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je vous suis très reconnaissant à tous les deux pour vos conseils et votre aide sur tous les
aspects de cette thèse.
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Résumé

Les pieds d’aubes de soufflantes de turboréacteurs étant soumis à des sollicitations
de type fretting, l’introduction de matériaux composites dans la nouvelle génération de
moteur d’avion a rendu nécessaire le développement d’outils permettant de modéliser le
contact entre des matériaux hétérogènes. En particulier, le comportement tribologique
et l’endommagement de ces matériaux est encore mal compris. La mise en place de
méthodes numériques capable de prédire les endommagements dans le contact permet-
trait de mieux prédire la durée de vie des pièces en service et de garantir la sécurité des
passagers.

Cette thèse porte sur le développement de méthodes semi-analytiques pour la modé-
lisation de l’endommagement dans des conditions de fretting et de roulement. Ceci est
stratégique vu les temps de calculs prohibitifs des méthodes plus conventionnelles de
type éléments finis. La méthode de l’inclusion équivalente d’Eshelby est utilisée pour
modéliser des matériaux hétérogènes, de la présence de défauts jusqu’aux structures com-
plexes des matériaux composites. Cette technique est aussi utilisée afin de représenter
les dégradations des propriétés matériaux survenant au cours de l’endommagement. La
méthode permet de prendre en compte plusieurs inclusions simultanément et les temps de
calculs sont réduits grâce à l’utilisation massive de transformées de Fourier rapides (FFT).
De premiers résultats permettent de montrer la capacité de cette méthode à représenter les
endommagements apparaissant lors d’une sollicitation de fretting : l’usure et l’amorçage
de fissures. Des applications aux matériaux revêtus sont proposées et la méthode est com-
parée à une méthode plus classique de modélisation de l’usure. Une bonne corrélation
entre les deux approches a permis de valider la méthode. Dans un second temps, cette
technique est adaptée à la modélisation de transformations microstructurales apparaissant
dans les roulements autour de défauts proches de la surface de contact. Une campagne
d’essais sous sollicitations de contact sur un matériau tissé 2D a permis de mieux com-
prendre son comportement tribologique. En particulier, l’effet des propriétés de chaque
constituant sur le coefficient de frottement et sur l’évolution de l’usure dans le matériau est
étudié. Finalement, une technique de discrétisation est utilisée afin de représenter la struc-
ture complexe des matériaux composites tissés dans le code de calcul semi-analytique.
L’effet de la structure hétérogène sur la solution du contact est établi et la nécessité de
représenter les matériaux hétérogènes à la bonne échelle est soulignée. Une application
de cette technique à la microstructure des matériaux métalliques permet de prédire la
durée de vie des aciers utilisés dans les roulements.

MOTS CLÉS : Simulation numérique, contact, fretting, mécanique de l’endommagement,
usure, fatigue de roulement, microstructure, matériaux composites
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Introduction

Contact between parts is the main way of transmitting load in mechanical systems. These
parts can be subjected to cyclic loading and large loads that can strongly affect their life-
time. Moreover, the presence of heterogeneities inside the material can increase the risk
of early failure of the materials. The two dominant damage phenomena observed in con-
tact area are wear and crack initiation. Therefore problematic of contact damage is of
major interest for many industrial applications such as the blade/disk interface in aircraft
engines, bolted joints, wind turbine bearings and wheel-rail contact. Safran Aircraft En-
gines, a leader company in the design and production of aircraft engines (CFM-56, LEAP)
introduced composite materials in the LEAP aircraft engines in order to increase engine’s
performance and decrease its weight. Because of the vibrations and aerodynamic forces,
fan blades are subjected to fretting loading. In particular, fan blades are made of a 3D
woven composite and due to their heterogeneous composition, prediction of the damage
phenomena in the contact is very difficult. Existing results are available in the literature
for modeling a fretting contact. However these results are based on isotropic material
definitions and hence do not account for any heterogeneities near the contact surface. Be-
cause of the localized character of contact solicitation, classical homogenization theory
can not be easily applied and up to date none of the proposed homogenization model is
adapted to consider the presence of a free surface. Furthermore, hybrids bearings with ce-
ramic rolling elements have also been introduced in the new generation of aircraft engines.
Presence of manufacturing byproducts like carbides or voids with rolling elements may
affect the bearing life. Therefore, introduction of new materials in mechanical systems is
pushing forward the need for adapted simulation tools.

The purpose of this work is the development of the Semi-Analytical Method (SAM)
for the simulation of machine components damage under contact loading. The present
study focuses on fretting wear and rolling contact fatigue phenomena through the intro-
duction of continuum damage mechanics based models coupled with a heterogeneous
contact solver. Furthermore, experiments are conducted on woven composite materials
which indicate the need for a representative model of material microstructure. Capacity
of SAM to model their complex structure is introduced and an application on bearing steel
is proposed. Influence of the material structure on the contact solution is also emphasized.

The first chapter presents the background and the industrial context of the study. The
context linked to the application to blade/disk interfaces and rolling element bearings in
aircraft engines are first introduced along with contact damage phenomena during Fret-
ting and Rolling Contact Fatigue. A brief history and classical formulae of Continuum

1



Introduction

Damage Mechanics are presented for a better understanding of the next chapters. Then, a
literature review is presented on the modeling and damage in heterogeneous materials and
on the numerical methods in contact mechanics. The second chapter briefly discusses the
semi-analytical heterogeneous contact model based on the work of former researchers.
The third chapter introduces a method to couple a continuum damage mechanics model
with the semi-analytical solver. Results with fretting loading in gross slip and partial slip
conditions are investigated. An application of the method for coated materials is intro-
duced. A model from the literature is also implemented and results validate our approach.
Finally, results obtained with the damage model and a classical wear model based on the
dissipated energy in the contact area are compared. The problem of butterfly wings for-
mation around a nonmetallic inclusion in rolling contact fatigue is discussed in the fourth
chapter. Introduction of small cuboidal heterogeneities allow to reproduce the effects of
microstructural alterations around a spherical inclusion. Experimental results from fret-
ting tests are presented in the fifth chapter and allow to better understand the tribological
behavior of composite materials. In the last chapter, a method is proposed to model com-
plex structure of heterogeneous materials using the semi-analytical method. Applications
to woven composite materials and to bearing steels to study the fatigue life of rolling
elements are presented.
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Chapter 1

Context and Background

This chapter aims at introducing the contact problems arising
in today’s aircraft engines. In particular, some issues due to

heterogeneous materials are briefly explained. A focus is
made on surface damage phenomena due to contact and on

way of modeling both the contact problem, surface and
subsurface damage and heterogeneous materials in numerical

simulations.
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Industrial context

1.1 Industrial context
The last few decades have seen a steady rise in the number of flights per year. Nowadays
over 2 billion people travel around the world every year with 360 000 airplanes [ATA 10].
Consequently, CO2 emissions due to air travel have considerably increased and are ex-
pected to increase in the next decades if nothing is done. The aviation sector signed
a declaration to reduce emission by 50% before 2050 (see Fig. 1.1). To achieve this
goal, four different areas of improvement have been identified: technology, operations,
infrastructure and economic measures. Advance in technology has resulted in the use of
composite materials allowing to reduce the weight of the aircrafts. Today they account
for almost 50% of the structure of an aircraft (see Fig. 1.2). Compared to traditional
aluminum alloy, composite materials can represent a weight saving of 20% and can be
formed in more complex forms.
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Figure 1.1: Emissions reduction roadmap [ATA 10].

Furthermore, as soon as the function of carrying or transmitting load is needed in a
system, contact problems are arising. Thus, the impact of friction and wear on energy
consumption and CO2 emissions have been studied at the global scale by Holmberg and
Erdemir [HOL 17]. According to their study, tribological contact issues represent almost
23% of the world’s energy consumption. Some of this energy consumption is used to
reduce friction or in replacement of worn parts. Developing new technologies to reduce
friction and increase life of contacting parts presents a great challenge for industry and
could represent short term energy savings up to 25% in the transportation industry.
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1. Context and Background

In the aeronautic sector, engineers have to predict the contact behavior and the dam-
age mechanisms, such as wear or cracks, to adapt their design and calculate the life of the
system components. In particular, aircraft engines has a key role in the aircraft CO2 emis-
sions and fuel efficiency and the new generation of aircraft engines called LEAP achieves
excellent performance by using composites materials. In operation, composite materials
are subjected to cyclic contact loading. Therefore, the ability of calculating the contact in
heterogeneous materials is needed and development of robust and accurate computational
method is necessary to guarantee the safety of the system and of the passengers.

In a first part of this chapter, aircraft engine principles are briefly explained. In the
subsequent sections, two main contact interfaces in aircraft engines are presented: the
blade-disk interface and rolling element bearings. The damage phenomena associated
with these contact interfaces are also presented.
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Figure 1.2: Growth in the use of composites in commercial aircraft [ATA 10].

1.1.1 Aircraft engines

Airbreathing jet engines are used for aircraft propulsion since the late 1930s for both
civil and military applications. This system is based on the acceleration of the air flow
passing through the engine using the mechanical energy from combustion to create the
thrust. The airflow enters the engines through an inlet and enters a compressor. In the
combustion chamber, fuel is mixed with compressed air and resulting hot gases expand
through the turbine. The compressor is powered by the energy extracted by the turbine.
In modern engines, a two spool configuration with concentric rotating shafts is often used
for improved efficiency. A first shaft runs a low pressure spool (compressor and turbine)
and a second shaft runs a high-pressure spool at higher speed. Simple flux engines, where
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all the air flow is passing through the combustion chamber have a good efficiency for
speed above Mach 1 and are usually used in military applications.

Actual turbofan are a modification of the original turbojet adding a ducted fan (see
Fig. 1.4). Some of the entering flow bypasses the core and is accelerated only by the fan
using energy from the turbine. Fan dimensions are much more larger than the main core
to increase the accelerated airflow. Around 80 % of the thrust is ensured by the bypass
flow. The ratio between the air bypassing the core and the air entering the core is called
the bypass ratio (BPR). A high BPR is useful to reduce fuel consumption and noise. As
BPR increases, the radius of the fan blades increases and the rotating speed of the low
pressure turbine decreases needing more stage to extract the energy from combustion.
New configurations sometimes introduces a planetary gear box to allow the fan and the
turbine to spin at different velocities increasing efficiency of both components. The most
recent commercial aircraft engines (CFM Leap, Pratt&Whitney PW1000G) are double
core and double flux with a BPR around 11.

Figure 1.3: Schematic diagram of a high-bypass turbofan engine.

The new generation of aircraft engines commercialized by CFM (joint venture of Gen-
eral Electrics and Safran Aircraft Engines) uses composite materials resulting in a 450kg
weight loss. Compared to the previous generation of engines (CFM56) the specific con-
sumption is reduced by 16 %. CO2 and NOx emissions are respectively reduced by 16%
and 50 % and noise decreases by 15 dB.

1.1.2 Blade / Disk interface
Fan blades are mounted on a disk fixed on the rotating shaft using a dovetail joint (see
Fig. 1.5). The joint is made of two interfaces between the blade’s foot and the disk
and its main goal is to ensure a good transmission of tangential forces and the radial
retention of the blade. The disk is made of a metallic alloy and fan blades is typically
made of either a metallic alloy with a coating ( Ti−6Al−4V in CFM-56) or a composite
materials (3D woven composites in CFM Leap). During take-off, centrifugal forces lead
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1. Context and Background

Figure 1.4: LEAP fan blades in RTM woven composite materials.

Figure 1.5: Dovetail joint at the blade disk interface.

to a radial displacement of the blade entering in contact with the disk interfaces (see Fig.
1.6). The reverse phenomenon occur during the landing phase. These kind of phenomena
are characterized by a low frequency but a high amplitude of blade displacement (around
5Hz and 100µm). During the flight, structural vibrations and aerodynamical forces are
resulting in high frequency and low amplitude displacement at the blade/disk interface
(around 200 Hz and 10 µm) also called fretting. Loading phases observed at the blade
disk interface during a flight cycle are summarized in Fig. 1.7.
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Metall
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Figure 1.6: LEAP-1A engine with Fan blades in RTM woven composite materials.
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Figure 1.7: Evolution of solicitation frequencies and amplitude during a flight cycle.
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1.1.3 Bearings in aircraft engines

Bearings are often used in the aircraft engines to transmit load and reduce friction between
moving parts (see Fig. 1.8). With the new generation of aircraft engines with high BPR,
fan blades size and weight have increased. This is resulting in the need of transmitting
higher load and reducing weight together with a very long lifetime. To respond these
challenges, new hybrid bearings made of ceramic balls (Si3N4) and high performance steel
(M50, M50NiL) have been developed. Ceramic’s elements have very good material’s
properties but their damage phenomena are not well investigated. Furthermore, presence
of materials defects such as inclusions and voids after the manufacturing process can
strongly modify the fatigue behavior and service life of contacting elements. Same kind of
defects have also been found in titanium alloy used for blades like Ti-6Al-4V. Therefore,
contacts between blade and disk or between rolling element and bearings races can no
longer be considered homogeneous. Reproducing and modeling the behavior of these
materials under contact is paving the way to more reliable design of mechanical’s systems.

Figure 1.8: Bearings in aircraft engines

1.2 Contact damage phenomena

1.2.1 Fretting

Fretting is defined as a low amplitude repeated relative motion between two surfaces in
contact. The sliding between two surfaces in contact can lead to different surface damage
phenomena such as wear (fretting-wear), crack (fretting-fatigue) and corrosion (fretting-
corrosion). Magnitude of the motion is generally in the order of micrometers. Real contact
area can be hard to reproduce experimentally and, most of the time, simplified geometries
are used to study fretting. The three most common geometries are :

• Contact between a sphere and a flat surface.
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• Contact between a cylinder and a flat surface.

• Contact between two flat surfaces.

The two first configurations were analytically described by Hertz [HER 82] and can be
used to described the contact occurring in the blade-disk interface or between the rolling
elements and the races of a bearing. The last configuration is more complex due to dis-
continuity in the pressure and shear stress fields at the edge of the contact area. Complete
description of the stress field in elastic contact can be found in the books of Johnson
[JOH 85] and Hills [HIL 93]. Three modes of fretting for a sphere on a flat contact were
defined by Mohrbacher [MOH 95] are represented in Fig. 1.9. The first mode corresponds
to a constant normal force and an oscillating tangential displacement creating slips along
one direction, the second mode represents an oscillating normal forces creating radial
slips and the third mode corresponds to a constant normal load with a variable moment
around z.

Figure 1.9: Fretting modes [MOH 95]

The first mode is the most investigated due to its simplicity and reasonable accuracy in
modeling fretting loading in the blade disk interface. A sphere or a cylinder is pushed in
contact on a flat with a constant normal load N and a tangential displacement δ is imposed
on one of the solids. A parameter e can be defined comparing the relative displacement
and the contact radius a∗ [FOU 96]:

e =
δ

a∗
(1.1)

When e < 1, a part of the initial contact area is always in contact and never exposed
to external environment. This is called fretting. If e > 1, the contact is in reciprocating
sliding (see Fig. 1.10).
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1. Context and Background

1.2.1.1 Fretting regimes

Based on the amount of stick and slip that occurs in the contact, two fretting sliding
conditions can be identified, namely gross slip and partial slip conditions [VIN 88].

• Gross slip condition: according to Coulomb’s law, the shear distribution Q is equal
to the coefficient of friction µ times the pressure P along the contact surface : Q =
µP and the whole contact surface is sliding.

• Partial slip condition: the local tangential force is locally reaching Coulomb’s
threshold even if the macroscopic tangential force Q < µP resulting in a stick zone
at the center of the contact surface and a slip annulus appearing at the edge of the
contact surface [MIN 49].

Transition between the two conditions can be determined using the fretting loop plot
(Q(δ)). In stick-slip condition, fretting loop has an elliptical form due to the local slip at
the edge of the contact surface while in full sliding condition, fretting loop has a parallel-
ogram form because the tangential force is equal to Coulomb’s threshold throughout the
tangential displacement.

To calculate the dissipated energy Ed during a fretting cycle and the tangential stiffness
of the system dQ

dδ
, the tangential displacement δ∗, the maximum tangential force Q∗ and

the cycle aperture δ0 can be identified on the fretting loop. For a rectangular cycle, Ed =
4δ0Q∗. Several criteria for the transition between different fretting conditions have been
proposed by Fouvry [FOU 97] in a sphere/plane configuration.
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Figure 1.10: Fretting regimes [MON 15]

To study the evolution of contact condition with time, Zhou and Vincent [ZHO 93b]
have established three fretting regimes based on experimental results : the partial slip
regime, the gross slip regime and the mixed fretting regime which corresponds to sliding
conditions evolving from gross slip to partial slip due to a modification of the contact
conditions. Generally, the partial slip regime is associated with high normal load and
low displacements, while gross slip regime is typically associated with lower normal load
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and higher displacements. The mixed regime corresponds to a transition between the two
aforementioned regimes. Wear is generally associated with the gross slip regime while
the partial slip regime to cracks [VIN 92] and both damage phenomena compete in the
mixed regime. Material response fretting map (see Fig. 1.14) associated with each fretting
regime map has been proposed in [BLA 91].
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Figure 1.11: Material Response Fretting Map

1.2.1.2 Surface damages

Under fretting loading, cracks and surface degradations appears as a result of fatigue phe-
nomenon, void nucleation and sub-surface crack propagation [SCO 67, SUH 73]. Due
to friction and stress gradient in the contact, the two main phenomena, namely wear
and crack initiation, are surface originated. Details on these two damage phenomena
are briefly recalled in the following subsection.

Wear

Wear in the blade-disk interface is mostly due to friction. Wear by friction can be classi-
fied as: adhesive wear (transfer of material due to local overstress), abrasive wear (hard
material is plastically deforms a softer one), corrosive wear and fatigue wear. Fatigue
wear would be caused by the cyclic shearing of material in the contact region followed by
the initiation, propagation and intersections of cracks. During fretting, most of the wear
debris are retained in the contact area. Furthermore, several wear mechanisms are often
coupled. A summary of different approaches found in the literature to describe friction
wear are listed:

• Archard’s wear law [ARC 53] defines the wear volume VW as a function of the
sliding distance s, the normal load F and H the hardness of the softer material in
contact. K is dimensionless and is called the Archard wear coefficient.
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1. Context and Background

VW = K.
F.s
H

(1.2)

One should noticed that Archard’s law is independent of the coefficient of friction.
In experimental results, the hardness of the material may be unknown and a dimen-
sional Archard coefficient (or specific wear rate) is used [WIL 99]:

K
H

# mm3.N−1.m−1 (1.3)

• Third body concept proposed by Godet [GOD 84, BER 90] takes into account the
interface between the contacting bodies. According to this concept, wear is gov-
erned by three phenomena: detachment, flow and ejection of wear particles. Nu-
merical simulation of wear debris in contact is very expensive in terms of computa-
tional time and are only used for qualitative analysis.

• Energetic approach developed by Fouvry [FOU 96, FOU 03] links the wear volume
to the dissipated energy in the contact during a fretting cycle. The dissipated energy
during a fretting cycle is the sum of the dissipated energy during each part of the
load path:

Ed = ∑Q.δ≈ 4Qδ
∗ (1.4)

The dissipated energy is a function of the normal load, the coefficient of friction and
the tangential displacement. The wear volume can then be computed as the sum of
the dissipated energy for every fretting cycles:

VW = α

N

∑
k=1

Ed(k) (1.5)

Because there are not depending on the displacement amplitude, energetic ap-
proaches are widely used in the literature. Moreover, these approaches provides
an accurate estimation of the wear in sliding contact without representing local
mechanisms occurring in the contact area.

When studying contact of materials, one should be careful because the coefficient of
friction, friction phenomena, and wear are not material properties but depend on the whole
tribological system properties.

Cracks

In the partial slip regime, crack initiation and propagation appears at the edge of the
contact area as a result of damage accumulation by cyclic shearing of material in the slip
region [BRY 88]. Initiation steps described by Lemaitre and Chaboche [LEM 90] are:
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Figure 1.12: Wear scar from fretting [BRY 88].

1) Accommodation phase: stress concentration leads to plastic micro-strains.

2) Initiation phase: plastic strain accommodation leads to a short crack initiation.
Crack follows the path maximizing the shear stress with an angle around 45 de-
grees with the contact surface.

3) Propagation phase: short crack becomes a long crack following the linear elastic
fracture mechanics theory [FOR 61, NIX 88, LIS 03].

During the initiation phase, crack path may be influenced by the microstructure of the
material because the crack size is around the same size as those of grains [PAN 18]. Multi-
ple initiation criterion have been proposed in the literature based on Tresca stress [FIN 58,
MAT 77], Von Mises stress [SIN 59, CRO 56] and mesoscopic approach [DAN 93]. Also,
numerical simulations of the initiation and propagation of cracks in blade-disk contact
have been investigated by several authors [DIC 06a, MER 11, MON 15].

Figure 1.13: Crack initiation in partial slip fretting regime [BRY 88].

Finally, in some contact conditions, wear and cracks can compete in the tribological
system. Crack initiation points are also subjected to wear, limiting crack nucleation.
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Figure 1.14: Crack initiation and propagation in partial slip fretting regime [FOR 61].

Now that the damage mechanisms occurring during fretting loading have been pre-
sented. The damage phenomena due to rolling contact loading are detailed in the next
section. One should note that fretting damage phenomena are friction originated while
damage phenomena in RCF are mainly due to the reversal of the shear stress during a
loading cycle.

1.2.2 Rolling Contact Fatigue (RCF)

Considering good lubrication, installation and operating conditions, life of bearings is
only limited by rolling fatigue mechanisms [HAR 01, SAD 09]. Rolling Contact Fatigue
(RCF) is a phenomenon due to a repeated rolling loading over a surface. RCF strongly
depends on the tribological conditions (lubrication, surface roughness etc.) and the ma-
terials properties. Classical fatigue theory can not be applied here due to some major
differences with RCF recalled here:

• Stress state in Hertzian contact is multi-axial.

• The maximum stress location is moving during a loading cycle (Fig. 1.15).

• RCF’s phenomenon occurs in a very localized volume (contact areas are about a
tenth of a millimeter).

• Loading path is not proportional: component of the stress field are not evolving in
the same way (even more with plasticity or heterogeneity under the surface).

• Principal stress axes moves during the loading path, making harder to find the plane
of maximal shear stress.

• High negative hydrostatic stress due to applied compression limits crack propaga-
tion in mode I.

• RCF is mainly due to the reversal of the shear stress [JAL 11] (see Fig. 1.16).
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Figure 1.15: Rolling Element Bearing
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Figure 1.16: Stress history of a point located at 0.5a∗ in the subsurface of the material as
the Hertzian load passes over.

The two different phenomena leading to RCF failure are surface originated pitting and
subsurface originated spalling [LIT 66, TAL 99]. Pitting is mainly due to surface defects
or insufficient lubrication while spalling is due to subsurface cracks initiating at material
imperfections like voids, dislocations and inclusions.

1.2.2.1 Surface initiated damage

Pitting is a phenomenon corresponding to a loss of a chunk of material due to a surface
initiated crack (see Fig.1.17). Those cracks are mainly due to low quality surface fin-
ishing, debris denting or wear [NEL 99, NEL 00, RYC 17]. Moreover, the approximate
thickness of a pit is about 10 µm [DIN 03] and pitting occurs when one of the cracks is
reaching the surface. The crack trajectory depends on the shear stress acting on it during
the loading path and on the grain boundary stiffness and orientation.
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Figure 1.17: Surface initiated damage from RCF [ZAR 12] and illustration of pitting
[RYC 12].

1.2.2.2 Subsurface initiated damage

In contrast to pitting, spalling phenomena corresponds to subsurface originated cracks
reaching the surface and leading to a loss of a chunk of material [TAL 99, JIN 89]. The
subsurface cracks are initiated around heterogeneities close to the surface. This phe-
nomenon can be overcome with the use of coatings or by improving manufacturing pro-
cesses. Finally, the main difference with pitting is the bigger size of the chunk, called
spall. The average thickness of a spall is around 0.25a∗ to 0.35a∗ [DIN 03] and can lead
to the failure of the rolling element.

Figure 1.18: Subsurface initiated damage from RCF [ZAR 12] and illustration of a spall
[TAL 92].

1.2.2.3 Microstructural alterations due to RCF

This section briefly discusses some additional failure phenomena associated with mi-
crostructural changes during the fatigue process. These phenomena are typically re-
vealed by microscopic analysis of etched steel microstructure. According to Zwirlein
and Schlicht [ZWI 82], microstructural alterations occur in the following order:

• Butterflies wings are formed of two white etching areas around hard inclusions
present in the bearing steel. Wings develop in two main directions depending on
the over rolling direction and with an angle of around 45 degrees with respect to
the contact surface. Cracks form at the top part of the upper wing and at the bottom
part of the lower wing and grow to reach the surface leading to the failure of the
bearing. [STY 51, GRA 10, MOG 16a, ALT 18]. The question whether the crack or
the wings happen first is still not clearly answered. Some authors believe that wings
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form first [MOG 15b, EVA 12] because of wings experimentally observed without
cracks and the lack of butterfly wings on the other side of the crack [MOG 16b].
Other authors believe that cracks are already present in the material due to heat
treatment or debonded inclusion and then wings appear by rubbing and collision of
crack faces [SOL 14].

• Dark etching region (DER) forms and expands with loading cycles just under the
raceway, in the region of maximum shear stress but with no preferential orienta-
tion. It is characterized by its dark appearance and has been associated with high
microplastic strain [GRA 10, BHA 12, WAR 13].

• White etching bands (WEB) appear inside the dark etching region and along spe-
cific angles from the over rolling direction. A first band is forming with an angle of
about 30 degrees called flat white bands and followed by a 80 degrees bands called
steep white band [MAR 66, ZWI 82, POL 95, KAN 13].

• White etching cracks (WEC) are part of a 3D crack network appearing under very
high load and are surrounded by white etching microstructure (or layer). Hydrogen
embrittlement in the steel is the most common theory used to explain WEC appear-
ance [EVA 13a, RUE 14]. There is still no clear consensus on the origins of these
phenomena [BLA 16, SOL 14]. Recently, Manieri et al. [MAN 19] showed that
WECs are a consequence of a specific high stress history. Moreover, WEC repre-
sents very high costs in wind turbine maintenance and is still an unsolved problem.

In order to achieve better design and to determine a better prediction of component
life, several numerical methods have been proposed in the literature to simulate damage
of materials under contact loading [MOG 15a, MOR 18b]. These methods are often based
on the continuum damage mechanics theory briefly discussed in the following section.
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(a) (b)

(c) (d)

Figure 1.19: Damage mechanisms in Rolling Contact Fatigue (a) Butterfly wings around
an inclusion [GRA 10] (b) Dark Etching Region in axial cross section (c) White Etching
Flat and Steep Bands [ZWI 82] (d) White Etching Cracks in axial cross section [RUE 14].
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1.3 Continuum Damage Mechanics
Continuum damage mechanics (CDM) describes the initiation and evolution of degrada-
tion in materials at the microscale such as micro cracks and voids. Study of the CDM
originated from efforts to model creep phenomena in USSR. In 1958, Kachanov intro-
duced a scalar variable associated with damage [KAC 58] and his student, Rabotnov,
defined the concept of effective stress [RAB 69]. Following this preliminary work, con-
tinuum damage concepts have been enriched by the works of Lemaitre. They coupled
CDM with both elasticity [LEM 77] and plasticity [LEM 84] and introduced a thermo-
dynamics framework [CHA 74]. Links with ductile fracture have also been proposed
by Leckie and Hayhurst [LEC 74]. Advances in CDM modelling has enabled the study
of phenomena like micro defects closure in compression, fatigue or anisotropic damage.
Moreover, CDM has been applied to different materials like concrete [ORT 85, MAZ 89]
and composite materials [MAI 97b, MAI 97a]. Thus, CDM is able to model the alter-
ation of a virgin material until the initiation of a mesoscopic crack in the volume element.
Damage is defined through the use of an internal variable called D. In quasi-brittle ma-
terials, damage is mostly due to debonding but in ductile materials, damage mechanisms
are strongly linked to plasticity and voids coalescence.

Building a model to represent damage in a material requires the definition of a damage
variable, an evolution law and a coupling with the constitutive equation of the material
[MAR 85]. Appearance of micro cracks is followed by an irreversible alteration of the
material characterized by a decreasing material stiffness. Instead of representing micro
cracks and voids geometrically in the material, CDM only model their effects on the me-
chanical properties. Kachanov [KAC 58] defines the damage variable D as the density of
micro cracks and voids in the cross sectional area of the representative elementary volume
(REV). With S̃, the effective area that carries the load and S, the original undamaged area
in the REV, D may be interpreted physically as the ratio of damaged surface area over
total surface area:

Damaged Surface

Total Surface

Figure 1.20: Cross sectional area of the RVE with a damaged area.

