

LaMCoS

Contact and Structural Mechanics Laboratory

UMR CNRS5259 / INSA Lyon 27 bis avenue Jean Capelle Bâtiment Sophie Germain 69 621 Villeurbanne, France lamcos@insa-lyon.fr http://lamcos.insa-lyon.fr

General presentation of LaMCoS - where

General presentation of LaMCoS – history

General presentation of LaMCoS – domains of expertise

Predict and control the performance and integrity of static and dynamic mechanical systems from the component to the whole system

- Predict the performance and integrity of mechanical systems (living and industrial systems)
- Systematically confront experiments and numerical simulations or quasi-analytic models (pluridisciplinary teams, cutting-edge measurement techniques)
- Making relevant research topics arise from industrial barriers

General presentation of LaMCoS – facts and figures

200 people; 3 papers/person/year 4.2M€ de CA*

53 teachers-researchers; 21 technicians 104 post-graduate students; 16 Postdocs**

^{**} Data at 30 June 2014

^{*} Average 2011-2015

■ General presentation of LaMCoS – research network

Research units

DCS: Dynamics and Control of Structures, G.Jacquet-Richardet

Prediction and control of the dynamic behavior of machines and structures

MIMESIS: Multiscale Mechanics for Solids, M.C. Baietto

Heterogeneous media damage and failure, non-linearities, change of scale, tangled media

Numerical simulation of processes for composite, polymers and metallic materials, multiphase materials, dynamic behaviour of materials

SMC: Mechanical Systems and Contacts, P. Velex

Quasi-static and dynamic functional analysis of lubricated systems

TMI: Tribology and Interface Mechanics, B. Bou-Saïd

Understanding of the tribological behaviour of the contact interface. Predictive friction, wear and fluid or solid lubrication models

• DCS: Dynamics and Control of Structures, G.Jacquet-Richardet

Prediction and control of the dynamic behavior of machines and structures

■ DCS Team: research topic

Societal issues

UNDERSTAND and MASTER

OPTIMISE performances

REDUCE nuisances, limit risks

MONITOR, ACT, CONTROL

MAKE it energetically autonomous (smart structures)

Dynamics of Structures and Machines

Scientific issues

MASTER non-linear behavior, uncertain environments and evolutive behaviors

MIX numeric and experimental apoaches

INCORPORATE multi-physical and multi-scale modeling of phenoma

DESIGN smart materials and smart structures

DEVELOP numerical dedicated method

■ Equipe DCS – Some achievements

Rotating Dynamic – Rotor/Stator contact

ANR IRINA (EDF) - Collaboration Turbomeca

EDF

Non-linear Dynamic - MEMS/NEMS Sensors

Collaboration CEA-Leti / LTDS - 2 patents

Equipex PHARE

Embedded rotor

6dof shaker

Characteristics: 62000N, 10g max, +/- 50mm, 5°rotation.

Vibration Control of new class of helicopter

Collaboration Airbus Helicopter

Soft hybrid Generator – Energy Scavenging

ANR SEASEA (SBM Offshore), Collaboration G2Elab, IMP, MSSMAT

MIMESIS: Multiscale Mechanics for Solids, M.C. Baietto

Heterogeneous media damage and failure, non-linearities, change of scale, tangled media

Life cycle:

from production...

... to service...

... to ruin

Contact and Structural Mechanics Laboratory

■ MIMESIS: some achievements

Multimodal experiments
Sheath rupture under pressure

Numerical methods for soft tissues characterization

Scale transition in large strain and rupture

Propagation of 3D cracks using reduced-order modeling

Isogeometric analysis

Molecular dynamics

Amorph material with an inclusion

MULTIMAP : Multiphysics Mechanics for materials and processes, P. Boisse

Numerical simulation of processes for composite, polymers and metallic materials, multiphase materials, dynamic behaviour of materials

■ MULTIMAP: research topics

■ MULTIMAP: some achievements

Processes for metallic materials (welding, peening...) Dynamic behaviour of materials under conditions of shock

Ex.: prediction of the mechanical properties of a welded part

Ex.: dynamic rupture of wood and ice

Composites forming process

Ex: mesh generation from X-ray tomography

Polymer processingEx.: simulation of paint projection

SMC: Mechanical Systems and Contacts, P. Velex

Quasi-static and dynamic functional analysis of lubricated systems

SMC Team

Static and dynamic study of mechanisms (gears, bearings...)

