβ+γ+βγ+βθ)

αγ
, δ4 = βκ2

αγ
.

(E.11)
The necessary and sufficient conditions for guaranteeing the stability are:

δ1 > 0 (E.12a)
δ3 > 0 (E.12b)
δ4 > 0 (E.12c)

δ1δ2δ3 > δ2
3 + δ2

1δ4 (E.12d)

The combination of Eqs. (7.40) and (E.12c) yields to an inequality condition on
series inductance ratio α that:

α > α−SP = θ

2 (E.13)

Substituting Eq. (7.40) into (E.12a) leads to:

γ > γ−1 =−α− 2κ2

2α− θ (E.14)

Therefore, the optimal parallel inductance ratio γ is equal to γ2 and is simplified
as described in Eq. (7.47). The constraint (E.12b) is assured automatically when
Eq. (E.12a) is satisfied. Finally, Eq. (E.12d) associated with Eq. (7.40) results in
a quadratic polynomial in γ as follows:

c2λ
2 + c1λ+ c0 > 0 (E.15)

with its coefficients expressed by
c2 = 2(2α− θ)2

c1 = (2α− θ)
(
8α2−2αθ+ 8κ2− θ2)

c0 = 8α4−12θα3 +
(
6θ2 + 16κ2)α2−

(
θ2 + 4κ2)θα+ 8κ4−2θ2κ2

(E.16)

which yields the allowable interval of γ: γ ∈
(
−∞,γ−2

)
∪
(
γ+

2 ,+∞
)
with the two

boundary values expressed as:

γ−2 =−α− 2κ2

2α− θ −
θ

4 −

 
αθ+ θ2

16 , γ+
2 =−α− 2κ2

2α− θ −
θ

4 +

 
αθ+ θ2

16 .
(E.17)
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By comparing Eqs. (7.18), (E.14) and (E.17), γ−2 < γ−1 < γ+
2 < γ+

SP always holds
for a small value of θ and for series inductance ratio α ∈ (0,1). Hence, the eventual
allowable bound on parallel inductance ratio γ is defined as: γ ∈ (γ−SP ,γ

+
SP ) with its

lower and upper limits formulated by:

γ−SP = γ+
2 =−α− 2κ2

2α− θ −
θ

4 +

 
αθ+ θ2

16 , γ+
SP =−α− θ. (E.18)
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RESUME : 
Mechanical systems (e.g. flexible structures) are usually lightly damped so that they vibrate severally in response to dynamic 
loads. Therefore, vibration control strategies should be adopted in order to reduce the undesired vibration of mechanical 
systems. The objective of this thesis is to develop multiple vibration control techniques, which are either passive or active. All 
systems under investigation are in the mechanical and/or electrical domains, for which analytical optimization and theoretical 
analyses are performed. 
The first part focuses on the application of inerter to enhance the vibration control performance of two existing control devices, 
the tuned mass damper (TMD) and the series double TMD (SDTMD). The inerter is employed to relate the tuned mass to the 
ground. In the case of TMD, a mechanical system under stiffness uncertainty is considered and the worst-case H∞ optimization 
is addressed by means of an entirely algebraic approach. In the case of SDTMD, the vibration of a deterministic mechanical 
system is to be controlled and the H∞ optimal design is carried out via an extended version of fixed points theory (FPT).  
Instead of using the inerter, the second part consists in improving the control effect by incorporating a linear negative stiffness 
between the ground and the tuned mass. Two case studies are conducted based on the non-traditional TMD and inerter-based 
dynamic vibration absorber (IDVA), whose tuned mass is related to the ground by a viscous damper or an inerter-based 
mechanical network, respectively. Later, the exact electrical realization of non-traditional configurations with or without negative 
stiffness is proposed, which is based on the piezoelectric transducer enclosed by a particular shunt circuit. This 
electromechanical analogy enables to extend the applicability of mechanical control devices and to facilitate the precise tuning.  
In the last part, active and semi-active vibration control techniques are developed. The first strategy consists in enhancing the 
control capability of passive TMD and IDVA by feeding back the displacement signal of mechanical system to the 
electromagnetic actuator. The proposed controller can be regarded as one or multiple basic units arranged in series, which is 
featured by one pole at the origin and two coalesced zeros on the real axis. It is analytically proven that such a controller design 
is always stable if and only if the magnitude of introduced zeros resides within the magnitudes of the smallest and largest 
eigenvalues of coupled system, whose expressions are analytically formulated in both cases of TMD and IDVA. Distinguished 
from the previous strategy, the semi-active control technique is based on electromagnetic shunt damping (EMSD), therefore, no 
additional sensor is required to measure the information of mechanical system. In order to artificially increase the shunt 
damping performance, the employment of negative inductance (NI) in the shunt circuit is considered. Three possible layouts of 
NI in the EMSD are assessed in terms of the electromechanical coupling factor, which quantifies the energy conversion 
efficiency between mechanical and electrical domains. Finally, six types of shunt circuits are optimally tuned according to the 
FPT and the beneficial effect of NI and the influence of its layout can be underlined. 
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