D =
S− S̃

S
=

SD

S

Considering no healing of the material, D is monotonically increasing from D = 0,
the undamaged state, to D = 1 the complete local rupture of the material. D is defined in

21



1. Context and Background

Figure 1.21: Stress strain curve with damage

every point of the solid and represents the alteration level of the REV in this point. In the
general case of anisotropic damage, D is a tensor.

The state of stress in the damaged material can be described by the effective stress
introduced by Rabotnov [RAB 69]:

σ̃ =
F
S̃
=

F
S

S
S̃
=

σ

(1−D)
(1.6)

Lemaitre [LEM 85] introduced the following hypothesis that the strain behavior is
modified by damage only through the effective stress. Hence, the strain associated with
a damaged state under the applied stress is equivalent to the strain associated with its
undamaged state under the effective stress. Applying the Hooke’s law with E, the modulus
of elasticity for the undamaged material, the elastic strain in the material becomes:

ε =
σ̃

E
=

σ

(1−D)E
(1.7)

Using the effective stress and the strain equivalence, it yields that the damage variable
affects the linear elasticity modulus. An effective elasticity modulus linking the damage
parameter evolution with the material deterioration is defined:

Ẽ = E(1−D) (1.8)

Increase in the damage reduces the modulus of elasticity as shown in Fig.3.1. In order to
measure the damage variable, D can also be defined as:

D = 1− Ẽ
E

(1.9)

Now that the method to model the degradation of material has been recalled, the next
section will focus on the description of composite materials behavior and damage phe-
nomena.
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1.4 Modeling and damage in composite materials

1.4.1 Composite materials: structure and composition
Composite materials are made of an assembly of at least two different materials with a
goal of obtaining a material with better mechanical, thermal or chemical properties than
each material used alone. Composite materials allow complex geometries, low weight
and designed properties for specific application that make them very interesting in the
aeronautic industry. The main structure of composite materials can be decomposed into
the matrix and the reinforcements:

• The matrix surrounds the reinforcement materials and insuring the composite ma-
terial cohesion. Depending on the application, matrix can be made of polymer
(aerospace structure, RTM fan blades), metal (disk of engines) or ceramic (for high
temperature application like turbine nozzles).

• The reinforcements improve the matrix mechanical properties. They can be in the
form of particles, short fibers or long fibers (see Fig. 1.23).

Figure 1.22: Parts in composite materials with (a) Organic matrix (b) Ceramic matrix.

Figure 1.23: Reinforcements in form of (a) Particles (b) Short fibers (c) Long fibers.

Matrix functions are mainly to give the general shape of the part, to transmit the load
into the fibers and to protect the fibers from the environment. In addition to its con-
stituents, structure of composite materials play a major role on their mechanical behav-
iors. Composite made of particles or short fiber reinforcements are generally randomly
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distributed inside the matrix and do not have any specific structure. In contrast, long fiber
composites usually have specific geometries that are briefly described here:

• Laminated structures are made of plies with different orientation. Each ply is made
of yarns (bundles of fibers) with a plane orientation inside the ply. Individual layers
are often orthotropic. Modification of the ply order and orientation allow to design
the mechanical properties of the composite laminate to its application. Their main
damage behavior called delamination corresponds to the separation of the layers at
the interface.

• Sandwich structures are made of two thin plates glued to a thick lightweight core.
Usually the core material has low stiffness compared to the plates. This kind of
structure allows the fabrication of very low density materials with good mechanical
properties for bending and torsion.

• Woven structures are made of fibers weaved together in a complex structure called
preform and introduced into a resin. Different kind of weaving and knitting are
possible to get the desired mechanical properties.

Fan blades of the LEAP engine are 3D interlock woven composites made of a polymer
matrix and a carbon fibers preform. 3D woven composites have good performances when
out-of-plane loading is applied on the part [PEA 07]. A Resin Transfer Molding (RTM)
process is used to develop this material: a fiber preform is introduced into a mold and a
heated resin is injected that transforms into a continuous solid matrix.

Understanding and modeling the behavior of this kind of material is very complex.
Depending on the kind of problem that need to be represented, three scales of repre-
sentation can be used: microscopic scale (scale of fibers), mesoscopic scale (yarns are
considered homogeneous) and macroscopic scale (the part is considered homogeneous).
In contact conditions, validity of the macroscopic scale may not be the most appropriate
scale due to the very local solicitations in regard to the material structure. One should be
careful about the sensibility of contact mechanics to scale effects of the materials.

1.4.1.1 Behavior of composite materials

Behavior of woven composite depends on the materials used for the matrix, the fibers
and the weaving structure. Most of the time, the macroscopic homogeneous behavior is
considered as orthotropic. Considered separately, the polymer matrix has a viscoelastic
behavior and the yarn has a brittle linear elastic behavior. For a 3D woven material, the
behavior in tension in the direction of the yarn is found to be brittle non linear elastic
and the behavior of the whole material in out-of-plane tension is found to be non linear
with presence of residual strain due to damage [BOR 04]. Fracture of carbon fibers is
brittle [TAN 00] and load-unload experimental results show the damage behavior of the
material with solicitation in the different directions of the material (weft direction, warp
direction and 45 degree out-of-plane) [SCH 08]. Hurmane [HUR 15] observed that in
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tension, yarns realign in the direction of the tension loading leading to an hardening of
the material behavior. Thus, complete behavior of a 3D woven composite in tension along
the warp direction can be described in three steps (see Fig. 1.25):

(a) (b)

Figure 1.24: Mechanical behavior of a 2D woven composite in (a) traction along the
fibers (b) plane shears [BOR 04].

1) Viscoelastic behavior.

2) Damage due to matrix cracks and debonding between yarns and matrix.

3) Yarn failure.

Figure 1.25: Behavior of a 3D woven composite in tension along the warp direction
[HUR 14].
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1.4.1.2 Damage phenomena in composite materials

After forming, 3D woven composites with polymer matrix have a very low porosity
level and no apparent damage (see Fig.1.26). Moreover, polymer matrix has a very
low Young modulus compared to the Young modulus of the fibers. Hence, yarns
are transmitting most of the load. A lot of studies have been done on the damage
mechanisms of woven composite materials and mostly focusing on traction loading
[COU 08, KER 14, GRA 13a, LI 15, DOI 15a]. Only a few studies have investigated
compression loading [COX 92, HUR 15, ELI 15, ELI 17, MBA 13]. Behaviors in flexion
[MAR 10], torsion [SCH 09b] and in fatigue [HEN 11, HEN 13, RAK 13, ANG 16] have
also been studied by some authors.

Figure 1.26: Initial state of 3D woven polymer matrix composite [COU 08].

Due to their structures, mechanical behavior of woven composites highly depends
on the direction of loading in respect to the direction of the yarns (warp, weft and out-
of-plane directions). Common damage mechanisms can be described at three different
scales:

• Microscopic damage mechanisms: fibers-matrix debonding and matrix micro-
cracks inside the yarn (see Fig. 1.27(a)). No notable effects on the global behavior
have been observed.

• Mesoscopic damage mechanisms: cracks in matrix pockets between the yarns.
Cracks are deviated by materials interface (see Fig. 1.27(b)). Effects are mainly
observed on the behavior in the warp direction [HUR 15].

• Macroscopic damage mechanisms: Fracture and failure of the material.

When every matrix pockets have been fully damaged, damage is reaching saturation
and load is only transmitted through the yarn leading to the hardening of the material
[HUR 15].

In compression, only a few damage mechanisms occur before finale failure of the ma-
terial [HUR 15]. Compression loading is increasing the ripple of the yarns resulting in
the softening of the material in the weft direction. Some microscopic damage phenom-
ena appear due to out-of-plane deformation coming from Poisson’s effect. Ripples of the
yarns leads to debonding and fracture of the fibers as in Fig. 1.28. Couegnat [COU 08]
measured the acoustic emissions of a 2.5D epoxy composite material in tension loading.
No damage have been detected for loading below 300 MPa. Above this threshold, first
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(a) (b)

Figure 1.27: Damage mechanisms at the microscopic level [COU 08].

Figure 1.28: Debonding of the yarn followed by kinking fracture in compression
[HUR 15].

Figure 1.29: Matrix fracture in tension along the yarns at 0deg [ROM 15].
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(a) (b)

Figure 1.30: Damage of 2.5D-C/epoxy (a) Transverse crack and debonding of the yarn
(b) Longitudinal crack of the yarn [COU 08].

fibers failure appears and transverse failures initiate from 475 MPa (see Fig. 1.30(b)).
Exact values may depend on the considered material but give a first idea of the damage
threshold in polymer woven composite materials. For 3D woven materials, a small non
linearity is observed in the yarn direction due to the presence yarns in the third direction.
Yarns parallel to the loading direction are in tension and damage the material. Due to the
complex stress field appearing under contact loading, comparison with existing work on
pure tension and compression damage mechanisms is limited. Elias [ELI 15] observed the
damage mechanisms during low speed impact on a 3D woven polymer matrix composite
with a spherical projectile. The stress field under low speed impact is close to the one in
normal load contact conditions [CHA 11c]. Elias performed some optic microscope ob-
servation and found the same kind of damage as already described (yarns debonding and
matrix cracking). He compared the localization of the experimentally observed damage
with an elastic finite element simulation of impact and found that most damaged zones
are in the zone of shear stress while less damaged zone (just under the impact) are zone
of high hydrostatic stress. Non damaging effect of hydrostatic stress has already been
observed for laminated composite [CAR 12]. Some recent works on the tribological be-
havior of carbon-reinforced polymer composite against titanium alloy have been done by
Li et al. [LI 18b] and showed that the main fretting wear mechanisms are carbon fiber
wear, fiber-resin debonding and matrix cracking. Due to friction, wear debris migrate out
of the contact area and pile-up at the border of the contact. The kind of wear associated
with the carbon fibers is abrasive with creation of small wear particles while the resin
has brittle fracture and adhesive wear behavior. Finally, this section presented the main
damage phenomena occurring in woven composite materials. In the next section, some
existing damage models for composite materials are presented.

1.4.1.3 Damage models for composite materials

Damage prediction and simulation in composite materials is very important in the aero-
nautic industry with the introduction of the LEAP engine. Different approaches have been
proposed depending on the kind of mechanisms to model and at which scale the material

28



Modeling and damage in composite materials

is modeled.
At the microscopic scale, two main methods have been proposed:

• Implicit representation through the rigidity reduction of the mesh grid [SCI 99].

• Explicit representation of the crack by introduction of new nodes in the mesh.

At the mesoscopic scale, the work of Daggumati [DAG 10] and Lomov’s team
[LOM 00, LOM 07a] with WiseTex software allow to fully mesh the woven pattern. Dam-
age is represented by degrading the mechanical properties of the yarns. Another approach
has been proposed by Doitrand et al. [DOI 17a, DOI 17b] to introduce cracks inside the
yarn at the mesoscopic scale.

At the macroscopic scale, the complex geometry of the material is not represented but
only the effects of the different damage mechanisms on the overall behavior are described.
One can cite the work of the LMT Cachan [CHA 95, ALL 93, LAD 94] on an anisotropic
damage model with closure effect [MAI 97b] at the macroscopic scale. A specific focus
is made on ceramic composite materials and the damage variable can be a scalar, a 2nd
order tensor or a 4th order tensor. This model has been coupled with micro mechanics
models to take into account self healing and fiber damage [HIL 96, LET 06].

Another damage model for composite material has been developed at Onera for
20 years firstly for ceramic composites [MAI 97a, AIE 01, LAU 07, SAL 18] and later
for polymer composites with the work of Marcin [MAR 10]. The ”Onera Dam-
age Model” (ODM) has been continuously improved and adapted to different load-
ings and physics. One can cite the work of Rakotoarisoa and Angrand on fatigue
[RAK 13, ANG 16, KAM 15]. Recently Hurmane adapted this model to study compres-
sion [HUR 15] and Elias [ELI 15] for low speed impact. Garcia [GAR 17] adapted the
model for contact loading in landing systems. Moreover, in the ODM, the composite
material is assumed to be homogeneous with a damageable orthotropic behavior. The
ODM is made of different damage variables for each scale of damage phenomena and
coupled together. Microscopic damage variables are calculated and linked to mesoscopic
and macroscopic damage variables through different evolution laws traducing the differ-
ent scales of damage and finally affecting the macroscopic behavior of the material.

1.4.2 Homogenization of heterogeneous materials
The homogenization theory is used to simplify the simulation of heterogeneous materials
by defining a homogeneous twin material. The macroscopic response of the homogeneous
material and of the real heterogeneous material should be the same. Homogenization is
based on several assumptions that are recalled here:

The representative elementary volume

In the continuum mechanics theory, the representative elementary volume (REV) is de-
fined as the minimum volume allowing to obtain a homogenized behavior independent of
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the considered volume size. The size of the REV is often dependent of the size of the
microstructure of the material. In periodic materials like woven composite materials, the
presence of the woven pattern is used to defined the size of the REV and in metallic alloy,
the size of the REV will depend of the grain size distribution in the material.

Scale changes: fine scale and coarse scale

From the definition of the REV, two different scales can be defined. A fine scale associated
with the REV dimension l and a coarse scale, associated to the macroscopic structure L.
The homogenization theory hypothesizes the separation of scales : l � L. Therefore,
the structure can be considered as a continuum medium and the REV is considered as
a material point at the structure scale. Finally, the aim of homogenization is to define a
material response independent of the local scale of the material.

Localization

The macroscopic stress and strain are respectively called Σ and E. One can define the
localization tensor A(x) as the relationship between the local strain in the material and the
macroscopic strain and concentration tensor B(x) as the relationship between the local
stress to the macroscopic stress.

ε(x) = A(x) : E (1.10)

σ(x) = B(x) : Σ (1.11)

Effective properties

The main goal of the homogenization process is to define the macroscopic behavior of
the material through effective material properties. The effective stiffness tensor is de-
fined as the tensor linking the macroscopic stress Σ to the macroscopic strain E in the
heterogeneous material:

Σ =Ce f f : E (1.12)

The macroscopic stress and strain are defined as the mean value over the volume of
material V of the local stress σ(x) and ε(x):

Σ =< σ(x)>=
1
V

∫
V

σ(x)dV (1.13)

E =< ε(x)>=
1
V

∫
V

ε(x)dV (1.14)

In the linear elasticity framework, considering an applied strain E, one can obtain the
relationship between ε(x) and σ(x):
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σ(x) =Ci(x)ε(x) (1.15)

with Ci(x) the local stiffness tensor.

Σ =< σ(x)>=<Ci(x) : ε(x)>=<Ci(x) : A(x) : E > (1.16)

Σ =<Ci(x) : A(x)>: E (1.17)

The homogenized stiffness tensor can be defined as:

Ce f f =<Ci(x) : A(x)> (1.18)

Some of the different possible methods to define the localization and concentration
tensors are recalled in chapter 6.

1.5 Methods in contact mechanics

1.5.1 Analytical solution

The first theory of contact mechanics was proposed by Heinrich Hertz [HER 82] in 1882.
Hertz found the solution of the contact between two elastic solids assuming that:

• The contacting surfaces are continuous and non-conforming.

• The contact zone is elliptical

• No friction is occurring in the contact zone

• Contacting solids are elastic half-spaces: the size of the contact zone is small
enough compared to the characteristic length of the solids. It means that contact
stresses are not altered by the boundary conditions of the solids.

Even if the hypotheses of the Hertzian theory are restrictive, it is still widely used and
give a good description of the contact solution.

Contact mechanics theory was later extended to non-Hertzian geometry [JOH 85]. In
particular the work of Aleksandrov [ALE 86] on the contact between a punch and a half-
space and the work of Westergaard on sinusoidal rough contact [WES 39] can be cited
as example. Cattaneo [CAT 38] and Mindlin [MIN 49] proposed a solution for sliding
contact using Coulomb’s law for friction.
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1.5.2 Numerical methods

Finite element

The finite element method is the most common numerical method in solid mechanics.
This method is very powerful to find approximate solutions of partial differential equa-
tions (PDE). Numerous commercial softwares use this method to solve complex problems
(thermal fields, dynamic, plasticity, viscosity, magnetic fields etc.). For 3D contact prob-
lem, the geometrical non-linearity can lead to algorithm convergence issues and a very
fine mesh is needed in the contact area to have a good accuracy leading to a high com-
putation cost. Recent works on numerical techniques by Yastrebov [YAS 11] investigated
the contact between rough surfaces. Extensive information is available in the books of
Wriggers [WRI 06] and Laursen [LAU 03] for synthesis of contact simulation with finite
element method.

Multigrid

This method is based on the work of Brandt, Lubrecht and Venner [BRA 90, LUB 91,
VEN 00] to discretize and solve Lamé equations using finite differences and innovative
numerical tools. The computation speed is considerably decreased by solving the equation
at different grid refinements depending on the local error (V-cycle strategy). This method
has been applied for heterogenenous materials and moving heat source by Boffy et al.
[BOF 12, BOF 14, BOF 15] and to composite material modeling [GU 16]. Computation
of EHL contact solution on rough surface with presence of a heterogeneity has also been
studied recently [MOR 17].

Semi-analytical

Semi-analytical methods are based on the numerical summation of analytical solutions to
elementary problems. In contact mechanics, they have been developed by several authors
[BEN 67, JOH 85, PAU 81] and one can refer to the work of Kalker [KAL 90]. Originally
Kalker’s work was based on the use of the Newton-Raphson algorithm which was replaced
later by the Gauss-Siedel method by Jaeger [JAE 04]. Finally, the Fast Fourier Transform
has been massively used to increase the speed of the method [POL 00, LIU 01].

Nelias and co-workers have been developing a code to solve a three dimensional
contact problem [GAL 06, GAL 07a, GAL 10, DON 17] based on the semi-analytical
method (SAM) initially proposed by Jacq et al. [JAC 02]. SAMs have been con-
tinuously developed and applied to several problems such as thermo-elasto-plastic
contact modeling [BOU 05], modeling plasticity and accumulation of plastic strains
[BOU 05, WAN 05], running-in [NEL 07], simulation of single impact [CHA 11a], shot
peening [CHA 12] and low plasticity burnishing [CHA 11b, NEL 07, CHE 08a], model-
ing of cuboidal inclusions [ZHO 09, ZHO 11a, ZHO 11b, ZHO 12, FUL 10, ZHO 16],
ellipsoidal inclusions [LER 10, LER 11, KOU 14b], heterogeneous viscoelastic behavior
[KOU 14a, KOU 15a], heterogeneous elastoplastic behavior [AMU 16, DON 16], as well
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as to account for material or coating anisotropy [BAG 12, BAG 13]. The method has also
been extended to ultraspeed impact [TAR 14] and contact on dented surface [ANT 08].
Recently, development of solutions for thermal inclusion [LI 19], application to function-
ally graded thin film [ZHA 18] and imperfect interface conditions [LI 18a] have been
proposed. Some applications to lubricated contact for rough contact [REN 09] and a
coupled heterogeneous EHL solver [WAN 13, SHE 14, ZHO 16] have been introduced.
Finally, semi-analytical methods are very fast and allow to obtain very accurate solution
to complex contact problems like plasticity or heterogeneity. Solutions developed in the
following work are based on this approach.

1.5.3 Simulation of Blade/Disk contact
The blade/disk interface has been studied by several researchers based on 2D analytical
solutions [NOW 98, HIL 88]. Contact geometry is often assumed to be equivalent to a
punch contact with rounded edges (see Fig. 1.31). Simulations with the Finite Element
Method (FEM) have been proposed in [MON 15, DIC 06b, YAS 11] but in order to simu-
late the contact between a composite blade and a metallic disk, the scale of representation
of the composite may strongly affects the contact solution and the capacity to represent
the damage occurring inside the material. Previous work of Leroux [LER 13] showed the
effects of the presence of heterogeneities on the contact pressure fields. He also used the
Wisetex software to obtain a composite geometry description and converted the yarn in
a series of ellipsoidal inclusions in the semi analytical solver (Fig. 1.32). Recent work
on the meshing of woven composite structure from tomography have been proposed by
Naouar et al. [NAO 15b] and is illustrated in Fig. 1.33. One should note that no con-
tact loading simulations has been performed on these kinds of mesh. Finally, the ability
of solving the contact problem on a composite material at the mesoscopic scale is still a
scientific challenge for the industry.

Figure 1.31: Geometrical approximation of the blade disk contact [RAJ 06]
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Figure 1.32: Von Mises stress during indentation of 2D composite material with semi-
analytical method [LER 13].

Figure 1.33: (a) Tomography of a Woven composite material 3D (b) Mesh of the woven
composite material from tomography [NAO 15b].

1.6 Synthesis and Outline
This section introduced the industrial challenge of the prediction of damage at the
blade/disk interface and in rolling element bearings in aircraft engines. Damage phenom-
ena arising with contact loading are presented and the Continuum Damage Mechanics
background is briefly described. Mechanical behavior and damage phenomena associated
with woven composite materials are introduced. Additionally, challenges in the modeling
of heterogeneous composite materials used for the fan blades of the LEAP engines have
been highlighted. Subsequently, a summary of different numerical modeling methods for
contact simulation are presented. Finally, the main goal of this work is identified to be the
development of a contact model for surface and subsurface damage while including the
effects of complex geometry of composite materials. Because of the difficulty of mod-
eling heterogeneous materials in contact loading, the semi-analytical method is used in
this study due to the low memory needed and high computation speed. Results presented
in the following chapter are based on the PhD work of Fulleringer [FUL 11], Leroux
[LER 13], Koumi [KOU 15b] and Jerbi [JER 16] on semi-analytical methods. The basics
of this method are summarized in the next chapter.
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Chapter 2

Semi-analytical method for contact on
heterogeneous material

In this chapter, a numerical contact solver based on analytical
solution summation and numerical acceleration technique is
detailed. Presence of a heterogeneity is taken into account

using the Eshelby’s equivalent inclusion method. A coupling
between the contact problem and the heterogeneous problem

is described allowing to solve the heterogeneous contact
problem. Influence of multiple heterogeneities is numerically

solved using conjugate gradient algorithm.
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Body 2

Body 1

plane

Figure 2.1: Description of the contact problem.

2.1 Theoretical background of the contact algorithm

2.1.1 Elastic contact problem equations

2.1.1.1 Normal Contact

Let’s consider two elastic bodies B1 and B2 defined by their undeformed surfaces in the
orthogonal basis Oxyz. The applied load W is transmitted into the contact through the
contact zone Γc. Resulting contact pressure field p must verify the equilibrium equation
as following:

W =
∫

Γc

p(x,y)dΓ (2.1)

The gap between the two surfaces at each point (x,y) of the computation domain is
equal to the summation of the initial distance between the contacting surfaces hi, the rigid
body displacement δ and the normal component of the elastic displacements of the two
bodies uB1+B2

z .

h(x,y) = hi(x,y)+uB1+B2
z (x,y)−δ (2.2)

The distance h(x,y) is always positive to ensure the non-interpenetration of contacting
bodies. The contact conditions are defined by the following inequalities:

When h(x,y) = 0 and p(x,y)> 0 → contact
When h(x,y)> 0 and p(x,y) = 0 → separation (2.3)
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Z

Y o X

W

Figure 2.2: Contact of a sphere over an elastic half-space.

Finally, solving the normal contact problem between the two bodies can be resumed
to simultaneously solving a system of equations and inequations traducing the boundary
conditions of the contact interface. For a load imposed problem, the normal loading W is
known.

p(x,y)> 0 ∀(x,y) ∈ Γc (2.4)
hi (x,y)+uz (x,y)−δ = 0 ∀(x,y) ∈ Γc (2.5)
p(x,y) = 0 ∀(x,y) 3 Γc (2.6)
hi (x,y)+uz (x,y)−δ > 0 ∀(x,y) 3 Γc (2.7)

∑
Γp

p(x,y) ·S =W (2.8)

where uz (x,y) is representing the total elastic displacement of the two bodies at the point
(x,y). The variables p(x,y) and uz (x,y) are the two unknowns of the system.

In the case of two elastic elastic materials, the analytical relationship between the two
variables was found by Love [LOV 52].

uz (x,y) =
(1−ν2)

πE

∫ +∞

−∞

∫ +∞

−∞

p(ξ,η)dξdη√
(ξ− x)2 +(η− y)2

(2.9)

2.1.1.2 Tangential Contact

When the tangential displacements are not nil, a new set of conditions is needed to solve
the tangential contact problem. The tangential contact conditions can be written using
the Coulomb’s friction law to express the shear stresses qτ in the contact. The tangential
load Q and the contact zone Γc are known from the solution of the normal problem. The
following system of equation needs to be solved to determine the sticking region Γst and
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the slipping region Γsl .

qτ (x,y) =−µ · p(x,y) · ∆sτ (x,y)
‖ ∆sτ (x,y) ‖

∀(x,y) ∈ Γsl (2.10)

∆uτ (x,y)−∆δτ = ∆sτ (x,y) ∀(x,y) ∈ Γsl (2.11)
‖ qτ (x,y) ‖< µ · p(x,y) ∀(x,y) ∈ Γst (2.12)
∆uτ (x,y)−∆δτ = 0 ∀(x,y) ∈ Γst (2.13)

∑
Γp

q(x,y)S = Q (2.14)

Γsl ∪Γst = Γc (2.15)

δτ is the tangential rigid body displacement and sτ is the relative slip amplitude. The
tangential surface displacement uτ is the result of the displacements coming from both
the shear stresses and the normal pressure field.

2.1.1.3 Coupling between the normal and the tangential problem

Now that the equations characterizing the contact conditions have been set, an iterative
method is used to solve the normal and tangential contact problems one after the other.

1. The normal problem is solved assuming no shear tractions. The contact area Γc and
the pressure field p are found

2. The tangential problem is solved considering the pressure field p found previously.
Shears q, slips s and sticking area Γst are found.

3. If shears are not equal to zero, the normal problem must be solved again considering
the shear field q.

This iterative loop must be repeated until both of the problem converged (process of Pana-
giotopoulos [PAN 85].

The problem is considered fully coupled when normal tractions induce radial shears
like in the second mode of fretting (spherical indentation) or when two dissimilar materi-
als are in contact.

ux = up
x +uqx

x +uqy
x

uy = up
y +uqx

y +uqy
y (2.16)

uz = up
z +uqx

z +uqy
z

When a sphere is moving only along the x-direction (first mode of fretting), one can
assume that shears along the x-direction only depend on the tangential force or displace-
ment in this direction. This simplification allow to reduce the computation time of the
contact solution.
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x
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1

Figure 2.3: Discretizaton of the contact loading in Np rectangles of uniform pressure and
shears.

2.1.2 Numerical discretization
The principle of the semi-analytical problem is to use analytical solution to solve Neum-
man’s problem. The aforementioned problem consists in finding the elastic deflections
u and stresses σ in the half-space. Boussinesq [BOU 85] solution is giving the normal
displacement at any point of a surface subjected to a unit force. Love [LOV 52] proposed
a similar solution for a rectangle on which a uniform pressure is applied and Cerruti
[CER 82] for a tangential load. These elementary solutions are known as Green’s func-
tions or influence coefficients. Finally, a coupling between the normal and tangential
loadings is needed to find the shear distribution in frictional contact [CIA 98a, CIA 98b].

To numerically solve the set of equation for the contact problem, the pressure distri-
bution will be discretized into Np = Nx×Ny rectangles of uniform pressure and shears.
Distance between each computation point along the x-direction is ∆x and along the y-
direction ∆y.

According to linear elasticity theory, the surface normal displacement of the half-
space at any point (x,y) is found by adding the contribution of each rectangle of uniform
pressure p.

uz (i, j) =
Nx

∑
k=1

Ny

∑
l=1

K p
z (i− k, j− l) p(k, l) (2.17)

+
Nx

∑
k=1

Ny

∑
l=1

Kqx
z (i− k, j− l)qx (k, l) (2.18)

+
Nx

∑
k=1

Ny

∑
l=1

Kqy
z (i− k, j− l)qy (k, l) (2.19)

The matrix Kz here represent the effects of a uniform pressure or a uniform shear applied
on a patch located at (x′,y′) on the normal displacements uz at (x,y)

The subsurface stress field is mandatory to study damage phenomena or plasticity
in the material and can be determined by using the same discretization and summation
technique. The volume is discretized in many cubes in the same manner than the surface
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and stresses are considered uniform in each element of the discretization.