Multi-scale couplings between mechanical systems – contacts

Power losses in mechanical transmissions

Contact failure analysis

SMC Team

Optimisation of engine lubrication (texturing,...)

Numerical simulations of **engine part performance** (cam, piston rings,...)

Numerical and **experimental** studies of **complex contact performance** (heterogeneous materials, adhesion, visco-elasticity, rugosity)

TMI: Tribology and Interface Mechanics, B. Bou-Saïd

Understanding of the tribological behaviour of the contact interface.

Predictive friction, wear and fluid or solid lubrication models

Biotribology and biomechanics

■ TMI Team

Tribology: dual experimental-numerical approach 1rd body, 3rd body, mechanism

1st body

solid 3rd body

fluid 3rd body

Finite element modelling (EF)

- Wheel-rail contact

Discrete element modelling (ED)

- Energetic materials-

Finite element modelling (EF)

- Flange-roller end contact

Tribogyr specimen and contact geometry

Keys projects

Industrial chairs

- Areva-Safran : Life extension and manufacturing processes
- SKF: Lubricated Interfaces for the Future
- Safran : Innovative mechanical transmissions for aeronautics
- Volvo : Solutions for the Future of Urban Transport
- Michelin : Multi-scale approach and new materials for tire performance

- Durasol : Durability of solar materials and systems
- Phare : Rotating machines platform to investigate and control environmental risks

LabCom

- Drillab (DrillScan): Geothermal or oil drilling simulation laboratory AD VITAM: AVNIR
 Engineering, Advanced vibrations tests for the analysis of rotating machines
- AD VITAM : AVNIR Engineering, Advanced vibrations tests for the analysis of rotating machines
- Openlab PSA
- TRANSMECA for mechanical transmissions (CETIM)
- CIRTRANS (Renaults trucks, Safran HE, Alstom Transport, GIMA, Texelis, Reel, ECAM, INSA, ECL)

Industrial partners and research centers

Academic partners

- Local: U. Lyon 1, Centrale Lyon/LTDS, INSA/LGEF Ampère Mateis INL, INPG, U. J. Fourier Grenoble, Centre de Plasturgie...
- France : CEA, Onera, CETIM, Femto-ST, nombreuses universités (Paris, Le Mans, Compiègne, Strasbourg, Montpellier, Marseille, Toulouse...)
- Europe : EPFL, U. Bruxelles, Politechnico Milano, Fraunhofer, DTU Danemark, Imperial College, Trinity College Dublin, U. de Roma la Sapenzia...
- Worldwide: Georgia Tech, LIGO (MIT), USC Los Ageles, U. Sherbrooke, U. Uberlândia, Tokyo Inst. Of Technology, ...

Industrial partners

- Groups: Airbus, Airbus Helicopter, Alstom, ArcelorMittal, Areva, CNES, CEA, DCNS, EADS, EDF, Faurecia, GE Global Research, GE Oil& Gas, Herakles, Hutchinson, Maïa-Eolis, Messier-Bugatti-Dowty, NTN-SNR, Decathlon, PSA-Citroen, RATP, Renault, Rhodia Solvay, Robert Bosh Gmbh, Rollex, Safran group, SKF, SNCF, Thalès, Total, Valéo, Volvo,...
- SME : Cornilleau, Cornis, Microdb Solystic, Petzl, Vibratec, Tornier, Redex,...
- Very small entreprises : Vibrateam...

Involvement in the scientific community

- Editor Scientific committees Convention organisation
 - Experts in the tribology group of the ASME
 - ASME/IGTI, IFToMM Rotordynamics, IFToMM Terminology ISCORMA...
 - Conferences ASME IDETC
 - International Gear Conference 2014/2018
 - Leeds-Lyon Symposium on Tribology
 - ESAFORM 2008, JFT 2008, IUTAM 2007, JTM 2007/11/15...
 - Review panels : Wear, IJT, IJNME, IJFP, JVC, MI, JMD, JSV

Administrative committes

- Several research groups related to impacts, biomechanics, measures, fluidstructure interactions, non_linear dynamics...
- FEDERAMS
- Scientific evaluation committees (SNCF, CEA, SNECMA,etc.)
- National Council of Universities
- French Mechanics Association
- Research and Safety National Institute
- Mechanical Engineering teaching department

Future trends in research

Sustainable development

Structure weight reduction – Prediction of damage –
Wear control – Non polluting lubricants – Identification of tribological sources of noise - Energy efficiency

Biomechanics

Development of technologies for health

Multiphysic modeling

Micro- and nano- Technologies

