Assessment of Different Thermostating Techniques in the Simulation of Molecular Lubrication

Hassan Berro¹, Nicolas Fillot¹, Philippe Vergne¹, Takashi Tokumasu², Taku Ohara², Gota Kikugawa² ¹LaMCoS, INSA-Lyon, France ²IFS, Tohoku University, Japan

Context and Problematic

 \square Molecular Dynamics modeling of nano-scale lubrication h \sim 1-6 nm , P \sim 0.1 - 2 GPa , v \sim 1-100 m/s , T \sim 30 - 200 °C

- □ Energy is:
 - > added by compression and surface sliding (mechanical form)
 - > dissipated by a thermostat (thermal form)

□ What temperature to impose ? And where ?

□ Friction is strongly related to the dissipation method in MD

Comparison between the thermostating methods in the high-shear regime

Operating conditions

Temperature Profiles

Summary

Dissipation Method	Temperature rise (K)		Shear Stress
	Surface	Lubricant	(MPa)
SBT	0	57.8	65.4
Phantom	32.1	84.7	60.6
VBT	30.5	82.3	60.8

- At low shear rates, the thermostat does not influence the friction
- At high shear rates, classical SBT thermostat over-estimate the dissipation and thus the friction
- A new method (VBT) for correctly dissipating energy from the molecular system is developed
- This method gives coherent with another advanced method from the literature (Phantom) but allows modeling more complex situations such as irregular solid structures

LaMCoS, Université de Lyon, CNRS, INSA-Lyon UMR5259, 18-20 rue des Sciences - F69621 Villeurbanne Cedex aboratoire de Mécanique des Contacts et des Structures