σi j(x,y,z) =
Nx

∑
l=1

Ny

∑
m=1

p(l,m)(Cp
i j(x− l,y−m,z,ν2)) (2.20)

+
Nx

∑
l=1

Ny

∑
m=1

qx(l,m)(Cqx
IJ (x− l,y−m,z,ν2)) (2.21)

+
Nx

∑
l=1

Ny

∑
m=1

qy(l,m)(Cqy
IJ (x− l,y−m,z,ν2)) (2.22)

2.1.3 Discrete Convolution Fast Fourier Transfrom (DC-FFT)
Surface displacements and subsurface stresses are calculated using influence coefficients
(corresponding to the Green functions in their discretized form) and expressed as discrete
convolution products between influence coefficients and the perturbation. These convo-
lution products are then computed by switching to the frequency domain using the Fast
Fourier Transforms (FFT) where it becomes a simple matrix multiplication. This method
was proposed by Ju and Farris [JU 96] and allow to compute a double summation in only
O(N + 3N logN) operations instead of O(N2) for a computation zone size of N points.
It should be noted that for contact problem, functions are not periodic and a numerical
error is appearing. A numerical method called DC-FFT (Discrete Convolution and Fast
Fourier Transform) need to be used to avoid the numerical error. This method is using the
’zero-padding’ and the ’wrap-around order’ techniques (recalled in Appendix D).

The DC-FFT Method
The technique of zero padding and wrap-around order are the necessary treatments for
properly converting the linear convolution into the cyclic convolution. The DC-FFT (Dis-
crete Convolution and Fast Fourier Transform) method presented by Liu [LIU 00] is re-
called here

1. Find the influence coefficients,
{

K j
}

N ;

2. Expand
{

K j
}

N into
{

K j
}

2N with wrap-around order;

3. Apply FFT to
{

K j
}

2N and obtain
{

K̂s
}

2N ;

4. Input the pressure,
{

p j
}

N ;

5. Expand the pressure with zero padding, p j = p j, j ∈ [0,N−1] , p j = 0, j ∈
[N,2N−1];

6. Apply FFT to obtain { p̂s}2N ;
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7. Make the element-by-element product of the complex numbers, and obtain the fre-
quency response, {ûs}2N ;

8. Apply the IFFT to obtain
{

u j
}

2N ;

9. Discard the spoiled terms and keep
{

u j
}

2N , j ∈ [0,N−1].

The DC-FFT method can be extended to 2D and 3D by repeating the Fourier transform
for each direction. The 2D DC-FFT is used for surface source like:

uz (i, j) =
Nx

∑
k=1

Ny

∑
l=1

K p
z (i− k, j− l) p(k, l) (2.23)

The 3D-DC-FFT method consists in applying the DC-FFT along the three directions
x,y and z. It is commonly used for volume source and volume image calculations.

2.1.4 Contact solver algorithm

2.1.4.1 Weak formulation and constrained optimization

The unique solution of the contact problem can be found by minimizing the strain energy
(or complementary energy) of the problem and considering that one body can not inter-
penetrate the other one. The contact pressures p are positive and the contact shears q are
bounded by the Coulomb’s law. The strain energy is divided in two part corresponding to
the normal and tangential loading:

min
(

1
2

pT Ap
z p+h∗T p+ cτ−∑λi j pi j

)
⇔ Ap

z p+h∗T −λ = 0, (2.24a)

pi j > 0, λi j = 0, (2.24b)
pi j = 0, λi j ≥ 0. (2.24c)
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where h∗ is the distance between undeformed geometries including the initial separation
and the rigid body displacements.

min

(
1
2

qT Aq
τq+W∗T q+ cp +∑λi j

(
q2

x i j +q2
y i j

2µpx i j
−

µpx i j

2

))
(2.25a)

⇔Aq
τq+W∗+



...
λi j

qxi j
µpi j
...

λi j
qyi j
µpi j
...


= 0, (2.25b)

∣∣|qi j
∣∣ |< µpi j, λi j = 0, (2.25c)∣∣|qi j
∣∣ |= µpi j, λi j ≥ 0. (2.25d)

with W∗ the tangential displacement tensor induced by rigid body displacements.

In the normal problem, the constraint is linear and λi j is the gap gi j between two
surfaces. For the tangential contact problem λi j is the slip amplitude. Solving this kind
of equation correspond to a constrained optimization problem and a conjugate gradient
algorithm is used [POL 99]. Furthermore, DC-FFT techniques are used to reduce the
computation cost of the method.

2.1.4.2 Conjugate Gradient Algorithms (CGM)

The conjugate gradient algorithm is an iterative method which generates a sequence of ap-
proximations of the solution starting from an arbitrary initial approximation. This method
was initially proposed by Hestenes and Stiefel [HES 52, HES 80] and based on Lanczos
method and Krylov subspaces to find orthogonal residuals. The minimization problem
can be expressed like a linear system of equation where A is a positive defined symmetric
square matrix:

Ax = b (2.26)

Algorithm
Choose an initial value of x0;
Initialization of the variables: r0← Ax0, p0←−r0, k← 0;
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while rk 6= 0

αk ←
rT

k rk

pT
k Apk

; (2.27)

xk+1 ← xk+1 +αk pk; (2.28)
rk+1 ← rk+1 +αkApk; (2.29)

βk+1 ←
rT

k+1rk+1

rT
k rk

; (2.30)

pk+1 ← −rk+1 +βk+1 pk; (2.31)
k ← k+1; (2.32)

end while

Because only the last iteration of the variable pk−1 is needed to compute pk, this
method is known to be very fast at solving big linear system without using a lot of mem-
ory. One of the limitation of the algorithm is the convergence issue if A is not a positive
defined and symmetric matrix.

2.1.5 General algorithm of the contact solver
A general flowchart of the semi-analytical contact solver with a coupling between normal
and tangential contact is presented in Fig. 2.4.

Normal Contact Tangential Contact

Elastic Contact

Q

Figure 2.4: Flow Chart of fully coupled semi-analytical elastic contact solver
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2.2 Theoretical background of the heterogeneity contri-
bution

2.2.1 Heterogeneity in an infinite solid
A finite subdomain having different elastic properties than the surrounding matrix is called
an inhomogeneity (or heterogeneous inclusion). Applied stresses will be disturbed by the
existence of the inhomogeneity in the solid. Eshelby [ESH 61] proved that the disturbed
stress field can be simulated by considering a fictious eigenstrain inside the domain of
the inhomogeneity considering the solid as homogeneous. Eigenstrain is a name given
to nonelastic strains (thermal expansion, plastic strains, misfit strains) and traducing the
incompatibility between the heterogeneity and the surrounding matrix. The equivalence
between an heterogeneous inclusion problem and an homogeneous inclusion problem plus
an eigenstrain ε∗ is called Eshelby’s equivalent inclusion method. When an external load
is applied, the disturbance in the stress field caused by the presence of the heterogeneity
is called eigenstress σ∗. To determine the eigenstrain, a process to transform a single
heterogeneity into an inclusion has been defined by Eshelby and is showed in Fig. 2.5.

Figure 2.5: Single heterogeneity transformation into inclusion in the sense of Eshelby
and subsequent eigenstress

2.2.1.1 Eshelby’s equivalent inclusion method

An infinite matrix M with the elastic stiffness tensor CM
i jkl containing an ellipsoidal domain

Ω with the elastic stiffness tensor CI
i jkl is submitted at infinity to a uniform strain ε0. The

strain field is disturbed by the presence of the inhomogeneity.
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In the case of linear isotropic elasticity, the relationship between the elastic strain εkl
and the elastic stress σi j is expressed by the Hooke’s law:

σi j =CI
i jkl

(
ε0

kl + εkl
)

in ΩI

σi j =CM
i jkl

(
ε0

kl + εkl
)

in ΩM
(2.33)

The Eshelby’s equivalent inclusion method (EIM) consists in representing the ellip-
soidal inhomogeneity as an inclusion having the same elastic properties CM

i jkl as the matrix
but being subjected to an additional imaginary strain called eigenstrain ε∗ giving:

CI
i jkl(ε

0
kl + εkl) =CM

i jkl(ε
0
kl + εkl− ε∗kl) in Ω (2.34)

The necessary and sufficient condition for the equivalence of the stresses and strains
in the two above problems of inhomogeneity and inclusion is provided by Eq. (2.34). In
particular, the eigenstrain ε∗i j is related to compatibility strain εi j by:

εi j = Si jkl× ε
∗
kl, (2.35)

where Si jkl is the Eshelby’s tensor.
Substitution of Eq. (2.35) into Eq. (2.34) leads to:

∆Ci jklSklmnε
∗
mn +CM

i jklε
∗
kl =−∆Ci jklε

0
kl (2.36)

where
∆Ci jkl =CI

i jkl−CM
i jkl

Eshelby’s tensor and influence coefficients are analytically known for some particular
geometries (ellipsoids [ESH 57] and cuboids [MAC 58, CHI 78]) using harmonic poten-
tial function recalled in Appendix A.

Eshelby’s method considers only a uniform applied strain but in contact problem,
strains are not uniform. Moschovidis and Mura [MOS 75] extended Eshelby’s work for
non homogeneous applied strain. If the applied strain has a polynomial form of degree n,
the corresponding eigenstrain has also a polynomial form of degree n.

In all this thesis a strong hypothesis is made that the eigenstrain is constant inside the
inclusion. This simplification only hold if the applied field around the heterogeneity is
also constant. It means that the inclusion should be small enough compared to the radius
of contact a∗. To take into account possible gradient of eigenstrain inside the inclusion,
eigenstrain development to first and second order polynomials have been proposed by
Leroux [LER 13] but are greatly increasing the computation cost of the method without
improving significantly the quality of the solution. An other technique consists in repre-
senting the inclusion as a cluster of multiple cuboid with the same size as the computation
discretization and with each heterogeneous cuboids having a constant eigenstrain. This
technique allow to represent complex geometries of heterogeneity through a voxelization
technique (see chapter 6).
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2.2.2 Heterogeneity in a half-space

2.2.2.1 Decomposition method

Three dimensional contact problems involve a half-space that is bounded by the surface
plane z = 0 in the cartesian coordinate system (x,y,z) as shown in Fig. 2.2. Jacq et al.
[JAC 02] and later Zhou et al. [ZHO 09] proposed a method allowing to extend previous
solution, valid only for infinite spaces, to half spaces. The solution for an isotropic half
space consists in decomposing the problem into three subproblems (Fig. 2.6), known as
Chiu’s decomposition [CHI 78].

(1) An inclusion with the prescribed eigenstrain ε∗ = (ε∗xx;ε∗yy;ε∗zz;ε∗xy;
ε∗xz;ε∗yz) in an infinite space.

(2) A symmetric inclusion with a mirror eigenstrain ε∗s = (ε∗xx;ε∗yy;
ε∗zz;ε∗xy;−ε∗xz;−ε∗yz) in the same space.

(3) A normal traction distribution −σn at the surface of the half space (z = 0) which
is a function of the eigenstrains ε∗ and ε∗s .

Figure 2.6: Decomposition of the half-space solution into three sub-problems

The summation of the two solutions (1) and (2) leaves the plane of symmetry (z = 0)
free of shear tractions. By adding an opposite normal stress σn, the condition of free
surface traction is obtained.

A new method of decomposition was proposed by Zhou et al. [ZHO 14] to avoid the
use of the mirror eigenstrain and save computation time.

2.2.2.2 Determination of the eigenstress and surface eigen-displacement

The stress at any point of the domain meshed with nx×ny×nz cuboids is given by:
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σi j(x,y,z) =
nx−1

∑
xI=0

ny−1

∑
yI=0

nz−1

∑
zI=0

Bi jkl(x− xI,y− yI,z− zI)ε∗kl(x
I,yI,zI)

+
nz−1

∑
zI=0

ny−1

∑
yI=0

nx−1

∑
xI=0

Bi jkl(x− xI,y− yI,z+ zI)ε∗skl(x
I,yI,−zI)

−
ny−1

∑
yI=0

nx−1

∑
xI=0

Mi j(x− xI,y− yI,z)σn(xI,yI,0)

(2.37)

where Bi jkl are the influence coefficients that relate the constant eigenstrain at the point
(xI,yI,zI) which is the inclusion center in an infinite space to the stress σi j at the point
(x,y,z). Mi j represent the influence coefficients relating the normal traction σn within a
discretized area centered at (xI,yI,0) to the stress σi j at the point (x,y,z).

Bi jkl(x) =CM
i jmnDmnkl(x) for x in D−Ω (2.38)

Bi jkl(x) =CM
i jmn(Dmnkl(x)− Imnkl) for x in Ω (2.39)

where Ii jkl =
1
2 (δilδ jk+δikδ jl) is the fourth-order identity tensor.

The expression for Di jkl is given in Mura [MUR 87] and recalled for simple geome-
tries in Appendix B.

Di jkl =
1

8π(1−ν)
[Ψ,i jkl−2νδklφ,i j− (1−ν)(δklφil +δkiφ, jl +δ jlφ,ik +δliφ, jk)] (2.40)

For a single inclusion centered at (xI,yI,zI) in the half-space, the normal traction σn

at the surface point (x,,y,,0) is obtained as:

σ
n(x′,y′,0) =−B33kl(x′− xI,y′− yI,−zI,)ε∗kl(x

I,yI,zI)

−B33kl(x′− xI,y′− yI,zI,)ε∗skl(x
I,yI,−zI)

(2.41)

In Eq. (2.37), each component Mi j() is obtained by a double integration of the function
Fi j() over a discretized surface area 2∆x×2∆y centered at (xI,yI,0), see appendices A and
B.

Mi j(x− xI,y− yI,z) =
∫ xI+∆x

xI−∆x

∫ yI+∆y

yI−∆y
Fi j(x− x′,y− y′,z)dx′y′ (2.42)

The 3D-FFT is used to accelerate the calculation of the first (1) and second terms (2) and
the 2D-FFT for the third term (3).

The surface normal ’eigen-displacements’ can be obtained when inserting the eigen-
strain into the total strain. They are generated by the pressure field σn only. The normal
displacements are calculated as:
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u∗z (x,y) =
ny−1

∑
y′=0

nx−1

∑
x′=0

Kn(x− x′,y− y′)σn(x′,y′) (2.43)

To solve the equation above numerically, the surface in contact is discretized into
nx×ny rectangular elements of uniform size 2∆x×2∆y. Then, pressure and displacement
within each discrete patch are treated as constant and their values located at the center. The
effect of a uniform pressure on a rectangular area has been given by Love [LOV 52] and
Johnson [JOH 85]. Kn denotes the influence coefficients that relate the normal pressure at
the surface point (x′,y′,0) to the normal displacement at the surface point (x,y,0), recalled
in Appendix A.

2.2.2.3 Algorithm for heterogeneous contributions in contact solution

The presence of a heterogeneity within one of the bodies in contact is taken into account
by adding in Eq. 2.44 the eigen-displacement u∗z induced by the eigenstresses. Equa-
tion 2.2 is then modified as follows:

h(x,y) = hi(x,y)−δ+uz(x,y)+u∗z (x,y) (2.44)

The contact loading stress field inside the material is used as an input load for the com-
putation of the eigenstrain using Eshelby’s equivalent inclusion method. The eigenstress
generated by the heterogeneity are added to the stress field from the contact loading. The
contact surface geometry is updated by adding the eigen-displacements in Eq. 2.44. The
modified geometry is used to solve the contact problem and the procedure is repeated until
convergence of both the problem as in Fig. 2.7. The heterogeneous problem and the con-
tact problem are fully coupled and has been validated using the Finite Element Method
[KOU 14a]. Comparison between a finite element model on Abaqus v6.11 and the semi-
analytical method have been realized on the same computer. With a very good agreement
between the results in both simulations, Koumi found the semi-analytical solver to be
eight times faster than the finite element model. The semi-analytical simulation is com-
puted on a grid of 106 computation points while the finite element model has 1.5× 106

ddls and is fully described in [KOU 14b].
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Figure 2.7: Iteration between contact problem and heterogeneous problem

2.2.2.4 Mutual influence between close inclusions

Moschovidis and Mura [MOS 75] extended Eshelby’s solution to two close ellipsoidal
inhomogeneities. In recent work, multiple inclusion problems have been solved by us-
ing a conjugate gradient algorithm to determine each unknown eigenstrain [ZHO 11a,
ZHO 11b, LER 10].

Let’s consider a solid with n heterogeneities Ωψ (ψ = 1,2, ...,n) and discretized into

nx×ny×nz computation points. Each heterogeneity, centered on a point
(

xα,yβ,zγ

)
, has

an elastic tensor CI
α,β,γ. The Eshelby’s equivalent inclusion (Eq. 2.35) for each hetero-

geneity is recalled:

(CI
α,β,γC

M−1− Id)σ∗
α,β,γ +CI

α,β,γε
∗
α,β,γ = (Id−CI

α,β,γC
M−1

)(ε0
α,β,γ),

With(0≤ α≤ nx−1,0≤ β≤ ny−1,0≤ γ≤ nz−1) (2.45)

The eigenstrain is supposed uniform inside each heterogeneity. The stress field σα,β,γ

at the point [α,β,γ] is influenced by the contribution of the eigenstrains of each hetero-
geneity inside the domain.
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Normal Contact Tangential Contact

Elastic Contact

Q

Figure 2.8: Flow chart of fully coupled semi-analytical heterogeneous elastic contact
solver
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σ
∗
α,β,γ =

nz−1

∑
ϕ=0

ny−1

∑
ζ=0

nx−1

∑
ξ=0

Bα−ξ,β−ζ,γ−ϕε
∗
ξ,ζ,ϕ

(0≤ α≤ nx−1,0≤ β≤ ny−1,0≤ γ≤ nz−1) (2.46)

with Bα−ξ,β−ζ,γ−ϕ the influence coefficients, function of the elastic properties and of the
geometric shape of the considered heterogeneity. They depend on the relative distance
between the heterogeneities

(
xα,yβ,zγ

)
and

(
xξ,yζ,zϕ

)
. Eigenstresses are computed for

every point inside the domain both inside and outside the heterogeneities.
Equations 2.36 and 2.46 give the relationship between stress and eigenstrain to solve

the modified equivalent equation 2.45:

(
CI

α,β,γC
M−1− Id

)nz−1

∑
ϕ=0

ny−1

∑
ζ=0

nx−1

∑
ξ=0

Bα−ξ,β−ζ,γ−ϕε
∗
ξ,ζ,ϕ +CI

α,β,γε
∗
α,β,γ

=
(

Id−CI
α,β,γC

M−1
)

ε
0
α,β,γ,

(0≤ α≤ nx−1,0≤ β≤ ny−1,0≤ γ≤ nz−1) (2.47)

The equation 2.47 is the general equation to solve the multiple heterogeneity problem.
With n heterogeneities, 6n equations need to be solved. The system can be see like a linear
system to solve:

Aε
∗ = b (2.48)

A conjugate gradient algorithm is used to numerically solve the equation system. The
adapted CGM algorithm proposed by Zhou [ZHO 11a] and Leroux [LER 13] is work-
ing with defined positive symmetric matrix. In some cases, like the presence of surface
traction, the matrix is no longer symmetric and other algorithms have been proposed
by Koumi [KOU 15b]: Bi-Conjugate Gradient Stabilized Algorithm (BiCGSTAB) and
Orthodir based on the work of Van der Vorst [VOR 92]. They are able to solve non
symmetric linear systems and are based on the bi-orthogonalization of Lanczos to solve
simultaneously two systems of equations associated with the matrix A and with the trans-
posed matrix AT . As a consequence, the need in memory is much more important than
for the classical CGM.

The proposed method allow to numerically find the eigenstrain of each heterogeneity in
the solid. They are used to determine the eigen-displacements u∗3 at the contact surface
and to take into account the presence of heterogeneities in the contact algorithm.
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2.3 Partial Conclusion
This chapter presented the semi-analytical method for a contact on a heterogeneous mate-
rial. The contact problem is solved by summing analytical solutions of simple problems.
Solution of the contact problem is used as a loading input to solve the heterogeneous
material model based on Eshelby’s equivalent inclusion method. Presence of heterogene-
ity close to the surface is influencing the contact solution. A good agreement has been
found with a finite element model by Koumi [KOU 14b] and influence between multiple
heterogeneities is taken into account by numerical algorithm like the Conjugate Gradient
Method. The next chapter will use the semi-analytical method to model damage phenom-
ena in contact loading by coupling a continuum damage mechanics based model with the
heterogeneous contact solver.
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Chapter 3

Damage model for fretting

In this chapter, a damage model is proposed to simulate the
mechanisms appearing under fretting loading in both gross
slip and partial slip regime using semi-analytical method.

Application to coated materials is also presented. The
proposed damage model is compared to a damage model from

the literature using a jump-in-cycle algorithm. Finally, a
comparison between the damage law and a wear law based

on the dissipated energy is introduced.
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Continuum Damage Mechanics

3.1 Continuum Damage Mechanics

3.1.1 History and Background
Continuum Damage Mechanics (CDM) background permits to describe the initiation and
evolution of degradation in materials at the microscale such as micro cracks and voids.
The damage model used in the current approach is isotropic and based on a single scalar
damage variable D introduced by Kachanov [KAC 58]). Considering no healing of the
material, D is monotonically increasing from D = 0, the undamaged state, to D = 1 the
complete local rupture of the material.

The state of stress in the damaged material can be described by the effective stress
introduced by Rabotnov [RAB 69]:

σ̃ =
σ

(1−D)
(3.1)

Following Lemaitre [LEM 85] strain equivalence hypothesis, the strain behavior is
modified by damage only through the effective stress. Hence, the strain associated with
a damaged state under the applied stress is equivalent to the strain associated with its
undamaged state under the effective stress. Applying the Hooke’s law with E, the mod-
ulus of elasticity for the undamaged material, the elastic strain in the damaged material
becomes:

ε =
σ̃

E
=

σ

(1−D)E
(3.2)

From this equation it can be deduced that an increase in the damage manifests as the
reduction in the modulus of elasticity as shown in Fig. 3.1. D characterizes the effect
of microscopic phenomenon on the macroscopic behavior of the material as a strength
loss. These usually reproduce the presence of micro-cracks within an elastic material.
The constitutive equation can be expressed as:

σ = (1−D)Eε (3.3)

3.1.2 Thermodynamics of damage
In order to verify that the proposed model is in accordance with the law of thermody-
namics, one should recall the Clausius-Duhem inequality. The model will consider only
elastic strain and a constant temperature during the process. The chosen state variables
correspond to the physical mechanisms of deformation and degradation of the material
(see Table 3.1.2).

Mechanisms Observable state variables Internal state variables Associated variable
Elasticity ε σ

Entropy T s
Damage D −Y
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With Y the thermodynamics variable associated with the damage variable. The
Helmholtz specific free energy of the system is a function of all the variables:

Ψ = Ψ(ε,D,T ) (3.4)

When considering no plasticity and no thermal effect, the potential is considered as the
Gibbs specific free enthalpy:

Ψ
∗ = sup

εe

[
1
ρ

σi jεi j−Ψ

]
(3.5)

where ρ is the density. Lemaitre [LEM 72] showed that the strain constitutive equation for
a damaged material are equivalent that for a undamaged material by replacing the stress
by the effective stress.

σi j = ρ
∂Ψ

∂εi j
= Ei jklεkl(1−D) (3.6)

Y = ρ
∂Ψ

∂D
=−1

2
Ei jklεi jεkl (3.7)

Then, the Clausius-Duhem inequality can be expressed as:

−Y.Ḋ≥ 0 (3.8)

with Y a quadratic positive form. This condition should be satisfied by the evolution law
for the internal variables for the constitutive model to be thermodynamically admissible.

1
2

Ei jklεi jεkl.Ḋ≥ 0 → Ḋ≥ 0 (3.9)

Finally, damage being a dissipative phenomenon, the damage evolution law must be
defined accordingly with the fact that damage is always increasing in order to respect the
Clausius-Duhem inequality.

3.1.3 Elasticity coupled with CDM
In order to model the damage of concretes, predominant in tension, Mazars [MAZ 89]
used the scalar damage parameter D coupled with elasticity in his 3D model. He choosed
D as a function of the positive (tensile) strains and to evaluate these strains, he defined the
following scalar called equivalent strain:

ε̃ =

√
∑

i=1,3
〈εi〉2+ (3.10)

with

〈εi〉+ =

(
εi + |εi|

2

)
(3.11)
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and εi the principal strains. However, to study the damage of contact under fretting, D
needs to take into account tensile, compressive and shear stresses.

An adaptation of the expression of Mazars’s equivalent strain is proposed here :

ε̃ =

√
∑

i=1,3
〈εi〉2++ ∑

i=1,3
〈εi〉2− =

√
∑

i=1,3
ε2

i (3.12)

with

〈εi〉− =

{
|εi| i f εi ≤ 0
0 i f εi > 0

(3.13)

The equivalent strain is now traducing the local three-dimensional state of strain of the
solid via a uniaxial scalar variable.

The equivalent strain controls the growth of the damage variable according to an
evolving threshold. At the end of every time step and for every point of the discretization
of the half-space, the loading function can be defined as :

f (ε,D) = ε̃−K(D) (3.14)

K(D) takes the largest value of the equivalent strain ε̃ ever reached by the material during
the loading history at the considered point. K(D = 0) is initialized at εd0, the damage
threshold strain, corresponding to the strain at the elastic limit.{

K(D) = εd0 i f D = 0
K(D) = maxt ε̃ i f D≥ 0

(3.15)

If the threshold is reached, a new increment of damage called δD is added to the damage
variable at the considered point. The evolution law for the damage variable is defined as:

δD =
ε̃−K(D)

εR− εd0
i f ε̃≥ K(D)

δD = 0 i f ε̃ < K(D)

→ D = D+δD (3.16)

with εR the strain leading to a macroscopic crack.
The behavior of the material is linear elastic on the first part of Fig. 3.1. When the equiv-
alent strain reaches the damage threshold, the local elastic properties of the matrix are
modified through the presence of micro-cracks which decreases the strength of the mate-
rial. This local decrease of the modulus of elasticity is irreversible. From εd0, the damage
threshold strain, the damage variable will modified the elastic behavior of the material
by decreasing the Young’s modulus as illustrated in Fig. 3.1 and until the material strain
reaches the macroscopic fracture strain εR (see Fig. 3.2(b)).The damage evolution is al-
ways increasing and locally linear by pieces (Fig. 3.2(a)).
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Figure 3.1: Stress-Strain plot with damage evolution.

(a)

(b)

Figure 3.2: (a) Damage evolution as a function of strain showing the purely elastic do-
main and the damageable domain. (b) Purely elastic and damageable domains on a stress

strain plot.
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It should be noted that if the damage threshold is not evolving at each step by replac-
ing εd0 into max∀t (ε̃(x,y,z)) in the damage increment computation then every time the
equivalent strain ε̃ is exceeding the threshold the damage increment would correspond to
the increment for a pristine material and not for an already equivalent damaged material.
Damage evolution would be overvalued.

Moreover, hypothesis is made in the damage evolution law that the evolution of D
is linear by pieces. It should be noted that if every computed damage increments are
summed then the critical value of the damage variable called Dc must be equal to 1:

Dc =
i=N

∑
i=0

δDi =
i=N

∑
i=0

ε̃i+1− ε̃i

εR− εd0
=

εR− ε̃i + ε̃i− ε̃i−1 + . . .+ ε̃1− εd0

εR− εd0
= 1 (3.17)

3.1.4 Behavior of a representative volume element
The constitutive law is illustrated on a strain-stress curve for a cube in uni-axial tension
and compression in Fig. 3.3. The curve is showing a linear elastic behavior curve for
strain under the threshold εd0 and becomes non-linear after damage occurs. The material
behavior is symmetric in tension and in compression because no conditions on micro-
defects closure is introduced [LEM 05].
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Figure 3.3: Stress-Strain plot with damage evolution for a cube in uni-axial tension and
compression.

3.2 Implementation in the semi-analytical method

3.2.1 General algorithm of the coupled damage contact solver
The damage model defined in 3.1.3 is coupled with the semi-analytical contact solver
developed by Nelias and co-workers [GAL 10, LER 10]. This method is based on the
solution developed by Love [LOV 52] for a rectangular patch of pressure over a homo-
geneous half space. The Eshelby’s equivalent inclusion method is used as an enrichment
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3. Damage model for fretting

Figure 3.4: 3D view of a sphere on a elastic half-space with multiple cuboidal inclusions
superimposition

technique in order to introduce a local modification of the Young’s modulus of the ma-
terial. Multiple cuboidal inclusions with the same size as the discretization of the half-
space and initially with the same elastic properties are superimposed on the half-space
as presented in Fig. 3.4. The effect of damage on the material is traduced through the
modification of the Young’s modulus of the inclusions. This enrichment technique has
already been validated for coated materials with cuboidal inclusions through comparison
with both analytical solution and multigrid method in [KOU 15b].

