Contraintes mécaniques induites lors du gel d'une solution acqueuse dans un réservoir

Deqi Liu^{1;2}, Hubert Maigre¹, Fabrice Morestin¹, Philippe Géoris²

¹LaMCoS, INSA-Lyon ²Plastic Omnium, Clean Energy Systems a - Alphatech

Contexte : rupture de réservoir provoquée par l'expansion induite par le gel d'un liquide

A tank filled with aqueous urea solution

Half cut of the tank during freezing

Component failure due to high pressure in the liquid pocket.

Non-isotropic phase-change expansion (PCE) at the solidification interface:

Simulation by thermal conduction: geometric prediction of solidification interface

Possible mechanical interferences

Unexpanded:	Isotropic PCE:	Non-isotropic PCE:
determined by	Expands uniformly	expands more in normal
thermal analysis	in all directions	direction of interface

Weeks & Wettlaufer (1996): "As polycrystalline ice grows, favorably oriented crystals expand at the expense of less favorably oriented ones."

Approche analytique : contraintes et pression dans un réservoir sphérique

Rigid spherical vessel

h is current interface position. Thermal expansion in solid/liquid phase is neglected, only PCE is considered. Solid and liquid are treated elastically.

PCE orientation factor η

If $\eta = 0$, isotropic PCE If $\eta = 1$, PCE only in normal expansion

Elastic response

Approche numérique : solidification par éléments finis en thermo-mécanique couplés

Numerical model

- Liquid phase is treated as in static state solid with small shear stress:

р

- Small shear modulus
- Small yield strength to plasticity
- The non-isotropic PCE is modeled using local heat flux, which is always in the normal direction to the phase-change interface during solidification.

- For the solid phase:

 $\dot{\boldsymbol{\sigma}} = \mathbb{C} : (\dot{\boldsymbol{\varepsilon}} - \dot{\boldsymbol{\varepsilon}}_h - \dot{\boldsymbol{\varepsilon}}_h)$

Benchmark test in a steel vessel, filled with water

with a pressure censor and a thermocouple in the center.

Application exp: freezing in an open reservoir

Rigid reservoir example

- Pressure near the last liquid pocket is high, component of the tank should avoid these positions.
- Inelastic deformation above liquid region is big, cracks of the solid may occur. >> Future work
- Simulation in 3D is also available, contacts between liquid and tank wall should be carefully defined.

with a viscoplastic function:

 $\underline{x_{n}} = ff(\underline{x_{n}}), TT$

 $m(\underline{x_n})$: isotropic hardening function

This material model is implemented into Abaqus via a user-defined subroutine UMAT. The method is validated by the analytical solution of the spherical model.

t=7500s

_a6oratoire de Mécanique des Contacts et des Structures