Deconsolidation and consolidation of long fibre-reinforced thermoplastic composites during thermo-forming: 3D real time and in situ observations

Y. Lakroune^{1,2}, L. Orgéas¹, F. Martoïa³, P.J.J. Dumont³, S. Rolland du Roscoat¹, F. Jacquemin⁴, P. Casari⁴, O. Guiraud⁵ ¹Univ. Grenoble Alpes, Grenoble INP, CNRS, 3SR Lab; ²IRT Jules Verne, ³Univ. Lyon, INSA Lyon, CNRS, LaMCoS; ⁴Univ. Nantes, ECN, CNRS, GeM; ⁵Novitom

Context and objectives

Stamping of long fibre-reinforced thermoplastics

A multistage forming process with many uncontrolled deformation mechanisms and defects

> Decrease of the matrix viscoelastic properties due to temperature increase

Uncontrolled deformation of the fibrous reinforcement: anisotropic deconsolidation

> Uncontrolled increase of the porosity

Wolfrath et al. Compos Part A (2005)

- > Uncontrolled deformation of the fibrous reinforcement: anisotropic consolidation, shear, bending, biaxial tension...
- Uncontrolled/uncomplete pore closure, matrix migration

Forming

Ex.: matrix migration during compression of flax-fibre-matreinforced thermoplastic composites

Uncomplete pore closure

Ex.: anisotropic deconsolidation of the fibrous reinforcement in GMT

Thermoplastic polymer matrix: PA, PP, PEEK...

- Non-woven/woven long fibre reinforcements: carbon, glass, bio-based fibres
- Growing use in aeronautic and automotive industries for structural parts

Materials & methods

Objective of the study

To propose a method to characterize in 3D and real time:

(De)consolidation of the fibrous reinforcement at the fibre bundle scale Related pore growth and matrix migration mechanisms at this scale

M. Gassoumi, PhD Thesis, France (2018)

Material: thermoplastic matrix reinforced with woven fabrics

Thermoplastic polymer matrix (Solvay): polyamide 6.6 (PA 6.6)

Fibrous reinforcement: Twill 2×2 made of glass fibre bundles (12k, $d_{fil} = 14 \ \mu m$)

Prepegs (Solvay): large plates with 4 plies $[0^\circ, 90^\circ, 0^\circ, 90^\circ]$, thickness ≈ 2 mm

Cylindrical samples obtained using water jet cutting

 $d_0 = 25 \text{ mm}$

(De)consolidation setup and 3D imaging using X-ray synchrotron microtomography

Experimental setup – ESRF ID19 beamline

Heating stage - Deconsolidation

Compression stage - Consolidation

Testing procedure

- **Deconsolidation phase: heating up to 300°C**
- then down to the testing temperature (280°C,

290°C and 300°C)

Consolidation phase: compression at various strain rates (5×10⁻⁴ s⁻¹ < $\dot{\varepsilon_0}$ < 5×10⁻³ s⁻¹)

3D imaging

- Setup mounted on the X-ray tomograph
- of the ID19 beamline (ESRF, Grenoble, France)
- Spatial resolution: voxel size 22³ µm³
- Large field of view: 2000² pixels
- Contrast enhancement : Paganin imaging mode
- Fast imaging mode: 2000 X-ray projections for a scanning time of 2 s !

Main results

Heating stage - Deconsolidation

Compression stage - consolidation

Deconsolidation vs consolidation

Evolution with the temperature of thickness $\overline{\varepsilon}_h$, plane $\overline{\varepsilon}_s$ and volume $\overline{\varepsilon}_v$ strains

Evolution with the macroscale compression strain of the volume fraction of segregated fibre and matrix phases

Evolution of pore size distributions obtained during the heating (left) and compression (right) stages

- $T [^{\circ}C]$
- > Significant increase of the out-of-plane strain $\bar{\varepsilon}_h$ up to 0.6 > Negligible surface strain $\bar{\varepsilon}_s$ due to the highly anisotropic and in-plane fibrous architecture

Evolution with the temperature of the porosity $\overline{\phi}$ and relative volume fraction of closed pores $\overline{\phi}_c/\overline{\phi}$

- > During consolidation: heterogeneous flow conditions characterized by pronounced matrix segregation and squish of fibre bundles!
- > The swelling of the fibrous network induced a pronounced increase of the porosity from 0.008 up to 0.45
- \succ The kinetics of porosity growth exhibited sharp increase from 230°C to T_{mf}
- > The initial amount of closed pores practically corresponded to the initial porosity

- $d \left[\mu m \right]$ $d \, [\mu m]$
- > Pore size distributions exhibited Weibull shapes
- > During heating: progressive increase of the mean pore diameter \overline{d} from ≈ 80 to 300 µm at 300°C.
- > During compression : progressive decrease of \overline{d} close to its initial value, i.e., $\overline{d} \approx 100 \ \mu m$ at the end of the compression stage.

Evolution of bundle cross-section strain $\overline{\varepsilon}_{bs}$ and radius of curvature \overline{r}_{b} of their centreline during the heating and compression stages

> During heating and compression, fibre bundles are subjected to (i) important swelling-/shrinkage of their cross sections and (ii) complex folding-unfolding mechanisms