Leroux et al. [LER 10] and Koumi et al. [KOU 14b] have shown that the contact
pressure distribution may be significantly modified by the presence of inhomogeneities
close to the surface, which subsequently affect the subsurface stress distribution. The
Young’s modulus of the inclusions are modified by the damage variable D and hence
affect the contact pressure distribution through the contribution of eigenstrains. One of
the main advantage of the method is to compute only the stress field in the area around
the contact (at the surface but also in depth). It has been observed that damage usually
happened just under the contact during fretting [BRY 88]. For sake of computational
efficiency, the half-space has been enriched only in this area. Note that no damage occurs
far from the contact. When the first element is reaching a damage value equal to 1, the
simulation is stopped. It should be noted that in CDM, D = 1 means that the element is
too damaged to ensure continuity which can lead to the initiation of crack. Depending of
the area concerned and of the localization of the damage, it can be interpreted as wear or
crack initiation.

One should note that because simulations are stopped when a first element damage
value reaches 1, the present model is only simulating the phenomena leading to the first
appearance of wear or crack. In order to continue the simulation once an inclusion dam-
age value reaches 1, the contact surface should be modified by removing the considered
element.
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Initial state

N Fretting Cycles

Load W and tangential

displacement   u  

Geometry

Figure 3.5: Algorithm of Heterogeneous Elastic-Damageable Contact Problem

The main step of the algorithm, summarized on the flowchart in Fig. 3.5 are described
here:

1st Fretting Cycle :

• Step1:
Enrichment with cuboidal inclusions with the same Young’s modulus E0 than the
half-space.
Solve the elastic contact problem for the initial loading increment, and determine
the elastic stresses and strains in the solid.

• Step2: Damage module
Compute the equivalent strains for the current loading increment.
Test the damage criterion for each inclusion and determine the inclusion’s damage
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3. Damage model for fretting

increments δD for the current time step.
Increment the loading and solve the elastic problem again.
Compute the equivalent strains and, after testing the damage criterion, determine
the inclusion’s damage increment δD.
Repeat until the last loading increment of the loading cycle.

• Step3: At end of the cycle:
Update the corresponding Young’s modulus with the damage variable computed
during the loading cycle.

ith Fretting Cycle :

• Assign to each inclusion the new Young’s modulus.

• Repeat the previous steps for the considered loading cycle. Compute elastic
stresses, equivalent strains and the damage increments δD for each time step of the
cycle.

• At the end of the fretting cycle, if one-or more-of inclusions are totally damaged :
stop the calculation.

The damage evolution is computed for each cycle and material’s properties are modi-
fied at the end of each fretting cycle.

3.2.2 Simulation on a homogeneous solid
Validation of the enrichment technique

For validation purpose of the enrichment technique, a comparison with the analytical
Hertzian solution is performed. Note that the heterogeneous semi-analytical method has
been compared and validated in previous work with both analytical solutions [LER 10]
and finite element simulation [KOU 14b]. A 3D rigid sphere in contact with a hetero-
geneous half-space has been simulated with the semi-analytical method. The half-space
Young’s modulus and Poisson’s ratio are chosen as E0 = 210 GPa and µ0 = 0.3, respec-
tively. The normal applied load is W = 410 N. For the homogeneous half-space, this load
leads to a contact radius a∗ = 0.32 mm and a maximum contact pressure P0 = 1890.8
MPa. The half-space is discretized in 67×67×51 computation points such as the space
between the constituted is 2∆x = 2∆y = 2∆z = 0.062a∗. Then the half-space is filled
from the free surface to a defined thickness with cuboidal inclusions centered on com-
putation points and having the same dimensions as the discretization. The enrichment is
constituted of 62×62×36 cuboids as illustrated in Fig. 3.4.
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A comparison between the analytical Hertzian contact solution and the contact solu-
tion founded with the enriched half-space is given for the pressure distribution, for the
half space stresses along axis z and axis y at surface (z = 0) as shown in Fig. 3.6. A very
good agreement is found which in turn validates the numerical enrichment technique.

Simulations with the semi-analytical solver with and without inclusions have been
performed. Results show a computation time about 60 times higher with an enriched
half-space than without any enrichment. Most of the computation cost is due to the com-
putation of the inclusion stress field.

Description of the problem

In this section the contact simulation between a rigid sphere of radius R = 25 mm and
a homogeneous half-space is presented. The contacting bodies are subjected to an os-
cillatory tangential motion. The two bodies are first brought into contact with a nor-
mal load W = 410 N. A tangential displacement along the x direction is then applied.
The half-space Young’s modulus and Poisson’s ratio are chosen as E0 = 210 GPa and
µ0 = 0.3, respectively. For the homogeneous half-space, this load leads to a Hertzian
contact radius a∗ = 0.32 mm and a maximum contact pressure P0 = 1890.8 MPa. The
imposed rigid body displacement is cycling between ux = 0.025 mm and ux = −0.025
mm (ux/a∗ = 0.078) to reproduce an entire fretting loop. The fretting cycle is decom-
posed into multiple time steps as shown in Fig. 3.7.

The half-space has been enriched with damageable elastic cuboidal inclusions with
the same properties than the half-space. The damage model, as presented in section 3.1.3
is used with two parameters : εR = 0.036 and εd0 = 0.003225. Firstly, results in the case
of the gross slip regime are presented, afterwards the partial slip regime is investigated
and finally, simulation in the case of coated materials are presented.

3.2.2.1 Gross slip regime

Here are presented the results of contact simulations in gross slip regime. According
to Coulomb’s law, the shear distribution is equal to the coefficient of friction times the
pressure along the contact surface : Q = µ×P.

For unlubricated contact, the coefficient of friction is generally high [FOU 04] and
main phenomena are wear and cracks. That is why all simulations have been performed
with a friction coefficient µ≥ 0.3.

A first fretting simulation is presented with a coefficient of friction µ= 0.5. In Fig. 3.8,
the distribution of the equivalent strain ε̃ is shown for normal and tangential loading con-
ditions for the undamaged material. It can be observed that the maximum value of ε̃ is
reached at depth around z/a∗ = 0.5 under the surface for a normal loading. This local-
ization is the same than the maximum Von Mises stress for a circular Hertzian contact.
When a tangential displacement is added, the maximum value of ε̃ is reached at the sur-
face and is more than 50% higher than with normal load only. All damage simulations
have been performed until at least one point reached the critical damage value D = 1.

65



3. Damage model for fretting

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

P
/P

0

x/a*

 

 

Hertz

With Inclusions

(a)

σ
ij
/P

0

z
/a

*

 

 

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2

0

0.5

1

1.5

2

2.5

σ
xx

 with inclusions

σ
yy

 with inclusions

σ
zz

 with inclusions

 σ
xx

 Hertz

 σ
yy

 Hertz

 σ
zz

 Hertz

(b)

−1 −0.5 0 0.5 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

y/a
*

σ
ij/P

0

 

 

σ
xx

 Hertz

σ
yy

 Hertz

σ
zz

 Hertz

σ
xx

 with inclusions

σ
zz

 with inclusions

σ
yy

 with inclusions

(c)

Figure 3.6: Validation of the enrichment technique with Hertzian analytical solution (a)
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Figure 3.7: Normal and tangential loads during one fretting cycle

The distribution of the scalar damage variable D at the end of fretting simulation is plot-
ted at the contact surface z = 0 and in the plane x = 0 in Fig. 3.9(a) and Fig. 3.9(b). It
can be observed that the maximum damage is located at the center of the contact surface
where the contact pressure is the higher and where the surface has seen the biggest sliding
amplitude.

Figure 3.10 represents the evolution of the damage variable and the associated Young’s
modulus for the most damaged point of the material during fretting cycles. As the Young’s
modulus is decreasing, the equivalent strain is increasing and the material is becoming
more damaged until the damage variable reaches its critical value and the Young’s modu-
lus has dropped to 0.

As the damage variable increases, contact pressure decreases (Fig. 3.11) and conse-
quently, the contact area increases to respect the load equilibrium (Eq. 2.1). Moreover,
the contact pressure drops locally by almost 40% at the center of the contact, where the
surface is the more damaged.
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Figure 3.9: Damage variable D with µ = 0.5 (a) in the plane z = 0. (b) in the plane x = 0
after 17 cycles.
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Effect of the coefficient of friction

Simulations were then performed in order to identify the influence of the friction coef-
ficient on the model response. Firstly, values of the equivalent strain ε̃ along direction z
for different coefficients of friction are compared in Fig. 3.12. It can be observed that for
µ < 0.3, the highest value of ε̃ is localized in the subsurface under the center of the contact
while for µ≥ 0.3, it is localized at the surface z= 0. Note that during unlubricated fretting
conditions, the friction coefficient is usually high [FOU 04]. The following studies will
focus on friction coefficient µ≥ 0.3.

It can be observed in Fig. 3.15 that a higher coefficient of friction leads to an increased
surface damage rate. It comes from the fact that, according to Coulomb’s law, the higher
is the coefficient of friction, the higher are the surface shear stresses. That is why the
damage surface is larger with µ = 0.7 (Fig. 3.13(a) and Fig. 3.13(b)) than for µ = 0.5 and
the pressure distribution is dropping on a larger surface (see Fig. 3.14). It should be noted
that the number of cycles leading to failure is significantly lower than what can be found
in literature. The number of damage cycles found in our model is compared to the number
of cycles leading to the first appearance of wear, also called the wear initiation period.

Effect of computation discretization on damage evolution

The reference space between the computation point is defined as 2∆x = 0.062a∗ in sec-
tion 3.2.2. Simulations are performed with different discretization sizes and the damage
evolution of the most damaged point is plotted in Fig. 3.16. The enrichment size is kept
the same for every simulation. This is leading to a greater number of inclusions to fill the
enrichment domain when the discretization size is decreasing. There is no effect of the
discretization size on the damage computation at the beginning of the simulation but after
a few cycles, damage values are slowly diverging. For an identical damage value, dif-
ferent discretizations are modifying the Young’s modulus in a different material volume.
In the following cycles, the stress field will not be the same for the different discretiza-
tions. Furthermore, discretization size and area must be adapted to the considered loading
(rolling contact).

Effect of enrichment size on damage evolution

The half-space is constituted of Nx×Ny×Nz cuboids as illustrated in Fig. 3.4. Fretting
simulations are performed with µ = 0.5 and with different enrichment sizes and plotted
in Fig. 3.17. The enrichment depth in the z direction is corresponding to a distance of
2.23a∗ and is kept the same for every simulation. Enrichment distances in the x and y
directions are equals and vary from 2a∗ to 4a∗. One can observe that no effect of the size
of the enrichment is observed on the damage evolution nor on contact pressure (see Fig.
3.18).
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Figure 3.13: Damage variable D with µ = 0.7 (a) in the plane z = 0. (b) in the plane x = 0
after 4 cycles
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3.2.2.2 Partial slip regime

In this section, the same damage model is used in the partial slip regime. A gross slip
fretting loop is associated to wear whereas the partial slip regime is associated to crack-
ing appearance. For the contact between a sphere and a plane in partial slip regime the
center of the contact is sticking and an annular slip zone is appearing at the edge of the
contact area as shown in [MIN 49]. Accordingly to fretting material response (fretting
map), cracking appearance is generally associated with smaller displacement amplitude
and higher normal loading than in gross slip conditions [VIN 92].

A simulation is performed using a coefficient of friction of µ = 0.7 and a normal
load W = 900 N. Accordingly with Hertzian theory, this load leads to a contact radius
a∗ = 0.41817 mm and a maximum contact pressure P0 = 2457.386 MPa. The tangential
displacement is imposed with a value of ux = 0.001 mm or ux/a∗ = 0.0023. The damage
model parameters are kept the same as in section 4.3.1.

The state of the scalar damage variable D at the end of fretting simulation can be
observed at the contact surface z= 0 and in the plane x = 0 in Fig. 3.19(a) and Fig. 3.19(b)
after five fretting cycles. The higher damage values are localized in the slip circular zone
at the edge of the contact. It is where the material sees the maximum strain during fretting
cycles. In agreement to that, the pressure distribution is locally dropping at the contact
edge as the damage is increasing (Fig. 3.20). During the damage progression, the contact
area is increasing to respect the load equilibrium (Eq. 2.1) and the shear maximum value
is moving out of the initial contact area (Fig. 3.21). These results exhibit the same effects
of damage on contact pressure that the ones found in Ghosh et al. [GHO 13].

The results obtained in sections 3.2.2.1 and 3.2.2.2 are qualitatively in good agreement
with the surface damage phenomenon usually observed in fretting conditions, see for
example our experimental results in Figs. 3.22(a) and 3.22(b) – that can be compared to
Figs. 3.13 and 3.22 – or to literature data [VIN 92].
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Figure 3.19: Damage variable D with µ = 0.7 (a) in the plane z = 0. (b) in the plane x = 0
after 5 cycles.
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Figure 3.22: Wear scar of a steel ball (a) under gross slip regime (b) under stick-slip
regime.
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Figure 3.23: Damage variable D with µ = 0.4 (a) in the plane z = 0. (b) in the plane x = 0
after 7 cycles.
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Figure 3.24: Evolution of contact pressure with damage in the plane x = 0 for µ = 0.4

Effect of the coefficient of friction

A second simulation was realized with a coefficient of friction µ = 0.4. All other param-
eters are kept the same than in the previous simulation. In Fig. 3.23, one can observe
that the increasing slip zone and vanishing stick zone are leading to an increased surface
damage zone. Wear and crack initiation phenomena are competing in the slip zone where
the maximum shear stress occur.

Contact pressure in Fig 3.24 and shear stress in Fig. 3.25 show that pressure is locally
decreasing at the border of the contact area and the stick zone at the center is less affected
by damage. The contact area is increasing with the decreasing pressure to ensure the
contact load equilibrium.

Finally, results found with the proposed damage model are in good agreement with
the physical phenomena experimentally observed in literature as recalled in Fig 3.26.
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Figure 3.26: Fretting regime and associated damage phenomena
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3.2.2.3 Application to coated materials

A lot of materials used in the industry are coated to protect the surface from damage or
to help keeping the integrity of the substrate. Hard metallic coatings can mitigate fretting
by reducing friction and resisting crack initiation [BEA 87, FOU 97]. Using the same
enrichment technique as before gives the possibility to simulate coated materials. From
the top surface until a defined thickness zc cuboidal inclusions with different material
properties than the substrate are used. Above this layer, the same material properties than
the substrate are used for the inclusions (see Fig. 3.27).

This section only aims to investigate the effects of elastic coatings on the localization
of damage in the material. Firstly, only the distribution of equivalent strain ε̃ is studied.
Different coating’s stiffnesses (with a Young modulus ratio defines as γ = E/E0 with
E and E0 the modulus of the coating and substrate, respectively) and thickness (zc) are
studied and the effect on damage evolution is analyzed.

Two different coating stiffnesses are studied here, a harder one with γ = 2 and a softer
one with γ = 0.5. The equivalent strain ε̃ is plotted in order to represent the coating effect
on the damage localization. The same parameters as in section 4.3.1 are used for the
contact loading.

In Figs. 3.28 and 3.29, the equivalent strain ε̃ is plotted for the undamaged material
during the first cycle in the plane y = 0 for four different coating thicknesses zc and for
both coating stiffness ratios γ. These results are compared to the uncoated model along
the axe z in Figs. 3.30 and 3.31.

For γ = 0.5, the maximum equivalent strain ε̃ is always located in the coated material
(see Fig. 3.28) and ε̃ is very attenuated in the substrate. Moreover, the equivalent strain ε̃

in the coating is almost twice the value of ε̃ in the uncoated half-space (Fig. 3.30).
In contrary to soft coatings, the maximum equivalent strain ε̃ is always located in

the substrate material (see Fig. 3.29) for hard coatings (γ = 2). Moreover, the maximum
equivalent strain ε̃ in the hard coating is almost two times lower than with the uncoated
half space (Fig. 3.31). It is important to notice that the maximum of the equivalent strain
ε̃ is located at the interface between the coating and the substrate for a coating thickness
zc/a∗ ≈ 0.5 (close to the maximum shear stress localization). In the case of zc = a∗, there
is no high equivalent strain ε̃ at the interface. The layered structure of hard coatings leads
to damage propagation at the interface between the coating and the substrate parallel to
the surface as shown in [GOR 79].

The damage variable D is plotted in Fig. 3.32, along the z-axis for the two different
coating stiffnesses for a coating thickness zc = 0.25a after one fretting cycle. A strong
hypothesis is made here that the damage parameters are the same for the coating and for
the substrate even if there are not from the same material.

It can be observed that, accordingly with what was previously observed with ε̃, the
soft coating is a lot more damaged than the hard one. Moreover, for the hard coating, the
maximum damage is located at the interface between the substrate and the coating. But
for the soft coating, the maximum of damage is located at the surface and is much higher
(around 5 times).
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Figure 3.27: Enrichment of the half space with cuboidal inclusions to simulate the effect
of coatings.
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Figure 3.28: Equivalent strain ε̃ with a soft coating (γ= 0.5) of thickness (a) zc = 0.125a∗

(b) zc = 0.25a∗ (c) zc = 0.5a∗ (d) zc = a∗
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Figure 3.29: Equivalent strain ε̃ with a hard coating (γ = 2) of thickness (a) zc = 0.125a∗

(b) zc = 0.25a∗ (c) zc = 0.5a∗ (d) zc = a∗
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Figure 3.31: Equivalent strain along z for different thickness zc and with a hard coating
(γ = 2)

The results presented here show that hard coatings are effective to protect the material
from fretting surface degradations while soft coatings are damaging faster than uncoated
material assuming that the damage threshold in term of yield strength (εd0) and ductility
(εR) are the same. Finally, soft coatings are accommodating the surface stress field in the
contact limiting crack initiation but are more subjected to wear. In contrary, hard coatings
are wear resistant but are increasing the surface stresses leading to surface fatigue and
pitting.
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Figure 3.32: Damage after one fretting cycle along z direction for two different coating
stiffnesses

3.3 Comparison with another damage model

A damage law used in Ghosh et al. [GHO 13] is presented in this section and implemented
into the semi-analytical contact solver. Fretting simulations are performed in gross slip
regime and results are compared between the two damage models.

3.3.1 Presentation of the damage model

The theoretical developments leading to the damage wear law presented in Ghosh et al.
[GHO 13] are briefly presented in this part. Recalling that fretting wear is caused by
micro-cracks growing along weak point in the material due to high contact stresses, a
damage evolution law with an isotropic damage variable D based on the work of Chaboche
and Lesne [CHA 88] is defined. The evolution of D is a function of the stress level:

dD
dN

= f (σ,D) (3.18)

with N the number of stress cycles and σ the stress level at the considered point. Xiao et
al. [XIA 98] proposed a damage evolution law of the following form:

dD
dN

=

(
σ0

σr(1−D)

)m

(3.19)

with σ0 the critical stress quantity for the considered damage phenomenon (wear here),
σr and m are material parameters that need to be determined. As hypothesized for rolling
contact fatigue by Raje et al. [RAJ 08a] and extended to fretting wear by Ghosh et al.
[GHO 13], it is assumed that shear stress causes surface initiated failure because it un-
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dergoes two reversals in an Hertzian contact. Finally one can replace ∆σ by ∆τ in Eq.
3.19.

Previous work have shown the importance of coefficient of friction in surface failure
mechanisms. In particular, Fouvry et al.[FOU 96] proposed a theory linking the wear
volume to the dissipated energy due to friction in the interface. Furthermore, coefficient
of friction can be expressed as a function of the softer material shear strength and it
penetration hardness.

dD
dN

=
0.8Sut

E
∆τ

H(1−D)
(3.20)

with N the number of stress cycles, Sut the ultimate tensile strength of the material, E
the Young’s modulus and H the hardness of the material. ∆τ is the shear stress reversal at
the considered point during a fretting cycle. Details leading to this equation can be found
in Ghosh et al. [GHO 13].∫ N

0
dN =

∫ 1

0

[
E

0.8Sut

H(1−D)

∆τ

]
dD, (3.21)

The number of cycles N leading to failure is defined as:

N =
E

0.8Sut

H
2∆τ

(3.22)

The shear stress amplitude during one fretting cycle is calculated using the semi-
analytical contact solver and damage evolution is calculated at every point of the material
domain using Equation 3.20. For sake of computational efficiency, the number of cycles
leading to the first fully damaged element is computed using the jump-in-cycles algorithm
proposed by Lemaitre [LEM 92] and already used in finite element simulation by Slack
et al. [SLA 10]. This method assumes a linear damage evolution over a block of cycles.

3.3.2 Gross slip regime
Contact between a rigid sphere of radius R = 25mm and a homogeneous half-space is
simulated using the semi-analytical solver. The same material and loading characteristics
than in section 4.3.1 are used with a coefficient of friction µ = 0.7.

The half-space has been enriched with damageable elastic cuboidal inclusions with
initially the same properties than the half-space. The damage model proposed in Ghosh et
al. [GHO 13] is used with two parameters: Sut = 2500 MPa and H = 1 GPa. The damage
increment used in the jump-in-cycles algorithm is chosen to be ∆D = 0.01. All damage
simulations have been performed until at least one point reached the critical damage value
D = 1. Results in the case of gross slip regime and partial slip regime are investigated.
The distribution of the scalar damage variable D at the end of fretting simulation is plotted
at the contact surface z = 0 and in the plane x = 0 in Fig. 3.33. It can be observed that
the maximum damage point is located at the center of the contact surface as observed
with the previous model in Fig. 3.13. As the damage variable increases, contact pressure
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Figure 3.33: Damage variable D with µ = 0.7 (a) in the plane x = 0. (a) in the plane z = 0
after 28 loading cycles using damage model from Ghosh et al. [GHO 13].

decreases (Fig. 3.34) and consequently, the contact area increases to respect the load
equilibrium (see Eq. 2.1). Moreover, the contact pressure found at the last cycle with the
two models are similar. A small difference is found between the two pressures due to
the fact that simulation is stopped once the damage variable reaches the value D = 1 for
the first time. The represented contact pressure is computed with the damage state from
the previous cycle and depending on the damage evolution law, the damage level at this
previous cycle is not exactly the same in the two models.

The number of damage cycles found in this damage model is equal to 28 compared
to 4 in the proposed model (see Fig. 3.35). Therefore one damage cycle in our model
is equivalent to approximately 7 cycles in the model of Ghosh et al. [GHO 13] in this
specific example i.e. with the defined hardness and tensile strength.

3.3.3 Partial slip regime
In this section, simulation with this damage model are realized in the partial slip regime.
Simulation parameters are the same than in section 3.2.2.2 and the damage model param-
eters are kept the same as in section 3.3.2.

The state of the scalar damage variable D at the end of fretting simulation can be
observed at the contact surface z = 0 in Fig. 3.36 after 34 fretting cycles. The higher
damage values are localized in the slip circular zone at the edge of the contact. The
present results exhibit the same effects of damage on contact pressure that the ones found
with the proposed damage model in section 3.2.2.2 and in Ghosh et al. [GHO 13].
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Figure 3.36: (a) Damage variable D with µ = 0.7 in the plane z = 0 in partial slip regime.
(b) Contact pressure evolution with fretting cycles in the plane x = 0 using damage model

from Ghosh et al. [GHO 13].

3.4 Comparison with a wear model.
All the proposed damage models aim at simulate the damage phenomenon leading to
wear or crack initiation at the contact surface. In this section, a comparison between the
damage model from section 3.1.3 and simulation of wear in the semi-analytical solver is
proposed. The wear law used here is based on the quantity of dissipated energy in the
contact during each fretting cycle [GAL 07a].

VW = α

N

∑
k=1

Ed(k) (3.23)

Following Coulomb’s law, one can write the local dissipated energy by friction per
surface area, ed, as the product of surface shear and slip:

ed = q.s (3.24)

The local wear law can then be expressed as:

∆h = α

N

∑
k=1

δ0(N) ∑
1Cycle

q.s (3.25)

In the wear simulation, an increase in the computed wear volume is introduced by
modifying the surface geometry of the solid in the contact area. Wear is usually shared
by the two materials in contact. To be consistent with our damage simulation, one can
consider that only the half-space is going to be wearing. The surface equation is modified
considering the number of cycles ∆N and the wear depth ∆h. More details can be found
in [GAL 07b].

f2(x,y) = f2(x,y)−∆N∆h(x,y) (3.26)
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Figure 3.37: Contact pressure with one damaged element and with wear surface modifi-
cation in the plane x = 0.

One should notice that the damage model from section 3.1.3 is based on a volume
stress computation of a damage variable while the wear model is based on surface stress
computation and is not taking into account any subsurface phenomena. The effect on
the contact pressure is based on a surface modification in the wear model and on the
eigendisplacements coming from the inclusions in the damage model.

In order to easily compare the effects of wear and damage on the contact pressure,
a rigid sphere in contact on a half space with only one inclusion almost fully damaged
(E ≈ 0) and tangent to the surface is plotted in Fig. 3.37. It is compared with the contact
pressure from a rigid sphere in contact with a half-space where the flat surface have been
modified at the same point and by the same size than the previously considered inclusion
(no inclusion is present in this case) as if only this point of the surface have been worn
off. Both of the contact pressure are dropping to 0 at the considered point and two
peaks of pressure due to the discontinuity around the surface modification can also be
observed in Fig. 3.37. A very good agreement is found between the two contact pressure
confirming the ability of the damage model to represent the phenomena leading to wear
without modifying the surface geometry.

Furthermore, fretting simulations have been performed with the wear model and com-
pared to the same simulation but with the damage model from 3.1.3 after 4 fretting cycles.
In every simulations, contact conditions and damage parameters are kept the same than in
section 4.3.1. For the simulation with the wear model, ∆N = 100000, ∆h = 0.0002 mm
and the wear coefficient is chosen arbitrarily. Fretting loops associated with each fretting
slip regime are showed in Fig. 3.38.

Contact pressures along the x direction at the last computed cycle are compared for
both models in gross slip and partial slip regimes in Fig. 3.39. In every cases, the contact
area is increasing while the contact pressure is dropping, at the center of the contact area
in full sliding conditions (see Fig. 3.39(a)) and at the border of the contact area in stick
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Figure 3.38: Fretting Loops (a) in Gross slip regime (b) in partial slip regime.

slip conditions (see Fig. 3.39(b)).
Wear scars are compared to the level of damage at the surface along the x axis in the

gross slip regime in Fig. 3.40 and in the partial slip regime in Fig. 3.41. In the gross slip
regime, the center of the contact is the most damaged and it is also where the surface is the
most worn. No quantitative comparison can be made here because D is a dimensionless
variable while the wear scar depth is in mm. In the partial slip regime, the most damaged
area and the most worn surface are localized on the edges of the contact area. One should
observed that some damage is also localized at the center of the contact area while no wear
seems to appear at that time in the center of the contact area. Therefore, a good agreement
is found between the results from the damage model and based on a volume stress field
computation and a wear model from Gallego et al. [GAL 07a] based on surface stress
computation.

89



3. Damage model for fretting

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/a*

P
/P

0

 

 

Gross Slip Damage
Gross Slip Wear

(a)

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

x/a*
P

/P
0

 

 

Stick Slip Damage
Stick Slip Wear

(b)

Figure 3.39: Pressure distribution with Wear and Damage (a) in gross slip regime (b) in
partial slip regime.
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Figure 3.40: (a) Damage at the surface along x direction (b) Worn surface along x direc-
tion in the gross slip regime.
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Figure 3.41: (a) Damage at the surface along x direction (b) Worn surface along x direc-
tion in the partial slip regime.

3.5 Partial Conclusion
In this chapter, a numerical method has been proposed to model the effect of fretting on
surface damage and contact solution. A three-dimensional contact solver with a heteroge-
neous elastic damageable model is developed based on the Eshelby’s equivalent inclusion
method. Multiple cuboidal inclusions are superimposed on the half space solution as an
enrichment technique. The model has been validated by performing a comparison with
the Hertzian contact solution. The model allow to simulate fretting cycles while taking
into account the damage evolution of the surface and his influence on the contact solution.
The following major conclusions have been reached :

• The proposed method permits to couple the contact problem, the presence of het-
erogeneous inclusions and a damage law. The algorithm is very robust and con-
vergence can be easily reached even with high level of damage. Influence of the
computation discretization and enrichment size have been performed to proof the
accuracy of the simulations.

• Contact pressure and shear distributions have been investigated along with the dam-
age evolution for both gross slip and partial slip regimes.

• The results obtained with our model are in good agreement with the surface damage
phenomenon caused by fretting. The proposed method reproduces accurately some
classical results of the literature [VIN 92].

• The model proposed in Ghosh et al. [GHO 13] has been implemented in the semi-
analytical solver along with the jump in cycle algorithm and a good agreement has
been found between the two models.
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• The enrichment technique allows to simulate fretting contact on coated material.
The influence of these coatings on the damage localization in the material has been
highlighted. In agreement with the literature [BEA 87, FOU 97], it is found again
that hard coatings are protecting the surface from fretting damage.

• A good agreement between wear simulation model [GAL 07a] through surface ge-
ometry updating and damage simulation has been observed.

