Durée de vie des contacts rugueux roulants

L.Berthe, P. Sainsot, M.C. Baietto, T. Lubrecht Université de Lyon, CNRS, INSA-Lyon, LaMCoS UMR 5259

Une nouvelle machine : La microMaG

Evolution de l'état de surface

Propriété des disques et protocole d'essai

Rodage

Evolution de la microgéométrie des surfaces dans les tout premiers cycles, puis stabilisation.

Contact toujours au même endroit : sur le sommet des aspérités Aspérités ↘

· Déformations plastiques sur le sommet des aspérités

micro-écaillage

Rodage

-0.0

Apparition sous forme de fissures et d'arrachement de matière

Très bonne concordance de la simulation numérique 3D

micro-écaillage

Recherche des sollicitations à l'origine des fissures : Critère de Dang-Van $\sigma_{eq crit} = [\sigma_{shear} + \alpha \sigma_{hydro}] < \beta$

Surface modèle sinusoïdale

الم 50-50

- Endommagement maxi sur le bord de l'aspérité
- Plan critique incliné de 10° à 20° par rapport à la
- surface

Surface réelle mesurée

UNIVERSITE DE LYON

LaMCoS, Université de Lyon, CNRS, INSA-Lyon UMR5259, 18-20 rue des Sciences - F69621 Villeurbanne Cedex

y (µm)

Dang Van criterion

tures