Assessment of Different Thermostating Techniques in
the Simulation of Molecular Lubrication
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Context and Problematic

O Molecular Dynamics modeling of nano-scale lubrication
h~1-6nm,P~0.1-2GPa,v~1-100m/s, T~ 30 - 200 °C
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U Energy is:
» added by compression and surface sliding (mechanical form)
» dissipated by a thermostat (thermal form)

Q What temperature to impose ? And where ?
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2.4 nm confined n-hexadecane film
between Au(111) surfaces

Sliding Boundary Thermostat Phantom Molecules method Variable Boundary Temperature

Q Friction is strongly related to the dissipation method in MD
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Computationally efficient and easy to apply + Phantom layers are employed to model a semi-

infinite solid with bulk thermal properties

== The method is difficult to apply for complex
surface structures

Surface  temperature evolves

according to the

realistically
liberated flux from the
confined contact using a direct multi-scale
thermal coupling from the molecular to the
macroscopic scale

Works well for low levels of shearing
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Surface temperature increases naturally due to

In the high-shear, high-dissipation regime only the the generated flux by lubricant shear

lubricant may heat up

Computationally efficient since no additional
degrees of freedom are required

== In these conditions, the method unrealistically
over-dissipates energy thus over-estimating the
friction -

Computational efficiency is influenced by the
additional phantom atoms and their special
interactions

The method is easy to apply for complex
surface structures

Operating conditions Summary

Lubricant: n-hexadecane 420 | T T ‘ T Dissipation | Temperature rise (K) | Shear Stress
s 1 1 1 Method : MPa
Surfaces: Au (111) Solid | Lubricant ‘ Solid Surface | Lubricant ( i )
v = £100 m/s 400 | . SBT 0 57.8 65.4
h=2.4nm | 00000 o | Phantom 32.1 84.7 60.6
P = 500 MPa 380 - | 9 o g | VBT 30.5 82.3 60.8
O
SBT: T(surf) = 300K < | © 5000 o
Phantom:  T(bulk) = 300K 5 360 o_o ©o 5 © .
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340 + | | . influence the friction
Boundary temperature evolution i @ E E o I ‘ ‘ o E u o
340 ‘ T ‘ 320 F | | 0O At high shear rates, classical SBT thermostat
\ : g @ 4 =8 x 108" over-estimate the dissipation and thus the friction
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DD i O/D Classical Sliding Boundary Thermostat (Langevin) advanced method from the literature (Phantom)
3 O/ 0 Phantom Molecules method but allows modeling more complex situations such
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5 10 15 20 O/D Variable Boundary Thermostat (Langevin) as irregular solid structures
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