The present work is made on the assumption of linear elasticity to keep the model
simple and demonstrate its capability. To be more realistic, the present model could be
improved by taking into account plasticity effects during the fretting cycles. One way
of adding the plasticity effect would be to define a second damage evolution law based
on the accumulated plastic strain and to take the larger damage increment as the current
damage increment as in [WAR 14, SHE 15].
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Chapter 4

Damage model for Rolling Contact
Fatigue

In this chapter, the coupling between continuum damage
mechanics based model and the heterogeneous contact solver
is applied to rolling contact fatigue. A first part is focusing on

subsurface microstructural alterations occurring around
nonmetallic inclusions and called butterfly wings. A second

part is considering the application of a damage model to
surface initiated damage on indented surface.
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Introduction

4.1 Introduction
Rolling element bearings (REB) are commonly used when a relative rotary motion and
a significant amounts of load needs to be transmitted between machine components such
as wind turbines, transmission systems and engines. REBs carry the load through con-
tacts between the rolling elements and the races and low friction losses are ensured by
lubrication. After a proper installation and under good operating conditions, the main
phenomenon limiting the life of the bearings is rolling contact fatigue (RCF) [HAR 01].
In contrast to classical fatigue, RCF is not due to tensile stress but due to the reversal of
the shear stress [JAL 11] (see Fig. 4.1). The two different phenomena leading to RCF fail-
ure are surface originated pitting and subsurface originated spalling [LIT 66]. Pitting is
mainly due to surface defects or insufficient lubrication while spalling is due to subsurface
cracks initiating at material imperfections like voids, dislocations and inclusions. Non-
metallic inclusions present in the material are byproducts of steel manufacturing process
and act as stress raisers in the material [KER 06, SCH 88]. Moghaddam et al. [MOG 16a]
reviewed the alterations occurring around these inclusions in rolling contact fatigue.
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Figure 4.1: Stress history of a point located at 0.5a∗ in the subsurface of the material as
the Hertzian load passes over.

4.1.1 Experimental observations

Kang et al. [KAN 13] have shown that micro-structural alterations occur in the matrix
when bearing steel is subjected to RCF loading. One is commonly referred to as ”butterfly
wings” and is associated with crack initiation in the vicinity of inclusions (Fig. 4.2).
This phenomenon was observed for the first time in 1947 by Jones [JON 47] and then
by Styri [STY 51] in 1951 and has been continuously investigated since. Butterfly wings
are regions where the material is transformed from martensite into ultrafine ferritic grains
[BHA 12, BEC 81]. The pair of wings around the inclusion form a 45◦ angle with the
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rolling direction (see Fig. 4.2). Tricot et al. [TRI 72] and Nelias et al. [NEL 99] showed
that the wings formation is dependent on the over rolling direction (ORD) (see Fig. 4.3).
Furthermore, butterfly wings are often the site of crack initiation, in particular on the top
of the upper wing and bottom of the lower wing. These cracks can propagate and lead to
the failure of the bearings [GRA 07, EVA 12, EVA 13c].

Figure 4.2: Butterfly wings formed around an inclusion [EVA 13b]. The rolling direction
is from right to left.

Figure 4.3: Butterfly wings around an inclusion in rolling contact fatigue. Picture on the
right is showing a case where the over rolling direction have been inverted. [TRI 72]

Many experimental works have been conducted to investigate the root causes and ef-
fects of butterfly wings on RCF failure. Destructive methods provide a good knowledge
of the microstructrual alteration that occur in the butterflies [GRA 07, EVA 13c, KRE 16,
ALT 18]. On the other hand, non-destructive methods such as acoustic emission and
X-ray tomography are able to track the formation of wings and the initiation and propaga-
tion of cracks [GUY 97, STI 09, UME 09, RAH 09, KAN 13]. In particular, ultra-sound
methods have been used to detect inclusions localization, wings propagation [GUY 97]
and the effects of inclusions depth on wing formation [NEL 99].
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Presentation of the damage model

4.1.2 Numerical model
Numerical models have been developed by some investigators to simulate butterfly wings
formation in rolling contact fatigue. Salehizadeh and Saka [SAL 92] computed the resid-
ual stress evolution around a circular inclusion. The hydrostatic stress around inhomo-
geneities with or without the presence of cracks has been investigated by Hirakoa et
al.[HIR 06]. Alley and Neu [ALL 10] proposed a model based on the plastic strain accu-
mulation around an inclusion under rolling contact loading. Recently, Cerullo and Tver-
gaard [CER 15] used the Dang Van criterion to determine the effects of small inclusions
on fatigue.

Among the numerical models, some are based on Continuum Damage Mechanics
(CDM) to study failure due to fatigue [LEM 92]. Moghaddam et al. [MOG 15b] pro-
posed a damage mechanics approach to simulate butterfly wings propagation using fi-
nite element simulation. The model was later extended to crack propagation [MOG 15a]
and to 3D simulation [MOG 16b]. In the 3D model, the inclusion is embedded in a
half-space discretized using a Voronoi tesselation. This kind of discretization has been
used intensively to represent the microstructure of the material [RAJ 08a, VIJ 18]. Guan
et al. [GUA 17] used also the Voronoi tesselation to compute the stress intensity fac-
tors and the crack propagation around an inclusion. Lately, CDM has also been applied
to study the microstructural transformation leading to dark etching layer in the mate-
rial under Rolling Contact Fatigue [MOR 18b] and coupled with an EHL contact solver
[PAU 17a, PAU 17b].

For three-dimensional problem and a moving load, a very fine mesh is required
for the contact interfaces and for the inclusion region leading to high computation
costs. In order to compute the coupled solution of the contact problem over an
heterogeneous material, the numerical method developed by Nelias and co-workers
[JAC 02, LER 10, KOU 14b, AMU 16] is used. One should note that the results pre-
sented by Moghaddam et al. [MOG 15b, MOG 16b] don’t take into account the effect
of the heterogeneity on the contact solution. The purpose of the present work is to use
the damage mechanics approach to model the phenomenon of butterfly wings forma-
tion around nonmetallic inclusions coupled with a semi-analytical heterogeneous contact
solver. The subsurface and the contact problem solutions are coupled. The microstruc-
tural modifications inside the material are represented by adding cuboidal heterogeneities
at the location where the damage occurs.

4.2 Presentation of the damage model
In the elastic heterogeneous contact solver presented in Chapter. 2, a Continuum Damage
Mechanics (CDM) based model was implemented in order to describe the degradation
of material due to contact loading. Following the same principles that in Chapter. 3 but
applied to subsurface damage phenomena, section 4.2.1 recall the basics of CDM and its
applications to butterfly formations around nonmetallic inclusions. Sections 4.2.2 present
the implementation of the damage model in the heterogeneous contact algorithm.
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4. Damage model for Rolling Contact Fatigue

4.2.1 Continuum Damage Mechanics
The state of stress in the damaged material can be described by the effective stress
introduced by Rabotnov [RAB 69]:

σ̃ =
σ

(1−D)
(4.1)

In the present model, it is assumed that D is a scalar representing the alteration of
the material behavior during the phase transformation from martensite into ferrite. Thus,
an increase in the damage manifests as a reduction in the modulus of elasticity in the
constitutive relationship.

σ = (1−D)Eε (4.2)

Micro indentation tests have shown that the hardness increases during the transforma-
tion [BEC 81, EVA 12, UME 09, GRA 10, MOG 15a]. Moghaddam et al. [MOG 15a]
used a reverse analysis of his indentation test results to determine the reduced modulus
of elasticity in the wings to be Ebutter f ly = 0.9Esteel and therefore Dbutter f ly is assumed
to be 0.1 in the simulations. After this microstructural transformation, the hypothesis is
made that no other transformation will occur and then no more damage will be happen-
ing at this location. Furthermore, no damage is applied to the inclusion itself. In order
to compute the damage evolution in the material, a stress-based non linear evolution law
was proposed by Xiao et al. [XIA 98]:

dD
dN

=

(
σ0

σr(1−D)

)m

(4.3)

Where N is the number of stress cycles and σ0 is a measure of the stress mainly re-
sponsible for the fatigue damage. The resistance stress, σr, and m are material dependent
parameters. A version of the damage evolution law for the modeling of butterfly wings
was proposed by Moghaddam et al.[MOG 15b]:

dD
dN

=

(
∆τ

τr(1−D)

)m

(4.4)

With ∆τ = τalternating + |τmean| (4.5)

Because butterfly wings is assumed to be a shear driven phenomenon, the stress com-
ponent (∆τ) is the sum of τalternating, the alternating shear stress and |τmean| the absolute
value of the mean shear stress during one loading cycle. They are the components of
the stress tensor mainly responsible for the damage accumulation and the formation of
butterfly wings. The resistance stress τr represents the ability of the material to resist
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fatigue damage accumulation. τr and the exponent m are material dependent parameters.
An analogy with shear driven fatigue test, torsion test, is used to determine these parame-
ters based on the experimental results obtained by Shimuzu for bearing steel AISI 52100
[SHI 09]. In the following simulations, values of 6.11 GPa and 10.0 will be used for τr
and m respectively.

4.2.1.1 Jump-in-cycle Algorithm

In order to achieve computational efficiency in high cycle fatigue, the jump-in-cycles
procedure is used [LEM 92]. This method assumes that, over a finite number of cycles
∆N, the stress history of a loading cycle remains constant and the increment in damage
∆D is assumed to be constant. The damage evolution is then a piecewise linear function
over a block of cycles ∆N as illustrated in Fig. 4.4. Stress computations are performed
once for every block of cycles and not for each individual cycle N.

Figure 4.4: Piecewise linear damage evolution with block of cycles in the Jump-in-cycles
algorithm [RAJ 08a]

.

The procedure is described below:

1 N = 0: for a pristine material domain, the initial damage in each element is assumed
to be D0

j = 0, j = 1...nelements.

2 Stress history (∆τ)i
j for a loading cycle is computed at each point of the material

using the semi-analytical contact solver.

3 The damage evolution rate in each element is evaluated knowing the stress history
for the present block and the current state of damage in the element using the fol-
lowing equation: (

dD
dN

)i

j
=

(
τalternating + |τmean|

τr(1−Di
j)

)m

(4.6)
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4 The element with the maximum damage evolution rate is chosen as the critical
element for the current block of cycles:(

dD
dN

)i

crit
= Max|

(
dD
dN

)i

j
| (4.7)

5 The number of cycles in the current block of cycles is computed as:

∆Ni =
∆D(dD

dN

)i
crit

(4.8)

6 The number of cycles elapsed is updated to:

N = N +∆Ni (4.9)

7 The increment in damage for each element during the current block of cycles is then
given by:

∆Di
j =

(
dD
dN

)i

j
∆Ni (4.10)

8 The damage states for each element at the start of the next block of cycles are
updated to:

Di+1
j = Di

j +∆Di
j (4.11)

9 The elastic moduli are modified at the start of the next block of cycles according to:

E i
j = E0(1−Di

j) (4.12)

The value of ∆D is an input of the algorithm and ∆D is the maximum damage incre-
ment for each block of cycles. A small value of ∆D will increase the computation time
and the accuracy of the method. Moreover, to be in perfect agreement with Moghaddam
et al. [MOG 15b], the value of ∆D is set to 0.01. It takes ten loading cycles to transform
a first element from martensite to ferrite.

4.2.2 Integration of the damage model in the contact algorithm
The damage model defined in section 4.2 is coupled with the semi-analytical contact
solver developed by Nelias and co-workers [GAL 10, LER 10, KOU 14b]. In order to
take into account the local damage of the matrix, a cuboidal heterogeneity is added at
each damaged location as an enrichment technique as in Chapter 3. The Young modulus
of the added heterogeneity corresponds to the locally damaged Young modulus of the
matrix and the size of the cuboidal heterogeneity is the same as the discretization of
the half-space (see Fig. 4.5). At the beginning of each time step of the loading cycle,
Eshelby’s equivalent inclusion solution is computed to take into account the modifications
of the material parameters on the contact solution. A flowchart of the solver algorithm
to explain the coupling between the contact solver and the damage model is presented in
Fig. 4.6.
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o

Figure 4.5: Illustration of the enrichment technique using cuboidal inclusion around a
central spherical inclusion.

Elastic Contact

Figure 4.6: Flowchart of the coupled contact solver and damage model
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4.3 Results

4.3.1 Description of the problem
The rolling of a 3D rigid cylinder on an elastic damageable body with a spherical inclusion
is investigated (Fig. 4.7). The radius of the cylinder is R = 5.5mm and its length in
the Y-direction is LY = 0.16 mm. A normal load W = 55 N is applied on the cylinder.
The half-space Young’s modulus and Poisson’s ratio are chosen as E0 = 200 GPa and
ν0 = 0.3, respectively. For the homogeneous half-space, this load leads to a contact half
width a∗ = 0.1 mm and a maximum contact pressure P0 = 2 GPa. One should note that
the dimension of the contact in the Y-direction is approximately 16 times larger than the
contact half width. A spherical inclusion with a diameter dinc = 0.16a∗ is placed at the
center of the domain at a depth zI = 0.5a∗. The inclusion Young modulus is chosen
to be EI = 300 GPa and its Poisson’s ratio νI = 0.3 to be consistent with Al2O3 oxide
inclusions. The loading moves from left (x < 0) to right (x > 0), maintaining the normal
load constant, on a distance equal to 2a∗ decomposed into 21 time steps. The tangential
displacement at each time step is equal to 0.1a∗. The value of the coefficient of friction is
chosen to be µ = 0.05 and the direction of surface traction is opposite to the over rolling
direction (which corresponds to the driven surface). The loading and material parameters
are consistent with the ones in Moghaddam et al. [MOG 15b]. Note that the computation
being elastic, only the direction of surface traction has an influence on the results. The
half-space is discretized in 225×71×45 computation points such that the space between
points is 2∆x= 2∆y= 2∆z= 0.04a∗. As in Moghaddam et al. [MOG 15b] simulations are
stopped when a second pair of wings is appearing. Quiñonez [QUI 19] computed a similar
model with a coupled EHL and 3D finite element simulation with a subsurface inclusion.
Their model is made of 193×385×129 points and for every time step, computation time
is found to be about 1 hour with a 2.6 Ghz CPU and 16 GB RAM. The proposed method
is found to be around 40 times faster at solving the same kind of problem.
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Figure 4.7: 3D view of the rolling of a cylinder on a elastic half-space with a spherical
inclusion.

An important difference between the model proposed by Moghaddam et al.
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[MOG 15b, MOG 16b] and the results presented here is the presence of a coupling be-
tween the contact solver and the heterogeneous material which permit to take into account
the effect of the inclusion on the contact pressure [LER 10, LER 11, LER 13, KOU 14b,
KOU 14a, KOU 15a, KOU 15b, AMU 16]. Furthermore, the 3D model in Moghaddam
et al. [MOG 16b] is using a Voronoi tesselation to represent the microstructure of the
material around the inclusion.
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Figure 4.8: Effect of the presence of a spherical inclusion located at zinc = 0.5a∗ under
the surface on the stresses at the center of the contact.Note that here the inclusion is 1.5

times harder than the matrix: EI = 300GPa, E0 = 200GPa.

Moghaddam et al. [MOG 15b] found that in order to describe butterfly formation as
a stress-based fatigue phenomenon, one should take into account the stress history of the
material during each loading cycle and, in particular, the alternating shear stresses. In
3D, the value of these stresses should be calculated in all the different planes around the
inclusion in order to find the plane of maximum alternative shear stress. But Weinzapfel
et al. [WEI 11] have shown that the plane of the maximum shear stress around a spherical
inclusion during a rolling cycle is the XZ-plane. In the following simulations, the compu-
tation of the alternating shear stress, τalternating, and of the mean shear stress, τmean, will
use the shear stress in the XZ-plane, τxz.
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The effect of the inclusion on the stress field is decreasing with the distance from
its center. Therefore the computation of the alternating shear stress and of the damage
evolution will be limited to a square REV with the inclusion in its center and a size
L = 3 ∗ dinc (see Fig. 4.9). Other authors studied line contact by periodically duplicated
the contact pressure solution in the Y-direction to simulate line contact on rough surfaces
[REN 09] and with periodically distributed inclusions [ZHO 16]. One should note that in
the present study, dimension of the contact in the Y-direction is more than 30 times the
size of a REV side length. Hence no duplicating technique is needed here. The alternating
shear stress, the absolute mean stress and the resulting delta stress after one rolling cycle
are represented in Fig. 4.10.

o

RVE

3dinc

dinc 3dinc

Figure 4.9: View of the REV around the spherical inclusion

The alternating shear stress in Fig. 4.10(a) shows high amplitude in four regions
around the inclusion and the absolute mean stress shows two maximum amplitude stress
at top left and bottom right of the inclusion (see Fig. 4.10(b)). The absolute mean stress
around the inclusion is influenced by the presence of surface traction (see Fig. 4.10(b)).

While the alternating shear is the more critical for butterfly formation, the mean shear
stress is influenced by surface traction and therefore is giving the butterfly propagation’s
direction. One can observe that the sum of these two components is showing two re-
gions with higher amplitude giving the direction of the wing formation as shown in Fig.
4.10(c). These results correlate well with the stress distribution found by Moghaddam et
al. [MOG 15b].

4.3.2 Wings initiation and propagation
Most of the previous numerical results of the literature have been done in 2D [ALL 10,
CER 15, MOG 15b] but the actual model is in 3D and allows to observe the propagation of
the butterfly wings around the inclusion in the same way as in [MOG 16b]. The formation
and growth of the wings around the inclusion is shown chronologically in Fig. 4.11. Each
red cuboid corresponds to a zone where the microstructural transformation happened and
an heterogeneity with a Young’s modulus Ẽ = 0.9E is introduced. It can be noted that the
wings grow both in the planes XZ and XY.

The damage distribution is shown in different planes of the half-space parallel to the
rolling direction (see Fig. 4.12). It can be observed that the damage increases out of the
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Figure 4.10: Alternating shear stress τalternating (a), absolute mean shear stress |τmean| (b)
and their summation ∆τ(c) in MPa during one load pass over a half-space in the plane

y = 0.

105



4. Damage model for Rolling Contact Fatigue

(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Chronological order of butterfly initiation and evolution in 3D with inclusion
depth zinc = 0.5a∗.
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plane of maximum alternating shear stress around the inclusion (see Fig. 4.12(d)). As
observed in Fig. 4.11 and Fig. 4.12, butterfly wings seem to propagate in a direction
transverse to the rolling direction. This phenomenon could explain some experimental
observation in the open literature of inclusion-less butterflies [LUN 10].

It should be noted that in the model proposed by Moghaddam et al. [MOG 16b], the
volume around the inclusion is discretized using a Voronoi tessellation technique. In the
semi-analytical solver, the volume is discretized in small cuboids to compute the stress
field. That is why the representation of the damage around the inclusion and the inclusion
itself demonstrates a non-smooth interface in Fig. 4.12. In the semi-analytical method,
the discretization size needs to be constant in the domain [POL 99] and its size is equal to
0.04a∗. In the FE model of Moghaddam et al. [MOG 15b], four different mesh densities
are used and in the REV of the inclusion, the mesh size is equal to 0.008a∗. The results
obtained are compared with both the experimental results of Takemura [TAK 01] and the
results of Moghaddam et al. [MOG 15a] in order to determine when butterflies wings
appear during the life of the bearings. Takemura studied fatigue life of bearings made of
AISI 52100 steel with more than 400 tests. He reported the life of bearings related to but-
terfly wings formation around oxide inclusions. Three different loadings corresponding
to a maximum Hertzian pressure of 2.0, 3.0 and 4.0 GPa are used to compare the butterfly
initiation life with the one in [MOG 15b, TAK 01]. The initiation life is taken when the
damage variable reaches for the first time the value D = 0.1 and plotted in Fig. 4.13.
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Figure 4.13: S-N curve for butterfly initiation comparing results from experimental data
[TAK 01], finite element [MOG 15a] and semi-analytical simulations.

When the maximum Hertzian pressure is increasing, the shear stress becomes larger in
the material and the number of cycles leading to initiation of butterfly wings is decreasing.
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Figure 4.12: Sectioning of the damage variable D around an inclusion at zinc = 0.5a∗

in different planes parallel to the rolling direction. (a) Plane y=0 (b) Plane y=0.04a∗ (c)
Plane y=0.08a∗ (d) Plane y=0.12a∗ (e) Plane y=0.16a∗ (f) Plane y=0.2a∗.
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It can be observed that the model closely matches the results of finite element simulation
and the experimental results for load around 2.0 GPa but is less conservative than the
numerical results of Moghaddam et al. [MOG 15b] for higher loads. This difference
could come from the difference in the discretization between the two simulations. A
larger discretization in the simulation results in computing the level of stress on a larger
volume of the solid in the semi-analytical method. Stress gradients are averaged in the
element volume. Thus the average stress field on the element volume is lower and leads
to a larger jump in the cycles and therefore to a larger initiation life as observed in Fig.
4.13. For all loadings, the results obtained with the semi-analytical results are in good
agreement with the experimental results of Takemura [TAK 01].

4.3.3 Effect of inclusion depth
The effect of the inclusion depth was investigated experimentally by Lund [LUN 10],
Grabulov [GRA 07] and Evans [EVA 13b]. Evans results were compared by Moghaddam
et al. [MOG 15b] using the damage FE model. They showed that for an inclusion close
to the surface (between 0.2a∗ and 0.5a∗), the lower wing is more developed and for an
inclusion between 0.5a∗ and 0.8a∗, the upper wing is larger. However it should be recalled
that in their models it is assumed that the presence of the inclusion does not influence
the contact pressure distribution. This hypothesis does not hold when the inclusion is
close to the surface, i.e. when zinc < a∗ [LER 10, LER 11, LER 13, KOU 14b, KOU 14a,
KOU 15b, KOU 15a, AMU 16].

In the current study, five different inclusion depths have been investigated: 0.2a∗,
0.3a∗, 0.4a∗, 0.5a∗ and 0.6a∗. The results for the damage distribution shown in Fig. 4.14
are in good agreement with those of Moghaddam et al. [MOG 15b] and the 3D shape of
the wings around the different inclusions is shown in Fig. 4.15. For an inclusion stiffer
than the matrix and close to the contact surface (zinc < 0.5a∗) the lower wing is more
developed than the upper wing (see Fig. 4.14(a) and Fig. 4.14(b)). Moreover, it can
be noted that when an inclusion is located at 0.3a∗, no upper wing is appearing during
the rolling cycles 4.15(a). For an inclusion at a depth larger than 0.5a∗, the upper wing
is more developed (see Fig. 4.14(d)) and a third wing is appearing on the top of the
inclusion. It comes from the fact that the effect of surface traction decreases when the
inclusion’s depth becomes larger. Thus the alternating shear stress becomes predominant
over the absolute mean stress, leading to the appearance of a second pair of wings (see
Fig. 4.14(d)). The depth of an inclusion determines how the wings expand and can lead
to cracks and damage of the roller bearings.

4.3.4 Effect of inclusion stiffness
Simulations have been performed with an inclusion softer than the matrix (EI = 10GPa)
and with the same parameters than presented in section 4.3.1. After one rolling cycle, the
delta shear stress ∆τ is found to be maximum at four localization around the inclusion (see
Fig. 4.16) but obtained results show that no damage propagation in the form of butterfly
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Figure 4.14: Damage variable D in the plane y = 0 with inclusion depth (a) zinc = 0.3a∗

(b) zinc = 0.4a∗ (c) zinc = 0.5a∗ (d) zinc = 0.6a∗. The inclusion considered is 1.5 times
stiffer than the matrix.
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(a) (b)

(c) (d)

Figure 4.15: Butterfly wings around a spherical inclusion with inclusion depth (a) zinc =
0.3a∗ (b) zinc = 0.4a∗ (c) zinc = 0.5a∗ (d) zinc = 0.6a∗. The inclusion considered is 1.5

times stiffer than the matrix.
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wings is observed with the model. In fact, the presence of a soft inclusion in the matrix
is decreasing the stress in the region around the inclusion while a high stress gradient
is appearing at the interface between the inclusion and the matrix. Hence, a debonding
phenomenon may occur at this location, not taken into account in the current model.
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Figure 4.16: Delta shear stress ∆τ in MPa in the plane y = 0 with a very soft inclusion
EI = 10GPa.

4.3.5 Effect of butterfly initiation on contact pressure
One of the main differences between the FEM simulation proposed by Moghaddam et
al. [MOG 16b] and the semi-analytical solver proposed here is the coupling between
the contact solver and the heterogeneous half-space. In the model of Moghaddam, a
Hertzian contact pressure is imposed as an input of the simulation and no effect of the
inclusion nor the damage of the material is affecting the contact solution. Leroux et al.
[LER 10, LER 11, LER 13] and Koumi et al. [KOU 14b, KOU 14a, KOU 15a, KOU 15b]
have shown that the contact pressure distribution may be significantly modified by the
presence of inhomogeneities close to the surface (zinc < a∗), which subsequently affects
the subsurface stress distribution (see Fig. 4.8 and Fig. 4.17).

In order to highlight the effect of the presence of an inclusion on the contact pressure,
simulations have been realized with an inclusion very close to the contact surface (zinc =
0.2a∗) and with two different Young’s modulus. One can define γ as the ratio between the
inclusion and the matrix Young’s moduli. A hard inclusion with γ= 1.5 as in section 4.3.1
is compared to a soft inclusion with γ = 0.05. Contact pressure when the contact load is
just over the inclusion is plotted for both inclusion ratio in Fig. 4.17. In presence of a hard
inclusion, a peak of pressure is observed. The maximum contact pressure is around 10%
higher than the Hertzian pressure. With a soft inclusion, a local drop of contact pressure
of almost 50% is observed. Influence of the depth of the inclusion on the contact pressure
is also observed in Fig. 4.18. In the case studied here, it must be noted that inclusions are
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really small compared to the contact half width (dinc = 0.16a∗) and the contact pressure
is affected only when the inclusion is close to the contact surface.
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Figure 4.17: Influence of the inclusion stiffness ratio γ = EI/EM at a depth zinc = 0.2a∗

on the contact pressure in the plane y = 0. Inclusion’s diameter is dinc = 0.16a∗.
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Figure 4.18: Comparison of the contact pressure with a spherical inclusion under the
center of the contact for different inclusion’s depth. Inclusion’s diameter is dinc = 0.16a∗

and 1.5 times stiffer than the matrix (EI/E0 = 1.5).

During the formation of butterfly wings, the microstructural transformation appear-
ance modifies the response of the material when the loading is rolling over the domain.
The introduction of small heterogeneities around the inclusion modifies the stress field in
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4. Damage model for Rolling Contact Fatigue

the material. Computation have been performed with a inclusion depth of zinc = 0.2a∗.
Contact pressure over the damaged area is locally found to be slightly decreasing with
the formation of the wings (see Fig. 4.19). This is due to the fact that the metallurgical
transformation is associated with a local decrease of the Young modulus (by 10%. This
effect is localized due to the small area concerned but is increasing with the evolution of
the wings formation. As observed in section 4.3.3, only the lower wing is appearing in
this case and consequently a small asymmetry is appearing in the contact pressure (see
Fig. 4.19(a)). One can note that due to the small alteration of the material properties
in the wings (a 10% decrease), the effect on the contact pressure is limited compared to
the effect of the presence of a hard inclusion close to the surface. Finally, results show
that the coupling between the heterogeneous contact solver and the damage model is not
modifying the ability to predict butterfly formation with the damage model.
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Figure 4.19: (a) Comparison of the contact pressure with a spherical inclusion of diameter
dinc = 0.16a∗ and 1.5 times stiffer than the matrix (EI = 300GPa) under the center of the
contact for a inclusion’s depth zinc = 0.2a∗ before and after wing initiation. (b) Butterfly

wing appearance in the plane y = 0.
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4.4 Application to rolling contact fatigue on indented
surface.

The damage model studied in chapter 3 is applied to surface initiated damage during
rolling contact fatigue. In particular, this study focus on damage occurring around indent
as observed in Fig. 4.21 and called C-cracks. They often lead to the creation of a spall.

The rolling of a 3D sphere on an elastic damageable body with an artificial indent is
investigated. The radius of the sphere is R = 2.78 mm. The half-space and the sphere
are made of the same material with a Young’s modulus and Poisson’s ratio defined as
E0 = 210 GPa and ν0 = 0.3, respectively. A normal load W = 25 N is applied and for a
homogeneous half-space, this load leads to a contact radius a∗ = 0.077 mm and a max-
imum contact pressure P0 = 2027.5 GPa. The loading moves from left (x < 0) to right
(x > 0), maintaining the normal load constant, on a distance equal to 2a∗ decomposed
into 21 time steps. The tangential displacement at each time step is equal to 0.1a∗. The
value of the coefficient of friction is chosen to be µ = 0.05 and the direction of surface
traction is opposite to the over rolling direction (see Fig. 4.20). Note that the computation
being elastic, only the direction of surface traction has an influence on the results. The
half-space is discretized in 291×121×15 computation points such that the gap between
points is 2∆x = 2∆y = 2∆z = 0.085a∗. The geometry of the dent is defined by a damped
cosinus (see Eq. 4.13) that described a dent of r = 0.065 mm radius and of d = 0.0032
mm depth. No residual stress or plasticity is considered here.

hi(x,y) = hi(x,y)+35cos
[

2π
450

r

]
exp
[
−13

r2

4502

]
(4.13)

The presence of an indent on one of the contacting surface is resulting in peaks of
pressure around the indent when the load is moving over the surface (see Fig. 4.4). The
corresponding Von Mises stress show high gradient located on the side of the indent (Fig.
4.23). Thus, the equivalent strain is computed during each step of the loading cycle re-
sulting in an increment of damage at the end of every rolling cycle. The local Young
modulus of the half-space is modified accordingly. This method has been fully detailed

Figure 4.20: Definition of Over Rolling Direction [MOR 15]
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Figure 4.21: C-cracks around indent under rolling condition [MOR 15]
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Figure 4.22: Contact pressure on the indented surface
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Figure 4.23: Dimensionless von Mises stress field σV M/P0 in the contact over an indent
(a) in the subsurface (b) on the top surface

in chapter 3. Equivalent strain when the load is over the indent is plotted in Fig. 4.24(a).
Damage parameters are chosen arbitrarily and are equal to the one in chapter 3. Damage
variable after 28 rolling cycles in the plane z = 0 (Fig. 4.24(b)) show a maximum on the
left part of the indent at the same spot than the crack initiation spot in Fig. 4.21. Finally,
the influence of damage on the contact pressure in the plane y = 0 is observed in Fig. 4.4
and results in a decreasing maximum pressure at the localization of the pressure peaks.
Finally, this section suggests a new application of the semi-analytical solver for surface
initiated damage in RCF. A good agreement is found between the maximum damage lo-
calization and crack initiation spot observed in the literature. Further study should focus
on the effect of geometry and plastic strain around real indent.
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Figure 4.24: (a) Equivalent strain at the end of the first rolling cycle. (b) Damage in plane
z = 0 after 28 rolling cycles over the indent.
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4.5 Partial Conclusion
In this section, a numerical method has been proposed to model the effect of rolling con-
tact fatigue on butterfly wings formation around a non-metallic spherical inclusion. A
three-dimensional contact solver with an heterogeneous elastic damageable model is de-
veloped based on the Eshelby’s equivalent inclusion method. Cuboidal inclusions are
superimposed on the half space solution as an enrichment technique to represent the mi-
crostructural alteration around the spherical inclusion. The proposed method allows to
couple the contact problem, the presence of heterogeneous inclusions and a stress-based
damage evolution law. The computation cost of the damage evolution is improved through
the use of a jump-in-cycles algorithm. The shape of the wings in 3D has been investigated
for different inclusion depths. Moreover, the effects of the inclusion and of the wing prop-
agation on the contact pressure due to the existence of a coupling in the solver have been
highlighted. These effects represent one of the main advantage of the method, especially
when inclusions are close to the surface (i.e between the surface and the Hertzian depth).
A second section introduced an application of the method to surface initiation rolling
contact fatigue. Preliminary results show the capacity of the damage model to predict the
crack initiation spot around an artificial indent. The results obtained with both approach
correlate well with results in the open literature [MOG 15b, MOG 16b, MOR 15]. The
ability of modeling damage using the semi-analytical method has been emphasized. The
following chapter presents some experimental work to better understand the tribological
behavior of composite materials. The following results are needed to build a damage
model adapted to this kind of material.
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Chapter 5

Contact experiments on composite
materials

In this chapter, several experimental testings on a woven
composite material are presented with the aim of achieving a
better understanding of their tribological behavior. In a first
part, pin-on-disk tests between a composite disk and a steel
ball are conducted followed by fretting tests with the same

material configuration. In a second part, a few contact
experiments at the scale of the macroscopic structure of the
composite are presented. Results obtained in this chapter
show the different tribological behaviors of each material

constituent.
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5.1 Introduction

Tests to identify the experimental behavior of woven composite materials under con-
tact loading have been realized at the Mechanical Engineering Tribology Laboratory
(METL) of Purdue University. The METL has developed different kinds of experimental
approaches for fretting wear and fretting fatigue [LEO 12b, WAL 14, AHM 18]. Re-
sults presented in the previous chapter proved the ability of the semi-analytical method
to reproduce damage behavior during fretting and rolling contact fatigue. The aim
of these experiments was to understand the contact behavior of woven composite and
to identify the damage mechanisms in fretting associated with this kind of materials.
A lot of studies already exist on the fretting behavior of metallic alloys in contact
[FOU 96, FOU 04, GAR 15, XIN 17]. Whereas most of the experimental studies con-
cerning woven composite materials are realized by tensile tests [LOM 08, DOI 15a] or
impacts [ELI 17], only a very few results are available in the literature about contact
loading on woven composite materials [MAT 09, HUR 14, LI 18c]. Experiments can be
divided in two parts, a first one with existing test rigs to understand the behavior and the
damage phenomena of the composite materials and of its constituent under contact load-
ing. Because the REV of the woven pattern is much larger than the REV of metallic alloy,
some new experiments are conducted at a larger scale in a second part to better under-
stand the macroscopic behavior of the composite material under contact. The following
sections are presenting the different test rigs and the woven composite material used for
the tests. Observations and results for pin on disk and fretting tests are presented followed
by some preliminary results of contact at a larger scale.

5.1.1 Experimental test rig

Pin-on-Disk and fretting tests between a steel ball and a woven composite flat are con-
ducted on a Bruker UMT Tribolab. A dual-axis force sensor is used to measure the friction
force and the normal force simultaneously. The load sensor can measure a force in the
range 2-200 N with a resolution of 2.5 mN. A reciprocating linear drive is used to move
the flat plate against the stationary ball. For the Pin-on-Disk (see Fig. 5.5), a rotary drive
is used that can reach a speed of 5000 rpm for the composite disk. In all the experiments
with the Tribolab, rolling bearing balls are used. They have a diameter of half an inch
(≈12 mm) and are made in through hardened bearing steel AISI 52100 (with Young’s
elastic modulus E = 210 GPa and Poisson’s ratio µ = 0.3). Moreover, wear scars from
the ball-on-flat configuration are scanned using an optical surface profilometry (ZeScope,
Zygo Corp.).
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Figure 5.1: Bruker UMT Tribolab

Figure 5.2: Description of Pin-on-Disk parameters

5.1.2 Woven composite sample

A plate of woven composite is used to realize the test. It’s a 9 mm thick plate of a 2D
woven composite composed of carbon fiber yarns and a polymer matrix. The distribution
of yarns in each direction is 50% of yarns in the warp direction and 50% of yarns in the
weft direction. Yarns have a width around 2mm and 0.5mm thick. The polymer matrix
behavior is visco-elastic with a Young’s modulus EMatrix = 4000 MPa and a Poisson’s
ratio µ = 0.4. Yarns are made of thousand of carbon fibers and have a transverse isotropic
behavior with E f 3 = E f 2 = 6777 MPa and E f 1 = 186240 MPa. Shear modulus are equal
to G f 13 = G f 12 = 5800 MPa and G f 23 = 5300 MPa and Poisson’s ratio are equal to
µ f 13 = µ f 12 = 0.269 and µ f 23 = 0.3349.
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Figure 5.3: Transverse isotropy of yarn [NAO 15b].

Figure 5.4: View at 45◦ of the woven composite material without the matrix.

5.2 Pin on disk

5.2.1 Description of the procedure

A pin-on-disk experiment was conducted using the Tribolab test rig. A small disk of
composite was cut off the composite plate (see Fig. 5.5) and installed on the rotating
driver of the Tribolab. A normal force is applied through the upper ball using a force
sensor and the lower composite disk is rotating at a constant speed. Both the rotating
speed and normal imposed load are kept constant during the test. This is guaranteed by
a control loop of the test rig. Due to the dissimilar material properties of the composite,
some jumps in normal load measurement are appearing when the contact area is moving
from one phase of the composite to another. To ensure that the load is constant, a small
rotating speed is needed to let enough time to the software to adjust the load. As observed
in Fig. 5.2, the parameters of the test are the normal force imposed on the ball, the rotating
speed and the radius of the track on the disk (distance between the center of the contact
and the center of the disk). All experiments were conducted during 5000 cycles and at
a linear speed 0.075 m/s. Moreover, experiments were conducted for different normal
loads from 10N to 120N. It should be noted that each part of the disk is seeing the load
the same number of time for each test but the ball has a different sliding distance for each
test radius (see Table 5.1). As a consequence, the ball is more worn off for a bigger radius
and the evolution of the contact pressure between the ball and the disk is not the same for
every test.
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Figure 5.5: Disk made of woven composite material

Test number Normal Load (N) Track Radius (mm)

1 10 20
2 15 28
3 20 18
4 30 24
5 40 26
6 50 22
7 60 22
8 80 20
9 120 16

Table 5.1: Experimental settings.
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5.2.2 Coefficient of friction
The dual-axis force sensor of the Tribolab allows to measure the friction force and the
normal force simultaneously during the experiment. It is possible to determine the macro-
scopic coefficient of friction between the bearing steel ball and the composite disk and its
evolution with cycles using Coulomb’s law. The averaged coefficient of friction is plotted
in Fig. 5.6 for different normal loads. It can be noted that the coefficient of friction is
increasing from a value of µ = 0.1−0.3 to a value of µ = 0.4−0.5 during the first hun-
dred cycles. It can be explained by the presence of a small coating of polymer matrix on
the top surface of the disk that need to be worn off before reaching the normal composite
structure. Moreover, the contact radius is predicted by the Hertzian theory to be around
0.9 mm which is much smaller than the yarn width (≈ 2 mm). Finally, results obtained
here are giving an average of the coefficient of friction between the steel ball and each
constituent of the woven composite.
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Figure 5.6: In-situ coefficient of friction between AISI 52100 steel ball and woven com-
posite disk for different normal loads.

This macroscopic coefficient of friction is important for the industrial application be-
cause in the blade disk contact area both the yarns and the matrix are in contact. The
advantage of the pin-on-disk experiment is to cover different zones of the composite sur-
face and therefore to be able to get a good average value of the behavior of the composite.
In section 5.3, COF between the steel ball and each constituent are determined.

5.2.3 In-situ wear depth
During the experiment, the normal load is kept constant and the normal position of the
ball is measured using a proximity probe. Because of the wear of the surface, the vertical
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position of the ball is moving to keep the contact loading constant. The evolution of the
normal position corresponds to the in-situ measurement of the scar depth, that is to say
the sum of the wear volume on both the ball and the composite disk surfaces. The in-situ
scar depth is plotted for different normal loading amplitudes during test cycles in Fig.
5.7. One can note that the scar depth rate has an higher slope when the normal load is
increasing.
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Figure 5.7: In-situ wear depth between AISI 52100 steel ball and woven composite disk
for different normal loads.

A strong assumption is made that the different sliding distances seen by the ball has
no effect on the results. It should be noted that in contrary to fretting loadings, the sliding
direction is always the same during a pin-on-disk experiment. Unidirectional sliding re-
sults in a molecular alignment along the sliding direction and increase the wear resistance
of the material [BRA 96].

5.2.4 Archard wear law identification
According to Archard’s wear law [ARC 57], the wear volume is function of the normal
load F, the sliding distance S, hardness of the softest contacting surface H and K a dimen-
sionless constant.

VW =
K
H

FS (5.1)

It is possible to define a specific wear rate Ks in mm3.N−1.m−1 [WIL 99] from the
slope of the wear volume curve function of the sliding distance times the normal loading.
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The wear volume is computed form the scar depth following the same method than in
Ahmadi et al. [AHM 18] based on the ASTM G99 and on the assumption that wear
depth is equally distributed between the ball and the composite. In order to identify the
specific wear rate between steel and the 2D woven composite, the wear volume evolution
is plotted against the normal force times the sliding distance for four different normal
loads in Fig. 5.8. A linear regression is performed to obtain the specific wear rate and
results are varying between 1.9×10−7 < Ks < 5.17×10−7mm3.N−1.m−1. Specific wear
rates in the literature for contact between steel and polymers are found to be around 9×
10−6mm3.N−1.m−1 [UNA 04]. The results obtained here have lower specific wear rates
due to the wear resistance of carbon fibers in our material [CHE 15]. Optical micrograph
observations of the different contact regions are presented in Appendix D. A pin-on-disk
test between a steel ball and a steel disk has also been performed and results are presented
to validate the approach.

Finally, pin-on-disk experiments allow to obtain the coefficient of friction and wear
depth when the ball is moving over matrix and yarn contact areas on the composite
disk. Results are based on measurements of each constituent tribological behavior. They
allow to obtain an average value of the tribological behavior of the composite material
in unidirectional sliding. In the next section, fretting tests on individual composite’s
constituent are performed to better understand their surface damage mechanisms.
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Figure 5.8: Wear Volume between AISI 52100 steel ball and composite disk function of
the sliding distance and determination of the wear rate coefficient from a linear regression

(α) for (a) 30 N (b) 50 N (c) 60 N (d) 80 N of normal load.
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5.3 Fretting tests

5.3.1 Description of the procedure
In order to be closer to the conditions occurring between aircraft engine blade and disk,
fretting experiments have been performed with the Tribolab test rig. A reciprocating
linear drive is used to move a square part of woven composite against a stationary
ball. A zero to peak displacement δ = 0.18mm (stroke length of 0.36 mm) is applied
with a frequency f = 10 Hz and feedback is ensured by a linear encoder of 1µm
resolution. Experiments are performed for different normal loads but keeping the
same tangential displacement. The normal load applied is ranging from 10 N to 40
N and is kept constant during the tests. Friction force and displacement amplitudes
are measured during the experiments with a sampling rate of 2000 Hz. Each test is
running for exactly 40000 cycles. One should note that performing test in the partial
slip regime is very difficult. Imposed small displacements are accommodated by the
deformation of the test rig and the contact is found to be only sticking. That’s why
all tests are performed in the gross slip regime and are performed either on yarn or
on matrix surface. Contact radius a∗ is around 0.3 mm which is almost ten times
lower than a yarn width. Two pictures of the contact region are presented in Fig. 5.10
showing the size of the contact compared to the size of the composite structure. In
order to understand the macroscopic behavior of the composite materials, contact ex-
periments should be realized with a contact area containing both matrix and several yarns.

F

Figure 5.9: Schematic view of the fretting experiment.
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Test number Contact zone Normal Load (N)

1 matrix 10
2 matrix 15
3 matrix 20
4 matrix 40
5 yarn 15
6 yarn 20
7 yarn 25
8 yarn 30
9 yarn 40

Table 5.2: Experimental settings for fretting tests.

(a) (b)

Figure 5.10: Fretting zone on composite: N=40000 Cycles and W=40N (a) Contact
surface on matrix. (b) Contact surface on yarn.
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5.3.2 Coefficient of friction
The coefficient of friction (COF) is plotted for contact on the matrix in Fig. 5.11 and
for contact on a yarn in Fig. 5.12. The measured coefficient of friction is found to be
µ≈ 0.55 between the matrix and the AISI 52100 steel ball and µ≈ 0.25 between carbon
fiber’s yarn and AISI 52100 steel. As observed during pin-on-disk tests, the coefficient of
friction is increasing during the first thousand fretting cycles until the top surface matrix
layer is worn-off. Then the coefficient of friction between the matrix and the steel ball is
slowly decreasing after the first 10000 cycles in Fig. 5.11. This is probably a consequence
of the increasing temperature in the contact region. In Fig. 5.12, a first phase when
the coefficient of frictions between a yarn and the steel ball is stabilized is followed by
a second phase starting after around 25000 cycles where the coefficient of friction is
unstable. This phenomenon may come from the presence of wear debris in the contact
area.

The macroscopic coefficient of friction found during pin-on-disk experiment in Fig.
5.6 is approximately the mean value (µ≈ 0.4) of the two constituent’s coefficient of fric-
tion. This result is in good agreement with the rule of mixture usually used to predict
the COF of heterogeneous materials [TRI 10].One consequence of this result is that both
constituents would be equally present on the top surface of the disk.
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Figure 5.11: In-situ coefficient of friction between AISI 52100 steel ball and composite
for different normal load vs. the number of fretting cycles. The contact spot is located on

the matrix.
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Figure 5.12: In-situ coefficient of friction between AISI 52100 steel ball and composite
for different normal load vs. the number of fretting cycles. The contact spot is located on

a yarn.

5.3.3 Fretting loops

In this section, fretting loops for a normal load W = 20N on a yarn and for W = 30N on
the matrix are plotted at the beginning and at the end of the test. Measurements show a full
sliding hysteresis loop at the beginning of the test but fretting loops are sometimes evolv-
ing toward a higher dissipated energy (see Fig. 5.13(a)) and exhibit a peak in the force
at the end of the stroke. This phenomenon have been identified to be the consequence of
material’s build-up at the contact borders [FOU 04]. Sometimes fretting evolving toward
a stick contact mode (see Fig. 5.13(b)). This stick mode is only observed when the con-
tact is located on the matrix where the coefficient of friction is higher. One interpretation
is that after some fretting cycles, the wear scar is deep enough to trap the steel ball and
the tangential displacement is accommodated by the test rig arm deformation.

5.3.4 Optical micrograph observations

Observations with an optical surface profilometer have been performed on the contact
surface of the composite and of the steel ball. Differences in the wear mechanisms are
observable between the matrix and the yarns in Fig. 5.14 and Fig. 5.15 as in section 6.4.
For contact on a yarn, the maximum scar depth is localized at the center of the contact
area (see Fig. 5.15(c)) and for contact on the matrix, the maximum scar depth is found at
the center of the contact on the composite but a transfer phenomenon of the wear particles
on the ball happened. That is why the maximum scar depth on the steel ball is on the side
of the contact zone in Fig. 5.14(a). Wear mechanism between steel and matrix seems to
be adhesive while the wear mechanism between steel and yarn seems to be abrasive with
creation of very thin wear particles. An example of moving from full sliding condition
to sticking condition on the matrix is observed in Fig. 5.16. It can be noticed that wear
particles are moving out of the contact and are piling-up at the contact edges on the com-
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Figure 5.13: Fretting Loops at the beginning and end of the test after (a) W=20N on a
yarn (b) W=30N on the matrix.

posite in Fig. 5.16(c). Moreover a wear scar is appearing on the edge of the contact zone
on the ball surface in Fig. 5.16(a). This is a characteristic feature of stick-slip contacts
for which the wear is localized in the slip annulus. Results presented in this section are
giving an overview of the wear mechanisms of each constituent of the composite material
during fretting loading. Finally, the results obtained in the previous sections show the
differences between the coefficient of friction of each constituent in contact with a steel
ball. Micrograph observations also allow to understand the tribological behavior of each
constituent of the composite in fretting loading. The next section aims at obtaining the
wear kinematics of these two constituents.
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(a) (b)

(c) (d)

Figure 5.14: Adhesive wear scar showing transfer of material after full sliding fretting
cycles on matrix: N=40000 Cycles and W=20N (a) Profilometer view of the contact sur-
face on the steel ball. (b) Picture of the surface. (c) Profilometer view of the contact

surface on the composite plate. (d) Picture of the surface.
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(a) (b)

(c) (d)

Figure 5.15: Abrasive wear scar showing wear particles at the edge of the contact area
after full sliding fretting cycles on a yarn: N=40000 Cycles and W=20N (a) Profilometer
view of the contact surface on the steel ball. (b) Picture of the surface (c) Profilometer

view of the contact surface on the composite plate. (d) Picture of the surface.
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(a) (b)

(c) (d)

Figure 5.16: Adhesive wear scar with transfer of material at the edge of the contact area
after partial slip fretting cycles on matrix: N=40000 Cycles and W=40 N (a) Profilometer
view of the contact surface on the steel ball. (b) Picture of the surface. (c) Profilometer

view of the contact surface on the composite plate. (d) Picture of the surface.
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5.3.5 In-situ wear depth

The wear depth is measured during each experiment following the same technique than
in section 5.2.3. The wear depth function of the number of fretting cycles is plotted for
different normal loads on the matrix in Fig. 5.17 and on the yarn in Fig. 5.18. Using
these data, the specific wear rate can be identified for each constituent of the composite
material. It should be noted that the wear depth during the contact with the yarns is very
low and close to the resolution of the probe (≈ 0.1µm) leading to some important noise in
Fig. 5.18. It may result in a lack of precision in the identification of the specific wear rate
in Fig. 5.20.
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Figure 5.17: In-situ wear depth between AISI 52100 steel ball and composite for different
normal load vs. the number of fretting cycles for a contact spot located on the matrix.
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Figure 5.18: In-situ wear depth between AISI 52100 steel ball and composite for different
normal load vs. the number of fretting cycles for a contact spot located on a yarn.
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5.3.6 Archard wear law identification for yarn and matrix
Using the same method than in section 5.2.4, the specific wear rate is calculated from the
measurement of the wear scar depth for each constituent of the matrix. The specific wear
rate between the steel and the matrix is obtain from a linear regression in Fig. 5.19 and
is found to be in the range 2.19×10−4 < Ks < 2.9×10−4mm3.N−1.m−1. For the yarn, a
specific wear rate in the range 7.27×10−6 <Ks < 4.65×10−5mm3.N−1.m−1 is calculated
from data in Fig. 5.20. As observed in section 6.4, yarns are more wear resistant than the
matrix. Thus the specific wear rate is much lower for the yarns than for the matrix.
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Figure 5.19: Fretting Wear Volume between AISI 52100 steel ball and the matrix of a
composite material function of the sliding distance and determination of the wear rate

coefficient from a linear regression (α) for a normal load equal to (a) 10 N (b) 15 N.

One should take into account that the contact area considered in these experiments
is really small compared to the material structure’s scale or RVE (Fig. 5.10). As a con-
sequence, fretting experiments are not representative of the macroscopic behavior of the
composite material and experiments with a larger contact area containing enough of both
components, yarns and matrix, are necessary to understand the macroscopic fretting be-
havior between the composite blade and the metallic disk in the industrial application of
this work.
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Figure 5.20: Fretting Wear Volume between AISI 52100 steel ball and the yarn of a
composite material function of the sliding distance and determination of the wear rate

coefficient from a linear regression (α) for a normal load equal to (a) 20 N (b) 30 N.

5.4 Toward tests at the mesoscopic scale
The aim of this part is to realize contact experiments between steel and woven composite
at the scale of the RVE of the composite structure. This scale is between fundamental test
on a unique component of the composite (see section 5.3), easy to analyze but not repre-
sentative of the overall behavior of the composite material, and technological experiments
on industrial parts which are very costly. A first experiment is proposed to determine the
normal behavior of the composite under contact loading and a second experiment is pre-
sented to understand its tangential behavior under fretting conditions. Preliminary results
are presented in the following section but further tests should be realized to obtain a good
understanding of the contact behavior of woven composite materials.

5.4.1 Normal load test with MTS test engine
Two steel parts were designed and machined to be used on a MTS (Material Testing Sys-
tem) 810 machine present at the METL laboratory [WAL 14]. A first part was designed
only to support a square part of composite material on a flat surface and a second part
was designed to apply a normal load on the composite material (see Fig. 5.22 and 5.21).
A crowning with a radius of 100 mm was used but only a part of the spherical surface
was effectively machined. The roughness of the indent was not considered here but could
be of major importance in tangential loading. The MTS machine has hydraulic actuators
with a capacity of 100 kN. It is controlled by a computer and a MTS software responsible
for data acquisition. A load cell is measuring the axial load applied to the specimen. In all
experiments axial displacements were imposed with a resolution of 0.01 mm and around
3 N in the measurements. The aim of the tests was to determine the macroscopic behavior
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of the composite under contact loading and to detect the appearance of damage on the
force-displacement curve. In Fig. 5.23, results are plotted for a cyclic indentation curve
from 0.01 mm displacement to 0.06 mm with an unloading phase between every new in-
crease in the loading. The maximum imposed displacement is increased by 0.01 mm at
each step. The maximum imposed displacement is leading to a contact radius a∗ = 1.82
mm and to a maximum contact pressure of 86 MPa according to the Hertzian theory. Re-
sults in Fig. 5.23(a) show that the loading curves are superposing for the loading phases
from 0.01 to 0.03 mm displacement. Moreover, in Fig. 5.23(b) the results corresponding
to a maximum displacement of 0.04 to 0.06 mm are not superposing on the other curve.
This modification in the behavior may come from two different phenomena. The first
one is the appearance of damage in the composite material like matrix cracks and fiber
debonding while the second one is the yielding of the indenting steel part. One can ob-
serve that the slope of the loading phase is decreasing with the increase of the maximum
displacement. Based on the fact that yielding is an hardening phenomenon while damage
is a softening phenomenon, it is assumed that damage is predominant here. To better
understand the damage mechanisms occurring in the material during the normal loading,
tomography of the composite parts before and after each loading phase should be realized
along with a sectioning and metallurgical observations of the indent.

The preliminary results presented in this section show the effect of damage in the nor-
mal contact between a steel indent and a composite part. The contact area is large enough
to contain both matrix and yarns. The results show a softening behavior of the contact
with increasing normal loading. Further investigations are needed to fully understand this
phenomenon.

Figure 5.21: Schematic view of the compression experiment with MTS test rig.
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(a) (b)

(c)

Figure 5.22: Normal test with MTS Engine (a) Indenter side view. (b) Indenter’s tip view
(c) View of experimental set up.
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Figure 5.23: Force-Displacement curves of normal tests (a) from 0.01mm to 0.03mm of
imposed axial displacement (b) Full cycle loading curves from 0.01mm to 0.06mm.
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5.5 Partial Conclusion
The contact behavior under normal and tangential loading of a woven composite material
has been investigated. Various tests have been conducted to understand the behavior of
each component of the composite material and the effects of the structure of the compos-
ite on its macroscopic behavior. Both the coefficient of friction and the wear mechanisms
of the material have been investigated during pin-on-disk tests and fretting tests. In-situ
measurements of the coefficient of friction and of the scar depth have been compared to
observations and measurements with an optical profilometer. Results tend to show that the
macroscopic coefficient of friction between steel and composite is an average of the coef-
ficient of friction between steel and matrix materials and between steel and yarn materials.
The resulting coefficient of friction would depend of the proportion of each constituent on
the contacting surface. A last part consisted in testing the material at a larger scale, closer
to the technological application by using a different test rig and steel part specifically de-
signed for the experiment. Results were obtained to show the effect of increasing load on
the normal behavior of the material and the appearance of damage as a softening effect.
Further experiments are necessary to fully understand and characterize the behavior of
woven composite materials and their damage phenomena. But the results presented in
this chapter highlighted the effects of the heterogeneous structure of composite materials
in contact with a steel part on the tribological behavior of the system. Different coeffi-
cients of friction and wear kinematics have been identified for each constituent. In order
to take into account these phenomena in our simulations, composite materials need to be
modeled by considering their heterogeneous structure.
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Chapter 6

Simulation of material heterogeneous
structure with voxel

In this chapter, some limitation of the application of
homogenization methods in case of contact loading are

highlighted. Hence, a voxelization technique is proposed
along with numerous inclusions to represent the complex

structure of composite materials. A first part focuses on the
use of data from the tomography of composite materials and
converted into inclusions through the voxelization technique.

A second part is dedicated to the representation of the bearing
steel microstructure using a Voronoi tessellation algorithm.

Finally, an application of this technique is made on the
determination of the scatter in the fatigue life of bearing steel.
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6.1 Homogenization of heterogeneous materials with
SAM

In most computations of composite materials, the heterogeneous structure of the mate-
rial is not modeled. Instead an equivalent homogeneous material with effective material
properties Ce f f is considered. Effective properties are defined through an homogenization
process of the material Representative Elementary Volume (REV) as defined in section
1.4.2. The size of the REV depends of the woven pattern of the composite material. Ho-
mogenization theory assumes that at the scale of the REV, the properties of the material
can be averaged. The properties measured are independent of the localization within the
material. Design can be realized by considering the structure as homogeneous and having
the averaged properties measured on the REV. In the next section, some classical homog-
enization methods are briefly discussed. Then, the semi-analytical solver is modified to
obtain the effective properties of a periodic REV.

One should note that homogenization theory assumes a separation of scales between
the scale of the REV and the scale of the structure. Homogenization technique aims at
defining a material response independent of the local scale of the material. If the contact
area is around the size of the REV, then the hypothesis of scale separation is no more
valid. Previous work by Leroux and Nelias [LER 10] showed the effect on contact of
the presence of heterogeneities close to the surface. In the next section, contact loadings
are applied on both heterogeneous materials and equivalent homogenized materials. The
first part of this chapter aims at showing some limitations of the homogenization theory
in case of contact loading. The second part presents a technique to model composite
material at the scale of the yarns (also called mesoscopic scale). Finally, an application of
this technique to model crystalline microstructure of alloy is also introduced.

6.1.1 Homogenization theory
Due to the difficulty of simulating the real structure of composite materials, several
homogenization methods have been proposed to establish the macroscopic effective
properties and to predict the global stress-strain response of the material. Some of these
theories are briefly recalled here. They are all based on the definition of a REV and aim
at finding the macroscopic effective properties Ce f f .

In presence of a material REV of volume V made of n phases of volume V I , one phase
volume fraction can be written vI

f =
V I

V and the total volume fraction is equal to

n

∑
i=1

vi
f = 1 (6.1)

The effective elastic tensor can then be expressed as:

Ce f f =
n

∑
i=1

vi
fC

I : AI (6.2)
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with AI the localization tensor of the considered phase.

Assuming a uniform strain on the REV and AI = Id , the Voigt bound [VOI 89] can be
determined:

Ce f f
Voigt =

n

∑
i=1

vi
fC

I (6.3)

Following the same idea and considering the concentration tensor, one can express the
effective elasticity tensor as:

Ce f f =

(
n

∑
i=1

vi
fC

I : BI

)−1

(6.4)

Assuming a uniform stress on the REV and BI = Id , the Reuss bound [REU 29] is
defined as:

Ce f f
Reuss =

(
n

∑
i=1

vi
fC

I

)−1

(6.5)

The Voigt and the Reuss bound only take into account the elastic properties of
each volume fraction as a rule of mixtures. They represent the lower and upper
bound for the homogenized behavior of the composite. These bounds don’t take into ac-
count the geometry of the phases and the mutual influence between those different phases.

In a multi-phase material, the Mori-Tanaka method [MOR 73, BEN 87] considers
the behavior of non-dilute heterogeneities as if each heterogeneity is embedded and sub-
mitted to the mean strain field in the matrix εm. The mean stress field is influenced by
the presence of other heterogeneities. Therefore, this method is taking into account the
mutual influence between heterogeneities by averaging their effect.
The strain field inside the heterogeneity α can be expressed as:

ε
α = Aα

Eshelby : ε
m = Aα

Eshelby : Aα
MT : E (6.6)

With Aα
MT the pseudo localization tensor linking the total strain field in the hetero-

geneity α to the mean strain field of the matrix.

Aα
MT = Aα

Eshelby

(
vm

f Id +
n

∑
i=1

vi
f Ai

Eshelby

)−1

(6.7)

Ce f f
MT =CM +

n

∑
i=1

vi
f
(
Ci−CM)Ai

MT (6.8)

The Mori-Tanaka method is giving a good prediction for the effective stiffness tensor
if the heterogeneity volume fraction is not over 30%.
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The presented method are based on the assumption that the REV is duplicated in every
direction to reconstitute the material macroscopic structure. Periodic boundary conditions
need to be imposed on the borders of the REV to numerically compute the effective prop-
erties of the material. The following sections aim at showing the capacity of obtaining
effective material properties with the semi-analytical solver. Firstly, a numerical tech-
nique is proposed to simulate periodic boundary conditions. Secondly, examples with a
REV composed of one hard inclusion embedded in a matrix are compared with analytical
homogenization solution.

6.1.2 Periodic boundary conditions
In order to represent boundary conditions on the edge of the computed REV in the
semi-analytical solver, a modified DC-FFT algorithm called DCD-FFT (Discrete Con-
volution Duplicated) is used. DCD-FFT has been firstly used to compute contact solu-
tion on rough surface without knowing the frequency response functions of the surface
[CHE 08b, REN 09] and for lubricated contact on heterogeneous material [ZHO 16]. The
main idea of the algorithm is to duplicate the excitation variable (the eigenstrain here)
in every direction and to compute the product with the influence coefficients to get the
stress field coming from the presence of inclusions inside the Fourier domain. Finally,
only the stress field inside the original REV is kept but this field is taking into account
the presence of similar REV all around (see Fig. 6.1). In Fig. 6.2, the duplicated padding
is illustrated in the case of REV with one spherical inclusion in 2D (eight inclusions are
added to simulate the periodic boundary conditions). In 3D, the algorithm is creating 27
inclusions in the three directions to simulate the periodic boundary conditions.

The semi-analytical solver is used to simulate an infinite solid with one spherical
inclusion and using the DCD-FFT algorithm. The stress field inside and around the in-
clusion along z axis is compared with the stress field obtained by effectively adding 27
inclusions in the domain and without using the duplicated padding algorithm. A very
good agreement is found in Fig. 6.3 between the two stress fields and confirms the ability
of the algorithm to simulate periodic boundary conditions. This new technique is now
used to perform numerical homogenization of the heterogeneous solid.

Figure 6.1: DCD-FFT Algorithm applied on the heterogeneous subsurface problem
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Figure 6.2: Illustration of the duplicated padding in 2D
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Figure 6.3: Stress field in the REV with duplicated padding and with representation of
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6.1.3 Heterogeneity in infinite solid

The elastic stress and strain fields computed with the semi-analytical solver are used to
determine the effective Young modulus of the material using the duplicated padding algo-
rithm. Solutions are compared with the predictions obtained with classic homogenization
methods. Firstly, the effective Young modulus for a domain with a unique spherical inclu-
sion (Fig. 6.4) and with a volume fraction varying between 0.1 ≤ Vf ≤ 0.5 is computed.
It should be noted that the volume fraction of the sphere is limited by the geometry of a
sphere inside a cubic REV (Vf can not exceed 0.52). The Young modulus ratio between
the inclusion and the matrix is set to γ = EI

EM
= 23.3.

Moreover, the effective Young modulus is calculated for a domain with a cuboidal
inclusion (Fig. 6.5) and with the same Young modulus ratio γ = 23.3 than in the previous
example. In this case, the volume fraction Vf is varying between 0.1≤Vf ≤ 0.9.

For both inclusion shapes, the effective Young modulus curve is following the results
found using the Mori-Tanaka theory [MOR 73, BEN 87]. Such result can be explained by
the fact that as in the Mori-Tanaka method, the semi-analytical solver is also taking into
account the mutual influence between heterogeneities in the duplicated padding algorithm
through a mean stress field.

6.1.4 Indentation on homogenized solids

The previous section showed the capacity of the heterogeneous solver to obtain homog-
enized properties for a material with periodic boundary conditions. The present section
is focusing on the limitation of applying homogenization theory in presence of a contact
loading. A contact between a rigid sphere of radius R = 35.0mm and a heterogeneous
domain is compared with the contact between the same rigid sphere and the homogenized
domain assigned with the effective elastic properties. The homogenization technique with
the semi-analytical solver presented in the previous section is used here. The applied nor-
mal load is increasing from W = 1N to W = 100N in 22 time steps. At the end of the
loading phase, the contact radius is found to be a∗ = 1.17mm. Two examples are pre-
sented with a hard cuboidal inclusion in a matrix and a Young modulus ratio γ = 23.3 as
in 6.1.3. Volume fractions of the inclusion are equal to Vf = 0.7 and Vf = 0.1 respec-
tively. Comparison between indentation curves and contact pressure fields are presented
in Fig. 6.6 and Fig. 6.7. One should note that the contact area is about the same size
than the REV in these two examples. It is consistent with the contact conditions in the
experimental results presented in chapter 5 when the size of the yarn is about the same
size than the area of contact. Results when the heterogeneous phase volume fraction is
Vf = 0.7 are showing that the homogenization method over estimates the effective mate-
rial properties resulting in a contact pressure almost 40% higher than the contact pressure
with the heterogeneous domain. The slope of the indentation curve is also higher than
the one obtained with the heterogeneous domain. With a heterogeneity volume fraction
Vf = 0.1, homogenization under estimates the effective properties resulting in a maximum
pressure lower than the one in the heterogeneous domain and a lower indentation curve
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Figure 6.4: Effective Young modulus comparison with classic homogenization methods
for one spherical inclusion embedded in a matrix with periodic boundary conditions. The
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slope. Another example is proposed in Fig. 6.8 where the contact radius is around five
times the REV. Indentation curves between homogenized and heterogeneous domains are
showing only small differences while the contact pressure exhibits peaks due to the pres-
ence of heterogeneities close to the surface. The maximum pressure in the heterogeneous
material is 20% higher than in the homogenized domain. Moreover, the stress field in the
subsurface is considerably disturbed by the presence of heterogeneities (see Fig. 6.9). Fi-
nally, results in this section show the limitation of the homogenization theory for contact
mechanics due to incompatibility in the boundary conditions between both theories. One
should note that contact loading is often a very localized solicitation. There is a coupled
effect between the scale of the material and the scale of the contact loading. In particular,
due to the size of yarns, scale’s separation hypothesis can not be ensured in the contact
on woven composite materials. In case of contact loading, this kind of material can not
be represented by its equivalent homogeneous effective properties. The following section
present a way of representing the heterogeneous structure of composite materials in the
semi-analytical solver.

0 0.005 0.01 0.015 0.02 0.025 0.03
0

10

20

30

40

50

60

70

80

90

100

Displacement (mm)

N
o
rm

a
l 
F

o
rc

e
 (

N
)

 

 

Homogenized Domain

Cuboidal Inclusion Vf=0.7

(a)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
/P

0

x/a*

 

 

Homogenized Domain

Cuboidal Inclusion Vf=0.7

(b)

Figure 6.6: Comparison of the indentation curve (a) and of the dimensionless contact
pressure with a normal load W = 100N (b) for a half space with one inclusion (Vf = 0.7)

in the REV and the corresponding homogenized domain.
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Figure 6.9: Dimensionless stress field (a) σ13/P0 (b) σ33/P0 (c) σV M/P0 in the plane
y = 0 for a half space with a periodic structure of cuboidal inclusions (Vf = 0.1).
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6.2 Contact on composite materials
Results obtained in section 6.1.4 have shown the necessity of representing the heteroge-
neous structure of the material to obtain accurate pressure fields in the contact. In this
section, a voxelization method is proposed to accurately reproduce materials microstruc-
ture in the semi-analytical solver. In a first part, a 2D woven composite material is mod-
eled using data from tomography to reproduce the woven structure of the material. Yarns
are considered orthotropic and the matrix is considered isotropic. This scale of repre-
sentation is called mesoscopic. In a second part, the polycrystalline microstructure of a
metallic alloy is modeled using a Voronoi tessellation technique. Effects of the structure
representation on the rolling contact fatigue life is investigated.

6.2.1 Modeling of the structure of woven composites at the meso-
scopic scale

In order to model the behavior of a woven composite material in the semi-analytical
solver, composite materials are represented at the scale of the yarns also called mesoscopic
scale. Yarns have a complex microstructure made of carbon fiber filaments entangled in
a matrix. Each carbon fiber has a few µm diameter and a yarn is around 2 mm width and
0.5 mm thick. The REV of the considered composite is around 28mm× 17mm× 10mm.
Durville [DUR 10] proposed a method to simulate the fibers position in the yarn (at the
microscopic scale) but due to the high number of fibers to represent (more than three hun-
dred in [DUR 07]), this kind of simulation is very time consuming. To simulate the struc-
ture of the composite in the semi-analytical solver and to reduce the computation cost,
yarns will be considered homogeneous in the model, however orthotropic (mesoscopic
scale). The effective properties of the yarns are obtained through the homogenization of
an elementary cell. In order to obtain information on the weaving pattern, two different
methods can be used: a geometrical description of the weaving and experimental data of
the real weaving from X-ray tomography.

Geometrical model of woven composites

A first method to know the geometry of a woven composite is based on a geometrical
description of the yarns. A software developed by the team of Lomov at the Katholieke
Universiteit Leuven called Wisetex [LOM 00, LOM 07b, LOM 07a] generates the geom-
etry of the yarns by minimizing the energy of deformation of each fiber to get a static
equilibrium. This method models the yarn trajectory and the size of yarn sections. Some
difficult experimental identification to avoid any yarn interpenetration are also needed by
the method [LOM 07b, COU 08]. Another software called TexGen developed at the uni-
versity of Nottingham [SHE 07] allows to easily realize some woven geometrical elemen-
tary cells without any mechanical consideration. Both of these methods are considering
a constant and idealized form of the yarns. A woven structure from Wisetex has already
been used in the semi-analytical solver using ellipsoidal inclusion by Leroux [LER 13].
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Yarns are modeled by placing ellipsoidal inclusions along the mean line of the yarn pro-
file.

x3

x1

Figure 6.10: 2D woven composite geometry from WiseTex [LER 13].

Tomography of woven composites

X-ray tomography is a non destructive method to build a 3D view of an object. It measures
the attenuation of the X-ray beam through the object reflecting the density of the material.
A large number of beam angles are used to collect enough data to reconstruct the structure
of the body in grey scale. X-ray tomography has a lot of applications in material’s science
[SAL 03]. Tomography resolution is around 10 µm to 30 µm and is good enough to
allow the observation of the material at the mesoscopic scale [SCH 06]. Naouar et al.
[NAO 14, NAO 15b] proposed a method to build a finite element mesh of the composite
based on the real geometry using data from a computed tomography. More recently,
computed tomography have been used with digital volume correlation on a 3D woven
composite material to detect differences between two samples and find missing yarns
[MEN 19]. In the next section, tomography results are used to model realistic geometry
of the composite in the semi-analytical solver using a voxelization technique.

6.2.2 Voxelization of the composite structure
Representing the structure of woven composite materials in numerical simulation is
very complex. Grail et al. [GRA 13b] proposed a method to create a conformal
mesh of woven composites taking into account the contact between the yarns. But
due to its complexity, this kind of method is not widely used in the industry. A
more straight-forward method to translate the geometrical characteristic of the weav-
ing into input data for the semi-analytical solver is based on the use of a voxel mesh
[IAR 09, DEC 11, POT 12, SCH 09a]. A voxel can be defined as a cube and is the 3D
equivalent of a pixel. The principle of the method is to decompose the solid into a grid
of small voxels and to assign mechanical properties to each voxel. Mechanical proper-
ties of each constituent are assigned to each voxel depending on their position. If the
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Figure 6.11: Computed tomography of an interlock composite and plane cuts [NAO 15a].

voxel belongs to a yarn, mechanical properties of the yarn are assigned to the voxel.
If the voxel belongs to the matrix, mechanical properties of the matrix are assigned to
the voxel. The perfect contact between the yarns is one of the main advantage of the
method but some local artificial stress appears at the interface due to the non-smooth in-
terfaces [DOI 15b]. Voxel meshing method has also been used to model damage in woven
composites [KOU 14c, WAR 16]. An internal numerical tool of Safran Aircraft Engines
called REVoxel is used in this part to traduce geometrical data from the material REV
into voxels. Voxelisation data are used in the semi-analytical solver through the intro-
duction of orthotropic heterogeneous cuboids. One cuboidal heterogeneity is assigned to
each voxel with its material properties. Orthotropic material properties and orientations
of the heterogeneities are obtained by the voxelization process. Cuboidal inclusions are
superimposed on the half-space to represent the structure of the composite material as an
enrichment technique. Mutual influence between close inclusions is computed using a
modified conjugate gradient algorithm called Orthodir as in [KOU 15b]. One should note
that only voxel representing the yarns are converted into inclusions in the solver and the
matrix material’s data are assigned to the half space.

6.2.3 Results and comparison with homogeneous materials
A sample of 2D woven composite have been voxelized using REVoxel, the resulting vox-
elized yarns are represented in Fig. 6.12(a). The size of the voxelized domain is 28.8
mm ×16.96 mm ×3.5 mm. The domain is discretized into small voxel of size 2∆x = 0.1
mm. The volumic fraction of yarns in the considered material is around Vf = 0.8. A
contact simulation between a steel sphere and a voxelized composite material using the
semi-analytical solver is performed. The contact area position is represented on the vox-
elized structure in Fig. 6.12(b). The contact area (a∗ = 1.50 mm) is about the size of
a yarn (∆x = 0.033a∗). Matrix and Yarn material properties from chapter 5 are used in
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the simulation. Surface stress fields on the voxelized microstructure are presented in Fig.
6.13 and are compared to the same simulation with a homogeneous material in Fig. 6.14.
The surface stress field is disturbed by the presence of yarns close to the contact area.
Stress field in the plane z = 0, x = 0 and y = 0 for a larger contact radius (a∗ = 2.59 mm
and ∆x = 0.019a∗) are presented in Fig.6.15, Fig. 6.16 and Fig. 6.17. The corresponding
pressure field is compared to the pressure field on a homogeneous material with elastic
material properties of the matrix in Fig. 6.18. Size of the yarn is around the size of
the contact radius a∗. Presence of the yarn in the contact is disturbing the contact pres-
sure. The maximum pressure on the composite is found to be around 50% higher than
the maximum pressure found on the homogeneous material. When comparing stress field
for both contact radii, one can observe that the maximum dimensionless von Mises stress
is almost twice larger when the contact area is localized on a yarn. Hence, the solution
of the contact problem is depending on both the scale of the material structure and on
the size of the contact area. In every case, stress fields in the heterogeneous simulation
are showing strong gradient at the surface and in the subsurface at the interface between
the yarns and the matrix. These gradients are not present in the homogeneous simulation
and may be responsible for the appearance of damage in composite materials. Some of
these gradients are product of the non-smooth interface between yarns and matrix (see
Fig. 6.16(d)). It is an artifact of the voxelization technique as explained in [DOI 15b].
Finally, results observed in this section show the need of modeling composite materials
at the mesoscopic scale to predict their behavior and damage phenomena. Moreover, the
ability of the semi-analytical solver to model contact on composite materials at the meso-
scopic scale have been highlighted. The following section present an extension of the
damage model proposed in chapter 3 to the damage of yarns in composite materials.
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(a)

(b)

Figure 6.12: (a) Voxelized view of the woven yarns. (b) Contact area on the composite
structure.
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Figure 6.13: Dimensionless stress field in the plane z = 0 of a voxelized composite (a)
σ11 (b) σ12 (c) σ22 (d) σV M
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Figure 6.14: Dimensionless stress field in the plane z = 0 of a homogeneous material (a)
σ11 (b) σ12 (c) σ22
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Figure 6.15: Dimensionless stress field in the plane z = 0 of a voxelized composite (a)
σ11 (b) σ22 (c) σ12 (d) σV M
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Figure 6.16: Dimensionless stress field in the plane x = 0 of a voxelized composite (a)
σ11 (b) σ22 (c) σ12 (d) σV M
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Figure 6.17: Dimensionless stress field in the plane y = 0 of a voxelized composite (a)
σ11 (b) σ22 (c) σ12 (d) σV M
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Figure 6.18: Contact pressure on the voxelized composite material (blue line) and on a
homogeneous material with matrix elastic properties (red line).
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6.2.4 Towards a damage model for woven composite materials
The previous section has shown the ability of the semi-analytical solver to represent com-
posite materials at the mesoscopic scale. This section aims at proposing a modification of
the damage model presented in chapter 3 considering the fact that yarns have a transverse
isotropic behavior (see Fig. 6.19). Some preliminary results are presented. Future work
would need experimental results to identify the model parameters. The equivalent strain
is decomposed in two parts corresponding to the equivalent strain in the direction of the
yarn called fiber direction (with subscript F) and the equivalent strain in the direction or-
thogonal to the yarn called transverse direction (with subscript T ). Expressions of these
two equivalent strains are defined below:

Figure 6.19: Transversely Isotropic directions of the yarn

ε̃Fiber =
√
〈εF〉2+ (6.9)

ε̃Transverse =
√
〈εT 1〉2++ 〈εT 2〉2+ (6.10)

In order to accurately compute those expressions, one should apply the Maccauleigh
brackets 〈〉+ in the reference frame using the eigen-vectors matrix P and then transfer
back the field in the frame of the yarn following these steps:

• Compute the equivalent strain in the principal frame:

σi j→ P−1
σi jP→ σI → εI → 〈εI〉+ (6.11)

• Transfer in the yarn’s reference frame:

P〈εI〉+P−1→{ε̃T , ε̃F} (6.12)

Using the same model than for an isotropic material in Chapter. 3, two damage evolution
laws of the yarn corresponding to the fiber direction and to the transverse directions can
be defined with two different thresholds functions KF and KT :{

fF(εF ,DF) = ε̃F −KF(DF)
fT (εT ,DT ) = ε̃T −KT (DT )
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Yarns having a transversely isotropic behavior, damage phenomena may apply differently
in the two transverse directions. The coupled elastic damage constitutive law can be
expressed through the compliance tensor:


ε11
ε22
ε33

2ε23
2ε31
2ε12

=



1
(1−DF )EF

−νT F
(1−DT )ET

−νT F
(1−DT )ET

0 0 0
−νFT

(1−DF )EF

1
(1−DT )ET

−νT T
(1−DT )ET

0 0 0
−νFT

(1−DF )EF

−νFF
(1−DT )ET

1
(1−DT )ET

0 0 0

0 0 0 2(1+νT T )
(1−DT )ET

0 0
0 0 0 0 1

GFT
0

0 0 0 0 0 1
GFT




σ11
σ22
σ33
σ23
σ31
σ12


Four different coefficients are needed to identify the damage model along with 5 ma-

terial coefficients:

• 2 Young’s moduli: ET and EF

• 1 shear modulus : GFT

• 2 Poisson’s ratio : νT T and νT F

• 2 threshold strains : εF
d0 and εT

d0

• 2 fracture strains : εF
R and εT

R

6.2.4.1 Results with one yarn

Some preliminary results are presented here in the case of a contact between a spherical
indent of radius R = 20 mm and a half-space with one yarn. The normal load is W =
50 N and both parts are made of the same material with E = 114600 MPa. The yarn
is embedded just below the surface at a depth z = 0.25a∗. The yarn is made of small
transverse isotropic cuboidal inclusions with material parameters arbitrarily choose to be
EF = 120000 MPa and ET = 20000 MP (EF = 6×ET ). For sake of simplicity, the yarn
diameter is represented by only five cuboids (see Fig 6.20).

The presence of the yarn is strongly affecting both the stress field in the material and
the contact pressure (see Fig. 6.22) since it is localized very close to the surface. A
parametric study of the contact perturbation due to the presence of inclusions has already
been performed by Leroux et al. [LER 10]. He showed that for an inclusion deeper than
h > 0.4a, no effect on the contact pressure can be observed.
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Figure 6.20: Dimensionless stress field in a unique yarn embedded into the matrix (a)
σ11/P0 in the plane x = 0 (b) σ33/P0 in the plane y = 0 (c) σV M/P0 in the plane x = 0 (d)

and y = 0.
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Figure 6.21: Contact pressure in the plane (a) x = 0 (b) y = 0.

The two equivalent strains defined in the previous section are calculated and presented
in the plane y = 0 in Fig. 6.22.
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Figure 6.22: Equivalent strain (a) in the direction of the fiber (b) in the direction trans-
verse to the fiber in the plane y = 0 .

The equivalent strain in the fiber direction is found to be higher than the equivalent
strain in the transverse direction. It is because the yarn is very close to the maximum
shear stress depth. In order to go further in the analysis of this model, more experimental
investigations have to be realized. Future work is to identify the different parameters of
the two damage laws of the model.
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6.2.5 Partial Conclusion
This section has presented the limitation of the homogenization theory in presence of
a contact loading. A voxelization method has been introduced to model the complex
geometry of woven composite material with the semi-analytical solver. Results showed
the presence of strong stress gradients at the interface between the yarns and the matrix.
A modification of a previous damage model has been proposed to model the damage
appearing in the yarns. More experimental results are needed to expend this work. In
the following section, the voxelization technique is applied to model the microstructure
of polycrystalline alloys. Finally the results are used to predict the fatigue life of rolling
element bearings.

6.3 Effects of polycrystalline anisotropy on RCF
In the previous section, the semi-analytical method has permitted to simulate the behavior
of woven composite material under contact loading at the mesoscopic scale. In this sec-
tion, the semi-analytical solver is used to represent bearing steel at the micro-structural
scale. A voxelization of the grain aggregate geometry is used to compute the stress in
the material and to estimate the scatter in fatigue life of materials under rolling contact
fatigue.

6.3.1 Microstructure of metallic alloys
The microstructure of steel used in roller bearings like AISI 52100 is composed of an
aggregate of grains (Ferrite, Austenite, Martensite etc.). AISI 52100 is a steel with a high
carbon and chromium concentration and several treatments by heating and quenching
can affect the microstructure. The polycrystalline microstructure of AISI 52100 steel is
observed on a fracture surface in Fig. 6.23(b). Fracture seems to happen at the grain
boundaries [SAD 09]. These phenomena can not be taken into account in numerical
simulation when considering a homogeneous material. The Voronoi tessellation method
allows to accurately simulate this kind of material microstructure [ITO 93] and has been
extensively used to account for microstructure typology randomness in materials under
rolling contact fatigue [RAJ 08b, JAL 09, WEI 10, WEI 11, BOM 13b, PAU 14, VIJ 18].

6.3.2 Voronoi tessellation
The Voronoi tessellation is a numerical technique to divide a continuous space into regions
following some principles detailed in Okabe and Boots [OKA 00] and recalled here:

• A set of not coinciding seed points γ = {p1, p2, ..., pn} are randomly placed in a
three dimensional volume V ∈ R3.
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(a) (b)

Figure 6.23: (a)Microstructure of bearing steel AISI 52100 [BHA 12]. (b) Fracture sur-
face of AISI 52100 steel austenized at 800◦ [NAK 78].

• The volume V is divided into regions V{pi}, volume of influence associated with
a seed point pi. Each region is composed of every point closer (using euclidean
distance) to the seed point pi than to any other seed points of γ. This condition can
be expressed for each point x ∈V :

V{pi} =
{

d(pi,x)≤ d(p j,x), j ∈ [1,n] ,∀x ∈V
}

(6.13)

• Grain boundaries are the planes formed by the points equidistant from two generat-
ing points. Therefore Voronoi cells are convex close polyhedra covering the entire
volume V and forming the Voronoi diagram.

The distribution of seed points in the volume allows to capture the randomness in
the microstructure topology. Moreover, the density of seed point and its distribution is
controlling the average grain size and shape. A Poisson process is often used to place the
seed points because of its ability to accurately reproduce polycrystalline microstructures
[WEI 10].

The Voronoi tessellation has been applied to model microstructure typology for ho-
mogenization computation [KUM 94, NYG 02] and for contact simulation in both fretting
[DIC 06a, ZHA 09, ASH 17] and rolling contact fatigue [WEI 10, PAU 14, VIJ 18] with
the finite element method and with multigrid method [BOF 15]. The representation of
microstructure is limited to the volume where the gradient of stresses from the contact is
significant regarding to the characteristic length of the microstructure. The grain diameter
is an input of the algorithm to place the seed points of the Voronoi diagram and using the
MATLAB’s voronoin algorithm based on the software QHULL [BAR 96]. In this chapter,
all the Voronoi diagrams have been generated using a MATLAB’s algorithm developed at
the METL laboratory of Purdue University.
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Figure 6.24: The Voronoi tessellation process: space partition from a 2D seed distribu-
tion.

Figure 6.25: Example of a 3D Voronoi tessellation
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6.3.2.1 Mesh building

In finite element, the mesh of the Voronoi diagram is often unstructured. Each Voronoi cell
is meshed with tetrahedral elements to obtain a fine discretization of the grain boundaries
[VIJ 18]. Other authors also used structured method with cube elements (voxel) [ZHA 09,
ASH 17]. This is the same technique used in the previous section 6.2.2 and used in this
section to simulate the microstructure.

The discretization grid of the semi analytical solver is superimposed on the Voronoi
diagram (see Fig. 6.26). Each point is labeled with the Voronoi cell it belongs to. The
labelization process is done from the calculation of the minimum distance between the
point of the grid and one of the seed points.

6.3.2.2 Polycrystalline anisotropy

Most of the microstructure models in the literature are simulating isotropic materials but
on the microstructural scale, steel is made of randomly oriented anisotropic crystal grains.
If the loading conditions allow to consider the macroscale response of the material, the
anisotropy of the grains is resulting in a isotropic global material behavior and stiffness.
But considering the high stress gradient in contact loading, the grain orientation needs to
be taken into account. A cubic anisotropy model is adopted here to simulate the crys-
talline elasticity of the material as in Vijay et al. [VIJ 18]. A single crystal structure is
assumed here for sake of simplicity and each grain has the same elastic stiffness constants
as recalled in Eq. 6.14. Each grain has the same stiffness in its local coordinate system
but the macroscopic response of the material is evaluated in the cartesian reference frame.
It is then necessary to rotate the local grain stiffness matrix Clocal into the reference frame
Cre f erence following Eq. 6.15. Thus, the stiffness of each grain produces different values
in the reference frame.

σ11
σ22
σ33
σ23
σ31
σ12

=


C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44




ε11
ε22
ε33

2ε23
2ε31
2ε12

 (6.14)

Cre f erence = RZ′′RX ′RZClocalRT
Z RT

X ′R
T
Z′′ (6.15)

In the simulation, random Euler angles are assigned to each cell of the Voronoi dia-
gram. Each grain is discretized in small cuboidal inclusions with the same cubic elastic
properties but rotated accordingly with the assigned angles of each grain. All the inclu-
sions belonging to a specific grain have the same rotation angles. Vitos et al. [VIT 03]
determined cubic material constants for stainless steel from quantum mechanical calcula-
tions and their results are used in the simulations (see Table 6.1).

A measure of anisotropy is defined through the parameter A [PAU 14] and is calcu-
lated to be 3.78 here:
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Figure 6.26: Voxelization of the Voronoi tessellation

Elastic Constant Stress (GPa)

C11 204.6
C12 137.7
C44 126.2

Table 6.1: Cubic elasticity constant for steel [VIT 03]

A =
2C44

C11−C12
(6.16)

In Fig. 6.27, the Voronoi diagram is voxelized and random Euler angles are assigned
to each grain. It should be noted that this method is also able to simulate textured alloys
by giving a principal orientation for every grain of the material.
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Figure 6.27: Voxelization of the domain accordingly to the Voronoi tessellation. Ampli-
tudes correspond to the sum of the Euler angles.

6.3.3 Contact stress field in polycrystalline materials

6.3.3.1 Description of the parameters of the simulation

The rolling of a 3D rigid cylinder on an elastic body enriched with cubic elastic inclusions
is investigated (Fig. 4.7). The radius of the cylinder is R = 2.78 mm and a normal load
W = 25.5 N is applied on the cylinder. The half-space Young’s modulus and Poisson’s
ratio are chosen as E0 = 200 GPa and ν0 = 0.3, respectively. For the homogeneous half-
space, this load leads to a contact half width a∗ = 0.05 mm and a Hertzian maximum
contact pressure PH = 2 GPa. The cylinder length in the Y-direction is LY = 0.16 mm
which is more than three times larger than the contact half width in the x direction.

The loading moves from left (x < 0) to right (x > 0), maintaining the normal load
constant, on a distance equal to 2a∗ decomposed into 21 time steps. The tangential dis-
placement at each time step is equal to 0.1a∗. In this part, the effect of friction was
neglected. The loading and material parameters are consistent with the ones from Vijay
et al. [VIJ 18]. A Voronoi tessellation of the half-space is done and voxelized following
the steps described in section 6.3.2.1. The average grain size in the Voronoi tessellation is
around 10 µm [BOM 13a]. Note that the computation being elastic and without friction,
only the randomly oriented microstructure has an influence on the results. The elastic
constants of the inclusions are chosen to represent the same steel. The microstructure
is made of around 600 000 inclusions. The half-space is discretized in 225× 115× 59
computation points such that the space between points is 2∆x = 2∆y = 2∆z = 0.04a∗. The
proposed method allows to compute a rolling cycle in around 10 hours with 8 processors
at 2.40 GHz and 8 GB RAM.
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6.3.3.2 Stress field and contact pressure in the anisotropic domain

The stress field under the contact is strongly affected by the mismatch in the orientation
of the cubic structure. The microstructure affects the depth and the amplitude of the
maximum stress in the material during a loading cycle. The von Mises stress in the plane
y = 0 is plotted in Fig. 6.28(b) and shows the stress rising effect of inclusion mismatch.
The von Mises stress in the anisotropic and in the isotropic domain is plotted along the
depth (z > 0) in (x = 0;y = 0). The von Mises stress amplitude in the anisotropic domain
is locally higher than the one in the isotropic domain. The effect of the microstructure can
also be observed on the contact pressure in Fig. 6.29. One may note that the maximum
pressure is lower in the anisotropic domain than in the isotropic domain and the area
of contact is larger in order to conserve the load equilibrium. This may come from the
material orientation of the inclusions at the contact surface. The main difference with
the work of Vijay et al. [VIJ 18] is the coupling between the contact solution and the
heterogeneous material solver. In Vijay et al. [VIJ 18], the contact pressure is imposed
and assumed Hertzian. In the present results, and with a same imposed normal load,
the contact pressure is influenced by the microstructure resulting in a larger contact area
and a lower maximum pressure. This larger distribution of pressure on the surface is
responsible for a slightly lower stress distribution in the subsurface (see Fig. 6.28) than
what can be observed in Vijay et al. [VIJ 18]. Finally, the results in Fig. 6.28 showed
that the maximum von Mises stress in the anisotropic domain is resulting of the mismatch
between the orientation of two grains but is not strongly affecting the contact pressure if
it is localized far enough from the top surface.
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Figure 6.28: Dimensionless von Mises stress in the plane y = 0 (a) in an isotropic domain
(b) in an anisotropic polycrystalline domain. (c) von Mises stress along z direction in the

anisotropic domain and in the isotropic domain.
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Figure 6.29: Contact pressure between the rigid cylinder and the isotropic domain and
with the anisotropic domain.

6.3.4 Application to fatigue life of bearings
Fatigue is a process of damage accumulation manifesting through decreasing material
properties in the solid. It can be decomposed in three steps: initiation of the crack, prop-
agation of the crack and final rupture of the material. Each step is acting at different
speeds depending of the material. The present work is focusing on the initiation of cracks
because it is particularly affected by the random distribution of material properties and
defects inside the material microstructure [ZHA 16]. The difference in elastic properties
between the crystal acts as a stress raiser in solid and in particular at the grain boundaries
[PER 93]. The previous microstructure model is used to predict the location of crack ini-
tiation in the material and its fatigue life under contact loading. In the following sections,
classical methods to calculate the life of bearings are briefly recalled.

6.3.4.1 Weibull Statistical distribution

In order to estimate the life of manufactured bearings, experiments have emphasis the
presence of a scatter in the results due to the presence of defects in the material. Weibull
[WEI 39] proposed a statistical distribution often used to estimate the bearing life.

A two parameters Weibull probability function with k and λ positive constants can be
expressed as:

f (x,λ,k) =

{
k
λ
( x

λ
)k−1e−(

x
λ
)k
∀x > 0

0 ∀x≤ 0
(6.17)

k is a shape parameter (k = 1 gives the exponential distribution) and λ is a scale
parameter of the distribution.
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By integrating Eq. 6.17, one can obtain the failure probability function:

F(x,λ,k) =
∫ x

0
f (t,λ,k)dt = 1− e−(

x
λ
)k

(6.18)

With x representing the time leading to the failure of the component and F is the
failure rate. If k > 1, the failure rate is increasing with time while k < 1 indicates that
the failure rate is decreasing over time. Finally, for k = 1, the failure rate is constant over
time.

A Weibull plot is representing the cumulative distribution of experimental data. In
order to have a linear regression of the data, one can expressed Eq. 6.18 as following:

ln(1−F(x,λ,k)) =−( x
λ
)k (6.19)

ln
(

ln
(

1
1−F(x,λ,k)

))
= kln(x)− kln(λ) (6.20)

One can plot the Weibull linear plot on a logarithmic scale with k the slope of the line
and λ the intercept. This tool is often used to estimate the population of rolling element
bearings that fail before a given number of rolling cycles. It can be used to estimate the
parameters of the Weibull distribution if a straight line is obtained from the data in the
Weibull plot.

6.3.4.2 Lundberg-Palmgren Criterion

Based on the work of Weibull [WEI 39], Lundberg and Palmgren [LUN 47] proposed
one of the first theories to estimate bearing life. This theory is based on the assumption
that the most probable event leading to the bearing failure is subsurface crack initiation
mainly due to the presence of a weak point in a volume of material. They assumed that
the maximum shear stress coming from the contact loading is the main factor of bearing
failure. The weak points are assumed to be randomly distributed in the material and the
Weibull theory was applied to determine the probability of survival of the volume.

For a bearing under repeated rolling contact loading, the probability of survival S is
expressed in the following equation:

ln
(

1
S

)
= A

NeτcV
zh (6.21)

With N the number of repeated loading cycles, τ the maximum value of the shear stress
over the stressed volume V and z the corresponding depth. e (the Weibull slope),c and h
are material dependent parameters and A is an empirical constant. Ioannides and Harris
[IOA 85] modified the Lundberg and Palmgren [LUN 47] equation to take into account
infinite fatigue life by introducing a stress threshold.

Von Mises stress [IOA 85], unidirectional shear stress [ZAR 69] and octahedral shear
stress [ZHO 93b] have been respectively used as the critical stress in the equation 6.21.
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Replacing τ, z and V by the bearing basic dynamic load rating C and P the equivalent
load on the bearing, one can obtain the equation giving the life for 10% of failure:

L10 =

(
C
P

)n

(6.22)

The exponent n was determined experimentally and is equal to 3 for ball bearings
(elliptical contact area) and to 10/3 for roller bearings (line contact area).

This model assumes no shear traction and perfectly smooth surfaces leading to one
of the main limitation of this formulation: no surface initiated failure of the bearings is
considered.

Other modifications of the Lundberg Palmgren equation have been proposed by sev-
eral authors in the literature [ZHO 93a, ZAR 94, CHE 95, HAR 99, MOR 18a]. In all
these models, the critical stress and its depth are supposed constant to determine the bear-
ing life. But several authors [CHE 89, YOS 93] found that, under the same experimental
conditions, cracks occur at different depths.

6.3.4.3 Life scatter in rolling element bearings due to microstructure

Raje et al. [RAJ 08a] proposed an opposite viewpoint by considering that the variation in
the critical stress and depth due to material microstructure are responsible for the disper-
sion in bearing life. Instead of assuming a Weibull distribution, they simulated randomly
generated microstructure topology using Voronoi tessellation. Moreover, simulating a
large number of microstructures allow to reproduce scatter in bearing life. In Raje et al.
[RAJ 08a] formulation, the probability of survival and the bearing geometry are consid-
ered constant allowing to write a modified bearing life equation:

N ∝
zr

τq (6.23)

With r = 2.33 and q = 10.33 as in Lundberg-Palmgren theory. The critical stress and
the corresponding depth are the variable parameters that need to be determined. Several
microstructure simulations are giving life predictions and allow to determine the Weibull
slope parameter e. The same approach has been used with 2D [JAL 09, PAU 14] and 3D
[WEI 11, VIJ 18] finite element models. The same method has also been applied to the
study of plasticity in rolling contact [WAR 14, GOL 18], fretting [GHO 13] and formation
of butterfly wings [MOG 15b, MOG 15a, MOG 16b].

Critical stress computation

Numerical simulations have been performed on 30 domains to guarantee a good accu-
racy in the Weibull distribution (94% lower confidence limit [THO 70]). The Voronoi
tessellation is the same in every domain and only the orientation angles of each crystal
are changing. Effect of material orientation on the RCF life scatter is analyzed with three
different critical stresses: maximum shear stress reversal, maximum Tresca stress and
maximum Von Mises stress.
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Amplitude and depth of the maximum critical stress in every domain are compared
with the results obtained with an isotropic domain. Results for the maximum shear stress
reversal are presented in Fig. 6.30, for the maximum Tresca stress in Fig. 6.31 and for
the maximum Von Mises stress in Fig. 6.32. For every simulation, the maximum critical
stress amplitude found is higher in the anisotropic domain than in the isotropic domain
while the corresponding depth is varying around the reference homogeneous isotropic
domain value. The mean amplitude of the maximum shear stress reversal is found to be
0.658PH and their depth locations are found to vary between 0.36a∗ and 0.68a∗. The
mean amplitude of the maximum Tresca stress is evaluated at 0.475PH and their depth
locations are found to vary between 0.52a∗ and 1.04a∗. Finally, the mean amplitude
of the maximum Von Mises stress is found to be 0.849PH and their depth locations are
found to vary between 0.56a∗ and 1.04a∗. For all three critical stresses, results presented
here are showing a scatter in the localization of the critical stress between the different
anisotropic domains.
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Figure 6.30: (a) Variation of magnitude in the maximum shear stress reversal in the
30 anisotropic domains. (b) Variation of the corresponding depth in the 30 anisotropic

domains.

Fatigue criterion

According to Raje et al. [RAJ 08a] hypothesis, it is the variation in magnitude and depth
of the critical stress that is responsible for the scatter in bearings life. The scatter in the
results obtained with 30 different material’s microstructures is used to create a Weibull
plot of the probability of failure. One should note that no Weibull distribution of the
fatigue lives is explicitly assumed here. 2 parameters and 3 parameters Weibull plots are
realized with the three different critical stresses and are presented in Fig. 6.33, Fig. 6.34
and Fig. 6.35. The corresponding Weibull slopes can be found in Table 6.2. One can
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Figure 6.31: (a) Variation of magnitude in the maximum Tresca stress in the 30
anisotropic domains. (b) Variation of the corresponding depth in the 30 anisotropic do-

mains.
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Figure 6.32: (a) Variation of magnitude in the maximum Von Mises stress in the 30
anisotropic domains. (b) Variation of the corresponding depth in the 30 anisotropic do-

mains.
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Figure 6.33: 2 and 3 parameters Weibull plot superimposed on the data from the model
for the maximum reversal shear stress criterion.

Stress Criterion 2 Parameters Weibull Slope 3 Parameters Weibull Slope

∆τxz 6.5587 2.2899
τTresca 2.4998 1.3268
τV M 2.4039 1.5534

Table 6.2: Weibull slopes for different stress criterion.

observed that the maximum shear stress reversal is showing a bigger Weibull slope than
the two others critical stresses and is the more critical criteria for life prediction. These
results are confirming the influence of material’s microstructure in the life scatter of parts
under RCF loading.

Weibull slope parameters with Finite Element Simulation

The Weibull slopes obtained with our results are compared with the Weibull slopes found
in the literature in Table 6.3. The presented results are in the same range than the results
obtained with finite element models for isotropic and anisotropic materials. Using the
maximum shear stress reversal, Weibull slopes obtained with the semi-analytical solver
exhibit a higher slope than the one found with finite element by Vijay et al. [VIJ 18]. One
reason is that the voxelization of the microstructure doesn’t allow to accurately reproduce
the smooth grain boundaries [DOI 15b]. Moreover, the computational discretization of
the semi-analytical solver is only able to compute the stress field on a regular grid of
Gaussian points while the finite element model allow to mesh the grains to compute the
shear stress reversal on the geometric grain boundary. This difference can be observed in
lower amplitude of shear stress reversal in Fig. 6.30(a) than in Vijay et al. [VIJ 18]. Fi-
nally, the methodology presented here is showing the ability of the semi-analytical solver
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Figure 6.34: 2 and 3 parameters Weibull plot superimposed on the data from the model
for the maximum Tresca stress criterion.
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Figure 6.35: 2 and 3 parameters Weibull plot superimposed on the data from the model
for the maximum Von Mises stress criterion.
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Partial Conclusion

Authors Weibull Slope

Lundberg-Palmgren [LUN 47] 1.125
Raje et al. [RAJ 08a] 3.36
Paulson et al. [PAU 14] 1.18
Weinzapfel et al. [WEI 11] 4.55
Vijay et al. [VIJ 18] 0.95

Table 6.3: Weibull slopes from models in literature.

to capture the life scatter in rolling contact fatigue.

6.4 Partial Conclusion
This chapter has presented an application of the heterogeneous semi-analytical solver to
microstructure modeling of two kinds of heterogeneous materials. Although a first part
focused on the ability of the method to find the homogenized effective properties of het-
erogeneous materials, limitations of the homogenization theory for contact mechanics
applications have been highlighted. A link between the scale of the contact and the scale
of the material microstructure has been emphasized and showed the need to model ma-
terial heterogeneous structure. In particular,the mesoscopic scale is preferred to model
composite materials. A voxelization method is proposed using experimental data from
tomography in order to model the woven complex geometry. The effect of the contact
area and of the composite structure on the localization of maximum stress is highlighted.
Moreover, a modification of the previous damage model is proposed to simulate the dam-
age behavior of the anisotropic yarns. Finally, the same voxelization technique is used
for bearing steel anisotropic microstructure based on a Voronoi tessellation and allow to
exhibit the scatter in fatigue life prediction. One of the major contributions of this work
is the ability of the semi-analytical method to solve a coupled contact problem along with
the strongly heterogeneous material subsurface problem.
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Conclusion and Prospects

Introduction of complex materials like woven composite materials in mechanical systems
is a major trend in the aeronautical industry. Therefore, the development of fast and
reliable tools to simulate the contact between composite and metallic parts is of major
importance to predict the life of such components.

The present work used Semi-Analytical Methods (SAM) to solve three dimensional
contact problem on heterogeneous materials as presented in Chapter 2. The first approach
coupled the semi analytical solver with a continuum damage mechanics based model
to reproduce the damage phenomena appearing in the contact area in fretting conditions
(Chapter 3). Both gross slip regime and partial slip regime have been investigated. Results
show a good agreement with experimental results that the appearance of wear and crack
initiation is depending on the sliding conditions. Moreover, results showed that dam-
age in contact area lead to a decrease of the contact pressure. An application to coated
materials was also presented and the ability of hard coatings to protect the substrate is
confirmed by the model. A damage model from the literature is implemented and a good
agreement is found between results from both models. Moreover, the damage mechanics
approach based on a three dimensional field computation is compared with the classical
wear approach based on two dimensional field computation of the dissipated energy. Both
methods are giving similar results in term of contact pressure evolution.

The approach has been extended to the modeling of microstructural alterations around
nonmetallic inclusions in bearing steel (Chapter 4). SAM’s is used to compute the stress
field around the inclusion during a rolling cycle for the three dimensional propagation of
butterfly wings. The model is using small cuboidal inclusions to represent the microstruc-
tural alterations. Whereas influence of an inclusion close to the surface on the contact
pressure has already been highlighted, the effect of inclusion depth and rigidity on butter-
fly wings formation is emphasized. The computation speed and the low memory needed
allow to execute the numerous simulations needed. In addition to this subsurface model,
SAM is applied to surface initiated damage during the rolling over an artificial indent and
show the capacity of this method to reproduce C-cracks around indent.

Whereas tribological behavior of metallic alloys has been studied for decades, com-
posite material behavior is still not well understood. To this end, experimental tests have
been realized and results are synthesized in Chapter 5. Pin-on-disk (POD) and fretting
tests between a AISI 52100 steel ball and a woven composite material show the differ-
ent wear behaviors of the matrix compared to the yarns. Coefficient of friction in the
POD test corresponds to the average value of the respective coefficient of friction of each
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constituent of the material. Specific wear rates for the whole material and for each of
its constituents are identified. Finally, design of experimental test with a contact area
closer to the scale of the composite material REV is presented along with preliminary
results. The effect of damage on the normal behavior are clearly identified on the stress-
displacement curve. Therefore, the results show the influence of the complex structure of
the material on its mechanical and tribological behavior. Realization of a tomography of
the part before and after the test would allow to identify composite damage mechanisms
in contact loading.

The capacity of the semi-analytical method to model material’s complex structure at
the mesoscopic level for composite materials or at the microscopic level for bearing steel
has been detailed in the Chapter 6. In the first place, limitation of the homogenization
theory and of the scale separability when contact loading is applied is pointed out. Thus,
a voxelization method using cuboidal inclusions with the properties of the yarns is used
with the semi-analytical solver. Results showed the perturbation of the stress field in the
contact area and in the volume below. The same technique is applied to bearing steel
microstructure. Scatter in the rolling contact fatigue life is highlighted and results are
compared with finite element models from the literature.

However, all the analyses performed in this work have been limited to elasticity cou-
pled with a damage model. The additional effect of plasticity for the fretting behav-
ior would need to be investigated through a fully coupled heterogeneous plastic damage
model. It would allow to simulate the build-up effect on the side of the fretting zone.
Effect of the presence of butterfly wings around hard inclusions in rolling contact fa-
tigue would need to be analyzed at the light of micro plasticity due to the stress rising
effect occurring in the vicinity of the inclusion [AMU 16]. To be more accurate in the
simulation of composite materials, the visco-elastic behavior of the matrix as studied by
Koumi [KOU 14a, KOU 15b] require more attention and a coupled visco-elastic damage
model should be implemented. In order to represent composite damage mechanisms, de-
velopment of a model for the complex structure of woven composite would need to take
into account debonding between the yarns and the matrix. Finally, one should note that
the results of this work proved the efficiency of the semi-analytical method to deal with
complex physical phenomena and geometries. Furthermore, results presented in the last
two chapters highlighted the limitation of homogeneous model for contact and damage
simulation and the need for computational model of contact at the mesoscopic scale.
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Appendix A

Influence Coefficients
The influence coefficients giving the elastic stresses in a semi infinite body generated
by a uniform pressure are recalled here. Love [LOV 52] first developed the solution for
the displacement of the surface with a patch of normal pressure and Vergne [VER 85]
extended the solution to tangential loading.

Elastic stresses generated by a uniform pressure

Coefficients giving the stress field due to a uniform pressure applied on a rectangular sur-
face of size ∆x×∆y and centered in (x,y) = (0,0). The coefficients are given as a function
of the position of the calculation point (x,y,z), x and y being the directions parallel to the
surface and z the depth, directed towards the body. E and ν are the Young modulus and
the Poisson’s ratio of the body respectively.
One can define ρ =

√
x2 + y2 + z2 and I,J index referring to x, y or z.
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Sp
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Elastic stresses generated by a uniform shear in the x direction
Contribution of applied shear stress along the x direction are recalled here. The shear are
applied on a rectangular surface of size ∆x×∆y centered in (x,y) = (0,0).
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Heterogeneity influence coefficients
The results presented here are limited to a uniform eigenstrain, therefore, only the calcu-
lation of the tensor Di jkl is performed.

Di jkl =
1

8π(1−ν)
[Ψ,i jkl−2νδklφ,i j− (1−ν)(δklφil +δkiφ, jl +δ jlφ,ik +δliφ, jk)] (B.1)

Potential functions can be expressed as:
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Integral’s inferior born λ is the highest square root of equation U (λ) = 0 for the point
outside of the inclusion and λ= 0 inside the inclusion. By defining the following integrals:
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Potential function can then be written as,

φ =V (B.9)
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With,

V (x) = πa1a2a3

∫
∞
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Expressions of I integrals depend on the geometry of the inclusion and in the case of a
spherical inclusion (a1 = a2 = a3 = a) can be expressed as

I (λ) =
4πa3
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a2 +λ
, (B.13)

I1 (λ) = I2 (λ) = I3 (λ) =
4πa3

3(a2 +λ)
3
2
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For a cuboidal inclusion, potential functions have been expressed by MacMillan
[MAC 58] and recalled here:
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and

R =
√

c12 + c22 + c32 (B.22)

Vector c = (c1,c2,c3) is defined for the following equations,
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x1

x3

x2

2a1

2a2

2a3

Figure B.1: Cuboidal heterogeneity [LER 13]

c1 = (x1−a1,x2−a2,x3−a3)

c2 = (x1 +a1,x2−a2,x3−a3)

c3 = (x1 +a1,x2 +a2,x3−a3)

c4 = (x1−a1,x2 +a2,x3−a3) (B.23)
c5 = (x1−a1,x2 +a2,x3 +a3)

c6 = (x1−a1,x2−a2,x3 +a3)

c7 = (x1 +a1,x2−a2,x3 +a3)

c8 = (x1 +a1,x2 +a2,x3 +a3)
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Zero-padding
This technique consists in extending the size of the sources (pressure here) defined on
[0,N-1] to [0,2N+1] by setting their value to 0 on the zone [N, 2N+1]. No overlapping
with the influence coefficients is then possible.

Wrap-around order
For the influence coefficients, the domain size [0, N-1] is also doubled and becomes [0,
2N-1]. The coefficient with index N is set equal to zero in order to avoid overlapping both
domain. Coefficients from N+1 to 2N-1 are extended according to their parity properties.
Details on the method can be found in [LIU 00, GAL 07b].

The FFT is then applied to the extended data, multiplication is made in the frequency
domain and the inverse FFT allows to determine the final results with negligible error.

Figure C.1: Periodicity and overlapping created by the convolution product [GAL 07b]
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Figure C.2: Deleting overlapping using zero padding [GAL 07b]
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Figure C.3: Wrap-around and zero-padding for even coefficients [GAL 07b]
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Figure C.4: Wrap-around and zero-padding for odd coefficients [GAL 07b]
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Optical micrographs observations
Some observations of the contact tracks were conducted after the experiments using an
optical micrograph to create a 3D surface reconstruction image. For different normal
loading amplitudes, images have been taken on localization where the contact area is on
yarn and where the contact area is on the matrix. One can noticed that the track width is
larger when the contact is on the matrix than on the yarn due to its lower stiffness (see Fig.
D.1, Fig. D.2). Moreover, the wear scar measured on the matrix (around 25µm, see Fig.
6.2(a)) is deeper than the one on the yarn (around 4µm, see Fig. 6.2(b)). It can be observed
that each component of the composite material exhibit different wear mechanisms. Matrix
wear mechanism seems to be adhesive wear while yarn has abrasive wear with creation
of very thin wear particles. These mechanisms are in good agreement with what has been
observed by Li et al. [LI 18b]. Moreover, observations show that debris particles migrate
out of the contact during the test due to friction and the moving load. Because of the
unilateral sliding, these particles are piling up on both side of the track (see Fig. 6.3(a)
and Fig. 6.3(b)) and some debris particles are transferred on the steel ball (see Fig. D.3).
One should note that the piling up effect is more likely to happen on the yarn (Fig. 6.1(b))
than on the matrix (Fig. 6.1(a)).
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(a) (b)

Figure D.1: N=5000 Cycles and W=20N (a) Contact surface on matrix. (b) Contact
surface on yarn.

(a) (b)

Figure D.2: N=5000 Cycles and W=40N (a) Contact surface on matrix. (b) Contact
surface on yarn.
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(a)

(b)

(c)

Figure D.3: N=5000 Cycles and W=50N (a) Contact surface on yarn. (b) Profile trans-
verse to the contact track with pile up from wear debris. (c) Observation of wear debris

on the ball after pin-on-disk experiment.
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Comparison with steel on steel contact.
In order to compare the previous result of pin-on-disk experiments between a steel ball
and a woven composite disk, tests have been performed in the same conditions between a
52100 AISI steel ball and a disk of the same steel. In-situ coefficient of friction and scar
depth are measured for four different normal loading amplitudes and plotted in Fig. D.4
and D.5. The averaged coefficient of friction between two AISI 52100 bearing steel part
is found to be µ≈ 0.75. Moreover, the measured scar depth for the four different loading
amplitudes have almost the same slope. Using the same approach than in section 5.2.4,
the specific wear rate is calculated using a linear regression of the curve representing
the wear volume function of the sliding distance time the normal load. Considering the
hardness of AISI 52100 steel to be H = 7.85GPa, one can calculate the dimensionless
Archard wear coefficient to be K = 5.98× 10−7. This result is in the same range than
what can be found in the literature [BHU 01]. The wear mechanisms between two steel
parts are associated with plastic deformations and adhesive wear [ALO 14].
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Figure D.4: In-situ coefficient of friction between AISI 52100 steel ball and disk for
different normal loads.

Fretting experiment with METL test rig
A test rig designed at the METL to realize fretting wear test in various configuration
[LEO 12a] was used in this section (see Fig. D.7). Fretting tests have been realized be-
tween the composite material and two flat parts made of steel. A small disk of composite
was cut and machined to realized a crowning on both surfaces in contact. A linear actua-
tor was used to impose a reciprocating movement through an arm holding the composite.
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Figure D.5: In-situ wear depth between AISI 52100 steel ball and disk for different
normal loads.
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Figure D.6: Wear Volume between AISI 52100 steel ball and disk function of the sliding
distance with W=40N. Obtention of the wear rate coefficient from a linear regression.
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A load cell with a 222 N capacity is fixed on the arm between the composite part and
the actuator and a dead weight is used to apply a normal load on the contact. Finally, a
position sensor was used to measure the displacement of the moving arm as in Fig. 6.7(b).
Both the friction force and the tangential measurement are measured during the test and
fretting loops during the experiments are plotted in Fig. D.8. The wear scar obtained with
this experiment was too large be observed with the profilometer as in the previous section.
Some limitations of the sensors make it difficult to measure the fretting loop in partial slip
conditions and further experiments with a modified test rig would be necessary to obtain
a good measurement of the fretting behavior.

(a) (b)

(c)

Figure D.7: Fretting experiment with METL test rig (a) Up view. (b) Displacement
sensor (c) Global view of the experimental set up.
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Figure D.8: Fretting Loop N=60000, W=125N and δ = 0.2mm
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École doctorale : MEGA
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microstructure des matériaux métalliques permet de prédire la durée de vie des aciers utilisés dans les roulements.
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